

Contents

Welcome message	 .3
Committees	 .4
Scientific program	 .5
General information	 .14
Communication Guidelines	 16
	 .17
Sponsors Abstracts	 .18
Abstracts	

Oral communications:

Opening lecture	21		
Session 1: Bioactives for neuronal and immune functions	25		
Session 2: Bioactives functionalization and interactions	39		
Flash Presentations I: Innovative approaches in bioactives research	53		
Session 3: Mechanism of action of plant bioactives and derived metabolites	61		
Session 4: Marine bioactives	73		
Industry lectures	85		
Keynote 4	89		
Session 5: Bioactive Peptides & Proteins	93		
Session 6: Polyphenols & Glucosinolates	107		
Flash Presentations II: Novel bioactives, applications and dietary biomarkers121			
Session 7: Food bioactives: dietary interventions	129		
Session 8: Bioactives for cardiometabolic health	141		
Closing lecture	153		
Poster communications:			
Polyphenols	157		
Carotenoids	237		
Bioactive polysaccharides	249		
Marine bioactives	257		
Bioactive proteins & peptides	269		
Glucosinolates	295		
Other bioactives	299		
Author Index	319		

Microalgae: an unexplored source to develop functional gluten-free pasta

Patrícia Fradinho ⁽¹⁾; Alberto Niccolai ^(2*); Rita Soares ⁽¹⁾; Isabel Sousa ⁽¹⁾; Liliana Rodolfi ^(2,3); Natascia Biondi ⁽²⁾; Mario R. Tredici ⁽²⁾; Anabela Raymundo ⁽¹⁾

⁽¹⁾ LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal;⁽²⁾ DISPAA, University of Florence, Italy;⁽³⁾ Fotosintetica & Microbiologica S.r.l., Italy

alberto.niccolai@unifi.it

Microalgae are generally recognized as a source of bioactive compounds and their use as nutritional supplements is becoming widely spread in western countries. However, the use of microalgae biomass for incorporation in food products is still limited. The cyanobacterium Arthrospira platensis (spirulina) is known for its high protein, as well as γ -linolenic acid and phycocyanin contents [1]. Our research group has already successfully incorporated spirulina in wheat pasta [2] and recently, a study with cookies showed that spirulina provided a significant structuring effect, in terms of texture, probably due to its high protein content (around 68% on dry biomass)[3]. In this work, Arthrospira platensis F&M-C256 biomass (from 1 to 10%) was incorporated in rice pasta dough. This spirulina gluten-free pasta was compared to the control (without spirulina) and to a durum-wheat reference pasta. The purpose of the work was to provide high levels of algal bioactives and to achieve a structuring effect similar to gluten-containing pasta. To study the dough mixing characteristics a microdoughLab 2800 (Perten Instruments, Sweden) was used. Cooked pasta quality parameters and texture properties (firmness, stickiness, and extensibility) were determined. Pasta biochemical composition (proteins, carbohydrates, lipids, minerals, fatty acids), radical scavenging activity, total phenolic content and in vitro digestibility were also evaluated.

References:

[1] Hongsthong, A., Bunnag, B. (2009). In P.M. Gault, H.J. Marler (Eds.), Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications, Nova Science Publishers, pp. 51–103.

[2] Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M., Raymundo, A. (2010). J. Sci. Food Agric. 90: 1656–1664.
[3] Batista, A.P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M.R., Sousa, I., Raymundo, A. (2017).
Algal Research. 26: 161-171.

Acknowledgements:

This work was supported by national funds from Fundação para a Ciência e a Tecnologia (Portugal) through the research unit UID/ AGR/04129/2013 (LEAF). Patrícia Fradinho acknowledges her PhD grant (C0144M) from Universidade de Lisboa.