
19 April 2024

A step back into the future: text-based coding to foster creative thinking skills at school / Andreas Robert
Formiconi. - STAMPA. - (2018), pp. 153-164.

Original Citation:

A step back into the future: text-based coding to foster creative
thinking skills at school

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1147733 since: 2019-03-05T08:07:17Z

Aracne

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

 1

A step back into the future

Recovering Papert's lesson using free software tools

di ANDREAS ROBERT FORMICONI
1

1. Introduction

In the "Growing Digital Citizens" eTwinning publication

digital citizenship is described as being based on three pillars:

belonging, engagement and protection (Ferrari & Martens,

2016, p. 11). The respective senses of belonging, engagement

and responsibility, are all intertwined but they can be fully de-

veloped only by means of appropriate digital skills, nowadays.

However, what do we actually mean by “digital skills”? The

question is relevant since they may involve quite a broad range

of competencies, but not all of them require the same degree of

commitment as well as the same cognitive involvement. The at-

tribute of “digital native” is by no way sufficient to grant, in a

thorough and productive way, the senses of belonging, engage-

ment and responsibility. A large majority of youth is just famil-

iar with digital environments but here the term digital is some-

what misleading. For instance, the ability to sign up to some

online service, or the ability to move around the buttons of

whatever interface, is just a matter of habit, but such skills are

scarcely related to any relevant competencies, usually they are

1 Dept. of Statistics, Computer Science and Applications, University of Florence.

not. The awareness about the digital nature of data and the way

things happen in computers or networks is limited.

This means that what people can do is mostly determined by

features of graphic user interfaces, which depend upon software

design and commercial strategies, and not so much on mastery

of the universal symbolic systems underpinning natural lan-

guages and mathematical thought. It is by means of manipula-

tion of those systems of symbols that one is able to develop

deep thought and thorough comprehension of facts. The prac-

tice of coding, in its traditional form, involves the manipulation

of symbolic information and it is generally recognized that it al-

lows the students to create and not only to use. Actually, the

discourse on coding practices is embedded in the broader one

on computational thinking. Recently, the EC has devoted an ex-

tended study to the state of the art of computational thinking

(Bocconi, 2016). What it comes out is that if the sense of urgen-

cy to introduce computational thinking in compulsory education

is quite strong, at the same time a lack of consensus is still

there, even about the mere definition of the concept. Thus, we

find ourselves in the uncomfortable situation of acting urgently

but without having the possibility of being in control. Things

move fast, actually. The time to give shape to the significant

lessons learned through the ongoing experiences and to take ful-

ly advantage of them lacks. This is exactly what is happening to

the evolution of coding practices in the educational context. To

tell it in few words, it seems that, in front of the explosion of

languages and devices of any kind, the sound, deep pedagogical

and technical motivations that inspired the earlier educational

coding experiences have vanished in a sparkly cloud of fancy

activities. Nowadays in most school contexts coding is synon-

ymous of Scratch or, at any rate, of blocks-based languages.

These languages are quite smart for providing a first program-

ming experience to kids. And they are even powerful, allowing

for a broad range of coding experiences. Moreover, Scratch fos-

tered the spread of coding a great deal, through its social plat-

form. However, within the whole process, the general idea of

coding leaned over the production of animations, which might

be fine, because to realize them some quite advanced program-

ming methods are required. What are we missing then? To un-

derstand this we have to recall the lesson of Seymour Papert.

2. A step back into the future

The idea of including computer programming among the educa-

tional activities is due to Seymour Papert. Papert, a South Afri-

can mathematician, arrived in the United States in the mid

1960s after having worked with Jean Piaget for five years. He

released the first version of Logo in 1967, when working at the

MIT Artificial Intelligence Laboratory. Logo was an advanced

language conceived at the intersection between the fields of ar-

tificial intelligence and developmental psychology, as a tool for

improving the way children learn and solve problems. It's key

idea, using Papert's famous expression, was to allow for a low

floor and a high ceiling. For this reason, even if apparently sim-

ple in the first steps, its inner architecture allowed users to ex-

tend their capabilities in a virtually limitless fashion. A great

number of educational languages have been derived from Logo,

among which Scratch, by far the most successful. Scratch is a

relative of Logo being developed by Mitchel Resnick, a former

student and successively coworker of Papert at the MIT. Actual-

ly, the basic functionalities of Logo can also be found in Scratch

that, however, has many more features, among which the

blocks-based instead text-based interface and the possibility to

build animations or true video games. On the other side, Logo

was thought as a way to explore mathematical concepts in a

body-syntonic way, another papertian expression which refers

to the idea of building a geometry - the Turtle Geometry - in

analogy with the body geometry which is well known by kids,

before they get in touch with formal math. So what, if Logo is

in some way included in Scratch? The fact is that all the consid-

erations on what is actually going on when kids are let explor-

ing with Logo, all the awareness about the importance of per-

sonal discovery of mathematical concepts, all the strong empha-

sis on creative approach to study scientific ideas have almost

completely disappeared. Not because Scratch, or other similar

languages, makes such perspectives impossible but because the

whole interface is too much skewed towards the childish side.

This does not mean that you cannot do quite complex stuff with

Scratch, even extremely complex ones. Instead, it's about the

fact that most of the activities done in Scratch are about the

production of animations and simple games, and by far most of

the projects are very basic and short lasting, as it has been

shown by some recent studies based on scraping of the Scratch

database (Aivaloglou & Hermans, 2016; Matias, Dasgupta &

Hill, 2016; Scaffidi & Chambers, 2016). Ironically, the childish

flavor, thought to facilitate the introduction to programming,

turns out to be a limiting factor, basically because students

crave hard: if you complete a hard task you have proven your-

self, if you fail... after all it was not so easy (Krouse, 2016A).

Paradoxically, Scratch may be frustrating because everything

seems so easy but soon it might get much harder. Because cod-

ing it's hard. Like math. Making life much easier is not always a

good idea. A number of studies revealed that a Scratch intro-

duction to programming does not necessarily facilitate the tran-

sition to conventional coding languages (Lewis, 2010; Lewis,

Esper, Bhattacharyya, Fa-Kaji, Dominguez & Schlesinger 2014;

Weintrop & Wilensky, 2015). That's why new approaches for

easing the transition to "true languages" are emerging (Homer

& Noble, 2014; Price & Barnes, 2015; Krouse, 2016B). But still

something is missing.

Let's recall some reasoning of Seymour Papert (Papert, 1986):

Welcome to the Logo tapes. These tapes are about logo but they

are not just about logo, beyond logo they are about thinking.

They are about how to think about computers, and how to use

computers to think about other things. They are about how to

use a Logo experience, to develop new thinking skills for your-

self as much for you students. But even beyond thinking, the

tape have much to say about feelings. People, adults as well as

children, have strong feelings about computers, and their expe-

rience with computers influence the way they feel about many

other things. For example, about school, about learning and

most relevantly here, people experience with computers often

influences the way they think about themselves.

The lesson of Papert is by no way a purely technical one. Nor

it's limited to specific competencies, or accessing information,

sharing and so on. Papert's idea of using computers in education

is a holistic one. Logo was conceived to explore geometry,

math, or even science, by means of clever simulations. But even

more than that:

The main purpose of Logo is not what they call “computer lit-

eracy” - of course it serves that, based on anything else I can

think of, but the real purpose is not to have better understand-

ing of computers but through computers to have better under-

standing of everything else including, I'd like to say, yourself.

[...] I’m not trying to give you a theory of what causes children

to be so involved and engaged with a computer, I’m trying to

encourage a way of thinking that looks beyond the role of the

computer in teaching one or another corner of the curriculum

and tries to look at the emotional roots of what’s going on.

Papert's thought emphasises the pleasure and benefit of discov-

ering learning, appropriation, making knowledge your own in a

way you feel good about it, seeking resonance between the im-

mediate learning experience and the larger experience that

makes up the learner's life.

In this tape, I tried to show how a teacher can use Logo to play

the role of intellectual glue, the role that mathematics has made

for me. At other end, by some reflections, unpacking the intui-

tion every teacher has, that is good to make connections... well

why? There is a cognitive side: connections help you under-

stand, you understand the new by referring to the old, they help

you remember. But there is a deeper side, one that has to do

with how you feel about knowledge and how you feel about

yourself. Connecting new knowledge to things you know and

love and things you can do makes you feel good about it, makes

you take it in a form that is your own, but taking knowledge in

form that feels to you as you, you change your feelings about

you as well. You no longer think about yourself as somebody

who can do math but doesn’t really understand poetry, or can

draw but doesn’t have the head for numbers. Instead, you ap-

propriate all knowledge in a form that is yours, that you can do,

that you can love. And through loving what you know you love

yourself more.

These words have been extracted from a video series made in

1986. However, even if the technologies used by Papert in these

videos may appear quite obsolete nowadays, and even if the

software derived from Logo in these thirty years are extremely

valuable, we feel that the vision of Seymour Papert still belongs

to the future and it is something we still have to strive for. We

believe that these considerations give the right tone to bring

people from the lower to the upper ladders of the digital partici-

pation process described in "Growing Digital Citizens": from

watching to sharing, to creating and, finally, to harness the po-

tential of technology for a better society (Ferrari & Martens,

2016, p. 12).

3. A step back into the future

2.1. Free software

According to Article 2, first clause, of the Treaty of European

Union:

The Union is founded on the values of respect for human digni-

ty, freedom, democracy, equality, the rule of law and respect for

human rights, including the rights of persons belonging to mi-

norities.

According to the Free Software Foundation2:

“Free software” means software that respects users' free-

dom and community. Roughly, it means that the users have the

freedom to run, copy, distribute, study, change and improve the

software.

[...]

A program is free software if the program's users have the

four essential freedoms:

1. The freedom to run the program as you wish, for any pur-

pose (freedom 0).

2. The freedom to study how the program works, and change

it so it does your computing as you wish (freedom 1). Access to

the source code is a precondition for this.

3. The freedom to redistribute copies so you can help your

neighbor (freedom 2).

4. The freedom to distribute copies of your modified versions to

others (freedom 3). By doing this you can give the whole com-

munity a chance to benefit from your changes. Access to the

source code is a precondition for this.

Free software can be adapted by local communities and minori-

ties to suite their specific needs and languages, particularly in

the multicultural and multilingual context of the European Un-

ion. It is ethic and useful to use it and spread it freely. It coun-

teracts the tendency of breaking proprietary software, which is

against the law. It can be modified and improved by anyone

who is capable of doing it – and many young people are perfect-

2 Free Software Foundation: https://www.gnu.org/philosophy/free-sw.en.html

ly able to do it. It fosters collaboration and cooperation on com-

plex shared projects. Free software is a powerful incentive to a

creative and ethic approach to the use of technology. It is there-

fore a relevant instrument of democracy, particularly in educa-

tional contexts, in harmony with the funding values of the Eu-

ropean Union. One can use free software by adopting different

levels of commitment. The most radical choice is to use the

Linux operating system. Linux is a smart operating system with

several advantages for most users and nowadays can be in-

stalled rather easily. However, even if virtually any user could

afford the transition, in practice many users might have reasons

to keep their systems, no matter if Windows or Mac OS X.

However, free software can be adopted at the much easier level

of single applications. There are very good applications which

can be installed on all operating systems, such as the office suite

LibreOffice3, the Gimp4 image editor and the Audacity5 audio

editor, just to mention some among the most popular ones.

2.2. Free software

The appropriateness of the free software model for multicultural

contexts stands out in the case of LibreOffice: some 50 world-

wide communities are active to develop and maintain their re-

spective localized versions of LibreOffice6 but right now 178

languages are supported in some degree, that may include local-

ized user interface, localized help system, auto-text lists, auto-

correct list, spell-check dictionaries, hyphenation patterns,

Grammar check and Thesaurus (synonyms)7. LibreOffice in-

cludes all the typical applications of office suites for writing,

3 LibreOffice is a community-driven and developed software from the not-for-profit

organization, The Document Foundation: http://libreoffice.org
4 Gimp: http://gimp.org
5 Audacity: http://www.audacityteam.org/
6 Native-Lang LibreOffice Projects: http://www.libreoffice.org/community/nlc/
7 LibreOffice language support:

https://wiki.documentfoundation.org/Language_support_of_LibreOffice

presenting, organizing data, drawing and so on. But the reason

why we are stressing here the interest in LibreOffice is because,

among the numerous functionalities there is LibreLogo8, a pret-

ty thorough version of the Logo language, available by default

among the standard LibreOffice tools since the 4.2.3.3 version

(2014). Recalling Seymour Papert’s principle of a low floor and

a high ceiling , LibreLogo is a very clever implementation of

Logo. The “floor” is extremely low since to begin with you

have to enter Writer (the standard LibreOffice word processor),

then write down some Logo instructions and run the code just

by pushing a menu button. If the code is correct an image is

embedded in the document as a standard LibreOffice vector

graphics. That way it is extremely simple to begin experiment-

ing with Papert’s “Turtle geometry”. As we have said, actually

Scratch was derived from Logo but, instead of being coded by

means of text instructions, it uses colored blocks which can be

put together in a Lego-like manner to compose a program. The

advantage of this system is that of avoiding the possibility of or-

thographic and syntactic errors. This may lower the floor at the

beginning but successively, it may even hamper the transition to

“true languages”, as we have pointed out before. In LibreLogo

you have to type text instructions, which at the beginning it may

be more demanding but not more than writing English simple

sentences. Indeed, it is good that the same kind of skills may be

useful in different areas. LibreLogo can be used off line, with-

out having to be connected to a web service, something that can

cause some digital divide problems – in many regions this is

still an issue. Even the sharing of programs, for exchanging

problems and solutions, is extremely easy since it simply re-

quires to send short pieces of text, by whatever means, again

without having to rely on an online platform. Finally, with Li-

breLogo the emphasis is naturally put on math and science,

again, which is a good thing since the spread of a true scientific

culture is still an issue. Last but not least, perfectly in the spirit

8 LibreLogo: http://librelogo.org

of free software, we got in contact with Németh László, the

Hungarian computer scientist who wrote LibreLogo, in order to

collaborate to improve the software, following the experience

we made in the university courses. We hope to profit from this

contact because the objective to foster the development of a rel-

evant European competence on the subject is quite interesting.

2.3. The experience in the primary schoolteacher curriculum

at the University of Florence

At the University of Florence we made an extensive experimen-

tation of LibreLogo in the Educational Technologies Lab of the

Primary Schoolteacher major9. The class was composed by 250

students. Moreover, we proposed the same approach to a class

of 34 teachers in an online continuous training course. In these

classes a text written by one of the authors was used to let the

students explore LibreLogo according to the Papert’s Turtle

Geometry (Formiconi, 2016). The basic idea was to foster

learning by discovery as much as possible, exactly in the same

way the schoolteachers will be expected to do with their pupils.

A fundamental role was played by the forum, where the stu-

dents were encouraged to share problems and solutions,simply

by exchanging relevant pieces of text codes within the forum

posts. During the 9 weeks of course they wrote more than 400

posts of this kind. Many of them experimented what they

learned right in their training activities, whereas the school-

teachers attending the continuous training course brought their

newly Logo expertise in their classes and reported feedbacks in

the forum. The discovering learning approach was appreciated

pretty much, as several students commented: - It seems you are

treating us like kids: this is useful for us! A great deal of ideas

and unexpected approaches emerged from the class, with pow-

erful emulation effects. We had those exploring the drawing

fancy alphabetical letters, those who realized digital Tangram

9 We are using here the term major referring to the Italian corso di laurea.

figures, those creating a zoo of funny animals, the more math

inclined explored the construction of complex geometrical

shape and, most interestingly, those that mixed the mathemati-

cal control in drawing figures with a kind of aesthetics research,

looking, at the very end, for the most pleasant results: kind of

STEM to STEAM path.

12

Bibliografia

AIVALOGLOU E., HERMANS F., Do code smells hamper novice

programming. IEEE 24th International Conference on Pro-

gram Comprehension (ICPC)., Aracne, Roma 2016.

BOCCONI S., CHIOCCARIELLO A., DETTORI G., FERRARI A. AND

ENGELHARDT K. Developing computational thinking in

compulsory education. ED. P. Kampylis e Y. Punie Science

for Policy report by the Joint Research Centre (JRC), the Eu-

ropean Commission’s science and knowledge service, 2016.

FERRARI A. AND MARTENS H. Overview on digital citizenship.

In Cassells D. et al. (Ed.) Growing Digital Citizens. Brus-

sels: European Schoolnet, 2016.

FORMICONI A.R. Piccolo Manuale di LibreLogo. At

http://iamarf.ch/unifi/Piccolomanuale-LibreLogo.pdf (PDF

of version 0.4, 2.6 MB). In Italian, an English version will

follow, 2016.

HOMER M. & NOBLE J. Combining tiled and textual views of

code. Proceeding VISSOFT '14 Proceedings of the 2014

Second IEEE Working Conference on Software Visualiza-

tion, 2014, pp. 1-10.

KROUSE S. (2016A). Scratch has a marketing problem. At

https://medium.freecodecamp.com/scratch-has-a-marketing-

problem-f84626bd18ef

––– WoofJS - making JavaScript learnable. At

https://stevekrouse.com/woofd9adf2110fc6, 2016B.

LEWIS C.M. How programming environment shapes perception,

learning and goals: Logo vs. Scratch. Proceeding SIGCSE

'10 Proceedings of the 41st ACM technical symposium on

Computer science education, 2010, pp. 346-350.

LEWIS C., ESPER S., BHATTACHARYYA V., FA-KAJI N.,

DOMINGUEZ N., AND SCHLESINGER A. Children’s percep-

Bibliografia 13

tions of what counts as a programming language. J. Com-

put. Sci. Coll., 29(4), 2014, pp. 123-133.

MATIAS J.N., DASGUPTA S., HILL B.M. Skill Progression in

Scratch Revisited. Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, 2016, pp. 1486-

1490.

PAPERT S. (1986). Seymour Papert on Logo. At

http://el.media.mit.edu/logofoundation/resources/onlogo/ind

ex.html, 1986.

PRICE T.W., BARNES T. Comparing textual and block interfaces

in a novice programming environment. Proceeding ICER '15

Proceedings of the eleventh annual International Conference

on International Computing Education Research , 1086,

2015, pp. 91-99.

SCAFFIDI C., CHAMBERS C. Skill progression demonstrated by

users in the Scratch animation environment. Proceedings of

the Conference on Computer Human Interaction (CHI),

2016, pp. 1-39.

WEINTROP D., WILENSKY U. To block or not to block, that is

the question: students' perceptions of blocks-based pro-

gramming. Proceeding IDC '15 Proceedings of the 14th In-

ternational Conference on Interaction Design and Children,

2015A, pp. 199-208.

