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Abstract. By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in
the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite
strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt’s Gaussian
correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived as a corollary,
and it is in fact extended to a wide class of radially symmetric measures.

Résumé. En utilisant des arguments géométriques élémentaires, on démontre des inégalités de corrélation pour des mesures de
probabilité à symétrie radiale. Plus précisément on montre que, parmi la famille des ensembles width-decreasing, le ratio de
corrélation est minimisé par des bandes. Comme les ouverts convexes symétriques appartiennent à cette famille, on retrouve
comme corollaire le résultat de Pitt sur la validité de la conjecture de corrélation gaussiennne en dimension 2, qui est étendue dans
ce papier à une large classe de mesures à symétrie radiale.
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1. Introduction

We address the minimization of the correlation ratio of a radially symmetric probability measure μ on R
2, providing

in particular a new and elementary proof of Pitt’s correlation inequality for the planar Gaussian measure. Let us say
that a set S ⊂ R

2 is a strip (symmetric with respect to the origin) if there exist ν ∈ S
1 and h > 0 such that

S = {
x ∈ R

2: |x · ν| < h
}
.

Two strips S and S′ are orthogonal if they are associated to orthogonal vectors ν and ν′ in S
1. Next we introduce the

family of width-decreasing sets as the class of those planar, open sets, which are symmetric with respect to the origin,
which contain the origin, and whose angular-length (roughly speaking) decreases at least as the angular-length of a
strip. Precisely, if we set Br = {x ∈ R

2: |x| < r}, then an open set E is a width-decreasing set if 0 ∈ E, x ∈ E implies
−x ∈ E, and, for every r > 0 such that 0 < H 1(E ∩ ∂Br) < 2πr we have

H 1(E ∩ ∂Bs) ≤ H 1(S ∩ ∂Bs) ∀s > r,

provided S is a strip with H 1(S ∩ ∂Br) = H 1(E ∩ ∂Br). We are thus in the position to state our main result.
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Theorem 1. Let μ be a radially symmetric probability measure on R
2. If E and F are two width-decreasing sets

in R
2, then there exist two orthogonal strips SE and SF such that

μ(E ∩ F)

μ(E)μ(F )
≥ μ(SE ∩ SF )

μ(SE)μ(SF )
. (1.1)

In other words, the correlation ratio of μ is minimized, among pairs of width-decreasing sets, over pairs of orthogonal
strips.

Remark 1. Let Kn denote the family of open, convex sets in R
n, n ≥ 2, which are symmetric with respect to the origin.

Theorem 2, in the Appendix, shows that every set in K2 is a width-decreasing set. Conversely, non-convex width
decreasing sets are easily constructed: for example, if Rπ/2 denotes the counter-clockwise rotation by ninety degrees
around the origin, E ∈ K2 is an ellipse of axes b > a > 0, and if c = (a + b)/2, then E′ = (E ∩ Bc) ∪ Rπ/2(E \ Bc)

is a width-decreasing set (since E is a width-decreasing set and H 1(E′ ∩ ∂Br) = H 1(E ∩ ∂Br) for every r 
= c)
which, clearly, is not convex.

Let now γn = (2π)−n/2e−|x|2/2 dx denote the standard Gaussian measure on R
n. In the case μ = γ2, Fubini’s theo-

rem implies that the right-hand side of (1.1) is equal to 1. By combining these two facts with Theorem 1, we provide a
new justification of the planar Gaussian correlation inequality (see (1.4) below), that is completely alternative to Pitt’s
semi-group approach [6], and it is based only on elementary geometric considerations. In fact, the tensorization prop-
erty of the Gaussian measure is not necessary to obtain non-trivial correlation inequalities in the plane. For example,
we can deduce from Theorem 1 the following class of correlation inequalities, which extend Pitt’s inequality to a wide
class of radially symmetric probability measures.

Corollary 2. Let V : [0,∞) → R be a Lipschitz function, such that

V ′(r)
r

is decreasing on (0,∞), (1.2)

and that μ = e−V (|z|) dz is a probability measure on R
2. Then

μ(E ∩ F) ≥ μ(E)μ(F ) (1.3)

for every pair of width-decreasing sets E and F in R
2.

Observe that, by choosing E = F = R
2, we immediately check the sharpness of (1.3).

The paper is divided in three sections. In Section 2 we define the class of width-decreasing sets, prove Theorem 1,
and discuss the equality cases in (1.1) under some additional assumption on μ (cf. Remark 3). In Section 3 we prove
Corollary 2, and also address the case when V ′(r)/r is increasing on (0,∞), see Corollary 7 (in particular, we obtain
non-trivial correlation inequalities for all probability measures μ on R

2 of the form μ = cpe−|z|p dz, p > 0). Finally,
in the Appendix we show that every set in K2 is a width-decreasing set (Theorem 2).

We finally recall that the Gaussian correlation conjecture postulates the validity of the inequality

γn(E ∩ F) ≥ γn(E)γn(F ) (1.4)

for every pair of sets E,F ∈ Kn, n ≥ 2. As pointed out to us by Michael Loss, in [2], Theorem 3.2, Christer Borell
proves the n-dimensional Gaussian correlation inequality (1.4) for every pair of sets E,F ∈ Bn, where, by definition,
E ∈ Bn if E is open, 0 ∈ E, x ∈ E implies −x ∈ E, and, for every r > 0 such that 0 < H n−1(E ∩ ∂Br) < nωnr

n−1,
we have

H n−1(E ∩ ∂Bs) ≤ H n−1(C ∩ ∂Bs) ∀s > r,

provided C = {x ∈ R
n: |x − (x · ν)ν| < h} (ν ∈ S

n−1, h > 0) is such that H n−1(E ∩ ∂Br) = H n−1(C ∩ ∂Br). If
n ≥ 3, the classes Bn and Kn do not coincide (nor are contained one into the other), although, in some sense, they
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have a considerably large intersection. Concerning the planar case, it is easily seen that the class B2 coincides with the
class of width-decreasing sets in R

2, so that, in particular, Theorem 2 in the Appendix implies K2 ⊂ B2. In fact, the
inclusion K2 ⊂ B2 is also proved by Borell in Section 4 of his paper. However, for the sake of clarity, we have opted
to include an elementary geometric proof of this result in our appendix. We also remark that the argument used by
Borell in order to prove (1.4) in the class Bn makes essential use of the tensorization property of γn, and thus, in the
planar case, it does not seem suitable to recover the more general Theorem 1.

It is to be noticed that there are many other interesting results about correlation inequalities in various settings, see
for instance Khatri [4], Sydak [8], Schechtman, Schlumprecht, Zinn [7], Harge [3], Kolesnikov [5], and the lecture
notes [1].

2. Width decreasing sets and planar correlation inequalities

In this section we prove Theorem 1. We begin with some definitions and terminology. A probability measure μ on R
2

is radially symmetric if for every Borel set E ⊂ R
2 and θ ∈ (0,2π) we have

μ(E) = μ
(
Rθ(E)

)
,

where Rθ : R2 → R
2 denotes the counter-clockwise rotation around the origin by the angle θ . By a standard dis-

integration argument, we see that if μ is a radially symmetric probability measure and E, F are Borel sets in R
2,

then

H 1(E ∩ ∂Br) ≤ H 1(F ∩ ∂Br) ∀r > 0 ⇒ μ(E) ≤ μ(F). (2.1)

(Here and in the sequel, H 1 denotes the 1-dimensional Hausdorff measure of a set.)
Given an open set E ⊂ R

2 which contains the origin, the (normalized) angular-length function of E, θE : (0,∞) →
[0,π/2], is defined as

θE(r) = 1

4

H 1(E ∩ ∂Br)

r
, r > 0.

Since E is open and contains the origin, the function θE is always lower semicontinuous on (0,∞), and constantly
equal to π/2 in a neighborhood of 0.

We now reformulate the notion of width-decreasing set defined in the introduction in terms of angular-length
functions: we say that E is a width-decreasing set, if E is open, symmetric with respect to the origin, contains the
origin, and, for every r > 0 such that θE(r) < π/2, the angular-length function of E is bounded from above on (r,∞)

by the angular-length function of a strip S such that θE(r) = θS(r), see Fig. 1. More concisely, we ask that, for any
r ∈ (0,∞),

θE(r) <
π

2
⇒ θE ≤ θS on (r,∞) (2.2)

for every strip S with θE(r) = θS(r). It is easily seen that if E is a width-decreasing set, then its angular-length
functions θE is decreasing.

Proof of Theorem 1. Without loss of generality we can assume that both E and F are different from R
2 (otherwise the

result is trivial). Recalling that by assumption E and F are open, we can immediately check that θE + θF : (0,∞) →
[0,π] is a decreasing, lower semicontinuous function satisfying θE(0+) + θF (0+) = π and θE(+∞) + θF (+∞) = 0.
Hence, if we set

r0 = inf

{
r > 0: θE(r) + θF (r) ≤ π

2

}
,

then r0 ∈ (0,∞) and θE(r0) + θF (r0) ≤ π/2. If θE(r0) = π/2 then θF (r0) = 0, and so F ⊂ E. In this case, we set SE

to be any strip such that E ⊂ SE , and we set SF to be any strip orthogonal to SE , so to find

μ(E ∩ F)

μ(E)μ(F )
= 1

μ(E)
≥ 1

μ(SE)
≥ μ(SE ∩ SF )

μ(SE)μ(SF )
. (2.3)
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Fig. 1. Width decreasing sets. If E ∩ ∂Br is a proper subset of ∂Br and S is any strip with H 1(E ∩ ∂Br ) = H 1(S ∩ ∂Br ), then for every s ≥ r

we have H 1(E ∩ ∂Bs) ≤ H 1(S ∩ ∂Bs).

Fig. 2. A square E and a (qualitative picture) of its vertical double-cap symmetrization E∗. E∗ is obtained by rearranging the connected compo-
nents of E ∩∂Br into pairs of opposite circular arcs, with center on the vertical axis. The horizontal double-cap symmetrization E∗ of E is obtained
by a π/2-rotation of E∗.

The case θE(r0) = 0, θF (r0) = π/2 is settled by symmetry. Hence we are left to consider the case that

θE(r0) + θF (r0) ≤ π

2
, 0 < θE(r0) <

π

2
, 0 < θF (r0) <

π

2
. (2.4)

In this case we are going to replace E by its vertical double-cap symmetrization E∗, defined as (see Fig. 2)

E∗ =
⋃
r>0

{
reiθ :

∣∣∣∣θ − π

2

∣∣∣∣ < θE(r)

}
∪

{
reiθ :

∣∣∣∣θ − 3π

2

∣∣∣∣ < θE(r)

}
,

and, simultaneously, to replace F by its horizontal double-cap symmetrization F∗, defined as

F∗ =
⋃
r>0

{
reiθ : |θ | < θF (r)

} ∪ {
reiθ : |θ − π| < θF (r)

}
,

where we write reiθ = (r cos θ, r sin θ). By construction, it is clear that θE = θE∗ and θF = θF∗ . Moreover, by (2.1),

μ(E) = μ
(
E∗), μ(F ) = μ(F∗). (2.5)

Since

H 1(E∗ ∩ F∗ ∩ ∂Br

) = 4 max

{
0, θE(r) + θF (r) − π

2

}
≤ H 1(E ∩ F ∩ ∂Br), (2.6)
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again by (2.1) we have

μ
(
E∗ ∩ F∗

) ≤ μ(E ∩ F), (2.7)

so that

μ(E ∩ F)

μ(E)μ(F )
≥ μ(E∗ ∩ F∗)

μ(E∗)μ(F∗)
. (2.8)

We now observe the crucial fact that the notion of width-decreasing set is invariant under both our symmetrizations,
being a property only of the angular-length function. Hence, both E∗ and F∗ are width-decreasing.

Since the circular slices of E∗ are pairs of opposite vertical caps, the fact that E∗ is a width-decreasing set and the
property 0 < θE(r0) < π/2 force the inclusions

E∗ \ Br0 ⊂ SE, (2.9)

SE ∩ Br0 ⊂ E∗ ∩ Br0 , (2.10)

where SE is the vertical strip such that θSE
(r0) = θE(r0) (see Fig. 3). More precisely, SE = S(ν,h) for

ν = e1, h = r0 sin
(
θE(r0)

)
.

On the other hand, for F we find

F∗ \ Br0 ⊂ SF , (2.11)

SF ∩ Br0 ⊂ F∗ ∩ Br0, (2.12)

where SF is the horizontal strip such that θSF
(r0) = π/2 − θE(r0) (observe that for general width-decreasing sets it

can happen that π/2 − θE(r0) > θF (r0), see Fig. 3). If we now set

Ẽ = (
E∗ ∩ Br0

) ∪ (SE \ Br0), F̃ = (F∗ ∩ Br0) ∪ (SF \ Br0),

then by construction E∗ ∩ F∗ = Ẽ ∩ F̃ (recall that θE(r0) + θF (r0) ≤ π/2, so E∗ ∩ ∂Br0 and F∗ ∩ ∂Br0 are disjoint).
Moreover, by (2.9) and (2.11), E∗ ⊂ Ẽ and F∗ ⊂ F̃ . Thus,

μ(E∗ ∩ F∗)
μ(E∗)μ(F∗)

≥ μ(Ẽ ∩ F̃ )

μ(Ẽ)μ(F̃ )
. (2.13)

Fig. 3. A pair of sets E and F such that E = E∗, F = F∗, and θE(r0) + θF (r0) < π/2. On the right, the set Ẽ = (E∗ ∩ Br0 ) ∪ (SE \ Br0 ).
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Let us now notice the trivial inequality

b

a
≥ b − c

a − c
∀0 < c < b ≤ a. (2.14)

Since θE(r0)+θF (r0) ≤ π/2 we have Br0 \SE ⊂ SF ∩Br0 . Hence, recalling that Ẽ \Br0 = SE \Br0 and SF ∩Br0 ⊂ F̃ ,

Ẽ \ SE = (Ẽ ∩ Br0) \ SE ⊂ Ẽ ∩ SF ∩ Br0 ⊂ Ẽ ∩ F̃ .

Therefore we may apply (2.14) to obtain

μ(Ẽ ∩ F̃ )

μ(Ẽ)μ(F̃ )
≥ μ(Ẽ ∩ F̃ ) − μ(Ẽ \ SE)

(μ(Ẽ) − μ(Ẽ \ SE))μ(F̃ )
= μ(F̃ ∩ SE)

μ(SE)μ(F̃ )
. (2.15)

Similarly, from the inclusion F̃ \ SF ⊂ F̃ ∩ SE and by applying again (2.14), we conclude

μ(F̃ ∩ SE)

μ(SE)μ(F̃ )
≥ μ(F̃ ∩ SE) − μ(F̃ \ SF )

μ(SE)(μ(F̃ ) − μ(F̃ \ SF ))
= μ(SE ∩ SF )

μ(SE)μ(SF )
. (2.16)

Combining together (2.8), (2.13), (2.15) and (2.16), we finally get (1.1), so the proof is completed. �

Remark 3 (A necessary condition for equality in (1.1)). Let us now discuss the sharpness of (1.1) under the assump-
tion that

μ(A) > 0 for every open set A ⊂ R
2.

We claim that, in this case, the inequality sign in (1.1) is strict unless

E∗ and F∗ are orthogonal strips.

To verify this, let us recall that in proving (1.1) we have considered three separate cases: F ⊂ E, E ⊂ F , or else.
In the first case, F ⊂ E, we denoted by SE any strip containing E, by SF any strip orthogonal to SE , and then we
deduced (1.1) from the chain of inequalities (2.3),

μ(E ∩ F)

μ(E)μ(F )
= 1

μ(E)
≥ 1

μ(SE)
≥ μ(SE ∩ SF )

μ(SE)μ(SF )
.

The first inequality sign is strict unless μ(SE \ E) = 0; the second inequality is then necessarily strict (unless we are
in the trivial case E = SE = R

2). Therefore, in the case F ⊂ E, (1.1) is always a strict inequality, and the same holds
true in the symmetric case E ⊂ F . Let us now assume that E�F 
= ∅. In this case, if (1.1) holds as an equality, we
deduce from (2.13) that μ(E∗) = μ(Ẽ) and μ(F∗) = μ(F̃ ). By (2.9), (2.11) and by our assumptions on μ, this implies
that

E∗ \ Br0 = SE \ Br0, F∗ \ Br0 = SF \ Br0 .

At the same time, thanks to (2.15) and (2.16), the equality sign in (1.1) implies μ(Ẽ \ SE) = μ(F̃ \ SF ) = 0, that
finally gives

E∗ = SE, F∗ = SF ,

using (2.10) and (2.12).
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3. Extensions of Pitt’s correlation inequality

In this section we present some classes of radially symmetric measures such that the right-hand side of (1.1) admits
an explicit, non-trivial lower bound, and, in particular, we prove Corollary 2. Precisely, we consider a Borel function
V : [0,∞) → R, we set

f (z) = e−V (|z|), z ∈ R
2, (3.1)

so that f > 0 on R
2, and we work with the measure

μ = f (z)dz. (3.2)

We shall assume as usual that μ is a probability measure on R
2, that is, we shall assume that

2π

∫ ∞

0
e−V (r)r dr =

∫
R2

f (z)dz = μ
(
R

2) = 1. (3.3)

We begin with the following lemma, that, in combination with Theorem 1, will readily imply Corollary 2. In the
following, we will denote the generic point of R

2 as z = (x, y).

Lemma 4. Let f,V,μ be as in (3.1), (3.2), and (3.3). Assume that

f (x, y)f (a, b) ≥ f (a, y)f (x, b) ∀0 ≤ x ≤ a,0 ≤ y ≤ b. (3.4)

Then

inf

{
μ((−x, x) × (−y, y))

μ((−x, x) × R)μ(R × (−y, y))
: x, y > 0

}
= 1. (3.5)

Proof. The fact that the infimum is less than or equal to 1 is easily seen by letting x, y → ∞. Let us now prove the
converse inequality.

We define the function

F(a, b) = μ
(
(0, a) × (0, b)

) = 1

4
μ

(
(−a, a) × (−b, b)

)
, a, b > 0.

Since F > 0, if we set H(a,b) = log(F (a, b)), a, b > 0, thanks to (3.4) we get

∂H

∂a
(a, b) =

∫ b

0 f (a, y)dy

F(a, b)
,

∂2H

∂a ∂b
(a, b) = f (a, b)F (a, b) − ∫ b

0 f (a, y)dy
∫ a

0 f (x, b)dx

F(a, b)2

=
∫ a

0 dx
∫ b

0 [f (a, b)f (x, y) − f (a, y)f (x, b)]dy

F(a, b)2
≥ 0.

In particular, for every y > 0, (∂H/∂b)(·, y) is increasing on (0,∞), so that

H(a,b) − H(a,y) ≥ H(x,b) − H(x,y) ∀0 ≤ x ≤ a,0 ≤ y ≤ b,

that is,

F(a, b)F (x, y)

F (a, y)F (x, b)
≥ 1 ∀0 ≤ x ≤ a,0 ≤ y ≤ b. (3.6)
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Notice now that F is separately increasing in both its variables and

F(x, y) = 1

4
μ

(
(−x, x) × (−y, y)

) ∀0 ≤ x ≤ ∞,0 ≤ y ≤ ∞.

Therefore, by letting a, b → ∞ in (3.6), we get (3.5). �

Proof of Corollary 2. By Lemma 4 we have only to check that f (defined from V by (3.1)) satisfies (3.4), which
amounts in proving that

V
(√

a2 + b2
) − V

(√
x2 + b2

) ≤ V
(√

a2 + y2
) − V

(√
x2 + y2

)
(3.7)

for every 0 ≤ x ≤ a ≤ ∞ and 0 ≤ y ≤ b ≤ ∞. In fact, by (1.2) we have that

y �→ ∂

∂x
V

(√
x2 + y2

) = V ′(
√

x2 + y2)√
x2 + y2

x is decreasing on (0,∞),

from which we easily deduce (3.7). �

Lemma 5. Let f,V,μ be as in (3.1), (3.2), and (3.3), and assume that V is continuous at 0 and that

f (x, y)f (a, b) ≤ f (a, y)f (x, b) ∀0 ≤ x ≤ a,0 ≤ y ≤ b. (3.8)

Then

inf

{
μ((−x, x) × (−y, y))

μ((−x, x) × R)μ(R × (−y, y))
: x, y > 0

}
= e−V (0)

(
∫

R
e−V (t) dt)2

. (3.9)

Remark 6. Notice that, thanks to (3.3), the continuity of V at 0 ensures that
∫

R
e−V (t) dt < ∞.

Proof. The lower bound for the infimum in (3.9) is easily seen by letting x, y → 0+.
To prove the converse inequality, let us define F and H as in the proof of Lemma 4. Having assumed (3.8) in place

of (3.4), instead of (3.6) we now get that

F(a, b)F (x, y)

F (a, y)F (x, b)
≤ 1 ∀0 < x ≤ a,0 < y ≤ b. (3.10)

In particular we find that, whenever 0 ≤ x ≤ a, 0 ≤ y ≤ b,

F(x, b)

F (x,∞)F (∞, b)
≥ F(a, b)F (x, y)

F (x,∞)F (∞, b)F (a, y)

= F(a, b)(y
∫ x

0 f (t,0)dt + o(y))

F (x,∞)F (∞, b)(y
∫ a

0 f (t,0)dt + o(y))
,

that is, letting y → 0+,

F(x, b)

F (x,∞)F (∞, b)
≥ F(a, b)

∫ x

0 f (t,0)dt

F (x,∞)F (∞, b)
∫ a

0 f (t,0)dt
∀0 ≤ x ≤ a, b > 0.

We now let a → ∞ to find that

F(x, b)

F (x,∞)F (∞, b)
≥

∫ x

0 f (t,0)dt

F (x,∞)
∫ ∞

0 f (t,0)dt
∀x, b > 0. (3.11)
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We finally notice that, again by (3.8),

d

dx

∫ x

0 f (t,0)dt

F (x,∞)
= f (x,0)

∫ x

0 dt
∫ ∞

0 f (t, s)ds − ∫ x

0 f (t,0)dt
∫ ∞

0 f (x, s)ds

F (x,∞)2

=
∫ x

0 dt
∫ ∞

0 [f (x,0)f (t, s) − f (t,0)f (x, s)]ds

F (x,∞)2
≥ 0,

so that, in particular,

inf
x>0

∫ x

0 f (t,0)dt

F (x,∞)
= lim

x→0+

∫ x

0 f (t,0)dt

F (x,∞)
= f (0,0)∫ ∞

0 f (0, s)ds
.

Combining (3.11) with

f (0,0) = e−V (0),

∫ ∞

0
f (t,0)dt =

∫ ∞

0
f (0, s)ds =

∫
R

e−V (t) dt,

we conclude the proof of (3.9). �

Corollary 7. Let V : [0,∞) → R be a Lipschitz function such that

V ′(r)
r

is increasing on (0,∞), (3.12)

and μ = e−V (|z|) dz is a probability measure on R
2. Then

μ(E ∩ F) ≥ e−V (0)

(
∫

R
e−V (t) dt)2

μ(E)μ(F ) (3.13)

for every pair of width-decreasing sets E and F in R
2.

Proof. Arguing as in the proof of Corollary 2, we now see that (3.12) implies the validity of (3.8). In particular,
combining Lemma 5 with Theorem 1, we immediately deduce (3.13). �

Appendix: Planar symmetric convex sets are width-decreasing sets

In this section we prove that K2 is a subset of the family of width-decreasing sets. This result was first proved by
Borell [2]. For the sake of clarity, we include here a new elementary geometric proof of this fact.

Theorem 2. A planar convex set, symmetric with respect to the origin, is a width-decreasing set.

We first present two simple lemmas, that shall be used in the proof of the theorem. Let us first note that any strip S

of width h (i.e., S = {x ∈ R
2: |x · ν| < h} for some ν ∈ S

1), satisfies

θS(s) =
{

π/2 if s ∈ (0, h),
arcsin(h/s) if s ≥ h ,

(A.1)

where arcsin : [0,1] → [0,π/2] is the inverse function of the sinus on [0,π/2]. In particular (2.2) is equivalent to
check that, if θE(r) < π/2, then

θE(s) ≤ arcsin

(
r sin(θE(r))

s

)
∀s ≥ r, (A.2)
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since any strip S with θE(r) = θS(r) has width h = r sin(θE(r)). From these remarks we easily obtain the following
criterion for a set to be width-decreasing.

Lemma 8. Let E be an open set in R
2, symmetric with respect to the origin, containing the origin, and such that

θE(r) <
π

2
⇒ there exists δ > 0 such that θE ≤ θS on [r, r + δ) (A.3)

for every strip S with θE(r) = θS(r). Then E is a width-decreasing set.

Proof. It is clear from (A.3) that θE is a decreasing function. In fact, with the help of (A.2), we easily deduce
from (A.3) that, if we set,

D+θE(r) = lim sup
ε→0+

θE(r + ε) − θE(r)

ε
, (A.4)

then, for every r > 0 such that θE(r) < π/2, we have

D+θE(r) ≤ − tan(θE(r))

r
≤ 0. (A.5)

Let now r > 0 be such that θE(r) < π/2, let S be a strip such that θE(r) = θS(r), and set

r0 = sup
{
s ≥ r: θE ≤ θS on (r, s)

}
.

We have to prove that r0 = ∞. Assume on the contrary that r0 < ∞. Since θE is decreasing, θE(r0) ≤ θE(r) < π/2.
By (A.3) (applied with r0 in place of r), there exists δ > 0 such that

θE ≤ θS′ , on (r0, r0 + δ), (A.6)

where S′ is any strip such that θS′(r0) = θE(r0). The strip S has width h = r sin(θE(r)), while the strip S′ has width
h′ = r0 sin(θE(r0)). By (A.5), the map s �→ s sin(θE(s)) is decreasing, therefore

θS′ ≤ θS, on (0,∞). (A.7)

By (A.6) and (A.7) we conclude that θE ≤ θS on (r, r0 + δ), against the maximality of r0. Thus r0 = ∞ and the lemma
is proved. �

Given three points P,Q,R in the plane, we denote by (PQR) the angle at Q defined by the points P and R.

Lemma 9. Given r > 0, θ ∈ (0,π/2) and α ∈ (0,π/2 − θ), let P = reiθ , Q = rei(π−θ−α). The angle β between the
lines LPQ and LOP depicted in Fig. 4, satisfies

β = θ + α

2
. (A.8)

Fig. 4. The situation in Lemma 9.
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Proof. Since |P | = |Q|, the angles (OPQ) and (OQP) are both equal to β . This implies that

2β + (QOP) = π,

from which the formula for β follows immediately observing that

(QOP) = π − θ − (α + θ),

see Fig. 4. �

We are now in position to show Theorem 2.

Proof of Theorem 2. Let E ∈ K2, let r > 0 be such that θE(r) < π/2, and let S = S(h, ν) be any strip of width
h = r sin(θE(r)), so that θE(r) = θS(r). We consider two cases.

Case I. If E ∩ ∂Br consists of a pair of disjoint open circular arcs.
In this case, by convexity, we easily find that, for a suitable ν ∈ S

1, the strip S = S(h, ν) satisfies

S ∩ Br ⊂ E ∩ Br.

Then, again by convexity, E \ Br ⊂ S \ Br , and thus

H 1(E ∩ ∂Bs) ≤ H 1(S ∩ ∂Bs) ∀s ≥ r.

In particular, θE(s) ≤ θS(s) for every s ≥ r , as required.
Case II. If E ∩ ∂Br consists of N ≥ 2 pairs of disjoint open circular arcs.
Thanks to Lemma 8 (see (A.5)), we are left to prove that

D+θE(r) < − tan(θE(r))

r
, (A.9)

where D+θE(r) is defined as in (A.4) (note that we need the strict sign in (A.9) to obtain the validity of (A.3) for
some δ > 0). By assumption, we know that

E ∩ ∂Br =
N⋃

h=1

Ih ∪ Jh, N ≥ 2,

where Ih and Jh are open circular arcs in ∂Br , opposite to each other (i.e. Jh = {−x: x ∈ Ih}). Since E is open,
convex, and symmetric with respect to the origin, we find that, for every ε > 0 sufficiently small

E ∩ ∂Br+ε =
N⋃

h=1

I ε
h ∪ J ε

h , (A.10)

where I ε
h and J ε

h are opposite open circular arcs in ∂Br+ε , with

I ε
h ⊆ r + ε

r
Ih, J ε

h ⊆ r + ε

r
Jh.

We are going to prove (A.9) from the following upper bound for H 1(I ε
h) in terms of H 1(Ih): whenever 1 ≤ h ≤ N ,

H 1(I ε
h

) ≤ H 1(Ih) + ε

r

(
H 1(Ih) − 2r tan

(
θE(r)

)) + o(ε), (A.11)
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as ε → 0. Before coming to the proof of (A.11), let us see why it does imply (A.9). From (A.10) we find that

θE(r + ε) − θE(r) = 1

4

(
H 1(E ∩ ∂Br+ε)

r + ε
− H 1(E ∩ ∂Br)

r

)

= 1

2r

N∑
h=1

(
H 1(I ε

h

)(
1 − ε

r

)
− H 1(Ih)

)
+ o(ε)

≤ 1

2r

N∑
h=1

(−2ε tan
(
θE(r)

)) + o(ε) = −ε

r
N tan

(
θE(r)

) + o(ε).

Dividing by ε and letting ε → 0, we immediately find (A.9) (note that we can achieve the strict sign thanks to the fact
that N ≥ 2).

We are thus left with proving (A.11). Without loss of generality, we can argue on I1 and I ε
1 . Up to a rotation we

can assume that

I1 = {
reit : |t | < θ

}
, J1 = {−reit : |t | < θ

}
,

where θ satisfies

0 < θ < θE(r) (A.12)

(in particular, θ < π/2, and the point P = reiθ belongs to the relative boundary of I1 in ∂Br ). Let now ϕ ∈ (0,π) be
such that the point Q = reiϕ satisfies

Q ∈ (
E ∩ ∂B+

r

) \ (I1 ∪ J1),

where ∂B+
r = ∂Br ∩ {x2 > 0}. It is clear that ϕ cannot be too close to 0 or to π. More precisely, if we define α so that

ϕ = π − θ − α,

the fact that

H 1((E ∩ ∂B+
r

) \ (I1 ∪ J1)
) = r

(
2θE(r) − 2θ

)
,

gives us the estimate

α > 2θE(r) − 2θ, (A.13)

see Fig. 5. Now, let LPQ denote the line passing through P and Q, and let

Pε = (r + ε)eiθ(ε,ϕ), (A.14)

be the point satisfying

Pε ∈ LPQ ∩ ∂Br+ε, lim
ε→0+ Pε = P,

(see Fig. 5). Since E is convex and open, we have the inclusion

I ε
1 ⊂ {

(r + ε)eit : |t | < θ(ε,ϕ)
}
,

from which we derive the following upper bound for H 1(I ε
1 ):

H 1(I ε
1

) ≤ 2(r + ε)θ(ε,ϕ).
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Fig. 5. To prove (A.11) we use the bound H 1(I ε
1 ) ≤ 2(r + ε)θ(ε,ϕ), and we show that θ(ε,ϕ) = θ − εγ + O(ε2), with γ ≥ tan(θE(r))/r .

Let us now estimate θ(ε,ϕ).
Set v = eiθ , w = ei(θ−π/2), and define the points P ′

ε = P + εv, P ′′
ε = P ′

ε + εγ rw, where γ > 0 is such that
P ′′

ε ∈ LPQ. Let us observe that |Pε − P ′′
ε | ≤ Cε2, or equivalently

(r + ε)eiθ(ε,ϕ) = Pε = P + εv + εγ rw + O
(
ε2),

from which we get

(r + ε) tan
(
θ − θ(ε,ϕ)

) = εγ r + O
(
ε2),

see Fig. 5. Hence, using that tan(δ) = δ + O(δ2) for δ small, we easily obtain

θ(ε,ϕ) = θ − εγ + O
(
ε2).

Now, if we define β = (P ′
εPP ′′

ε ), then we have γ r = tan(β), and by Lemma 9

β = θ + α

2
.

By (A.13), this implies the crucial estimate

γ ≥ tan(θE(r))

r
. (A.15)

Collecting all together and recalling that H 1(I1) = 2rθ , we finally obtain

H 1(I ε
1

) ≤ 2(r + ε)θ(ε,ϕ) = 2(r + ε)(θ − εγ ) + O
(
ε2)

= 2rθ + ε(2θ − 2rγ ) + O
(
ε2)

= H 1(I1) + ε

r

(
H 1(I1) − 2r2γ

) + O
(
ε2),

which combined with (A.15) leads to (A.11), and hence to the proof of the theorem. �
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