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Integration of viral DNA into host cell chromosomal DNA
to form a provirus is an essential step in the viral life cycle
(Brown, 1998). This process is mediated by integrase (IN),
a 32 kDa viral enzyme, which catalyses two coordinated
biochemical steps (Asante-Appiah et al., 1997, 1999;
Bushman et al., 1991). Following reverse transcription in
the cytoplasm of infected cells, IN first cleaves two
nucleotides from the 3′-ends of the viral long-terminal
repeats (‘3′-processing’). In the second step, after subse-
quent migration to the nucleus as a part of a large nucleo-
protein complex, IN catalyses the insertion of the resulting
shortened strands into a host chromosome by a direct
transesterification reaction (‘strand transfer’). Because IN
does not have a human homologue, it is considered a
promising target for the development of new antiretroviral
drugs and significant efforts have been devoted to identi-
fying IN inhibitors (Pommier et al., 1997, 2000; Neamati,
2001; Neamati et al., 2000; d’Angelo et al., 2001; De
Clercq, 2000; Johnson et al., 2004).

In recent years a plethora of IN inhibitors were identi-
fied by systematic screening of natural and synthetic
products against purified enzyme (Neamati, 2002;
Neamati et al., 2001; Chen et al., 2002; Dayam et al.,

2003). In particular, a class of compounds bearing a β-
diketo acid moiety was independently discovered by the
scientists from Shionogi & Co. and Merck as selective IN
inhibitors (the structures of some representative
compounds are shown in Figure 1; Hazuda et al., 2000; Wai
et al., 2000; Pais et al., 2002; Anthony, 2004; Sechi et al.,
2004). Several potent analogues were identified and two
compounds, S-1360 (Shionogi & Co. Ltd; Billich, 2003)
and L-870,810 (Merck & Co. Inc.; Hazuda et al., 2004),
are undergoing HIV-1 clinical trials.

In general, searching for IN inhibitors has involved
testing compounds that inhibit other enzymes with similar
mechanisms, conducting structure–activity relationships
studies on known active compounds, performing database
searches using pharmacophore models and high-
throughput docking or random screening (Neamati et al.,
2002). In particular, three-dimensional structural database
searching was successfully used to generate numerous lead
compounds (Nicklaus et al., 1997; Neamati et al., 1997,
1998; Hong et al., 1997, 1998; Chen et al., 2000; Makhija
et al., 2004).

The aim of this work was to identify novel and/or
unified pharmacophores required for activity in order to be
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HIV-1 integrase (IN) is an attractive and validated
target for the development of novel therapeutics
against AIDS. Significant efforts have been
devoted to the identification of IN inhibitors using
various methods. In this context, through virtual
screening of the NCI database and structure-based
drug design strategies, we identified several phar-
macophoric fragments and incorporated them on
various aromatic or heteroaromatic rings. In addi-
tion, we designed and synthesized a series of 5-
aryl(heteroaryl)-isoxazole-3-carboxylic acids as
biological isosteric analogues of β-diketo acid

containing inhibitors of HIV-1 IN and their deriva-
tives. Further computational docking studies were
performed to investigate the mode of interactions
of the most active ligands with the IN active site.
Results suggested that some of the tested
compounds could be considered as lead
compounds and suitable for further optimization.
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Figure 1. Structures of representative diketo acid-based IN inhibitors

Figure 2. Design of target compounds
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implemented in potential lead compounds. Using the
crystal structure of 5CITEP-IN complex (Goldgur et al.,
1999), we performed a computational 3D search in the
nonproprietary, open part of the National Cancer Institute
database (Milne et al., 1994) to identify possible
bioisosteres. Several structural platforms with potential as
HIV-1 IN inhibitors were selected and their pharma-
cophoric fragments (Figure 2) incorporated into aromatic
or heteroaromatic frameworks to give the general structures
[I–VII]. Thus, target compounds were synthesized to eval-
uate their predicted potential activities. In order to obtain a
consistent set of compounds, a series of derivatives of struc-
ture [I], [II] and [VI] were also prepared.

Starting from the observation that the diketo acid func-
tionality is not only responsible for antiviral activity, but
also (unfortunately) contributes to cytotoxicity (Melek et

al., 2002), we thought that replacing the diketo group with
a pertinent bioisostere (Patani et al., 1996; Lipinski, 1986)
endowed with reduced cytotoxicity was of paramount
importance for discovering drugs targeting IN. In this
context, as an extension of this work, we designed novel
compounds by incorporating 1,3-diketo moiety (DKA)
into a constrained isoxazole ring [VIII] and synthesized a
series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids
[VIIIa–e] (Figure 3A). In addition, some modifications to
the isoxazole framework were performed in order to estab-
lish a coherent structure–activity relationship among these
compounds. In particular, we fixed the isoxazole ring into a
coplanar tricyclic system and replaced the carboxylic func-
tion with an electron-donating group such as methyl to
obtain compounds [VIIIf ] and [VIIIg], respectively
(Figure 3B).
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Figure 3. Design of compounds [VIIIa–VIIIg]

A, design of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids [VIIIa–e]; B, constrained compound [VIIIf] and its methyl-derivative isomer [VIIIg].
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In this study, we present the design, synthesis and anti-
IN activity of compounds [I–VIII] using a soluble mutant
(F185KC280S). Moreover, we discuss the results of
docking studies performed to determine the mode of
binding between two of the more active compounds, [IId]
and [VIa], and some of the amino acid residues of the IN
catalytic site.

Materials and methods

Chemistry
Anhydrous solvents and all reagents were purchased from
Aldrich, Merck or Carlo Erba. Anhydrous diethyl ether was
obtained by distillation from Na/benzophenone under
nitrogen. All reactions involving air- or moisture-sensitive
compounds were performed under nitrogen atmosphere
using oven-dried glassware and syringe septa techniques to
transfer solutions. Melting points (mp) were determined
using an electrothermal melting point or a Köfler apparatus
and are uncorrected. Infrared (IR) spectra were recorded as
thin films or nujol mulls on NaCl plates with a Perkin-
Elmer 781 IR spectrophotometer and are expressed in v
(cm–1). Nuclear magnetic resonance (1H-NMR, 13C-
NMR, NOE difference and NOESY) spectra were deter-
mined in CDCl3, DMSO or CDCl3/DMSO (in ratio 3:1)
and were recorded on a Varian XL–200 (200 MHz).
Chemical shifts (δ scale) are reported in parts per million
(ppm) downfield from tetramethylsilane (TMS) used as an
internal standard. Splitting patterns are designated as
follows: s, singlet; d, doublet; t, triplet; q, quadruplet; m,
multiplet; brs, broad singlet; dd, double doublet. The assign-
ment of changeable protons (OH and NH) was confirmed
by the addition of D2O. Analytical thin-layer chromatog-
raphy (TLC) was done on Merck silica gel F–254 plates.
For flash chromatography, Merck Silica gel 60 was used
with a particle size 0.040–0.063 mm (230–400 mesh
ASTM). Elemental analyses were performed on a Perkin-
Elmer 2400 spectrometer at Laboratorio di Microanalisi,
Dipartimento di Chimica, Università di Sassari (Italy), and
were within ±0.4% of the theoretical values.

General procedure for the preparation of (2Z)-
hydroxy(2-oxo-1,2-dihydro-3H-indol-3-ylidene)car-
boxylic acids [Id–If]. A mixture of the appropriate ester
[Ia–Ic] (3 mmol) and 2N NaOH (5.5 eq) in methanol (10
ml) was stirred at room temperature until the reaction was
complete (4–6 h). Then the solution was acidified with 1N
HCl and the resulting precipitate was collected, washed
with water and recrystallized from H2O/EtOH for [Id] and
[If ] or from H2O/MeOH for [Ie] to give yellow crystals.

(2Z) -hydroxy(2-oxo-1 ,2-d ihydro-3H- indol -3-
ylidene)acetic acid [Id]. Yield=38%; mp=275–277°C; IR

(nujol) v cm–1=1640 (C=O amide), 1700 (C=O acid), 3360
(OH). 1H-NMR (CDCl3-DMSO) δ 18.10 (brs, 1H, OH),
11.51 (brs, 1H, NH), 7.96 (d, 1H, Ar-H), 7.25 (t, 1H, Ar-
H), 7.12–6.98 (m, 2H, Ar-H), 5.95-5.15 (brs, 1H,
COOH). GC\MS m/z 205 (M+). Anal. Calc. for
C10H7NO4: C, 58.54; H, 3.44; N, 6.83. Found: C, 58.58;
H, 3.47; N, 6.80.

(2Z)-hydroxy(1-methyl-2-oxo-1,2-dihydro-3H-indol-3-
ylidene)acetic acid [Ie]. Yield=13%; mp=205–207°C; IR
(nujol) v cm–1=1640 (C=O amide), 1700 (C=O acid), 3200
(OH). 1H-NMR (CDCl3) δ 17.95 (s, 1H, OH), 8.00 (d,
1H, Ar-H), 7.40-7.24 (m, 2H, Ar-H), 7.00 (d, 1H, Ar-H),
3.43 (s, 3H, N-CH3), 1.82–1.40 (brs, 1H, COOH).
GC\MS m/z 219 (M+). Anal. Calc. for C11H9NO4: C,
60.27; H, 4.14; N, 6.39. Found: C, 60.41; H, 4.01; N, 6.53.

(2Z)-hydroxy(2-oxo-1-phenyl-1,2-dihydro-3H-indol-3-
ylidene)acetic acid [If]. Yield=94%; mp=254–256°C; IR
(nujol) v cm–1=1640 (C=O amide), 1700 (C=O acid), 3250
(OH). 1H-NMR (CDCl3) δ 17.60 (brs, 1H, OH), 8.06 (d,
1H, Ar-H), 7.70–7.21 (m, 7H, Ar-H), 6.90 (d, 1H, Ar-H).
GC\MS m/z 281 (M+). Anal. Calc. for C16H11NO4: C,
68.32; H, 3.94; N, 4.98. Found: C, 68.57; H, 3.69; N, 5.14.

General procedure for the preparation of methyl
(2Z) -hydroxy(2-oxo-1 ,2-d ihydro-3H- indol -3-
ylidene)acetates [Ia–Ic]. To a suspension of sodium
methoxide (1 eq for [Ia] and [Ib] or 1.4 eq for [Ic]) in
anhydrous methanol (50 ml) was added the appropriate
oxindole [3a–3c] (1 eq) and dimethyloxalate (1.5 eq for
[Ia], 1 eq for [Ib] or 2 eq for [Ic]) and the mixture was
stirred (at room temperature for [Ia,Ib] or reflux for [Ic])
under nitrogen atmosphere for 3 h (for [Ia]), 5 h (for [Ib])
or 3.5 h (for [Ic]). Then water was added and the mixture
was acidified with 1N HCl. The resulting precipitate was
filtered, washed with water and recrystallized from H2O/
EtOH (for [Ia] and [Ib]) or from H2O/MeOH (for [Ic])
to give yellow crystals.

Methyl (2Z)-hydroxy(2-oxo-1,2-dihydro-3H-indol-3-yli-
dene)acetate [Ia]. Yield=36%; mp=268–270°C; IR
(nujol) v cm–1=1635 (C=O amide), 1690 (C=O ester), 3220
(NH), 3410 (OH). 1H-NMR (CDCl3) δ 17.80 (brs, 1H,
OH), 8.24 (d, 1H, Ar-H), 8.01 (brs, 1H, NH), 7.27 (t, 1H,
Ar-H), 7.13 (t, 1H, Ar-H), 6.97 (s, 1H, Ar-H), 4.03 (s,
3H, OCH3). GC\MS m/z 219 (M+). Anal. Calc. for
C11H9NO4: C, 60.27; H, 4.14; N, 6.39. Found: C, 60.39;
H, 4.05; N, 6.48.

Methyl (2Z)-hydroxy(1-methyl-2-oxo-1,2-dihydro-3H-
indol-3-ylidene)acetate [Ib] (Long et al., 1978). Yield=
31%; mp=97–99°C; IR (nujol) v cm–1=1610 (C=O, amide),
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1650 (C=O, ester), 2375 (OH). 1H-NMR (CDCl3) δ
17.91 (brs, 1H, OH) 8.26 (d, 1H, Ar-H), 7.32 (t, 1H, Ar-
H), 7.14 (t, 1H, Ar-H), 6.95 (d, 1H, Ar-H), 4.02 (s, 3H,
OCH3), 3.38 (s, 3H, NCH3). GC\MS m/z 233 (M+).
Anal. Calc. for C12H11NO4: C, 61.80; H, 4.75; N, 6.01.
Found: C, 61.91; H, 4.50; N, 5.83.

Methyl (2Z)-hydroxy(2-oxo-1-phenyl-1,2-dihydro-3H-
indol-3-ylidene)acetate [Ic]. Yield=37%; mp=110–
112°C; IR (nujol) v cm–1=1655 (C=O amide), 1735 (C=O
ester), 2220 (OH). 1H-NMR (CDCl3) δ 17.02 (brs, 1H,
OH), 8.34 (d, 1H, Ar-H), 7.78-7.43 (m, 4H, Ar-H),
7.32–7.12 (m, 3H, Ar-H), 6.92 (d, 1H, Ar-H), 4.06 (s,
3H, OCH3). GC\MS m/z 295 (M+). Anal. Calc. for
C17H13NO4: C, 69.15; H, 4.44; N, 4.74. Found: C, 69.22;
H, 4.25; N, 4.93.

Preparation of N-alkyl oxindoles [3b] and [3c]. The
appropriate intermediate [2b] and [2c] (60 mmol) and
alluminium chloride (2.0 eq for [3b] or 2.3 eq for [3c])
were mixed and introduced into a round-bottomed flask
when the internal temperature reached 180–190°C.
Heating was kept for 10 min. Melted mass was slightly
cooled at room temperature and immediately worked up
with crushed ice and 1N HCl. The brown product was
washed with water and purified by EtOH recrystalliza-
tion (for [3b]) or by flash chromatography using ethyl
acetate as eluent (for [3c]).

1-methyl-1,3-dihydro-2H-indol-2-one [3b] (Hennessy et
al., 2003). Yield=28%; mp=87–89°C; IR (nujol) v cm–1=
1690 (C=O amide). 1H-NMR (CDCl3) δ 7.26 (t, 2H, Ar-
H), 7.04 (t, 1H, Ar-H), 6.82 (d, 1H, Ar-H), 3.53 (s, 2H,
CH2), 3.21(s, 3H, N-CH3). GC\MS m/z 147 (M+).

1-phenyl-1,3-dihydro-2H-indol-2-one [3c] (Sarges et
al., 1989). Yield=56%; mp=116–118°C; IR (nujol) v 
cm–1=1710 (C=O amide). 1H-NMR (CDCl3) δ 7.68–7.05
(m, 8H, Ar-H), 6.79 (d, 1H, Ar-H), 3.73 (s, 2H, CH2).
GC\MS m/z 209 (M+).

Preparation of 2-chloro-N-methyl-N-phenylaceta-
mide [2b] and 2-chloro-N,N-diphenylacetamide [2c].
A solution of the appropriate N-phenylamine [1b] and
[1c] (5 mmol) in anhydrous toluene (20 ml) and
chloroacetylchloride (2 eq) was refluxed for 1–2 h under
nitrogen atmosphere. Then the mixture was cooled and
solvent removed in vacuo. The residue was recrystallized
from water (for [2b]) or from ethanol (for [2c]).

2-chloro-N-methyl-N-phenylacetamide [2b] (Chupp et
al., 1967). Yield=93%; mp=160–161°C; IR (nujol) v
cm–1=1660 (C=O amide). 1H-NMR (CDCl3) δ 8.33 (s,

3H, N-CH3), 7.28–7.17 (m, 3H, Ar-H), 7.25 (d, 2H, Ar-
H), 3.86 (s, 2H, CH2). GC\MS m/z 183 (M+).

2-chloro-N,N-diphenylacetamide [2c] (Sarges et al.,
1989). Yield=78%; mp=115–117°C; IR (nujol) v cm–1=
1665 (C=O amide). 1H-NMR (CDCl3) δ 7.50–7.26 (m,
10H, Ar-H), 4.03 (s, 2H, CH2). GC\MS m/z 245 (M+).

Preparation of ethyl [2E]-3-cyano-3-(1-alkyl-1H-indol-
3-yl)-2-hydroxyacrylates [IIa–IIc]. To a solution of the
appropriate indole acetonitrile [5a–5c] (15 mmol) and 99%
diethyloxalate (1.5 eq for [IIa] or 2 eq for [IIb,IIc]) in
anhydrous DMF (30 ml for [IIa]) or anhydrous diethyl
ether (70 ml for [IIb, IIc]), potassium tert-butoxyde (2 eq
for [IIa]) or 60% NaH in mineral oil (1.5 eq for [IIb,IIc])
was added and the mixture was stirred at room temperature
for 2 h [IIa] or for 15 h [IIb,IIc] under nitrogen atmos-
phere. Then water was added, the mixture was acidified
with 2N HCl and the solution was extracted with diethyl
ether. Finally, the organic layer was washed with water, dried
and concentrated in vacuo. The residue was purified by sili-
ca gel flash column chromatography (eluents petroleum
ether-ethyl acetate 6:4). The orange solid obtained was
recrystallized from ethanol to provide the desired
[IIa–IIc].

Ethyl [2E]-3-cyano-3-(1-ethyl-1H-indol-3-yl)-2-hydrox-
yacrylate [IIa]. Yield=70%; mp=108–110°C; IR (nujol) v
cm–1=1715 (C=O ester), 2200 (CN), 3240 (OH). 1H-
NMR (CDCl3) δ 8.38 (d, 1H, Ar-H), 7.90 (s, 1H, Ar-H),
7.45–7.23 (m, 3H, Ar-H), 4.57 (q, 2H, OCH2), 4.22 (q,
2H, NCH2), 1.50 (t, 6H, CH3×2). GC\MS m/z 284 (M+).
Anal. Calc. for C16H16N2O3: C, 67.59; H, 5.67; N, 9.85.
Found: C, 67.72; H, 5.84; N, 9.61.

Ethyl [2E]-3-(1-benzyl-1H-indol-3-yl)-3-cyano-2-hyd-
roxyacrylate [IIb]. Yield=72%; mp=110–112°C; IR (nujol)
v cm–1=1720 (C=O ester), 2225 (CN), 3250 (OH). 1H-
NMR (CDCl3) δ 8.40–8.35 (m, 1H, Ar-H); 7.93 (s, 1H,
Ar-H), 7.37–7.08 (m, 8H, Ar-H), 5.36 (s, 2H, CH2), 4.53
(q, 2H, OCH2), 1.50 (t, 3H, CH3). GC\MS m/z 346 (M+).
Anal. Calc. for C21H18N2O3:C, 72.82; H, 5.24; N, 8.09.
Found: C, 72.66; H, 5.11; N, 7.85.

Ethyl [2E]-3-cyano-3-[1-(4-fluorobenzyl)-1H-indol-3-
yl]-2-hydroxyacrylate [IIc]. Yield=64%; mp=130–132°C;
IR (nujol) v cm–1=1730 (C=O ester), 2210 (CN), 3235
(OH). 1H-NMR (CDCl3) δ 8.42–8.35 (m, 1H, Ar-H),
7.33–7.22 (m, 2H, Ar-H), 7.15–6.96 (m+dd, 5H, Ar-H),
5.34 (s, 2H, CH2), 4.54 (q, 2H, OCH2 ), 1.51 (t, 3H,
CH3). GC\MS m/z 364 (M+). Anal. Calc. for
C21H17FN2O3: C, 69.22; H, 4.70; N, 7.69. Found: C, 69.45;
H, 4.61; N, 7.77.
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Preparation of [2E]-3-cyano-3-[1-(4-fluorobenzyl)-1H-
indol-2-yl]-2-hydroxyacrylic acid [IId]. A solution of
[IIc] (2.2 mmol) and 2N NaOH (4 eq) in methanol (30
ml) was stirred at room temperature for 5 h. After dilution
with water the mixture was acidified with 1N HCl. The
precipitate that formed was filtered off and purified by sil-
ica gel flash column chromatography (eluents petroleum
ether-ethyl acetate 6:4) and then recrystallized from
H2O/EtOH to give orange crystals. Yield=54%; mp=
101–102°C; IR (nujol) v cm–1=1695 (C=O ester), 2200
(CN), 3330 (COOH+OH). 1H-NMR (CDCl3) δ
8.40–8.33 (m, 1H, Ar-H), 7.91 (s, 1H, Ar-H), 7.33–7.22
(m, 2H, Ar-H), 7.15-6.95 (m+dd, 5H, Ar-H), 5.33 (s, 2H,
CH2). GC\MS m/z 336 (M+). Anal. Calc. for
C19H13FN2O3: C, 67.85; H, 3.90; N, 8.33. Found: C, 67.98;
H, 3.77; N, 8.42.

Preparation of ethyl [2E]-3-cyano-3-[1-(4-fluoroben-
zyl)-1H-indol-2-yl]-2-methoxyacrylate [IIe]. Dimethyl-
sulphate (1.2 eq) was added during 10 min, under nitrogen
atmosphere, to a stirred solution of [IIc] (2 mmol) in dry
acetone (8 ml) containing anhydrous potassium carbonate
(1.15 eq), mantained under gentle reflux. The mixture was
heated under reflux for 2 h, then cooled and filtered.
Evaporation of the acetone left a residue which was puri-
fied by silica gel flash column chromatography (eluents
petroleum ether-ethyl acetate 7:3) to give a yellow oil.
Yield=58%; mp=oil at room temperature; IR (nujol) v
cm–1=1720 (C=O ester), 2200 (CN). 1H-NMR (CDCl3) δ
8.23–8.18 (m, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 7.30–7.18
(m, 2H, Ar-H), 7.13–6.96 (m+dd, 5H, Ar-H), 5.31 (s, 2H,
CH2), 4.46 (q, 2H, OCH2), 3.83 (s, 3H, OCH3), 1.46 (t,
3H, CH3). GC\MS m/z 378 (M+). Anal. Calc. for
C22H19FN2O3: C, 69.83; H, 5.06; N, 7.40. Found: C, 70.04;
H, 5.16; N, 7.22.

Preparation of (1-alkyl-1H-indol-3-yl)acetonitriles
[5a–5c]. A suspension of crushed KOH pellets (4 eq) in
DMSO (40 ml) was magnetically stirred for 5 min and
then [4] was added (19 mmol). The mixture was stirred at
room temperature for 45 min. Finally the appropriate alkyl
bromide (1.1 eq; bromoetane for [5a], benzylbromide for
[5b] or 4-fluoro-benzylbromide for [5c] was added and
stirring was continued for 30 min. When reaction was
complete it was quenched by the addition of water and the
solution was extracted with diethyl ether. The organic lay-
ers were then washed with water, dried over Na2SO4 and
solvent was removed in vacuo to dryness. The residue was
purified by flash chromatography (eluents petroleum ether-
ethyl acetate 8:2) to give the desired [5a–c].

(1-ethyl-1H-indol-3-yl)acetonitrile [5a]. Yield=90%;
mp=oil at room temperature; IR (nujol) v cm–1=2200 (CN).

1H-NMR (CDCl3) δ 7.55 (d, 1H, Ar-H), 7.41–7.12 (m,
3H, Ar-H), 4.15 (q, 2H, CH2), 3,79 (s, 2H, CH2CN), 1.47
(t, 3H, CH3). GC\MS m/z 184 (M+).

(1-benzyl-1H-indol-3-yl)acetonitrile [5b] (Jahangir et
al., 1987). Yield=50%; mp=93–95°C; IR (nujol) v cm–1=
2235 (CN). 1H-NMR (CDCl3) δ 7.59 (d, 1H, Ar-H),
7.33–7.09 (m, 8H, Ar-H), 5.29 (s, 2H, CH2), 3.83 (s, 2H,
CH2CN). GC\MS m/z 246 (M+).

[1-(4-fluorobenzyl)-1H-indol-3-yl]acetonitrile [5c].
Yield=55%; mp=88–90°C; IR (nujol) v cm–1=2230 (CN).
1H-NMR (CDCl3) δ 7.60 (d, 1H, Ar-H), 7.29–6.95 (m+
dd, 7H, Ar-H), 5.27 (s, 2H, CH2), 3.84 (s, 2H, CH2CN).
GC\MS m/z 264 (M+).

Preparation of 3-(1-ethyl-1H-indol-3-yl)-4-hydroxy-
1H-pyrrole-2,5-dione [III]. A solution of [IIa] (3.5 mmol)
and methansulphonic acid (79 mmol) was stirred at room
temperature for 15 h. Then 80% ethanol (10 ml) was added
and the mixture was allowed to stir at room temperature for
3 h longer. The solution was filtered and evaporated in
vacuo to dryness. The residue was purified by flash chro-
matography (eluents petroleum ether-ethyl acetate 1:1) and
recrystallized from H2O/EtOH. Yield=20%; mp=94–95°C;
IR (nujol) v cm–1=3300 (NH). 1H-NMR (CDCl3-DMSO)
δ 9.49–9.41 (brs, 1H, NH), 8.32 (d, 1H, Ar-H), 7.86 (s,
1H, Ar-H), 7.45–7.10 (m, 3H, Ar-H), 4.22 (q, 2H, CH2),
1.52 (t, 3H, CH3). GC\MS m/z 256 (M+). Anal. Calc. for
C14H12N2O3: C, 65.62; H, 4.72; N, 10.93. Found: C, 65.77
; H, 4.55; N, 11.08.

Preparation of [2Z]-3-hydroxy-1-(2-hydroxyphenyl)-3-
phenylprop-2-en-1-one [IV] (Adam, 1993). To a suspen-
sion of 60% NaH in mineral oil (1.0 eq) in anhydrous THF
(10 ml), a solution of [7] (3.4 mmol) dissolved in anhydrous
THF (5 ml) was added. The mixture was stirred at room
temperature under nitrogen atmosphere for 30 min. When
an internal temperature of 0°C was achieved, benzoylchlo-
ride (1 eq) was added and the mixture was stirred at the
same temperature for 1 h. Then a solution of potassium t-
butoxyde/t-butyl alcohol complex (2 eq) was added rapidly.
After 15 h glacial acetic acid (2 eq) and water was added.
The mixture was concentrated in vacuo and the solid residue
purified by flash chromatography (eluents petroleum ether-
ethyl acetate 4:6). Finally the solid was triturated with
petroleum ether-diethyl ether to give a green powder.
Yield=66%; mp=116–118°C. IR (nujol) v cm–1=1630
(ketone), 3340 (OH). 1H-NMR (CDCl3) δ 15.55 (s, 1H,
OH), 12.11 (s, 1H, OH), 7.98 (d, 2H, Ar-H), 7.85 (d, 1H,
Ar-H), 7.62–7.39 (m, 3H, Ar-H), 7.03–6.85 (m, 4H, Ar-
H). GC\MS m/z 240 (M+). Anal. Calc. for C15H12O3: C,
74.99; H, 5.03. Found: C, 75.24; H, 5.32.
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Preparation of 1-(2-hydroxyphenyl)ethanone [7].
(Abilgaard et al., 1998). A solution of [6] (1.0 eq) in anhy-
drous dichloromethane was stirred under nitrogen atmosphere
at –30°C for 5 min.Then 1M BBr3 solution in dichloromethane
(1.05 eq) was added and the mixture was stirred at –30°C for 12
h. After additional 8 h of stirring at room temperature, the reac-
tion was quenched by addition of methanol and washed three
times with methanol. Finally solvent was removed in vacuo to
dryness and the residue purified by flash chromatography (elu-
ents petroleum ether-ethyl acetate 9:1). Yield=26%;
mp=57–59°C; IR (nujol) v cm–1=1730 (ketone), 3330 (OH).
1H-NMR (CDCl3) δ 12.27 (s, 1H, OH), 7.72 (d, 1H, Ar-H),
7.48 (t, 1H, Ar-H), 7.00–6.87 (m, 2H, Ar-H), 2.04 (s, 1H,
CH3). GC\MS m/z 136 (M+).

Preparation of diethyl (2E)-2-hydroxy-3-phenylbut-2-
enedioate [V] (House et al., 1968). To a mixture of 60%
NaH in mineral oil (2 eq), diethyloxalate (1 eq) and absolute
ethanol (0.1 eq) in toluene (15 ml), was added [8] (12 mmol)
dissolved in toluene (5 ml). The reaction was stirred at room
temperature for 12 h. Then glacial acetic acid (4.5 eq) was
added and the mixture was concentrated to dryness in vacuo.
The residue was purified by flash chromatography (eluents
petroleum ether-ethyl acetate 8:2) to give an oil. Yield=14%;
mp=oil at room temperature; IR (nujol) v cm–1=1690 (ester),
1730 (ester), 3280 (OH). 1H-NMR (CDCl3) δ 12.83 (s, 1H,
OH), 7.51–7.12 (m, 5H, Ar-H), 4.35-4.15 (m, 4H,
OCH2×2), 1.35–1.19 (m, 6H, CH3 x2). GC\MS m/z 264
(M+). Anal. Calc. for C14H16O5: C, 63.63; H, 6.10. Found: C,
63.72; H, 5.88.

General preparation of 6-aryl-2,4,6-trioxohexanoic
acids [VId–VIf]. The appropriate trioxohexanoic methyl
ester [VIa–VIc] (1 mmol) was added to a solution of water
(6 ml) and 37% HCl (3 ml). The mixture was heated at 55°C
for 6–8 h under stirring. The resulting pale yellow solid was
filtered and washed with acetone.

(2Z,5Z)-2,6-dihydroxy-4-oxo-6-phenylhexa-2,5-dienoic
acid [VId] (Stiles et al., 1991). Yield=42%; mp=
225–226°C dec; IR (nujol) v cm–1=1630 (ketone), 1721
(acid). 1H-NMR (CDCl3) δ 7.90–7.87 (m, 2H, Ar-H),
7.54–7.51 (m, 3H, Ar-H), 7.11 (s, 1H, C=CH), 6.87 (s, 1H,
CH=C). GC\MS m/z 234 (M+). Anal. Calc. for C12H10O5:
C, 61.54; H, 4.30. Found: C, 61.25; H, 4.58.

(2Z,5Z)-6-(2-chlorophenyl)-2,6-dihydroxy-4-oxohexa-
2,5-dienoic acid [VIe]. Yield=38%; mp=227–229°C; IR
(nujol) v cm–1=1640 (ketone), 1728 (acid). 1H-NMR
(CDCl3-DMSO) δ 7.65–7.34 (m, 4H, Ar-H), 7.16 (s, 1H,
C=CH), 6.78 (s, 1H, CH=C). GC\MS m/z 268 (M+). Anal.
Calc. for C12H9ClO5: C, 53.65; H, 3.38, Cl, 13.20. Found:
C, 53.41; H, 3.19, Cl, 13.50.

(2Z,5Z)-6-(2-methoxyphenyl)-2,6-dihydroxy-4-oxo-
hexa-2,5-dienoic acid [VIf]. Yield=60%; mp=234–
235°C dec; IR (nujol) v cm–1=1638 (ketone), 1720 (acid).
1H-NMR (CDCl3-DMSO) δ 7.84 (d, 1H, Ar-H), 7.54 (t,
1H, Ar-H), 7.18–7.07 (m, 2H, Ar-H+C=CH), 6.93 (s,
1H, CH=C), 3.92 (s, 3H, OCH3). GC\MS m/z 264 (M+).
Anal. Calc. for C13H12O6: C, 59.09; H, 4.58. Found: C,
58.83; H, 4.33.

General preparation of 6-aryl-2,4,6-trioxohexanoic
methyl esters [VIa–VIc]. To a solution of 2M methylmag-
nesium carbonate in DMF (38 eq), the appropriate phenyl-
methylketone [10a–10c] (4 mmol for [10a] and [10c] or 3
mmol for [10b]) and dimethyloxalate (1.6 eq) were added.
The mixture was heated at 170°C for 3 h (for [VIa] and
[VIc]) or at 160°C for 2.5 h (for [VIb]) in a Claisen appa-
ratus. When reaction was complete the mixture was put on
crushed ice (~30 g) and acidified with 37% HCl while stir-
ring. The solid products were filtrated, washed with water
and recrystallized from H2O/EtOH to give yellow or pale
yellow crystals.

Methyl (2Z,5Z)-2,6-dihydroxy-4-oxo-6-phenylhexa-
2,5-dienoate [VIa]. Yield=36%; mp=184–186°C; IR
(nujol) v cm–1=1610 (ketone), 1710 (ester). 1H-NMR
(CDCl3) δ 15.12 (brs, 1H, C=C-OH), 13.27 (brs, 1H,
OH), 7.89 (d, 2H, Ar-H), 7.51–7.47 (m, 3H, Ar-H), 6.33
(s, 1H, C=CH), 6.13 (s, 1H, CH=C), 3.92 (s, 3H,
CO2CH3). GC\MS m/z 248 (M+). Anal. Calc. for
C13H12O5: C, 62.90; H, 4.87. Found: C, 62.77; H, 4.82.

Methyl (2Z,5Z)-6-(2-chlorophenyl)-2,6-dihydroxy-4-
oxohexa-2,5-dienoate [VIb]. Yield=33%; mp=144–
145°C; IR (nujol) v cm–1=1625 (ketone), 1721 (ester). 1H-
NMR (DMSO) δ 7.63 (d, 1H, Ar-H), 7.56–7.39 (m, 3H,
Ar-H), 6.30 (s, 1H, C=CH), 6.08 (s, 1H, CH=C), 3.91 (s,
3H, CO2CH3). GC\MS m/z 282 (M+). Anal. Calc. for
C13H11ClO5: C, 55.24; H, 3.92; Cl, 12.54. Found: C, 55.45;
H, 4.15; Cl, 12.35.

Methyl (2Z,5Z)-6-(2-methoxyphenyl)-2,6-dihydroxy-4-
oxohexa-2,5-dienoate [VIc]. Yield=17%; mp=219–
220°C dec; IR (nujol) v cm–1=1600 (ketone), 1710 (ester).
1H-NMR (DMSO) δ 7.96 (d, 1H, Ar-H), 7.48 (t, 1H, Ar-
H), 7.09–6.99 (m, 2H, Ar-H), 6.54 (s, 1H, C=CH), 6.32
(s, 1H, CH=C), 3.94 (s, 3H, CO2CH3), 3.91 (s, 3H,
OCH3). GC\MS m/z 278 (M+). Anal. Calc. for C14H14O6:
C, 60.43; H, 5.07. Found: C, 60.62; H, 5.18.

Preparation of phenylmethylketones [10b] and [10c].
The appropriate ketone [9b] and [9c] (6.5 mmol) and
anhydrous ethyl acetate (2 eq) were added to a suspension
of 60% NaH in mineral oil (2 eq) in anhydrous diethyl
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ether (20 ml) under nitrogen atmosphere. The mixture was
stirred at room temperature for 48 h (for [10b]) or at 50°C
for 3 h (for [10c]). The solution was acidified by dropwise
addition of 1N HCl, then extracted with diethyl ether.
Finally organic layer was washed with water, dried and con-
centrated in vacuo. The residue was purified by flash chro-
matography (eluents petroleum ether-ethyl acetate 9.5:0.5)
to give a pale yellow oil.

(3Z)-4-(2-chlorophenyl)-4-hydroxybut-3-en-2-one
[10b]. Yield=34%; mp=oil at room temperature; IR (nujol)
v cm–1=1720 (ketone), 2750 (OH). 1H-NMR (CDCl3) δ
7.61–7.52 (m, 1H, Ar-H), 7.48–7.21 (m, 3H, Ar-H), 6.05
(s, 1H, C=CH), 2.19 (s, 3H, COCH3). GC/MS m/z 196
(M+).

(3Z)-4-hydroxy-4-(2-methoxyphenyl)but-3-en-2-one
[10c]. Yield=59%; mp=oil at room temperature; IR (nujol) v
cm–1=1715 (ketone), 2720 (OH). 1H-NMR (CDCl3) δ
16.22 (brs, 1H, OH), 7.88 (d, 1H, Ar-H), 7.44 (t, 1H, Ar-
H), 7.07–6.94 (m, 2H, Ar-H), 6.43 (s, 1H, C=CH), 3.92 (s,
3H, OCH3), 2.19 (s, 3H, COCH3). GC/MS m/z 192 (M+).

Preparation of 7-hydroxypyrido[1,2-a]indole-6,9-dione
[VII]. A solution of [13] (5 mmol) and diethyloxalate (2 eq),
anhydrous methanol (10 ml) and sodium methoxide (4 eq,
generated from sodium in methanol) in THF (10 ml) was
refluxed and stirred under nitrogen atmosphere for 15 h.
Then the solution was acidified with 1 N H2SO4 and the
yellow precipitate was filtered and recrystallized from
H2O/EtOH. Yield=19%; mp=213–215°C; IR (nujol) v
cm–1=1645 (CO amide), 1710 (ester), 3325 (OH). 1H-NMR
(DMSO) δ 8.30 (d, 1H, Ar-H), 7.80 (d, 1H, Ar-H),
7.40–7.33 (m, 2H, Ar-H), 6.00 (s, 1H, C=CH). GC/MS
m/z 213 (M+). Anal. Calc. for C12H7NO3: C, 67.61; H, 3.31,
N 6.57. Found: C, 67.81; H, 3.11, N 6.84.

Preparation of 1-(1H-indol-2-yl)ethanone [13]. A solu-
tion of 1.4 M methyllithium in diethyl ether (0.5 eq) was
slowly added under nitrogen atmosphere to a suspension of
[12] (1 eq) in anhydrous diethyl ether (30 ml) cooled at 0°C
and the mixture was refluxed for 1 h. An additional 1.4 M
methyllithium (0.5 eq) was added and the mixture was
refluxed for 5 h. The reaction was then quenched by addition
of saturated aqueous ammonium chloride, diluted with
diethyl ether, and extracted with diethyl ether. Solvent was
removed in vacuo and the solid residue purified by flash chro-
matography (eluents petroleum ether-ethyl acetate 8.5:1.5).
Yield=58%; mp=151–153°C; IR (nujol) v cm–1=1715
(ketone), 3240 (NH). 1H-NMR (CDCl3) δ 9.81 (brs, 1H,
NH), 7.70 (d, 1H, Ar-H), 7.44 (d, 1H, Ar-H), 7.38–7.02 (m,
3H, Ar-H), 2.55 (s, 3H, COCH3). GC/MS m/z 159 (M+).

Preparation of 1H-indole-2-carboxylic acid [12].
(Katritzky et al., 1985) A suspension of the ester [11] (5
mmol) in 12% KOH aqueous solution (50 ml) was refluxed
for 1 h. The clear solution was poured into crushed ice and
acidified with 2N HCl. The white precipitate was filtered
and washed with water. Yield=93%; mp= 207–209°C; IR
(nujol) v cm–1=3260 (NH), 3840 (COOH). 1H-NMR
(CDCl3-DMSO) δ 7.64 (d, 1H, Ar-H), 7.48 (d, 1H, Ar-
H), 7.26 (t, 1H, Ar-H), 7.17 (s, 1H, Ar-H), 7.09 (t, 1H,
Ar-H). GC/MS m/z 161 (M+).

General procedure for the preparation of isoxazole-
carboxylic acids [VIIIa–VIIIf]. A mixture of the appropri-
ate ester [15a–15f ] (1 mmol) in 12% KOH (5.2 eq) was
stirred under reflux for 1 h. Then water was added and the
solution was acidified with 2N HCl. The white precipitate
that formed was filtered, washed with water and recryst-
allized from H2O/EtOH.

5-phenylisoxazole-3-carboxylic acid [VIIIa] (King et al.,
1972). Yield=34%; mp=181–182°C; IR (nujol) v cm–1=
1610 (isoxazole), 1710 (COOH). 1H-NMR (CDCl3–
DMSO) δ 7.83–7.81 (m, 2H, Ar-H), 7.51–7.49 (m, 3H,
Ar-H), 6.97 (s, 1H, H-4 isoxazole). GC/MS m/z 189
(M+). Anal. Calc. for C10H7NO3: C, 63.49; H, 3.73; N,
7.40. Found: C, 63.24; H, 3.71; N, 7.37.

5-(1-methyl-1H-indol-3-yl)isoxazole-3-carboxylic acid
[VIIIb]. Yield=28%; mp=160–161°C; IR (nujol) v cm–1=1610
(isoxazole), 1710 (COOH). 1H-NMR (CDCl3-DMSO) δ
8.12–7.95 (m, 1H, Ar-H), 7.55–7.22 (m, 4H, Ar-H), 6.84
(s, 1H, H-4 isoxazole), 4.45–3.20 (brs, 1H, COOH), 3.92
(s, 3H, NCH3). GC/MS m/z 242 (M+). Anal. Calc. for
C13H10N2O3: C, 64.46; H, 4.16; N, 11.56. Found: C, 64.70;
H, 4.28; N, 11.60.

5-(1-ethyl-1H-indol-3-yl)isoxazole-3-carboxylic acid
[VIIIc]. Yield=21%; mp=158-160°C; IR (nujol) v cm–1= 1610
(isoxazole), 1710 (COOH). 1H-NMR (CDCl3) δ 8.05–7.90
(m, 1H, Ar-H), 7.74 (s, 1H, Ar-H), 7.49–7.15 (m, 3H, Ar-
H), 6.86 (s, 1H, H-4 isoxazole), 4.27 (q, 2H, NCH2),
2.85–2.25 (brs, 1H, COOH), 1.55 (t, 3H, CH3). GC/MS
m/z 256 (M+). Anal. Calc. for C14H12N2O3: C, 65.62; H, 4.72;
N, 10.93. Found: C, 65.40; H, 4.58; N, 10.75.

5-(1-benzyl-1H-indol-3-yl)isoxazole-3-carboxylic acid
[VIIId]. Yield=47%; mp=148–149°C; IR (nujol) v cm–1=
1615 (isoxazole), 1710 (COOH). 1H-NMR (CDCl3-
DMSO) δ 8.02-7.89 (m, 1H, Ar-H), 7.74 (s, 1H, Ar-H),
7.48–7.12 (m, 8H, Ar-H), 6.81 (s, 1H, H-4 isoxazole), 5.37
(s, 2H, CH2), 4.35–3.25 (brs, 1H, COOH). GC/MS m/z
318 (M+). Anal. Calc. for C19H14N2O3: C, 71.69; H, 4.43; N,
8.80. Found: C, 71.75; H, 4.62; N, 8.89.
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5-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]isoxazole-3-car-
boxylic acid [VIIIe]. Yield=79%; mp=141–143°C; IR (nujol)
v cm–1=1615 (isoxazole), 1710 (COOH). 1H-NMR
(CDCl3-DMSO) δ 7.01–6.91 (m, 4H, Ar-H), 6.85 (s, 1H,
H-4 isoxazole), 6.75–6.72 (m, 1H, Ar-H), 6.48 (s, 1H, Ar-
H), 6.30–6.27 (m, 1H, Ar-H), 5.32 (s, 2H, CH2), 3.02 (brs,
1H, COOH). GC/MS m/z 286 (M+). Anal. Calc. for
C15H11FN2O3: C, 62.94; 3H, 3.87; N, 9.79. Found: C, 62.90;
H, 3.81; N, 9.72.

4,5-dihydronaphtho[2,1-d]isoxazole-3-carboxylic acid
[VIIIf]. Yield=88%; mp=176–177°C; IR (nujol) v cm–1=
1615 (isoxazole), 1705 (COOH). 1H-NMR (CDCl3-
DMSO) δ 7.70–7.65 (m, 1H, Ar-H), 7.35–7.33 (m, 3H,
Ar-H), 3.07–3.01 (m, 4H, CH2x2). GC/MS m/z 215 (M+).
Anal. Calc. for C12H9NO3: C, 66.97; H, 4.22; N, 6.51.
Found: C, 66.70; H, 3.98; N, 6.48.

Preparation of 3-methyl-4,5-dihydronaphtho[1,2-
c]isoxazole [VIIIg]. A mixture of commercially available 2-
acetyltetralone [16g] (5.3 mmol) and hydroxylamine
hydrochloride (3 eq) in methanol (25 ml) was refluxed for 22
h. After evaporation of the solvent, the solid obtained was
purified by silica gel flash chromatography (eluents petrole-
um ether-ethyl acetate 9.5:0.5) to give a pale yellow solid
that was recrystallized from H2O/EtOH. Yield=82%;
mp=56–57°C; IR (nujol) v cm–1=1375 (CH3), 1625 (isoxa-
zole). 1H-NMR (CDCl3) δ 7.65 (d, 1H, Ar-H), 7.35–7.23
(m, 3H, Ar-H), 3.04 (t, 2H, CH2), 2.67 (t, 2H, CH2), 2.29
(s, 3H, CH3). GC/MS m/z 185 (M+). Anal. Calc. for
C12H11NO: C, 77.81; H, 5.99; N, 7.56. Found: C, 77.75; H,
5.86; N, 7.43.

General procedure for the preparation of the isoxa-
zolecarboxylic esters [15a–15f]. A mixture of the appro-
priate β-diketo ester [16a–16f ] (1.2 mmol) and hydroxy-
lamine hydrochloride (3 eq) in methanol (10 ml) was
refluxed for 1 h. After evaporation in vacuo, a yellow solid
was obtained; it was purified by silica gel flash chromatogra-
phy (eluents petroleum ether-ethyl acetate 8:2) to give a solid
that was recrystallized from H2O/EtOH.

Methyl 5-phenylisoxazole-3-carboxylate [15a]
(Tanaka et al., 1998). Yield=29%; mp=81-82°C; IR (nujol)
v cm–1=1610 (isoxazole), 1728 (ester). 1H-NMR (CDCl3 ) δ
7.83–7.79 (m, 2H, Ar-H), 7.51–7.48 (t, 3H, Ar-H), 6.94 (s,
1H, H-4 isoxazole), 4.01 (s, 3H, OCH3). GC/MS m/z 203
(M+). Anal. Calc. for C11H9NO3: C, 65.02; H, 4.46; N, 6.89.
Found: C, 64.76; H, 4.14; N, 6.66.

Methyl 5-(1-methyl-1H-indol-3-yl)isoxazole-3-car-
boxylate [15b]. Yield=69%; mp=119–120°C; IR (nujol) v
cm–1=1605 (isoxazole), 1730 (ester). 1H-NMR (CDCl3) δ

8.00–7.91 (m, 1H, Ar-H), 7.66 (s, 1H, Ar-H), 7.47–7.25
(m, 3H, Ar-H), 6.82 (s, 1H, H-4 isoxazole), 4.00 (s, 3H,
OCH3), 3.89 (s, 3H, NCH3). GC/MS m/z 256 (M+). Anal.
Calc. for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93. Found:
C, 65.79; H, 4.83; N, 11.02.

Methyl 5-(1-ethyl-1H-indol-3-yl)isoxazole-3-carboxy-
late [15c]. Yield=77%; mp=104–105°C; IR (nujol) v cm–1

=1600 (isoxazole), 1730 (ester). 1H-NMR (CDCl3) δ
8.20–7.95 (m, 1H, Ar-H), 7.73 (s, 1H, Ar-H), 7.52–7.34
(m, 3H, Ar-H), 6.82 (s, 1H, H-4 isoxazole), 4.27 (q, 2H,
NCH2), 4.01 (s, 3H, OCH3), 1.57 (t, 3H, CH3). GC/MS
m/z 270 (M+). Anal. Calc. for C15H14N2O3: C, 66.66; H,
5.22; N, 10.36. Found: C, 66.45; H, 5.02; N, 10.15.

Methyl 5-(1-benzyl-1H-indol-3-yl)isoxazole-3-carboxy-
late [15d]. Yield=69%; mp=139–140°C; IR (nujol) v cm–1

=1605 (isoxazole), 1740 (ester). 1H-NMR (CDCl3) δ
8.20–7.95 (m, 1H, Ar-H), 7.71 (s, 1H, Ar-H), 7.42–7.15
(m, 8H, Ar-H), 6.83 (s, 1H, H-4 isoxazole), 5.38 (s, 2H,
CH2), 4.01 (s, 3H, OCH3). GC/MS m/z 332 (M+). Anal.
Calc. for C20H16N2O3: C, 72.28; H, 4.85; N, 8.43. Found:
C, 72.41; H, 4.92; N, 8.55.

Methyl 5-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]isoxazole-
3-carboxylate [15e]. Yield=74%; mp=80–82°C; IR (nujol)
v cm–1=1610 (isoxazole), 1735 (ester). 1H-NMR (CDCl3)
δ 7.08–6.87 (m, 2H, Ar-H), 6.77 (s, 1H, H-4 isoxazole),
6.50 (s, 1H, Ar-H), 6.32–6.29 (m, 1H, Ar-H), 5.37 (s, 2H,
CH2), 3.96 (s, 2H, OCH3). GC/MS m/z 300 (M+). Anal.
Calc. for C16H13FN2O3: C, 64.00; H, 4.36; N, 9.33. Found:
C, 63.96; H, 4.23; N, 9.11.

Methyl 4,5-dihydronaphtho[2,1-d]isoxazole-3-car-
boxylate [15f]. Yield=94%; mp=129–130°C; IR (nujol) v
cm–1=1610 (isoxazole), 1715 (ester). 1H-NMR (CDCl3) δ
7.79–7.65 (m, 1H, Ar-H), 7.37–7.30 (m, 3H, Ar-H), 4.00
(s, 3H, OCH3), 3.07–3.03 (m, 4H, CH2x2). GC/MS m/z
229 (M+). Anal. Calc. for C13H11NO3: C, 68.11; H, 4.84;
N, 6.11. Found: C, 67.84; H, 4.62; N, 5.99.

General procedure for the preparation of β-dike-
toesters [16a–16f]. A mixture of the appropriate ketone
([17a–17e] and [18]) (2.5 mmol) and diethyloxalate (1.5
eq) in anhydrous methanol (25 ml) was added to a solution
of sodium methoxide (3.4 eq, generated from sodium in
anhydrous methanol). The mixture was refluxed under
nitrogen atmosphere for 4 h. After dilution with water the
solution was acidified with 1N HCl. The yellow precipitate
formed was purified by silica gel flash chromatography
(eluents petroleum ether-ethyl acetate 8:2) and then recrys-
tallized from H2O/EtOH.
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Methyl 2-hydroxy-4-oxo-4-phenylbut-2-enoate [16a]
(Penning et al., 1997). Yield=33%; mp=55–57°C; IR
(nujol) v cm–1=1640 (ketone), 1729 (ester). 1H-NMR
(CDCl3) δ 8.00 (d, 2H, Ar-H), 7.62–7.50 (m, 4H, Ar-H),
7.09 (s, 1H, CH=C), 3.95 (s, 3H, OCH3). GC/MS m/z
206 (M+).

Methyl 2-hydroxy-4-(1-methyl-1H-indol-3-yl)-4-oxo-
but-2-enoate [16b] (Sechi et al., 2004). Yield=81%;
mp=174–175°C; IR (nujol) v cm–1=1610 (ketone), 1745
(ester). 1H-NMR (CDCl3) δ 8.42–8.34 (m, 1H, Ar-H),
7.86 (s, 1H, Ar-H), 7.42–7.30 (m, 3H, Ar-H), 6.85 (s, 1H,
CH=C), 3.93 (s, 3H, OCH3), 3.88 (s, 3H, NCH3).
GC/MS m/z 259 (M+).

Methyl 2-hydroxy-4-(1-ethyl-1H-indol-3-yl)-4-oxo-but-
2-enoate [16c] (Sechi et al., 2004). Yield=59%;
mp=159–161°C; IR (nujol) v cm–1=1610 (ketone), 1740
(ester). 1H-NMR (CDCl3) δ 8.41–8.36 (m, 1H, Ar-H),
7.93 (s, 1H, Ar-H), 7.58–7.28 (m, 3H, Ar-H), 6.87 (s, 1H,
CH=C), 4.28 (q, 2H, NCH2), 3.94 (s, 3H, OCH3), 1.57 (t,
3H, CH3). GC/MS m/z 273 (M+).

Methyl 2-hydroxy-4-(1-benzyl-1H-indol-3-yl)-4-oxo-
but-2-enoate [16d] (Sechi et al., 2004). Yield=37%;
mp =178–179°C; IR (nujol) v cm–1=1610 (ketone) 1730
(ester). 1H-NMR (CDCl3) δ 8.49–8.42 (m, 1H, Ar-H),
7.91 (s, 1H, Ar-H), 7.40–7.32 (m, 8H, Ar-H), 6.84 (s, 1H,
CH=C), 5.39 (s, 2H, CH2), 3.92 (s, 3H, OCH3), 1.80–1.55
(bs, 1H, OH). GC/MS m/z 335 (M+).

Methyl 4-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]-2-hyd-
roxy-4-oxobut-2-enoate [16e]. Yield=67%; mp=103–
105°C; IR (nujol) v cm–1=1620 (ketone), 1720 (ester). 1H-
NMR (CDCl3) δ 7.17–6.94 (m, 6H, Ar-H), 6.85 (s, 1H,
CH=C), 6.30–6.27 (m, 1H, Ar-H), 5.60 (s, 2H, CH2),
3.91 (s, 3H, OCH3). GC/MS m/z 303 (M+).

Methyl hydroxy(1-oxo-3,4-dihydronaphthalen-2(1H)-
ylidene)acetate [16f] (Emerson et al., 1991). Yield=
59%; mp=64–65°C; IR (nujol) v cm–1=1630 (ketone), 1720
(ester). 1H-NMR (CDCl3) δ 8.03 (d, 1H, Ar-H), 7.50 (t,
1H, Ar-H), 7.36 (t, 1H, Ar-H), 7.27 (d, 1H, Ar-H), 3.93
(s, 3H, OCH3), 2.98–2.86 (m, 4H, CH2x2). GC/MS m/z
232 (M+).

Preparation of 1-[1-(4-fluorobenzyl)-1H-pyrrol-2-
yl]ethanone [17e]. A mixture of KOH (crushed pellets)
(4 eq) in DMSO (18 ml) was stirred at room temperature
for 5 min. 2-acethylpyrrole [7] (9.0 mmol) was added and
the mixture was stirred for 45 min. After this time, 4-fluo-
ro-benzylbromide was added (2 eq) and the reaction mix-
ture was stirred at room temperature for a further 45 min.

Then reaction was quenched by addition of water and the
solution was extracted three times with diethyl ether. The
organic layer was washed with water and dried over
Na2SO4. After evaporation of the solvent, the crude prod-
uct was purified by silica gel flash chromatography (eluents
petroleum ether-ethyl acetate 9:1) to give a yellow oil.
Yield=94%; mp=oil at room temperature; IR (nujol) v
cm–1=1640 (ketone). 1H-NMR (CDCl3) δ 7.36-7.28 (m,
2H, Ar-H), 7.11–6.83 (m, 4H, Ar-H), 6.22–6.18 (m, 1H,
Ar-H), 5.53 (s, 2H, CH2), 2.41 (s, 3H, COCH3). GC/MS
m/z 217 (M+).

Preparation of 1-(1H-pyrrol-2-yl)ethanone [19]
(Garrido et al., 1984). A solution of 2-acetylfurane [20]
(45 mmol) and 30% NH3 (19 eq) in 96% ethanol (30 ml)
was heated in a sealed tube at 150°C for 12 h. After cool-
ing, the solution was filtered and concentrated in vacuo to
give a brown solid. The crude product was purified by sili-
ca gel flash chromatography (eluents petroleum ether-ethyl
acetate 8:2) to give a yellow solid that was recrystallized
from H2O/EtOH. Yield=30%; mp=88–89°C; IR (nujol) v
cm–1=1640 (ketone), 3260 (NH). 1H-NMR (CDCl3) δ
10.50–9.80 (brs, 1H, NH), 7.06–7.04 (m, 1H, Ar-H),
6.93–6.91 (m, 1H, Ar-H), 6.28–6.26 (m, 1H, Ar-H), 2.45
(s, 3H, COCH3). GC/MS m/z 109 (M+).

General procedure for the preparation of tetrafluo-
roborate isoxazolium salts [21c], [21e] and [21g]. A
mixture of the appropriate isoxazole ([15c],[15e] and
[VIIIg]) (2 mmol) and dimethylsulphate (2.2 eq) in anhy-
drous toluene (5 ml) was refluxed under nitrogen atmos-
phere for 24 h (for [15c]), 30 h (for [VIIIg]) or 48 h (for
[15e]). Subsequently the toluene layer was decanted, the oil
residue was dissolved in water, and it was washed with ethyl
acetate. To this aqueous solution was added a solution of
sodium tetrafluoroborate (4 eq) in water and, after cooling
with ice, a yellow solid was separated.

5-(1-ethyl-1H-indol-3-yl)-3-(methoxycarbonyl)-2-
methylisoxazol-2-ium tetrafluoroborate [21c]. Yield=
69%; mp=159–162°C; IR (nujol) v cm–1=1060 (BF4

-), 1370
(CH3), 1745 (ester). 1H-NMR (DMSO) δ 8.81 (s, 1H, Ar-
H), 8.19–8.07 (m, 1H, Ar-H), 7.91 (s, 1H, H-4 isoxazole),
7.83–7.72 (m, 1H, Ar-H), 7.46–7.38 (m, 2H, Ar-H), 4.53
(s, 3H, NCH3), 4.38 (q, 2H, NCH2), 4.07 (s, 3H, OCH3),
1.49 (t, 3H, CH3). GC/MS m/z 285 (M+, cation). Anal.
Calc. for C16H17N2O3 BF4: C, 51.64; H, 4.60; N, 7.53.
Found: C, 51.33; H, 4.42; N, 7.36.

5-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]-3-(methoxycar-
bonyl)-2-methylisoxazol-2-ium tetrafluoroborate [21e].
Yield=52%; mp=168–170°C; IR (nujol) v cm–1=1060 
(BF4

–), 1375 (CH3), 1740 (ester). 1H-NMR (DMSO) δ
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7.90 (s, 1H, H-4 isoxazole), 7.67–7.64 (m, 1H, Ar-H),
7.52–7.47 (m, 1H, Ar-H), 7.25–7.18 (m, 5H, Ar-H), 5.51
(s, 2H, CH2), 4.40 (s, 3H, NCH3), 3.99 (s, 3H, OCH3).
GC/MS m/z 315 (M+, cation). Anal. Calc. for
C17H16FN2O3 BF4: C, 50.78; H, 4.01; N, 6.97. Found: C,
50.89; H, 4.22; N, 7.11.

1,3-Dimethyl-4,5-dihydronaphtho[1,2-c]isoxazol-1-
ium tetrafluoroborate [21g]. Yield=29%; mp=
145–147°C; IR (nujol) v cm–1=1060 (BF4

-), 1375 (CH3).
1H-NMR (DMSO) δ 7.65 (d, 1H, Ar-H), 7.52 (t, 1H, Ar-
H), 7.39–7.33 (m, 2H, Ar-H), 4.29 (s, 3H, NCH3), 3.15 (t,
2H, CH2), 2.87 (t, 2H, CH2), 2.65 (s, 3H, CH3). GC/MS
m/z 200 (M+, cation). Anal. Calc. for C13H14NO BF4: C,
54.39; H, 4.92; N, 4.88. Found: C, 54.25; H, 4.87; N, 4.69.

Biology
Materials, chemicals and enzymes. All compounds were
dissolved in DMSO and the stock solutions were stored at
–20°C. The γ[32P]-ATP was purchased from either
Amersham Biosciences or ICN. The expression systems for
the wild-type IN and soluble mutant INF185KC280S were gen-
erous gifts of Dr Robert Craigie, Laboratory of Molecular
Biology, NIDDK, NIH, Bethesda, MD, USA.

Preparation of oligonucleotide substrates. The
oligonucleotides 19top, 5′-GTGTGGAAAATCTCTAG-
CA-3′ and 21bot, 5′-ACTGCTAGAGATTTTCCA-
CAC-3′ were purchased from Norris Cancer Center
Microsequencing Core Facility (University of Southern
California) and purified by UV shadowing on polyacry-
lamide gel. To analyse the extent of strand transfer using 5′-
end labelled substrates, 19top was 5′-end labelled using T4
polynucleotide kinase (Epicentre, Madison, WI, USA) and
γ [32P]-ATP (Amersham Biosciences or ICN). The kinase
was heat-inactivated and 21bot was added in 1.5-molar
excess. The mixture was heated at 95°C, allowed to cool
slowly to room temperature, and run through a spin 25
mini-column (USA Scientific) to separate annealed double-
stranded oligonucleotide from unincorporated material.

Integrase assays. To determine the extent of strand trans-
fer, wild-type IN was preincubated at a final concentration
of 200 nM with the inhibitor in reaction buffer (50 mM
NaCl, 1 mM HEPES, pH 7.5, 50 µM EDTA, 50 µM
dithiothreitol, 10% glycerol (w/v), 7.5 mM MnCl2, 0.1
mg/ml bovine serum albumin, 10 mM 2-mercaptoethanol,
10% dimethyl sulphoxide, and 25 mM MOPS, pH 7.2) at
30°C for 30 min. Then, 20 nM of the 5′-end 32P-labelled
linear oligonucleotide substrate was added, and incubation
was continued for an additional 1 h. Reactions were
quenched by the addition of an equal volume (16 µl) of
loading dye (98% deionized formamide, 10 mM EDTA,

0.025% xylene cyanol and 0.025% bromophenol blue). An
aliquot (5 µl) was electrophoresed on a denaturing 20%
polyacrylamide gel (0.09 M tris-borate pH 8.3, 2 mM
EDTA, 20% acrylamide, 8M urea).

Gels were dried, exposed in a PhosphorImager cassette,
and analysed using a Typhoon 8610 Variable Mode Imager
(Amersham Biosciences) and quantitated using
ImageQuant 5.2. Percent inhibition (% I) was calculated
using the following equation:

% I = 100 X [1 -  (D - C)/(N - C)]

where C, N and D are the fractions of 21-mer substrate
converted to strand transfer products for DNA alone, DNA
plus IN, and IN plus drug, respectively. The IC50 values
were determined by plotting the logarithm of drug concen-
tration versus percent inhibition to obtain concentration
that produced 50% inhibition.

Molecular modelling

Model compounds [IId] and [VIa] were constructed with
standard bond lengths and angles from the fragment data-
base with MacroModel 6.0 (1997) using a Silicon Graphics
O2 workstation running on IRIX 6.3. Sybyl 6.2 (2001) was
used as graphic platform. The atomic charges were assigned
using the Gasteiger-Marsili method (Gasteiger et al.,
1980). Minimization of structures was performed with the
MacroModel/BachMin 6.0 program using the Amber
force field. Extensive conformational search was carried out
using the Monte Carlo/Energy minimization (Chang et al.,
1989) for all the compounds considered in the study (Ei-
Emin <5 kcal/mol, energy difference between the gener-
ated conformation and the current minimum). Represent-
ative minimum energy conformations of each compounds
were optimized using the ab initio quantum chemistry
program Gaussian 98 with UHF/6-31* basis set. Docking
calculations were performed on HP Exemplar Parallel
Server V2200 running HP UX 11.0.

Subunit A of IN core domain in complex with 1-(5-
chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl-propen-
one) (5CITEP; PDB 1QS4) was used for all docking
studies. The missing residues at positions 141–144 in this
subunit were incorporated from monomer B of the IN
structure PDB 1BIS after superimposition of the back-
bones of residues 135–140 and 145–150, as previously
reported (Sotriffer et al., 2000). Docking was performed
with AutoDock version 3.05 (Morris et al., 1998) using the
new empirical free energy function and the Lamarckian
protocol (Morris et al., 1996). Mass-centered grid maps
were generated with 80 grid points for every direction and
with 0.375 Angstroms spacing by the AutoGrid program
for the whole protein target. Random starting position on
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Figure 4. Experimental conditions for the preparation of [Ia–f]

i) chloroacetylchloride, toluene, reflux for 1–2 h, N2; ii) AlCl3, 180–190°C for 10 min; iii) dimethyloxalate, CH3ONa, anhydr. MeOH, rt for 3 h
[Ia] or 5 h [Ib], or reflux for 3.5 h [Ic], N2; iv) 2N NaOH, MeOH, rt for 4–6 h, then 1N HCI.

A, i) KOH pellets, appropriate alkylbromide, DMSO, rt for 30 min; ii) diethyloxalate, t-ButOK, DMF, rt for 2 h [IIa] or diethyloxalate, 60% NaH
in mineral oil, anhydr. Et2O, rt for 15 h [IIb–c]; iii) 2N NaOH, MeOH, rt for 5 h, then 1N HCI; iv) MeSO3H, rt for 15 h, then 80% EtOH, rt for 3 h.
(B) i) dimethylsulphate, anhydr. K2CO3, dry acetone, reflux for 2 h.
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the entire protein surface, random orientations and torsions
were used for the ligands. The distance-dependent dieletric
permittivity of Mehler and Solmajer was used for the
calculation of the electrostatic grid-maps. Fifty indepen-
dent docking runs were carried out for each ligands. The
cluster analyses were computed with a cluster tolerance by
less than 1.5 Å in positional root-mean-square deviation.

Results

Chemistry
The synthesis of target compounds [I–VIII] are depicted
in Figures 4–8. The oxindole-2-carboxylic acids [Id–If ]
were synthesized by treating under alkaline conditions the
respective esters [Ia–Ic], which were easily obtained by
oxalylation of the appropriate 2-oxindoles [3a–3c] in the
presence of sodium methoxide dissolved in methanol under
reflux (Figure 4). The intermediate [3a] was commercially
available and [3b] and [3c] were prepared as previously
described (Sarges et al., 1989). Interestingly, the disubsti-
tuted 2-oxindole-ylidene derivatives, generated from the
enolic form of C-2 carbonyl, were stereoselectively
obtained in the Z-configuration. This assumption was
supported by the marked deshielding effect of the H-4
proton of the oxindole nucleus due to the carboxylate group
located on the ylidene moiety, which forms a ‘transoid
system’ (Long et al., 1978, Autrey et al., 1967) with the
oxindole carbonyl (Figure 4, A). These observations were
unambigously confirmed on the basis of NOE difference
and NOESY experiments data, which showed NOE corre-
lations between H-4 and the methyl ester group of [Ia-Ic]
(Figure 4-B).

The synthetic route to obtain sequentially the 3-ciano-
2-ketoesters [IIa–IIc], the correspondent acid [IId] (from
[IIc]) and the 3-hydroxy-1H-pyrrole-2,5-dione derivative
[III] (from [IIa]) is shown in Figure 5-A. The reaction of
indole-3-acetonitriles [5a–5c] and diethyloxalate and t-
ButOK in DMF gave [IIa–IIc] in good yields. Alkalyne
hydrolysis of the ester [IIc] provided the corresponding
acid [IId]. The analysis of 1H-NMR and IR for [IIa-IIc]
revealed the presence of enolic form in solution with conse-
quent formation of a double bond. In order to establish the
exact configuration of [IIa–IId], we methylated the enol
group of [IIc] to obtain its methoxy derivative [IIe]
(Figure 5-B), which could be suitable for NMR investiga-
tions. NOE experiments conducted using this model
compound showed an E-configuration of the cyanoketo
ester moiety and demonstrated the stereoselectivity of the
above-mentioned reaction (Figure 5-B). The ester [IIa]
was then converted into a pyrrole ring system, [III] (Figure
5-A) by treating with methanesulphonic acid followed by
quenching in ethanol (Rooney et al., 1983). Alkylation of
[4] with an appropriate alkylbromide and solid KOH in

DMSO gave the intermediate N-alkylindoles [5a–5c]
(Figure 5-A).

The β-diketone [IV] was synthesized by an intramolec-
ular acyl transfer reaction (Baker–Venkataraman–like reac-
tion) by reacting the 2-hydroxyacetophenone [7] with
benzoylchloride using NaH in THF and t-ButOH / t-
ButOK complex (Kraus et al., 1984). Deprotection of the
methoxy group of [6] to give the intermediate [7] was
carried out with boron tribromide in dichloromethane at
–40°C (Figure 6-A).

Claisen condensation of ethyl phenylacetate [8] with
diethyloxalate and NaH dissolved in toluene (House et al.,
1968) afforded the diester [V] in the enolic form (Figure 
6-B).

The 6-aryl-2,4,6-trioxohexanoic esters [VIa–VIc] were
obtained by treatment of benzoylacetones [10a–10c] with
dimethyloxalate in the presence of magnesium methyl
carbonate (Stiles reagent; Stiles et al., 1991); the successive
acid hydrolysis gave the corresponding acids [VId-VIf ] in
good yields. While the diketone [10a] was commercially
available, the intermediates [10b] and [10c] were easily
prepared by condensation of the appropriate acetophenones
[9b] and [9c] with anhydrous ethyl acetate and NaH
(Figure 7-A).

The tricycle [VII] was prepared following a tandem-
reaction through a direct oxalylation of 2-acetylindole [13]
using 4 eq of sodium methoxide under reflux conditions for
15 h to obtain β-diketo ester [14] (intermediated not
isolated) as a first step. These reaction conditions favoured
an intramolecular amination (second step) to give the
desired [VII] (Figure 7-B). The intermediate [13] was
prepared from the acid [12] and methyllithium. The latter
was obtained by alkaline hydrolysis of the commercially
available ester [11].

The aryl(heteroaryl)-isoxazole carboxylic acids [VIIIa–
VIIIf ] were prepared by treating under alkaline conditions
the respective esters [15a–15f ], which were synthesized
through a [3+2] synthetic route by cyclocondensation of β−
diketoesters [16a–16f ] with hydroxylamine hydrochloride
(Figures 8-A,B). These intermediates were easily obtained
by oxalylation of the aryl(heteroaryl)-ketones [17a–17f ],
[18] in the presence of sodium methoxide dissolved in
CH3OH under reflux conditions. Finally, the methyl-
derivative [VIIIg] was prepared by treating 2-acetyl-3,4-
dihydronaphthalen-1(2H)-one [16g] with hydroxylamine
hydrochloride (Figure 8-B). The starting materials
[17a–17e], [18] were commercially available ([17a], [18]),
previously described ([17b–17d]; Sechi et al., 2004) or
prepared through a new synthesis ([17e], Figure 9-A).

Several chemical aspects of reaction of aryl and
heteroaryl β-diketoalkanoates with hydroxylamine
hydrochloride, as well as methods to distinguish regioiso-
mers, were recently described (Battaglia et al. 1970;
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Figure 6. Experimental conditions for the preparation of [IV] and [V]

A, i) 1M BBr3 in CH2Cl2, anhydr. CH2Cl2, –30°C for 12 h, then rt for 8 h; ii) 60% NaH in mineral oil, anhydr. THF, rt for 30 min, benzoylchloride,
0°C for 1 h, then t-ButOK/t-ButOH, 0°C for 15 min, then CH3COOH/H2O. B, i) diethyloxalate, 60% NaH in oil, abs. ethanol, toluene, rt for 12 h,
then glacial CH3COOH.

A, i) anhydr. ethyl acetate, 60% NaH in mineral oil, anhydr. Et2O, rt for 48 h [10 b] or 50°C for 3 h [10c]; ii) dimethyloxalate, 2M methyl mag-
nesium carbonate in DMF, 170°C for 2.5 h [VIa, VIc] or 160°C for 3 h [VIb], then 2N HCl; iii) 37% HCl/H2O 1:2, 55°C for 6–8 h. B, i) 12% KOH,
H2O, reflux for 1 h, then 2N HCl; ii) 1.4M MeLi in Et2O, anhydr. Et2O, reflux for 6 h; iii) diethyloxalate, CH3ONa, anhydr. MeOH/THF, reflux for
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Baumstark et al., 1980; Sechi et al., 2003). Interestingly, we
observed that compounds [15a–15f ] and [VIIIg] were
obtained as single regioisomers. As far as the regiochem-
istry is concerned, the only regioisomers obtained from the
above-mentioned reaction were consistent with the struc-
ture of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids
[VIIIa–VIIIf ] and 3-methyl-4,5-dithydronaphtho[1,2-
c]isoxazole [VIIIg]. The regioselectivity observed under
our reaction condition was postulated on the basis of
previous studies (Sechi et al., 2003) and confirmed by NOE
difference and NOESY experiments. We unambigously
assigned their structures on the basis of NOE difference
and NOESY data of corresponding N-methyl isoxazolium
salts [21c], [21e] and [21g], chosen as representative
compounds for the series, where the position of their N-
methyl groups were detectable by NOE experiments. Both
experiments showed NOE between N+-CH3 and methyl
ester group in position 3 of the isoxazole rings of
compounds [21c] and [21e], whereas no NOE enhance-
ment of the signal between N+-CH3 and methyl group in
position 3 was observed for [21g] (Figure 9-B).
Accordingly, no NOE interactions between N-methyl isox-
azolium group and another aromatic proton was observed
for compounds [21c] and [21e], while NOE enhancement
was observed for regioisomer [21g]. It is important to note

that the attack of hydroxylamine on the more electrophilic
centre of the β-diketo moiety is an important governing
factor for the subsequent ring closure to isoxazole.

The isoxazolium salts [21c], [21e] and [21g] necessary
for NOE experiments were prepared by heating in toluene
the corresponding isoxazole derivatives [15c], [15e] and
[VIIIg] with dimethylsulphate. The N-methyl-isoxa-
zolium sulphate intermediates [22c], [22e] and [22g] were
then converted to the respective tetrafluroborates according
to the reaction of Figure 9-C.

Discussion

Inhibition of HIV-1 IN catalytic activities
The top-ranking compounds [IId] and [VIa] inhibited
strand transfer activity of purified IN with IC50 values
ranging from 10–80 µM (Table 1). Interestingly, the
cyanoketo acid [IId] proved to be the most potent
compound (IC50=10±4 µM). A preliminary observation can
be made considering that substitution of the ester carbonyl
with a carboxylate functionality led to a significant increase
in activity (compare [IIc] and [IId]). Of the triketo deriv-
atives, only the ester [VIa] was active against strand-
transfer process of purified HIV-IN in soluble mutant
(IC50=80±20 µM). Moreover, we showed that compounds
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[Ia], [Ic–If ], [IIa–IIc], [III], [IV], [VIc–VIf ] and
[VIIIa–VIIIe] inhibited IN at a high micromolar concen-
tration range (IC50s=160–660 µM), while [V] and [15a],
[15c–15f ] were essentially inactive (IC50=>1000 µM). One
of the important achievements of this study was confirming
that the diketo acid system was necessary for this activity.
All isoxazole derivatives tested were inactive. Although the
isoxazoles can be considered as bioisostere of diketo acids,
the mechanism of IN inhibition by DKAs related
compounds may involve chelation of divalent metals.

Molecular modelling

Several computational docking studies using the IN-
5CITEP co-crystal structure (Goldgur et al., 1999) have
recently been reported (Sotriffer et al., 2000; Ni et al., 2001;

Buolamwini et al., 2002; Barreca et al., 2003; Schames et al.,
2004). Unfortunately, many details of the protein–ligand
interaction remain uncertain because the binding modes
are significantly influenced by the crystal packing effect. As
a 3D structure of the full-length IN complexed with DNA
is not available, this is the only known structure that
provided sufficient information of the IN active site in the
presence of a bound inhibitor (Parril, 2003). It is also
important to note that this model provides information of
the mode of binding a ligand in an early step of the inte-
gration processes, in particular before the formation of the
complex with donor DNA substrate. In order to investigate
the binding-site of the most active compounds, [IId] and
[VIa], we performed computational docking studies on the
IN-5CITEP complex (PDB 1QS4) as described (Sotriffer
at al., 2000; Sechi et al., 2004). Based on the structure of
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Figure 10. Graphical representation of hypothetical disposition of [IId] and [VIa] showing the interacting
amino acid residues on the HIV-1 IN active site core domain*

*[IId1] (red) and [IId2] (yellow) as well as [VIa1] (blue) and [VIa2] (cyan) represent the top and the second conformation derived from the dock-
ing results for each monomers, respectively. [IId1–2] and [VIa1–2] displayed the overlap of both conformers.

[IId1] [IId2] [IId1–2]

[VIa1–2][VIa2][VIa1]
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the above-mentioned compounds, we built compounds
[IId] and [VIa] in the keto-enolic tautomeric form. As the
carboxylic group of [IId] has a pKa of ~4 (Kees et al., 1995)
under physiological conditions, we used its deprotonated

form for docking studies. These compounds were subse-
quently subjected to quantum mechanics calculations.

The results of clustered docking runs with the most
favourable free binding energy for [IId] and [VIa] are
given in Table 2. Graphical representations of top-ranking
binding modes obtained for these ligands showing the
important residues involved in binding are depicted in
Figure 10. Compound [IId] was found to bind to D64
through the hydroxy group in both clusters, and it also
established a coordination bond with Mg2+ by a combina-
tion of hydroxy and carboxylate groups. As shown in Figure
10, superimposition of the most energetically favourable
conformers [IId1–2] indicated the same bound conforma-
tion inside the active site. The triketo ester [VIa] formed
H-bonds with D64 and established a coordination bond
with Mg2+ ion through an hydroxy-keto system of the
triketo moiety. Also of interest, the top and second
conformers considerably overlap [VId1-2] with regard to
direction, but have the opposite orientation (Figure 10).
However, they displayed the same mode of binding and
adopted a similar position on the IN active site.

On the basis of these results, the inhibitory potency of
compounds [IId] and [VIa] can be explained by their
unique arrangement in the IN active site. In particular, the
interactions with Mg2+ cation and D64 are important func-
tions for the activity of IN (Ellison et al., 1994; Kulkosky et
al., 1992; Hazuda et al., 1997; Chiu et al., 2004), represent
the most important features.

Finally, the estimated free binding energy values
(∆Gbind) of the docked positions, expressed in kcal/mol,
indicated favourable interactions and tight binding with
key aminoacid residues on the active site of IN. In partic-
ular [IId] displayed better energy results than [VIa], which
agree with their respective potency against IN.

Conclusions

The results of this study suggest that both the cyanoketo
acid and the triketo ester moieties are important structural
features required for the anti-HIV-1 IN activity. From the

Table 2. First ([IId1] and [VIa1]) and second ([IId2] and [VIa2]) docking results of 50 independent runs for com-
pounds [IId] and [VIa]

Ligand *Ntot
†focc

‡DGbind H-bonds

[IId1] 8 15/10 –10.77 D64
[IId2] 6 15/10 –10.08 D64, N155
[VIa1] 16 10/6 –6.03 D64, C65, N120
[VIa2] 10 10/6 –6.00 D64, C65, S119,

N120

*Total number of clusters. †Number of distinct conformational clusters found out of 50 runs / number of multi-member conformational clus-
ters. ‡Estimated free binding energy (kcal/mol).

Table 1. Inhibition of strand transfer activity of title
compounds 

Compound Strand transfer
IC50 (µM)

[*DFC-7] 3 ±1
[*DFC-28] 2 ±1
[Ia] 400
[Ic] 273 ±50
[Id] 600
[Ie] 160
[If] 660
[IIa] 225
[IIb] >100
[IIc] >100
[IId] 10 ±4
[III] 300
[IV] 333
[V] >1000
[VIa] 80 ±20
[VIc] 240
[VId] 600
[VIe] 220
[VIf] 190
[VIIIa] 200
[VIIIb] 475 ±136
[VIIIc] 498 ±200
[VIIId] 200
[VIIIe] 475 ±152
[15a] >1000
[15c] >1000
[15d] >1000
[15e] >1000
[15f] >1000

Values are from average of two or three independent experiments.
*From Sechi et al., 2004.
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structural point of view, the triketo ester fragment of
compound [VIa] may be considered formally an homo-
logue of the diketo acid functionality, while the cyanoketo
acid side chain of compound [IId] constitutes a novel
potential pharmacophore and a bioisostere of the diketo
acid functionality. Chelation of metal co-factors have been
implicated for diketo acids-based inhibitors (Grobler et al.,
2002; Pais et al., 2002; Long et al., 2004; Marchand et al.,
2003; Maurin et al., 2003) and proposed for some other
related classes of inhibitors (Neamati et al., 1998, 2001,
2002; Zhao et., 1997, Ouali et al., 2000). In this context the
lack of activity demonstrated by the isoxazole derivatives
supports these assumptions.
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