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Abstract

Given a tensor f in a Euclidean tensor space, we are interested in the critical points of
the distance function from f to the set of tensors of rank at most k , which we call the
critical rank-at-most-k tensors for f . When f is a matrix, the critical rank-one matrices for
f correspond to the singular pairs of f . The critical rank-one tensors for f lie in a linear
subspace Hf , the critical space of f . Our main result is that, for any k , the critical
rank-at-most-k tensors for a sufficiently general f also lie in the critical space Hf . This is
the part of Eckart–Young Theorem that generalizes from matrices to tensors. Moreover,
we show that when the tensor format satisfies the triangle inequalities, the critical
space Hf is spanned by the complex critical rank-one tensors. Since f itself belongs to
Hf , we deduce that also f itself is a linear combination of its critical rank-one tensors.
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1 Introduction
The celebrated Eckart–Young Theorem says that, for a real m × n-matrix A with m ≤ n
and for an integer k ≤ m, a matrix B of rank at most k nearest to A is obtained from
A as follows: Compute the singular value decomposition A = U�VT , where U,V
are orthogonal matrices and where � = diag(σ1, . . . , σm) is the “diagonal” m × n-
matrix with the singular values σ1 ≥ · · · ≥ σm ≥ 0 on its main diagonal, and set
B := Udiag(σ1, . . . , σk , 0, . . . , 0)VT . Such a best rank-k approximation is unique if and
only if σk > σk+1, and for us “nearest” refers to the Frobenius norm (but in fact, the result
holds for arbitrary Om × On-invariant norms [12]).
For higher-order tensors, an analogous approach for finding best rank-k approximations

fails in general [18]. It succeeds, with respect to the Frobenius norm, for orthogonally
decomposable tensors [1,18], but this is a very low-dimensional real-algebraic variety in
the space of all tensors. In this paper, we will establish versions of the Eckart–Young
Theorem and the Spectral Theorem that do hold for general tensors.
To motivate this theorem, consider matrices once again, and assume that the σi are

distinct and positive. A statement generalizing the Eckart–Young Theorem says that we
obtain all critical points of the distance function dA(B) := ||A − B||2 on the manifold of
rank-k matrices by setting anym−k of the singular values equal to zero [3], so as to obtain
a matrix
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Bi1 ,...,ik := Udiag(0, . . . , 0, σi1 , 0, . . . , 0, σi2 , 0, . . . , 0, σik , 0, . . .)V
T

for any ordered k-tuple i1 < · · · < ik in {1, . . . , m}.Wewill call these critical points critical
rank-k matrices for A. In particular, the critical rank-one matrices are B1, . . . , Bm, and we
draw attention to the fact that for each k ≥ 1 and each k-tuple i1 < · · · < ik the critical
rank-k matrix Bi1 ,...,ik lies in the linear span of B1, . . . , Bm. Moreover, this linear span has a
direct description in terms of A: It consists of all matrices B such that both ATB and ABT

are symmetric matrices.
Taking cue from this observation, we will associate a critical space Hf to a tensor f show

that Hf contains the critical rank-at-most-k tensors for f for each value of k (see below
for a definition), and that Hf is spanned by the critical rank-one tensors for f . We will
establish these results for sufficiently general partially symmetric tensors, and we work
over the base field C rather than R.

Theorem 1.1 Let f be a sufficiently general tensor in Sd1Cn1+1 ⊗ · · · ⊗ SdpCnp+1. Then,
for each natural number k, the critical rank-at-most-k tensors for f lie in the critical
space Hf . Moreover, if for each � with d� = 1 the triangle inequality n� ≤ ∑

i �=� ni holds,
then codimHf = ∑

�

(n�+1
2

)
and Hf is spanned by the critical rank-one tensors for f . In

particular, f itself lies in the linear span of the critical rank-one tensors for f .

We record the following two corollaries over the real numbers.

Corollary 1.2 If n1, . . . , np satisfy the triangle inequality n� ≤ ∑
i �=� ni for each � =

1, . . . , p, then for a sufficiently general tensor f ∈ ⊗p
i=1 R

ni+1 and any natural number k,
any real tensor of real rank at most k closest to f in the Frobenius norm lies in the linear
span of the complex critical rank-one tensors for f . In particular, f itself lies in the linear
span of the complex critical rank-one tensors for f .

Corollary 1.3 For a sufficiently general symmetric tensor f ∈ SdRn+1 and any natural
number k, any real symmetric tensor of real symmetric rank at most k closest to f in the
Frobenius norm lies in the linear span of the complex critical symmetric rank-one tensors
for f . In particular, f itself lies in the linear span of the complex critical rank-one tensors
for f .

In the case of symmetric tensors, these critical rank-one tensors correspond to the so-
called eigenvectors of f [11], while in the case of ordinary tensors, they correspond to
singular vector tuples [10]. In the case n = 1 of binary forms, Corollary 1.3 was proved in
[16]. The two corollaries above can be regarded as generalizations of the Eckart–Young
Theorem and the Spectral Theorem from matrices to tensors.
Several remarks are in order here. First, we complexify df to the quadratic polynomial

df (u) := (u − f |u − f ), where (.|.) is the standard complex bilinear form on the space of
tensors (and not a Hermitian form). The point of doing this is that, unlike formatrices, the
critical points of this function on low-rank tensors are in general not real anymore, even if
f is real. Accordingly, the critical spaceHf , while defined by linear equations overR if f is
real, is taken to be the space of complex solutions to those equations. Second, we denote
the dimensions by n + 1 rather than n since we will be using methods from projective
algebraic geometry where the formulas look more appealing in terms of the projective
dimension n than in the affine dimension n + 1. An example of this phenomenon is the
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triangle inequalities in the theorem, which hold if and only if the variety dual to the Segre–
Veronese embedding of the productPn1 ×· · ·×P

np via degrees d1, . . . , dp is a hypersurface
[7, Corollary 5.11].
The remainder of this paper is organized as follows. In Sect. 2, we define the critical

space Hf for a partially symmetric tensor f and prove that the critical rank-at-most-k
tensors for f lie in Hf . Then, in Sect. 3, we use vector bundle techniques to compute the
dimension of the space spanned by the critical rank-one tensors for f and to show that this
space equals Hf . In Sect. 4, we combine these ingredients to establish the results above.

2 The critical space of a tensor
2.1 Partially symmetric tensors and their ranks

Let p ∈ Z≥1, let V1, . . . , Vp be complex vector spaces, and let d1, . . . , dp ∈ Z≥1. Let SdV
be the dth symmetric power of V . We will study tensors in the space

T := Sd1V1 ⊗ · · · ⊗ SdpVp.

So for p = 1, T is a symmetric power of V1, which is canonically isomorphic with the
space of symmetric, dp-way n1×· · ·×n1-tensors. On the other hand, when all di are equal
to 1, then T is a space of p-way ordinary tensors. We will write [p] := {1, . . . , p}.
Inside T , let X be the set of all tensors of the form

vd11 ⊗ · · · ⊗ vdpp (v� ∈ V�, � ∈ [p]).

Then, X is a closed subvariety of T known as the affine cone over the Segre–Veronese
embedding of Pn1 × · · · × P

np of degrees (d1, . . . , dp). Let kX denote the set of sums of k
elements ofX . An arbitrary element t of T lies in kX for some k , and theminimal such k is
called the rank of t [9, Definition 5.2.1.1]. For p = 1, this is the symmetric orWaring rank,
and if all dq are 1, this notion is ordinary tensor rank. We write Seck (X) for the Zariski (or
Euclidean) closure of kX in T .
For real tensors, a few modifications are needed. The real rank of a real tensor t is the

minimum k such that t = ∑k
i=1 λixi with λi ∈ R and xi ∈ XR (it is enough to allow

λi = ±1). For example (e1 + ie2)3 + (e1 − ie2)3 has complex rank 2 and real rank 3. Real
rank is subtle for low-rank approximation of tensors. A classical example of de Silva and
Lim [2] shows that for almost all 2 × 2 × 2-tensors of real rank 3 (like the above one)
does not exist a closest tensor of real rank 2, while such phenomena may happen only for
measure zero subsets of the set of complex tensors of given rank.

2.2 Symmetric bilinear forms and pairings

IfV,W are complex vector spaces with symmetric bilinear forms (.|.), and if d ∈ Z≥0, then
SdV and V ⊗ W carry unique symmetric bilinear forms, also denoted (.|.), that satisfy

(vd |v′d) := (v|v′)d and

(v ⊗ w|v′ ⊗ w′) := (v|v′)(w|w′).

The first of these equalities implies

(v1 . . . vd |v′d) =
d∏

i=1
(vi|v′)
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and more in general

(
v1 · · · vd |v′

1 · · · v′
d
) = 1

d!
∑

π∈Sd

d∏

i=1

(
vi|v′

π (i)

)
.

Wenowfixnondegenerate symmetric bilinear forms on eachV�, � ∈ [p]. Then, iterating
these constructions, we obtain a canonical bilinear form on T .
Using the bilinear forms on V and W , we can also build more general bilinear maps

whose outputs are vectors or tensors rather than scalars. We will call these bilinear maps
pairings and denote them by [.|.]. Of particular relevance to us is the skew-symmetric
pairing SdV × SdV → ∧2 V determined by

[vd |wd] := (v|w)d−1v ∧ w,

which implies

[v1 . . . vd |wd] = 1
d

∑

i′∈[d]

⎛

⎝
∏

i �=i′
(vi|w)

⎞

⎠ vi′ ∧ w

and more in general

[v1 · · · vd |w1 · · ·wd] = 1
d · d!

∑

i′ ,j′∈[d]

∑

π :[d]\i′→[d]\j′

⎛

⎝
∏

i �=i′
(vi|wπ (i))

⎞

⎠ vi′ ∧ wj′ ,

where π runs over all bijections [d] \ i′ → [d] \ j′.

Remark 2.1 In the case of binary forms (dimV = 2 and arbitrary d), the pairing [f |g]
coincides (up to scalar multiples) with (f |D(g)), where D(g) = gxy − gyx; see [16]. Note
the skew-symmetry property (f |D(g)) = − (g |D(f )). On the other hand, in the case of
symmetric matrices (d = 2 and arbitrary V ), the pairing [f |g] coincides (up to scalar
multiples) with the bracket fg − gf .

Building on this construction, for each � ∈ [p] we define a pairing [.|.]� : T×T → ∧2 V�

by

[f1 ⊗ · · · ⊗ fp|g1 ⊗ · · · ⊗ gp]� :=
⎛

⎝
∏

i �=�

(fi|gi)
⎞

⎠ [f�|g�], fi, gi ∈ SdiVi, (1)

which we will use to define the critical space.

Remark 2.2 In the case of matrices T = V1 ⊗V2, the pairing [f, g]1 coincides (up to scalar
multiples) with fg t − gf t , while [f, g]2 is (up to scalar multiples) f t g − gt f .

2.3 Basis, orthogonal basis andmonomials

If B is a basis of V , then the degree-d monomials in the elements of B form a basis of SdV .
Such a basis is orthogonal if B is orthogonal. Hence, if we fix bases (respectively, orthog-
onal bases) of V1, . . . , Vp, then by taking tensor products we obtain a basis (respectively,
orthogonal basis) of T , whose elements we will call monomials of degree D := ∑p

�=1 d�.
We will use the word gcd of two such monomials x, y for the highest-degree monomial z
such that both x and y can be obtained from z by multiplying z with suitable monomials.
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Example 2.3 If p = 3 and V1 = V2 = V3 = C
3 with the standard bilinear form, and

d1 = d2 = 3 and d3 = 2, then the gcd of (e21e2)⊗ (e1e2e3)⊗ (e21) and (e1e2e3)⊗ (e33)⊗ (e2e3)
equals (e1e2) ⊗ (e3) ⊗ (1).

Lemma 2.4 For two monomials f = f1 ⊗ · · · ⊗ fp, g = g1 ⊗ · · · ⊗ gp in T relative to the
same orthogonal bases of V1, . . . , Vp and for � ∈ [p] we have [f |g]� = 0 unless fi = gi for
all i �= � and h := gcd(f�, g�) has degree d� − 1; in this case gcd(f, g) has degree D − 1 and
[u|v]� ∈ C

∗(f�/h) ∧ (g�/h).

This is immediate from the definition of the pairing in (1).

2.4 Critical rank-one tensors

Let f ∈ T . Then, the critical points of the distance function df : x �→ (f −x|f −x) onX are
by definition those x ∈ X \ {0} for which f − x is perpendicular to the tangent space TxX
to X at x; we write this as f − x ⊥ TxX . We call these tensors the critical rank-one tensors
for f . For sufficiently general f , each of these critical rank-one tensors is non-isotropic,
i.e., satisfies (x|x) �= 0 (see [4, Lemma 4.2], in next Proposition 2.6 we will prove a slightly
more general fact).
We will establish a bilinear characterization of these critical rank-one tensors for f .

First, we describe the tangent space of X at a point x in more detail. For this, write

x = vd11 ⊗ · · · ⊗ vdpp . (2)

Hence, we may extend each v� to a basis of V�. We then obtain an x-adapted basis of T
consisting of monomials. If moreover x is non-isotropic, we have (v�|v�) �= 0 and we may
extend each v� to an orthogonal basis. We then obtain an x-adapted orthogonal basis of
T .

Lemma 2.5 Let x ∈ X as in (2).

(1) Then, relative to any x-adapted basis, TxX is spanned by all degree-D monomials
whose gcd with x has degree at least D − 1.

(2) Assume moreover that x is non-isotropic. Then, relative to any x-adapted orthogonal
basis, (TxX)⊥ is spanned by all degree-D monomials whose gcd with x has degree at
most D − 2.

Proof Part (1) follows by applying the Leibniz rule to the parameterization (2) of X ; part
(2) is a straightforward consequence. �

Proposition 2.6 Let f ∈ T and let x ∈ X be non-isotropic. Then, the following two
statements are equivalent:

(1) some (nonzero) scalar multiple of x is a critical rank-one tensor for f and
(2) a unique (nonzero) scalar multiple of x is a critical rank-one tensor for f ;

and they imply the following statement:

(3) for each � ∈ [p], [f |x]� ∈ ∧2 V� is zero.

Moreover, if f is sufficiently general, then every nonzero x ∈ X satisfying (3) is non-isotropic
and satisfies (1) and (2).
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The pairing in item (3) is the pairing from (1).

Proof For the equivalence of the first two statements, we note that if cx, c′x with c, c′ �= 0
are critical rank-one tensors for f , then TcxX = Tc′xX = TxX and f − cx ⊥ TxX and
f − c′x ⊥ TxX . Since x ∈ TxX , we find that (c− c′)x ⊥ x, and using that x is non-isotropic
we find that c = c′.
To prove that (1) implies (3), write x as in (2) and extend each v� to an orthogonal basis

of V�, so as to obtain an x-adapted orthogonal basis of T . Now assume that f − cx ⊥ TxX .
Then, by Lemma 2.5, f − cx is a linear combination of degree-D monomials whose gcds
with x have degrees at most D − 2. Hence by Lemma 2.4, [x|f − cx]� = 0. By the skew-
symmetry, [x|x]� = 0, so [x|f ]� = 0.
For the last statement, consider an x = vd11 ⊗ · · · ⊗ vdpp ∈ X where, say, v1, . . . , va

with a > 0 are isotropic but the remaining factors are not. Extend each v�, � > a to an
orthogonal basis of V�, and for v� with � ≤ a find an isotropic w� ∈ Vi with (v�|w�) = 1
and extend v�, w� with an orthogonal basis of the orthogonal complement of 〈v�, w�〉⊥ to a
basis of V�. In the corresponding (non-orthogonal) monomial basis of T , the monomials
y with [y|x]� �= 0 for � ≤ a are those of the form

wd1
1 ⊗ · · · ⊗ wd�−1

� u� ⊗ · · · ⊗ wda
a ⊗ vda+1

a+1 ⊗ · · · ⊗ vdpp ,

where u� is a basis vector of V� that is distinct from v� but possibly equal to w�. These
monomials all satisfy [y|x]i = 0 for i �= �. Similarly, the monomials y with [y|x]� �= 0 for
� > a are those of the form

wd1
1 ⊗ · · · ⊗ wda

a ⊗ vda+1
a+1 ⊗ · · · ⊗ vdl−1

l ul ⊗ · · · ⊗ vdpp
with u� a basis vector of V� distinct from v�; they, too, satisfy [y|x]i = 0 for i �= �. The
remaining monomials span the space of f s with [x|f ]� = 0 for all �; this space therefore
has dimension

dimT − (n1 + · · · + np),

and it does not change when we scale x. Since the isotropic projective points 〈x〉 ∈ PT
form a subvariety of positive codimension in the (n1 + · · · + np)-dimensional projective
variety PX , the locus of all f for which there is a nonzero isotropic x ∈ X with [f |x]� = 0
for all � has dimension less than dimT .
Now assume that f is sufficiently general and let x ∈ X \{0} satisfy [x|f ]� = 0 for all �. By

the above, x is non-isotropic. Suppose that f , expanded on the x-adapted orthogonal basis,
contains amonomial ywhose gcd with x has degree exactlyD−1. If y agrees with x except
in the factor Sd�V� where it equals vd�−1

� u�, then in [x|f ]�, expanded on the standard basis
of

∧2 V� relative to the chosen basis of V�, the term v� ∧ u� has a nonzero coefficient.
Hence, [x|f ]� is nonzero, a contradiction.
Therefore, f contains only monomials whose gcds with x have degrees at most D − 2,

and possibly the monomial x itself. Then, f − cx ⊥ TxX for a unique constant c. By
generality of f , it does not lie in (TxX)⊥ for any x ∈ X \ {0} (the union of these orthogonal
complements is the cone over the variety dual to the projective variety defined by X , and
of positive codimension). Hence, c �= 0, and cx is a critical rank-one tensor for f . �
Remark 2.7 The implication (1) =⇒ (3) in Proposition 2.6 holds without the assumption
of non-isotropy of x. This follows from the fact that the ED correspondence

{(x, f ) ∈ X × V | x is critical for f }
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is a irreducible variety (see [3, §4 and Lemma 2.1]) and the nonempty open part in it where
x is non-isotropic lies in the variety defined by [f |x]� = 0 ∀� ∈ [p] by Proposition 2.6.

2.5 The critical space

In view of Proposition 2.6, we introduce the following notion.

Definition 2.8 For a tensor f ∈ T , the critical space Hf ⊆ T of f is defined as

Hf := {g ∈ T | [f |g]� = 0 for all � ∈ [p]}.

Remark 2.9 By the skew-symmetry, it follows immediately that f ∈ Hf .

Remark 2.10 In the case of binary forms (dimV = 2),Hf is the hyperplane orthogonal to
D(f ) [16]. In the case of ordinary tensors, Hf was first defined in [15] where it was called
singular space, but in view of the results in this paper we feel that critical space is a better
name.

Proposition 2.6 establishes that the non-isotropical critical rank-one tensors all lie inside
Hf ; hence for a sufficiently general f , all critical rank-one tensors lie in Hf . In the next
subsection, we will establish an analogous statement for higher ranks.
Note that the number of linear conditions for g to lie inHf is atmost

∑p
�=1 dim

∧2 V� =
∑p

�=1
(n�+1

2
)
—the linear conditions in the definition may not all be linearly independent.

In Proposition 3.6 we will see that, assuming the triangle inequalities from Theorem 1.1
and assuming that f is sufficiently general, equality holds.

2.6 Higher rank

We will now establish a generalization of Proposition 2.6 to higher-rank tensors.

Definition 2.11 Let f ∈ T and let k be any nonnegative integer. A critical rank-at-most-k
tensor for f is a tensor g ∈ kX such that f − g ⊥ Tg Seck (X).

Note that by [4, Lemma 4.2], all the critical rank-at-most-k tensors for a sufficiently
general f ∈ T are smooth points of Seck (X) and can be written as a sum of k non-
isotropic rank-one tensors. Moreover, if we assume that k is at most the generic rank of
tensors in T , then these critical tensors to a sufficiently general f have rank equal to k . If
k is at least the generic rank of tensors in T , then the only critical rank-at-most-k tensor
for a sufficiently general f is f itself.

Proposition 2.12 Let f ∈ T be sufficiently general and let k be a nonnegative integer.
Then, all the critical rank-at-most-k tensors for f lie in the critical space Hf .

Proof Let g be a critical rank-at-most-k tensor. By generality of f , g can be written as
x1 + · · · + xk with each xi ∈ X non-isotropic. Then, Tg Seck X ⊇ ∑k

i=1 TxiX , so that for
each i ∈ [k] we have f − g ⊥ TxiX . By Lemma 2.5 this means that, in the xi-adapted
orthogonal basis, f − g is a linear combination of monomials whose gcds with xi have
degrees at most D − 2. Hence, by Lemma 2.4, [f − g |xi]� = 0 for all � = 1, . . . , p. We
conclude that, for each �,

[f − g |g]� =
k∑

i=1
[f − g |xi]� = 0,
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and therefore

[f |g]� = [f − g |g]� + [g |g]� = 0 + 0,

where in the last step we used that [.|.]� is skew-symmetric. Hence, g ∈ Hf . �

In the next section, we compute the dimension of the space spanned by the critical
rank-one tensors for a general tensor and show that this space equals Hf .

3 The scheme of critical rank-one tensors
3.1 Critical rank-one tensors as the zero locus of a vector bundle section

Let f ∈ T = ⊗p
�=1 S

d�V� be a tensor. We assume that p ≥ 2, d� ≥ 1, and dimV� =
n� + 1 ≥ 1 for all �. We adapt the notation of [15, Section 5.1] to our current setting.
Consider the Segre–Veronese variety PX = PV1 × . . . × PVp embedded with

O(d1, . . . , dp) in PT ; so PX is the projective variety associated with the affine coneX ⊆ T .
Let π� : PX → PV� be the projection on the �th factor and set N := dimPX =
n1 + . . . + np. For each � ∈ [p] let Q� be the quotient bundle on PV�, whose fiber
over a point 〈v〉 is V�/〈v〉. From these quotient bundles, we construct the following vector
bundles on PX :

E :=
p⊕

�=1
El where El :=

(
π∗

� Q�

) ⊗ O(d1, . . . , d�−1, d� − 1, d�+1, . . . , dp).

Note that E has rank N . The fiber of E� over a point v := (〈v1〉, . . . , 〈vp〉) ∈ PX
consists of polynomial maps

∏p
i=1〈vi〉 → V�/〈v�〉 that are multi-homogeneous of

multi-degree (d1, . . . , d� − 1, . . . , dp). The tensor f yields a global section of E� which
over the point v is the map sending (c1v1, . . . , cpvp) to the natural pairing of f with
(c1v1)d1 · · · (c�v�)d�−1 · · · (cpvp)dp—a vector in V�—taken modulo 〈v�〉. Combining these
p sections, f yields a global section sf of E . By Proposition 2.6, for f sufficiently general,
the tensor x := vd11 ⊗ · · · ⊗ vdpp is a nonzero scalar multiple of a critical rank-one tensor
for f if and only if the point (〈v1〉, . . . , 〈vp〉) is in the zero locus Zf of the section sf . In [5],
this is used to compute the cardinality of Zf for f sufficiently general as the top Chern
class of E . Our current task is different: we want to show that, if we assume the triangle
inequalities of Theorem 1.1 and that f is sufficiently general, the linear span 〈Zf 〉 equals
the projectivized critical space PHf ; this is the second part of Theorem 1.1.

3.2 Bott’s formulas and a consequence

Our central tool will be the following formulas for the cohomology of vector bundles over
projective spaces [13]. Recall that �r

Pn (k) is theO(k)-twisted sheaf of differential r-forms
on P

n.

Lemma 3.1 (Bott’s formulas) For q, n, r ∈ Z≥0 and k ∈ Z, we have

hq
(
P
n,�r

Pn (k)
) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(k+n−r
k

)(k−1
r

)
if q = 0 ≤ r ≤ n and k > r,

1 if 0 ≤ q = r ≤ n and k = 0,
(−k+r

−k
)(−k−1

n−r
)

if q = n ≥ r ≥ 0 and k < r − n, and

0 otherwise.

A consequence featuring the triangle inequalities of Theorem 1.1 is the following.
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Lemma 3.2 Suppose that n� ≤ ∑
i �=� ni holds for all � with d� = 1. Let k ≥ 2 be an

integer, q1, . . . , qp be nonnegative integers with
∑p

�=1 q� < k and r1, . . . , rp be nonnegative
integers with

∑p
�=1 r� = k. Then,

p⊗

�=1
Hq�

(
PV�,�r�

PV�
(−d�(k − 1) + 2r�)

)
= 0.

Proof Assume that all factors in the tensor product are nonzero.
First, if all of the factors were nonzero by virtue of the second and third line in Bott’s

formulas, then we would have q� ≥ r� for all �, and hence k >
∑

� q� ≥ ∑
� r� = k , a

contradiction.
So some factor is nonzero by virtue of the first line in Bott’s formulas; without loss of

generality this is thefirst factor.Hencewehaveq1 = 0 ≤ r1 ≤ n1 and−d1(k−1)+2r1 > r1.
This last inequality reads r1 > d1(k −1). Combining this with

∑
� r� = k and the fact that

d1 is a positive integer, we find that r1 = k , d1 = 1, and r� = 0 for � > 1. In particular,
there are no � > 1 for which the first line in Bott’s formulas applies.
For any � > 1, if the second line applies, then 0 = r� = q� = −d�(k − 1) + 2r�, which

contradicts that both d� and k − 1 are positive. Hence, the third line applies for all � > 1,
and in particular we have q� = n�. But then

n1 ≥ r1 = k >

p∑

l=1
ql =

p∑

l=2
nl,

which together with d1 = 1 contradicts the triangle inequality in the lemma. �

3.3 Vanishing cohomology

The vanishing result in this subsection uses Lemma 3.2 and the following version of
Künneth’s formula.

Lemma 3.3 (Künneth’s formula) For vector bundles G� on PV� for � = 1, . . . , p and a
nonnegative integer q we have

Hq
(

PX,
⊗

�

π∗
� G�

)

∼=
⊕

q1+...+qp=q

⊗

�

Hq� (PV�,G�),

where the sum is over all p-tuples of nonnegative integers summing to q.

Lemma 3.4 Suppose that n� ≤ ∑
i �=� ni holds for all � such that d� = 1. Let k ≥ 2 be an

integer and q ∈ {0, . . . , k − 1}. Then, we have

Hq

⎛

⎝PX,

⎛

⎝
k∧
E∗

⎞

⎠ ⊗ O(d1, . . . , dp)

⎞

⎠ = 0.

Proof First,

E∗ =
p⊕

�=1

(
π∗

� Q�
∗) ⊗ O(−d1, . . . ,−d�−1,−(d� − 1),−d�+1, . . . ,−dp).

A well-known formula for kth wedge power of a direct sum yields
k∧
E∗ =

⊕

r1+...+rp=k

⊗

�

r�∧
(π∗

� Q�
∗ ⊗ O(−d1, . . . ,−(d� − 1), . . . ,−dp)).
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Using
∧r(F ⊗ O(ω)) = (

∧r F )(rω),Q∗ = �1(1), and
∧r(�1(1)) = �r(r), we obtain

k∧
E∗ =

⊕

r1+...+rp=k

⊗

�

(
π∗

� �
r�
PV�

(r�) ⊗ O(−r�d1, . . . ,−r�(d� − 1), . . . ,−r�dp
)
.

Twisting byO(d1, . . . , dp), regrouping in each projection, and using
∑

� r� = k we find:
⎛

⎝
k∧
E∗

⎞

⎠ ⊗ O(d1, . . . , dp) =
⊕

r1+...+rp=k

⊗

�

π∗
� �

r�
PV�

(−d�(k − 1) + 2r�) .

To computeHq of each summandwe apply Künneth’s formula, and obtain subsummands
which are exactly of the form in Lemma 3.2, hence zero. �

3.4 Comparing PHf and 〈Zf 〉
Assume that f is sufficiently general in T . By the first subsection of this section and by
Proposition 2.6, Zf is contained in the projectivized critical space PHf , hence so is 〈Zf 〉.
Our goal now is to show that 〈Zf 〉 is equal to PHf and to compute its dimension. Both
of these goals are achieved through the following lemma. The section sf of E yields a
homomorphism E∗ → O of sheaves whose image is contained in the ideal sheaf IZf of
the zero locus of sf .

Lemma 3.5 Assume that for each � ∈ [p] we have n� ≤ ∑
i �=� ni and that f is sufficiently

general. Then, the induced homomorphism E∗ ⊗ O(d1, . . . , dp) → IZf ⊗ O(d1, . . . , dp)
induces an isomorphism at the level of global sections.

The following proof can be shortened considerably using spectral sequences, but we
found it more informative in its current form. To make the formulas more transparent,
we write Hq(.) instead of Hq(PX, .) everywhere.

Proof To establish the desired isomorphism

H0(E∗ ⊗ O(d1, . . . , dp)) ∼= H0(IZf ⊗ O(d1, . . . , dp))

we use the following Koszul complex (see, e.g., [8, Chapter III,Proposition 7.10A]):

0 =
N+1∧

E∗ →
N∧

E∗ → · · · →
2∧
E∗ → E∗ → IZ → 0.

Letting Fk be the quotient of
∧k E∗ by the image of

∧k+1 E∗, this yields the short exact
sequence

0 → F2 → E∗ → IZ → 0.

Tensoring withO(d1, . . . , dp) yields the short exact sequence

0 → F2 ⊗ O(d1, . . . , dp) → E∗ ⊗ O(d1, . . . , dp) → IZ ⊗ O(d1, . . . , dp) → 0,

and this gives a long exact sequence in cohomology beginning with

0 → H0(F2 ⊗ O(d1, . . . , dp)) → H0(E∗ ⊗ O(d1, . . . , dp)) → H0(IZ ⊗ O(d1, . . . , dp))

→ H1(F2 ⊗ O(d1, . . . , dp)) →

So to obtain the desired isomorphism we want that

Hq(F2 ⊗ O(d1, . . . , dp)) = 0 for q = 0, 1.



Draisma et al. Res Math Sci  (2018) 5:27 Page 11 of 13  27 

For each k = 2, . . . , N , we have the short exact sequence

0 → Fk+1 →
k∧
E∗ → Fk → 0

which yields the long exact sequence

→ Hk−2

⎛

⎝
k∧
E∗ ⊗ O(d1, . . . , dp)

⎞

⎠ → Hk−2 (Fk ⊗ O(d1, . . . , dp)
)

→ Hk−1(Fk+1 ⊗ O(d1, . . . , dp)) → Hk−1

⎛

⎝
k∧
E∗ ⊗ O(d1, . . . , dp)

⎞

⎠

→ Hk−1 (Fk ⊗ O(d1, . . . , dp)
) → Hk (Fk+1 ⊗ O(d1, . . . , dp)

) →

Using Lemma 3.4, the two leftmost spaces are zero, so that

Hk−2(Fk ⊗ O(d1, . . . , dp)) ∼= Hk−1(Fk+1 ⊗ O(d1, . . . , dp)) and

Hk−1(Fk ⊗ O(d1, . . . , dp)) ⊆ Hk (Fk+1 ⊗ O(d1, . . . , dp)).

Hence, using that FN+1 = 0, we find that

H0(F2 ⊗ O(d1, . . . , dp)) ∼= · · · ∼= HN−1(FN+1 ⊗ O(d1, . . . , dp)) = 0 and

H1(F2 ⊗ O(d1, . . . , dp)) ⊆ · · · ⊆ HN (FN+1 ⊗ O(d1, . . . , dp)) = 0,

as desired. �

Proposition 3.6 Suppose that for each � ∈ [p] we have n� ≤ ∑
i �=� ni and that f is

sufficiently general. Then, 〈Zf 〉 = PHf and codimT Hf = ∑
�

(n�+1
2

)
.

Proof Since PX is embedded by O(d1, . . . , dp), the space of linear forms on T vanishing
on Zf is H0(IZf ⊗ O(d1, . . . , dp)). By Lemma 3.5, this space is isomorphic to

H0(E∗ ⊗ O(d1, . . . , dp)) =
⊕

�

H0 (
π∗

� Q∗
l ⊗ O(0, . . . , 1, . . . , 0)

)

=
⊕

�

H0(π�∗ (�1
PV�

(2))) =
⊕

�

H0
(
PV�,�1

PV�
(2)

)
,

which by the first line in Bott’s formulas has dimension
∑

�

(n�+1
2

)
. This means that

codimPT 〈Zf 〉 = ∑
�

(n�+1
2

)
, so the second statement in the proposition follows from

the first statement.
To establish the first statement, we spell out the map

H0(PV�,Q∗
� ⊗ O(1)) = H0(PV�,�1

PV�
(2)) → H0(IZf ⊗ O(d1, . . . , dp))

in greater detail. The space on the left is canonically (
∧2 V�)∗, and an element ξ in this

space is mapped to the linear form T → C, g �→ ξ ([f |g]�). As � varies, these are precisely
the linear forms that cut out Hf . This proves that PHf = 〈Zf 〉. �
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Remark 3.7 In general, for the equality 〈Zf 〉 = PHf we only need that the linear equations
cutting out PHf also cut out Zf , i.e., we only need that the linear map in Lemma 3.5 is
surjective. One might wonder whether this surjectivity remains true when the triangle
inequalities fail. In the case of (n1 + 1) × (n2 + 1)-matrices, it does indeed—there we
already knew the critical rank-one approximations span the critical space—but for p = 3
and 2 × 2 × 4-tensors (so that n3 = 3 > 1 + 1 = n1 + n2) the space 〈Zf 〉 has dimension
6 while computer experiments suggest that the space PHf has dimension 7 , hence the
surjectivity fails. Still, in these experiments, f itself seems to lie in the span ofZf . This leads
to the openproblemwhether our analogue of the Spectral Theoremand theEckart–Young
Theorem persists when the triangle inequalities fail.

4 Proofs of themain results
Proof of Theorem 1.1 The first statement is Proposition 2.12; the second and third state-
ment are Proposition 3.6. The last statement follows from Remark 2.9. �
Proof of Corollaries 1.2 and 1.3. If g is a real tensor of real rank at most k closest to f , then
one can write it as x1 + · · · + xk with x1, . . . , xk real points of X . In particular, all of these
points are non-isotropic, and the argument of Proposition 2.12 applies. Hence, g lies in
Hf . Now the result follows from Proposition 3.6. The argument applies, in particular, to
k equal to the rank of f , which gives the last statement of the corollaries. �
Note that, if f is any real tensor, then any real tensor of real rank at most k closest to

f lies in Hf by the argument above. Only for the conclusion that it lies in the span of the
complex critical rank-one tensors of f do we use that f is sufficiently general. We do not
know whether this generality is really needed.
Also note that we do not shed new light on the question of when for sufficiently general

f there exists a closest real tensor of rank at most k . For an update on the complex case,
see [17].
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