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In this paper we study the efficient solution of the well-known Korteweg–de

Vries equation, equipped with periodic boundary conditions. A Fourier-Galerkin

space semi-discretization at first provides a large-size Hamiltonian ODE prob-
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methods in the HBVM class (Hamiltonian Boundary Value Methods). The effi-

cient implementation of the methods for the resulting problem is also considered
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1. Introduction

In this paper, we consider the numerical solution of the well-knownKorteweg–

de Vries (KdV) equation,

ut(x, t) = αuxxx(x, t) + βu(x, t)ux(x, t), (x, t) ∈ Ω := [a, b]× [0,∞), (1)

α, β ∈ R, αβ ̸= 0,

where, as is usual, the subscript denotes the partial derivative w.r.t. the given

variable. Typical values of the parameters considered for this equation are, e.g.,

α = −1, β = −6. The equation (1) is completed with the initial conditions

u(x, 0) = u0(x), x ∈ [a, b], and periodic boundary conditions. (2)

Consequently, u0 will be assumed to be a periodic function, smooth enough (as

a periodic function) so that the solution u turns out to be smooth as well.1 For

sake of brevity, when not necessary, we shall hereafter skip the arguments (x, t)

for u and its derivatives.

This equation, originally proposed to describe wave propagation on the sur-

face of shallow water, has then been rediscovered as the continuum limit of the

Fermi-Pasta-Ulam experiment [54] (see also [3]), and one of its main features

is that of possessing soliton solutions. It has been the subject, for about half

a century, of many investigations both from a theoretical point of view (see,

e.g., [26, 5, 44, 38, 45, 35, 29, 36]) and from its numerical approximation. In

this regard, besides the first numerical approaches in [49, 1, 50, 7], conservative

methods have been developed by using various approaches [33, 25], including

Galerkin methods [53, 41, 52, 6, 34, 22], finite difference schemes [2, 55, 42], op-

erator splitting and exponential-type integrators [32, 31], structure and energy-

preserving methods [51, 23, 39, 43, 37, 48].

1 Ideally, in the most favourable case where u is analytic, its n-th Fourier coefficient decays

exponentially with n, whereas it decays as n−r if u ∈ Cr. A fast decay of the Fourier

coefficients, in turn, is useful in view of what we are going to study in Sections 2 and 3. We

refer, e.g., to [38] for more refined regularity results.
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From a mathematical point of view, the equation (1) has a bi-Hamiltonian

structure, since it can be written in Hamiltonian form in two different ways [44].

In particular, we shall consider here the following Hamiltonian formulation,

ut = J δ

δu
H[u],

where J = ∂
∂x and δ

δuH[u] is the functional derivative 2 of the Hamiltonian

functional

H[u] =
1

2

∫ b

a

−α(ux)
2 +

β

3
u3 dx. (3)

Consequently, because of the periodic boundary conditions, the Hamiltonian

functional turns out to be conserved,

H[u](t) = H[u](0), ∀t ≥ 0. (4)

Due to the bi-Hamiltonian structure, there are, however, infinitely many invari-

ants. Among them, the simplest one, whose conservation can be easily derived

from (1), is

U [u] =
∫ b

a

udx, ⇒ U [u](t) = U [u](0), ∀t ≥ 0. (5)

In more details, (3) represents the energy of the system, whereas (5) is the mass.

Consequently, the conservation properties (4) and (5) are important for the

correct numerical simulation of such problem. In particular, the conservation of

the energy will follow from a suitable space semi-discretization, able to preserve

the Hamiltonian structure of the problem. For this reason, in this paper we

are concerned with the numerical solution of problem (1)–(2), while exactly

conserving (3)–(4) and (5).

With this premise, the structure of the paper is as follows: in Section 2 we

cast the problem into Hamiltonian form, by considering a Fourier-type expansion

in space; next, in Section 3 we consider a semi-discrete problem, which amounts

to a large-size Hamiltonian system of ODEs; in Section 4 we sketch the basic

2See any book of calculus of variations, for the definition of functional derivative, e.g., [27].

See also [40, 30].
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facts about Hamiltonian Boundary Value Methods (HBVMs), which we shall

use to solve the problem in time while conserving the Hamiltonian, and also

explaining the details about their efficient implementation for the considered

problem; in Section 5 we collect a number of test problems; at last, in Section 6

we report a few concluding remarks.

We conclude this section by stressing the fact that the efficient implementa-

tion of the methods is an important feature, when solving the high-dimensional

ODE problems derived from the semi-discretization of the PDE.

2. Fourier expansion in space

Since the solution u(x, t) of (1) we look for is periodic in space, we shall

consider its space expansion along the following orthonormal basis for periodic

functions in L2[a, b],

cj(x) =

√
2− δj0
b− a

cos

(
2πj

x− a

b− a

)
, j = 0, 1, . . . ,

(6)

sj(x) =

√
2

b− a
sin

(
2πj

x− a

b− a

)
, j = 1, 2, . . . ,

with δj0 the Kronecker delta, such that for all allowed values of i and j:∫ b

a

ci(x) cj(x)dx = δij =

∫ b

a

si(x) sj(x)dx,

∫ b

a

ci(x) sj(x)dx = 0. (7)

Consequently, for suitable time dependent coefficients qj(t), pj(t), one has the

expansion:

u(x, t) = c0q0(t) +
∑
j≥1

[cj(x)qj(t) + sj(x)pj(t)] , (8)

where we take into account that (see (6)) c0(x) ≡ (b − a)−1/2. Clearly, from

(8) it follows that the periodic boundary conditions are fulfilled for all t. The

expansion (8) can be cast in a more compact form, by defining the infinite
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vectors

c(x) =


c1(x)

c2(x)
...

 , s(x) =


s1(x)

s2(x)
...

 , q(t) =


q1(t)

q2(t)
...

 , p(t) =


p1(t)

p2(t)
...

 ,

(9)

as follows:

u(x, t) = c0q0(t) + c(x)⊤q(t) + s(x)⊤p(t). (10)

Moreover, we set the vectors

c′(x) =


c′1(x)

c′2(x)
...

 , s′(x) =


s′1(x)

s′2(x)
...

 ,

containing the first derivatives of the basis functions cj(x) and sj(x), and sim-

ilarly the vectors c′′(x), s′′(x), c′′′(x), s′′′(x) with the second and third deriva-

tives, respectively. We also define the vectors

q̇(t) =


q̇1(t)

q̇2(t)
...

 , ṗ(t) =


ṗ1(t)

ṗ2(t)
...

 ,

containing the time derivatives of the coefficients qj(t) and pj(t), respectively.

In so doing, we can easily compute the partial derivatives of u(x, t):

ut(x, t) = c0q̇0(t) + c(x)⊤q̇(t) + s(x)⊤ṗ(t),

ux(x, t) = c′(x)⊤q(t) + s′(x)⊤p(t), (11)

uxx(x, t) = c′′(x)⊤q(t) + s′′(x)⊤p(t),

uxxx(x, t) = c′′′(x)⊤q(t) + s′′′(x)⊤p(t).

The following results hold true.

Lemma 1. Let us define the infinite matrix 3

3Hereafter, for all matrices, all the entries not explicitly defined are assumed to be 0.
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D =
2π

b− a


1

2

3

. . .

 . (12)

Then:

c′(x) = −Ds(x), s′(x) = Dc(x),

c′′(x) = −D2c(x), s′′(x) = −D2s(x), (13)

c′′′(x) = D3s(x), s′′′(x) = −D3c(x).

Proof For the first derivatives, one has:

c′j(x) = − 2πj

b− a
sj(x), s′j(x) =

2πj

b− a
cj(x), j = 1, 2, . . . ,

which, in vector form, can be written as the first line in (13). The proof for the

other derivatives is similar. □

Lemma 2. With reference to (11) and (5) one has:

q0(t) ≡ c0 U [u](0). (14)

Consequently, q0(t) is constant.

Proof In fact, from (10) one has, by taking into account that c0 = (b−a)−1/2:

U [u](t) :=
∫ b

a

u(x, t)dx = (b− a)c0q0(t) = c−1
0 q0(t), t ≥ 0.

Consequently, since U [u] is conserved (see (5)), one has then

q0(t) ≡ q0 := c0 U [u](0), ∀t ≥ 0,

as required. □

By virtue of Lemmas 1 and 2, the equations (10)–(11) can be written as (see

(2) and (12)–(14)):

u(x, t) = û0 + c(x)⊤q(t) + s(x)⊤p(t), û0 :=
1

b− a

∫ b

a

u0(x)dx, (15)
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and

ut(x, t) = c(x)⊤q̇(t) + s(x)⊤ṗ(t),

ux(x, t) = −[Ds(x)]⊤q(t) + [Dc(x)]⊤p(t), (16)

uxx(x, t) = −[D2c(x)]⊤q(t)− [D2s(x)]⊤p(t),

uxxx(x, t) = [D3s(x)]⊤q(t)− [D3c(x)]⊤p(t),

respectively.

Remark 1. As is clear from (6)–(7), the conservation property (5) is fulfilled

by the function u(x, t) defined in (15).

Lemma 3. With reference to the notations (9)–(16), one obtains that the prob-

lem (1)–(2) can be rewritten as the following formal set of ODEs,4

q̇ = D

[
−αD2p+

β

2

∫ b

a

s
(
û0 + (c⊤q) + (s⊤p)

)2
dx

]
,

(17)

ṗ = −D

[
−αD2q +

β

2

∫ b

a

c
(
û0 + (c⊤q) + (s⊤p)

)2
dx

]
,

with the initial conditions

q(0) =

∫ b

a

c(x)u0(x)dx =: q0, p(0) =

∫ b

a

s(x)u0(x)dx =: p0. (18)

Proof Let us substitute ut and uxxx from (16) into (1). Multiplying by c(x),

then integrating in space, and considering that∫ b

a

c(x)c(x)⊤dx =

∫ b

a

s(x)s(x)⊤dx = I, (19)

the identity operator,∫ b

a

c(x)s(x)⊤dx =

∫ b

a

s(x)c(x)⊤dx = O, (20)

4Hereafter, for sake of brevity, we shall sometimes omit the arguments of the functions.
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and uux = (u2)x/2, provide us with the equation

q̇ = −αD3p+
β

2

∫ b

a

c(u2)xdx. (21)

Integrating by parts and taking into account the periodic boundary conditions,

one then obtains∫ b

a

c(u2)xdx = −
∫ b

a

c′u2dx ≡ D

∫ b

a

su2dx.

Substitution into (21) then provides us with the first equation in (17). The

second equation is similarly proved by multiplying (1) by s(x), integrating in

space, and considering that∫ b

a

s(u2)xdx = −
∫ b

a

s′u2dx ≡ −D

∫ b

a

cu2dx.

Finally, (18) follows by multiplying (2) by c(x) and s(x), respectively, then

integrating in space. □

The following result then holds true.

Theorem 1. With reference to matrix D defined in (12), system (17) can be

formally written as 5

 q̇

ṗ

 =

 1

−1

⊗D


∂H(q,p)

∂q

∂H(q,p)

∂p

 , (22)

which is Hamiltonian, with Hamiltonian

H(q,p) =
1

2

[
−α

(
q⊤D2q + p⊤D2p

)
+

β

3

∫ b

a

(
û0 + c⊤q + s⊤p

)3
dx

]
. (23)

This latter, in turn, is equivalent to the functional H[u] defined in (3), via the

expansion (15).

5As is usual, ⊗ denotes the Kronecker product.
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Proof With reference to (23), it is straightforward to prove that

∂H(q,p)

∂q
= −αD2q +

β

2

∫ b

a

c
(
û0 + c⊤q + s⊤p

)2
dx,

∂H(q,p)

∂p
= −αD2p+

β

2

∫ b

a

s
(
û0 + c⊤q + s⊤p

)2
dx.

Consequently, (17) is equivalent to (22)–(23). In order to prove that (23) is

equivalent to H[u] as defined in (3), it suffices to consider that∫ b

a

(
û0 + c⊤q + s⊤p

)3
dx =

∫ b

a

u3dx,

because of (15), and

q⊤D2q + p⊤D2p =

∫ b

a

[
q⊤Ds(x)s(x)⊤Dq + p⊤Dc(x)c(x)⊤Dp

]
dx

=

∫ b

a

u2
xdx,

by virtue of (16) and (19). □

3. Fourier-Galerkin space semi-discretization

In order for problem (17)–(18) to be solvable on a computer, one needs to

truncate the infinite expansion (15) to a finite sum. Therefore, having fixed a

conveniently large value N ≫ 1, one approximates (15) as

u(x, t) ≈ û(x, t) := û0 +
N∑
j=1

[cj(x)qj(t) + sj(x)pj(t)] . (24)

We can still pose the expansion (24) in vector form as (15), by formally replacing

the infinite vectors (9) by

c(x) =


c1(x)
...

cN (x)

 , s(x) =


s1(x)
...

sN (x)

 ,

(25)

q(t) =


q1(t)
...

qN (t)

 , p(t) =


p1(t)
...

pN (t)

 ,
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having length N . Similarly, the matrix (12) is formally replaced by the N ×N

matrix

D =
2π

b− a


1

2

. . .

N

 . (26)

For the sake of simplicity, we continue to use the same notation for the truncated

version of the infinite vectors and matrices: clearly, hereafter, they will denote

the finite ones. Consequently, expressions similar to (16) hold true for the partial

derivatives of û, and (19)–(20) continue formally to hold. Nevertheless, the

function (24) does not satisfy the equation (1) anymore. However, in the spirit

of Galerkin methods, by requiring the residual be orthogonal to the functional

space

VN = span {c0(x), c1(x), s1(x), . . . cN (x), sN (x)} ,

to which the approximation (24) belongs for all t, one formally obtains again

the equations (17), with the initial conditions formally still given by (18). Con-

sequently, Theorem 1 continues formally to hold, even though the Hamiltonian

(23) is now only an approximation to the functional H defined in (3). Neverthe-

less, it is known from the theory of Fourier methods [21] that, under regularity

assumptions on u (and, thus, on the initial condition u0), one has that the trun-

cated approximations to u and H converge more than exponentially to them, as

N → ∞, as we sketched in footnote 1 (this fact is usually referred to as spectral

accuracy).

Remark 2. A criterion for getting an estimate for N is to check that both the

residual corresponding to the initial condition (see (15) and (18)),

E0 := ∥u0 − û0 − c⊤q0 − s⊤p0∥L2 ≡ ∥u0(x)− û(x, 0)∥L2 , (27)

and the difference of the values of H(q0,p0) is within the round-off error level,

for nearby values of N .
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Finally, in order to obtain a full space semi-discretization, one needs to

compute the integrals appearing in (17), whose arguments are trigonometric

polynomials of degree at most 3N in the space variable. For this purpose,

as observed in [9], one can use a composite trapezoidal rule, evaluated at the

abscissae,

xi = a+ i
b− a

m
, i = 0, . . . ,m, (28)

with m a suitably large natural number. In particular, ∀m > 3N the inte-

grals are exactly computed (see, e.g., [24, Th. 5.1.4]). For this reason, we shall

hereafter consider the value

m = 3N + 1. (29)

Consequently, the truncated problem (17), having dimension 2N , with the in-

tegrals computed via the composite trapezoidal rule at the abscissae (28)–(29),

define the semi-discrete problem in space to be integrated in time. The cor-

responding semi-discrete Hamiltonian is then formally still given by (23), with

the integral appearing in it computed via the composite trapezoidal rule based

at the abscissae (28)–(29).

4. Hamiltonian Boundary Value Methods

In order to obtain a fully discrete method, we now need to integrate the

Hamiltonian problem (17)–(18), having dimension 2N , by taking into account

that the vectors c, s, q,p, and matrix D, are defined by (25)–(26). As observed

in [47], it is important to obtain a Hamiltonian semi-discrete ODE problem, from

the space semi-discretization of a PDE with Hamiltonian structure. In fact, in

such a case one may use a suitable geometric integrator (see, e.g., [47, 40, 30, 10]),

for efficiently solving the resulting Hamiltonian ODE problem. Hereafter, we

shall consider Hamiltonian Boundary Value Methods (HBVMs) for numerically

solving (17)–(18). They are a class of energy-conserving Runge-Kutta methods

which has been studied in a series of papers (see, e.g., [11, 12, 13, 14, 8, 15]).

Moreover, HBVMs have been also generalized along several directions, including
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the application to Hamiltonian PDEs [4, 9] (the reader is also referred to the

recent monograph [10]).

A HBVM(k, s) method is the k-stage Runge-Kutta method defined by the

Butcher tableau (see, e.g., [14, 10])

c IsP⊤
s Ω

b⊤
, b =

(
b1 . . . bk

)⊤
, c =

(
c1 . . . ck

)⊤
, (30)

where, by setting {Pj}j≥0 the Legendre polynomial basis orthonormal on [0, 1],

i.e.,

Pi ∈ Πi,

∫ 1

0

Pi(x)Pj(x)dx = δij,, ∀i, j = 0, 1, . . . ,

(bi, ci) are the weights and abscissae of the Gauss-Legendre quadrature formula

of order 2k (i.e., Pk(ci) = 0, i = 1, . . . , k), and

Ps =


P0(c1) . . . Ps−1(c1)

...
...

P0(ck) . . . Ps−1(ck)

 ∈ Rk×s,

Is =


∫ c1
0

P0(x)dx . . .
∫ c1
0

Ps−1(x)dx
...

...∫ ck
0

P0(x)dx . . .
∫ ck
0

Ps−1(x)dx

 ∈ Rk×s, (31)

Ω =


b1

. . .

bk

 ∈ Rk×k.

By using standard arguments in the analysis of such methods (see, e.g., [14, 10]),

it is possible to prove the following result.

Theorem 2. For all s = 1, 2, . . . , and k ≥ s, the HBVM(k, s) method (30):

• is symmetric and has order 2s;

• when k = s it reduces to the (symplectic) s-stage Gauss collocation method;

12



• it is energy-conserving, when applied for solving (17)–(23), for all k ≥

3s/2.

Remark 3. Because of the result of Theorem 2, hereafter, we shall consider the

choice

k =

⌈
3s

2

⌉
, s = 1, 2, . . . , (32)

for all HBVM(k, s) methods. Consequently, they are energy-conserving and of

order 2s, when applied for numerically solving (17)–(18). Moreover, because

of the expansion (15), the semi-discrete solution also satisfies the conservation

property (5).

Let us now study the efficient implementation of a generic HBVM(k, s)

method when applied for solving (17)–(18) by using a timestep ∆t = h. By

setting, with reference to (23) and (25),

y :=

 q

p

 , H(y) := H(q,p), y0 :=

 q0

p0

 , (33)

and considering matrixD defined at (26), one has that (17)–(18) can be formally

rewritten as

ẏ = J∇H(y), y(0) = y0, J =

 D

−D

 . (34)

By also setting

Y ≡


Y1

...

Yk

 ∈ R2Nk, ∇H(Y ) :=


∇H(Y1)

...

∇H(Yk)

 , (35)

i.e., the stage vector of the method (30) applied for solving (33)–(34), and ∇H

evaluated at the stages, respectively, one obtains the nonlinear set of k vector

equations,

Y = e⊗ y0 + hIsP⊤
s Ω⊗ J ∇H(Y ), e = (1, . . . , 1)⊤ ∈ Rk. (36)

13



Once this system has been solved, the approximation y1 ≈ y(h) is computed

as:

y1 = y0 + h

k∑
i=1

biJ∇H(Yi). (37)

Remark 4. It is worth mentioning that, when s = 1 and k = 2, according to

(32), the quadrature in (37) is exact and one retrieves the averaged vector field

method [46] for solving (17)–(18).

According to [13], we now derive a more convenient formulation of the discrete

problem (36). For this purpose, by setting hereafter I the identity matrix of

dimension 2N , and defining the vector

γ ≡


γ0
...

γs−1

 := P⊤
s Ω⊗ J ∇H(Y ), (38)

one has that (36) can be written as

Y = e⊗ y0 + hIs ⊗ I γ. (39)

In fact, by plugging (38) into (39), one recovers (36). However, an equivalent

formulation of the discrete problem (36) can be derived by substituting (39) at

the right-hand side of (38), thus obtaining the equation

F (γ) := γ −P⊤
s Ω⊗ J ∇H (e⊗ y0 + hIs ⊗ Iγ) = 0, (40)

whose (block) dimension is s, independently of k. Once the discrete problem

(40) has been solved, the approximation (37) is given by

y1 = y0 + hγ0.

In fact, taking into account that P0(x) ≡ 1, from (31), (35), and (38) one obtains

that:

γ0 =

k∑
i=1

biJ∇H(Yi).
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Consequently, when implementing the HBVM(k, s) method (30), the complexity

for solving the equivalent discrete problem (40), having (block) dimension s, is

simplified w.r.t. solving the stage equation (36), which has (block) dimension

k, due to the fact that, because of (32), k > s.6 In addition to this, by taking

into account that, because of the properties of Legendre polynomials,

P⊤
s ΩIs = Xs :=


ξ0 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0

 ∈ Rs×s, (41)

ξi =
1

2
√

|4i2 − 1|
, i = 0, . . . , s− 1,

one has that the simplified Newton iteration for solving (40), representing the

reference method of solution, reads:

set γ0 = 0

for r = 0, 1, . . . :

solve
[
Is ⊗ I − hXs ⊗ J∇2H(y0)

]
∆γr = −F (γr) (42)

set γr+1 = γr +∆γr

end

We observe that the coefficient matrix of the linear system in (42) has dimension

s · 2N , i.e., s times larger than that of the continuous problem (17). Moreover,

we need to factor such matrix at each integration step. However, we can gain a

twofold simplification of the iteration (42), as explained below.

Firstly, by considering matrix D defined at (26) and the expansion (15), one

has

∇2H(y0) =

 −αD2 + β
∫ b

a
ucc⊤dx β

∫ b

a
ucs⊤dx

β
∫ b

a
usc⊤dx −αD2 + β

∫ b

a
uss⊤dx

 .

6We refer to [13] for full details.
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Table 1: Parameter defined at (45).

s 1 2 3 4 5 6

ρs 0.5000 0.2887 0.1967 0.1475 0.1173 0.0971

By approximating u with its mean in space, given by û0 (see (15)), then, by

virtue of (19)–(20), we can consider the approximate Hessian matrix

∇2H(y0) ≈

 D̂

D̂

 =: G, D̂ := −αD2 + βû0 IN , (43)

which is diagonal and constant.

Secondly, in place of the simplified Newton iteration (42) with the simplified

Hessian (43), we consider a “splitting-Newton” blended iteration. This iteration,

previously devised (see, e.g., [16]) for block Boundary Value Methods,7 has

then been generalized in [17] and implemented in the computational Fortran

codes BiM [18] and BiMD [19] for stiff ODE-IVPs and linearly implicit differential

algebraic equations (the latter code is also available at the Test Set for IVP

Solvers [56], and is one of the best codes currently available for numerically

solving such problems). The blended iteration has also been considered for

HBVMs [13, 8], proving to be very efficient when applied to Hamiltonian PDEs,

as is shown in [9] for the semi-linear wave equation, and in [4] for the nonlinear

Schrödinger equation. We here sketch the main facts for the solution of problem

(17)–(18). In fact, each PDE has its own structural properties, which need to be

exploited in order to optimize the nonlinear iteration. As a result, the iteration

(42) is replaced by the following one:

7We refer, e.g., to [20] for details on block Boundary Value Methods.
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set γ0 = 0

for r = 0, 1, . . . :

set ηr = −F (γr)

set ηr
1 = ρsX

−1
s ⊗ I ηr

set ∆γr = Is ⊗ Σ [ηr
1 + Is ⊗ Σ(ηr − ηr

1)] (44)

set γr+1 = γr +∆γr

end

where Xs is the matrix defined at (41),

ρs = min
λ∈σ(Xs)

|λ|, (45)

with σ(Xs) denoting the spectrum of Xs (a few values of the parameter ρs are

listed in Table 1), and (see (34) and (43))

Σ := (I − hρsJG)
−1 ≡

 IN −B

B IN

−1

, B := hρsDD̂. (46)

Remark 5. We observe that matrix Σ is the only matrix which needs to be

factored to perform the iteration (44). Moreover, its dimension equals that of

the continuous problem (17), i.e., 2N . Conversely, even using the approximation

(43), the simplified Newton iteration (42) would require to factor the matrix

[Is ⊗ I − hXs ⊗ JG] ∈ R2Ns×2Ns,

that is, s times larger. Consequently, the use of the blended iteration (44) re-

duces the computational cost for the implementation of the methods, both in

terms of memory requirement and floating-point operations per iteration. Also,

the extensive numerical experimentation performed in [18, 19] (see also [56]),

testifies the effectiveness of the blended iteration itself, so that we shall not go

further into details concerning this aspect.
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Next result states that Σ, alike Σ−1, has a block diagonal structure.

Theorem 3. With reference to matrix (46), one has

Σ =

 (IN +B2)−1 B(IN +B2)−1

−B(IN +B2)−1 (IN +B2)−1

 .

Consequently, matrix Σ:

• is constant and, therefore, needs to be computed only once;

• has a 2 × 2 block diagonal structure. Consequently, only two vectors of

length N are needed for storing it, respectively containing the diagonal

entries of (IN +B2)−1 and B(IN +B2)−1.

In conclusion, one obtains that, besides the evaluation of F (γ) in (40), the

linear algebra cost for performing the iteration (44) is linear in the dimension

of the problem (17) to be solved, both in terms of required operations and

memory requirements. Concerning the evaluation of F (γ) one has a complexity

which is O(N logN) operations and O(N) memory requirements [28], since the

evaluation of the integrals via the composite trapezoidal rule at the abscissae

(28)–(29), can be done via the FFT and its inverse. This, in turn, allows the

use of relatively large values of N .

Remark 6. For completeness, we mention that the use of a fixed-point iteration

for solving the discrete problem (40), i.e.,

γr+1 = P⊤
s Ω⊗ J ∇H (e⊗ y0 + hIs ⊗ Iγr) r = 0, 1, . . . ,

would require, to converge, the use of a timestep ∆t (see (34) and (43)) of the

order of ∥JG∥−1 ≡ ∥DD̂∥−1, i.e., such that

∆t ≈ |α|−1

(
b− a

2πN

)3

, (47)

which is, therefore, very small, when N is large. The blended iteration (44), on

the other hand, allows the use of much larger timesteps (actually, the iteration

is guaranteed to converge for any timestep, in the case where β = 0 in (1)

[16, 17]).
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5. Numerical examples

In this section we provide a few numerical examples, aimed at confirming

what exposed in Sections 3 and 4. In all cases, we use periodic boundary

conditions, according to (1)–(2). All numerical tests have been performed by

using Matlab (R2016a) on a 2.2 GHz dual core i7 laptop with 8GB of memory.

Example 1. This example is adapted from [23, Example. 5.3]:

ut(x, t) + ϵuxxx(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ [−3, 5]× [0, 24],

ϵ = 0.0013020833. (48)

The initial condition at t = 0 is derived from the known solution of the problem,

i.e.,

u(x, t) = 3c

[
sech

(√
c

4ϵ
(x− ct)[−3,5]

)]2
, c =

1

3
, (49)

where, in general,

(ξ)[a,b] :=


ξ, if ξ ∈ [a, b],

a+ rem(ξ − a, b− a), if ξ > b,

b− rem(b− ξ, b− a), if ξ < a,

(50)

with rem the remainder in the integer division between the two arguments.

As a result, one verifies that the solution (49) is periodic in time with period

T = 24. In Figure 1, we plot the solution of problem (48)–(50). Moreover, in

Figure 2 we plot the value of the residual (27) for the initial condition, E0, and

the difference between the corresponding values of the numerical Hamiltonian,

∆H0, for increasing values of the parameter N in (24). As one may observe from

the figure, both E0 and ∆H0 decrease more than exponentially with N and, for

N ≈ 250, both of them become almost constant. Consequently, according to

Remark 2, in the sequel we consider the value N = 250 for the numerical tests

concerning this example (we recall that the value ofm in (28) is chosen according

to (29), in order to exactly compute the required integrals in the space variable).
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In Table 2 we list the maximum errors in the computed solution, eu, for

decreasing timesteps also estimating the numerical rate of convergence, along

with the error in the numerical Hamiltonian, eH , for the HBVM(k, s) methods,

s = 1, 2, 3, with k chosen according to (32). All the errors are computed at

T = 24: we see that eu decreases with order 2s, according to Theorem 2,8

whereas eH is negligible (it is within the round-off error level), as predicted.

In the table we also list the mean number of required blended iterations (44)

per step, from which we see that they quickly decrease with the timestep and,

for the finest timestep considered (∆t = 0.0125), they are almost independent

of s. It is worth observing that even though the mean number of blended

iterations per step appears to be very high for the coarsest timestep used (∆t =

0.4), it must be stressed that, for the considered value N = 250, according to

(47), a fixed-point iteration would require ∆t ≈ 10−4, in order to converge.9

The plots of Figure 3 contain the work-precision diagrams, namely accuracy (of

the solution, in the upper plot, and of the Hamiltonian, in the lower plot) vs.

execution time [56], for the methods listed in Table 2. For comparison, we have

also included the plots concerning the methods HBVM(12,8) and HBVM(15,10)

(the former used with timesteps ∆t = 24/M , M = 60, 120, 240, 480, the latter

used with timesteps ∆t = 24/M , M = 60, 120, 240), and the Matlab code

CHEBFUN [57]. The script for this latter code has been adapted from [58] by

using 500 grid-points in space (equivalent to the spatial accuracy of the Fourier-

Galerkin discretization considered for HBVMs) and timesteps ∆t = (25M)−1,

M = 1, 2, 4, 8, 16, 32, 128, 256, 512.

From the diagrams in Figure 3, one deduces that the higher the order of the

HBVM method, the better its efficiency. Moreover, the highest-order HBVMs

8For larger values of s, the solution error becomes soon negligible, as the timestep is

decreased, but, due to round-off errors, the numerical assessment of the order is more difficult.
9As an example, we found experimentally that HBVM(5,3) can be implemented by using

a fixed-point iteration with a timestep ∆t = 4 · 10−4 and an execution time of about 500

sec. On the other hand, the use of the blended iteration with the timesteps listed in Table 2,

results into execution times ranging from 4 to 42 sec.

20



are competitive with CHEBFUN, when a high solution accuracy is required.

On the other hand, when energy conservation is an issue then HBVMs turns

out to be more efficient than CHEBFUN. Energy conservation, in turn, is an

important property of HBVMs. In order to assess this point, let us look at the

circle in the upper plot in Figure 3, from which we see that CHEBFUN, using

a timestep ∆t = 1/3200 and HBVM(15,10), using a timestep ∆t = 0.2, provide

a comparably accurate numerical solution after one period (the solution error

is ≈ 1.5 · 10−10 for both methods), in approximately the same time (i.e., ≈ 23

sec). Nevertheless, if we continue the integration for 20 periods, measuring the

errors at the end of each period, we see that CHEBFUN exhibits a drift in the

Hamiltonian error, as is shown in the upper plot in Figure 4. This, in turn, is

responsible for an almost quadratic error growth in the numerical solution, as

confirmed by the lower plot in the same figure. On the other hand, the Hamilto-

nian error for HBVM(15,10) remains within the round-off error level, resulting

into a much smaller growth of the solution error. As matter of fact, in the lower

plot in Figure 4, an almost constant error is reported for HBVM(15,10). In gen-

eral, for energy-conserving HBVMs a linear error growth of the solution error is

at most observed. This fact is confirmed by the plots in Figures 5 and 6, where

we plot the Hamiltonian and solution errors w.r.t. time, respectively, over the

time-interval [0,500], when using the HBVM(k, s) methods, s = 1, 2, 3 and k

according to (32), with timestep ∆t = 0.05. In all cases, the Hamiltonian errors

depicted in Figure 5 are within the round-off error level (as is expected), whereas

the solution errors in Figure 6 grow at most linearly (in the case s = 1, due to

the low order of the method, the linear growth is until the error saturates).

Example 2. This example is taken from [43, Ex. 4.1]:

ut(x, t) + ϵuxxx(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ [0, 1]× [0,∞),

ϵ = (24)−2. (51)
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The initial condition at t = 0 is derived from the known solution of the problem,

known as the cnoidal-wave solution,

u(x, t) = a cn2 (4K(m)(x− νt− x0)) , (52)

where cn(z) := cn(z|m) is the Jacobi elliptic function with modulus m, K(m)

is the complete elliptic integral of the first kind, and

m = 0.9, a = 192mϵK2(m), ν = 64ϵ(2m− 1)K2(m), x0 = 1/2.

According to Remark 2, for this problem, one has that the value N = 50 for the

truncation parameter in (24) is sufficient to guarantee a solution accurate enough

(as matter of fact one has that the parameter defined at (27) is E0 ≤ 10−15,

and the value of the numerical Hamiltonian remains constant, when considering

larger values of N).

In [43, Fig. 1], there is the plot of the numerical and true solutions at

t = 0, 200, 500, 1000 (for completeness, the reference solutions are shown in

Figure 7), when a timestep ∆t = 10−3 is used: as is clear from the plots in

that Figure, the error can be appreciated even with the naked eye. In Table 3,

we list the maximum errors at the same times t = 0, 200, 500, 1000, when using

HBVM(k, s) methods (with k given by (32)), for increasing values of s, by using

a timestep as large as ∆t = 0.1. From this table, it is clear that, despite the

large stepsize used, the error becomes very small as s increases, because of the

increasing order of the method used. Moreover, we also list the maximum error

in the numerical Hamiltonian, eH , thus confirming that it is conserved up to

round-off.

Example 3. This example is slightly adapted from [43, Ex. 4.2],10

ut(x, t)+uxxx(x, t)+u(x, t)ux(x, t) = 0, (x, t) ∈ [−115, 103]× [0,∞). (53)

10We have considered a larger space interval, w.r.t. that considered in [43, Ex. 4.2], in order

to have a better approximation when using periodic boundary conditions. In fact, by using

the original interval [-40,40], the solution turns out to be discontinuous, as a periodic function.

This fact is much less notable, when considering the new interval.
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Figure 1: Solution (49) of problem (48) for (x, t) ∈ [−3, 5]× [0, 24].

The initial condition at t = 0 is derived from the two-soliton waves solution,

u(x, t) = 12
k21e

θ1 + k22e
θ2 + 2(k2 − k1)

2eθ1+θ2 + a2
(
k22e

θ1 + k21e
θ2
)
eθ1+θ2

(1 + eθ1 + eθ2 + a2eθ1+θ2)
2 ,

(54)

where

k1 = 0.4, k2 = 0.6, a2 :=

(
k2 − k1
k2 + k1

)2

=
1

25
, x1 = 4, x2 = 15,

and (see (50))

θ1 := θ1(x, t) =
(
k1x− k31t+ x1

)
[−115,103]

,

θ2 := θ2(x, t) =
(
k2x− k32t+ x2

)
[−115,103]

.

In this case, according to Remark 2, the parameter N in (24) is conveniently

chosen as N = 300 (in fact, with reference to (27), one has E0 < 10−15 and,

moreover, the numerical Hamiltonian remains constant within round-off, when

using larger values of N). Inspired from the numerical results reported in [43,
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Figure 2: Error E0 in the initial condition (see (27)) and differences in the initial numerical

Hamiltonian, ∆H0, for increasing values of N .

Ex. 4.2], in Table 4 we list the maximum errors in the numerical solution at

t = 0, 40, 80, 120, obtained by using HBVM(k, s) methods, s = 1, . . . , 4 and

k according to (32), with timsestep ∆t = 0.1, along with the corresponding

Hamiltonian error. It is worth mentioning that the numerical experiments show

that, for this problem, larger values of s cannot improve further the obtained

accuracy (which is of the order of the round-off error level for s = 4). The choice

of the above mentioned reference times is due to the fact that, as is shown in

Figure 8, the two waves, a taller one and a lower one (see the plot for t = 0),

gradually approach one another (see the plot for t = 40), when moving towards

right, until they collide (see the plot for t = 80), then continuing moving away

from each other (see the final plot at t = 120). From the results listed in Table 4,

one has that, as expected, the numerical Hamiltonian turns out to be conserved

and, moreover, the numerical solution soon reaches machine accuracy, as s is

increased from 1 to 4. This, in turn, means that the collision of the two waves

is approximated to full machine accuracy.

24



Example 4. The last example is the famous Zabusky-Kruskal example [54] (see

also [23, Ex. 5.5] or [43, Ex. 4.3]):

ut(x, t) + ϵuxxx(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ [0, 1]× [0,∞),(55)

ϵ = (0.022)2, u(x, 0) = cos(πx), x ∈ [0, 2].

A good description of the main features of the solution of such problem can be

found in [23], and here we sketch the main facts reported in that reference:

a) the solution starts with a cosine wave and later on develops a train of 8

solitons which travel at different speeds and interact with each other. In

more detail,

b) at t1 := tB ≡ π−1, the solution is about to breakdown;

c) at t2 := 3.6tB, the train of 8 solitons has been developed;

d) at t3 := 0.5tR ≡ 0.5 · 30.4tB, all the odd-numbered solitons overlap at

x = 0.385 and all the even-numbered overlap at x = 1.385;

e) at t4 := tR ≡ 30.4tB , the recurrence time, all the solitons arrive in almost

the same phase to reconstruct the initial state.

Also in this case, according to Remark 2, the parameterN in (24) is conveniently

chosen as N = 300 (the parameter defined at (27) is E0 ≈ 7 · 10−16 and the

numerical Hamiltonian remains constant within round-off for nearby values of

N). In Figure 9 is the plot of the computed numerical solution at the times

t1, . . . , t4 defined above, with a maximum estimated error (infinity norm) of

≈ 6 · 10−13. The error estimate has been obtained by computing, at first, the

solution with the HBVM(3,2) method, with timesteps 11

∆t = hi := tB(2
i−15)−1, i = 1, . . . , 8. (56)

Then, on the finest time grid, we have computed the solution by using higher

order methods, with the same value of N , until the difference in the com-

puted solutions becomes negligible. In so doing, we computed the solutions

11h1 ≈ 6 · 10−2, h8 ≈ 5 · 10−4.
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with the HBVM(5,3), HBVM(6,4), and HBVM(8,5) methods. The solution of

HBVM(8,5) has then been used as reference solution, and the difference with

the solution computed by the other methods, at the times t1, . . . , t4, is listed

in Table 5. As one may see, the (actually, very small) difference between the

solutions computed by HBVM(8,5) and HBVM(6,4) is approximately the same

as the difference between the solutions of HBVM(8,5) and HBVM(5,3). This

fact clearly indicates that we have reached the maximum possible accuracy. The

fact that the computed reference solution by HBVM(8,5) is correct, is enforced

by observing that the corresponding errors of the HBVM(3,2) method decrease

with the prescribed order 4. Moreover, in order to exclude a possible underes-

timation of the parameter N in (24), we have also computed the solution by

means of the HBVM(8,5) method on the finest time grid using the parameter

N = 600, instead of 300. In the last row of Table 5 we list the differences in

the computed solutions at t1, . . . , t4, as well as the difference between the corre-

sponding numerical Hamiltonians, w.r.t. the reference ones. As one may see, all

the differences are compatible with the round-off error level of the double pre-

cision IEEE. This, in turn, further confirms the accuracy and reliability of the

reference solutions plotted in Figure 9.12 Moreover, such plots are in agreement

with the more accurate plots reported in Figures 6 and 7 in [23] (i.e., those with

800 cells). In particular, the first three plots in Figure 9 confirm the features

described at the points a)–d) above, whereas the plot at t = t4 confirms what

observed in [23, Ex. 5.5], where it was noticed that the solution at the recur-

rence time tR does not coincide with the initial condition, thus contradicting

the feature described at e).

At last, in Figure 10 is the plot of the error in the numerical Hamiltonian for

the computed reference solution of Figure 9 for t ∈ [0, tR], by using HBVM(8,5)

with the finest timestep specified in (56). As is expected, this error is within

the round-off error level.

12We remind that the reference solution has been obtained by using HBVM(8,5) on the

finest mesh in (56).
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6. Concuding remarks

In this paper we studied the numerical solution of the Korteweg–de Vries

equation with periodic boundary conditions. The problem has been cast into

Hamiltonian form, by means of a Fourier-Galerkin space semi-discretization.

Energy-conserving Runge-Kutta methods, of arbitrarily high-order, in the HB-

VMs class have then been used for the time integration, while conserving the

energy of the system. The efficient implementation of such methods has been

also studied, showing that their computational complexity per step is linear in

the dimension 2N of the semi-discrete problem, for memory requirements, and

O(N logN) for operations count. The effectiveness of the methods has been

evaluated on some test problems.
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Table 2: Problem (48) solved by HBVM(k, s) methods, s = 1, 2, 3, and k according to (32),

by using N = 250.

HBVM(k, s) HBVM(2,1) HBVM(3,2) HBVM(5,3)

∆t eu rate eH it eu rate eH it eu rate eH it

0.4 1.03e 00 – 1.39e-17 516 4.29e-01 – 1.39e-17 105 5.40e-02 – 1.39e-17 71

0.2 9.91e-01 0.0 2.08e-17 80 2.88e-02 3.9 1.39e-17 49 9.17e-04 5.9 2.81e-17 42

0.1 5.96e-01 0.7 1.73e-17 42 3.16e-03 3.2 2.81e-17 31 2.98e-05 4.9 1.39e-17 30

0.05 1.74e-01 1.8 1.73e-17 27 2.56e-04 3.6 1.73e-17 23 1.01e-06 4.9 1.73e-17 25

0.025 4.42e-02 2.0 2.08e-17 20 1.61e-05 4.0 1.73e-17 19 3.00e-08 5.1 1.39e-17 22

0.0125 1.11e-02 2.0 2.08e-17 16 9.90e-07 4.0 1.73e-17 16 3.51e-10 6.4 1.73e-17 20

Table 3: Solution errors for problem (51) solved by HBVM(k, s) methods, s = 3, . . . , 6, and

k according to (32), by using N = 50 and a timestep ∆t = 0.1, along with the maximum

Hamiltonian error, eH .

s | t 0 200 500 1000 eH

3 8.88e-16 9.13e-02 2.34e-01 4.54e-01 3.05e-16

4 8.88e-16 1.62e-03 3.36e-03 6.81e-03 3.33e-16

5 8.88e-16 4.38e-05 5.46e-05 7.98e-05 2.78e-16

6 8.88e-16 5.71e-06 3.76e-06 4.44e-06 2.78e-16

Table 4: Solution errors for problem (53) solved by HBVM(k, s) methods, s = 1, . . . , 4, and

k according to (32), by using N = 300 and a timestep ∆t = 0.1, along with the maximum

Hamiltonian error, eH .

s | t 0 40 80 120 eH

1 9.99e-16 8.66e-05 7.41e-05 1.92e-04 6.66e-16

2 9.99e-16 1.02e-09 6.49e-10 1.73e-09 7.77e-16

3 9.99e-16 1.41e-13 4.69e-14 1.39e-13 7.77e-16

4 9.99e-16 6.12e-15 4.66e-15 1.42e-14 7.77e-16
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Table 5: Estimated errors in the numerical solution, and in the numerical Hamiltonian, of

problem (55) at ti, i = 1, . . . , 4, by using a timestep ∆t = tB/n ≡ (πn)−1 and the listed

parameter N . The reference solution has been computed on the finest time grid (i.e., that

with n = 640) by using the HBVM(8,5) method with N = 300.

t1 ≡ tB t2 ≡ 3.6tB t3 ≡ 15.2tB t4 ≡ 30.4tB

n e1 rate e2 rate e3 rate e4 rate eH

HBVM(3,2) 5 1.35e-03 — 2.56e-02 — 7.81e-02 — 3.60e-01 — 2.05e-16

N = 300 10 1.01e-04 3.7 3.59e-03 2.8 1.06e-02 2.9 1.96e-02 4.2 1.77e-16

20 6.59e-06 3.9 2.95e-04 3.6 5.43e-04 4.3 9.97e-04 4.3 2.39e-16

40 4.13e-07 4.0 1.66e-05 4.2 3.13e-05 4.1 5.01e-05 4.3 1.77e-16

80 2.57e-08 4.0 7.76e-07 4.4 1.46e-06 4.4 2.91e-06 4.1 2.32e-16

60 1.60e-09 4.0 4.72e-08 4.0 9.07e-08 4.0 1.78e-07 4.0 2.19e-16

320 1.00e-10 4.0 2.94e-09 4.0 5.67e-09 4.0 1.12e-08 4.0 2.32e-16

640 6.36e-12 4.0 1.83e-10 4.0 3.55e-10 4.0 6.97e-10 4.0 2.95e-16

HBVM(5,3) 640 6.12e-13 6.33e-13 5.55e-13 5.56e-13 2.88e-16

N = 300

HBVM(6,4) 640 6.12e-13 6.28e-13 5.42e-13 6.72e-13 6.66e-16

N = 300

HBVM(8,5) 640 8.33e-13 8.61e-13 6.81e-13 6.99e-13 2.47e-17

N = 600
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Figure 3: Work-precision diagrams for problem (48) (times are in sec): upper plot solution;

lower plot Hamiltonian. The circle in the upper plot is for later use.
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Figure 4: Upper plot: Hamiltonian error over 20 periods when solving problem (48) with

CHEBFUN, using a timestep ∆t = 1/3200, and HBVM(15,10), using a timestep ∆t = 0.2;

for the former method a linear drift is observed. Lower plot: corresponding solution errors for

the above methods; for CHEBFUN, an almost quadratic error growth is observed.
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Figure 5: Hamiltonian error versus time when solving problem (48) with timestep ∆t = 0.05

and HBVM(k, s), k given by (32). Upper plot, s = 1; middle plot, s = 2; lower plot, s = 3.
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Figure 6: Linear growth of the solution error versus time when solving problem (48) for

t ∈ [0, 500] with timestep ∆t = 0.05 and HBVM(k, s), k given by (32). Upper plot, s = 1;

middle plot, s = 2, lower plot, s = 3. In the case s = 1, the growth is linear until the error

saturates.
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Figure 7: Plot of the exact solution (52) of problem (51) versus x at t = 0, 200, 500, 1000.
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Figure 8: Solution (54) of problem (53) versus x at t = 0, 40, 80, 120.
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Figure 9: Reference solution of the Zabusky–Kruskal problem (55) versus x at t = ti, i =

1, 2, 3, 4 (see text), with an eximated maximum error smaller than 10−12, computed by using

HBVM(8,5) with the parameters specified in the caption of Table 5.
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Figure 10: Error in the numerical Hamiltonian for the reference solution of the Zabusky–

Kruskal problem (55), from t = 0 to t = tR ≈ 9.6766, computed by using HBVM(8,5).
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