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Abstract: Collective problem-solving and decision-making, along with other forms of collaboration
online, are central phenomena within ICT. There had been several attempts to create a system able
to go beyond the passive accumulation of data. However, those systems often neglect important
variables such as group size, the difficulty of the tasks, the tendency to cooperate, and the presence
of selfish individuals (free riders). Given the complex relations among those variables, numerical
simulations could be the ideal tool to explore such relationships. We take into account the cost of
cooperation in collaborative problem solving by employing several simulated scenarios. The role of
two parameters was explored: the capacity, the group’s capability to solve increasingly challenging
tasks coupled with the collective knowledge of a group, and the payoff, an individual’s own benefit
in terms of new knowledge acquired. The final cooperation rate is only affected by the cost of
cooperation in the case of simple tasks and small communities. In contrast, the fitness of the
community, the difficulty of the task, and the groups sizes interact in a non-trivial way, hence shedding
some light on how to improve crowdsourcing when the cost of cooperation is high.

Keywords: group decision-making; collective intelligence; collective problem-solving; simulation study

1. Introduction

Crowdsourcing and, more generally, group decision-making and collective problem-solving
are central topics in the cognitive computation field [1–3]. Generally speaking, there have been
many attempts to exploit the properties of human information exchange in order to improve collective
decision-making [1–3]. By means of social and cognitive-inspired simulations based on the sociophysics
approach, in this paper, we employ a numerical simulation framework for crowdsourcing [4] in order
to investigate the role of the cost of cooperation and its interaction with other variables (group size,
difficulty of the task, the presence of selfish individuals, etc.). We highlight the importance of the cost of
cooperation and determine the conditions where higher costs do not hinder the overall performance.

1.1. The Importance of Crowdsourcing

Engaging a community of experts in solving complex problems or stakeholders in gathering new
ideas has become an increasingly common practice. Such types of processes are generally known
as crowdsourcing.
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For example, in 2009, the mathematician Tim Gowers started the Polymath Project, a collaboration
among other mathematicians to solve difficult mathematical problems by coordinating many colleagues.
The basic idea was to persuade them to collaborate in order to find the best way to the solution. In just
a few weeks, the effort of this community of mathematicians was able not only to solve the proposed
problem but to figure out the solution to a more difficult generalized version of it [5].

Moreover, group decision-making and collective intelligence are the core concept of certain
crowdsourcing models (e.g., Open Collaboration) [6] . Nowadays, problem-solving is no longer
seen as the action of a single individual. Groups and communities have become central in ensuring
a distributed, plural and collaborative decision-making process [7]. In such a sense, the crowd proved
to have the capability of solving highly complex problems that traditional problem-solving teams
can’t settle.

Although there are various definitions of crowdsourcing, a feature that seems to be common in
many of its definitions [8–12] is conceiving such dynamics as a widespread problem-solver.

1.2. Limitations of the Extant Literature

Given the new possibilities created by information and communication technologies,
collaborative decision-making has become a central topic within many fields, including cognitive
computing. For example, the authors of [2] developed CO-WORKER, a real-time and context-aware
system able to exploit information exchange in human interactions going beyond passive data
storing. Indeed, the system, inferring contextual information during several different activities
(learning, discussion, cooperation, decision-making, and problem-solving) actively engages the
participants with respect to communication, meetings, information sharing, and work processes,
among other activities. However, CO-WORKER assumes that people will collaborate to the platform:
issues such as the number of interacting individuals, the difficulty of the task, and, in particular,
the cost of cooperation (i.e., the possibility that some participant will not put enough effort in engaging
the system) are neglected. Anyway, those are crucial factors in determining the success of the system.
The same applies to other collaborative knowledge building architecture (e.g., TeamWork station,
Virtual Math Team, and Dolphin) and, more generally, to systems that employ specific techniques
(such as fuzzy logic and aggregation operators) in order to improve group decision-making via the
reaching of a certain level of consensus [1]. Also in this case, the above-mentioned variables are usually
neglected, but, indeed, they are crucial in solving problems by a community of experts. Another
important example could be the problem of the development of semantically structured data and
metadata by the annotation of resources [1]. For example, much effort has been devoted to the
development of semantic web-based annotation system able to facilitate the creation of user annotation.
However, even in this case, the issue of the cost of cooperation may hinder the entire system. What if
the user does not engage in the activity because of laziness, lack of attention, or motivation? Exploring
the factors that influence group decision-making and, more generally, online collaboration, may give
important information to the extant literature about the development of systems aimed at exploiting
collaborative problem-solving. However, those insights would obviously not be applicable to all forms
of crowdsourcing since crowdsourcing itself is a broad and complex theme.

1.3. Factors Affecting Group Decision-Making: A Numerical Simulation Approach

Many variables affect group decision-making in problem-solving [13] such as cognitive [14],
social [15], motivational [16], and evolutive [17] factors. Therefore, it can be assumed that a group
needs to solve a problem whose solution may produce benefits for the entire community as well
as for single individuals. Despite many crowdsourcing projects that include individuals who do
not necessarily know each other (i.e., those who do not share a common identity), we have chosen
to use the term “community” in order to consider other typologies of crowdsourcing, for instance,
those related to organized and online communities [18,19], as it represents our perspective better
(i.e., the production of collective knowledge by means of direct interaction among individuals).
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Depending on personality factors, motivation, and cognitive variables, an individual may choose
to combine his effort with other members or to remain an individualist (the so-called free rider).
In the first case, if the subgroup of people who cooperate finds a positive solution to the problem,
such a solution can give benefits to each individual even if their contribution was little to the solution
achieved. However, free-riders play an important role from an evolutive point of view, for they have
smaller chances of solving the problem, but if they find a solution, the individual learns much more
than when the solution is found collectively. In the real world, as well as in a virtual environment,
cooperative individuals live and interact with those who behave selfishly. In this sense, it is important
to understand which factors affect the decision to act in a pro-social manner (i.e., to cooperate in
order to achieve a common goal). Nonetheless, individual differences in the tendency to cooperate are
not only attributable to genetic factors (or in a broader sense to individual aspects), even though
these certainly play a significant role. Even the environment, and therefore learning processes,
sharply influence cooperation and competition dynamics. For instance, social contexts (e.g., culturally
related socialization experiences) appear to predispose individuals to adopt one strategy or another [20].
According to the social heuristics hypothesis [21], people internalize those strategies that are generally
advantageous in everyday social interactions, which also lead them into atypical social environments
(e.g., virtual environments and laboratory experiments). Recently, cognitive science has paid special
attention to the role of contextual variables that influence cooperation dynamics. In fact, today’s
technological society has prompted individuals to confront increasingly complex cognitive tasks, and
one of the ways in which humans have responded to this complexity is through a group, of which
crowdsourcing could be considered the numerically largest possibility [22]. The environment that
is created within a team (e.g., shared and interactive team cognition) can facilitate or hinder the
achievement of a cooperative goal [23,24]. In addition, the interaction with situational variables
(e.g., the time available to make a choice, group size, or the complexity of the task) influences in
a non-trivial manner the outcome of the decision-making process by making certain strategies of
problem-solving more or less salient [25,26]. Furthermore, computational models [27] and field
studies [28] from other disciplines emphasize the role of group size in supporting the level and the
quality of interactivity among individuals (i.e., the production of collective knowledge). For instance,
experimental literature on social dilemmas suggested that different types of group-size effects on
cooperation are possible (negative, positive, and curvilinear), depending on the payoff structure
of the game [29,30]. In a recent study, task complexity was further investigated [31]. Despite the
fact that micro-tasks have become increasingly common within crowdsourcing practices, not all
problem-solving situations can be addressed with such an approach. Another factor that can influence
the tendency of individuals to cooperate is the cost of cooperation. In fact, every human interaction
involves a cost. In the simplest case, these costs concern the communication and the coordination
(e.g., Ringelmann effect) among individuals. However, one of the ways in which it is possible to
think about the cost of cooperation brings up the concept of reciprocity, which is the risk that our
own cooperative behavior will not be reciprocated. With few guarantees that cooperation will not be
exploited, the cost (the risk) of the cooperative behavior increases, and this has a negative effect on all
cooperation levels [32]. Conversely, a lower exploitation risk (lower cost) positively affects cooperative
dynamics. For instance, the possibility to identify effectively [33,34], to reward or punish our social
partners [35,36], or to spread rumors about them (i.e., to gossip) [37,38] seems to positively affect the
establishment and the maintenance of good levels of cooperation. This phenomenon, which considers
the intricate relationship among group dimension, the difficulty of the problem, the tendency to
collaborate or not, as well as many other variables, is very complex, and even more so when the results,
provided by recent literature and referring to small group situations, are considered.

Contributions in psychology have successfully handled the complexity of such psychological
aspects recurring to agent-based modeling (ABM) [39]. An ABM approach proved to account for
dynamics characterized by many interdependent individuals that adapt their behavior according
to the social environment demands [40–42]. Moreover, some of the aforementioned psychological
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aspects that influence cooperation dynamics (e.g., reputation, peer influence, and empathy) have been
modeled in order to replicate human decision-making [43].

A simulation approach based on social and physical principles can be useful to model this
phenomenon by taking into account groups with greater amplitude, as in the case of crowdsourcing.
It is worth stressing the fact that sociophysical models have already shown to be very useful for
the understanding of social phenomena related with crowdsourcing. In particular, we remind the
reader of the proper opinion dynamics models, as the voter and the Deffuant models, which describe
the evolution of opinions in a population of agents that share their ideas (the former in case of
discrete possible opinions, the latter with continuous ones) and are allowed to simulate, with suitable
modifications, simple but realistic situations [44–46]; on the other hand, Galam’s works [47,48] focused
on the effects of minorities or agents with anti-social behavior as the contrarians, further refining
the efficacy of the sociophysical models and simulations, showing the versatility and usefulness of
the numerical approach besides the purely theoretical and experimental ones. Finally, a further step
forward was accomplished in [49,50], where cooperation and defection as strategies adoptable by
individuals were explicitly added to the models, allowing for a better understanding of the interplay
among the cost of cooperation, the irrationality of the agents, and the topology for the emergence
and evolution of pro-social behaviors. Following this path, together with the work carried out in [4],
we believe more light can be shed on the phenomenon of crowdsourcing and its implications in
human societies.

As hinted above, this work is based on a recent paper [4] in which the authors proposed a modeling
framework for crowdsourcing in relation to the level of collectivism that characterizes the community
facing the problem. More specifically, the model attempted to investigate the impact of dividing a given
population with a fixed number of subjects (called players) into several smaller groups by the ability
of these groups to solve problems of variable difficulty (tasks). Several scenarios were explored where
everybody was in the same group to a specific scenario in which each player worked alone. The idea
was to determine the optimal group size that would allow its players to learn the most. More precisely,
the role of two parameters was explored: the capacity, the group’s capability to solve increasingly
challenging tasks coupled with the collective knowledge of a group, and the payoff, an individual’s
own benefit in terms of new knowledge acquired. The rationale behind these two scores was to model
the incremental nature of human advances. It is given that the latest scientific discoveries depend on
previous discoveries, as they literally set up the conditions for such an advancement. The famous
quote by Isaac Newton, “If I have seen further, it is by standing on the shoulders of giants”, clearly
describes such dynamics. In other words, we are speaking about a chain of fitness gains, where the
total gain is larger than the simple addition of the payoff due to single advancements. Therefore,
the framework postulates the two distinct gaining schemes cited before, the capacity and the payoff.
In short, the former reflects society’s knowledge accumulated over history, whereas the latter reflects
the individual knowledge related to skills for daily problem-solving in a given time and context.

1.4. Aim of the Study: Protecting Crowdsourcing from the Costs of Cooperation

Previous simulations have shown that, when facing not-so-hard tasks, the tendency to collaborate
in a group was and still is inversely proportional to its dimension. Moreover, regardless of the
difficulty of the task, there is an optimal group size where collectivism and individualism are balanced
by achieving the highest fitness and capacity. However, such simulations did not take into account the
cost associated with collaboration. Experimental literature on social dilemmas has stressed that the cost
of cooperation greatly impacts the cooperation itself. Indeed, cooperation levels are related negatively
to the cost and positively to the benefits of cooperation [51,52]. As a matter of fact, many studies
testified that trying to solve a problem with other people involved many different kinds of costs such as
cognitive and [53] communicative ones [54], the need to acquire consensus and deal with relationships
among members [55]. Exploiting collective intelligence [56] of a group requires each member to pay
a variety of costs. The crucial point is to evaluate the trade-off between such costs and the individual
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gain associated with collaboration. In this study, we added a cost for cooperation to Guazzini’s model.
It is trivial to predict that, by adding a cost for cooperation, the rate of cooperation decreases. However,
for authors like Rachlin, the capability of acting altruistically (i.e., to pay a cost to benefit someone else)
resides in the ability to ignore the short-term benefits of behavioral alternatives and to give greater
importance to long-term gains of pro-social actions [57]. If this is true, we might expect a lack of
sensitivity towards the magnitude of the cost of cooperation in a whole range of possible scenarios.
Furthermore, the presence of a cost cannot certainly motivate “selfish” agents to change their strategies,
so the eventual decrease in cooperation levels would presumably be due to the abandonment of their
basic strategies by those agents with a greater tendency to cooperate. Nevertheless, these agents may
offer some resistance to changing their strategies in relation to the increase of the cost. In addition,
given the complex interaction among the variables at stake, we can expect that this decrement will
interact with the size of the group and difficulty of the task.

2. The Model: Settings and Simulations

Modern sociophysics and cognitive modeling frequently merge their approaches and languages,
developing hybrid methods and models’ architectures [58]. Such a trend allowed sociocognitive
sciences to go beyond the limitations characterizing the “classic” approach based on game theory
(e.g., public goods games), sometimes capturing the minimal complexity required to “understand”
the dynamics of human social systems [59]. The complexity of our approach actually refers mainly
to the way we implemented the collective dynamics of the agents. Despite such complexity,
the computational model describing the cognitive dynamics of the agents is very simple and
represents a standard in the “computational modeling of cognition” [60,61]. From the other side,
the “toy sociophysical model” we propose is devoted to bridging the agents’ dynamics with the
study of the collective competition between groups. Such a model has been already validated in
a previous publication and represents the first attempt to capture the concurrent interplay between
group competition and agent cooperation within the groups [62]. Moreover, in order to mimic the
“indirect reciprocity” effect [33], we introduced an explicit representation of the “group knowledge”,
defined as the result of the amount of past altruistic behaviours of its agents. In this way, the “basic”
tendency to free-ride the others at the level of the agent is dynamically moderated by the evolutionary
selection of the agents based even on its “groups knowledge”. Finally, such an interplay, merging
cognitive and psychosocial modeling, has been implemented as follows.

We divided a population of N players into n groups with the same size S, so that S = N
n . We took

N = 64, and seven values of S = 1, 2, 4, 8, 16, 32, 64 (N = 64 remained fixed). The algorithm assigned
a value of pi (chosen uniformly between 0 and 1) to each player i in each group. The value pi was
characterized for each player, which remained the same over time, and measured the player’s tendency
to collaborate with other group members when solving a certain task (i.e., the propensity to work
collectively as opposed to individually). More precisely, a small value of pi (close to 0) indicated
a tendency towards individualism, while large values (close to 1) indicated a propensity towards
collaboration. We stress the fact that such pi are in all respects the strategies of player i: therefore, it must
be considered as an innate feature of each individual and independent from other quantities. As usual
in most game-theoretic models, see for example [63], by means of the evolution rule individuals with
higher fitness will be more likely to reproduce, so that their strategies will survive to the detriment of
the other ones. Indeed, our goal is to understand what are the best strategies depending on the values
of the model parameters.

In a subsequent phase, a task was assigned to a group. The task was represented by the
value R, which indicated the simplicity of the task and it was chosen randomly from six values
(R = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9). Values of R close to 0 indicated a hard task, while values close to 1
indicated easy tasks. Each of n groups worked in parallel to solve a task with the same simplicity R.
For size group S and for task simplicity R value, we ran a sequence of games. Each iteration of the
game was divided into three steps: (1) first, we determined if a player in a group was a collectivist or an
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individualist. Each player i had a probability pi of being a collectivist, so the player collaborated with
other collectivists in the group to solve the problem; if not, the player was an individualist, who still
benefited from the group but tried to solve the task alone. (2) Second, if the player i belonging to
group j was a collectivist, the expected gain (Gi) was fixed at Gi = Cj + 1, with Cj representing the
cardinality of group j, which is described in detail below, as well as the level of knowledge reached
by the group during the previous turns (i.e., experience). On the contrary, if the player i decided
to adopt an individualistic strategy, the desired gain G∗i was chosen uniformly at random (between
1 and 10). Larger G∗i meant smaller probability to solve the task but with a potentially greater gain if
there was a positive resolution of the task. This result reflected the more effort that the individualist
needed to solve the task, but a greater reward was not shared with the group. The choice to let the
individualists’ gain be extracted at random, differently from the collectivists’ case, is a conservative
selection: indeed, while collectivists work together for a common goal, an individualist struggles for
a given objective, which is harder or easier according to the specific instance. More precisely, we could
have set the model so that individualists could select the possible gain following a given rule; however,
since on average individualists face every kind of task, for simplicity we preferred to extract it at
random. (3) Third, the algorithm determined if the task was actually solved (or not) by each player.
The collectivist player solved it with a probability of R, whereas the individualist player solved it
with a probability of RG∗i . Obviously, since R ≤ 1, a larger desired gain G∗i meant a smaller chance
of solving the problem. As a consequence, the advantage of being collectivist is to have always the
opportunity to gain a fitness equal to her group knowledge plus one (Cj + 1), with a probability of R,
while the individualists always gain a certain amount of fitness (F), with a probability of RF.

The expected gain used to study free-riding dynamics cannot always be known at the beginning.
Indeed, the success (and thus the expected gain) of crowdsourcing application and platforms rely
massively on users’ adoption and participation [64]. In this sense, this first phase of the crowdsourcing
projects resembles a social dilemma [65]. The gain resulting from crowdsourcing is unpredictable and
depends on the use that others do of such platforms. Choosing not to tie the decision to cooperate or
compete to the expected earnings could be considered a conservative solution that reflects this first
phase of crowdsourcing projects.

Each group, regardless of its iteration-dependent divisions into collectivists and individualists,
was indexed with j in order to differentiate from i, which indicated the players within a group.
Regarding the players who solved the task for a given iteration, the algorithm assigned to the scores
was as follows:

• Cardinality Cj equaled the group’s capacity to solve increasingly more challenging tasks
(e.g., the collective knowledge of a group) and thus, it was also an integer parameter that was
equal to the number of iterations in which one collectivist solved the task, regardless of R. At the
beginning of this experiment, it was set at the value of Cj = 0 for all groups and then updated to
Cj → Cj + 1 each time one collectivist player solved the task.

• The player’s fitness or payoff πi represented a player’s own benefit in terms of new knowledge
acquired. If a collectivist (C) or an individualist (I) failed to solve the task, their fitness increased

only because the others’ contribution of πi =
Cj
S ∑C

j , with ∑C
j equal to the number of cooperators

belonging to the group j of player i who solved the task in the game turn. However, if a collectivist

solved the task, it contributed an additional fitness of
Cj+1

S , with C∗j = Cj + 1 becoming the

updated cardinality of the group, so having πC
i =

Cj+1
S +

Cj
S ∑C

j . In addition to the gain shared by
the collectivists in the group, an individualist who solved the task gained an additional fitness of

Gi (i.e., Gi = RG∗i ), so having π I
i = GiRG∗i +

Cj
S .

• Furthermore, the cooperative players in the group needed to coordinate and synchronize the
cooperation of solving the problem among each other. On the contrary, individualists did not have
to pay this so-called cost for the very fact that they acted alone. To represent this difference,

the collectivist player fitness always is computed as πC
i =

Cj
S − (

Cj
S δc), where the term δc
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represented an additional cost of cooperation, which was the cost that every collectivist is assumed
to pay in order to synchronize his effort with the group. On the contrary, the individualists are not
affected by such cost directly. Such a model of payoff aims to represent the idea that collectivists
distribute new knowledge both to themselves and to all the others, while individualists keep it for
themselves. However, collectivists solved tasks more easily since they worked together, but with
potentially less new knowledge (fitness) for each of them separately. In contrast, by working
alone, individualists solving harder tasks learned much more since they avoided sharing this new
knowledge with the others.

Summarizing, the dynamics of the system implemented by our model, is ruled by two linked
equations (Equations (1)–(4)), respectively, determining the agent’s personal gain (i.e., the gain coming
from its game turn), and the payoff of an agent which depends even from the possible cooperators’
contribution. The average gain (γi) is the direct contribution to the own fitness of each player in
a single turn of the game, and it can be expressed as

γi = piR
Cj + 1

S
+ (1− pi)RG∗i G∗i , (1)

or separately for Collectivists (C) and Individualists (I), as in the Equations (2) and (3):

γC
i = R

Cj + 1
S

(2)

and
γI

i = RG∗i G∗i . (3)

The fitness of each player in a turn of the game πi is then defined as the total gain of each player
at the end of such a turn, deriving both form its contribution (γi) and from the contribution due to the
number of cooperators k, which solved the task during the turn within the same group of i.

πi can be expressed by Equations (4), (5), (6), ...

πi = γi +
N

∑
k

pkR
Cj + 1

S
(4)

with k 6= i.
Again we can express the πi separately for Collectivist (πC

i ) and Individualist (π I
i ), as follows in

Equations (5) and (6):

πC
i = R

Cj + 1
S

+
N

∑
k

pkR
Cj + 1

S
(5)

π I
i = RG∗i G∗τi +

N

∑
k

pkR
Cj + 1

S
. (6)

Finally, if we introduce the cost of cooperation (δc), and we consider the time, we have that the
expected fitness of an agent i at a certain time t becomes

πt
i =

t

∑
τ=1

[
pi

(
R

Cτ
j

S
+

N

∑
k

pkR

(
Cτ

j

S
−

Cτ
j

S
δc

))
+ (1− pi)

(
RG∗τi G∗τi +

N

∑
k

pkR
Cτ

j

S

)]
(7)

where the first term of the summatory argument represents the contribution of the cooperative actions,
while the second term represents those of the individualistic actions.

The simulations involved n groups of a size of S simultaneously for a given R. Since an entire
game consisted of 2000 rounds, a round was interrupted after 1000 iterations in order to check the
fitness of the players. The average fitness π̄ of all players, regardless of the group they belonged to,
was computed. At random, 20% of players whose fitness was below π̄ were removed and replaced
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by new ones, whose pi was drawn anew, so that the groups’ sizes S were preserved. From one round
to another, all group capacities sumCj and all players’ fitnesses πi were reset to 0, where the value R
remained the same, only changing the structure of groups in terms of players pi, and the distribution
of pi within each group, from one round to another. The fitter players were kept in the game as
well as 80% of lesser fit players. It is the player’s pi and his relationship with the other players’ pi-s
that dictated the player’s overall performance in any game. The system evolved over 2000 rounds,
with an evolutionary selection being applied at the beginning of each round and then after a number of
iterations, and these rounds were sufficient in reaching a stable configuration. Finally, a different series
of simulations were run in order to test the effect of the cost of cooperation (δc). The control parameter
δc varied during the testing of six different values, respectively, δc = 0, 10%, 30%, 50%, 70%, 90% of
the collectivist players’ expected gain. A version of the MATLAB code implementing the numerical
simulations is provided within Appendix A.

3. Results

According to the effect of the Cost of Cooperation on Problem Simplicity (Figure 1 Left),
the simpler the tasks (from r = 0.9 to r = 0.1), the lesser the difference on the final agent fitness.
Moreover, the difference increases from 15 to 55% in conjunction to the cooperation costs. On the
contrary, for a difficult task (r = 0.01), the relationship between the cost of cooperation and the
difference in the fitness is almost linear. The main reason for such behavior is that the cost of cooperation
influences the reduction of the fitness measure in two ways: (i) directly, where the agent has to pay
a cost to cooperate, and (ii) indirectly, where fewer agents want to cooperate because of the direct cost,
and, thus, the cooperation is infrequent and the agents have fewer advantages. However, from the
point of view of the community size (Figure 2 Right), the cost of cooperation affects the smaller
group more than the larger ones. As for the smallest community size (i.e., s = 1), as well as for the
smallest problem simplicity (i.e., R = 0.01), the final difference on the fitness is greater than 100%.
Such an effect is due to the fact that, especially for very difficult tasks (i.e., R = 0.01), the cost of
cooperation is frequently paid without any subsequent payoff, therefore producing a negative final
fitness for the agent.

For what concerns the maximum group capacity reached by the system at the equilibrium
(Figure 1), a general decrease is revealed as related to the cost of cooperation. The effect is caused
by the reduction of collectivists’ behavior within the system. Nevertheless, its magnitude is largely
affected by the two control parameters of the system (i.e., problem simplicity and the size of the group).
In particular, as shown in the left plot of Figure 1, the greatest reduction affects the systems facing the
hardest problem (i.e., simplicity of the task = 0.01), quite independently to the cost parameters (δc),
always reducing the final group capacity at about 40% in comparison to the zero cost condition. On the
contrary, the systems facing the easiest problems (i.e., simplicity of the task = 0.9 and 0.7) appear
not to be affected greatly by the cost, always reaching a reduction of the final group capacity below
5% quite independently from the cost of cooperation. Interestingly, the systems that faced problems
of intermediate complexity (i.e., R = 0.1, 0.3, 0.5) are revealed to be the most sensitive to the cost of
cooperation. For instance, a group challenged by a problem simplicity of R = 0.1 demonstrated a loss
of around 13% when the cost of cooperation was equal to 10% of the expected gain, reaching a loss of
35% for a cooperation cost of 90%. By the same token, the results show an effect contributed by the
community size (the right plot of Figure 1). The larger the community, the smaller it appears to be both
in the magnitude of the capacity reduction and the sensitivity to the cost of cooperation. In particular,
in the extreme case represented by individuals alone, the group capacity reduction ranges between the
2%, for a cooperation cost of 10%, to 60% for a cooperation cost of 90%.
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Figure 1. Percentage differences of the final group cardinality (i.e., the maximum complexity of the
problem-solved in the past) in comparison to the cost of cooperation, for each problem simplicity
(left plot) and for each group size (right plot).
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Figure 2. Percentage differences of the final agent fitness in comparison to the cost of cooperation,
for each problem simplicity (left plot) and for each group size (right plot).

In general, when the cost of cooperation is zero, there is an inversely proportional relation between
the average probability of cooperation and the size of the group (Figure 3 Left). Moreover, this relation
is common despite the different difficulty of the task. Another important aspect is that the optimal
equilibrium is reached when there are 2 groups of size 32, respectively. In fact, for smaller groups,
more competition is required because an agent has no interest in splitting the gain equally with the
others. This aspect is stressed when a cost of cooperation is needed. Actually, the average probability of
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cooperation significantly decreases for the harder tasks (r = 0.1 and r = 0.01), in particular for smaller
size groups. Similarly, considering the complexity of the problem in Figure 3 (right) without the cost of
cooperation, the average probability of cooperation is stable when the size is between 1 and 32, while it
directly decreases with more complex tasks from s = 64. With the cooperation cost, the tendency in
larger groups (s = 64) is to defect regardless of the complexity of the problem. For smaller size groups,
this effect is clear for harder tasks (complexity < 0.3), while for simpler tasks (complexity 0.9) the
average probability of cooperation converges to similar values reached without any cooperation cost.
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Figure 3. Comparison of the final average probability of cooperation for the condition with the cost of
cooperation equal to 0 (dark lines) and the cost of cooperation equal to 10% (red lines), compared to
the problem simplicity (left plot), and to the group sizes (right plot).

In Figure 4, the final average probability of cooperation compared to the problem simplicity
(left subfigure) and to the community size (right subfigure) are presented. In both plots, the case
of a cooperation cost of 90% is represented in red and compared to the baseline condition
(i.e., cooperation cost of 10%) in black. Conversely to the case of cooperation cost of 10%, the effects
of the payment to cooperate change dramatically in the final configuration of the system. It is worth
noting, as is shown in the right subfigure, that the cost appears to be similar in the two extreme
conditions S = 1 and S = 64. In other words, in both extreme cases, the introduction of a cooperation
cost reduces the average probability of collectivist behavior quite independently from the complexity
of the problem faced. The remaining system sizes ( i.e., S = 32, 16, 8, 4, 2) also appear to be strongly
affected by the cost, which presents a noticeable increase of the average cooperation probability only
for very simple tasks (i.e., R = 0.7, 0.9). Finally, the left subfigure shows another qualitative shift
with respect to the cooperation cost of 10% for what concerns the relation between the frequency of
collectivist behavior and the community size. With the hardest tasks (R = 0.01, 0.1), there is a collapse
of the cooperation tendency for all the community sizes, because the final values are always below
30%. On the other hand, for less challenging tasks (R = 0.9, 0.7, 0.5, 0.3), we observe a maximum of the
functions for intermediate values of the community size. A relation between this maximum and the
size of the group, in the case a cooperation cost of 90%, can be also observed. In particular, it appears
that the greater the simplicity of the task is, the smaller the fragmentation of the most cooperative
system is.
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Figure 4. Final average probability of cooperation for the condition with the cooperation cost equal to
0 (dark lines) and the cooperation cost equal to 90% (red lines), compared to the problem simplicity
(left plot) and to the group sizes (right plot).

4. Conclusions

The simulations presented here allowed us to investigate the complex relationship among the
tendency to cooperate, group sizes, the cost of cooperation, as well as the difficulty of the task.
Our results indicate that, when an agent has to pay a cost, such a price reduces the fitness both
directly and indirectly (cooperation is less frequent and implies fewer advantages). These dynamics
are modulated by the difficulty of the task, i.e., increasing the cooperation cost has a greater impact on
the fitness of the agents in the case of very difficult problems. The reduction of cooperation due to the
cost is mitigated by task simplicity and group size. To sum up, the larger the community is, the smaller
the decrease of the capacity is, which leads to less sensitivity to the cost of cooperation. Such results
indicate that, when dealing with small groups and hard tasks in concrete applications, it is better to
control and reduce the cost of cooperation with ad hoc interventions. However, at the same time,
we have to consider the effects already emerged in the work of [4], which is confirmed by our numerical
simulations. In fact, beyond a certain size of a given interacting group, we registered a collapse in
their performance (i.e., the production of collective knowledge). In its entirety, our findings could
provide valuable insights into structured virtual environments and for the psychosocial ergonomics of
web-based systems in relation to scientific and laboratory widespread problem-solving. These results
also underline the importance of the design of crowdsourcing tasks. Complex problems do not need
to be divided into smaller parts to be solved. Sometimes simple tasks are better than little (or micro)
tasks. An effective design allows people, whose experience or knowledge is limited, to perform like
expert individuals, i.e., to produce a qualitatively better knowledge than expected [66]. Therefore,
as our simulations also seem to suggest, making complex problems simpler (i.e., easily understandable,
executable, and with the least possible degree of inherent uncertainty) helps to establish a higher level
of cooperation within the group. Furthermore, it is possible to observe another possible effect due to the
complexity reduction obtainable through task design, concerning the cost of cooperation. Despite the
fact that in our model, the cost of cooperation and the complexity of the task are treated as two separate
parameters, in reality there is an area, albeit limited, of an overlap. In fact, difficult tasks involve
intrinsically higher costs related to the task. Therefore, it is reasonable to expect that a reduction of
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complexity also affects indirectly the levels of cooperation through the reduction of costs linked to the
task. As demonstrated above, one of the ways in which it is possible to conceive the cost of cooperation
is through the concept of reciprocity. Signs indicating a lower risk of exploitation of cooperation could
reduce the cost of cooperation itself and facilitate the collaboration process [33,38,67] by means of an
accurate modeling of task ergonomics.

We hope that our results could be taken as guidelines for the development of systems
aimed at exploiting group problem-solving, group decision-making, and, more generally,
online collaboration [1–3]. For example, CO-WORKER [2] may benefit from our results modifying
its architecture taking into account that the difficulty of the task, the size of the community engaged,
and, of course, the cost of cooperation can affect the final result. The ergonomy of the interface along
all the human–computer interaction facets could be made more user-centred in all the cases where
the collective decision may be hindered by the cost of cooperation. In such cases, other solutions
could embed the proposed architecture with incentive systems (or other motivational elements) or
automatically warn users that the size of community is not sufficient given the difficulty of the
problem and the level of engagement. The same may be applied to the more general field of group
decision-making modeling, where the proposed formalism [3] could take into account the factors
investigated in this paper and their relation. Such consideration can also be made for collaboration
tasks with trivial difficulty (such as annotating videos) [1] but where the motivation and the cost
of cooperation can be crucial for the effectiveness of the task (i.e., the development of semantic
web technologies).

Clearly, our results appear to be strictly applicable only to certain types of crowdsourcing.
For instance, interactions within groups need to be not episodic. Therefore, our indications seem not
to greatly benefit virtual labor marketplaces (e.g., Amazon’s M-Turk and Crowdflower) and those
activities known as tournament crowdsourcing, while open collaboration projects appear more prone
to exploit our findings [6].

However, it is necessary to stress that the observed results are based on a simulation study.
Given the difficulty and the cost of performing empirical investigations about similar scenarios,
it is better to start with numerical simulations under reasonable assumptions and then perform
empirical investigations. Therefore, it is necessary to complete these studies with a direct empirical test
of the observed results. Such empirical investigation could also be obtained employing an architecture
such as CO-WORKER.

In conclusion, the cost of cooperation can affect the tendency to cooperate in a non-trivial way,
so future simulations and empirical research should further investigate this point as well as take this
point into account in concrete applications.
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Appendix A

Algorithm A1 presents the pseudocode for a single round. The procedure takes 6 inputs: N is the
number of players, r is the complexity factor, s is the group size, P is a vector with the probability of
cooperation for each player i, C and F are vectors with the cardinality of the groups and the fitness
of each group j, respectively. First, we initialize a support vector groupList in which we store the
index of the groups that solved the task (Line 2). Each player i faces the task cooperating within the
group (Lines 4–15) or as an individualist (Lines 16–20). In the former case, the player pays the cost of
cooperation (Line 5) and tries to solve the task (Lines 6–15). If the task is solved, the fitness F increments
and the group is accounted for a reward. The group receives only one reward, independently of how
many players of the group solved the task (Lines 12–14). In the latter case, the individualist player
has a random expected gain which is a positive integer (Line 17), and the greater the expected gain is,
the lower the chance of solving the task (Line 18) and receiving the gain (Line 19) is.

Algorithm A1 Game Round Algorithm.

1: procedure PLAYROUND(N, r, s, P, C, F )
2: groupList← empty . Groups which solved the task
3: for i = 1 to N do . The players try to solve the task
4: if pi > rand then . The player cooperates
5: Gi = Cj + 1 . Expected gain
6: πi ← πi − Gi ∗ δc/s . Pays the Cost of cooperation
7: if r > rand then . The player solves the task
8: for k in N do
9: if groupO f (k) == groupO f (i) then . Gain for players in same group

10: πk ← πk + Gi/s
11: end if
12: end for
13: πi ← πi + Gi/s . Player’s gain for solving the task
14: if groupList.notContains(groupO f (i) then
15: groupList.add(groupO f (i)
16: end if
17: end if
18: else . The player is an individualist
19: Gi ← randInteger([1 10]) . Expected gain
20: if rGi > rand(0, 1)) then . The player solves the task
21: πi ← πi + Gi
22: end if
23: end if
24: end for
25: return groupList, C
26: end procedure

Algorithm A2 presents the pseudocode for the simulation. The procedure takes 7 inputs: R is
the vector with the complexity factors, S is the vector with the group sizes, Epochs and Rounds are
the number of epochs and rounds, respectively, N is the number of players, f is the genetic evolution
coefficient, and iteration is the number of repetitions in each experiment. The first lines, from 2 to 5,
define the cycles to repeat the experiment for all conditions. We repeat the experiment for iteration
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times for statistical evidence (Line 2), with the different complexity factors in vector R (Line 4) and with
groups of different size in vector S. These cycles are independent of each other, so we use a parallel for
(ParFor) to speed up the process. With a fixed complexity factor r and group size s, the population of
players is initialized (Lines 6–7): each player i has a collaborative strategy, which is the probability to
collaborate CS(i) and belongs to a group identified by an index stored in groupO f (i). The experiment
runs for a certain number of epochs (Line 9). At the start of each epoch e, the cardinality of the group
Cj and the fitness F are reset (Lines 10–11). The players then try to solve a task for a certain number of
rounds (Lines 12–16). At the end of the e epoch, the population evolves keeping the best players and
replacing the worst (Lines 18–22). More precisely, each player whose fitness is below the average fitness
of the population has a chance of changing his pi. The change is regulated by the genetic evolution
coefficient f = 0.2, which means we remove about 20% of the population below the average fitness.

Algorithm A2 Crowdsourcing Simulation Algorithm.

1: procedure CROWDSOURCING(R, S, Epochs, Rounds, N, f , iteration)
2: ParFor i = 1 to iteration . Repeats for statistical reliability
3: for r in R do . Complexity factor
4: for s in S do . Size of the group
5: P← 0 . Probability vector
6: for n = 1 to N do . Players Initialization
7: pi ← rand(0, 1) . Set the probability of collaboration
8: groupO f (i)← groupSplit(i, s) . Assign to a group
9: end for

10: for e = 1 to Epochs do . Epochs
11: C ← 0 . Reset cardinality
12: π ← 0 . Reset fitness
13: for round = 1 to Rounds do . Game rounds
14: groupList, C = PlayRound(N, r, s, C, P, F)
15: for j in groupList do . Assign group reward
16: Cj ← Cj + 1
17: end for
18: end for
19: for i = 1 to N do . Genetic Evolution
20: if F(i) < average(F) & rand(0, 1) < f then
21: pi ← rand(0, 1)
22: end if
23: end for
24: end for
25: end for
26: end for
27: EndParFor
28: end procedure
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