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The beneficial effects of isothiocyanate‐based compounds, as well as their safety,

have been shown in neuropathological disorders, such as neuropathic pain. Aim of

the present work was to study the efficacy of the glucosinolate glucoraphanin

(GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites

occurring exclusively in Brassicales, on chemotherapy‐induced neuropathic pain. Mice

were repeatedly treated with oxaliplatin (2.4 mg kg−1 ip) for 14 days to induce neuro-

pathic pain. GRA and SFN effects were evaluated after a single administration on Day

15 or after a daily repeated oral and subcutaneous treatment starting from the first

day of oxaliplatin injection until the 14th day. Single subcutaneous and oral adminis-

trations of GRA (4.43–119.79 μmol kg−1) or SFN (1.33–13.31 μmol kg−1) reduced

neuropathic pain in a dose‐dependent manner. The repeated administration of GRA

and SFN (respectively 13.31 and 4.43 μmol kg−1) prevented the chemotherapy‐

induced neuropathy. The co‐administration of GRA and SFN in mixture with the

H2S binding molecule, haemoglobin, abolished their pain‐relieving effect, which was

also reverted by pretreating the animals with the selective blocker of Kv7 potassium

channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2S and modu-

lating Kv7 channels and show a protective effect on the chemotherapy‐induced

neuropathy.
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1 | INTRODUCTION

The discovery of new natural compounds with pharmacological

properties is a field of interest widely growing, especially for the man-

agement of neuropathological conditions such as neuropathic pain, as

often no pharmacological treatments effectively prevent or treat these
lucoraphanin; H2S, hydrogen

s; MYR, myrosinase; PEG,

wileyonlinelibrary.co
disorders (Cruccu & Truini, 2017). Among the most studied phyto-

chemicals there are the isothiocyanates (ITCs). Recently, synthetic

and natural compounds with ITC‐based structure have been demon-

strated to have relevant pain‐relieving properties in animal models of

neuropathic pain (Di Cesare Mannelli et al., 2017). Natural ITCs derive

from the hydrolysis of glucosinolates, a class of sulfur‐containing

secondary metabolites occurring exclusively in the botanical order

Brassicales, including plants belonging to the family of Brassicaceae

(Dinkova‐Kostova & Kostov, 2012). R‐Sulforaphane (hereinafter
Phytotherapy Research. 2018;32:2226–2234.m/journal/ptr

http://orcid.org/0000-0003-2431-6248
http://orcid.org/0000-0001-8374-4432
mailto:lorenzo.mannelli@unifi.it
https://doi.org/10.1002/ptr.6159
http://wileyonlinelibrary.com/journal/ptr


LUCARINI ET AL. 2227
referred to SFN) is the ITC released by the enzymatic action of

plant‐endogenous myrosinase (β‐thioglucoside glucohydrolase; E.C.

3.2.1.147; MYR) or by the microflora on glucoraphanin (GRA), a gluco-

sinolate present especially in Tuscan black kale seeds (De Nicola,

Rollin, Mazzon, & Iori, 2014). The interest in these phytochemicals

escalated following the discovery of their cytoprotective properties

against oxidative stress (Guerrero‐Beltrána, Calderón‐Oliver,

Pedraza‐Chaverri, & Chirino, 2012). In the last years, beneficial effects

of these compounds in models of neurological diseases, as well as

their safety, have been shown (Galuppo et al., 2013; Giacoppo et al.,

2014). In fact, like SFN, also other ITC‐based compounds show pro-

tective effects in models of nervous tissue injury (Wang et al., 2012)

and neuropathic pain development (Negi, Kumar, & Sharma, 2011).

Among the different mechanisms of action, which may account for

the different biological effects of ITCs, the release of hydrogen sul-

phide (H2S) has been recently reported: indeed, the ITC moiety was

recognized as an original H2S‐releasing chemical group (Martelli

et al., 2014). Noteworthy, significant H2S‐releasing properties have

been also exhibited by many natural ITCs from Brassicaceae species,

closely related with SFN, from a structural point of view (Citi et al.,

2014). Consistently, the H2S release and the activation of Kv7

potassium channels were demonstrated to be involved in the

antihyperalgesic effect of ITC‐based compounds (Di Cesare Mannelli

et al., 2017). Although many of the health benefits showed by GRA

and SFN are similar to that attributed to H2S or other H2S‐donating

ITCs (Citi et al., 2014), the role of this gasotransmitter in their pharma-

cological effects needs to be further evaluated. This evidence could

bring to light a new mechanism of action for these phytochemicals,

which is not only attributable to their well‐known antioxidative

(Nrf2/ARE pathway; Xu et al., 2006) and anti‐inflammatory proprieties

(NF‐kB pathway; Heiss, Herhaus, Klimo, & Bartsch, 2001). The aim of

the present study was to evaluate the effect of acute and repetitive

GRA and SFN administrations on neuropathic pain induced by

oxaliplatin in mice. In this contest, the pharmacodynamic involvement

of H2S and Kv7 potassium channels in their effect was investigated.
2 | MATERIAL AND METHODS

2.1 | Amperometric determination of H2S release

The evaluation of the potential H2S releasing properties of GRA and

SFN was carried out by an electrochemical approach with an Apollo‐

4000 amperometric detector (WPI) and H2S‐selective mini‐electrodes,

as previously described (Citi et al., 2014). Briefly, a “PBS buffer 10X”

was previously prepared (NaH2PO4·H2O 1.28 g, Na2HPO4·12H2O

5.97 g, NaCl 43.88 g in 500‐ml H2O) and stocked at 4°C. For the

experiments, the assay buffer was obtained by 1:10 dilution of the

PBS buffer 10X with distilled water. The pH was adjusted to 7.4.

The H2S‐selective mini‐electrode was immerged in 10‐ml assay buffer

at room temperature. After the recovery of a stable baseline, 100 μl of

a DMSO solution of GRA or SFN was added (the final concentration of

the tested compounds was 1 mM; the final concentration of DMSO in

the AB was 1%). The possible formation of H2S was observed for

20 min. Preliminary measurements showed that DMSO 1% did not
interfere with the amperometric recording. In selected experiments,

L‐cysteine (4 mM) was added before the addition of GRA or SFN.

The relationships between the amperometric currents (detected in

picoampere) and the matched concentrations of H2S were evaluated

by suitable calibration curves with the H2S‐generating salt NaHS

(1, 3, 5, and 10 μM) at pH 4.0.
2.2 | Animals

Male CD‐1 albino mice (Envigo, Varese, Italy) weighing approximately

22–25 g at the beginning of the experimental procedure were used.

Animals were housed in CeSAL (Centro Stabulazione Animali da

Laboratorio, University of Florence) and used at least 1 week after

their arrival. Ten mice were housed per cage (size = 26 × 41 cm);

animals were fed with a standard laboratory diet and tap water ad

libitum and kept at 23 ± 1°C with a 12‐hr light/dark cycle, light at

7 a.m. All animal manipulations were carried out according to the

Directive 2010/63/EU of the European parliament and of the Euro-

pean Union council (September 22, 2010) on the protection of animals

used for scientific purposes. The ethical policy of the University of

Florence complies with the Guide for the Care and Use of Laboratory

Animals of the U.S. National Institutes of Health (NIH Publication No.

85‐23, revised 1996; University of Florence assurance number:

A5278‐01). Formal approval to conduct the described experiments

was obtained from the Animal Subjects Review Board of the

University of Florence. Experiments involving animals have been

reported according to ARRIVE guidelines (McGrath & Lilley, 2015).

All efforts were made to minimize animal suffering and to reduce the

number of animals used.
2.3 | Oxaliplatin‐induced neuropathic pain models

Mice treated with oxaliplatin (2.4 mg kg−1) were intraperitoneally

administered on Days 1–2, 5–9, and 12–14 (10 ip injections; Cavaletti

et al., 2001). Oxaliplatin was dissolved in 5% glucose solution. Control

animals received an equivalent volume of vehicle. Behavioural tests

were performed on Day 15 for the acute treatments, on Days 8 and

15 for the repeated administration protocol.
2.4 | Compound administrations

GRA and enantiopure R‐SFN were purified from Tuscan black kale

seeds at the Bologna laboratory (CREA‐AA; previously CRA‐CIN)

according to an establish method (De Nicola et al., 2014). These

compounds were dissolved in saline solution for subcutaneous (sc)

administration and in carboxymethyl cellulose 1% for oral (po) admin-

istration. Compounds were acutely administered as follows. The doses

of GRA were chosen on the basis of previously published H2S releas-

ing and antinociceptive properties of synthetic ITCs (Di Cesare

Mannelli et al., 2017; Martelli et al., 2013): 4.43, 13.31, 39.93, and

119.78 μmol kg−1 of GRA. The doses of SFN (1.33, 4.43, and

13.31 μmol kg−1) were chosen from the doses of GRA found to be

effective. Afterwards, repeated subcutaneous and oral administrations

of GRA (13.31 μmol kg−1) and SFN (4.43 μmol kg−1) were carried

out daily from the beginning to the end of oxaliplatin treatment.
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Behavioural tests were performed on Days 8 and 15, 24 hr after the

last administration.

In additional experiments, GRA (119.79 μmol kg−1) and SFN

(13.31 μmol kg−1) were subcutaneously administered in mixture with

3.10 μmol kg−1 of human haemoglobin (Hb; Sigma‐Aldrich, Italy) in

saline solution, and behavioural tests were carried out after 15, 30,

45, and 60 min from injection. The Kv7 potassium channel blocker

XE991 (Tocris Bioscience, Italy; 7.98 μmol kg−1; 1 mg kg−1;

Blackburn‐Munro & Jensen, 2003) was dissolved in saline solution

and intraperitoneally administered 15 min before the injection of

tested compounds.
2.5 | Cold plate test

The animals were placed in a stainless steel box (12 cm× 20 cm× 10 cm)

with a cold plate as floor. The temperature of the cold plate was kept

constant at 4°C ± 1°C. Pain‐related behaviour (licking of the hind paw)

was observed, and the time (seconds) of the first sign was recorded.

The cut‐off time of the latency of paw lifting or licking was set at

60 s (Di Cesare Mannelli, Maresca, Farina, Scherz, & Ghelardini,

2015). The results were expressed either by the licking latency or by

the area under the curve (AUC) resulting from the compounds acute

administration.
FIGURE 1 Hydrogen sulfide release from sulforaphane (SFN) and
glucoraphanin (GRA). The curves describe the increase of the H2S
concentration with respect to time, following the incubation of SFN (a)
and GRA (b) 1 mM, in the absence (−Cys) and in the presence (+Cys) of
L‐cysteine 4 mM. H2S was recorded by amperometric approach. The
vertical bars indicate S.E.M. and the *** a p < 0.001
2.6 | Statistical analysis

The curves relative to the progressive increase of H2S versus time,

following the incubation of the tested compounds, were analysed by

a computer fitting procedure (GraphPad Prism 5.0) and expressed as

mean ± S.E.M. with at least five different curves performed for each

compound. Behavioural measurements were performed on 16 mice

for each treatment carried out in two different experimental sets.

Investigators were blind to all experimental procedures. Results were

expressed as mean ± S.E.M. The analysis of variance of data was per-

formed by one‐way analysis of variance, and a Bonferroni's significant

difference procedure was used as post hoc comparison. p values of

less than 0.05, 0.01, or 0.001 were considered significant. Data were

analysed using the “Origin 9” software (OriginLab, Northampton).
3 | RESULTS

As already observed for other natural ITCs (Citi et al., 2014), SFN

exhibited significant L‐cysteine‐dependent release of H2S. In particu-

lar, the incubation of SFN 1 mM led to a slow formation of H2S,

reaching a steady‐state concentration of about 0.75 μM; in the

absence of L‐cysteine, the H2S generation from SFN was almost

completely negligible. Only in the presence of this amino acid, the

incubation of SFN with L‐cysteine led to the formation of H2S

(Figure 1a). Surprisingly, the glucosinolate GRA showed a similar

behaviour: in the presence of L‐cysteine, the incubation of GRA

1 mM led to a slow formation of H2S, reaching a steady‐state

concentration of about 1 μM (Figure 1b), whereas in the absence of

L‐cysteine, the H2S generation from both SFN and GRA was almost

completely negligible (Figure 1a and 1b).
Figure 2 shows the effect of acute subcutaneous and oral

administrations of different doses of GRA (4.43, 13.31, 39.93, and

119.79 μmol kg‐1) and SFN (1.33, 4.43, and 13.31 μmol kg‐1) in

oxaliplatin‐treated mice (Figure 2a‐d, respectively). On Day 15,

oxaliplatin‐treated mice showed a significantly decreased latency to

pain‐related behaviours induced by the cold stimulus (11.5 ± 0.9 s) com-

pared with control mice treated with vehicle (21.4 ± 1.7 s; Figure 2). By

both oral and subcutaneous administration, GRA effectively relieved

pain in mice, increasing the licking latency in a dose‐dependent manner.

GRA resulted active starting from 13.31 μmol kg−1. The higher doses

(39.93 and 119.79 μmol kg−1) of GRA effectively reduced neuropathic

pain in the animals starting 15 min after administration and the

effect lasted until 45 min (Figure 2a and 2b). Orally administered

119.79 μmol kg−1 of GRA were able to revert the pain threshold of

animals back to the value of controls already 15 min after administra-

tion (Figure 2a). SFN resulted active starting from 4.33 μmol kg−1 by

both the routes of administration, with a peak of effect 30 min after

the injection. The highest tested dose of SFN (13.31 μmol kg−1)

completely relieved neuropathic pain in the animals (Figure 2c and 2d).

The effect of the subcutaneous and orally repeated treatment

with GRA and SFN on chemotherapy‐induced neuropathic pain in

mice is shown in Figure 3a and 3b, respectively. Repeated treatment

consisted of a daily administration following the same protocol



FIGURE 2 Effect of glucoraphanin (GRA) and sulforaphane (SFN) acute administration on chemotherapy‐induced neuropathic pain. The
response to a thermal stimulus was evaluated by the cold plate test measuring the latency(s) to pain‐related behaviours (lifting or licking of the
paw). Mice were intraperitoneally treated with oxaliplatin 2.4 mg kg−1 to induce neuropathic pain. Behavioural tests were performed on Day 15.
GRA (4.43, 13.31, 39.93, and 119.79 μmol kg−1) and SFN (1.33, 4.43, and 13.31 μmol kg−1) were dissolved in 1% carboxymethyl cellulose and
saline solution, respectively, for oral and subcutaneous administration (a, b, c, and d, respectively). Measurements were performed 15, 30, 45, and
60 min after injection. ^^p < 0.01 versus vehicle + vehicle‐treated mice; *p < 0.05 and **p < 0.01 versus oxaliplatin + vehicle‐treated mice [Colour

figure can be viewed at wileyonlinelibrary.com]
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described for oxaliplatin from the first up to the 14th day. Behavioural

tests were performed on Days 8 and 15, 24 hours after the treatment.

The enhancement of pain threshold induced by the repeated oral and

subcutaneous treatment with GRA (13.31 μmol kg−1) and SFN

(4.43 μmol kg−1) is shown in comparison with oxaliplatin‐treated mice.

Pain threshold of animals treated with oxaliplatin resulted progres-

sively decreased in comparison with control mice starting from Day

8 until Day 15, when the neuropathy resulted established (Figure 3a

and 3b). The licking latency of the animals treated with oxaliplatin

and GRA, oral and subcutaneous administered, resulted significantly

higher in comparison with oxaliplatin‐treated mice both on Days 8

and 15 (Figure 3a). As result of orally repeated treatment with SFN,

the animals showed a pain threshold significantly increased in compar-

ison with oxaliplatin‐treated mice both on Days 8 and 15 (Figure 3b).

On the other hand, the subcutaneous treatment with SFN resulted

significant only on Day 15 (Figure 3b).

To evaluate the role of H2S release in their antihyperalgesic

effect, GRA and SFN were subcutaneously administered in mixture

with Hb, a molecule able to bind H2S (Mishanina, Libiad, & Banerjee,

2015) and so to prevent its pharmacological activities. Both Figure 3a
and 3b show the acute antihyperalgesic effect induced by GRA

(13.31 μmol kg−1 sc) and SFN (4.43 μmol kg−1 sc) in oxaliplatin‐treated

animals. The co‐administration with Hb (3.1 μmol kg−1 sc) was able

to fully prevent the antineuropathic efficacy of both GRA and SFN.

In fact, the pain threshold of animals treated with GRA and SFN in

mixture with Hb was not significantly different from that of

oxaliplatin + vehicle‐treated animals (Figure 4a and 4b). The suppres-

sion of the pain‐relieving efficacy of GRA and SFN mediated by Hb

can be further appreciated considering the resulting AUC (Figure 4b).

To demonstrate the involvement of Kv7 potassium channel in

the antineuropathic effect of GRA and SFN, a selective Kv7

blocker, XE991, was administered 15 min before these phytochemi-

cals. In Figure 5a and 5b was shown the effect induced by the

single administration of GRA (13.31 μmol kg−1 po) and SFN

(4.43 μmol kg−1 po) in oxaliplatin‐treated animals in comparison

with that displayed after the pretreatment with XE991

(7.98 μmol kg−1 ip). The pain relieving activity of GRA and SFN was

fully prevented by the intraperitoneal administration of XE991, as

evidenced by both Figure 5a and 5b, showing the licking latency

and the resulting AUC, respectively.

http://wileyonlinelibrary.com


FIGURE 3 Effect of the repeated treatment with glucoraphanin
(GRA) and sulforaphane (SFN) on chemotherapy‐induced neuropathic
pain. Mice were intraperitoneally treated with oxaliplatin 2.4 mg kg−1

to induce neuropathic pain. The response to a thermal stimulus was

evaluated by the cold plate test measuring the latency(s) to pain‐related
behaviours (lifting or licking of the paw). GRA (13.31 μmol kg−1; a) and
SFN (4.43 μmol kg−1; b) were dissolved in 1% carboxymethyl cellulose
and saline solution, respectively, for oral and subcutaneous administration.
Repeated treatment consisted of a daily administration following
the same protocol described for oxaliplatin from the first up to
the 14th day. Behavioural tests were performed on Days 8 and 15,
24 hr after the treatment. ^^p < 0.01 versus vehicle + vehicle treated
mice; *p < 0.05 and **p < 0.01 versus oxaliplatin + vehicle‐treated
mice

2230 LUCARINI ET AL.
4 | DISCUSSION

The development of neuropathic pain is a severe dose‐limiting side

effect of commonly used chemotherapeutic agents (Ward et al.,

2014). Antidepressants and antiepileptics, currently considered the

elective therapy for these types of pain, show a low efficacy and

several negative side effects (Cruccu & Truini, 2017). It is thus clear
that, for the management of this type of pain, innovative, safe, and

effective treatments still have to be developed.

Recently, it has been observed that synthetic and natural ITC

compounds are efficient in relieving neuropathic pain induced in ani-

mals by chemotherapic agents, as paclitaxel and oxaliplatin (Di Cesare

Mannelli et al., 2017). In line with the previous data, the present

results show that the natural enantiopure isothiocyanate R‐SFN and

its precursor GRA effectively reduce the hypersensitivity to a cold

non‐noxious stimulus (allodynia‐related measurement) after acute

administration in oxaliplatin‐treated animals.

GRA resulted slightly less effective by subcutaneous administra-

tion than by oral administration, suggesting that the gastroenteric

metabolism enhances the bioavailability of the active compound

(Fahey et al., 2015).

This evidence is in line with the fact that GRA frequently is

bioactivated with MYR before the administration in vivo and in vitro

(Galuppo et al., 2013), suggesting that the responsible for most of

the pharmacological properties showed by these phytochemicals is

actually SFN. This point was strengthened by the present findings,

because SFN resulted 10 fold more potent than GRA.

In addition to the acute effect on neuropathic pain, both GRA and

SFN, when repeatedly administered in the animals starting from the

first day of oxaliplatin treatment, resulted able to reduce the develop-

ment of neuropathy. Besides, both GRA and SFN showed beneficial

neuroprotective effects in different conditions of central and periph-

eral nervous system damage (Giacoppo et al., 2014). Particularly, the

treatment with the glucosinolate seems able to shot down the astro-

cytes activation in the spinal cord, condition that results strongly asso-

ciated with the establishment and the persistence of neuropathic pain

(Di Cesare Mannelli et al., 2014; Galuppo et al., 2013).

In the years, many mechanisms of action were attributed to

SFN. Among them, the most studied were the antioxidant and

anti‐inflammatory effects (Guerrero‐Beltrána et al., 2012; Heiss

et al., 2001). Indeed SFN has been described as a strong enhancer of

Nrf2‐ARE pathway (Negi et al., 2011) and a suppressor of NF‐kB

signalling pathway (Heiss et al., 2001).

However, although the antioxidative properties could explain

the neuroprotective effect showed by the repeated treatments

both with SFN and GRA (Areti, Yerra, Naidu, & Kumar, 2014), it is

unlikely this mechanism could be responsible for the acute

antihyperalgesic effect showed by these molecules. In this regard,

our results are consistent with the previous findings demonstrating

that synthetic and natural ITCs act as H2S‐releasing compounds (Citi

et al., 2014; Di Cesare Mannelli et al., 2017). In fact, the amperometric

recordings showed that actually SFN shows a H2S‐donor profile.

Surprisingly, even GRA showed an almost equivalent behaviour of

H2S‐releasing agent. The role of H2S in the analgesic effects of both

SFN and GRA seems to be strongly supported by the observation that

the H2S‐binding molecule Hb (Mishanina et al., 2015) fully prevented

the antihyperalgesic efficacy of both GRA and SFN. It is thus possible

that many other health benefits of cruciferous vegetables involve H2S.

Indeed SFN is probably implicated in the regulation of H2S levels

in vivo, as this gasotransmitter is an important factor in the anticancer

activity (Liu, Wu, Montaut, & Yang, 2016), as well as in the cardiovas-

cular beneficial effect exerted by SFN (Martelli et al., 2014).



FIGURE 4 Role of H2S in the relief of oxaliplatin‐induced neuropathic pain of glucoraphanin (GRA) and sulforaphane (SFN). The latency(s) to
pain‐related behaviours (lifting or licking of the paw) was measured by the cold plate test, measuring the latency(s) to pain‐related behaviours
(lifting or licking of the paw). Mice were intraperitoneally treated with oxaliplatin (2.4 mg kg−1), and behaviour was measured on Day 15. GRA
(119.79 μmol kg−1) and SFN (13.31 μmol kg−1) were subcutaneously administered alone or in mixture with Hb (3.10 μmol kg−1). Measurements
were performed 15, 30, 45, and 60 min after injection (a). The histogram shows the average of resulting AUC (b). Control mice were treated with
vehicle. Each value represents the mean of 16 mice per group, performed in two different experimental sets. ^^p < 0.01 versus vehicle + vehicle‐
treated mice; *p < 0.05 and **p < 0.01 versus oxaliplatin + vehicle‐treated mice [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Involvement of Kv7 potassium channels in H2S‐mediated
antineuropathic effect of glucoraphanin (GRA) and sulforaphane
(SFN). The latency(s) to pain‐related behaviours (lifting or licking of
the paw) was measured by the cold plate test, measuring the latency(s)
to pain‐related behaviours (lifting or licking of the paw). Mice were
intraperitoneally treatedwith oxaliplatin (2.4mg kg−1) and behaviour was
measured onDay 15. GRA (119.79 μmol kg−1) and SFN (13.31μmol kg−1)
were administered oral. XE991 (7.98 μmol kg−1) was intraperitoneally
administered 15min beforeGRA and SFN.Measurementswere performed
15, 30, 45, and 60 min after injection (a). The histograms show the
average of resulting AUC (b). Control mice were treated with vehicle.
Each value represents the mean of 16 mice per group, performed in
two different experimental sets. ^^p < 0.01 versus vehicle + vehicle‐
treated mice; *p < 0.05 and **p < 0.01 versus oxaliplatin + vehicle‐
treated mice [Colour figure can be viewed at wileyonlinelibrary.com]
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Noteworthy, the effects displayed by this gasotransmitter showed

a bell‐shaped dose‐dependence both in vivo and in vitro (Di Cesare

Mannelli et al., 2017). It is thus deductible that the kinetic of H2S

release from H2S donor compounds is a paramount factor for their

pharmacological properties. Regarding this, the H2S slow‐releasing

capacity was demonstrated to be an important feature for H2S donors

(Citi et al., 2014). In fact, in vitro, low concentrations of H2S donors

resulted beneficial, whereas the elevation of H2S concentrations

beyond a certain concentration range can become cytotoxic, pro‐

oxidant, and suppresses mitochondrial electron transport (Szabo

et al., 2014). Similarly, in vivo, H2S is effective in relieving neuropathic
pain at very low doses, but by increasing the dose, the effect

decreases (Di Cesare Mannelli et al., 2017).

A further proof is the fact that slow H2S donors, such as

GYY4137, are often more effective than rapid donors, such as NaHS,

suggesting that long‐lasting generation of relatively lower concentra-

tions of H2S can be preferable (Li et al., 2008), as this gas is able to

easily reach the blood stream and then its molecular targets on the

cell membrane, inside the cytosol or in intracellular organelles

(Wallace & Wang, 2015). In the past, some series of different H2S

pro‐drugs were developed (Zheng, Ji, Ji, & Wang, 2015) often

obtaining a limited control of gas release. In this context, GRA, being

hydrolysable in vivo (Fahey et al., 2015), could be usefully employed

for therapeutic purposes. In fact, even though SFN seems to be the

responsible for the antihyperalgesic effect showed by GRA, the latter

showed a better kinetic profile after the administration in the ani-

mals, with a more prolonged effect. Therefore, considering that

GRA is more stable than SFN especially in solution (Fahey et al.,

2017) and that GRA could mediate a slow release of SFN and conse-

quently of H2S in vivo, it could be more advantageous to use the

intact glucosinolate instead of the ITC, even though the latter results

more potent.

Looking further into the mechanisms of action with which the

ITCs can influence pain perception, it is noteworthy that the activa-

tion of Kv7 potassium channels may have a relevant role, among

the pleiotropic mechanisms of action played by H2S in different bio-

logical systems (Martelli et al., 2013). Consistently, we found that

GRA and SFN, as other ITC‐based compounds, can modulate the

activity of the voltage‐gated Kv7 potassium channels (Di Cesare

Mannelli et al., 2017). This type of potassium channels plays a pivotal

role in pain modulation (Nodera, Spieker, Sung, & Rutkove, 2011). In

fact, Kv7 channels activators, as retigabine and flupirtine show

antihyperalgesic effects that were mainly related to the suppression

of sensitive neurons excitability (Sittl, Carr, Fleckenstein, & Grafe,

2010). Given that the abnormal painful signalling during neuropathic

condition is due to an overexpression and overactivation of ion

channels and receptors in neurons, probably, the H2S released from

GRA and SFN could act on neuropathic pain by activating Kv7 chan-

nels along pain pathways. This initial consideration was confirmed by

the present data showing that the pain‐relieving effect of both GRA

and SFN is abolished by pretreating the animals with the Kv7 channel

blocker, XE991.

In conclusion, the present study demonstrates that natural GRA

and the enantiopure R‐SFN effectively reduce neuropathic pain

induced by chemotherapy through the release of H2S in vivo and

the activation of Kv7 channels. The effectiveness of SFN as well as

that of other natural‐occurring ITC (allyl isothiocyanate; Di Cesare

Mannelli et al., 2017), mainly obtained from Brassicaceae, introduces

the possibility to exploit this family of plants for an innovative

approach to drug‐resistant forms of pain such as chemotherapy‐

induced neuropathy. Indeed, the obtained results provide a new

mechanism of action for these type of phytochemicals, which, adding

to their well‐known neuroprotective properties, strengthen the ratio-

nal of their use in the management of neuropathic pain: on one side,

the repetitive administration of these compounds could be aimed to

prevent the development of neurological disease during the

http://wileyonlinelibrary.com
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chemotherapic treatment. On the other side, these compounds could

be acutely used to give an immediate pain relief.

Finally, it is also important to consider that these compounds are

largely present in many common edible plant belonging to Brassiceae

family, rising the interesting possibility to use foods and supplements

enriched with glucoraphanin and sulforaphane to support and enhance

pain therapies. It might also allow an easier and safer translation to

clinical application. To this end, the H2S‐release kinetic of these

compounds could be further investigated in order to improve their

pharmacokinetic profile and, therefore, to maximizing their pharmaco-

logical effects.
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