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Abstract

This paper discusses and compares the best and
most recent local descriptors, evaluating them on in-
creasingly complex image matching tasks, encompass-
ing planar and non-planar scenarios under severe view-
point changes. This evaluation, aimed at assessing de-
scriptor suitability for real-world applications, leverages
the concept of Approximated Overlap error as a means
to naturally extend to non-planar scenes the standard
metric used for planar scenes. According to the eval-
uation results, most descriptors exhibit a gradual per-
formance degradation in the transition from planar to
non-planar scenes. The best descriptors are those ca-
pable of capturing well not only the local image con-
text, but also the global scene structure. Data-driven
approaches are shown to have reached the matching ro-
bustness and accuracy of the best hand-crafted descrip-
tors.

1 Introduction

Local image descriptors constitute the basic layer of
almost all computer vision applications dealing with
point correspondences among several images, encom-
passing object detection [16], image stitching [7], 3D
reconstruction [27] and visual odometry [12]. This has
ensured that the topic remained well alive through the
years, up to the recent advances on both hand-crafted
and data-driven descriptors. The latter, which lever-
age deep learning progress, availability of big data and
modern hardware capabilities, are yielding particularly
promising results.

Several factors influencing descriptor performance
must be taken into account for developing practical
applications. These factors include the nature of scene
content, the image transformations involved, the com-
putational constraints, the requirements in matching
accuracy and robustness. Concurrently with the evo-
lution of descriptor design, better evaluation bench-
marks that can expose both potential strengths and
weaknesses of descriptors are called for. In particu-
lar, adaptability to non-planar scene content and rel-
evant viewpoint changes are the main aspects to con-
sider when defining an effective descriptor evaluation
benchmark, as they reflect the most general real-world
environment.

Well-consolidated benchmarks exist for the evalua-
tion of planar scenes, from the standard Oxford bench-
mark [18, 20] to the more recent HPatches [2]. Here,
the overlap error between local descriptor patches and
their re-projections is used as the error metric, while
ground-truth (GT) information consists just in the ho-
mograhpy transformation between the input images,
which can be estimated in a very accurate and easy
way. Nevertheless, evaluation on planar scenes pro-
vides only a limited insight into overall descriptor prop-
erties. In order to overcome this limitation, bench-
marks exploiting directly or indirectly non-planar en-
vironments have been devised. In the former case, GT
is directly estimated (a) using stereo matching [14]
or Structure-from-Motion [25], (b) through complex
sensor-based system setups [10, 28], or (c) according
to some approximation scheme [5, 23]. On the other
hand, indirect evaluation of local image descriptors is
done (d) by checking the correctness of the output
for a given specific application task, such as object
retrieval [11] or visual odometry [6]. All these solu-
tions have some drawbacks: GT may not be available
for some image region (a,b), can be erroneously esti-
mated (a,c,d) or biased towards the considered appli-
cation (a,d). For example, SIFT was found to give the
best results on evaluations based on Structure-from-
Motion pipelines, that are usually built and optimized
over SIFT itself [25].

In this paper, a comparative evaluation of the best
recent local descriptors is carried out, focusing on im-
age matching tasks. Test images include both planar
and non-planar scenes, the latter being particularly
effective at assessing descriptor suitability for practi-
cal applications. Descriptor performance with planar
scenes is evaluated in terms of overlap error. For non-
planar scenes, the Approximated Overlap error (AO)
metric introduced in [5] was chosen for two main rea-
sons. First, AO takes into account the whole local de-
scriptor patch, thus representing a natural extension
of the overlap error to the more complex non-planar
case. Second, AO was shown to give a very low false
positive rate in GT estimation, thereby not affecting
descriptor ranking order, and to avoid the bias issues
experimented with recent setups.

The rest of the paper is organized as follows. Recent
state-of-the-art local image descriptors are reviewed in
Sec. 2. The planar and non-planar evaluation setups
and datasets are described in Secs. 3 and 4, respec-



tively. Comparative experimental results are discussed
in Sec. 5. Conclusions and future work are outlined in
Sec. 6.

2 Recent State-of-the-Art Local Descriptors

Nowadays, there are mainly two ways of classifying
local image descriptors. The first way is to consider
whether the descriptor uses a priori data knowledge
and is trained according to some machine learning ap-
proach. If this is the case, the descriptor is termed
data-driven, otherwise it is termed hand-crafted. The
second way is to divide descriptors by the data type
used to represent their vector elements. Specifically, if
a single bit per element is used, the descriptor is re-
ferred to as binary, and non-binary otherwise. Binary
descriptors are usually less robust yet faster and more
compact than non-binary ones.

Scale-Invariant Feature Transform (SIFT) [16] is a
quite popular and valid hand-crafted, non-binary de-
scriptor, generally used as baseline for benchmark eval-
uations. SIFT is obtained as the concatenation of the
Gaussian-weighted gradient histograms associated to
the regions into which the keypoint patch is divided,
after being rotated towards the dominant gradient ori-
entation. In the attempt to improve its robustness, sev-
eral SIFT extensions has been proposed over the years.
Among these, RootSIFT [1] and the doubled shifting
Gradient Local Orientation Histogram [3] , in both its
non-binary (sGLOH2) and binary (BisGLOH2) ver-
sions, are considered in the proposed evaluation. Root-
SIFT improves SIFT by employing the Hellinger dis-
tance instead of the Euclidean distance. sGLOH2 and
BisGLOH2 are more effective at handling patch rota-
tions.

Other hand-crafted descriptors considered for
the evaluation are Local Intensity Order Pattern
(LIOP) [31], employing intensity order pooling and
histograms computed on the relative order of neighbor
pixels to achieve rotation invariance, and the Multiple-
Kernel Local-Patch Descriptor (MKD) [24], using al-
ternative kernels for defining histograms. For both
descriptors, optimized data-driven versions exist, ex-
ploiting among others Principal Component Analysis
(PCA) to achieve better matching results while reduc-
ing the associated vector dimensions. These descrip-
tors, denoted respectively as Mixed Intensity Order
Pattern (MIOP) [31] and MKDW , will also be taken
into account.

Binary data-driven descriptors have also been pro-
posed. In particular, Receptive Field Descriptor
(RFD) [9] thresholds regions of the patch gradient map,
where threshold values, positions and sizes of the patch
regions are learned from training data. Two different
RFDs have been included in the evaluation, namely
RFDR and RFDG, making use of rectangular and
Gaussian regions, respectively.

Deep descriptors are also considered for the compar-

ative evaluation. This kind of data-driven descriptors
is built upon Convolutional Neural Network (CNN) ar-
chitectures, generally exploiting triplet loss and hard
negative mining for optimization at the training stage.
DeepDesc [26], L2-Net [29] and HardNet++ [21]
have been included together with some variants. In
particular, BiL2-Net and L2-NetCS denote respec-
tively the binary and center-symmetric versions of L2-
Net [29]. HardNetPS [22] will be evaluated too.
It employs an alternative massive patch dataset for
training, aiming at overcoming the lack of generaliza-
tion ability, as consequence of data insufficiency, com-
mon to all learning-based approaches. The very recent
GeoDesc [17], also in its quantized form here denoted
as GeoDescQ, is also included in the comparison. Dif-
ferently from the previous approaches, this descriptor
also exploits geometric information for network train-
ing.

3 Planar evaluation setup

The setup follows the guidelines described in [19]
with slight changes. More in detail, given two im-
ages I1 and I2 of the same planar scene, keypoints are
extracted using the HarrisZ detector [4]. Descriptors
are then computed from the corresponding normalized
patches, matched in a pairwise way, and sorted accord-
ing to the Nearest Neighbor Ratio (NNR) [16]. The GT
homography H2→1 relates points x1 ∈ I1 and x2 ∈ I2
so that x1 = H2→1x2 in homogeneous coordinates.
The overlap error between two generic regions A and
B of the same image is defined as

ϵ(A,B) = 1− A ∩B

A ∪B
(1)

A match is considered correct if ϵ(E1, E2→1) ≤ t, where
t = 0.5 is a given threshold, E1 ∈ I1 and E2 ∈ I2 are
the two elliptical patches corresponding respectively to
the matching pair elements, and E2→1 is the projec-
tion of E2 onto I1 through H2→1. Notice that, differ-
ently from the original implementation in [19], where
the overlap error is computed by finite approximations,
the exact analytical solution described in [15] is used
in this work for the computation of the overlap error.

Images from the Oxford [18] and Viewpoint [32]
datasets were used. GT homographies are provided as
part of the datasets. The Oxford dataset [18] contains
13 sequences of 6 images. Each sequence shows a planar
scene undergoing one specific transformation among
the following: Scale plus rotation, image blur, illumina-
tion, JPEG compression and viewpoint changes. The
Viewpoint dataset contains only 6 images for 5 different
scenes with various viewpoint changes. Image pairs are
generated by setting the first image of each sequence as
reference I1, and using one of the remaining 5 images
as I2, for a total of (13 + 5)× 5 = 90 image pairs.

Results are compared in terms of mean Average
Precision (mAP), computed as in [8]. The average



Figure 1. Sample image pairs from the (top row)
planar, (middle row) viewpoint only, and (bottom
row) non-planar datasets used in the evaluation.

mAP over all the planar image pairs is considered.
In addition, results with the subset obtained by se-
lecting only the image pairs subjected to viewpoint
changes (referred to as “viewpoint only,” containing
7× 5 = 35 pairs) are reported. This subset represents
the most relevant and challenging kinds of image dis-
tortion. Two sample image pairs for the planar setup
are shown in the first two rows of Fig. 1.

4 Non-Planar evaluation setup

Non-planar evaluation follows the same approach
adopted for the planar case, only replacing the overlap
error with the Approximated Overlap error (AO) [5].
AO extends to surfaces the linear overlap error intro-
duced in [13], defined hereafter for completeness. As
shown in Fig. 2, any tangency relation between the
epipole and a given ellipse is preserved under per-
spective projection (blue). The linear overlap error
is defined as the ratio between the small (light blue)
and the wider (red) segments, both lying on the line
through the points t′1 and t′′1 where the tangents from
the epipole e1 meet the ellipse E1. The epipolar lines
l′2→1 and l′′2→1 in I1 (yellow) correspond to the points
t′2 and t′′2 in I2 where the tangents from the epipole e2
meet the ellipse E2.

AO extends the linear overlap error by observing
that, in addition to epipoles, the correspondences em-
ployed for computing the GT fundamental matrix are
usually available. Given two of such correspondences

Figure 2. Linear overlap error construction (best
viewed in color).

Figure 3. AO construction (best viewed in color).

(see Fig. 3), the associated four tangent points on
the ellipse E1 (orange) define the inscribed P1 (light
blue) and circumscribed Q1 (dark blue) quadrilater-
als. Analogously to the case of the linear overlap error,
the quadrilaterals P2→1 (light green) and Q2→1 (dark
green) can be constructed through the epipolar map-
ping from points in I2 to lines in I1. AO is defined
as

ε =
ϵ(P1, P2→1) + ϵ(Q1, Q2→1)

2
(2)

under the assumption that the scene can be approxi-
mated by piecewise planar patches. For further com-
putational details see [5].

If ellipse E1 correctly matches with E2, but not with
E′

2, a false positive may nevertheless arise when E2 and
E′

2 share, either exactly or approximately, the same
tangent lines through the epipole e1. Even if AO has
been shown to give a very low false positive rate (less
than 5%), that does not affect descriptor ranking in
unsupervised evaluations [5], hereafter a heuristic is in-
troduced that further decreases false positive matches.
Let I1 and I2 be m×n pixel images, and c1 and c2 the
centers of E1 and E2, with flow length ∥ c1−c2 ∥. Con-
sider the set F of flow lengths relative to all the ellipses
in I1 whose centers are inside a radius of min(m,n)/15
from c1. A match is discarded if

∥ c1 − c2 ∥> µ+ 2.5σ (3)

where µ and σ are the median and Median Absolute
Deviation (MAD) over F , respectively. The same pro-
cess is repeated by working on I2 and switching the



Figure 4. Flow vectors of the retained (green)
and discarded (red) matches using the proposed
heuristic for the sample non-planar image pair of
Fig. 1 (best viewed in color).

roles of E1 and E2. An example of wrong matches
discarded by the proposed heuristic is shown in Fig. 4.

For the non-planar evaluation, experimental results
were obtained with the dataset introduced in [3]. This
dataset is made up of 42 different image pairs of non-
planar scenes exhibiting various degrees of viewpoint
changes (a sample image pair is shown in the last row
of Fig. 1). GT fundamental matrices for epipolar trans-
fer and correspondences for constructing approximated
quadrilaterals are provided by the authors. As for the
planar case, the AO threshold is set to t = 0.5 and
results are reported in terms of average mAP.

5 Results

Results for all of the state-of-the-art descriptors re-
ferred to in Sec. 2, some of which are quite recent, are
reported in Table 1. For each descriptor under test, the
table also lists the following characteristics: (1) match-
ing distance (L1, L2, Hamming, or dot product), (2)
class (hand-crafted or data-driven), (3) rotational in-
variance, (4) vector dimension and data type, (5) bib-
liographic reference. The choice of the L1 distance for
SIFT, RootSIFT and LIOP may appear unusual, as
these descriptors are typically matched according to
the L2 distance. Nevertheless, our experiments con-
firmed the result found in [3] that these hand-crafted
descriptors perform better with L1 than with L2. For
descriptors that are not rotationally invariant , local
image patches were rotated according to the SIFT dom-
inant gradient orientation using the VLFeat [30] imple-
mentation. The freely available code from [3] was used
for the computation of the overlap error and AO. For
all descriptors, with the exception of SIFT and Root-
SIFT employing the VLFeat implementation, the code
from their respective authors is used. Notice also that
for the sake of clarity, Table 1 refers to sGOr2h⋆ and

BisGOr2h⋆ matching strategies [3] as sGLOH2 and Bis-
GLOH2, respectively.

According to the results, mAP decreases in the tran-
sition from planar through viewpoint to non-planar
scenes, and are well aligned with those reported for
the HPatches dataset, with respectively the easy, hard
and tough setups [17].

GeoDesc and GeoDescQ achieve the best results for
any setup, closely followed by sGLOH2 and its bina-
rized counterpart BisGLOH2, with HardNet++ and
HardNetPS ranked after them. Comparing GeoDesc
against GeodescQ, quantization does not seem to af-
fect the matching robustness, while it provides a faster
and compact descriptor. HardNet++ performs better
than HardNetPS for non-planar scenes, while the op-
posite happens in the case of planar scenes, underlining
the strict and critical dependency of deep descriptors
from training data. Among the evaluated descriptors,
only GeoDesc, GeodescQ, sGLOH2 and BisGLOH2 ex-
ploit the spatial geometric structure in the image. Be-
ing data-driven, GeoDesc is learned a priori according
to this kind of information, while sGLOH2 and Bis-
GLOH2 use it explicitly at runtime time thanks to their
matching strategies, that behave like statistical filters
on the data. Negative mining techniques, employed
by deep descriptors, also seem to be able to implicitly
extract the image statistical context.

Concerning the remaining descriptors, LIOP and
MIOP boost their performance in the planar case,
while results become comparable to those provided by
RFDR, RFDG, SIFT, RootSIFT, L2-Net, MKD and
MKDW in the non-planar case. L2-NetCS and BiL2-
NetCS exhibit the opposite behavior. Analogously,
DeepDesc behaves nearly as the worst in the planar
case, save when only viewpoint transformations are
considered or in the non-planar case, for which results
are well aligned with the others. This can be again
due to the training dataset and approach employed by
DeepDesc. Comparing LIOP and MKD against MIOP
and MKDW , respectively, PCA provides only little im-
provements in terms of matching, but can greatly re-
duce descriptor dimensions, thus improving efficiency.
BiL2-Net is the one with the worst performance in this
evaluation. However, considering its strictly limited
descriptor vector length, BiL2-NetCS can be useful for
applications dealing with non-complex images and re-
quiring fast matching.

The proposed evaluation does not report any anal-
ysis about running times, since these are quite depen-
dent from the hardware and software implementations
(e.g. CPU, SIMD, GPU). However, descriptor vector
total byte length, that can be derived by descriptor
dimension and data type, is in general sufficient to
outline computational requirements at matching time.
According to this assumption, binary descriptors are
faster than the others, while float type descriptors
are the slowest on optimized implementations. No-
tice, however, that this discussion does not hold for the



sGLOH2 and BisGLOH2 descriptors, whose matching
strategies are different from the others and very time
consuming [3].

6 Conclusion and Future Work

This paper compared recent state-of-the-art local
image descriptors for real-world matching applications,
thanks to the concept of Approximated Overlap error
as a means to naturally extend the analysis from planar
to non-planar scenarios, without introducing biases as
it happened with other recent evaluations.

Overall, most descriptors exhibit a gradual per-
formance degradation in the transition from planar,
through viewpoint, to non-planar scenes. The best de-
scriptors are those capable of capturing well not only
the local image context, but also the global scene struc-
ture. Indeed, it seems that descriptors are now very
close to reach their allowable discriminability power
when considered alone. Injecting global scene knowl-
edge, either a priori or at matching time, and either
implicitly or explicitly, can be the next step to look for
better solutions in the field. According to the evalua-
tion results, data-driven approaches are so matured as
to have reached and even surpassed the matching ro-
bustness and accuracy of the best hand-crafted descrip-
tors. Nevertheless, training data still remain a crucial
aspect to be considered, in particular when descrip-
tors have to be designed for very specific application
domains.

Future work will include an expansion of the non-
planar dataset, and the analysis of further descriptor
properties omitted in this paper, such as implementa-
tion issues and computational times.
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