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A. Thévenot 26, Mattia Tomasoni3,4, Merlijn van Rijswijk 13,28, Michael van
Vliet 14, Mark R. Viant 2,29, Ralf J. M. Weber 2,29, Gianluigi Zanetti 25

and Christoph Steinbeck 30,*

1Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale),
Germany, 2School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United
Kingdom, 3Department of Computational Biology, University of Lausanne, Lausanne, Switzerland, 4Swiss
Institute of Bioinformatics, Lausanne, Switzerland, 5Division of Scientific Computing, Department of
Information Technology, Uppsala University, Sweden, 6Department of Pharmaceutical Biosciences, Uppsala
University, Box 591, 751 24 Uppsala, Sweden, 7Department of Biochemistry and Molecular Biomedicine,

Received: 6 September 2018; Revised: 19 October 2018; Accepted: 20 November 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/2/giy149/5232984 by U

niv D
egli Studi di Firenze , Biblioteca di biologia anim

ale user on 21 February 2019

http://www.oxfordjournals.org
http://orcid.org/0000-0002-4321-0257
http://orcid.org/0000-0002-4851-759X
http://orcid.org/0000-0002-2062-4633
http://orcid.org/0000-0002-7754-7851
http://orcid.org/0000-0001-8494-9595
http://orcid.org/0000-0003-1759-2914
http://orcid.org/0000-0003-3499-8262
http://orcid.org/0000-0001-7871-2073
http://orcid.org/0000-0003-3168-4145
http://orcid.org/0000-0001-9382-3273
http://orcid.org/0000-0002-5358-616X
http://orcid.org/0000-0002-8100-6142
http://orcid.org/0000-0002-6687-7169
http://orcid.org/0000-0002-2323-6847
http://orcid.org/0000-0002-4255-8104
http://orcid.org/0000-0001-9341-8155
http://orcid.org/0000-0002-4137-5517
http://orcid.org/0000-0002-0680-1410
http://orcid.org/0000-0001-6740-9212
http://orcid.org/0000-0002-2096-8102
http://orcid.org/0000-0002-9856-1679
http://orcid.org/0000-0002-7899-7192
http://orcid.org/0000-0002-2187-5426
http://orcid.org/0000-0001-8051-7429
http://orcid.org/0000-0003-4637-3171
http://orcid.org/0000-0003-2895-0406
http://orcid.org/0000-0002-5207-0030
http://orcid.org/0000-0002-4663-5613
http://orcid.org/0000-0002-0667-4490
http://orcid.org/0000-0001-9853-5668
http://orcid.org/0000-0001-6172-0368
http://orcid.org/0000-0002-6713-2214
http://orcid.org/0000-0002-8621-8689
http://orcid.org/0000-0002-2195-8264
http://orcid.org/0000-0001-8604-1732
http://orcid.org/0000-0001-5306-5690
http://orcid.org/0000-0002-7937-9249
http://orcid.org/0000-0002-8083-2864
http://orcid.org/0000-0001-8014-6648
http://orcid.org/0000-0003-1019-4577
http://orcid.org/0000-0002-1067-7766
http://orcid.org/0000-0002-5034-5766
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0002-8796-4771
http://orcid.org/0000-0003-1683-7350
http://orcid.org/0000-0001-6966-0814
http://creativecommons.org/licenses/by/4.0/


2 PhenoMeNal

Universitat de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas
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Abstract

Background: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s
metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many
other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data
repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes
incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution. Findings:
PhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up
Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into
the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as
Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration
framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces
Galaxy, Jupyter, Luigi, and Pachyderm. Conclusions: PhenoMeNal constitutes a keystone solution in cloud e-infrastructures
available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through
easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and
automating software installation and configuration and through ready-to-use scientific workflow user interfaces,
PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data
analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been
tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of
the infrastructure to other application areas and ‘omics research domains.

Keywords: metabolomics; data analysis; e-infrastructures; NMR; mass spectrometry; computational workflows; galaxy; cloud
computing; standardization; statistics
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Findings
Background

The field of metabolomics has seen remarkable progress over
the last decade and has enabled fascinating discoveries in
many different research areas. Metabolomics is the study of
small molecules in organisms that can reveal detailed insights
into metabolic biochemistry, e.g., changes in concentrations
of specific molecules, metabolic fluxes between cells or com-
partments, identification of molecules that are involved in the
pathogenesis of a disease, and the study of the biochemical phe-
notype of animals, plants, and even soil microorganisms [1–3].

The principal metabolomics technologies of mass spectrom-
etry (MS) and nuclear magnetic resonance spectroscopy (NMR)
typically generate large datasets that require computationally
intensive analyses [4]. Biomedical investigations can involve
large cohorts with many thousands of metabolite profiles and
can produce hundreds of gigabytes of data [5–8]. With such large
datasets, processing becomes impracticable and unmanageable
on commodity hardware. Cloud computing can offer a solution
by enabling the outsourcing of calculations from local worksta-
tions to scalable cloud data centers, with the possibility to allo-
cate thousands of central processing unit (CPU) cores simulta-
neously. Furthermore, cloud computing allows for resources to
be instantiated on-demand (CPUs, random access memory, net-
work, storage) and allows access to computational tools in the
form of microservices that can dynamically grow or shrink.

MS and NMR data processing usually involves selection of
parameters (that are often specific to the analytical instrumen-
tation), algorithmic peak detection, peak alignment and group-
ing, annotation of putative compounds, and extensive statistical
analyses [9, 10]. Many open-source tools have been developed
that address these different steps in data processing and analy-
sis. These tools, however, usually come with their own software
dependencies, resource requirements, and scripting languages.
As a consequence, configuring and running them is often com-
plicated, especially for researchers who are untrained in com-
puter science [4]. Furthermore, many tools require users to in-
put parameters that can significantly affect results and perfor-
mance, and reporting of these parameters is not always clear
[11].

A number of infrastructures and integration efforts have
been initiated in the past five years, including metabolomics
data repositories with a global scope [6, 12], platforms for re-
producible workflow analysis [13, 14], as well as initiatives to
integrate and coordinate data standards [15]. Simultaneously,
multiple networks of service centers such as the international
Phenome Centers [16] and MetaboHub [17] have formed with
the goal to facilitate the acquisition, processing, and analysis of
metabolomics data [6–8] at ever increasing scales.

Currently, several web-based metabolomics data processing
platforms are available. XCMSOnline provides a platform based
on XCMS for downstream data analysis, visualization, data shar-
ing, and access to Metlin to facilitate metabolite identification
and pathway analysis [18]. MetaboAnalyst presents a wide va-
riety of data processing and analysis tools including statistical
analysis, time-series analysis, functional analysis, and pathway
analysis [19]. Workflow4Metabolomics is based on Galaxy and
provides various metabolomics processing workflows, including
NMR [13, 20]. These common tools for analyzing metabolomics
data provide web-based graphical user interfaces (GUIs) with dif-
ferent functionality.

Here, we present PhenoMeNal (Phenome and Metabolome
aNalysis), a unique, easy-to-use, complete, robust, and per-

CloudComputer

Public DataSoftware tools

ScientistsAnalysisPrivate Data

Figure 1: Conceptual design of the PhenoMeNal cloud e-infrastructure, which
brings compute to the data for any large number of data scientists.

formant cloud e-infrastructure that provides a large suite of
standardized and interoperable metabolomics data processing
tools as a complete data analysis solution. In contrast to cur-
rent metabolomics processing platforms, PhenoMeNal provides
Infrastructure-as-a-Service (IaaS) and seamlessly integrates a
wide array of existing open-source tools.

A major advantage over other platforms is that PhenoMe-
Nal make it possible to instantiate many different services in
the cloud and provides a number of standardized, automated,
and published analysis workflows in the user interfaces Galaxy,
Jupyter, Luigi, and Pachyderm (Fig. 1). Moreover, the PhenoMe-
Nal e-infrastructure can be easily deployed onto public and pri-
vate cloud environments and can be configured elastically to fit
into any cloud-based environment, thus enabling scalable and
cost-effective high-performance metabolomics data analysis in
a way that hides the technical complexity from the user. Phe-
noMeNal further facilitates reproducible analyses through auto-
mated, sharable, and citable workflows.

Overview

The features of the PhenoMeNal e-infrastructure are encapsu-
lated as a cloud research environment (CRE). The PhenoMe-
Nal CRE can be instantiated on major commercial public cloud
providers, including Amazon web services (AWS) and Google
cloud platform (GCP), as well as OpenStack-based private clouds
and in custom environments. Technical complexity is hidden
from the users, simplifying setting up the cloud infrastructure
for administrators (Fig. 2).

From a web-based portal, users can deploy the CRE, which in-
cludes several web services and software tools (Fig. 2). Data can
be processed directly in the e-infrastructure without the need to
install additional software. Scientific workflows can be executed
via user-friendly web-based platforms such as Galaxy, as well as
programmatic interfaces and notebooks. Each service has been
supplied with a rich source of documentation and training ma-
terial to assist researchers.

The PhenoMeNal Portal
The PhenoMeNal Portal [21] allows users to deploy, manage, and
delete PhenoMeNal CREs simply through a web interface. De-
ployments to major commercial cloud platforms (AWS and GCP)
as well as OpenStack, an open-source cloud platform, can be
made using an easy-to-follow wizard (Fig. 2). OpenStack deploy-
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4 PhenoMeNal

Figure 2: Screenshots of creating and using the PhenoMeNal cloud e-infrastructure. First, log in with ELIXIR to the cloud research environment (CRE) portal. Second,

select a public or private cloud provider. After entering cloud credentials and setting up parameters in the dedicated portal, the deployment of the PhenoMeNal e-
infrastructure into the cloud environment can be made. Third, in the PhenoMeNal Portal app library there are several services ready to be deployed and used in the
set-up infrastructure. Fourth, dedicated web services such as Galaxy are readily available in the cloud e-infrastructure. All steps can be operated from an easy-to-use
web interface that is accessible from any standard web browser.

ments can be deployed behind clinical firewalls, which is espe-
cially pertinent when dealing with sensitive (i.e., patient) data.

The PhenoMeNal public instance allows users to test-run
a CRE without the need to deploy on a cloud platform. It can
be deployed and accessed through the portal. Once credentials
for users have been generated, analyses can be run through a
Galaxy instance containing the tools and workflows present in
any deployed CRE. The portal also includes user and developer
documentation, workflow tutorials, and links to training videos.

Scientific workflows
A scientific workflow is a set of computational steps that are car-
ried out to process and analyze data [22]. Usually, a workflow
is comprised of several linked software tools that are each exe-
cuted during a particular step of the workflow. In order to man-
age and automate scientific workflows, in PhenoMeNal the well-
established dedicated workflow management system Galaxy

can be deployed, which presents the user with an easy-to-use
graphical user interface as well as providing a programmatic in-
terface [20, 23]. Galaxy facilitates collaborative exchange, repro-
ducibility, and traceability of data analysis by enabling users to
share entire workflows and analysis histories [24]. In addition
to Galaxy, programmatic executable notebooks (Jupyter) and the
workflow tools exposed as programmatic interfaces Luigi and
Pachyderm are also supported [25].

In order to cover typical use cases in metabolomics and to il-
lustrate the usage and applicability of given analytical pipelines
and software tools, five representative scientific workflows are
available in the PhenoMeNal Galaxy (Table 1), each having dif-
ferent computational demands and purposes. More than 250 in-
dividual modules have been integrated in Galaxy (see the sub-
section Scientific Workflows in the Methods section).
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Table 1: List of workflows that are representative for their respective metabolomics domains (identification in NMR, Fluxomics, Annotation,
and identification in MS and eco-metabolomics)

Workflow name Description Reference

1D NMR Processes 1D NMR experiments from raw data to a data matrix required for
visualization and statistical analysis, building on nmrML and NMRProcFlow. The
automatic workflow is based on the MTBLS1 dataset, describing urinary changes in
type 2 diabetes in humans.

[26, 27, 28]

Fluxomics Quantifies steady-state fluxes following 13C metabolic flux analysis. The workflow was
first based on the analysis of the MTBLS412 dataset with 13C tracer data of human
umbilical vein endothelial cells under hypoxia.

[29, 30]

LC-MS/MS Processes, quantifies, and annotates/identifies features in mass spectra using MetFrag
— a tool that annotates molecules from compound databases of tandem mass
spectrometry (MS/MS) spectra. The workflow is based on MTBLS558.

[31, 32, 33]

Univariate and Multivariate
Statistics

Applies univariate and multivariate statistical analysis and illustrates how datasets
may be explored, enabling the identification of variables of interest and the
construction of predictive models. The workflow is based on MTBLS404.

[13, 34]

Eco-Metabolomics Implementation of a resource demanding metabolomics use case in ecology, used in
large field experiments to describe interactions between different species of organisms
in remarkable detail. The workflow is based on MTBLS520.

[35]

ISA-Create-Validate-Upload A workflow to create Investigation, Study, and Assay data model framework-compliant
metadata files based on study design information, augmented with semantic markup
as source, implementing UK Phenome center naming conventions. Following
validation, the workflow also allows visualization of overall study design and
deposition to EMBL-EBI.

Software tools
The Portal App Library [36] shows the software tools packaged
in PhenoMeNal that are available through the CRE deployment
(Fig. 2). The range of software tools available covers several
metabolomics domains, making PhenoMeNal relevant for use in
a wide range of data analysis scenarios. The domains covered
include clinical metabolomics, plant metabolomics, fluxomics,
and eco-metabolomics. Data from both targeted and untargeted
analysis can be analyzed for metabolite profiling and finger-
printing approaches [1, 2]. NMR and MS (liquid chromatogra-
phy coupled with mass spectrometry, gas chromatography cou-
pled with mass spectrometry, direct infusion mass spectrome-
try) data can be processed.

PhenoMeNal also provides tools for data management (e.g.,
via the Investigation, Study, and Assay data model frame-
work [ISA] format and application programming interface
[API]), metabolite feature detection (e.g., XCMS, CAMERA, nmr-
ProcFlow), metabolite identification (MetFrag, BATMAN, Metabo-
Matching), and (bio)statistics (e.g., univariate, multivariate, and
power analyses) (Supplementary Table S1). Tools can be filtered
for functionality, approaches, and instrument (data) types to
readily find the most appropriate software tools. Some tools that
implement specific functionality (e.g., Rnmr1D, which performs
baseline correction of NMR spectra as part of nmrProcFlow) are
available through dedicated Galaxy modules or through soft-
ware containers (Supplementary Table S1).

Study design
PhenoMeNal was designed to use standardized protocols and
software tools and to comply with state-of-the-art dedicated
specifications and data formats across the entire project. De-
velopment was geared toward implementation of open stan-
dards for tracking provenance of both data and metadata gen-
erated by clinical phenotyping projects. In PhenoMeNal, the ISA
model and specifications were implemented using the ISA for-
mat to generate, annotate, validate, and deposit experimental
metadata information of datasets and studies to public reposi-

tories such as MetaboLights [37, 38]. ISA-based metadata track-
ing is used for the different analysis pipelines that are specific
to the distinct metabolomics domains. PhenoMeNal reached na-
tive support for the ISA format by developing a dedicated Galaxy
composite data type. Such component affords direct recogni-
tion of the ISA format by the Galaxy environment, thus ensur-
ing seamless integration with the downstream workflow com-
ponent.

Data deposition
PhenoMeNal encourages the metabolomics data repository
MetaboLights as a primary source of data deposition [39]. Pri-
vate and public datasets are supported, as are download and up-
load to MetaboLights. If the storage in a data repository such as
MetaboLights is not possible, data can be stored locally or in the
cloud e-infrastructure. Access to the data is strictly controlled
and secured. To support data deposition, ISA-based Galaxy mod-
ules are available making it possible to publish and disseminate
scientific results in standard compliant ways.

Reproducibility
One of the challenges of cloud computing is that analyses need
to be run continuously and successfully in different environ-
ments [40]. Specifically, it has to be ensured that, given the same
input, workflows and tools produce identical results regardless
of the underlying environment [4, 40]. When these requirements
are fulfilled, end users can be confident that their data will be
analyzed correctly. PhenoMeNal has implemented three major
testing strategies to ensure technical reproducibility using a con-
tinuous integration framework [41]. Tests were implemented for
the infrastructure components, individual software containers,
and data involved in computational workflows.

Sustainability
PhenoMeNal is part of a number of initiatives (BioMedBridges,
COSMOS, and ELIXIR) to foster the role of metabolomics and to
harmonize experimental data and metadata usage [15, 42]. Col-
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6 PhenoMeNal

laborations were established with EGI [43] and Indigo Datacloud
[44] infrastructure providers and initiatives [45, 46] to ensure that
PhenoMeNal uses technologies that are well supported and en-
sure their widespread usage, continuity, and further develop-
ment. For example, the development of KubeNow and contribu-
tions to the Galaxy and Workflow4Metabolomics community are
essential for PhenoMeNal [47]. Core development will continue
on GitHub and is fostered by collaborations with tool developers.

Dependencies on specific technologies and frameworks were
avoided by focusing on open standards such as ISA-Tab/ISA-
JSON, mzML and nmrML, and widely accepted software [48]. By
being able to deploy PhenoMeNal on multiple types of cloud en-
vironments, lock-ins to specific computing resource providers
are avoided. PhenoMeNal implemented continuous integration
and delivery, validated by extensive testing and with clear main-
tenance responsibilities (see Methods section).

Privacy and security
With human or animal material, the collection, storage, and
analysis of metabolomics data introduce a number of con-
straints due to ethical, legal, and social implications (ELSI) [49].
In particular, data initially derived from human clinical studies
may be identifiable and will require consent for use, usually for
a defined objective, such as diagnosis, or be related to a particu-
lar disease study. Where data is identifiable or pseudonymized,
users can deploy PhenoMeNal on local secure resources, thus
avoiding the export of data. In this scenario, access to the e-
infrastructure should be strictly controlled through local access
and authorization. It is recommended that clinical data be fully
anonymized before analysis in PhenoMeNal [49, 50].

The PhenoMeNal portal provides substantial guidance to en-
able users to comply with ELSI and general data protection reg-
ulation (GDPR) requirements. Users must register in order to use
the individual parts of the e-infrastructure. PhenoMeNal was im-
plemented to use secured and encrypted transport and network
communications.

Documentation and training materials
Extensive user documentation and tutorials are provided via the
PhenoMeNal Wiki page [51]. The Wiki includes detailed devel-
oper resources including information about the PhenoMeNal re-
lease schedule; guidelines for tool, workflow, and portal devel-
opers; continuous integration; and testing. Further documen-
tation is also provided detailing, creating, and managing Phe-
noMeNal CREs and tutorials for the Galaxy modules and pre-
configured workflows, as well as Galaxy tours that provide step-
by-step guidance for inexperienced users.

Community engagement
The PhenoMeNal project is open source and is hosted on GitHub
[52]. Developers can contribute tools to PhenoMeNal and are en-
couraged to do so. To add a tool to PhenoMeNal, it must be con-
tainerized using Docker and then integrated into the build pro-
cess. Detailed documentation is available in the project’s Wiki
for developers who wish to add their tools to PhenoMeNal.

Collaborations with other projects have been actively encour-
aged during the development of PhenoMeNal, including Work-
flow4Metabolomics [13] and the developers of both nmrML and
nmrProcFlow [26]. These collaborations are essential to fostering
greater standardization within PhenoMeNal and to increasing
compatibility with other metabolomics data processing infras-
tructures.

Availability

Information on how to access PhenoMeNal can be found at the
project’s website [53]. The GitHub repository hosts the source
code of all development projects [52]. The project container-
galaxy-k8s-runtime contains all of the developments regarding
Galaxy. The Wiki containing documentation is also hosted on
GitHub [51]. The PhenoMeNal Portal can be reached at [21]. The
public instance of Galaxy is accessible at [54]. Source code and
documentation are available under the terms of the Apache 2.0
license. Integrated open-source projects are available under the
respective licensing terms.

Conclusions

PhenoMeNal has succeeded in increasing the robustness and
coverage of representative metabolomics data processing in
scientific cloud e-infrastructures. The presented cloud e-
infrastructure covers a wide range of analysis pipelines in-
cluding data generation and download, data pre- and post-
processing, (bio)statistics, and result deposition in data repos-
itories. A large effort has been made to introduce lower-
level changes to cloud e-infrastructures (e.g., the cloud de-
ployment software KubeNow) to meet the demands of the
biomedical domain. Furthermore, Galaxy has been enriched
with metabolomics data standards, in particular, the ISA for-
mat for study metadata and mzML and nmrML for acquired data
files, as well as support for Kubernetes. PhenoMeNal has fos-
tered the visibility of new metabolomics tools and has enabled
the development of more sophisticated data analysis workflows.
Our efforts were also guided by feedback from real-life test sce-
narios collected at workshops with users from the clinical do-
main.

PhenoMeNal constitutes a keystone solution in cloud plat-
forms available for metabolomics data analysis. The platform
was designed to deliver optimal performance and functional-
ity for typical use cases in the metabolomics domain. While the
needs of clinicians and researchers in the biomedical and bio-
chemical domains have been targeted, PhenoMeNal is not lim-
ited to a specific domain as the cloud infrastructure, tools, and
workflows can be adapted to other use cases as demonstrated
with the inclusion of the eco-metabolomics workflow. The tech-
nological advancements can be reused in other scientific cloud
environments and could be integrated with solutions from other
‘omics domains in the future.

Methods
Cloud e-infrastructure

The PhenoMeNal CRE is designed as a microservice architec-
ture, with services being implemented as virtual machine im-
ages and software containers. Containers are used to provide
microservices for metabolomics data analysis tools and also
long-running services such as workflow management systems.
A container orchestrator runs containers on top of the scalable
infrastructure. The orchestrator takes a group of machines that
act as a distributed cluster and receives requests for tools as well
as service executions. PhenoMeNal implements various layers
to providea container orchestrator on top of either bare metal
hardware or IaaS given by a cloud provider [55] (Supplementary
Fig. S1).

During the setup process and while PhenoMeNal is deployed,
data storage and CPU limits can be configured and dynamically
scaled to fit any cloud environment. Deployments can be made
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to GCE, AWS, and OpenStack-based private clouds from the Phe-
noMeNal portal. Deployments are also supported from the com-
mand line to Microsoft Azure [56], the European Science Cloud
[57], and local servers (bare metal) [58]; we provide step-by-step
instructions for these solutions.

PhenoMeNal provides IaaS for three different cloud environ-
ments:

“local cloud”: local workstations or bare metal clusters where
data are not allowed to leave the facility.

“public cloud”: the flexible use of commercial cloud providers
such as GCE and AWS.

“shared cloud”: using OpenStack—a free and open-source soft-
ware platform for cloud computing, ideal for custom environ-
ments and research networks.

Software tools

The PhenoMeNal portal has an application library that allows
users to deploy tools as microservices into the cloud infrastruc-
ture (Fig. 2, Supplementary Table S1). The portal is packaged into
frontend and backend engines on top of Kubernetes.

Most software tools in PhenoMeNal are compiled from source
code and use a variety of programming languages. Linux ver-
sions of software tools and user interfaces such as Galaxy are
supported in dedicated encapsulated Docker containers that
are implemented as minimum-sized microservices. PhenoMe-
Nal currently hosts 100 such projects in its GitHub repository
[59] (Supplementary Table S1). Projects are indicated by the trail-
ing Àcontainer-À name and include a ruleset to build and run
the containerized tools, as well as datasets for testing and other
necessary files.

PhenoMeNal provides tutorials for developers who want to
integrate their tools into our e-infrastructure [60].

Scientific workflows

In PhenoMeNal, a number of options are available for running
reproducible and standardized workflows (Table 1).

Galaxy
The Galaxy workflow management system is widely regarded
as one of the most popular scientific workflow platforms [20,
61]. It provides a user-friendly web-based GUI to make it easy
for the end user to configure and run individual modules and
entire workflows without programming experience. Command-
line tools and scripts are encapsulated into modules that are
launched via the web interface. Galaxy also supports more pow-
erful features such as programmatic access through a REST API
and helper libraries to access the running instance of Galaxy
[62].

PhenoMeNal has been able to adapt Galaxy for use with
a microservices-based architecture [31]. To this end, modules
are encapsulated into Docker containers that can be flexibly
launched within the cloud e-infrastructure. Galaxy is available
in all deployed PhenoMeNal CREs and contains more than 250
modules that have been implemented as part of PhenoMeNal.

Six representative metabolomics Galaxy workflows have
been fully integrated into PhenoMeNal (Table 1), and more work-
flows (mzQuality, NMR-BATMAN) are available for testing.

Jupyter
Jupyter, which started its history as the IPython notebook, is the
most popular among the tools commonly referred to as exe-

cutable notebooks or computational notebooks [63]. Jupyter lets
users combine executable code with results from code execu-
tions such as text, tables, and figures. Usually, Jupyter notebooks
are enriched with extended information that explains what the
code does. As a result, they are often used for training material
and for tutorials. Also, computational notebooks can, to some
extent, be used as a way to document code executions and to
make executions more reproducible [64].

Luigi and pachyderm
Luigi is a Python workflow programming library that was origi-
nally developed by the company Spotify. It manages pipelines of
computations primarily on ”big data” systems such as Hadoop
and Apache Spark but also supports local execution [63, 64].
Luigi is a very flexible library that facilitates building complex
pipelines of batch jobs handling dependency resolution, work-
flow management, and visualization.

Similarly, Pachyderm makes it possible to process distributed
data and to keep track of the data from every stage of the
analysis pipeline [25]. With Pachyderm, it is possible to track
the provenance of results and to accurately reproduce scien-
tific workflows. Luigi and Pachyderm are well suited for complex
scientific tasks and are easy to use from the python environ-
ment in Jupyter notebooks without additional integration tool-
ing needed.

In PhenoMeNal, we have extended Galaxy, Jupyter, Luigi, and
Pachyderm in such a way that they can be orchestrated through-
out the cloud infrastructure together with the data analysis
tools themselves [31]. Six important metabolomics workflows
have been fully integrated into PhenoMeNal (Table 1), and more
(mzQuality, NMR-BATMAN) are available for testing.

Reproducibility

Three strategies are realized to ensure technical reproducibility.
They are implemented in the continuous integration (CI) soft-
ware development framework Jenkins [41] which is accessible
at [65]. These strategies are implemented as tests in our Jenkins
and a tutorial guide is available at [66].

� Infrastructure testing: Procedures were implemented to en-
sure that each individual component (e.g., the deploy-
ment process of software containers, resource management,
APIs/application binary interfaces [ABIs]) within the infras-
tructure is interacting correctly with the other components.

� Container testing: Verification that tools, which are packaged
into software containers, build and run correctly in the in-
frastructure. Dependencies within one container and across
several interdependent containers are tested.

� Data testing: The output of tools, which process demonstra-
tion data, is checked against a data set that is known to con-
tain the expected result. This is being done for both individ-
ual tools and for several tools running in a workflow using
the workflow testing tool for Galaxy called wft4galaxy [67].

Standardization

PhenoMeNal has implemented several dedicated Galaxy mod-
ules that directly retrieve and store ISA-Tab data set descriptors
from and to MetaboLights, and can convert between other for-
mats. Native Galaxy composite data types to support ISA-Tab
and ISA-JSON have also been integrated, building upon the ISA
API [38, 48]. The ISA data type allows for the upload of an ISA-
Tab archive (a zip file containing the ISA set of files and raw
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8 PhenoMeNal

Table 2: Overview of the most important FAIR criteria and implementations suggested for PhenoMeNal data, tools and workflows

Data Tools Workflows

(F)indability Indexing in domain relevant
databases (e.g., MetaboLights)

Indexing in domain relevant
software repositories (e.g., the
PhenoMeNal App Library, GitHub)

Indexing in workflow management
systems such as Galaxy (e.g.,
PhenoMeNal, W4M), or libraries
such as [69]

Rich descriptions of metadata
(e.g., ISA-Tab)

Tool descriptions follow the
EDAM ontology

Persistent identifier (e.g., W4M ID,
DOI) and intuitive naming patterns

(A)ccessibility Data access and rights
management based on e.g., data
use ontology (DUO)

Accessible open-source licenses Access to workflow systems can be
configured to be shared or
restricted

(I)nteroperability Standard formats for
experimental metadata
(ISA-Tab/ISA-JSON)

Standardized tool descriptions Standardized workflow format
(e.g., Galaxy GA format, Common
Workflow Language CWL)

Domain specific standards for
raw data (e.g., mzML, nmrML)

Containerization of software
tools

Execution in various software
environments (e.g., through the
use of containers)

OboFoundry vocabularies and
established domain ontologies to
annotate data

EDAM ontology to annotate tools Workflow annotation ontologies
(e.g., Ontology of workflow motifs
for annotating workflow
specifications [70])

(R)eusability Deposition in data repositories
(e.g., MetaboLights) and data
indexing sites (e.g., OmicsDI)

Rich documentation and usage
guides

Rich documentation and tutorials
(e.g., Galaxy tours)

data when available), which is displayed to the users as a single
Galaxy history data set. The integrated Galaxy modules include
a MetaboLights downloader and uploader (for ingestion and sub-
mission), an ISAcreate module for the creation of ISA compliant
archives, modules to explore study metadata through queries on
study factors, ISA-Tab “slicing” where queries are used to select
subsets of data files of interest, as well as format conversion (ex-
port to ISA-JSON and Workflow4Metabolomics [W4M]) and study
metadata validation (Supplemental Table S1).

PhenoMeNal also advanced the specification of the nmrML
standard data format [27] and contributed a dedicated compos-
ite data type for nmrML to Galaxy. nmrML is used extensively
throughout the NMR 1D workflow and conversion from raw for-
mat into nmrML is supported via dedicated Galaxy modules (Ta-
ble 1).

Throughout the entire analysis pipeline, modules of compu-
tational workflows were designed to accept standard formats
such as mzML, XML or CSV whenever possible.

Standardized APIs/ABIs are being used for the programmatic
interfaces as well as for deploying services. To this end, modern
and standardized programming, scripting and meta languages
were selected such as Go, HCL, Python, Shell, XML and YAML
that are widely used in cloud computing.

Reusability

In an ongoing effort, PhenoMeNal is actively advancing the cri-
teria for good data management and stewardship based on find-
ability, accessibility, interoperability and reusability (FAIR) for
good data management and stewardship [68] to be applied not
only to data, but also to software tools and computational work-
flows (Table 2).

Privacy

PhenoMeNal supports fully anonymized data, which cannot
be traced back to individuals in any way [50] and treats

pseudonymized data as identifiable. As pseudonymized data are
anonymous to the investigator, third parties may be able to link
pseudonymized data back to identifiable individuals through
mappings such as a hash or code [49]. In these cases, e.g., in
a hospital environment, users must deploy PhenoMeNal within
a private cloud or bare metal cluster behind their institution’s
firewall.

PhenoMeNal provides guidance on ethical and technical
frameworks to regulate and secure the use of private or sensitive
data [49, 50]. It is possible to combine data and metadata within
an ELSI compliant framework [50] and in such cases users can
follow the example of the European Genome Phenome Archive
(EGA) [71]. In public installations of PhenoMeNal, the ELIXIR pol-
icy on privacy has been implemented within a technically secure
environment to process data [42].

Security

Open-source tools are used throughout the entire e-
infrastructure. This promotes community efforts to discover
and resolve bugs and security issues. The container build
process is steered by the continuous integration (CI) service
Jenkins, which continuously builds the containers and gener-
ates reports. On success and through authentication, container
images are pushed to the PhenoMeNal container registry, which
is publicly available but read-only. Cloud provider credentials
are not stored in the cloud but only on the deployer host. The
Kubernetes cluster running the Jenkins-CI and the container
registry, as well as the portal, runs on a CoreOS container, which
is a self-updatable, cluster-aware system with most portions
being read-only. It reboots nodes sequentially to avoid lack of
availability.

KubeNow is a key component that initializes the cloud in-
frastructure and configures access to it via Cloudflare [72], pro-
viding dynamic Domain Name Services (DNS) and encryption
for all network communication. The flexible implementation of
PhenoMeNal allows the user to decide to not use Cloudflare, in
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which case encryption is disabled. KubeAdm, which manages
the setup of Kubernetes, is not reachable at runtime by default.
The only way to access it is by having access to the private key
stored on the computer on which it was launched. PhenoMeNal
only allows access to standard ports (ssh, http, https, and port
44 for the Galaxy Downloader) and implements a cloud-specific
firewall for all supported cloud providers.

Microservices are designed to be launched on-demand and
terminated after completed analysis. If security issues are re-
ported for the microservices, tool, or dependencies or if incre-
mental security patches are available, new builds are automati-
cally triggered in the CI system and developers and the release
manager are notified to take additional actions if required. Im-
ages are built on a daily basis and tested for deployment to avoid
security patches from introducing any abnormality in the de-
ployment process.

User resources

There are many user resources for both PhenoMeNal users and
developers in the form of documentation, tutorials, and train-
ing videos. The PhenoMeNal Wiki [51] contains detailed doc-
umentation on all aspects of PhenoMeNal, including general
user guides, workflow and tool tutorials, developer documen-
tation, and general information on topics such as security and
the e-infrastructure landscape. The PhenoMeNal portal contains
help pages generated from the Wiki [73], which are categorized
as User Documentation, Developer Documentation, and Work-
flow Tutorials. Interactive Galaxy tours are directly integrated in
Galaxy [74]. Training videos are available at the project’s YouTube
page [75].

Availability of source code and requirements

Project name: PhenoMeNal,
Project home page: http://phenomenal-h2020.eu
Operating system(s): Platform independent
Programming language: Go, HCL, Java, JavaScript, Python, R,
Shell, XML, YAML
Other requirements: Linux, Docker, Kubernetes, Terraform, An-
sible, Helm
License: MIT license for all code written by the PhenoMeNal
project. Individual, Open Source Foundation approved licenses
for all containerized tools.
RRID:SCR 016605

Availability of supporting data

The following MetaboLights datasets are integrated into Phe-
noMeNal and are used to demonstrate the cloud integration
and reproducibility of Galaxy workflows: MTBLS1 (NMR1D), MT-
BLS404 (Uni- and multivariate statistics), MTBLS412 (Fluxomics),
MTBLS520 (Eco-Metabolomics), MTBLS558 (MetFrag). Datasets
are available at https://www.ebi.ac.uk/metabolights. Snapshots
of the code and additional supporting data are available in the
GigaScience repository, GigaDB [76].

Additional files

Supplemental Figure 1: PhenoMeNal implements various layers
to provision containers on top of the e-infrastructure.

Supplemental Table 1: List of external software tools that
were incorporated into PhenoMeNal.
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metabolic fluxes: a taxonomic guide for 13 C fluxomics. Curr
Opin Biotechnol 2015;34:82–90.

31. Emami Khoonsari P, Moreno P, Bergmann S, et al. In-
teroperable and scalable data analysis with microser-
vices: Applications in Metabolomics, Journal: bioRxiv. 2018,
bioRxiv:213603, 1–29 bioRxiv doi:10.1101/213603.

32. Ruttkies C, Schymanski EL, Wolf S, et al. MetFrag re-
launched: incorporating strategies beyond in silico fragmen-
tation. J Cheminformatics 2016;8:3. http://www.jcheminf.c
om/content/8/1/3.

33. Herman S, Khoonsari PE, Tolf A. et al. Integration of mag-
netic resonance imaging and protein and metabolite CSF
measurements to enable early diagnosis of secondary pro-
gressive multiple sclerosis. Theranostics 2018;8:4477–90.
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89 Dührkop K, Shen H, Meusel M, et al. Searching molecu-
lar structure databases with tandem mass spectra using
CSI:FingerID. Proc Natl Acad Sci 2015;112:12580–5.

90 Southam AD, Weber RJM, Engel J, et al. A complete work-
flow for high-resolution spectral-stitching nanoelectrospray
direct-infusion mass-spectrometry-based metabolomics
and lipidomics. Nat Protoc 2017;12:255–73.
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