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The Tesla turbine seems to offer several points of attractiveness when 

applied to low-power applications. Indeed, it is a simple, reliable, and low 

cost machine. The principle of operation of the turbine relies on the 

exchange of momentum due to the shear forces originated by the flow of 

the fluid through a tight gap among closely stacked disks. 

This turbine was firstly developed by Tesla at the beginning of the 20th 

century, but it did not stir up much attention due to the strong drive 

towards large centralized power plants; on the other hand, in recent 

years, as micro power generation gained attention on the energy market 

place, this original expander raised renewed interest. 

The mathematical model of the Tesla turbine rotor is revised in this paper, 

and adapted to real gas operation. The model is first validated by 

comparison with other assessed literature models. The optimal 

configuration of the rotor geometry is then investigated running a 

parametric analysis of the fundamental design parameters. High values of 

efficiency (isolated rotor) were obtained for the optimal configuration of 

the turbine, which appears interesting for small-scale power generation. 

The rotor efficiency depends on the configuration of the disks, particularly 

on the gap and on the outlet diameter, which determines largely the 

kinetic energy at discharge. 
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1. Micro generation and the Tesla Turbine 

In recent years, distributed micro generation of power has become of paramount consideration 

by industries, governments and research institutions. 

One of the main problems of micro generation of power in thermal energy conversion 

applications is related to the expander, as this component often presents high manufacturing costs and 

low reliability. The Tesla turbine seems to tackle these problems. Its simple structure ensures a very 

reliable and low-cost machine. 

The bladeless turbine was first patented by Tesla in 1913 [1]. The first description of the Tesla 

turbine was given in the patent (Fig.1). It can be described as a multiple parallel flat rigid disks 

assembly connected to a rotating shaft. The disks are arranged co-axially in order to maintain a very 

small gap between them. The radial-inflow admission of the working fluid is from one or more 

tangential nozzles, providing a strong tangential component. The working fluid moves from the inlet 



to the outlet radius due to the difference in pressure determined by friction and by the exchange of 

momentum, and exits from openings made on the disks and/or shaft at the inner radius. 

Fig. 1 – Figures from the patent of Tesla, 1913 [1] 

The Tesla turbine did not encounter much success when it was proposed, and eventually it was 

not investigated deeply and further developed for a long time. 

Only in the 1950s Armstrong built an experimental test rig to investigate the performance of the 

disk turbine [2]. He conducted a test campaign, with steam as working fluid and different nozzle 

configurations. A valuable result was the understanding of one of the causes of inefficiency. Indeed, it 

was found that the nozzle flow strongly affects the performance of the turbine. 

After the Armstrong tests the Tesla turbine was not investigated for another 15 years. Only with 

Rice [3], a sound analytic/numerical model, based on the physics of the flow, was developed. The 

radial velocity rises proceeding towards the centre due to the reduction of the flow area. The tangential 

velocity is determined by the local balance of the force components (momentum/friction). The 

mathematical model performed a notable simplification of the Navier-Stokes equations, allowing 

tackling the solution with the first computers available at the time. The main assumptions were to 

consider steady flow of an inviscid incompressible working fluid. Rice also built and tested 6 different 

types of disk turbines, with air as working fluid.  

After Rice’s pioneer work, research on the Tesla turbine was set aside until recent times. Lately, 

new research has flourished on the subject. 

Hoya and Guha [4] designed and built a new test rig for measuring the output torque and power 

of a Tesla turbine. In a following work [5], Guha and Smiley investigated the nozzle recognizing it as 

the source of the major irreversibility according to their test results; they demonstrated that a careful 

design of the nozzle could reduce the nozzle losses by 40-50 %. Also Neckel and Godinho [6] focused 

their research on nozzle geometry. In their research 10 nozzles were designed, manufactured and 

tested with air as working fluid. Their study confirmed that the nozzle is the critical component of the 

turbine and that an adequate design could contribute to increase the overall efficiency of the turbine. 

Carey [7] presented an assessment of the disc turbine for a small-scale application. He 

developed an analytical solution of the governing equations, declaring an achievable isentropic 

efficiency of 75% in optimal design conditions. A complete computational and theoretical modelling 

of the flow inside a Tesla turbine was presented by Carey [8]. In this work, he fully explains the 

advantages and drawbacks of computational and analytical analysis. Furthermore, Carey also 

discusses the advantages of using this expander for green-energy applications. Guha and Sengupta [9, 

10] developed an accurate fluid dynamics model of the turbine, considering individually the role of 



each force (centrifugal, Coriolis, inertial and viscous). Lemma et al. and Guha and Sengupta [11, 12], 

also developed a CFD analysis and a general characterization of the performance of the Tesla turbine. 

The development of a micro Tesla turbine was investigated by Romanin et al. [13]. In this 

study, the experimental data showed that a 1 cm rotor could achieve an efficiency of 36 %. Starting 

from these data, Krishan et al. [14] developed scaling laws and gave recommendations for the 

development of a 1 mm Tesla turbine. Guha and Sengupta also developed a similitude study on the 

flow of the Tesla turbine [15]. The scaling laws were obtained through the Buckingham Pi theorem, 

which lead to the definition of 7 fundamental non-dimensional numbers. A further study of Guha and 

Sengupta [16] demonstrated that the application of the Euler turbomachinery equation is consistent 

only if local velocity mass-averaged values are considered. Recent published work on the Tesla 

turbine deals with the investigation of nanofluids applications [17]; an increase of power output of 

30% appears to be possible when the volume fraction of nanoparticles is increased from 0 to 0.05. 

There are several interesting studies on experimental tests of Tesla turbines and on the 

development of its flow model. However, there still exists a literature gap on the fluid dynamics 

analysis of the rotor for compressible fluids, as well as for real-fluid effects which are likely using 

refrigerants or advanced working fluids utilized for low-power and low-temperature applications. 

Therefore, the principal aim of this study is to build a mathematical model of the rotor in order 

to assess the correct geometry, as well as to assemble a numerical tool to evaluate the performance of 

the Tesla turbine. 

2. Model of the Rotor Flow 

2.1. General Flow Equations and assumptions 

The model for the rotor flow is derived from [3, 7, 9] with some relevant changes: 

 The hypothesis of incompressible flow with constant density is removed; 

 Density – as well as all other thermodynamic functions – is taken as a fluid property 

depending on the local variables (typically, pressure and temperature); 

 A real fluid model is applied (no perfect gas assumptions). 

Because of these assumptions, the equations are solved numerically with fluid properties locally 

evaluated by EES. Furthermore, in order to develop a sound analytical model, additional assumptions 

have been made: 

a) Steady, laminar flow.  

b) The viscous force is treated as a body force acting on the flow at each (r - θ) position. 

c) Two-dimensional flow: 

     ; 

                                ; 

                               . 

d) Radial symmetric flow field, uniform at the inlet (r = r0). The flow field is thus the same 

for any θ, therefore the derivative      = 0 for all flow variables. 

e)         negligible compared to wall friction forces. 

 

 



Taking into account the previous assumptions, the fundamental Navier-Stokes equations in 

cylindrical coordinates are reduced to: 

Continuity 
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Momentum, r-direction 
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Momentum, θ-direction 

  

   

  
 

    

 
    (3) 

Momentum, z-direction 

 
 

 
 
  

  
   

 

(4) 

The integration of the reduced continuity equation (1) results in             . Furthermore, 

knowing the mass flow rate inside each channel, it follows that locally: 

     
   

     
 (5) 

2.2. Formulation of the viscous shear stress 

Considering a fluid element between the two disks defining the flow channel, a control volume 

Ve can be defined with base surface Ae and height b. The fluid wetted area is       . Therefore, 

the hydraulic diameter    is equal to 2b.Consequently, 
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For laminar flow, the wall shear effect can be expressed as a function of a friction factor   and 

of the relative velocity of the flow. Equation (7) displays the expression of the wall shear stress, 

decomposing the relative velocity in its two components. 
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Considering               and         as usual for laminar flow between parallel 

plates: 

  
   

    
 

   

    
 

   

                
 

 
(8) 

So that: 



   
   

  

             
  (9) 

The force resulting from wall friction force is given by the product of the wall shear with the 

wetted area: 

  
     

  
             

  (10) 

The wall friction force has a tangential and a radial component, which influence respectively the 

torque and the radial pressure gradient. 

2.3. Solution of the rotor flow 

Fig.2 shows the local velocity triangle of the fluid element inside the rotor. 

Fig. 2 – Local velocity triangle 

The radial component of the friction force is given by:  

           (11) 

Where β is the angle between relative velocity and the radial direction. The value of        can 

thus be calculated as: 

       
  

 
 

  

             
 

 
(12) 

Substituting (12) in (11), a compact expression of the radial force component is obtained: 

   
     

  
   (13) 

Dividing (13) by the mass of the fluid element between two disks, the body force term in the 

radial direction can be expressed as: 
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Proceeding in the same way for the tangential direction, the wall friction force is given by: 
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(16) 

Similarly, substituting (16) in (15), a compact expression of the tangential force is obtained: 

    
     

  
         (17) 

The body force in tangential direction is thus given by: 

    
  

   
         (18) 

In order to determine the local pressure, (14) is substituted in (2): 
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Using (5), the local derivative          can be expressed as: 
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Finally, substituting (20) in (19) the pressure gradient in radial direction is given by: 
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Likewise, in order to compute the tangential velocity, (18) can be substituted in (3): 
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Obtaining finally: 

   

  
 

             

    
 

  

 
 (23) 

Which determines the profile of   (r). 

2.4. Flow Model Results - Validation 

Equations (21) and (23) were programmed into a two-dimensional (r and  coordinates) EES 

[18] code with a second-order finite difference approximation. In order to validate the model, it was 

decided to run the simulations for the same data documented in [3] and for incompressible fluid. 

  



Table 1. Documented data for air as working fluid from [3] and [7] 

Inlet Rotor Total Temperature 368 K 

Inlet Rotor Total Pressure 101 kPa 

Mass flow rate 0.00194 kg/s 

Inlet Rotor Diameter 0.1778 m 

Revolution per minute 6300 RPM 

The trends of pressure, tangential and radial velocity of the fluid for variable radius are reported 

in Fig.3. The radial velocity increases decreasing the radial coordinate, according to (5). The tangential 

velocity profile is determined by two main effects: the conservation of angular momentum (which 

tends to increase the velocity of the fluid), and viscous forces (which conversely tend to decrease fluid 

velocity). At high xi values, viscous forces are predominant, whereas the conservation of angular 

momentum prevails at low xi values. 

 

Fig.3 Pressure, tangential and radial velocity components versus non-dimensional radius 

Fig.4 shows a comparison of the model results (relative tangential component of velocity) with 

the analytical formulations proposed in [7] and [9].  

 

Fig. 4 Comparison between model and literature; tangential component of relative velocity 
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3. Performance of the Tesla turbine rotor 

3.1. Performance indicators 

In order to assess the performance potential of the turbine, a parametric study needs to be 

performed. The parametric analysis should show the performance as a function of the main design 

variables, which are non-dimensionalized following common practice in turbomachinery [19]. All the 

results obtained in the parametric analysis refer to air as the working fluid. 

Moreover, critical design parameters for the Tesla turbine were identified in the geometrical 

ratios (D1/D0) and (b0/D0); for output conditions critical performance indicators were identified as the 

exit kinetic energy and the absolute flow angle, which should be as low as possible. 

3.2. Overall performance results 

The trend of the rotor efficiency  as a function of (D1/D0) and (b0/D0) is shown in Fig.5. 

 

Fig. 5 Rotor Efficiency  vs D1/D0 and b0/D0 

The rotor efficiency  is only slightly affected by different values of the exit diameter. With 

decreasing D1/D0, the larger kinetic energy at discharge, due to the higher axial component of velocity, 

appears to be somewhat compensated by the larger rotor surface available for momentum exchange 

between the fluid and the disks. 

On the other hand, the (b0/D0) parameter - the non-dimensional gap between two disks - 

strongly affects the efficiency of the rotor. This is due to the influence of the Reynolds number in the 

laminar flow regime, which can be best explained re-arranging its definition and remembering that 
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Similarly, the trend of the load coefficient  versus (D1/D0) and (b0/D0) is shown in Fig.6.  is 

very sensitive to the reduction of (b0/D0); however – differently from rotor efficiency η- it also shows a 
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sensitivity to (D1/D0). The momentum exchange is favoured as the wet area is increased; nevertheless, 

the exit diameter should not exceed a certain limit, the penalty being an increase of the residual 

tangential velocity, leading to higher discharge losses. From the points of view of rotor efficiency  

and load coefficient , values of 0.35 < (D1/D0) < 0.45 and 0.005< (b0/D0) < 0.015 appear 

recommendable. 

An important parameter, strongly influenced by the gap between disks, is the absolute exit angle 

(Fig.7). In order to reduce it and render possible an efficient recovery of discharge kinetic energy, the 

exit fluid angle should be close to axial (1 0). A reduction of the gap between the plates is definitely 

beneficial to this end. The decrease of α for smaller values of b0 is due to the reduction of the 

tangential component, as well as to the increase in the radial component of absolute velocity. The 

reduction of tangential velocity, as can be noted from (23), is due to the increase of viscous 

momentum transfer for small values of b0. On the other hand, the radial velocity increases because of 

the continuity (5). 

 

Fig. 6 Rotor Load Coefficient  vs D1/D0 and b0/D0 

 

Fig. 7 Exit fluid angle α and efficiency of the turbine vs b0/D0, for D1/D0 = 0.44 

The trend of the absolute velocity and of its components with variable gap is displayed in Fig.8. 

The absolute exit velocity has a minimum, determined by opposite trends with b0/D0 of the two 
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components of velocity (radial and tangential). The minimum of the exit kinetic energy Ekin1 

corresponds to maximization of the rotor efficiency. 

 

 

 

Fig. 8 Exit kinetic energy vs non dimensional gap 

As for the influence of the flow coefficient, the absolute exit angle and the efficiency are plotted 

against  in Fig.9. Increasing the flow coefficient, the absolute exit angle decreases. This is due to an 

increase of the radial component of the fluid, which therefore turns the fluid in the axial direction. If 

values of exit flow angles below 50° are sought, then a flow coefficient in the range  = 0.2 should be 

selected; under these conditions, the rotor efficiency is still high – in the range of 0.94. 

Fig.9 α1 and η versus  

The final geometry is summarized in tab.2. 

 

Table 2. Final geometry of Tesla rotor (working fluid = air) 

Mass flow rate     0.00194 [kg/s] 

Rotational speed 6300 [RPM] 

Inlet Mach number 1 

Inlet Diameter D0 0.1778 [m] 

Exit Diameter D1 0.0772 [m] 
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Gap b0 0.00032 [m] 

Absolut exit angle α1 52 [°] 

Power produced for each channel 40.8 [W] 

Exit Mach number 0.1168 

4. Conclusions 

An upgraded description of the Tesla turbine rotor flow was presented and validated against 

similar literature models. The new model includes variable density and applies a real fluid model (no 

incompressible fluid or perfect gas assumptions). Existing experience with prototypes of Tesla 

turbines has always dealt with air or steam as working fluid, so that the capability of modelling general 

fluids looks potentially attractive.  

The model was applied to evaluate the sensitivity of performance to the most relevant design 

variables, that is: D1/D0; b0/D0; and the flow coefficient. The main calculated performance parameters 

analysed are the total-to-static efficiency and the work coefficient.  

The results indicate that the Tesla rotor appears potentially competitive with other types of 

expanders, with special reference to efficiency. 

Nomenclature

A surface, [m
2
] 

b gap between two discs, [m] 

Dh hydraulic diameter, [m] 

  body force per unit mass, [m/s
2
] 

E kinetic energy, [J/kg] 

F force, [N] 

h enthalpy, [J/kg] 
.

m  mass flow rate, [kg/s] 

p pressure, [Pa] 

Q volume, [m
3
] 

r local radius, [m] 

Re Reynolds number (relative flow) 

rpm rotational speed, [rpm] 

T temperature, [°C] 

U tangential velocity, [m/s] 

V absolute velocity, [m/s] 

x non-dimensional radius 

w Relative velocity, [m/s] 

W power, [W] 

 

Greek symbols 

                  absolute flow angle, [°] 

 relative flow angle, [°] 

 friction factor 

                             
     

 total-to-static efficiency (rotor only) 

 dynamic viscosity, [kg/(ms)] 

ν kinematic viscosity, [m
2
/s] 

ρ density, [kg/m
3
] 

τ wall shear stress, [Pa] 

         flow coefficient 

                    
      load 

coefficient 

 rotational speed, [rad/s] 

 

Subscripts and superscripts 

0 rotor inlet value 

1 rotor outlet value 

e fluid element 

i point i 

kin kinetic 

r radial direction 

t time, [s] 

w wetted wall 

z axial direction 

 tangential direction 
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