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Abstract—On Electrical and Hybrid Vehicles (EVs, HEVs),
energy is stored in accumulators, mainly electro-chemical batter-
ies. A reliable and cost effective management of energy storage
system is a key point for the development of such devices,
their durability and for vehicle performance optimization. This
requires the accurate estimation of the battery state over time
and in a wide range of operating conditions. The battery state
is usually expressed as State Of Charge (SOC) and State Of
Health (SOH). Their estimations requires an accurate model
to represent the static and dynamic behaviors of the battery.
This paper presents a model adaptive Unscented Kalman Filter
(UKF) method to estimate online SOC of Li-ion batteries. The
proposed approach uses a Recursive Least Squares method to
update the UKF model parameters during a discharge period.
The effectiveness of the method has been verified based on real
data acquired from five LiFePO4 battery packs installed on a
working EV.
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I. INTRODUCTION

The development of electrical mobility systems is a fun-
damental topic for european research project, for exam-
ple ”Smart, Green and Integrated Transport” in Horizon
2020. Monitoring and management of energy accumulators
(rechargeable batteries) for EV is one of the main themes of
research and industrial development. Smart energy manage-
ment defines the relationship between cost and quality of EV;
it is fundamental to define weight, reduction of space, and in
conclusion an appropriate safety level. Today, lithium batteries
have almost replaced the lead acid batteries. Indeed a lithium
cell should accumulate an higher energy and it should deliver
an higher power than lead acid cells. Furthermore lithium cells
have a longer cycle life and have a better environmental impact
than lead acid cells. Battery Management System (BMS) is the
main control system: it is usually used to enhance lithium bat-
tery performance and to work in recommended SOC window,
consequently to avoid over-voltages and under-voltages and
to work in its safe operating temperature range. To improve
battery state estimation accuracy, BMS should be able to
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Fig. 1. Various battery model typologies are compared between model
accuracy and computational cost.

simulate internally the charge and discharge processes using
a battery physical model. There are a large number of models
in literature, as shown in Fig. 1. Thevenin equivalent circuit
model of cell should solve the compromise between com-
putational cost and accuracy to simulate discharging process
and its electrical properties. This model is described through
a system of differential equations, thus a dynamic systems,
where internal state evolution (SOC is a state component)
of system should be monitored. Kalman Filter is the model-
based observer which estimates state of system minimizing
the state mean square error. However parameters of electric
battery model are not stationary, but their values depend on
actual battery operative conditions. Therefore a second filter
which identifies the online parameters of the battery model
is used. Finally, the model adaptive Unscented Kalman Filter
(UKF) [1]) method is shown in this work for online SOC
estimation and model’s parameters identification. Main filter’s
task consists of three basic steps:

• Acquisition of current and voltage data delivered by the
battery.

• Upload adaptive model using Recursive Least Squares
parameter identification method.

• Estimation SOC of battery model using UKF.

This work is part of the OBELICS project which has received funding from
the European Unions Horizon 2020 research and innovation programme un-
der grant agreement No. 769506.
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Every step will be described in the next sections.

II. BATTERY MODEL

In this work, battery model is represented by an electrical
equivalent circuit of 1st order (see Fig. 2), which is composed
by the following components in series:
• Thevenin’s Open Circuit Voltage (OCV): it’s repre-

sented by an ideal voltage source.
• Internal resistance (Rint): it represents the voltage drop

of the battery when it delivers/absorbs current at the load.
• One RC group (R1, C1): it represents the electrical

dynamic behaviors of the battery, through a 1st order’s
exponential transient.

The OCV value depends on the SOC of the cell, and the
analytic function that relates OCV and SOC can be obtained
in order that it approximates the cell discharge curve in
analysis. Cell discharge curve is usually provided by the
manufacturer. Accurate calibration of the OCV-SOC curve
is more important for the SOC estimation using the Kalman
filter [3]. Internal resistance Rint value represents the voltage
drop of the cell when it supplies/absorbs current at the load.
This parameter defines battery performance and its state of
health (SOH): maximum available charge/discharge currents
and power, battery efficiency are predicted on the basis of Rint
estimation [2]. One RC group is used to represent the long-
term voltage relaxation dynamics [3]. In particular, RC group
describes the ion diffusion dynamics in the cell’s electrolyte;
further second RC group would describe the electron diffusion
dynamics (faster) on the cell’s electrodes, but in this work only
one RC group is used. The time-continuous cell model in the
state space is described by (1):

˙SOC(t) = − i(t)

36Cnom

v̇1(t) =
i(t)

C1
− v1(t)

R1C1

V (t) = f(SOC(t))− v1(t)−Rinti(t)

(1)

where OCV (t) = f(SOC(t)) and SOC evolution is simulated
by Ampere-Counting-Method [4]. Then, these equations are
discretized by Eulero’s approximation: let x(t) a continuous
function in time range [tk, tk+1], where k = 0, 1, ..., N ;
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Fig. 2. Electrical equivalent cell model.

Eulero’s approximation considers the following representation
of temporal derivative of x:

ẋ ∼=
x(tk+1)− x(tk)

tk+1 − tk
=
x(tk+1)− x(tk)

T
, (2)

where T indicates the sample time. Combining Eq. (1), (2),
cell electrical model should be described as following time-
discrete dynamic system in the state space xk: xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
(3)

where input and output uk, yk of system (3) are respectively
current and voltage delivered by cell; space’s vector xk =
[SOCk, v1,k]T includes State Of Charge and voltage drop of
RC group; state transition matrix Ak and input-state matrix
Bk are respectively:

Ak = diag([1, e−T/τ1 ]),

Bk = [−T/(36Cnom), R1(1− e−T/τ1)]
(4)

where τ1 is the time constant of RC groups; state-output matrix
Ck and input-output matrix Dk are respectively:

Ck = [f(·),−1], Dk = −Rint (5)

The cell model represented by dynamic system (3) should be
classified as follows:
• Time-Varying (TV): in [4] electrical parameters of

model as Rint, R1, C1 depend on operating conditions
of the cell and the surrounding environment conditions.

• Non-Linear (NL): analytic OCV-SOC relationship is
non-linear.

III. TEST DATA

Five battery packs LiFePO4 with BMS installed on EV
(Isuzu L35) are monitored. Nominal voltage and nominal
capacity of battery pack is respectively 96 Vdc and 72
Ah: it is composed by 30 China Aviation Lithium Battery
(CALB) cells of 3.2 Vdc and 72 Ah connected in series.
BMS acquires voltage and current delivered by battery pack,
internal temperature of battery pack and calculates SOC every
5 seconds (T = 5s).

Fig. 3. Cell discharge curve of LiFePo4 cell (CALB).



Battery data-set are sent on CANbus to vehicle’s data-
logger and memorized on micro SD (Fig. 4); further
information is provided in [5]. Every day, at midnight, battery
pack’s data-set are uploaded to server in FTP, using 3G
cellular network.

IV. ONLINE PARAMETER IDENTIFICATION

A. Arx model

Algorithm for a polynomial and Linear In the Parameters
(LIP) class of models is chosen to identify battery model’s
parameters. Therefore battery model is transformed in an
Auto-Regressive with eXternal input (ARX) model, which is
polynomial and LIP. The first step for using the ARX structure
is the linearization of OCV-SOC relationship around the time-
variant operating point of the cell. Since measurements are
acquired every 5 seconds, the operating point should not
change and SOC value remains constant during identification.
So the OCV-SOC non-linear function is approximated by
linear curve:

OCV = α0 + α1SOC (6)

where α0 and α1 change with operating point. Battery model
(3) should be defined by the transfer function G(z) using Zeta-
Transform, where current input U(z) and voltage output Y (z)
in the frequency’s domain are represented by complex variable
z:

G(z) =
Y (z)− α0

U(z)
=
B0 +B1z

−1 +B2z
−2

1 +A1z−1 +A2z−2
, (7)

Transfer function’s parameters are the following:

B0 = Rint

B1 =
α1 ∗ T

36Cnom
+R1(1− e−Tτ )−Rint(1 + e−

T
τ )

B2 =
−e−Tτ α1 ∗ T

36Cnom
−R1(1− e−Tτ ) +Rinte

−Tτ

A1 = −1− e−Tτ

A2 = e−
T
τ

(8)

Now, transfer function G(z) is transformed in the 2nd order
ARX model at the step k:

Vk = −A1Vk−1 −A2Vk−2 + α0(1 +A1 +A2)
−B0ik −B1ik−1 −B2ik−2 + ξk

(9)

where ξk indicates ARX process disturb, which is modeled as a
white noise with zero mean and finite variance. From equations
in (8), it’s noticeable that 1 + A1 + A2 = 0. This means
that α0 value has not effect on voltage Vk estimation (9),
so on parameter’s identification. In other terms, α0 is simply
an output voltage offset which doesn’t influence dynamics of
battery system.

Fig. 4. Logging batteries data.

B. Recursive Least Square with Forgetting Factor (RLSFF)

Battery model (3) has been transformed in ARX model (9)
which is polynomial and LIP. The parametric identification
criterion with Minimum Error Prediction (PEM) is one of the
best methods for online estimation of parameters of the ARX
model. The prediction error of the voltage measurement yk =
Vk at step k is defined by the following equation:

ξk(θ) = yk − ϕTk θ (10)

ϕk is linear regression vector at step k and θ is parameter
vector. ARX battery model (9) has been transformed in
equation form (10). Parametric identification algorithm PEM
recursively estimates the parameters of vector θ∗ to minimize
the following performance index [6]:

Jλk (θ) =

k∑
t=0

λk−t(yt − ϕTt θt)2 (11)

The squares of prediction errors committed at step k and in
previous instances are weighted by a parameter λ ∈ [0, 1]
called forgetting factor. Performance index (11) has been
chosen so that the terms of cost Jλk are weighted according to
the distance from the current time kT . In this way, parametric
identification algorithm is able to recursively estimate param-
eters effectively by varying of actual operating conditions
of the battery. Algorithm considers more recent cost terms
when λ is smaller. Typical λ values are 0.995, 0.99, 0.98.
Therefore, ARX model’s parameter θ identification is com-
puted at each step k, minimizing actual performance index (9).
Given [ϕk, λ, θ

∗
k−1, φk−1], where estimation error of θk−1 is

represented by the covariance matrix φk−1; acquiring voltage
measurement yk, RLSFF parameter identification algorithm
consists of three simple matrix equations:

Φλ,k =
1

λ

[
Φλ,k−1 −

Φλ,k−1ϕkϕ
T
k Φλ,k−1

λ+ ϕTk Φλ,k−1ϕk

]
(12)

Lλ,k =
Φλ,k−1ϕk

λ+ ϕTk Φλ,k−1ϕk
; (13)

θ∗k = θ∗k−1 + Lλ,k(yk − ϕTk θ∗k−1); (14)



Fig. 5. Data-set of battery pack 1 during a test.

These operations follow a Bayesian estimation approach.
Indeed θ∗k identification is the result of the sum of the
θ∗k−1 identification made in the previous step k − 1 and an
additional information given by the yk measurement. This
last information is acquired at current time instant k and is
weighted by a gain Lλ,k which depends on the covariance
matrix Φλ,k of estimation error which is obtained at step k.
Covariance matrix Φλ,k is defined in [6] as:

Φλ,k=̇

(
k∑
t=0

λk−tϕtϕ
T
t

)−1
(15)

Covariance matrix returns smaller values when the matrix∑k
t=0 ϕtϕ

T
t returns larger values, i.e. when data-set of mea-

sures u[0,k] and y[0,k] is sufficiently informative. It happens
when battery process is in persistent excitement, i.e., when
EV is moving.

C. Results

RLSFF method is used for online identification of Thevenin
circuit model’s parameters (Rint, R1, C1, α1) shown in Fig. 2.
The effectiveness of this algorithm has been verified based
on monitoring of five LiFePO4 battery packs installed on a
working EV in March-April 2017 (43 tests are executed).
Matlab software is used to implement and run RLSFF, based
on current, voltage input data acquired from data-logger, at the
sample time T = 5s. An example of this data-set is shown
in Fig. 5, and results of online parameter identification based
on this data-set is shown in Fig. 6. Despite the manufacture
of five battery packs is the same, we observe that battery
pack’s parameters doesn’t clearly evolve in time with equal
values. The causes are two: BMS master manages the equal-
ization requiring different intensity of current for each battery;
moreover batteries are placed in different positions of vehicle,
consequently they are exposed under different temperatures.
To give a summary of estimations of circuit model parameters,
mean and standard deviation (std) of Rint, R1, τ1 (where τ
is the time constant of RC group) are illustrated, during all
monitoring tests performed in Table I.

TABLE I
SUMMARY OF ELECTRICAL EQUIVALENT BATTERY MODEL PARAMETERS

Rint (mΩ) R1 (mΩ) τ1 (s)
Pack 1 38.72 ± 4.70 4.81 ± 2.69 3.44 ± 0.58
Pack 2 38.76 ± 5.07 4.01 ± 3.08 3.48 ± 0.60
Pack 3 37.98 ± 4.94 4.58 ± 2.04 3.53 ± 0.59
Pack 4 41.21 ± 5.23 5.24 ± 2.45 3.54 ± 0.52
Pack 5 39.67 ± 5.15 4.77 ± 2.24 3.44 ± 0.62

It’s noticeable the importance of RLSFF filter: battery model
parameters vary depending on the environmental conditions
(as temperature) and operative conditions (as SOC, aging,
etc.). From this consideration, it would be required look-up ta-
ble implementations which relate parameters with temperature
and SOC. In particular, for internal resistance Rint, is realized
a surface function Υ(SOC, T ), which returns the value of the
internal resistance Rint in function of the SOC and the internal
temperature T , shown in Fig. 7. This function is obtained using
data acquired from data-logger during monitoring and the
Curve Fitting Toolbox of Matlab. Results obtained indicate that
Rint value increases when temperature decreases and at low
SOC values, justifying electro-chemical behavior of battery,
due in particular to ionic conductivity and the number of
electrical active elements in the electrolyte of each single cell.

Fig. 6. Electrical equivalent battery model parameter identification.

TABLE II
RLSFF PERFORMANCE (RELATIVE TO 96 Vnom BATTERY PACKS).

mean RMSE (%) std RMSE (%)
Pack 1 0.169 % 0.058 %
Pack 2 0.175 % 0.062 %
Pack 3 0.167 % 0.066 %
Pack 4 0.166 % 0.053 %
Pack 5 0.169 % 0.058 %



Fig. 7. Analytical function Υ: contour plot.

Finally, the effectiveness of RLSFF is evaluated performing
100 Montecarlo trials for each test, varying initial conditions
of estimated model’s parameters (Rint, R1, C1). Root Mean
Square error moments (mean and standard deviation) are
computed for each pack, shown in Table II.

V. MODEL ADAPTIVE KALMAN FILTER

A. Presentation
BMS needs to have accurate estimation of SOC. In battery

system (3), it’s represented as an element of state vector
xk. Unscented Kalman Filter (UKF) is an optimum observer
for non-linear systems, which follow a Bayesian estimation
approach. Assuming that equations of battery model (3) are
influenced by the process and measurement noise (respectively
wk, vk), and their properties are as follows: xk+1 = Akxk + Bkuk + wk

yk = Ckxk + Dkuk + vk

wk ∼ N(0,Qk � 0), vk ∼ N(0,Rk � 0),
wk ⊥ vk ⊥ x0

(16)

From previous section, battery model parameters are not
stationary; consequently UKF algorithm recursively computes
SOC estimation after that battery adaptive model is uploaded
using RLSFF filter.

B. Unscented Kalman Filter (UKF)
Unscented Kalman Filter uses the same framework of

Kalman Filter for linear systems, and it replaces the tedious
linearization method of non-linear function in an equilibrium
point from the Extended Kalman Filter (EKF) with a deter-
ministic sampling method of the equilibrium point distribution.
Unscented Transform function (UT) is used to propagate
the random variable moments of equilibrium point (mean
x̂, covariance matrix Px) through the non-linear function of
battery model. Given the variable random xk, which mean
and covariance matrix are known: x̂k = E[xk] = [SOCk, v1,k]T

Px,k = E[(xk − x̂k)(xk − x̂k)T ]
(17)

UT approximates the variable random distribution with a finite
number of samples, called σ−point. In [1] it is shown that n+1
σ−points are sufficient, even if, for symmetry reasons, usually
2n+1 are used, indicated with xi for i = −n, ..., 0, ..., n, with
relative weights wi. The equality of mean and covariance of
distribution sampled by the σ−point with mean and covariance
of xk imposes the following equations:

x̂k =
n∑

i=−n
wixi

Px,k =
n∑

i=−n
wi(xi − x̂k)(xi − x̂k)T

(18)

Therefore, σ−point which sample distribution of battery
model state xk are generated by equations in (18). In literature
there are many approach for σ−point generation [1]. Given
non-linear transformation yk = g(xk), i.e.:

xk ∼ (x̂k,Px,k)
g(·)−−→ yk ∼ (ŷk,Py,k) (19)

UT function propagates σ−point through non-linear function:

yi = g(xi), i = −n, ..., 0, ..., n (20)

From last equation, mean, covariance and cross-covariance
matrix moments of output yk distribution are approximately
computed by following equations:

ŷk =
n∑

i=−n
wiyi

Py,k =
n∑

i=−n
wi(yi − ŷk)(yi − ŷk)T

Pxy,k =
n∑

i=−n
wi(xi − x̂k)(yi − ŷk)T

(21)

In this work, battery model (16) presents non-linear function
in the output equation, exactly the OCV-SOC curve shown
in Fig. 3. As already mentioned, Unscented Kalman Filter
uses the same framework of Kalman Filter for linear systems;
consequently the UT function is used in the classical Kalman
correction phase:

x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

Px,k|k = Py,k|k−1 − LkPxy,k|k−1

(22)

where the moments of battery model voltage
[ŷk|k−1,Py,k|k−1,Pxy,k|k−1] and Kalman gain matrix Lk
are computed using UT function and the OCV-SOC
non-linear curve, processing the previous state prediction
[x̂k|k−1,Px,k|k−1].

C. Results

Model adaptive Unscented Kalman filter (defined RLSFF-
UKF) is composed by the RLSFF filter which, acquiring each
sample time kT current (ik) and voltage (vk) data delivered
by the battery, identifies and uploads battery model (16) to
UKF, which computes online SOC estimation.
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TABLE III
SUMMARY OF SOC ESTIMATION RESULTS COMPUTED BY RLSFF-UKF.

max. SOCerror mean SOCerror

(mean %) (std %) (mean %) (std %)
1.23 % 0.53 % 0.52 % 0.33 %

Matlab software is used to implement the filter and estimation
of the state evolution is elaborated based on current, voltage
acquired from data-logger, at the sample time T = 5s.
Performances of model adaptive UKF are evaluated computing
maximum and mean absolute of SOC error, i.e. the difference
between SOC estimated by RLSFF-UKF and SOC calculated
by vehicle’s BMS. These results in summary form (mean, std)
are shown in Table III, for battery pack 1, during March-April
2017 (43 tests are executed).

VI. CONCLUSIONS

The model adaptive Unscented Kalman filter has been
applied to the identification of the battery parameters and
SOC estimation. The battery has been modeled by a Thevenin
equivalent electrical model, which should solve trade-off be-
tween accuracy and computational complexity in simulating
electrical battery behaviors. Then, a model-based observer has
been synthesized and implemented on Matlab. This filter is
composed by two filters in series: a recursive least squares
with forgetting factor (RLSFF) filter which estimates online
parameters and uploads during each sample time electrical
battery circuit, in order that Kalman Filter (exactly UKF)
recursively estimates model states, as SOC. Performances of
the proposed filter have been verified based on monitoring
five LiFePO4 battery packs installed on working EV in
March, April 2017. Results shown in Table II and III proof
optimal performances of the filter. However UKF elaborates
an accurate SOC estimation if OCV-SOC curve provided by
manufacturer is accurate and initial SOC estimation is close
to its exact value. Moreover it’s important to specify that SOC
accuracy of BMS is 5 % due to the low accuracy of current
sensors; so it would be advisable to calibrate the algorithm
on tests carried out in laboratory with ad hoc current sensors.
An example of a similar work is shown in [3]. Despite the
manufacture of five battery packs is the same, in Table I is
noticeable that parameters aren’t exactly equal between each

Fig. 9. Results of model adaptative UKF based on test shown in Fig. 5 (mean
estimation output voltage error 2.9 mV).

battery pack. Indeed BMS master manages the equalization
requiring different intensity of current for each battery; more-
over, batteries are placed in different positions of vehicle,
consequently they are exposed under different temperatures.
In addition, it’s possible that the cells in each battery pack
are slightly different due to manufacturing tolerances. Finally,
it’s noticeable that in Table I parameters are not stationary
but instantly depend by operating and weather conditions of
battery. For example, battery internal resistance increases at
low SOC and when surrounding temperature decreases, as
justified by electro-chemical behavior of it. Possible future
developments are implementation of this algorithm in real
industrial BMS for Lithium-Ion batteries.
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