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Abstract

This PhD thesis is composed of three projects related to the design and analysis of experi-
ments. The first project pertains to the construction of optimal designs for choice experiments.
It has been developed also in collaboration with professor Jesús Fernando López-Fidalgo
during my first PhD visiting period at the University of Navarra, Pamplona, Spain. Our
thanks to Prof. Patrizia Pinelli, Department of Statistics, Computer Science and Applications
- PHYTOLAB Laboratory, Scientific and Technological Pole, University of Florence, for
providing us the HPLC analysis for the real case-study faced in this first project. The second
project is related to computer experiments and Kriging modelling, applied to solve a complex
engineering problem in the railway field. Regarding the second project about Kriging, we
want to acknowledge Prof. Ing. Luciano Cantone, Department of Engineering for Enterprise
"Mario Lucertini", University of Rome "Tor Vergata", for providing us the data and the
engineering details for the problem under study. The third project deals with randomization
issues in a split-plot design, due to production process requirements of a product in the field
of mechanical engineering. This last project has been developed also in collaboration with
professor G. Geoffrey Vining during my second PhD visiting period at the Virginia Tech
University, Blacksburg, Virginia, USA. Moreover, we want also to acknowledge Dott. Ing.
Francesco Bertocci and Esaote SpA, Florence, Italy for the collaboration and contribution to
the engineering and technological features.

In what follows, a brief summary for each project is reported.

1. OPTIMAL APPROXIMATE CHOICE DESIGNS WITH CORRELATED PREF-
ERENCES THROUGH A COMPOUND CRITERION

In this project, we propose an innovative approach for the construction of heterogeneous
choice designs with correlated choice preferences. Differently from existing research
in the choice design literature that make use of an exact design framework to build
optimal choice designs, we propose the construction of optimal heterogeneous choice
designs based on an approximate design theory, and under the Panel Mixed Logit
model structure that explicitly takes account of the correlation between the responses
of a respondent facing a sequence of choice-sets. Our proposed approach allows us



ii

to obtain optimal heterogeneous choice designs composed of groups of choice-sets to
be administered to a proportion of respondents according to the optimal weights. We
show the efficiency of our proposal through an application to a real case study that
concerns the analysis of the consumers’ preferences for coffee, integrating a choice
experiment with the consumer sensory tests. To this end, we develop our proposal
under a compound design criterion. Moreover, we present the estimation results of the
Panel Mixed Logit model related to the proposed optimal heterogeneous choice design
we applied to our real case study, which are very satisfactory, by further confirming
the validity of our innovative proposal.

2. LATIN HYPERCUBE DESIGNS BASED ON STRONG ORTHOGONAL AR-
RAYS AND KRIGING MODELLING TO IMPROVE THE PAYLOAD DISTRI-
BUTION OF TRAINS

This projects deals with computer experiments and Kriging modelling to improve the
braking performance for freight trains. We focus on the payload distribution along the
train, so as to reduce the effects of in-train forces, e.g. compression and tensile forces,
among vehicles during a train emergency braking. The topic is particularly relevant
for Railway Undertakings, especially in Europe, where a series of codes regulates
international freight traffic. To this end, we propose a novel approach to improve the
payload distribution of trains through a suitable design for the computer experiment
and Kriging modelling. More precisely, we build a Latin Hypercube design based
on strong orthogonal arrays for the computer experiment that achieves very good
space-filling properties with a relatively low number of experimental runs. Kriging
models with anisotropic covariance functions are subsequently applied to find the
optimal payload distribution able to reduce the in-train forces. Moreover, differently
from other researches in this field, where the entire train was characterized by a unique
payload distribution, in the present application we consider that the train is divided
in several sections, each one composed of different wagons. Therefore, each train
section is characterized by its own payload distribution: having different train sections
gives the possibility to optimize trains that deliver their payload along their route.
Furthermore, it also allows for better understanding of the best payload distribution
along the entire train, so as by further improving the freight train efficiency in terms of
braking performance.

3. THE IMPACT OF NOT RANDOMIZING A SPLIT-PLOT EXPERIMENT AND
HOW TO DETECT ITS EFFECT
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This project deals with lacking of randomization in an industrial split-plot experiment.
More precisely, a split-plot design is planned to improve the production process of an
ultrasound transducer for medical imaging. Due to constraints on how the company
could conduct the experiment, some of the factors in the design are not randomized.
To this end, we focus on the possible consequent impact of lacking of randomization
in the split-plot design. More precisely, we carry out a simulation study based on the
real one, in order to examine the implications of lacking of randomization on the factor
estimates and on the corresponding residual values.
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Chapter 1

Literature review

1.1 Introduction

Design of experiments is a wide and fundamental methodology of the statistics theory. It
is based on a theoretical background which relates to the main aspects of the literature in
statistics and probability since 1920s. At the beginning, the classical experimental design
was mainly directed to study specific problems sourcing in agriculture. Nevertheless, since
1950s, many theoretical developments have been formulated in order to extend the basic and
simple classical designs and linear modelling; furthermore, these new theoretical issues have
been differently developed by considering the specific fields of application. Optimal design
criteria and Response Surface Methodology (RSM) date back to this period: the General
Equivalence Theorem of Kiefer (1959) is a milestone and basic theorem for the optimal
design theory, while the fundamental paper of Box and Wilson (1951) is the first introduction
to the RSM. A great impulse to the evolution of the experimental design theory was further
originated by the development of computer experiments (Sacks et al., 1989). Moreover, the
design of experiments theory began to be succefully applied and further developed in new
fields, such as marketing. For example, preference measurements and choice experiments are
considered the main method to study and analyze the consumers’ behaviour (Train, 2003).

Most of the fundamental elements and principles of the design of experiments have been
introduced during the 1920’s and 1930’s by R.A. Fisher and F. Yates precisely in the field
of the agricultural experimentation. Their contributions have been subsequently applied
in all areas of scientific investigations, as well as in many areas of industrial production
process researches and developments. Box and Wilson (1951) were the first to recognize the
importance of the design and analysis of experiments in the technological field, in which they
adapted classical agricultural experimentation methods. They founded the RSM, that in the
years ahead completely changed the way that engineers, scientists and statisticians approached
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to the industrial experimentation. Box (1999) referred to this process as a sequential learning
in which a collection of statistical and mathematical techniques, combined with engineering
knowledge, are applied to develop, improve and optimize industrial processes, in order
to learn what factors are important to our investigation and which settings are required to
improve one or more response variables. From 1980 and 1990 onwards, this research area
has been largely studied and developed to efficiently plan, execute, analyze and optimize
industrial experimentations. In this context of continuous development, take place the
renewed attention toward the split-plot experiment, widely studied and used in the RSM
setting.

More recently, some complex engineering and technological processes cannot be longer
properly represented by physical experimentation due to costs, or even, to the impossibility
to perform physical measurements. To this end, computer experiments are increasingly used
in this field, where a computer code or simulator is run in order to mathematically represent
the physical system under study. In the seminal contribution to computer experiments
(Sacks et al., 1989), the authors introduced the concept of simulated designs, which were
substantially different from physical and classical experimental designs (Cox and Reid, 2000).
More precisely, there is a completely different approach to build the design for computer
experiments with respect to classical design construction techniques. In fact, space-filling
designs are the most used and preferred ones in this field, given that they spread the design
points as uniformly as possible in order to observe the response in the entire design space.
Despite the various methods to build space-filling designs (e.g. low-discrepancy sequencies
(Niederreiter, 1992; Niederreiter, 2008), uniform designs (Fang et al., 2000)), the class
of Latin Hypercube (LH) designs is one of the most commonly used and preferred one.
Moreover, when considering computer experiments, the observations are predicted according
to a simulated model of the process under study, in order to deeply analyse the relation
between input and output variables. To this end, specific metamodels are used for the analysis
of computer experiments that represent a valid approximation of the computer code, and act
as statistical interpolators of the simulated input-output data. One of the most appropriate
and widely used one is Kriging (Krige, 1951; Sacks et al., 1989), largely applied, especially
recently, to study complex tecnological and engineering issues.

Optimal designs are a class of experimental designs in which the way to build the design
is approached in a completely different way with respect to classical design of experiments.
The seminal contributions of Kiefer (1959) and Kiefer and Wolfowitz (1960) laid the basis of
the optimal design theory. Differently from classical design of experiments, optimal designs
are model-dependent, that is one or several statistical models have to be selected a priori in
order to build the design. The optimality of the design is achieved with respect to one or
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several design optimality criteria, strictly related to the assumed statistical model(s). This
strong dependence between statistical model(s) and underlying experimental design is one of
the main criticism of the optimal design theory. This is due to the fact that a design could be
good for a given model, and worse for a different one, which may be finally more appropriate
for the data. Nevertheless, optimal designs are widely developed and applied in numerous
research fields. Through a wide range of design optimality criteria, they allow to optimize
specific design objective functions that comply with the final researcher’s aim. Moreover, in
situations in which the researcher has a substantial knowledge a priori of the model he wants
to fit, the model-dependent nature of the optimal designs is surely an advantage rather than a
disadvantage.

In this chapter a literature review related to each of the three topics of the thesis is pre-
sented. The projects are inserted in the thesis according to the relevance of each contribution,
and the review follows this order. More precisely, in Section 1.2 the literature related to
optimal designs for choice experiments is reviewed. More specifically, the various approaches
developed to build optimal choice designs are described in details by also considering the
main developments in the Random Utility class of models, applied for the analysis of the
consumers’ preferences. Section 1.3 contains the literature review related to the design and
analysis for computer experiments. The review mainly focuses on the class of LH designs
developed in literature. In the same Section, the Kriging methodology is also briefly reviewed
by considering only recent issues strictly related to its application in the technological field.
Section 1.4 includes a literature review on design and analysis of split-plot experiments. The
review concentrates on the main developments of split-plot design and analysis for industrial
experimentations.

1.2 Optimal designs for choice experiments

In the literature, a large number of researchers and practitioners are dealing with preference
measurements which are considered as one of the main general methods in order to study
and improve the consumer’s behaviour intended as the consumer’s decision about improving
his/her utility in changing a service or a product. Various preference measurements’ methods
are defined, first of all according to the nature and definition of prefences, namely revealed or
stated preferences. Differently from the revealed preferences, that are obtained by observing
individual’s behaviour in a real-world situations, stated preferences are used to elicit individ-
uals’ preferences in experimental or survey context, where respondents are presented with
hypothetical scenarios (Train, 2003, p. 156). Despite the wide range of stated preference
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methods developed in literature (Conjoint Analysis, Contingent Valuation), undoubtedly the
method of choice experiments is the most applied and preferred one.

Since the seminal paper of Louviere and Woodworth (1983), choice experiments have
been widely used to study and analyse the consumers’ preferences for a new product or ser-
vice, with applications in various fields like marketing, transportation, environmental, health
and political sciences. In a choice experiment, respondents receive different choice-sets for
the evaluation and are asked to express their preferences within the choice-sets provided,
each of which is composed of a set of alternatives where every alternative is defined as a com-
bination of the different levels of the attributes of the product (or service). All the alternatives
submitted and included in the choice-sets form the experimental design. Respondents are
supposed to be utility-maximisers, e.g. within each choice-set they choose the alternative that
maximises their utility, and their choices are analysed through Random Utility (RU) models
(McFadden, 1974). Therefore, two fundamental issues should be considered when dealing
with the methods of choice experiments: i) the underlying experimental design consisting
of the choice-sets that have to be administered to each respondent, and ii) the RU models
applied for the analysis of the respondents’ choices. To this end, the related theory on choice
experiments has been largely developed by considering both the design and the related class
of RU models, for the latter by also considering its developments (Revelt and Train, 1998;
McFadden and Train, 2000; Wen and Koppelman, 2001; Boxall and Adamowicz, 2002).

Moreover, when considering choice experiments it must be noted that these two elements,
e.g. the design and RU models, are closely connected: on one hand, the properties of
the design affect the corresponding model; on the other hand, an appropriate experimental
design should be built according to the chosen RU model. To this purpose, since 1990s, a
considerable number of researchers built choice-sets based on optimal design theory (Kiefer
and Wolfowitz, 1960; Fedorov, 1972). The construction of optimal choice designs has been
largely evolved by mainly considering the following issues on which the review focuses: i)
the applied design optimality criteria and the approaches to deal with the unknown parameter
values in the Fisher information matrix, by also considering the developments in the RU class
of models (Revelt and Train, 1998; McFadden and Train, 2000; Wen and Koppelman, 2001);
ii) the exact and approximate design framework applied to build optimal choice designs; iii)
the construction and the use of homogeneous versus heterogeneous choice designs.

The most applied design optimality criterion for choice experiments is the D-optimality,
aiming to an efficient estimation of the choice design parameters. Strictly related to it, the
A-optimality criterion that minimizes the sum of the variances of the parameter estimates
(Atkinson et al., 2007), has also been largely studied. An issue to consider for both design
criteria is the fact that the applied RU models are non-linear in the parameters, implying that
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the choice design efficiency depends on the unknown parameter values. This issue contributed
to a significant number of improvements in the methods to build optimal choice designs.
These methodological improvements were primarly developed under the most simple RU
model, e.g. the Multinomial Logit (MNL) model (McFadden, 1974), and subsequently
extended to more complex RU models.

A first approach to deal with the dependence of the design efficiency on the unknown
parameter values, consists of assuming zero values for these parameters (Lazari and Anderson,
1994; Kuhfeld et al., 1994; Street et al., 2001; Burgess and Street, 2003, 2005). Consequently,
under this unrealistic assumption, it is as if optimal designs reduce to estimate only linear
models rather than RU models. This type of choice design is also called "utility-neutral"
to stress its underlying assumption that all the alternatives and attributes levels are equally
preferred by the respondents. Widely representative contributions related to this approach
are in Lazari and Anderson (1994), that built statistically efficient cross-effect designs, and
in Kuhfeld et al. (1994), that built choice designs based on A- and D-optimal fractional
factorial designs. Moreover, Street et al. (2001) developed several theoretical methods to
find A- and D-optimal choice designs for two-level attributes and choice-sets of size two;
Burgess and Street (2003, 2005) further extended this method to D-optimal choice designs
for any choice-set size and for attributes with any number of levels.

To overcome this unrealistic assumption of complete respondents’ indifference, Huber
and Zwerina (1996) proposed the use of non-zero parameter values to generate A- and D-
optimal choice designs through the Relabelling-Swapping algorithm. They demonstrated that
these choice designs have the so-called utility balance property that improves the efficiency
of the underlying design by balancing the utilities of the alternatives in each choice-set.
Carlsson and Martinsson (2003) confirmed these findings by comparing several techniques
to build D-optimal choice designs with an application in the field of health economics.

The work of Huber and Zwerina had an important impact on the experimental design for
choice experiments: in fact, they linked the choice design construction to the underlying RU
model, and hence to the use of optimal design techniques for non-linear models. Since then,
the construction of optimal choice designs has been further improved by also considering the
Bayesian design framework (Chaloner and Verdinelli, 1995). Sándor and Wedel (2001) was
the first to propose Bayesian design techniques to build D-optimal choice designs assuming
a prior parameter distribution elicited from managers. To obtain the optimal choice designs,
the authors build ad hoc algorithm, called Relabelling-Swapping-Cycling algorithm based on
the Relabelling-Swapping algorithm of Huber and Zwerina (1996). The Bayesian approach
employed in Sándor and Wedel (2001) was further extended by Kessels et al. (2006) to
the construction of optimal choice designs by also considering the A-, G- and V-optimality
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criteria, and through the modified Wynn-Fedorov algorithm (Wynn, 1970; Fedorov, 1972).
Moreover, in Kessels et al. (2008) some practical guidelines are suggested on how to properly
specify the prior distribution for the unknown parameters; Kessels et al. (2009) deal with
the computational burden of Bayesian optimal choice designs, and to this end, they apply
a modified version of the coordinate-exchange algorithm (Meyer and Nachtsheim, 1995).
Furthermore, in the same effort Toubia and Hauser (2007) suggested a new optimum criterion
for choice designs, namely the M-optimality (Toubia and Hauser, 2007), that generalizes
the standard A- and D-criteria by considering the covariance matrix of managerial interests
rather than that of the attributes.

The approaches previously described have been subsequently extended to optimal choice
designs for more complex RU models. The main reason is that, although very simple, the
MNL model has a number of limiting assumptions. First of all, for this RU model, the limiting
property of the Independence of Irrelevant Alternatives is assumed. This means that the
choice probability in one choice-set is independent from the presence of any other attribute
values or alternatives. Furthermore, the MNL model does not take account of differences
in the consumers’ behaviour, i.e. each respondent, with different baseline characteristics is
treated in the same way based only on their judgment. To this end, in literature the Mixed
Logit model has been introduced to improve these issues (McFadden and Train, 2000). This
RU model allows for relaxing the limiting assumption of the MNL model by considering
the attributes as random variables, and not as fixed ones. In particular, depending on how
the Mixed Logit model is specified, it makes it possible to account for: i) the preference
heterogeneity across consumers: the so-called Cross-Sectional Mixed Logit (C-MIXL) model
(McFadden and Train, 2000), ii) the correlation that arises between the responses given by
the same respondent: the so-called Panel Mixed Logit (P-MIXL) model, by also allowing to
evaluate the respondents’ preference heterogeneity (Revelt and Train, 1998).

Moreover, it must be also noted that the complexity in the estimation of the Mixed Logit
model with respect to the MNL one (Train, 2003) requires a high quality data, in which the
amount of the true choice behaviour should be captured (Hensher and Green, 2003). To this
end, the construction of optimal designs for this class of RU models is a fundamental issue.
Undoubtedly, the complexity of the Mixed Logit model leads to more complex methods
to build optimal choice designs, by considering the high computational time required to
find optimal choice designs and the no-closed form expression for its corresponding Fisher
Information matrix. Sándor and Wedel (2002) were the first to build optimal choice designs
for the C-MIXL model, assuming nominal values for the unknown parameters based on
managers’ prior belief, and through the Relabelling-Swapping-Cycling algorithm (Sándor
and Wedel, 2001). Subsequently, Yu et al. (2009) built optimal choice designs for the
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C-MIXL model in the Bayesian design framework. To this end, the authors specified a prior
distribution for the mean vector and nominal values for the heterogeneity vector, applying the
coordinate-exchange algorithm (Meyer and Nachtsheim, 1995). Moreover, Yu et al. (2009)
also addressed the issue on the computationally intensive numerical integration over the prior
parameter distributions. To this end, they applied Monte Carlo based approximation with
Halton sequencies by obtaining a faster convergence and smaller simulation errors (Train,
2000; Bhat, 2001).

Optimal choice designs under the P-MIXL models have received less attention in the
research literature. This is mainly due to the higher complexity to approximate the P-MIXL
information matrix with respect to that of the C-MIXL model. This higher complexity
consists in dealing with products of logit probabilities (P-MIXL model) with respect to
summations (C-MIXL model). To this end, and in order to obtain A- and D-optimal choice
designs, Bliemer and Rose (2010) carried out two types of simulations to approximate the
P-MIXL information matrix. Yu et al. (2011) proposed an individually-adapted sequential
Bayesian approach to build optimal choice designs for the P-MIXL model simulating the
respondents’ choices. Sandor (2013) and Zhang et al. (2013) have recently derived a more
detailed expression for the P-MIXL Information matrix and addressed the issue on how it is
efficiently approximated.

Simultaneously with the developments for building optimal choice designs, a greater
emphasis was also placed on the complexity of choice experiments and choice-sets with
respect to consumers, e.g. the number of choice-sets assigned to a respondent plays a
fundamental role in preventing the respondents’ fatigue, and consequently for obtaining a
realistic evaluation of their preferences. This issue is particularly important when the number
of choice-sets in the design is large. This is often the case of optimal choice designs for the
Mixed logit model that involves a greater number of parameters to be estimated with respect
to the MNL model. To this end, various researchers faced this issue directly in the design step
through the construction of heterogeneous choice designs. Differently from homogeneous
choice designs, in which all respondents get the same design, in a heterogeneous one, different
groups of respondents receive different subdesigns extracted from a larger one. Surely, the
computer search to obtain optimal heterogeneous choice designs is computationally much
more intensive with respect to those for homogeneous choice designs. Sándor and Wedel
(2005) were the first to propose the construction of heterogeneous choice designs. By
considering Bayesian and local design framework, they built optimal heterogeneous choice
designs for the MNL and C-MIXL models, by demonstrating a substantial improvement
in the efficiency of the coefficients estimated through a heterogeneous choice design and
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modelling with respect to the homogeneous one, event though with a small number of
subdesigns.

Heterogeneous choice designs are very attractive by allowing to obtain a large amount
of information about the respondents’ preferences with respect to homogeneous ones. Nev-
ertheless, the main difficulty is the extremely high computational time required to obtain
them, by especially considering the fact that all the approaches previously described make
use of an exact design framework for obtaining optimal choice designs. To this end, Liu
and Tang (2015) recently proposed a new approach for the construction of heterogeneous
choice designs for the C-MIXL model based on an approximate design theory (Kiefer and
Wolfowitz, 1960). This approach allows for avoiding the high computational time in the
computer search for heterogeneous designs, given the well-known mathematical tools for
checking and guaranteeing the design optimality. More precisely, when considering the
exact design framework, there are no mathematical tools for ensuring that the final design is
globally optimal, unless a global check is made for each possible design belonging to the
entire design space. Although the problem relates to both homogeneous and heterogeneous
choice designs, it is particularly relevant when considering heterogeneous choice design with
a prohibitevely huge design space. Conversely, in an approximate design framework, the
General Equivalence Theorem provides the necessary and sufficient condition for check-
ing optimality (Kiefer and Wolfowitz, 1960). Moreover, Liu and Tang (2015) proposed a
modified version of the optimal weight exchange algorithm of Yang et al. (2015) to obtain
optimal choice designs. This algorithm, making use of the Newton-Raphson optimisation
method, substantially outperforms existing algorithms in terms of computation time, making
it particularly suitable in the choice experiment context (Tian and Yang, 2017).

Finally, last two remarks relate to optimal choice designs developed when certain condi-
tions and/or assumptions hold for the choice experiment. A first situation is when there is a
large number of attributes: in this case, respondents express their choices only on a subset
of these attributes. That is, it is implicitly assumed that when expressing their choices, the
respondents concentrate only on a subset of the attributes, by ignoring the remaining ones.
This type of experiments are called choice experiments with partial profiles. In this regard,
the literature related to optimal choice designs with partial profiles has been largely developed
(Grossman et al., 2006, 2014; Kessels et al., 2011, 2014; Cuervo et al., 2016). A second case
regards a recent development in optimal choice designs related to the use of multi-objective
design criterion (e.g. a compound design criterion) instead of a single-objective one. More
precisely, a compound design criterion has been applied by Henderson and Liu (2016). The
authors assume a selective choice process consisting of active and inactive attributes, and
apply a compound design criterion in order to incorporate prior information for the joint
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purpose of an efficient estimation of the coefficients for the active attributes, and detection of
the effects for the inactive ones.

Moving on the considerations above, in Chapter 2 we propose an innovative approach
for constructing heterogeneous choice designs with correlated choice preferences based
on an approximate design theory and a compound design criterion. Moreover, we apply
our proposal to a real case study, carried out by ourselves, in which we integrate a choice
experiment with extra preference information.

1.3 Latin Hypercube designs and Kriging modelling for
computer experiments

Nowadays, a physical experimentation for some complex scientific and technological pro-
cesses is often time-consuming, costly or even impossible to be performed. Thus, computer
experiments are performed instead of physical ones in order to investigate the deterministic
relation between input and output variables. A fundamental issue for computer experiments
is the programming of the underlying experimental design that substantially differs from
the classical design of experiments. The deterministic nature of the computer experiments
makes the three basic design principles (e.g. randomization, replication and local control of
error) irrilevant in this context. For instance, we do not need replicates given that performing
repeated runs of the computer code with the same input variables produces exactly the same
output. Moreover, the lack of knowledge of the true relation between input and output
variables requires to build an experimental design through which all the portions of the
experimental region could be efficiently represented and explored. To this end, space-filling
designs are increasingly used in this context. One of the most important and widely used
class of space-filling designs for computer experiments is the class of LH designs.

LH designs have been introduced in the field of computer experiments by McKay et
al. (1979) which compared random sampling, stratified sampling and LH sampling for
selecting the input variables in terms of their associated mean and variance estimators. The
authors found that, although all three methods provides empirically unbiased estimates of
the response mean, the results obtained from the LH sampling have the smallest variance.
Subsequently, Iman and Conover (1982) proposed a distribution-free method for LH sampling
by "inducing" correlation for the input variables and for small sample size. In the same effort,
and by further investigating the properties of LH designs, Stein (1987) confirmed the results
of McKay et al.(1979) and developed a method to obtain a LH design that properly accounts
for the dependence among the input variables when the sample size is large. Since then, LH
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designs have been largely studied for the design of computer experiments. The main reason
that makes them suitable for computer experiments is their one-dimensional space-filling
property: namely, a LH design achieves the maximum uniformity when projected in any one
dimension.

Nevertheless, in most of the real applications, the design involves a large number of
input variables, and therefore it is desirable to achieve the uniformity in more than one
dimension. Given that there is no guarantee that a random LH design attains the uniformity
when projected in more than one dimension, various approaches have been developed to
build LH designs with lower- or multi-dimensional space-filling properties. Although the
distinction among the several types of LH designs is not always completely clear, we can
generally distinguish between: i) LH designs based on some measure of distance (maximin
LH designs), or, on one or more design optimality criteria (optimal LH designs), and ii)
orthogonal LH designs and LH designs based on orthogonal and strong orthogonal arrays.

For optimal LH designs, we give only a non-exhaustive list of the most relevant con-
tributions, given that they go beyond the scope of this thesis. For an excellent review on
them, we refer to Pronzato and Müller (2012). Historically, two design optimality criteria
have been primarily used to build optimal LH designs, namely the entropy criterion and the
integrated mean squared error (IMSE) criterion. Shewry and Wynn (1987) built a LH design
maximizing the entropy optimality criterion, so as maximizing the amount of the information
of the experiment. Subsequently, Sacks et al. (1989) proposed the IMSE optimality criterion
in order to minimize the variance of the prediction. Currin et al. (1991) constructed optimal
LH designs in a Bayesian design framework through the entropy criterion of Shewry and
Wynn (1987), and by also assuming equal correlation parameters. Park (1994) built optimal
LH designs minimizing the IMSE criterion through a two-stage algorithm, exchange and
Newton type. Pistone and Vicario (2010) developed the algebraic construction of LH designs
minimizing the integrated Kriging variance for a specific correlation structure. Recently, Jour-
dan and Franco (2015) built optimal LH designs based on the Kullback-Leibler information
criterion. Moreover, Dette and Pepelyshev (2010) proposed a new type of generalized LH
designs by considering a transformation of the design points through the quantile function
of the Beta distribution. It is also relevant to note that more recently, Jones et al. (2015)
introduced the so-called bridge designs, that could be considered as a new type of LH designs.
This is because bridge designs inglobates the property of LH designs, that guarantees a
minimum distance among the design points, and of optimal designs, through the use of the
D-optimality design criterion.

When considering maximin LH designs, it must be noted that they could be viewed as a
special case of optimal LH designs, given that they use a maximin distance criterion through
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an algorithmic optimization step. Morris and Mitchell (1995) were the first to propose the
maximin LH design based on the maximin distance criterion introduced by Johnson et al.
(1990). Through a search via the simulated annealing algorithm over various competing
designs, the authors obtained the best LH design maximizing the minimum distance between
the design points. They also demonstrated that their maximin LH design outperforms a
randomly chosen LH design in terms of the mean squared error (MSE) and the maximum
prediction error of the corresponding Gaussian process models. Subsequently, the approach
of Morris and Mitchell (1995) has been further developed and improved by considering
both the algorithms and the applied criteria. To this end, Ye et al. (2000) built an optimal
symmetric LH design through the columnwise-pairwise algorithm, so as obtaining a design
with better geometric properties; Van Dam et al. (2007) built a two-dimensional maximin
LH design by considering the Euclidean distance in the maximin criterion; Moon et al.
(2011) defined a two-dimensional maximin distance criterion and developed the smart swap
algorithm for finding maximin LH design, while Chen et al. (2013) applied the particle
swarm algorithm to this purpose. More recently, Yang et al. (2015) extended the approach
to sliced maximin LH designs. One of the major advantage of the maximin LH designs
is that they achieve very good one- and full-dimensional space-filling properties; however,
when considering low-dimensional projections, the uniformity attained by the designs could
be poor (Joseph et al., 2015). To deal with this issue, more recently Joseph et al. (2015)
proposed the maximum projection LH design that ensurs very good space-filling properties
in lower-dimensional projections.

Differently from optimal and maximin LH designs, orthogonal LH designs and LH
designs based on orthogonal and strong orthogonal arrays are entirely model-independent.
This issue is particularly important if the underlying statistical model is a priori unknown.
Moreover, the design construction techniques for these types of LH designs are relatively
simple, without the need to apply any complex optimization algorithm. Furthermore, orthog-
onal LH designs and LH designs based on orthogonal and strong orthogonal arrays achieve
very good space-filling properties when projected in more that one dimension.

Orthogonal LH (OLH) and nearly OLH designs are based on the property of orthogonality,
a milestone in the classical design of experiments, ensuring that the columns of a design
matrix are uncorrelated. The main rationale for the use of OLH and nearly OLH designs is that
space-filling designs should be orthogonal or nearly orthogonal, and therefore, it is reasonable
to search for space-filling designs within this type of LH designs (Bingham et al., 2009; Lin
and Tang, 2015). The construction of OLH was firstly proposed by Ye (1998), who developed
this method for small run size through the use of permutation matrices. Subsequently, Cioppa
and Lucas (2007) extended the Ye’s approach by adding a new orthogonal column in order to
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slightly increase the run size of the design. The method has been further improved through
the use of rotation on factorial designs (Steinberg and Lin, 2006; Pang et al., 2009) and
generalized orthogonal designs (Georgiou, 2009), but still applied to a limited sample size.
Bingham et al. (2009) and Lin et al. (2009) extended the construction of OLH and nearly
OLH design to more flexible runs size. More recently, the method has been extended to
nested OLH and nearly OLH designs (Li and Qian, 2013; Yang et al., 2014; Yang et al.,
2016), that are applied for conducting computer experiments that involve multiple level of
cost and/or accuracy, and sliced OLH designs (Yang, 2013), useful for computer expriments
with qualitative and quantitative factors, multiple computer experiments and data-pooling.

Although the construction of OLH designs is relatively easy, for a large number of
input variables, the run size of the design becomes extremely large. To this end, LH
designs based on orthogonal arrays (OA-based-LH) seems to be preferable by allowing
more flexibility when considering the design run size. The use of orthogonal arrays to
build LH designs with good low-dimensional space-filling properties has been proposed in
the 1990’s, contemporaneously but independently, by both Owen (1992) and Tang (1993).
With the main aim to obtain low-dimensional projection properties, Owen (1992) developed
randomized orthogonal arrays, while Tang (1993) developed OA-based-LH designs, also
called U designs. The OA-based-LH design of Tang (1993) has been extended to nested
OA-based-LH design by He and Qian (2011), useful to perform model adjustment between
two sources of nested relation of high and low accuracy computer code. Moreover, Yin et al.
(2014) developed sliced OA-based-LH designs by means of sliced random permutations that
can be efficiently applied for computer experiments involving qualitative and quantitative
variables, cross-validation and uncertainty quantification of computer models.

Recently, He and Tang (2013) developed a new class of orthogonal arrays called strong
orthogonal arrays that results particularly useful for computer experiments. The authors built
LH designs based on this new class of orthogonal arrays by demonstrating their excellent
space-filling properties, also compared to OA-based-LH designs. The relatively easy way
to generate this type of LH designs, without the use of any type of optimization algorithm,
together with their excellent space-filling properties, contributed to further develop its related
methodology. More precisely, He and Tang (2014) further developed the theory on strong
orthogonal arrays of strength three describing a complete characterization of such a type
of arrays. Moreover, sliced space-filling designs based on sliced strong orthogonal arrays
have been developed by Liu and Liu (2015). More recently, in He et al. (2018) strong
orthogonal arrays of strength two plus are described by also illustrating their connection with
second-order saturated designs.
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When considering the analysis for computer experiments to solve complex technological
issues, undoubtedly the most applied metamodel is Kriging. The starting point for the
Kriging methodology dates back to the geosciences in 1950’s by the South African engineer
Danie G. Krige (Krige, 1953) for the analysis of geostatistical data. In the 1960’s the French
mathematician and geologist Georges Matheron exploited the basic theory for geo-statistics
(Matheron, 1962). G. Matheron was the first to use the term "Krigeage" in the honour of
the work developed by Krige, subsequently translated in the English language as "Kriging"
(Matheron, 1967), and which is now used worldwide. Since the seminal paper of Sacks et al.
(1989), Kriging models have been widely used for the analysis of computer experiments.

When considering the Kriging methodology, it must be noted that in the last one decade,
it has been further developed and applied in order to solve complex technological and
engineering issues. In Roustant et al. (2010), the Kriging methodology is applied in order
to analyze the output parameters in the field of the nuclear safety. More precisely, the
authors proposed the Kriging as an alternative to the RSM approach to model the peak
cladding temperature of a fuel. They demonstrated that Kriging provides more accurate
prediction with respect to a polynomial response surface models, given its higher flexibility
to handle the degree of smoothness. Through an application of the Kriging to study the
production process of silicon wafers, Pistone and Vicario (2013) also discuss how to model
the covariance structure when dealing with spatial data showing a strong correlation. A
Kriging methodology with functional response is developed by Hung et al. (2015) in order
to optimize the residual stresses in the matching of metals. Borrotti et al. (2016) compare
polynomial regressions, Kriging and artificial neural network models for the optimization
of the operational parameters of a Corona electrostatic separation process; they found that
the most suitable metamodel for the optimization of the process under study is the Kriging,
allowing to better describe the properties of the process. In Vicario et al. (2016), Kriging
modelling is compared with artificial newral network metamodels in order to determine the
most accurate predictive model in fluid dynamics experiments for low pressure turbines,
while Vicario et al. (2018) apply the Kriging for the manufacturing process of a metal sheet
bending, by confirming its high prediction accuracy. Recently, in Arcidiacono et al. (2016),
Kriging models are successfully applied to also study the payload distribution of freight
trains.

Fundamental issues to consider when dealing with the Kriging methodology are undoubt-
edly the choice of the covariance function, the estimation method and the inclusion of the
nugget parameter. To this end, novel issues related to the the definition of the covariance
structure for the stochastic part of the model are suggested in Del Castillo et al. (2015).
Moreover, Sang et al. (2012) developed a new approach of full-scale approximations of
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the covariance structure suitable for large data sets, while Durrande et al. (2012) deal with
covariance functions for high dimensional additive Kriging models.

When considering the recent developments related to Kriging estimation, it is relevant
to mention the contribution of Ginsbourger et al. (2009) in which recommendations on the
choice and the estimation for Kriging models when the run size of the design is small are
suggested. Moreover, Li and Sudjianto (2005) proposed a penalized likelihood approach for
the estimation of the Kriging model to overcome the problem of a flat likelihood function
near the optimum. In order to improve the Kriging predictions, a Bayesian approach is
suggested in Deng et al. (2012) through the best definition of a model, and by applying a
two-level Bayesian hierarchical prior distribution; in Hung (2011), a variable selection is
suggested to find the best deterministic model. In Qian et al. (2008) and Zhou et al. (2011),
the authors deal with Kriging modelling by also involving qualitative variables, and in Han et
al. (2009) a Bayesian methodology for the prediction of computer experiments is developed
for this purpose. Lastly, nugget issues are studied by Gramacy and Lee (2012) where the
authors demonstrated that the estimation of the nugget allows for obtaining better statistical
properties of the Kriging model, and by Peng and Wu (2014), where the choice of the nugget
is analyzed to improve Kriging predictions and prevent numerical instabilities.

The second project of the thesis in Chapter 3 deals with computer experiments and related
Kriging issues. More precisely, we aim to improve the payload distribution of freight trains
through a suitable design for the computer experiment and Kriging modelling.

1.4 Split-plot design and analysis

Split-plot designs originate from the field of agricultural experimentation (Fisher, 1925),
according to which large areas of land, known as Whole-Plots (WP) are subdivided into
smaller areas, known as Sub-Plots (SP). Starting from this initial framework, nowadays in
a split-plot design there are two types of factors, namely WP factors and SP factors, that
generate a design structure involving restrictions on randomization. More precisely, we may
speak of bi-randomization which is characterized by the distinction between the two set of
factors, which, in turn, generates two types of experimental units with two separate error
terms. Firstly, the WP factors are randomly assigned to WP experimental units, generating
the WP error term. Then, the SP factors are randomly assigned within each WP, generating
the SP error term. Therefore, the SP factors are nested and randomized within the WP units,
and as a consequence, the experimental units for the SP factors become observational units
for the WP factors. This means that we have more experimental units, and therefore more
"information" for the SP factors with respect to the WP factors. Cox (1958) referred to the
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WP factors as "classification factors", which are assumed not to be of major interest; the
author highlighted that they are primarely included in the design to examine their effect in
interaction with other factors considered more important, e.g. the SP factors. Therefore,
through the use of a split-plot structure, less accurate WP estimates are accepted in order that
more accurate SP estimates are obtained.

Often, many industrial experiments involve situations in which a complete randomization
of all the factors in the design is difficult or also impossible to be performed. More precisely,
some factors are considered as hard-to-change, because their levels are costly or time-
consuming to be changed. Typical example of such a type of factors is the humidity. Instead,
others are considered as easy-to-change factors because their levels could be easily changed
during the experimentation. An excellent way to accomodate such a type of industrial
experiment is through the use of the split-plot design, in which the hard-to-change factors
are settled as WP factors, while the easy-to-change ones as SP factors. By this way, the use
of the split-plot structure allows to reduce the manipulation of the hard-to-change factors.
However, as a consequence, we have more degrees of freedom for the SP error term with
respect to the WP one, and therefore higher power to detect significant the SP effects with
respect to the WP ones.

It is also relevant to note that there are also many variations of the split-plot designs
such as split-split plot, strip-plot, strip-block and split-block designs (Miller, 1997; Federer
and King, 2007; Wu and Hamada, 2009; Montgomery, 2013), in which more complex
experimental situations could be excellently accomodated. Moreover, the huge potential of
the split-plot design allows to address further randomization issues, strictly related to certain
technical requirements.

Nowadays, the split-plot design is considered as a basic design for industrial experi-
mentation and for a robust design approach. By especially considering the latter one, it
is relevant to note that it is since the seminal contribution of Box and Jones (1992) that
the particular structure of the split-plot design has been exploited in the Robust Product
Design (RPD) framework, in a context of fundamental developments related to the product
quality improvement through the robust design approach (Vining and Myers, 1990; Myers et
al., 1992). To this end, in their contribution Box and Jones (1992) analyzed three different
arrangements of the design and environmental factors in order to assess the most efficient
split-plot structure. They found that a design arrangement according to which the SP factors
are assigned in strips across the WP factors (e.g. a strip-block design) allows to obtain more
accurate estimates of the interaction between the design and environmental factors that is
fundamental to study robustness (Box and Jones, 2001). Moreover, Box and Jones (1992)
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also demonstrated the relative efficiency of the split-plot design in obtaining more accurate
factor estimates with respect to completely randomized and random block designs.

Subsequently to this revisitation of the split-plot design by Box and Jones (1992), a
fundamental issue for its further development was the definition of the split-plot design as
a bi-randomized design (Letsinger et al., 1996), that inserted it effectively within the class
of Response Surface designs. The introduction of the split-plot design in the RSM context
contributed significantly to also address some concerns related to its proper inference and
analysis. Certainly, this issue is not new. In fact, several authors already warned out that often
in the past split-plot designs was erroneously analyzed as a completely randomized design
(Wooding, 1973; Box, 1996; Simpson et al., 2004). The main consequence to not account for
the two error terms when dealing with a split-plot design is an inappropriate inference about
the significance level of both the WP and SP factors. Letsinger et al. (1996) introduced the
two types of bi-randomized designs: namely, non-crossed and crossed designs, the latter to
which takes part the split-plot design. Moreover, Letsinger et al. (1996) was the first to also
describe which are the consequences when a split-plot design is incorrectly analyzed as a
completely randomized design. As the authors demonstrated, in that case, certain WP effects
could be erroneously considered as significant when in fact they are not; at the same time,
certain SP or SP by WP intercations could be considered as no-significant when in fact they
are significant. The authors went further by also comparing different estimation methods for
the two types of bi-randomized designs, namely Ordinary Least Squares (OLS), Generalized
Least Squares (GLS), Iterative Reweighted Least Qquares (IRLS) and Restricted Maximum
Likelihood (REML) estimation methods. They concluded that the REML estimation method
is preferred towards the IRLS one, given its better asymptotical properties. Both Draper and
John (1998) and Trinca and Gilmour (2001) confirmed these findings.

Subsequently, Vining et al. (2005) established the conditions under which the OLS-
GLS equivalence estimation is achieved, by considering two standard Response Surface
designs, namely the Central Composite Design (CCD) (Box and Wilson, 1951) and the
Box-Behnken design (Box and Behnken, 1960), in a split-plot structure. The OLS-GLS
equivalent estimation was further extended to unbalanced split-plot designs (Parker et al.,
2007). Moreover, Vining and Kowalski (2008) provided the conditions for exact tests for
the model coefficients based on residual estimates of the variance components; the authors
provided the appropriate error terms for testing WP and SP effects, by also demonstrating
how to calculate the WP and SP residual values to check model assumptions. Lastly, Wang et
al. (2009) extended the OLS-GLS equivalence estimation to orthogonally blocked split-plot
CCDs.
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The inclusion of the split-plot design in the RSM context further contributed to its
theoretical developments by also considering optimal design theory. Generally, the criterion
of D-optimality has been the dominant one (Goos and Vandebroek, 2001a, 2001b, 2003;
Jones and Goos, 2007). More recently, other design optimality criteria have been applied,
by also considering the Bayesian design framework (Mylona et al., 2014), as well as more
complex design algorithms (Jones and Goos, 2012; Sambo et al., 2015). Moreover, the
OLS-GLS equivalent estimation have been also largely explored by considering optimal
split-plot designs (Goos, 2006; Macharia and Goos, 2010; Mylona et al., 2013).

By considering other relevant issues related to the split-plot design, it must be noted that
further developments have been also achieved by considering the analysis of split-plot designs
with non-normal response(s). To this end, Robinson et al. (2004) illustrated in details the
use of Generalized Linear Mixed Models (GLMMs) (Breslow and Clayton, 1993; Wolfinger
and O’Connell, 1993) to this purpose. More recently, Goos and Gilmour (2012) outlined a
general strategy for analyzing data from split-plot and multistratum designs through GLMMs,
by concentrating specifically on the determination of the unit structure and the definition
of the random effects to be used in the analysis. Arnouts and Goos (2017) extended these
results to split-plot designs with ordinal responses by applying the cumulative logit model in
order to study the adhesion between steel tire cords and rubber. More recent developments to
analyze data from split-plot experiments with non-normal responses make also use of the
Bayesian methodology (Robinson et al., 2012, Tan and Wu, 2013).

Moreover, it must be also mentioned the possibility to define the split-plot design as a
particular fractional factorial design. To this end, a first research path maked used of the
aberration criterion (Fries and Hunter, 1980) to obtain fractional factorial split-plot designs
(Huang et al., 1998; Bingham and Sitter, 1999a; Bingham and Sitter, 1999b; Bingham and
Sitter, 2001). A second research path is primarely represented by the contribution of Bisgaard
(2000), who defined the split-plot design as a product of two fractional factorial designs
through the use of the partial Resolution criterion. Subsequently, the Bisgaard’s approach
was further developed by several other authors, especially for early stage factor screening
(Kulahci and Bisgaard, 2005; Tyssedal et al., 2011; Kulahci and Tyssedal, 2017).

To conclude, it must be noted that nowadays there are many situations of industrial
experiments that involve further restrictions on randomization, primarely due to production
process requirements. In cases like this, the split-plot design still prove to be a valid
experimental plan, as long as a proper detection and analysis is carried out in order to better
understand the implications of this further lacking of randomization. The third project of the
thesis aims to address this issue. More precisely, it is based on a real case-study in which
further restrictions on randomization in a split-plot design are imposed following stringent
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requirements related to the production process. To this end, we examine how to detect lacking
of randomization in a split-plot design and which are the implications for the WP and SP
estimates.



Chapter 2

Optimal Approximate Choice Designs
with Correlated Preferences Through a
Compound Criterion

2.1 Introduction to the project

The project in this Chapter deals with an innovative approach for constructing heterogeneous
choice designs with correlated choice preferences based on an approximate design theory
and a compound design criterion. To this end, in this Section we briefly introduce the real
case-study on which our proposal is applied. For a detailed description of the case-study, we
refer to Section 2.6.

The real case-study concerns the analysis of the consumers’ preferences for coffee
consumption by integrating choice experiments with extra preference information based on a
chemical analysis and consumer sensory tests. More precisely, the study consists of three
main steps, each related to a specific evaluation of the coffee being studied. The first relates
to the chemical analysis of the caffeine contained in the coffee, and performed by a High
Performance Liquid Chromatography (HPLC) evaluation method. The second concerns the
scores of the sensory assessments obtained through a guided tasting session planned in order
to analyse the role of taste in the consumers’ preferences. The last part relates to the choice
experiment that has to be physically administered to the respondents. Therefore, the design
matrix also evaluates: i) the HPLC measurement results related to the quantities of caffeine
in the coffee, and ii) the scores of the sensory assessments of the coffee obtained from the
guided tasting session. We administer the same choice experiment twice: before (Choice
1) and after (Choice 2) the guided tasting session. To this end, we develop our proposal
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under a compound design criterion (Wynn, 1970; Atkinson and Bogacka, 1997; Atkinson
et al., 2007) in order to address the following two main issues: i) an efficient estimation of
the attributes of the choice experiment, and ii) detection of the effects related to the HPLC
results (in Choice 1) and the scores obtained through the consumer sensory tests (in Choice
2). The same compound design criterion was applied in the choice experiment literature by
Henderson and Liu (2016) where the authors, assuming a selective choice process consisting
of active and inactive attributes, apply this criterion in order to incorporate prior information
for the joint purpose of an efficient estimation of the coefficients for the active attributes and
detection of the effects of the inactive attributes.

Following, in the next Section we briefly describe the approximate design framework for
choice experiments and the applied compound design criterion, as well as the algorithm used
to compute the optimal choice designs.

2.2 Optimal designs for choice experiments

2.2.1 Approximate design framework in the choice experiment context

An approximate design is represented by a probability measure ξ over a compact design
space χ . In our context, when considering choice experiments, an approximate design ξ can
be expressed as (Kiefer and Wolfowitz, 1960; Liu and Tang, 2015; Tian and Yang, 2017):

ξ =

{
C1 C2 . . . Cq . . . CQ

w1 w2 . . . wq . . . wQ

}
(2.1)

where Cq is a choice-set that belongs to the space of all possible choice-sets Q, and wq,
q = 1, ...,Q, is its corresponding weight with 0 ≤ wq ≤ 1 and ∑

Q
q=1 wq = 1.

Let yq be the response to the choice-set Cq and assume the response is a random variable
with probability density function (pdf) f (yq;Cq,β), where β is the vector of coefficients

to be estimated. Then the Fisher Information matrix (FIM) at Cq is I(Cq) =
∂ 2 log f (yq;Cq,β)

∂β2 .
Therefore, for an approximate design, the FIM is defined as follows:

I(ξ ) =
Q

∑
q=1

wqI(Cq) (2.2)

where I(Cq) is the FIM for a single choice-set Cq.
In the choice experiment context, each wq in formula (2.1) indicates to which proportion

of respondents the choice-set Cq should be supplied. It must be also noted that the weights in
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formula (2.1) are continous. Consequently, the choice design is defined in an approximate
design framework that is different from an exact one, usually employed to find optimal choice
designs. More precisely, when considering an exact design framework, the search for the
design points on the experimental region is discrete in nature, and therefore there are no
mathematical tools for ensuring that the final design is globally optimal unless a global check
is made of each possible design belonging to the entire design space. Conversely, when
considering an approximate design framework, the General Equivalence Theorem (GET)
(Kiefer and Wolfowitz, 1960) provides the necessary and sufficient condition for checking
optimality. The advantage of building choice designs based on the approximate design theory
is that their optimality can be checked via the GET searching only over the space of all
possible choice-sets Q, which is much smaller than the space of all possible choice designs.
As an example, consider the case in which we have a choice experiment with five attributes,
each at two levels, and with two alternatives in each choice-set. This means 25 = 32 possible
combinations of the attributes and

(32
2

)
= 496 possible choice-sets. If we want to compute

an optimal exact choice design with eight choice-sets, we have to search over all possible
choice designs of size 8, that is equal to:(

496
8

)
= 4326356×1026

Conversely, if we want to construct an optimal approximate choice design, we have to
compute the information matrix just for each of the 496 possible choice-sets.

In the context of choice designs, the GET could be briefly expressed as follows.
General Equivalence Theorem (Whittle, 1973): Let Φ be a concave criterion function with
the usual conditions. The directional derivative of Φ at ξ in the direction of ξ ′ is usually
defined in optimal experimental design theory as:

∂Φ(ξ ,ξ ′) = lim
λ→0+

Φ((1−λ )ξ +λξ ′)−Φ(ξ )

λ

A design ξ is Φ-optimal if and only if:

d(Cq,ξ )≤ 0 (2.3)

for any choice-set Cq that belongs to the space of all possible choice-sets Q, where d(Cq,ξ )

are the directional derivatives of Φ at the information matrix I(Cq) in the direction of Cq.
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2.2.2 A compound design criterion

In this Subsection, we briefly describe the compound design criterion under which we build
the optimal heterogeneous choice designs. For the moment, assume that the vector β is of
dimension K ×1. In order to address the main objective of our real case study, described
in detail in Section 2.6, we apply the following compound D-optimality criterion, ΦC(ξ ),
(Wynn, 1970; Atkinson and Bogacka, 1997; Atkinson et al., 2007):

ΦC(ξ ) =
α

K1
(log |I11(ξ )|)+

(1−α)

K2
(log |I(ξ )|− log |I11(ξ )|) α ∈ [0;1] (2.4)

where K1 +K2 = K.
Through the criterion expressed in formula (2.4), we balance two objectives, namely: i)

efficient estimation of the effects of the attributes of the choice experiment (D−optimality),
and ii) detection of the effect of the HPLC results and the scores of the sensory assessment
(Ds−optimality). More precisely, in formula (2.4), I11(ξ ) is the FIM containing the K1

coefficients related to the attributes of the choice experiment, while I(ξ ) is the FIM that
contains both the K1 coefficients of the choice experiment and the K2 coefficients related to
i) the HPLC results in Choice 1, and ii) the scores obtained through the guided tasting in
Choice 2.

The coefficient α (0 ≤ α ≤ 1) reflects the relative interest in both objectives in the
criterion in formula (2.4). When α = 1 we obtain a D-optimal choice design for the K1 model
coefficients, while for α = 0 we obtain a Ds-optimal design for the K2 model coefficients.
In order to determine the best value of α , the efficiencies for a series of values of α can be
calculated, and a plot of them against α offers a practical tool for choosing a design with an
optimal balance for the efficiencies for both aspects (Atkinson and Bogacka, 1997).

When considering the D-compound criterion in formula (2.4), the derivative function,
d(Cq,ξ ), in formula (2.3) is expressed as follows (Atkinson and Bogacka, 1997; Atkinson et
al., 2007):

d(ξ ,Cq) =
α

K1

(
Tr{[I11(Cq)− I11(ξ )]I11(ξ )

−1}
)
+

+
(1−α)

K2

(
Tr{[I(Cq)− I(ξ )]I(ξ )−1}−Tr{[I11(Cq)− I11(ξ )]I11(ξ )

−1}
) (2.5)

For the design ξ ∗ that maximizes the criterion reported in formula (2.4) the maximum
value of (2.5) is equal to one, providing the GET conditions for the compound D-optimum
design.
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2.2.3 Algorithms for the construction of optimal choice designs

Various algorithms have been used in the choice experiment research in order to obtain
optimal choice designs. Some of them have been developed especially for the costruction
of optimal choice designs, such as the Relabeling and Swapping algorithm of Huber and
Zwerina (1996) and its modified version Relabeling-Swapping-Cycling of Sandor and Wedel
(2002, 2005). Other algorithms, such as the modified Wynn-Fedorov algorithm (Wynn, 1970;
Fedorov, 1972) and the coordinate-exchange algorithm (Meyer and Nachtsheim, 1995) have
also been adapted for this purpose (Kessels et al, 2006; Kessels et al., 2009, Yu et al., 2009).

Recently, the optimal weight exchange (OWE) algorithm has been proposed by Yang,
Biedermann and Tang (2013) for deriving optimal designs also for non linear models. This
algorithm, making use of the Newton-Raphson optimisation method, substantially outper-
forms existing algorithms in terms of computation time. It has also been extended to the
computation of optimal choice designs by Liu and Tang (2015) where the authors modified
the finer grid approach of the original OWE algorithm slightly by iteratively updating the
choice-sets with their corresponding weights until they converged into a globally optimal
approximate design, and where the necessary and sufficient condition of the GET is satisfied.
The four main steps of the modified-OWE (mOWE) algorithm could be briefly summarized
as follows (Liu and Tang, 2015):

1) initial design ξ0: to obtain the initial design ξ0, randomly choose K choice-sets from
all possible choice-sets, Q, and assign an equal weight for each selected choice-set;

2) updated design ξt : update the equal weights of the selected choice-sets in the initial
design ξ0, with the optimal weights obtained through the Newton iteration method;

3) for the updated design ξt , and for each possible choice-set Cq, q = 1, ...,Q, calculate
d(ξt ,Cq), formula (2.5), in order to find the choice-set C∗

q which maximizes d(ξt ,C∗
q).

If the necessary and sufficient condition of the GET is satisfied (formula 2.5), then ξt

is the optimal approximate design;

4) otherwise, obtain a new initial design, by adding to the design ξt , the choice-set C∗
q

with an weight assigned to zero; repeat steps 2) and 3).

For further details see Liu and Tang (2015). This modified version of the algorithm has been
used to compute single-objective optimal choice designs. We have used this mOWE algorithm
to compute the optimal heterogeneous choice designs, by adapting it to the compound design
criterion in formula (2.4).
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2.3 Random Utility framework for choice experiments

The model-dependent nature of the optimal design theory requires the selection a priori of
the statistical model(s) for building the design. To this end, in this Section we describe the
statistical models applied to analyze the consumers’ preferences collected through choice
experiments; these models belong to the Random Utility (RU) class of models (Thurstone,
1927; McFadden, 1974). The fundamental assumption in the RU theory framework for
consumers’ preferences is that for each choice-set the respondent chooses the alternative that
maximizes his/her utility. Assume that a respondent n (n = 1, ...,N) receives sn choice-sets
belonging to the set S (S ∈ Q); for the sake of simplicity, in the rest of the theory we leave out
the suffix n for sn without any loss of generality. Each choice-set Cs (s = 1, ...,S) contains J
alternatives, where each alternative j ( j = 1, ...,J) is defined as a combination of different
attribute levels. Therefore, according to the RU theory, a respondent n has a random utility
function, Uns j, expressed as:

Uns j = x
′
ns jβ+ εns j (2.6)

where x
′
ns j is the vector of the attribute levels, β is the vector of unknown coefficients and

εns j is the random component. Moreover, suppose that the responses for the respondent n are
given by the vector y

′
n = (yn11, ...,yns j, ...,ynSJ). Therefore, in a RU theory framework, we

assume that the respondent n chooses the alternative j from choice-set Cs by maximising the
following utility fucntion:

yns j =

1 if max(Uns j) for one j ∈Cs

0 otherwise

The random component, εns j, formula (2.6), is generally supposed to be independent and
also Gumbel or type I extreme value distributed.

2.3.1 Multinomial Logit model

The Multinomial Logit (MNL) model is the simplest model belonging to the RU class of
models. Accordint to the MNL model for the analysis of consumers’ choices, the probability
of a respondent n choosing the alternative j from choice-set Cs is expressed as follows
(McFadden, 1974):

pns j =
exp(x

′
ns jβ)

J
∑
j=1
j∈Cs

exp(x′
ns jβ)

(2.7)
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where the the vector β is assumed as the vector of fixed and unknown coefficients. Although
very simple, this model assumes the limiting property of the Independence from Irrelevant
Alternatives (IIA property) that means that the probability in one choice-set is independent of
the presence of other attribute values or any other alternative. By considering formula (2.7),
it is easy to observe the practical limit of the IIA property. More precisely, if we compare
two alternatives, j and l, we can see how the ratio is only expressed on the attribute values
included in these two alternatives, without evaluating any other alternatives, as shown in the
following formula:

pns j

pnsl
=

exp(x
′
ns jβ)

exp(x′
nslβ)

= exp(x
′
ns jβ−x

′
nslβ) (2.8)

In fact, the IIA property implies an equal proportional substitution between alternatives.
Moreover, the MNL model does not take care of: i) the presence of the preference hetero-
geneity among respondents; ii) the correlation that can arise given that a respondent faces a
sequence of choice-sets. In order to relax these limiting assumptions, the Mixed Logit model
has been devoloped (McFadden and Train, 2000).

2.3.2 Mixed Logit model

Unlike the MNL model, formula (2.7), the coefficients in the vector β in the Mixed Logit
model are assumed as random variables (McFadden and Train, 2000). In our setting, we
assume β ∼ MVN(µ,Σ) where MVN stands for the multivariate normal distribution; µ
is a vector of the means and Σ is a symmetric and positive definite diagonal matrix with
σ2

1 , ...,σ
2
K on its main diagonal (Sándor and Wedel, 2005). Then β = µ+Zσ, where Z is a

K ×K diagonal matrix with the K elements z = (z1, ...,zK) on its main diagonal supposedly
i.i.d. Standard Normal distributed. Therefore, in a Mixed Logit model, the probability that a
respondent n chooses the alternative j from choice-set Cs is defined as in the following:

πns j =
∫
RK

pns j(β) f (β)dβ =
∫
RK

exp(x
′
ns j(µ+Zσ))

J
∑
j=1
j∈Cs

exp(x′
ns j(µ+Zσ))

φ(z1)...φ(zK)dz (2.9)

As already stated (Chapter 1, Section 1.2), the Mixed Logit model (formula 2.9) allows to
account for: i) the preference heterogeneity across the respondents, e.g. the Cross-Sectional
Mixed Logit (C-MIXL) model (McFadden and Train, 2000), and ii) the correlation between
the responses given by the same respondent on a sequence of choice-sets, by also allowing to



26 Optimal Approximate Choice Designs

evaluate the preference heterogeneity, e.g. the Panel-Mixed Logit (P-MIXL) model (Revelt
and Train, 1998). Following, we describe both types of Mixed Logit models, together with
their corresponding Information matrices that do not have a closed-form expression and have
to be approximated numerically.

C-MIXL model: FIM

The C-MIXL model assumes that the consumer’s responses on a sequence of choice-sets are
independent. Therefore, the derivation of the FIM for this type of RU model is based on the
following log-likelihood function, expressed for all the respondents:

logL(y|β) =
N

∑
n=1

S

∑
s=1

J

∑
j=1

yns j log


∫
RK


exp(x

′
ns j(µ+Zσ))

J
∑
j=1
j∈Cs

exp(x′
ns j(µ+Zσ))

dΦ(z)

 (2.10)

Therefore, the C-MIXL FIM is defined as follows:

I(X,β) =
N

∑
n=1

S

∑
s=1

I(Xns,β) =
N

∑
n=1

S

∑
s=1

{
Π′

nsD
−1
ns Πns Π′

nsD
−1
ns Rns

R′
nsD

−1
ns Πns R′

nsD
−1
ns Rns

}
(2.11)

where:

Πns =
∫
RK [Pns(z)−pns(z)p′ns(z)]Xnsφ(z1)...φ(zK)dz;

Rns =
∫
RK [Pns(z)−pns(z)p′ns(z)]XnsZφ(z1)...φ(zK)dz;

pns(z) = (pns1(z), . . . , pnsJ(z))′;

Pns(z) = diag(pns1(z), . . . , pnsJ(z)) ;

Dns = diag(πns1 . . .πnsJ);

Xns is the design matrix for choice-set Cs evaluated by respondent n;
Z is a K ×K diagonal matrix that contains the standard normal distributed random draws.
The probabilities in the vector pns(z) are calculated according to formula (2.7) and the
probabilities πns1, ...,πnsJ in the matrix Dns are calculated according to formula (2.9). For
the detailed derivation of the C-MIXL FIM, see Sándor and Wedel (2002).
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P-MIXL model: FIM

Differently from the C-MIXL model, according to the P-MIXL specification, the responses
expressed by the same respondent are no longer assumed indipendent. Therefore, the P-MIXL
log-likelihood expressed for all the respondents is given by:

logL(y|β) =
N

∑
n=1

log


∫
RK

S

∏
s=1

J

∏
j=1


exp(x

′
ns j(µ+Zσ))

J
∑
j=1
j∈Cs

exp(x′
ns j(µ+Zσ))


yns j

dΦ(z)

 (2.12)

that reflects the fact that the responses given by the same respondent are correlated, while
those between different respondents are assumed to be independent. The full expression of
the P-MIXL FIM is more complex with respect to that of the C-MIXL, formula (2.11), due
to the further complexity of dealing with products of logit probabilities in the log-likelihood
function, formula (2.12), compared to the summation, formula (2.10). Based on the detailed
derivations of Sándor (2013) and Zhang et al. (2017), we give the following expression for
the P-MIXL FIM, by considering that a respondent is asked to express his/her preferences
for S choice-sets:

Ĩ(X,β) =
N

∑
n=1

Ĩ(Xn,β) =
N

∑
n=1

Eyn

(
V

′
n ∆−1

n Vn V
′

n ∆−1
n Λn

Λ
′
n∆−1

n Vn Λ
′
n∆−1

n Λn

)
(2.13)

where:

Vn =
∫
RK

(
Pn −pnp

′
n

)
XndΦ(z);

∆n =


diag(πn1) πn1π

′
n2 . . . πn1π

′
nS

πn2π
′
n1 diag(πn1) . . . πn2π

′
nS

...
... . . . ...

πnSπ
′
n1 πnSπ

′
n2 . . . diag(πnS)

;

Λn =
∫
RK

(
Pn −pnp

′
n

)
XnZndΦ(z);
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Pn =


diag(pn1) pn1p

′
n2 . . . pn1p

′
nS

pn2p
′
n1 diag(pn1) . . . pn2p

′
nS

...
... . . . ...

pnSp
′
n1 pnSp

′
n2 . . . diag(pnS)

;

Zn = (Z1, ...,ZS);

Pn = diag(pn1, . . . , pnS) ;

pn = (pn1, ...,pns, ...,pnS)
′ where each pns = (pns1, ..., pnsJ)

′;

Xn is the design matrix containing the S choice-sets evaluated by a respondent n;
Zn = (Z1, ...,ZS) are diagonal matrices that contain the standard normal random draws for
respondent n. As before, the probabilities in the vectors pn and πn are calculated through
formulas (2.7) and (2.9) respectively. It must be noted that for both the C-MIXL and P-MIXL
models, the dimension of the coefficient vector β = (µ,σ) is equal to 2K (e.g. K coefficients
for the vector µ and K coefficients for the vector σ).

For both the C-MIXL and the P-MIXL models, the computation of the FIM involves
multidimensional integrals that have to be approximated numerically through the commonly
used methods such as quasi-Monte Carlo or Gaussian quadratures. The approximation with
the quasi-Monte Carlo methods with Halton sequences is usually applied for the Mixed Logit
model (Train, 2000; Train, 2003; Yu et al., 2010), and this is also the case in this project.
Moreover, the further complexity in the derivation of the P-MIXL FIM is the calculation of
Eyn in formula (2.13) that involves the sum over all possible realisations of yn, and equal to
JS. To this end, a further simulation is needed in order to evaluate the expression in formula
(2.13). In our case we approximate this expectation with Monte Carlo simulations (Sándor,
2013).

2.4 A new proposal for the construction of optimal hetero-
geneous choice designs

2.4.1 Approximate Heterogeneous Choice Design with correlated pref-
erences

In what follows we describe the approach proposed on how to efficiently build heterogeneous
choice designs for correlated preferences based on an approximate design theory. Our aim is
to build subdesigns composed of choice-sets that have to be administered to the respondents
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according to optimal weights. We call these subdesigns "groups" of choice-sets and indicate
them by ς1,ς2, ...,ςg, ...,ςG. Furthermore, we assume that:

• each group ςg (g = 1, ...,G) contains m choice-sets;

• no choice-set can appear twice in the same group ςg, but the same choice-set could
appear more than once in different groups;

• observations (i.e. the respondent’s choices) within the same group are correlated while
observations between groups are independent.

Hence, we focus on an approximate design framework and generalise formula (2.1) in
order to consider as design points the groups of choice-sets with fixed size m as follows
(Atkinson and Woods, 2015):

ξG =

{
ς1 ς2 . . . ςg . . . ςG

w1 w2 . . . wg . . . wG

}
(2.14)

under the constraints of 0 ≤ wg ≤ 1 and ∑
G
g=1 wg = 1. It must be noted that according to the

design in formula (2.14), each weight wg indicates the proportion of respondents to which
the group of choice-sets ςg should be supplied.

Therefore, the FIM for the design ξG is given by the following:

Ĩ(ξG) =
G

∑
g=1

wgĨ(Xg,β) (2.15)

where Ĩ(Xg,β) is the FIM for the g-th group composed of m choice-sets, and Xg is the
design matrix containing the m choice-sets in group g. The optimality of the design ξG could
be assessed through the multivariate General Equivalence theorem (Fedorov, 1972; Atkinson,
2008; Atkinson and Woods, 2015).

2.4.2 Construction of the Dcomp−optimal heterogeneous choice designs

In an approximate design framework, when considering just one choice-set as a design point,
the design space is equal to the number of all possible choice-sets, Q. That is, if L is the
number of all possible experimental combinations, then Q =

(L
J

)
. Conversely, when the

design points are the groups of choice-sets, as in formula (2.14), the design space, G, equal
to G =

(Q
m

)
, becomes prohibitively huge and in very practical situations (as in for our case

study), the search over G cannot be computed. As an example of this fact, suppose that
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we are dealing with a choice experiment with four attributes each at three levels, and three
alternatives in each choice-set. Then L = 34 = 81 and Q =

(81
3

)
= 85320. Suppose that we

want to build an optimal heterogeneous choice design with groups of choice-sets of size
eight. Then G =

(85320
8

)
= 6.9×1034. In fact, this highlights how the search is impossible

over this very large number of design points even when considering approximate designs.
To this end, in order to deal with this computational issue, we propose the following

approach for obtaining optimal heterogeneous choice designs that can be summarised briefly
in the following three main steps:

1) we consider the C-MIXL model specification (formula (2.10)) that is equivalent to
the situation in which each respondent receives just one choice-set, for N respondents.
Note that under the C-MIXL model we have to ensure the estimation of a minimum
of 2K coefficients. Therefore, we compute the optimal choice design for the C-MIXL
model according to formula (2.1), where the design point is a choice-set, and obtain
the optimal design points C1, ...,C2K where each one is a choice-set to be administered
to a total of N respondents.

2) we extend the heterogeneous choice design to the situation in which a respondent
receives a subset of m choice-sets. In order to obtain a new design space for the search,
say G̃, with a size in which it is possible to carry out the search, we consider the
optimal design points C1, ...,C2K obtained at Step 1 as the ones that will compose the
groups of choice-sets of size m for the search. Therefore, we compute the optimal
heterogeneous choice design consisting of groups of choice-sets of size m, where the
design space for the search is equal to G̃ =

(2K
m

)
, under the P-MIXL model that is

equivalent to the situation in which each respondent receives a subset of the choice-sets
by accounting for the correlation between the responses given by the same individual;

3) once the optimal groups of choice-sets are obtained through the search on G̃, we
administer each one to a proportion of respondents according to the optimal weights.

Through our proposal, we are able to obtain optimal groups of choice-sets by searching
over G̃ groups of choice-sets, where G̃ ≪ G, in this way overcoming the computational
issue regarding the impossibility of searching over the entire design space G. Thanks the
use of an approximate design theory, the optimality of the optimal groups of choice-sets is
checked and guaranteed through the GET. Moreover, our approach allows for making use
of both the Mixed Logit model specifications, e.g. the C-MIXL and the P-MIXL models,
and consequently of obtaining optimal heterogeneous choice designs that are fully consistent
with the underlying RU theory related to both models.
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It must be noted that in order to verify the validity of our proposal, e.g. whether the
optimal choice-sets obtained in Step 1 are similar to those that compose the groups of choice-
sets in Step 2, we also carried out simulations by considering a simple choice experiment in
which the search for the groups in Step 2 could be performed over the entire design space
G. We anticipate that according to these simulation results (presented in detail in the next
Section), the optimal groups of choice-sets obtained in Step 2 contain the same optimal
choice-sets as those obtained in Step 1, a result that further confirms that our innovative
proposal is likely to work.

2.5 Simulation results for the proposal of construction of
approximate heterogeneous choice designs

In what follows, we present the simulation results on a choice experiment in order to test the
validity of our proposal (Subsection 2.4.2), e.g. whether the optimal choice-sets obtained in
Step 1 are similar to those that compose the optimal groups of choice-sets obtained in Step 2.
These simulations are necessary because by considering this simple choice experiment it is
possible to search over the space G for all possible groups of choice-sets.

For the simulated choice experiment, we assume that we have just two attributes related
to the choice experiment: 1) "Type of Coffee" at two levels: "100% Arabica" and "Arabica-
Robusta", and 2) "Price" at two levels "e4.50" and "e6.00". Furthermore, we also assume
a third attribute related to the scores of the sensory assessment, "Tasting", at two levels
"Score for Coffee no.1" and "Score for Coffee no.2". We consider two alternatives for
each choice-set (e.g. J = 2). Given the dependence of the FIM on the unknown coefficient
values, for all the optimal designs computed here, we use the following nominal values:
µ= (µ1 =−1.5,µ2 = 1.5,µ3 =−1.5) and σ= (σ1 =

√
1.5,σ2 =

√
1.5,σ3 =

√
1.5) chosen

in terms of medium response accuracy and medium respondent heterogeneity (Arora and
Huber, 2001; Toubia et al., 2004, Zhang et al., 2017). All the optimal choice designs
presented here are computed under the compound D-criterion, formula (2.4), through the
mOWE algorithm (Interactive Matrix Language-IML; SAS, Windows Platform vs.9.4.).
Moreover, the design optimality is checked and verified through the GET.

One choice-set

Following the three Steps of our proposal, in Step 1 we first build an optimal choice design,
ξ1, under the C-MIXL model. The total number of experimental combinations, L, is equal to
L = 23 = 8, and the size of all possible choice-sets Q is equal to Q =

(L
J

)
=
(8

2

)
= 28. We
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Table 2.1 Optimal design ξ1

Design points Weights
C4 0.13
C7 0.17
C10 0.12
C17 0.21
C20 0.18
C21 0.19

have to ensure the estimation of six coefficients (e.g. 2K = 6): three coefficients related
to the vector µ= (µ1,µ2,µ3), and three coefficients related to the vector σ = (σ1,σ2,σ3).
The optimal design, ξ1, we have obtained is supported on six design points and reported in
Table 2.1. If the choice-sets of the optimal design ξ1 are supposed to be administered to
the respondents, this means that each respondent will receive just one of these choice-sets
according to the optimal weight of the specific choice-set (Table 2.1). More precisely, the
choice-set no.4 should be administered to 13% of the respondents, the choice-set no.7 to 17%
of the respondents, and similarly for the rest of the choice-sets (Table 2.1).

In order to determine the value of α for the compound design criterion, Figure (2.1)
shows the plot of the efficiencies against different values of α . According to this plot, we
choose a value of α = 0.75 for which we obtain 56% efficiency with respect to a D-optimal
design for the attributes of the choice experiment, and 56% efficiency with respect to a
Ds-optimal design for the attribute related to the "Tasting".

Two, three, four and five choice-sets

Once we have obtained the optimal choice design ξ1 at Step 1, we proceed to compute
the optimal heterogeneous choice designs composed of groups of two, three, four and five
choice-sets (Step 2). When considering the groups of choice-sets as design points, the size
of the design space increases exponentially when the number of choice-sets in each group
increases. In fact, the design space G rises from

(Q
m

)
=
(28

2

)
= 378 for groups with two

choice-sets, to
(Q

m

)
=
(28

5

)
= 98280 for groups consisting of five choice-sets.

Table 2.2 contains the optimal heterogeneous choice designs obtained, all of which were
checked via GET for groups of 2-5 choice sets (labelled ξ2, ξ3, ξ4 and ξ5 respectively).
It must be noted that the numbering of the design points, e.g. the groups composed of
choice-sets, is obtained computationally through the function "allcomb" in SAS, Interactive
Matrix Language-IML (SAS, Windows Platform vs.9.4.).
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Fig. 2.1 Plot of the efficiencies for different values of α for design ξ1
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Table 2.2 Optimal heterogeneous choice designs for groups of two, three, four and five
choice-sets

Design Design points Weights
ξ2

(C7, C10) 0.34
(C4, C20) 0.30
(C17, C20) 0.04
(C17, C21) 0.29
(C4, C17) 0.03

ξ3
(C4, C7, C10) 0.17
(C7, C10, C17) 0.33
(C4, C20, C21) 0.32
(C17, C20, C21) 0.18

ξ4
(C4, C7, C10, C20) 0.35
(C4, C10, C17, C21) 0.36
(C7, C17, C20, C21) 0.29

ξ5
(C4, C7, C10, C17, C21) 0.37
(C4, C10, C17, C20, C21) 0.34
(C4, C7, C10, C17, C20) 0.29

As can be observed in Table 2.2, all the optimal designs consisting of groups of two,
three, four and five choice-sets contain exclusively the optimal choice-sets selected in the
design ξ1. This important result confirms that our proposal is likely to work.

In Figures 2.2 and 2.3 we report the efficiencies of the optimal choice designs (ξ2, ξ3, ξ4

and ξ5) against different values of α . More precisely, in order to select the best value of α ,
we plot against α , the D and Ds efficiencies of both the attributes of the choice experiment
and the attribute related to the tasting. As can be observed from the plots in Figures 2.2 and
2.3, there is an increasing efficiency when the number of choice-sets per group increases. In
fact, the efficiency increases from 64% for groups with two choice-sets to 75% for groups
composed of five choice-sets.
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Fig. 2.2 Plot of the efficiencies for different values of α for designs ξ2 and ξ3

Fig. 2.3 Plot of the efficiencies for different values of α for designs ξ4 and ξ5
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2.6 A real case study

2.6.1 Integrating a choice experiment with consumer sensory test and
chemical analysis

In what follows we describe the real case study from which our proposal has been motivated.
As already mentioned, it regards the analysis of consumers’ preferences for coffee integrating
a choice experiment with consumer sensory test and chemical analysis. Therefore, we build
an optimal heterogeneous choice design under the compound design criterion, formula (2.4),
in order to obtain: i) an efficient estimation of the attributes of the choice experiment; and
ii) detection of the effect related to the HPLC measurement results for the caffeine (Choice
1 before tasting) and the scores obtained from the consumer sensory test (Choice 2 after
tasting).

HPLC analysis

Firstly, two types of coffee with different organoleptic characteristics were chosen: an
intense, soft and aromatic blend (100% Arabica) and a round blend with a high aftertaste
intensity (Arabica and Robusta varieties). The two types of coffee selected were analysed
with respect to their caffeine content with an HPLC method for obtaining the quantity of
caffeine contained in each one.

Guided tasting: consumer sensory tests

Once the HPLC results are obtained, a consumer sensory test is also planned. More precisely,
two scoring cards, one for each type of coffee, are developed for the organoleptic evaluation
and the consumers have to give a score for the organoleptic descriptors of each coffee (Masi
et al., 2013). The ten organoleptic descriptors are as follows: the colour related to sight, the
intensity and the quality of the aroma related to olfaction; four different descriptors related to
taste, namely, bitter, acidic, sweet and aroma; the tactile sensation related to body, aftertaste
and the general equilibrium of the coffee. For each type of coffee, respondents gave a score
expressed on a scale of seven points. Subsequently, we obtained two overall evaluation scores
for each type of coffee, properly normalised and standardised.

Attributes and levels for the choice experiment

We identified six attributes of the choice experiment reported in Table 1. The first is the type
of coffee, labelled by "Coffee Type", at two levels (a blend of Arabica and Robusta and a
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Table 2.3 Attributes and levels for the choice experiment

Attribute Levels (coding in brackets)

Coffee Type
1: Blend of Arabica and Robusta (-1)
2: Blend of 100% Arabica (1)

Packaging
1: Soft bag in a modified atmosphere (-1)
2: Jar in a modified atmosphere (1)

Label Indication
1: Geographical origin (-1)
2: Certification of sustainability (1)

Intense Aromatic Taste
1: Fairly present (-1)
2: Highly present (1)

Soft Velvety Taste
1: Fairly present (-1)
2: Highly present (1)

Price
1: e4.50
2: e6.00
3: e7.50

blend of 100% Arabica); the second is the packaging (labelled by "Packaging") at two levels:
a soft bag in a modified atmosphere and a jar in a modified atmosphere. We established
two attributes related to the taste: a Soft and Velvety taste ("Soft Velvety Taste") and an
Intense and Aromatic taste ("Intense Aromatic Taste"), both at two levels, e.g. fairly present
and highly present. Moreover, in order to evaluate the consumers’ preferences regarding
the sustainability and geographical origin, we included the attribute "Label Indication" at
two levels: "Geografical Origin", that is, the indication of the geographical origin of the
coffee, and "Certification of Sustainability", that is, the presence of any type of certification
of sustainability (economic, social and/or environmental). The last attribute we identified
was the price ("Price") for a quantity of 250 grams of coffee at three levels: e4.50, e6.00
and e7.50. The coded levels for each attribute are reported in brackets in Table 3.1.

Procedure for administering the Choice Experiment

In order to administer the choice experiment we consider a similar procedure performed
by Lombardi et al. (2017) for evaluating the consumers’ preferences for milk referring to
several organoleptic characteristics. They administered the same choice experiment twice,
before and after an informative video projection, and highlighting the important role played
by the information in defining the respondents’ preferences. Therefore, according to our
procedure of administering, a questionnaire containing items related to baseline variables
(e.g. age, marital status, consumption and purchasing of the coffee) is first administered to
each respondent. Subsequently, the choice-sets are administered to the respondents (Choice 1
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before tasting). Once the first choice experiment session is completed, the consumer sensory
test is conducted by an expert. During this step, the expert also provides information about
each type of coffee, explaining its organoleptic properties. In the meantime, the respondents
taste both types of coffee and mark their scores on the sensory assessment score cards. Once
the guided tasting is completed, we once again administer the same choice-sets (Choice 2
after tasting) to find out if there are any differences in the consumers’ preferences collected
from Choice 1 and Choice 2 sessions due to the information step and the consumer sensory
test conducted through the guided tasting.

2.6.2 Optimal heterogeneous choice designs

In this Subsection we describe the heterogeneous choice design for our real case study ob-
tained according to our proposal described in Subsection 2.4.2 through the mOWE algorithm
(Liu and Tang, 2015). When considering our real case study, we have six attributes related to
the choice experiment: five attributes at two levels and one attribute at three levels (Table
3.1). Moreover, we also have one attribute related to the caffeine results from the HPLC
analysis (evaluated in Choice 1), and the sensory scores (evaluated in Choice 2) at two levels;
namely, the low level (-1) related to the caffeine results and the scores for the blend Arabica
and Robusta, and the high level (1) related to those obtained for the blend 100% Arabica. It
must be noted that when we estimate Choice 1, we include the attribute "Caffeine" at two
levels related to the quantity of caffeine in the model. Instead, when we estimate Choice 2
(after tasting), we include the attribute "Taste Score" related to the scores obtained through
the guided tasting.

Optimal choice design when each respondent receives one choice-set

By following our proposal in Subsection 2.4.2, firstly (Step 1) we build the optimal het-
erogeneous choice design under the C-MIXL model. The total number of experimental
combinations L is equal to: L = 26 ·3 = 192, and by considering binary alternatives, the total
number of possible choice-sets, Q, is equal to: Q =

(L
J

)
=
(192

2

)
= 18336. We have to ensure

the estimation of sixteen coefficients: eight related to the vector µ= (µ1, ...,µ8) and eight re-
lated to the vector σ = (σ1, ...,σ8). As before, we used the following nominal values, chosen
in terms of medium response accuracy and medium respondent heterogeneity: µ= (µ1 =

−1.5,µ2 = 1.5,µ3 =−1.5,µ4 = 1.5,µ5 =−1.5,µ6 = 1.5,µ7 = 0,µ8 = 1.5) and σ = (σ1 =√
1.5,σ2 =

√
1.5,σ3 =

√
1.5,σ4 =

√
1.5,σ5 =

√
1.5,σ6 =

√
1.5,σ7 =

√
1.5,σ8 =

√
1.5).

The optimal choice design we obtained under the C-MIXL model is supported on 16 points
as reported in Table 2.4 and the design optimality was checked via GET.
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Fig. 2.4 Plot of the efficiencies for different values of α
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Table 2.4 Optimal design ξ ∗

Design points Weights
C1423 0.06
C3337 0.01
C3494 0.04
C3955 0.05
C6903 0.06
C8328 0.07
C8857 0.09
C11050 0.09
C11647 0.13
C12388 0.05
C12939 0.04
C13601 0.14
C16646 0.03
C16768 0.04
C16852 0.06
C17122 0.04

By plotting the efficiencies for different values of α in Figure 3.3, the best value of α is
equal to 0.72 for which we obtain 57% efficiency with respect to a D-optimal design for the
attributes of the choice experiment, and 57% efficiency with respect to a Ds-optimal design
related to the caffeine and the scores from the guided tasting.

Optimal heterogeneous choice design when each respondent receives a group of eight
choice-sets

Once the optimal design ξ ∗ has been obtained (Step 1, Section 2.4.2), we compute the optimal
heterogeneous choice design composed of groups of eight choice-sets (Step 2, Section 2.4.2).
Note that in this case we cannot search over the entire design space G that is extremely vast
and equal to: G =

(Q
m

)
=
(18336

8

)
= 1417526×1039. In order to address this issue, we apply

our proposal by combining the optimal choice-sets obtained in the design ξ ∗ in groups of size
m = 8. Therefore, the new design space G̃ for the search of the optimal groups of choice-sets
of size eight is equal to: G̃ =

(2K
m

)
=
(16

8

)
= 18872, where 2K are the optimal choice-sets in

the design ξ ∗.
The optimal heterogeneous choice design consisting of groups of eight choice-sets is sup-

ported on six design points reported in Table 2.5 as well as the corresponding optimal weights.
Therefore, according to our innovative proposal (Subsection 2.4.2, Step 3), each group of
choice-sets of the design ξ ∗

G̃ is subsequently supplied to a proportion of respondents according
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Table 2.5 Optimal design ξ ∗
G̃

Design points Weights
{C12388,C13601,C17122,C8328,C3494,C1423,C18852,C16768} 0.10
{C3955,C8857,C3494,C6903,C11647,C11050,C16768,C3337} 0.15
{C3955,C8857,C13601,C8328,C3494,C11647,C12939,C3337} 0.13

{C17122,C3494,C1423,C16646,C11647,C11050,C12939,C16768} 0.14
{C3955,C12388,C13601,C1423,C16646,C11647,C16852,C12939} 0.25
{C12388,C8857,C17122,C8328,C6903,C16646,C11050,C3337} 0.23

Fig. 2.5 Plot of the efficiencies for different values of α
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to the corresponding weight of the specific group of choice-sets. For example, the first group
composed of the following choice-sets : {C12388,C13601,C17122,C8328,C3494,C1423,C18852,
C16768} will be supplied to 10% of the respondents; the second group composed of the
choice-sets {C3955,C8857,C3494, C6903, C11647, C11050,C16768,C3337} will be supplied to 15%
of the respondents, and similarly for the rest of the groups of choice-sets (Table 2.5).

From plotting the efficiencies for different values of α in Figure (2.5), the best value of α

is equal to 0.8 for which we obtain 75% efficiency with respect to a D-optimal design for the
attributes of the choice experiment, and 75% efficiency with respect to a Ds-optimal design
related the attribute of "Caffeine" (Choice 1) and "Taste Score" (Choice 2).

2.6.3 P-MIXL model estimates

In what follows, we describe the estimation results obtained for the P-MIXL model related to
the data collected for a total of 35 respondents by considering: i) Choice 1, that is, the choice
experiment administered before the guided tasting session (Table 2.6), and ii) Choice 2, that
is, the same choice experiment administered after the guided tasting session (Table 2.7). For
each attribute k (K = 8) we estimate its main effect labelled by µ̂k, and its heterogeneity
effect labelled by σ̂k in Tables 2.6 and 2.7. Moreover, the σ̂k estimates obtained express the
effect related to the respondents’ heterogeneity, e.g. for a given attribute k, the higher the
value σ̂k estimates, the greater the consumers’ heterogeneity for the k-th attribute.

Firstly, from the estimated results related to the P-MIXL models reported in Tables 2.6
and 2.7, we can see that by applying our proposal we have obtained excellent estimates for
the attributes involved in the choice experiment. More specifically, for both P-MIXL models
the convergence is perfectly achieved, and we have also obtained highly significant p-values
(p-value (Choice 1)< 0.001) and p-value (Choice 2)< 0.001) related to the Likelihood-Ratio
test: a result indicating that both models are statistically significant. Moreover, almost all
the estimated coefficients for Choice 1 and Choice 2 are statistically significant with small
standard errors. All these results demonstrate the efficiency of the underlying choice design,
and consequently the efficiency of our innovative approach.

When observing the results for Choice 1 (Table 2.6) and Choice 2 (Table 2.7), we can
note that the guided tasting session, together with the information provided on each type
of coffee, play a relevant role in unequivocally determining the respondents’ preferences.
As a matter of fact, when facing Choice 1, the consumers’ preferences are collected in a
situation of complete "misinformation", e.g. each respondent chooses only according to their
previous knowledge about the coffee and own lifestyle. Instead, when facing Choice 2, the
respondents were exposed to: i) information given by an expert about the taste properties
and organoleptic characteristics of the two types of coffee, and ii) a guided tasting of the
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Table 2.6 Panel Mixed Logit Model results before tasting: Choice 1

Estimate Std.Error Z value p-value
µ̂ (main effect)

Coffee Type 1.4179 0.5551 2.55 0.011
Packaging -1.1127 0.4332 -2.57 0.010

Intense Aromatic Taste -1.5353 0.4686 -3.28 0.001
Soft Velvety Taste 3.0697 0.8528 3.60 0.000
Label Indication 1.3485 0.5067 2.66 0.008

Caffeine -2.5869 0.9792 -2.64 0.008
Price 2 (level 2) 1.4828 0.8618 1.72 0.085
Price 3 (level 3) -3.0143 1.0749 -2.80 0.005

σ̂ (heterogeneity effect)
Coffee Type -1.3214 0.4783 -2.76 0.006
Packaging 1.9310 0.5946 3.25 0.001

Intense Aromatic Taste 0.0610 0.2669 0.23 0.819
Soft Velvety Taste 3.3874 0.9527 3.56 0.000
Label Indication 0.7743 0.3266 2.37 0.018

Caffeine 4.7288 1.6911 2.80 0.005
Price 2 (level 2) -4.1939 1.5510 -2.70 0.007
Price 3 (level 3) 1.5805 0.6963 2.27 0.023

two types of coffee carried out by the same expert. Therefore, in Choice 2 the respondents’
preferences are better defined with respect to Choice 1. More precisely, in Choice 1 (Table
2.6) and by also considering the attributes at their coded levels (Table 3.1), the positive sign
of the estimated coefficient related to the "Coffee Type" indicates a preference for the 100%
Arabica blend. This result is also confirmed when considering the estimated coefficients
related to the Soft and Velvety taste: their positive sign indicates a preference for a high
presence of the Soft and Velvety taste that is typical of the 100% Arabica blend. Moreover,
for the Intense and Aromatic taste, its negative sign indicates a preference for a fair presence
of the Intense and Aromatic taste; a result that is in line with the 100% Arabica blend chosen.
However, in Choice 1, when considering the estimated coefficient of the "Caffeine" related to
the HPLC results, its negative sign indicates a preference for the Arabica and Robusta blend.
This controversial result is probably due to the respondents’ "misinformation" about the two
types of coffee investigated in Choice 1, by also considering the high heterogeneity effect
related to the caffeine with a value of σ̂ = 4.7288.

Instead, when considering Choice 2, we can observe a relevant change in the consumers’
preferences with respect to Choice 1. More specifically, the negative sign related to the
"Coffee Type" indicates a preference for the Arabica and Robusta blend. Coherently with this
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Table 2.7 Panel Mixed Logit Model results after tasting: Choice 2

Estimate Std.Error Z value p-value
µ̂ (main effect)

Coffee Type -1.9681 0.6276 -3.14 0.002
Packaging 1.6923 0.5969 2.84 0.005

Intense Aromatic Taste 1.3233 0.4626 2.86 0.004
Soft Velvety Taste -1.6290 0.4339 -3.75 0.000
Label Indication 0.7979 0.4179 1.91 0.056

Taste Score -2.4714 0.7479 -2.79 0.005
Price 2 (level 2) -3.2336 1.1098 -2.91 0.004
Price 3 (level 3) -2.2330 1.0092 -2.21 0.027

σ̂ (heterogeneity effect)
Coffee Type 2.7946 0.8318 3.36 0.001
Packaging 1.8176 0.5247 3.46 0.001

Intense Aromatic Taste 0.9589 0.6162 1.56 0.120
Soft Velvety Taste 0.2041 0.2659 0.77 0.443
Label Indication 0.5492 0.3077 1.78 0.074

Taste Score -2.9991 0.9419 -3.18 0.001
Price 2 (level 2) 2.0336 1.0140 2.01 0.045
Price 3 (level 3) -0.1162 0.4839 -0.24 0.810

result, the respondents prefer a high presence of Intense and Aromatic taste (typical for the
Arabica and Robusta blend), and, in line with the coffee type preference, a fair presence of
Soft and Velvety taste. Moreover, in Choice 2, the negative sign related to the "Taste Score",
in accordance with the preference expressed for the "Coffee Type", indicates a preference for
the Arabica and Robusta blend by also considering the lower heterogeneity in the consumers’
preferences for this estimated coefficient with respect to the caffeine’s heterogeneity in
Choice 1. This result confirms the fact that the guided tasting, together with the information
step, makes the consumers more capable of better differentiating between the two types of
coffee and also of discriminating between different tastes, e.g. a Soft and Velvety taste and
an Intense and Aromatic taste.

A change in the consumers’ preferences also concerns the packaging: in Choice 1 the
negative sign of the "Packaging" indicates a preference for the soft bag with a modified
atmosphere. On the contrary, in Choice 2 consumers prefer the jar in a modified atmosphere.
When considering the Label Indication, there is no change in the respondents’ preferences
between Choice 1 and Choice 2: on both occasions the consumers choose the certification
of product sustainability with respect to the indication of geographical origin. Moreover,
in Choice 2 (Table 2.7) the price coefficients are both negative and statistically significant
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indicating that the consumers’ willingness-to-pay decreases when the price increases (as
can usually be expected). The same result is also confirmed for Choice 1 even though the
intermediate level for the price coefficient (Price 2) in Choice 1 is positive.

Lastly, it must be noted that when considering the estimates related to the heterogeneity
vector σ , it can be observed how most of them are statistically significant, and in general
the heterogeneity is smaller for Choice 2 with respect to Choice 1. More precisely, in
Choice 1, except for the intense and aromatic taste, all the estimated coefficients related to
the heterogeneity effect are statistically significant indicating a large preference variation
among individuals. Moreover, the largest effect of heterogeneity is related to the "Caffeine"
coefficient, which also confirms the respondents’ "misinformation" in Choice 1. Conversely,
in Choice 2 the coefficient related to the "Taste Score" has a lower heterogeneity effect with
respect to the caffeine’s heterogeneity in Choice 1, confirming the fact that after the guided
tasting session the consumers’ preferences are better defined.

2.7 Conclusions

In this project we have proposed an innovative approach for the construction of optimal
heterogeneous choice designs for correlated preferences. More precisely, our approach
exploits an approximate design theory that allows us to i) verify that the final choice designs
are really optimal, and ii) obtain heterogeneous choice designs consisting of groups of choice-
sets to be administered to the respondents according to the optimal weight by also taking into
account the fact that the responses faced by the same respondent are correlated. To achieve
this, our proposal employs the Mixed Logit model that allows us to evaluate the respondents
heterogeneity and to account for the correlation between the responses given by the same
respondent. We have tested the validity of our innovative proposal under a compound design
criterion through simulations on a simplified choice experiment, and through an application
to a real case study. The estimation results for the P-MIXL models are very satisfactory and
further confirm the validity of our innovative approach.

Despite the numerous benefits discussed above, our proposal is not without limitations.
More precisely, our proposal takes explicitly care of the correlation among the respondent’s
responses only. We are fully aware that in the choice experiment context not only these
responses could be correlated, but also the attributes themselves. This last issue could be
addressed through the use of the Heteroscedastic Extreme Value model (HEV) (Bhat, 1995;
Hensher, 1999). In fact, the HEV model assumes independent but not identical error terms,
so as allowing to evaluate the heteroscedasticity across alternatives. Nevertheless, it does not
take care neither of the heterogeneity across respondents nor of the correlation between the



46 Optimal Approximate Choice Designs

respondent’s responses. For this line of reasoning, our study explicitly addresses these last
two issues in the construction of optimal choice designs, and an excellent further development
of our proposal could be to also takes account of the correlation between the attributes.

Lastly, further analyses should be carried out to jointly investigate the results of the design
efficiency, number of choice-sets by group, and optimal weights, also by considering the
proposed methodology in terms of different design criteria. Moreover, a further development
could be the inclusion in the modelling step of the socioeconomic characteristics collected
through the initial questionnaire.



Chapter 3

Latin Hypercube Designs based on
Strong Ortoghonal Arrays and Kriging
Modelling to Improve the Payload
Distribution of Trains

3.1 Introduction to the project

In this project we apply computer experiments and Kriging modelling to the railway field in
order to improve the payload distribution of freight trains, a topic that is particularly relevant
for Railway Undertakings. In this regard and by especially considering Europe, there are
several codes that regulate international freight traffic, and which establish stringent limits on
hauled mass of freight trains (UIC 421, 2012). According to the operational experience of the
Railway Undertakings, it has been determined that depending on the freight train set specific
arrangement, there can be significant differences in terms of in-train forces. According to a
Code (UIC 421, 2012), Railway Undertakings have to statistically simulate freight train sets
in order to prove the safety of a new family of trains (e.g. characterized by a new type of
braking technology). Moreover, in Europe, there is a new research attempt towards longer
and heavier trains with distributed power/braking. The assessment of such a type of trains
requires suitable statistical methods in order to evaluate the effect of the payload distribution
on the in-train forces. For instance, an optimal payload distribution is able to reduce the
in-train forces (i.e. forces exchanged by consecutive vehicles), which limit the maximum
hauled mass of "typical" freight trains. In this context, typical freight trains refer to trains
with one or more locomotives in front of the train, and freight wagons equipped with block
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brake devices. Undoubtedly, when the hauled mass of the train is increased, the efficiency
of freight transportation is increased as well. The reason of high in-train forces is given by
the intrinsic characteristics of the traditional Union Internationale des Chemins de fer (UIC)
braking system (part of the equipment of most freight trains circulating in Europe) that does
not allow a synchronous braking application.

An important issue that should be pointed out is that there is not an "unique" optimal
payload distribution able to minimize the in-train forces for each specific train set arrangement.
Rather, it is strictly connected and depends on the specific train set arrangement considered.
To this end, the main aim of this project is to develop a general approach consisting in proper
statistical methods allowing to assess which is the best payload distribution for the specific
train composition. In order to address this issue, we propose a novel approach to improve
the payload distribution through a suitable experimental design for the computer experiment,
and Kriging modelling in order to assess which is the best payload distribution according to
the specific train arrangement considered. One of the main advantages of our proposal is that
it could be successfully applied to solve similar problems.

In the following Section, the engineering problems and the issues related to the braking
performance of freight trains are described in details.

3.2 The engineering problem: braking performance issues
on freight trains

Longitudinal Train Dynamics (LTD), that is the relative motion of adjacent railway vehicles
running in track direction, has received great attention in the research literature, see for
example Cole et al. (2017). This is mainly due to the fact that LTD is a key element
for determining the safety of freight train sets. In fact, high in-train compressive forces
can cause train derailments, while high in-train tensile forces can produce train disruption
(because of draw gears failure), so as causing a freight traffic inefficiency. Various LTD
simulators are employed by research centres, universities and Railway Undertakings in order
to develop longer and heavier (still safe) freight train sets (Wu et al., 2018). Among these
simulators, only few of them are capable to simulate simultaneously the air pneumatics and
the mechanical behaviour of a train. TrainDy is one of such simulators and it has been used in
this study to compute the LTD of the simulated freight train sets (Cantone, 2011). TrainDy is
currently owned by the International Union of Railways (UIC) and it has been internationally
certified against more than thirty experimental test campaigns.

The main source of in-train forces during braking is the non-synchronous activation of
brake cylinders hence, of the braking force of consecutive wagons. This source of in-train
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forces is inherent to the UIC braking scheme. Although there are some freight trains that
use electro-pneumatic braking (a typical braking scheme of passengers trains), this UIC
braking scheme equips the majority of freight trains in Europe. In this regard, both in-train
compression and tensile forces need to be reduced, since very high compression forces can
lead to train derailment, if the wagons are on a curve (of short radius) and/or if the height of
consecutive buffers vary because of different payload. Moreover, high in-train tensile forces
may cause "train disruption", that is the division of the train in two (or more) sections due
to the breaking of the draw gears. Both circumstances should be strongly avoided in order
to keep freight transport safe for people, infrastructure and goods. In order to weaken such
source of in-train forces and avoid very high compression forces during a braking, several
strategies could be adopted as follows:

1. applying an appropriate brake position, that is switching from "passenger train" brake
position to "freight train" brake position: as different temporal application of consec-
utive wagons braking forces causes in-train forces, in-train compression forces are
reduced by reducing the amplitude of the braking force during the initial braking phase.
The disadvantage is the increase of the stopping distances, and this is feasible only up
to a certain extent.

2. Reducing the hauled mass, so as the inertial effects are reduced as well as the in-train
forces exchanged by consecutive vehicles. The main drawback is the inefficiency of
freight transportation, since trains haul a "low" mass.

3. Placing more locomotives along the train in order to reduce the pneumatic length of
the train; since more points spill air, the effect of a finite speed of sound in the air is
mitigated. Recently, the European founded project Marathon has addressed this issue
(Marathon, 2011).

4. Reducing the differences in maximum braking force of consecutive wagons: of course,
if the time to reach the maximum braking force is different from wagon to wagon,
and if such force is different, it is clear that in-train forces occur. Controlling the
percentage of braked weight achieves such effect (UIC 544-1, 2014). This issue is
indeed connected to the problem of train mass distribution that this project aims to
address. It is worthwhile to remember that the wagon percentage of braked mass is
the ratio between braked mass and wagon mass, where braked mass is a measure of
wagon braking efficiency (UIC 544-1, 2014).

By considering the above strategies, and given that international regulations (UIC 544-1,
2014) do not restrict mass distribution, but only the overall hauled mass, one valid way to
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increase freight train efficiency is to place the payload (and therefore the percentage of braked
weight) along the train so as to reduce the in-train forces. In freight train transportation, trains
can be divided in two families, according to specific needs: trains with fixed composition (e.g.
shuttle trains) and trains with variable composition. The latter can also change composition
along the way, since some wagons in the tail of the train can be removed or just unloaded.
Since trains with variable composition cannot be generalized with few parameters, in this
project the train mass distribution optimization for trains with fixed composition is considered:
an overall fixed mass is assumed, but which allow to freely distribute the payload (though
respecting the maximum load per axle), as in scrap material transport.

3.3 Latin Hypercube based on strong orthogonal arrays:
theoretical issues

3.3.1 Latin Hypercube designs

As already stated (Chapter 1, Section 1.3), Latin Hypercube (LH) designs are the most
commonly used class of space-filling designs for computer experiments. The seminal paper
of McKay et al. (1979) introduced the LH sampling for selecting the input variables for
computer experiments. More precisely, the LH sampling, as proposed by McKay et al.
(1979), consists in dividing the domain of each input variable in n strata of equal marginal
probability (1/n), and in sampling once from each stratum. The authors also demonstrated
that the LH sampling outperforms the random and the stratified sampling methods in terms
of variance reduction of the corresponding estimates. Following the pioneering contribution
of McKay et al. (1979), several other methods to build LH designs for computer experiments
have been developed. In this project, we focus on LH designs built through strong orthogonal
arrays (He and Tang, 2013). To this end, in what follows we define the LH design in general,
as presented in Tang (1993) and in Lin and Tang (2015).

Let’s define a LH with n runs and d factors as a matrix of dimension n× d, in which
each column j ( j = 1, ...,d) is a random permutation of n equally spaced levels. Let’s
indicate such a matrix by A. Moreover, the n equally spaced levels are taken to be:
{− (n−1)

2 ,− (n−3)
2 , ..., (n−3)

2 , (n−1)
2 }, without loss of generality (Tang, 1993; Lin and Tang,

2015). Given the matrix A, the LH design matrix D over the design space [0,1)d is obtained
as follows:

D =
A+ (n−1)

2 J+U
n

(3.1)
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where U is an n×d matrix that contains the independent random numbers from the Uniform
distribution (0,1); J is an n×d matrix of all ones; therefore the LH design matrix D is of
dimension n× d. Furthermore, a LH design has exactly one point in every one of the n
equally spaced intervals: {[0, 1

n), [
1
n ,

2
n), ..., [

(n−1)
n ,1)}, the latter known as its one-dimensional

uniform property. However, on one side given that usually there are several input variables, it
is desirable to attain the uniform property in lower- and/or multi-dimensional projections;
on the other hand, there is no guarantee that a random LH design will attain the maximum
stratification in these projections. To this end, we focus on LH designs based on strong
orthogonal arrays (SOA-based-LH) that achieves excellent low-dimensional space-filling
properties.

3.3.2 LH designs based on strong orthogonal arrays: theoretical issues

As already stated (Chapter 1, Section 1.3), strong orthogonal arrays and the associated LH
designs have been developed by He and Tang (2013). To define a Strong Orthogonal Array
(SOA), we consider the basic theory on orthogonal arrays.
Definition of an Orthogonal Array (OA) (Tang, 1993; Hedayat et al., 1999):
An OA of strength t is an n× d matrix where the j-column has s j levels (1,2, ...,s j; j =
1, ...,d), and it is such that for any n× t submatrix, each possible level combination occurs
with the same frequency. If s1 = ...= s j = ...= sd = s, then the OA is symmetric and it is
denoted by:

OA(n,d,s, t) (3.2)

Definition of a SOA (He and Tang, 2013):
A SOA of strength t is an n×d matrix with entries (1, ...,st), such that any subarray of g
columns, for any g with 1 ≤ g ≤ t, can be collapsed into an OA (n,g,su1 × ...× sug,g) for
any positive integer u1, ...,ug with u1 + ...+ug = t. Such an array is denoted by:

SOA(n,d,st , t) (3.3)

Thus, differently from an OA in which each factor has s levels (formula (3.2)), in a
SOA each factor has st levels (formula (3.3)). It is exactly this major number of factor
levels of a SOA with respect to an OA that allows to obtain LH designs with very good
space-filling properties. More precisely, a SOA-based-LH design with strength t achieves the
same uniformity as an OA-based-LH design in all t-dimensional projections. Moreover, in
all g-dimensional projections, where 2 ≤ g ≤ t, a SOA-based-LH design is more space-filling
than an OA-based-LH design.
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The construction of a SOA-based-LH design could be briefly summarized in the following
four main steps:

1. begin with an OA with n rows, d columns, s levels for each column and strength t;

2. from the OA obtained at the previous step, construct the SOA with n rows, d columns,
st levels and strength t, by expanding the s levels of the OA into st levels. Once the
SOA is obtained, the SOA-based-LH could be generated. To this end, let λ be the
index of the SOA equal to:

λ =
n
st (3.4)

3. for each column of the SOA, replace the λ entries for the level c (c = 1, ...,st) by any
permutation of cλ ,cλ +1, ...,(c+1)λ −1. Denote such a matrix by A* and obtain
the matrix A as follows:

A = A*− (n+1)
2

J (3.5)

4. generate the associate SOA-based-LH design through formula (3.1), which design
matrix D is of dimension n×d.

The SOA-based-LH design promises a better stratification in low-dimensional projections
with respect to an OA-based-LH design. Nevertheless, two issues should be noted. The
first one relates to the fact that the existence of a SOA-based-LH design depends on the
existence of the corresponding OA. This is also true when considering the OA-based-LH
designs. This issue seems to be a minor drawback, given that it has been largely addressed by
considering the general developments achieved in the theory for orthogonal arrays (Hedayat,
1999; Mukerjee and Wu, 2006).

The second issue refers to the fact that, while the existence of a SOA (n,d,st , t) implies
the existence of an OA (n,d,s, t), the converse is not necessarely true. To this end, He
and Tang (2013) established how a SOA could be built from an OA, through the use of a
Generalized Orthogonal Array (GOA) (Lawrence, 1996). Following, we give the definition
of such a type of array.
Definition of a GOA (He and Tang, 2013):
A matrix B of dimension n× (td), in which the td columns bij′ are arranged into d groups of
t columns each (e.g. B = (B1, ...,Bd) where Bi = (bi1, ...,bit)), is called a GOA of size n,
d constraints, s levels and strength t, if the matrix B∗ consisting of t columns, (i = i1, ..., ig;
j′ = 1, ...,ui) is an OA of strength t for any 1 ≤ g ≤ t, any 1 ≤ i1 < ... < ig, and any positive
integer u1, ...,ug with u1 + ...+ug = t. Such an array is denoted by:

GOA(n,d,s, t) (3.6)
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Through the use of GOAs (formula (3.6)), He and Tang (2013) established an excellent
method to obtain a SOA from the corresponding OA. To do so, they make use of the
fundamental results established by Lawrence (1996), according to which if an OA(n,d,s, t)
exists, then a GOA(n,d′,s, t) can be built following the rules:

d′ =

d
e if t = 2e is even;
(d−1)

e if t = 2e+1 is odd.
(3.7)

By considering this fundamental connection between OAs and GOAs, He and Tang
(2013) demonstrated the fundamental results according to which, once a GOA is obtained
from an OA, the corresponding SOA can be built as follows.
SOA construction from a GOA (He and Tang, 2013):
Let B= [(b11, ...,b1t); ...;(bd1, ...,bdt)] be a GOA(n,d,s, t). Then, the matrix E=(e1, ...,ej, ...,ed)

is a SOA(n,d,st , t) , where each column ej ( j = 1, ...,d) is obtained as follows:

ej =
t

∑
j′=1

bij′s
t− j′ ∀ j = 1, ...,d (3.8)

Therefore, starting from formulas (3.7) and (3.8), it follows the following result (Theorem
no.1 in He and Tang, 2013).

Given an OA (n,d,s, t), then a SOA (n,d′,st , t) could be built following the rules:

d′ =

d
e if t = 2e is even;
(d−1)

e if t = 2e+1 is odd.
(3.9)

According to formula (3.9), for a strength greater than or equal to three, one or more columns
of the OA will be lost when obtaining the corresponding SOA. Moreover, in order to build
the SOA through formula (3.8), firstly corresponding GOA should be built. To this end, He
and Tang (2013) described the construction of a GOA for different array strengths. In what
follows, we describe in details the construction of a GOA only for a strength equal to three,
that is used to build the SOA for the case-study here reported.

Let O = (o1, ...,od) be an OA(n,d,s,3), where (o1, ...,od) refer to the columns of the
array. Therefore, a GOA(n,d′,s, t) exists with d′ = (d−1) (formula (3.7)). The GOA matrix
B of dimension (n×d′t), is expressed as follows:

B = [(b11,b12,b13), ...,(bd′1,bd′2,bd′3)], (3.10)
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where each column bij′ of the matrix B is obtained as follows:

(b11, ...,bd′1) = (o1, ...,od′) (3.11)

(b12, ...,bd′2) = (od, ...,od) (3.12)

(b13, ...,bd′3) = (o2, ...,od′,o1) (3.13)

Once the matrix B of the GOA is obtained, the SOA(n,d′,st , t) is built through formula
(3.8). More precisely, for t = 3, each column ej (matrix E of the SOA) is obtained as follows:

e1 = 4a1 +2ad +a2

e2 = 4a2 +2ad +a3
...

ed′−1 = 4ad′−1 +2ad +ad′

ed′ = 4ad′ +2ad +a1

(3.14)

Therefore, through this construction of a SOA from an OA via a GOA, the s levels of the
OA are expanded in st levels of the SOA. This allows to obtain a SOA-based-LH design with
better space-filling properties with respect to an OA-based-LH design.

3.4 LH designs planned for the railway field

3.4.1 Trains Assembling

In this project we consider a freight train that transports scrap material. In order to find
the payload distribution able to reduce the in-train forces, we focus on the distribution of
braked mass within the train (Subsection 3.2). Regarding the application here reported and
differently from Arcidiacono et al. (2017), we consider that the train is unloaded in five
different sections, representing five different destinations of the transported goods; within
each section the distribution of percentage of braked mass is freely distributed. Therefore,
we define the distribution of percentage of braked mass (e.g. ratio between braked mass and
wagon mass) within each train section, and not considering the whole train as Arcidiacono
et al. (2017). This means that we assume that each train section has its payload and its
percentage of braked mass. Consequently, the wagon position within a given train section
could change in order to have a desired distribution of braked mass percentage. This strategy
turns out to be particularly useful to further improve the payload distribution. More precisely,
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it allows to better define which is the best payload distribution for the specific train set
arrangement by considering that the whole train could not be limited to only one payload.
Rather, different payload distributions can be found as better ones at the beginning, in the
middle or at the end of the train.

Without any loss of generality, in the rest of this Subsection we do not consider a suffix
indicating each train section. In order to represent the percentage of braked mass distribution
within each train section, we use the following two variables as defined in Arcidiacono et al.
(2017):

• B denotes the length of the train section (in terms of number of wagons);

• Q denotes the area of each distribution, corresponding to the sum of percentages of
braked mass of the wagons.

In Figure 3.1 we report the different geometries in terms of the variables B and Q
(Arcidiacono et al., 2017). According to these two variables, within each train section we
have a distribution that could be:

1. uniform;

2. trinagular;

3. trapezoidal.

Furthermore, in order to univocally represent the percentage of braked mass distribution
for each train section, two input variables, h and x are defined. The input variable h defines
the shape of the percentage of braked mass distribution for a given train section. This shape
can gradually change from uniform to triangular one. The input variable x identifies the
position of the maximum load along the length of the section. In Figure 3.2 we report the
different shapes, according to the different values of the variables x and h for a given train
section. For example, whatever is the value of x, if h is equal to 0, the shape of percentage of
braked mass distribution is uniform. Conversely, if h is equal to 1, this shape is triangular,
with position of the vertex defined by the variable x. For other values of h, the shape is a
trapeze, with minor basis becoming smaller as h increases from 0 to 1.

3.4.2 Building of the SOA-based-LH design for our case-study

As noted in the previous Subsection, the train was divided in five different sections, where
each section has its own payload distribution represented by its shape and the position of
maximum load. Therefore, we have a total of ten experimental factors: i) five factors related
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Fig. 3.1 Different geometries with same area Q and base B for a given train section (source:
Arcidiacono et al., 2017)

.

Fig. 3.2 Different payload distributions for a given train section according to the values of
the variables h and x.
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to the shape of the payload distribution, e.g. h = {h1,h2,h3,h4,h5}; and ii) five factors related
to the position of maximum load, e.g. x = {x1,x2,x3,x4,x5}. In order to build the design, we
have to construct a SOA with ten columns, and to choose a priori the strength of the array.
In this case, we only consider a SOA with t = 3. This choice is performed because, by this
way, we are able to obtain:

• a design that attains better space-filling properties with respect to those based on an
OA with t = 3; otherwise, if t = 2, this is not the case;

• a design with a relatively low number of experimental runs; otherwise, in general, if
t > 3, the design will contains more experimental runs.

As pointed out in Subsection 3.3.2, a SOA with d = 10 and t = 3 could be constructed
starting from an OA loosing one column (formula (3.9)). Therefore, we begin with a
symmetric OA with n = 64 runs, and eleven columns, where each column has two levels and
strength three:

OA(64,11,2,3) (3.15)

In order to choose the OA described in formula (3.15), we refer to the fundamental property
according to which a regular fractional factorial design of Resolution R is an orthogonal
array of strength t = R−1 (Hedayat et al., 1999; Dey and Mukerjee, 1999). Therefore, for
obtaining the array in formula (3.15), we have used the catalog of 211−5

IV fractional factorial
designs, provided in the R package FrF2 (Grömping, 2014).

Subsequently, through the OA(64,11,2,3) reported in formula (3.15), the following SOA
is constructed:

SOA(64,10,23,3) (3.16)

Thus, by considering formula (3.9), one column of the OA (formula (3.15)) is lost when the
SOA is built (formula (3.16)). Moreover, the two levels of the OA are expanded in eight
levels of the SOA through the following steps:

a) the construction of a GOA(64,10,2,3) from an OA(64,11,2,3) (formulas (3.11), (3.12)
and (3.13));

b) the construction of the SOA(64,10,23,3) from the GOA(64,10,2,3) (formulas (3.8) and
(3.14)).

Finally, the SOA-based-LH design is obtained through the last two steps described in
Subsection 3.3.2, where the array index is equal to λ = 8. The space-filling properties of
the design are as follows: the LH design based on the SOA in formula (3.16) achieves a
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stratification on a 2×2×2 grid in any three-dimensional projection, and, in addition, the
stratifications on the finer grids of 22 ×2 and 2×22 in any two-dimensional projection.

By considering our case-study, each entry of the generated SOA-based-LH design should
be converted in one and only one of the following five values:

{0;0.25;0.50;0.75;1}

These five values, equally spaced in the interval [0,1], turn out to be the most suitable choice
for the train assembling necessary for the subsequent train simulations. In order to do so, we
adopt the following strategy:

1. firstly, the interval [0,1] is divided in five subintervals of equal dimension as follows:

{[0,0.20), [0.20,0.40), [0.40,0.60), [0.60,0.80), [0.80,1]}

2. let ai j be the entry for the i-th row and the j-th column of the SOA-based-LH design.
Therefore:

if ai j ∈ [0.20,0.40) then ai j = 0.25 ∀i = 1, ...,n and ∀ j = 1, ...,d;

if ai j ∈ [0.40,0.60) then ai j = 0.50 ∀i = 1, ...,n and ∀ j = 1, ...,d;

if ai j ∈ [0.60,0.80) then ai j = 0.75 ∀i = 1, ...,n and ∀ j = 1, ...,d;

Regarding the extreme values, we assign zero to the values lower than 0.2 and one to the
values greater than 0.8 because of engineering issues. This strategy is particularly useful for
our case-study, given that it allows us to obtain a perfect level of balance for all the factor
levels of the SOA-based-LH design when converting its entries in the original values.

3.5 Kriging: outlined theory and specific issues

3.5.1 The Kriging method

As already stated (Chapter 1, Section 1.3), the starting point for the Kriging methodology
dates back to the geosciences (Krige, 1951; Matheron, 1971). Subsequently, the seminal
paper of Sacks et al. (1989) introduced the Kriging methodology as a valid metamodel to
approximate the deterministic relation between input and output variables, simulated through
computer experiments. Since then, the Kriging has been widely used and developed as a
valid statistical interpolator with a high prediction accuracy.
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Let us consider a set Ξ of n experimental points xi ∈X over a d-dimensional design
space χd , and the corresponding response values (output) yi, i = (1, ...,n), e.g.: Ξ =

(x1,y1), ....,(xi,yi), ....,(xn,yn). Therefore, the set of trials X is selected within the d-
dimensional experimental region χd and each yi is the realization of a random dependent
variable Y (X) estimated through a physical experimental design.

The Kriging method is subsequently applied to explore the experimental region χd in
order to predict new simulated observations on the basis of the information gained through
Ξ. The final aim is an optimal prediction of Y through a statistical model involving a
deterministic part, also named trend function, and a stochastic part, the latter replacing the
error component for a standard statistical model.

The initial expression for Kriging is named Simple or Ordinary Kriging, and it is formu-
lated as in the following, for a single point x:

yx = µ +Z(x) (3.17)

In formula (3.17), the deterministic part µ is supposed to be a non-random constant, so that,
in this case the trend does not vary along time or space; the second term, Z(x), identifies
a spatial stochastic process. In simple Kriging, Z(x) is usually assumed as a second order
(weakly) stationary process. Therefore Z(x) reduces to the covariance between any two
points, x and x+h:

Z(x) =Cov(Z(x),Z(x+h)) = σ
2
y R(h;ω) (3.18)

where h is the distance between the two points belonging to χd , σ2
y is the process variance,

e.g. the variance of Y , and ω is the vector of parameters defining the stationary stochastic
process for the correlation function R. It must be noted that, in simple Kriging, given
conditions on Z(x), the stochastic process reduces to a Gaussian random field, in which the
predicted values for Y are conditional on the experimental set Ξ. Furthermore, the process
variance is independent with respect to Y which implies the homoscesdasticity assumption.

The main difference between Simple and Universal Kriging is related to the expression
for the deterministic part of formula (3.17). Universal Kriging assumes a non-constant trend,
thus formula (3.17) becomes:

yx = µ(x)+Z(x) (3.19)

µ(x) = f ′(x)β
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where f ′(x) = ( f ′1(x), ...., f ′m(x)) is a set of trend functions defined for each new point x.
By considering n selected points, F is defined as the model regression matrix of dimension
[n×m] formed by the n independent functions f (x):

F = ( f (x1), ...., f (xn)) (3.20)

The vector β is the column vector [m×1] of unknown coefficients. In this situation, each
point x is a new trial simulated by the experimenter: x ∈ χd .

Furthermore, by assuming
E(Z(x)) = 0

and
Cov(Z(x),Z(x+h)) =Cov(x− (x+h)) (3.21)

implicitly we assume that, by performing simulations, we move along a path depending
only on the allocation of vector h, e.g. the vector of the differences between any two points
belonging to χd . In fact, formula (3.21) is equal to σ2

y for h = 0, therefore an equivalent
expression is as follows:

σ
2
y R(x− (x+h)) (3.22)

highlighting that the path depends only on h.

3.5.2 The Matérn covariance function

A fundamental issue to consider when dealing with Kriging modelling is the choice of the
covariance kernel K(.) that has to be symmetric and positive semi-definite. In general, the
mostly applied covariance kernels are the Matérn, the Exponential, the Power-Exponential
and the Gaussian ones. For the case study illustrated in this project, the Matérn covariance
function is applied (Rasmussen and Williams, 2006).

The Matérn class of covariance functions KM(r) is expressed as follows:

KM(r) =
21−ν

Γ(ν)

(√2νr
l

)ν

Kν(

√
2νr
l

)
(3.23)

where l and ν are positive parameters and Kν is the Bessel function. The l parameter is
the scale coefficient while the ν parameter controls the smoothness of the process. For this
function, the process is k-times mean square differentiable if and only if ν > k. Therefore, a
subset of functions for this class is specified when ν = p+(1/2) and p ∈ I+. In this case,
the covariance structure reduces to a product of a polynomial of order p and an exponential
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function, and the general expression becomes:

Kν=p+(1/2)(r) = exp
(√2νr

l

)
Γ(p+1)

Γ(2p+1)

p

∑
i=0

(p+ i)!
i!(p− i)!

(√8νr
l

)p−i
(3.24)

We can evaluate formula (3.24) by choosing p = 1 and ν = 3/2; therefore, we obtain:

Kν=1+(1/2)(r) =
(

1+

√
3r
l

)
exp
(
−
√

3r
l

)
(3.25)

Furthermore, the scale coefficient l is replaced by the vector ϕ of scale parameters (strictly
positive), and r is replaced by the module ∥h j∥, j = 1, ...,d. Therefore, we may define the
specific applied Matérn function, with ν = 3/2 and the vector ω composed by (ϕ,ν), as in
the following formula:

R(h;ω) =
d

∏
j=1

(
1+

√
3∥h j∥
φ j

)
exp
(
−
√

3∥h j∥
φ j

)
; j = 1, ...,d (3.26)

In formula (3.26) if all φ j are assumed to be equal, e.g. φ1 = φ2 = ...= φ j = ...= φd = φ ,
then the kernel process is isotropic; otherwise, as assumed in our case study, the kernel process
is anisotropic (fomula (3.26)). The characteristic length scale coefficients in the vector ϕ
regulates the speed of decay of the correlation between any two points in the corresponding
dimension (Rasmussen and Williams, 2006). That is, they determines the distance over which
the response is expected to vary significantly for the corresponding dimension. A very large
length scale φ j indicates that the response is expected to be essentially a constant function
of the corresponding input variable j. Therefore, the estimated values of these coefficients
are useful to also determine the relevance of each input variable: the smaller the value φ j,
the more the input x j is relevant for the process under study, and viceversa (MacKay, 1998;
Rasmussen and Williams, 2006).

The Matérn function with ν = 3/2 is differentiable of order one; if ν = 1/2 the Matérn
function reduces to the exponential covariance function. It must be noted that function
(3.26) corresponds to a Gaussian process with a different level of differentiability; therefore
the continuity is always guaranteed, which is relevant to prevent either discontinuities or
numerical instability during simulations, such as jumps in the response or problems in the
computation of the inverse of the covariance matrix.

Nevertheless, computational problems and jumps may be encountered during simulations
and, to this end, a nugget parameter has been introduced. The inclusion of this coefficient
allows to avoid instability, e.g. it may be viewed as a noise added to the process variance. A
fundamental feature is that Kriging still preserves its interpolating property although with the



62 Latin hypercube designs and Kriging modelling

inclusion of the nugget term. Moreover, the estimation of a nugget parameter allows to also
account for potentially possible deviations of inaccurate assumptions on the stationarity of
the process and on the chosen correlation function (Stein, 1999; Gramacy and Lee, 2012).

3.6 Kriging modelling results

As previously stated, the main aim of this project is to develop a general approach for
improving the payload distribution of freight trains. Therefore, we can consider that the
optimal solution searched through the Kriging models is the best payload distribution along
the train that guarantees an emergency braking with the minimum in-train forces among
wagons, both in compression and in tensile. To this end, the output variables are the three
aforementioned in-train forces:

i) compression forces computed at 2m;

ii) compression forces computed at 10m;

iii) tensile forces computed at 2m.

By considering the SOA-based-LH design built with n = 64 runs (Subsection 3.4.2),
the true values of compression and tensile forces for the specific train set arrangement here
considered are calculated through the TrainDy software (Cantone, 2011), internationally
certified for the computation of in-train forces of freight trains. It must be also noted that the
three response variables have a different measurement scale. For this reason, in order to make
the results comparable, we properly standardize them through the min-max standardization
method (OECD, 2008).

For each response variable, a Kriging model is estimated through the R package DiceKrig-
ing (Roustant et al., 2012). More precisely, the Universal Kriging is applied, formula (3.19),
by assuming a non constant unknown trend function. The Kriging models are estimated by
considering the anisotropic Matérn covariance function with ν = 3/2, formula (3.26). The
Matérn class of covariance functions has very good properties. More precisely, it is highly
flexibile in representing the smoothness and the differentiability of the process according to
the choice of the value for the parameter ν (Stein, 1999). In this regard, larger is the chosen
value for ν , smoother is the corresponding process. For ν = 3/2 the Matérn covariance func-
tion is once differentiable, while for ν = 5/2 it is twice differentiable. Moreover, the Matérn
covariance function includes the Exponential and the Gaussian ones as a special case when
ν = 1/2 and ν = ∞ respectively. Stein (1999) investigated in details the Matérn properties
and behaviour recommending it for the use in many practical situations. By considering these
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issues, this type of covariance function has been chosen for the process under study, allowing
us to overcome the strong assumptions of smoothness and differentiability of other (possible)
covariance functions, like the Power-Exponential and the Gaussian ones. Moreover, in the
absense of explicit prior knowledge about the existence of second or higher order derivatives
of the process under study, the parameter ν = 3/2 is chosen, assuming that the process is
differentiable only of order one. Lastly, a nugget term δ is also estimated.

When considering the specification of the trend function, it must be noted that, at the
beginning, we estimated both sets of models:

1) the Kriging models with a first order polynomial trend;

2) the Kriging models with a full second order polynomial trend function.

For the first group of models, the fitting was not satisfactory, while a perfect fitting has been
obtained for the second group of models. Nevertheless, from an engineering point of view,
some of the quadratic and first interaction terms in the full second order polynomial trend
function do not make sense for the process under study. This is the case for the interactions
between variables of different train sections, and for the quadratic effects related to the shape
of the percentage of braked mass distribution. Therefore, the final trend functions include the
first order polynomial trend, plus the quadratic effects related to the position of maximum
load, and the first interaction terms on the two variables, h and x, strictly related to the same
train section.

For each response variable, the estimated trend coefficients are reported in Table 3.1.
Except for the intercept term, the estimated trend coefficients related to the tensile forces at
2m are smaller in magnitude with respect to those related to the compression forces at 2m
and 10m. The estimated coefficients related to the characteristic length scales, the process
variance and the nugget are reported in Table 3.2. The largest process variance, (σ̂2

y ), is
obtained for the compression forces at 2m, while the smallest one is related to the tensile
forces at 2m. For each response, the nugget estimates are very low and close to zero.

The estimated length scale coefficients, (Table 3.2), give us some insights on the relevance
of each input variables for each in-train force. More precisely, for the compression forces
computed at 2m, the most relevant input variables are the shape of the percentage of braked
mass distribution at the beginning of the train (e.g. first train section), and the position of
maximum load at the second and last train sections. When considering the compression
forces at 10m, the shape of the percentage of braked mass distribution at the beginning, in
the middle and at the end of the train turns out to be most relevant; instead, the most influent
position of maximum load appears to be in the middle of the train. Lastly, for the tensile
forces at 2m, the most important results are the position of maximum load at the second train
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Table 3.1 Estimated trend coefficients for the three Universal Kriging models

Coefficient
Estimates for Estimates for Estimates for

2m Compression forces 10m Compression forces 2m Tensile forces
β0 -0.9016 -0.9991 0.9886
βh1 -0.0198 -0.0078 0.0008
βx1 -0.2108 0.1455 0.0014
βh2 0.0274 0.0374 -0.0006
βx2 0.0506 0.1148 -0.0004
βh3 0.0993 0.0072 -0.0013
βx3 0.3159 -0.0208 -0.0052
βh4 0.0238 0.0088 0.0003
βx4 -0.1315 -0.0083 0.0047
βh5 0.0171 -0.0049 0.0002
βx5 0.0069 -0.0714 -0.0045
βx2

1
0.1935 -0.1446 -0.0011

βx2
2

-0.0385 -0.0888 0.0002
βx2

3
-0.2194 0.0297 0.0025

βx2
4

0.0844 0.0045 -0.0036
βx2

5
0.0576 0.0287 0.0038

βx1h1 -0.0603 0.1425 0.0006
βx2h2 -0.1827 -0.0140 0.0114
βx3h3 -0.1478 -0.0231 0.0023
βx4h4 0.0351 -0.0362 -0.0025
βx5h5 -0.0541 0.0224 0.0078

Table 3.2 Estimated covariance and nugget coefficients for the three Universal Kriging models

Coefficient
Estimates for Estimates for Estimates for

2m Compression forces 10m Compression forces 2m Tensile forces
φ1(h1) 0.1333 0.3516 1.9612
φ2(x1) 1.9651 1.9651 1.9651
φ3(h2) 1.9682 1.9682 0.0684
φ4(x2) 0.6190 1.9811 0.3902
φ5(h3) 1.9850 1.4348 0.4033
φ6(x3) 1.9758 0.1511 1.9758
φ7(h4) 1.9574 0.5810 1.9574
φ8(x4) 1.3766 1.9851 1.9851
φ9(h5) 1.9762 0.5926 1.9762
φ10(x5) 0.2058 1.9761 1.9761

σ2
y 7.5e−4 6.2e−4 1.5e−14

δ 7.5e−12 6.2e−12 1.5e−14
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section, and the shape of the percentage of braked mass distribution at the second and third
train sections. These results show that it is not easy to find a distribution of percentage of
braked mass that optimize all types of forces simultaneously. Nevertheless, they confirm the
operational experience with respect to 10m compressive forces and 2m tensile forces.

For each response variable, we report the Kriging surfaces for each train section (Figures
3.3, 3.4 and 3.5). Nevertheless, some of these Kriging surfaces cannot be easily interpreted.
To this end, in order to better highlight the behavioir for each estimated Kriging model, we
also provide the plots of the estimated Kriging surfaces for each input variable (Figures
3.6, 3.7 and 3.8). At the beginning of the train (first and second train sections), the best
payload distribution which minimizes the 2m compression forces, gradually changes from a
trapezoidal (with a position of maximum percentage of braked weight in the middle of the
section), to a triangular one; where the maximum is carried out at the end of the train section
(Figures 3.6 and 3.3). Nevertheless, when considering the 10m compression forces, the best
percentage of braked mass distribution at the beginning of the train seems to be the uniform
one (Figure 3.7); the same result is obtained when considering the tensile forces at 2m for
the second train section (Figure 3.8). This result seems to be in contraddiction with what
has been found before, and this depend on the non linearity of the considered problem; in
fact, in-train forces depend not only on the distribution of percentage of braked mass, but
also on the braked region, and on mechanical characteristics of buffers and draw gears. In
what follows we discussed this further issue. When considering the payload distribution
in the middle of the train for the three in-train forces, no clear pattern for the best payload
distribution is highlighted.

At the end of the train, a pattern for the fourth train section is outlined for both the
compression forces at 2m and 10m: for these two in-train forces the triangular distribution
is the best one, with the position of maximum load at the beginning and at the end of the
train section (Figures 3.7, 3.8 and 3.4). Lastly, for the fifth train section, the uniform payload
distribution is the best one, by minimizing the 2m tensile forces (Figure 3.8).

The validation of the Kriging models is performed through the leave-one-out cross
validation method. To this end, in Table 3.3 we illustrate three goodness-of-fit measures:
the Q2 predictivity coefficient, the standard error of the leave-one-out residuals (labelled
"SE-LOO") and the root mean square error of the leave-one-out residuals (labelled "RMSE-
LOO"). Q2 values and SE-LOO values related to the predictivity coefficient and the standard
errors of the leave-one-out residuals are close to one; this result indicates that the model
prediction is perfectly accurate. As can be seen in Table 3.3, the values of the goodness-of-fit
measures for the estimated Kriging models are very satisfactory. More precisely, the best
fitting according to the Q2 predictivity coefficient is obtained for the tensile forces at 2m.
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Table 3.3 Goodness-of-fit measures for each estimated Kriging model

Compression forces at 2m Compression forces at 10m Tensile forces at 2m
Q2 0.8408 0.8189 0.9018

SE-LOO 0.8080 0.8032 0.7706
RMSE-LOO 0.0207 0.0192 0.0009

The same result is confirmed when considering the RMSE-LOO and the SE-LOO measures,
even though the standard errors of the leave-one-out residuals are slightly larger for the 2m
compression forces.

A graphical tool to analyse the goodness-of-fit of the models is provided by the R package
DiceKriging. To this end, for each response variable three plots are provided: the residual
analysis, the standardized variance of the residuals and the quantile-quantile (QQ) plot
(Figures 3.9, 3.10 and 3.11). Overall, the goodness-of-fit is very satisfactory for all the three
Kriging models. The residual plots seem to suggest that the Kriging model with the tensile
forces at 2m is the best one. The QQ plot results do not indicate any visible deviation from
the gaussinity.

Lastly, it must be noted that we have also investigated the Kriging models with other
types of covariance functions, e.g. the Exponential, the Power Exponential and the Gaussian
ones. The reason for these further investigations is that in general the Kriging is strongly
affected by the chosen covariance function. For the sake of brevity we do not report these
results. We only point out that after considering this issue, the Matérn covariance function
seems to be the most appropriate for the specifical case study here analyzed. According to
these results, this type of covariance function outperforms the other three ones by especially
considering the results related to the leave-one-out cross validation method (residual analysis
and QQ plots). More precisely, deviations from normality are obtained for the Exponential,
the Gaussian and the Power Exponential covariance functions for the compression forces at
2m and at 10m. For the tensile forces at 2m, the deviations from normality of the Gaussian
covariance function are even more pronounced. The results related to the leave-one-out
residuals confirm the goodness-of-fit of the Matérn for all the estimated Kriging models.
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Fig. 3.3 Compression forces at 2m: Kriging surfaces for each train section
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Fig. 3.4 Compression forces at 10m: Kriging surfaces for each train section
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Fig. 3.5 Tensile forces at 10m: Kriging surfaces for each train section
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Fig. 3.6 Compression forces at 2m: Kriging surfaces for each input variable
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Fig. 3.7 Compression forces at 10m: Kriging surfaces for each input variable
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Fig. 3.8 Tensile forces at 10m: Kriging surfaces for each input variable
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Fig. 3.9 Compression Forces at 2m: goodness-of-fit with leave-one-out method. The three
plots presented are as follows: the residuals (top), the standardized variance of residuals
(middle) and the Normal QQ plot of the residuals (bottom).
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Fig. 3.10 Compression Forces at 10m: goodness-of-fit with leave-one-out method. The three
plots presented are as follows: the residuals (top), the standardized variance of residuals
(middle) and the Normal QQ plot of the residuals (bottom).
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Fig. 3.11 Tensile Forces at 2m: goodness-of-fit with leave-one-out method. The three plots
presented are as follows: the residuals (top), the standardized variance of residuals (middle)
and the Normal QQ plot of the residuals (bottom).
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3.7 Conclusions

In this project we illustrated an innovative approach to improve the payload distribution of
freight trains through a suitable design for the computer experiment and Kriging modelling
as subsequent model analysis. To this end, we considered a train divided in five different
sections, where each train section is supposed to have its own payload distribution. The
chosen train configuration is also one of the most critical, and it is generally used for the
computation of in-train forces, allowing us to address more general results through the
investigation of a common railway scenario. Given that the in-train forces can cause a
derailment or a train disruption during an emergency braking manoeuvre, the goal was to
find the best payload distribution that minimizes the in-train forces.

A SOA-based-LH design with a relatively low number of experimental runs and very
good space-filling properties has been built for the computer experiment; subsequently, three
Universal Kriging models with anisotropic Matérn covariance function have been estimated
to find the best payload distribution able to reduce the in-train forces. A nugget parameter
has been also estimated in order to prevent numerical instabilities. The data related to the
output of the in-train forces have been obtained by using the TrainDy simulator (Cantone,
2011), internationally certificated by UIC. The Kriging models have been validated through
the leave-one-out cross validation method. The diagnostic results are very satisfactory by
confirming that the estimated Kriging models are highly predictive.

The results discussed in the previous Section showed that it is not possible to generalize
an optimal payload distribution: looking at the different estimated parameters we found
different optimal distributions. In fact, as already stated in Section 3.1, there is not an
universally optimal payload distribution; rather it could change according to the specific
train set arrangement considered. Anyway, as it has been proved also in Arcidiacono et
al. (2018), the best benefit of the SOA-based-LH design, here applied, is that it is able to
accurately describe the behaviour of the various payload distributions with a relatively small
computational effort for the train simulations. This point is crucial not only for safety reasons,
but especially for the optimization of train maintenance in terms of fatigue analyses of train
couplers (central coupler or buffers/draw gears). As a consequence, this type of design can
be used, together with TrainDy software, to investigate the best payload distribution for each
running train. Of course, a desiderable strategy is the integration of TrainDy with this design
technique in the "productive flow" for interested Railway Undertakings.

Further developments of this work mainly rely on the application of this methodology
to container traffic, where the payloads (along with the percentage of braked mass for each
wagon) cannot be varied continously as in this approach. In-train forces optimization of
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container traffic is important for the new European trains with distributed power/braking, that
will allow the circulation of trains having length up to 1500 m.





Chapter 4

The Impact of Not Randomizing a
Split-Plot Experiment and How to Detect
Its Effect

4.1 Introduction to the project

This project considers the impact when the experimenter either cannot or chooses not to
randomize the application of the experimental factors to their appropriate experimental units
for a split-plot experiment. It is based on a real case-study related to the production process
of an ultrasound transducer devoted to medical imaging. The transducer is composed of
hundreds of elements fabricated in several complex production phases. The compliance on
the stringent process requirements as well as the high production costs require a suitable
experimental planning in order to avoid as much as possible the number of failures of the
transducer. To this end, a split-plot design has been planned that results particularly suitable
to solve complex technological problems by also considering the well-known differentiation
among hard-to-change and easy-to-change factors. Nevertheless, the technology underlying
the transducer production process does not allow complete randomization of some of the
experimental factors involved in the design. Randomization is a fundamental principle
underlying the statistical planning of experiments, and it protects the experiment from bias
induced by any systematic effect that could be present during the conduct of the experiment.
This bias can have a profound negative effect on the experimental results that produce
misleading conlcusions during the analysis.

The purpose of this project is to illustrate the potential consequences of lacking of
randomization in a split-plot design when there is a systematic effect over the course of the
experiment. To this end, we use a simulation study based on the real case-study in which the
systematic effect is represented by a linear trend over time. The main aim is to show through
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the simulation study the real implications of this systematic effect on both the randomized
and non-randomized situations. More precisely, the simulation study considers the situations
where there is no linear trend as well as when a linear trend is present at the Whole-Plot (WP)
level and at the Sub-Plot (SP) level for both the not randomized and the randomized designs.
It therefore demonstrates the fundamental role of randomization by especially considering
the split-plot experiment in which the WP and the SP factors have a different importance for
the experimenter. In what follows, we briefly review the basic principles of the experimental
design theory.

4.2 Experimental design theory: basic principles

The main principles for experimental designs may be divided by considering the general
(basic) theory, and specific properties, e.g. according to the peculiar features for each single
design. In general, an experimental design is characterized by a set of fundamental elements,
such as: the experimental unit; the experimental trial, also named run or treatment, the
latter for specific cases not technological; the replicates, and the concept of factor (with the
corresponding levels). A key-point in the experimental design theory is the allocation of trials
to experimental units in order to estimate the differences among runs in their effects on the
response measurements, where the response measurements are explicitly identified through
one (or several) response variable (Cox and Reid, 2000). The response can be differently
chosen and defined according to the field of application for the experimental design. In a
technological context, the response variable must be improved, and optimized; moreover,
in this situation the underlying interpretation of the technical process is a further aim with
respect to the detecting of significant effects.

Nevertheless, a general main aim for an experimental design is the reduction of random
and systematic errors. The random error is the residual error, e.g. the (residual) not-explained
variability, and it should be minimized if the experimental planning has been performed
involving all the source of variabilities that are considered relevant for the defined response
variable. The systematic error, instead, must be avoided. To this end, the principle of
randomization plays a relevant role and it constitutes the kernel point for the classical
experimental design (Cox and Reid, 2000). Furthermore, randomization can be achieved
through: i) the random allocation between an experimental run and an experimental unit; ii)
properties of the design matrix. The latter is a crucial element for planning an experimental
design and to account for its properties. For example, in a full factorial design balance and
orthogonality are guaranteed by the algebraic property of the design matrix for orthogonality,
while balancing is a sufficient condition when the replicates are present. Moreover, in more
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complex designs, such as optimal designs, orthogonality is achieved through the Fisher
Information matrix. Furthermore in a linear model, when considering the difference between
two treatments (groups) with a random allocation, the residual error (ε) captures all the
random differences external to the systematic effect. In this case, randomization allows for
guaranteeing estimation properties according to the 2nd moment assumptions for ε , given
that the 1st moment is always assumed equal to zero. In particular:

1. assuming homoscedasticity and uncorrelated residual errors implies to have a Minimum
Variance Unbiased Linear Estimator (MVULE) for the mean and variance difference
between the two treatments;

2. assuming that residual errors are Normally distributed with constant (homogeneous)
variance implies Minimum Variance Unbiased Estimator (MVUE) for the mean and
variance difference between the two treatments.

In general randomization ranges from a crucial to a less relevant role, while the main
concern is related to the allocation between experimental units and trials. However, even
though the avoidance of bias is not so strictly urgent when patients are not involved, the tools
for avoiding it are: i) the use of randomization, and ii) the inclusion of a-priori information
through intermediate and/or baseline variables (Cox and Reid, 2000).

In a technological situation, and especially when considering a split-plot design, the
inclusion of intermediate variables often means that we are also evaluating: i) additional
information of the technological process (variables not included in the experimental design),
and, particularly, ii) noises and classification factors.

Furthermore, specific arrangements and/or inclusion of strategic variables may help to
avoid or to reduce bias; for example, by including a block variable or by a constrained
randomization. When considering specific allocation of trials (arrangements) balancing is a
relevant condition. In fact, perversely, if all the units receive the same treatment, no effect
can be estimated. Therefore, a guarantee for a good randomization could be a randomization
constrained to balancing (Cox and Reid, 2000).

Essentially, randomization provides protection against any systematic effect that may
occur with the experimental units during the conduct of the experiment. If such a linear
trend is present, it produces biased estimates of the model coefficients if the specific factor
settings are not randomly assigned to the corresponding experimental units. Conversely, the
estimates of the model coefficients are unbiased if the design is randomized; however, it
does so at a price. Essentially, randomization moves the impact of the linear trend into the
experimental error, making it larger. As a result, randomization allows also to detect the
linear trend through the residual plots. Instead, the non-randomized design cannot identify
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the presence of the linear trend through the residul plots because the impact of the trend is
to bias the estimated coefficients. As a consequence, the presence of the systematic effect
reduces the power of the tests on the treatment effects, i.e, the probability of detecting an
important treatment difference is reduced. In the following Section, these randomization
issues are discussed specifically for the split-plot experiment. To do se, we briefly introduce
the basic theory for split-plot designs.

4.3 Basic split-plot theory

The split-plot design has received a great attention as a valid plan in the technological field.
As already stated (Section 1.4, Chapter 1), in a split-plot design there are two sets of factors,
namely the WP factors and the SP factors, involved in a bi-randomization procedure. The set
of trials relating to the SP factors are nested and randomized within each WP experimental
unit, e.g. Whole-Unit (WU); the WUs are formed by the combinations of the WP factor
levels. Each experimental unit for the SP factors, e.g. Sub-Unit (SU), is an observational
unit for the WP factors. The bi-randomization strategy creates two different error terms:
one at the WP level and one at the SP level. These two error terms lead to two different
error variances with different degrees of freedom for performing inference. Following, these
concepts are better highlighted through the definition of the general form of the split-plot
model.

4.3.1 General form of the split-plot model

Let’s define the general form of the split-plot model as follows:

y = Xβ+δ+ε (4.1)

where y is the N ×1 vector of the responses and X is the N × p model matrix; β is the p×1
vector of WP and SP unknown coefficients; δ is the N ×1 vector of WP errors, while ϵ is the
N ×1 vector of SP errors. We assume that (δ+ϵ) follows a Normal distribution with mean
0 and variance-covariance matrix Σ equals to:

Σ= σ
2
ε I+σ

2
δ
J (4.2)
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In formula (4.2), σ2
δ

and σ2
ε are the WP and SP variances respectively; I is the identity matrix.

The matrix J is a block-diagonal matrix which general form is expressed as follows:

J =


1n11

′
n1

0 · · · 0
0 1n21

′
n2 · · · 0

...
... . . . ...

0 0 · · · 1nm1′
nm

 (4.3)

where m is the total number of whole-plots, ni is the number of SP runs in the i-th WP
(i = 1, ...,m). In a balanced split-plot design, each WP contains the same number n of SP
runs (e.g. ni = n), and the total number of runs in the design is equal to N = mn.

Moreover, it must be noted that the WP and SP error variances (σ2
δ

and σ2
ε ) have different

degrees of freedom due to the differences in information from the different number of
experimental units. More precisely, there are much less experimental units for the WP factors
than for the SP factors. Therefore, the WP error variance has fewer degrees of freedom (often
much fewer) than the SP error variance. As a result, the split-plot experiment can detect
smaller differences in treatment effects at the SP level than at the WP level. We thus have
much more information on the SP effects than the WP effects.

Lastly, it must be also noted that the two error terms (σ2
δ

and σ2
ε ) in the split-plot design

identify two different sets of residuals: one at the WP level and the other at the SP level.
The SP residuals are the traditional residuals. Instead, the WP residuals are obtained as the
difference between the mean of each WP and the predicted value of the WP, obtained using
only the part of the model matrix X corresponding to the WPs (Vining and Kowalski, 2008;
Jensen and Kowalski, 2012). In the next Subsection, we briefly discuss the randomization
issues for a split-plot design.

4.3.2 Randomization issues in a split-plot design

First, let’s define the ratio of the WP to SP error variances as follows (Myers et al., 2002):

d =
σ2

δ

σ2
ε

(4.4)

Suppose there is a systematic effect. More precisely, assume that there is a linear effect
over time within each WU, and defined as follows:

ν(ti) = η0 +η1ti ∀i = 1, ...,m (4.5)

where ti (i = 1, ...,m) is an index variable for the corresponding WU.
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Similarly, assume a linear effect over time at the SP level. Let t∗t be an (mn×1) vector
for the "times". In general:

t∗t =



t∗1
t∗2
...
t∗i
...
t∗m


(4.6)

where t∗i are the times within the ith WP. In our simulations, we assumed that

t∗1 = t∗2 = . . .= t∗i = . . .= t∗m = t∗. (4.7)

Therefore, for each SU k-th (k = 1, ...,N), the systematic linear trend over time is defined in
general as follows:

α(t∗k ) = γ0 + γ1t∗k ∀k = 1, ...,N (4.8)

where t∗k (k = 1, ...,N) is an index variable for the corresponding SU.
If we perform a proper randomization, we expect to see no bias in the estimates of the

treatment effects. However, we expect to see inflated estimated variances for the error terms.
This is because randomization moves the systematic trends (formulas (4.5) and (4.8)) to the
corresponding error terms. On the other hand, if we do not randomize the experiment either
at the WP or at the SP levels, then we should expect to see biased estimates of the treatment
effects. Finally, we should not expect to see an impact at the WP level if the systematic effect
is purely at the SP level (formula (4.8)). Similarly, we do not expect to see an impact at the
SP level if the systematic trend is purely at the WP level (formula (4.5)).

The consequences outlined above assume that we have a large enough number of WPs
and SPs to see the effects. We should be able to see the impacts at the SP level much better
than at the WP level since we have more (often much more) experimental units at the SP
level. It is entirely possible that for a small enough experiment one will not be able to see the
trend at the WP level (formula (4.5)). In fact, often the number of WUs is sufficiently small
that randomization has very little benefit over not randomizing.

An important question is how could we detect the presence of the linear trend. One
should expect that the appropriate residuals would reflect the presence of the linear trend,
providing a basis for estimating the linear trend in an effort to minimize its bias on the
estimated treatment effects.
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Following, after a brief description of the motivation study and the split-plot planning,
the issues discussed above are demonstrated and explained in details through the simulation
study results.

4.4 The motivation study

4.4.1 The technical problem

There exists an ever-increasing demand for piezoelectric and electrostrictive sensors and
actuators fabricated with high levels of geometrical precision and with the minimum of
material damage. The applications, which include miniature high-frequency ultrasonic arrays,
infrared imaging devices and print-head actuators, usually require either thin electroactive
layers, or finepitch multi-element arrays, the former being created by grinding and lapping
and the latter by dicing. At the same time, the bonding between materials with different
thermal expansion coefficient becomes critical, when the fundamental requirement of strength
adhesion must be satisfied. The general structure of the transducer devoted to medical imaging
based ultrasounds is shown in Figure 4.1.

Ultrasonic diagnostic apparatus is known which radiate ultrasonic pulse beams into an
object to be examined, receiving the echoes which are reflected by the boundary of the
structures of organs in accordance with a difference in acoustic impedance, displaying them
on a monitor, so that the structure of the organs can be observed from the displayed image.
Since they enable the interior of the body to be diagnosed from the exterior, they are widely
used. The study takes the linear phased array probe head (Figure 4.2) and their potential
failures during the manufacturing process into account.

This probe is used for medical application and, in particular, to monitor the cardiac
muscle. In order to focus the ultrasonic beam properly on the heart, passing through the ribs
of the thoracic cage, the probe is characterized by an acoustic stack composed by 128 PZT
array element (sources and receiver for ultrasound waves), in which electrical connection
and matching layer for each element are provided. The support of the stack is the backing,
fundamental component that provides not only mechanical robustness, but also the mitigation
of acoustic noise effect. The compliance (100%) of each array element is mandatory and, so,
dicing and bonding process are very critical.

Even though the study is based on the real technical problem described above, we point
out that our results are obtained only through simulations.
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Fig. 4.1 Probe system: a) Probe head group; b) Connection groups; c) Cable (source: Catelani
et al., 2012).
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Fig. 4.2 Phased array probe: acoustic stack (source: Spicci, 2012).



88 The Impact of Not Randomizing a Split-Plot Experiment and How to Detect Its Effect

4.4.2 The split-plot planning

The response variable is the total array capacitance after repoling. The split-plot design is
planned by considering all the sources of variabilities involved in the transducer process
during phases no.4 and no.5. It must be noted that, in addition to the control and process
variables involved in the design, some other variables should be included as external variables,
such as: operators, environmental variables (humidity and temperature of the laboratory),
times (hour) spent between phases, and so on. Nevertheless, at this stage of the analysis,
these external variables have still not been considered, because at this stage we are dealing
with simulations for detecting the impact of no-randomization versus randomization. The
plan is to conduct the experiment over four nights in a single week. During each night two
dicing-machines are employed and then they are settled to the same levels of blade-spindle-
revolution (rotation/min) and blade-feed-rate (mm/sec). For each machine, the transducers
involved in the dicing process (during each night) are four. Then, the four transducers are
built through a processing layer bonding, which use two types of adhesives and two levels of
bonding time (minutes).

Blade-spindle-revolution and blade-feed-rate are hard-to-change or WP factors. The
dicing machine, adhesive, and bonding time are easy-to-change or SP factors. The experiment
uses two levels for each factor. Therefore, the total number of WP experimental units is four,
e.g. m = 22 = 4. The total number of SP experimental units within each WU is eight, e.g.
n= 23 = 8, while the total number of SP experimental units in the experiment is N =mn= 32.
Furthermore, at this stage of the analysis, all the design factors are considered quantitative,
and may be treated as continuous in the range [-1,1].

4.5 The simulation study

Randomization is one of the three basic principles for conducting of experimental de-
sign. Nevertheless, as usual in the technological field, randomization cannot be completely
achieved due to production process requirements. This is the case for our motivating study
in which a split-plot design is planned for the study of ultrasound transducer process. In
fact, as already stated in the previous Section, two of the SP factors, e.g. adhesive and
bonding time, are not randomized. To this end, we carry out a simulation study to illustrate
the possible consequences by not randomizing the design completely. Even though the
motivating example only does not randomize some SP factors, this study investigates the
implication of not randomizing at both the WP and SP level. Therefore, we consider the
following two different cases:

A) a split-plot design in which only the WP factors are not randomized;
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B) a split-plot design in which only the SP factors are not randomized.

For both cases, we assess the effect of randomizing/not randomizing on: i) the estimated
model coefficients, and ii) the WP and SP residuals respectively.

In order to show the effect from not randomizing the design, we simulate with and without
adding a linear trend at the WP level only (Case A, formula (4.5)), and at the SP level only
(Case B, formula (4.8)). To this end, for each case we consider the following four different
arrangements:

1. Not Randomized Design Without Trend (NRDWT): that is the split-plot design in
which, depending on the case, the WP or the SP factors are not randomized;

2. Not Randomized Design With Trend (NRDCT): the not randomized split-plot design
with the inclusion of the corresponding linear trend in the data;

3. Randomized Design Without Trend (RDWT): the split-plot design with all the factors
completely randomized and without trend;

4. Randomized Design With Trend (RDCT): the randomized split-plot design in which
we have also added the corresponding linear trend in the data.

For each case (A and B), and for each split-plot arrangement (NRDWT, NRDCT, RDWT
and RDCT), the study uses the R software to generate ten thousand datasets of N = 32
observations. Instead, the study uses SAS PROC MIXED (Windows Platform 9.4) to
estimate the models.

We report box-plots for the WP and SP factors for each split-plot arrangement to illustrate
the impacts of not fully randomizing the designs. For the sake of brevity, we report the
box-plots for the blade-spindle-revolution WP factor and for the dicing-machine SP factor
only. The WP factor blade-feed-rate exhibits the same basic behavior as the blade-spindle-
revolution. Similarly, the other two SP factors exhibit the same basic behavior as the
dicing-machine. We report the WP and SP residual plots for one and for a hundred datasets
(SP residuals), and for five and a thousand datasets (WP residuals), again pointing out that
the other plots show the same pattern.

4.6 Case A): Not randomizing the WP factors

First, we investigate the effect of not randomizing the WP factors by considering the implica-
tions on: i) the estimated model coefficients, and ii) the WP and SP residuals respectively.
To this end, we add to the NRDCT and the RDCT datasets, the linear trend at the WP level
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(formula (4.5)). Given that the β̂ vector of estimated coefficients should be unbiased, we
have fixed η0 = 0 and η1 = 1.4. The η1 value has been chosen according to the variance
ratio d in formula (4.4). Therefore, the trend in formula (4.5) is computed as follows:

ν(ti) = η [ti − t] ∀i = 1, ...,m (4.9)

where ti (i = 1, ...,m) is the index variable for the corresponding WP experimental unit and
t = 1

m ∑
m
i=1 ti; moreover, without any loss of generality we omit the suffix for η from now on.

4.6.1 The implications on the estimated model coefficients

We now illustrate the implications on the estimated model coefficients as the result of
not randomizing the WP factors. The differences of not randomizing vs randomizing are
highlighted when the linear trend at the WP level is included in both the randomized and the
not randomized designs (formula (4.9)).

We first examine the effect on the WP factor estimates when the WP factors are not
randomized (e.g. blade-spindle-revolution and blade-feed-rate). As expected, when the WP
factors are not randomized, the impact is clearly highlighted only in the WP factor estimates
(Figure 4.3). As a matter of fact, we refer to the blade-spindle-revolution WP factor for
which the true coefficient value is equal to 0.2. More precisely, the WP estimate distribution
of the NRDCT dataset has a different location (median) value with respect to the other three
ones (Figure 4.3). This result confirms that the estimated coefficient for the NRDCT dataset
is biased while the other three are not. Furthermore, when the WP factors are randomized
(RDCT dataset), we observe only the inflation in the variance of the estimated coefficient
due to the presence of the linear trend, but unbiased estimates.

When considering the results for the SP factors, we can conclude that there is no effect
on the SP factor estimates when the WP factor are not randomized. To illustrate this, we
refer to the estimated coefficients box-plots for the dicing machine SP factor (Figure 4.4),
pointing out that the other two SP factors show the same behavior. We clearly see that there
are no differences in the SP estimate distributions for all four arrangements. This means that
not randomizing at the WP level has no implications on the SP level: whether the WP factors
are randomized or not randomized, the SP coefficients are always unbiased. This result is
consistent with what we would expect: the linear trend is purely at the WP level, and as a
result, its effect is purely at the WP level.
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4.6.2 The implications on the WP and SP estimated residuals

Next, we examine the behaviour of the WP and SP residuals respectively. To this end, in
Figures 4.5 and 4.6 we report the residual plots for the WPs for five and a hundred consecutive
simulation runs respectively. We see that the residuals from the randomized experiment in the
presence of the linear trend are different from the other three plots. However, one cannot see
a clear pattern revealing the trend. The basic reason is that we did not have large enough WP
trials. There is only one degree of freedom for the WP error term after fitting the intercept
and the two main effects. Therefore, we can conclude that the experiment is too small to
allow us to see the linear trend. The small size of the degrees of freedom does not allow the
randomization to distribute the linear trend effectively. Figure 4.7 displays the box-plot of
the mean squared residuals for the WPs. It clearly demonstrates the inflation in the estimate
of the WP error variance as a result of the linear trend at the WP level.

When considering the SP residuals, there are no differences between each of the four
split-plot arrangements, and therefore between not randomizing versus randomizing the
design (Figures 4.8 and 4.9). The mean squared residuals for the SPs also confirm this result
(Figure 4.10) that is completely consistent with the previous findings for the SP estimates.
Namely, we do not observe an effect on the SP estimates due to not randomizing the WP
factors, and consequently, we do not observe it on the SP residuals.

4.7 Case B): Not randomizing the SP factors

We now consider the case in which the SP factors are not randomized. As previously for case
A), we investigate the effect of not randomizing the SP factors by considering the implications
on: i) the estimated model coefficients, and ii) the WP and SP residuals respectively. To this
end, we add to the NRDCT and the RDCT datasets, a linear trend at the SP level. Similarly
to case A), we fixed γ0 = 0 and γ1 = 1.4. Without any loss of generality we omit the suffix
for γ1 from now on. Therefore, the linear trend at the SP level in formula 4.8 is computed as
follows:

α(t∗k ) = γ[t∗k − t] ∀k = 1, ...,N (4.10)

where t∗k (k = 1, ...,N) is the index variable for the corresponding SP experimental unit.
The linear trend at the SP level in formula (4.10) is reported in Figure 4.11.
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4.7.1 The implications on the estimated model coefficients

Consistently with case A), the differences of not randomizing versus randomizing are
highlighted when the linear trend at the SP level is included in both the randomized and the
not randomized designs (formula (4.10)).

First, we examine the effect on the WP factors estimates due to not randomizing the SP
factors. To this end, we consider the box-plots for the blade-spindle-revolution WP factor
for which the true coefficient value is equal to 0.2 (Figure 4.12). As expected, there is no
effect on the WP factor estimates when the SP factors are not randomized. That is, whether
the SP factors are randomized or not randomized, the WP estimates are always unbiased
with median and mean values of the estimates equal to the true ones (Figure 4.12). This
result is completely consistent: the linear trend is purely at the SP level, and therefore, its
effect is purely at the SP level. To illustrate this issue, we consider the dicing machine SP
factor for which the true coefficient value is equal to −0.77. More precisely, the SP estimate
distribution for the NRDCT data has different median value with respect to the other three
ones (Figure 4.13). This result indicates that not randomizing at the SP level biases the
SP estimates by the linear trend. Moreover, even though the SP estimates for the RDCT
dataset show a greater (inflated) variability with respect to the corresponding estimates of the
NRDCT data, the SP estimates of the RDCT resulted unbiased with an expected value of the
beta coefficient equal to the true coefficient value. The inflated variability can be explained
through the trend effect that randomization moves to the SP error variability, but preserving
unbiased estimates.

4.7.2 The implications on the WP and SP residuals

Next, we examine the implication on the WP and SP residuals as a result of not randomizing
the SP factors. The effect on the WP residuals reflects the results obtained for the WP
estimates. More precisely, we do not observe an impact on the WP estimates when the SP
factors are not randomized, and consequently, we do not observe it also on the WP residuals
for the four different design arrangements (Figure 4.14). The results is also confirmed when
considering the overall pattern of the WP residuals reported for the first hundred simulations:
the residual pattern for the four different scenarios are all identical (Figure 4.15).

The results are quite different for the SP residuals when there is a linear trend at the
SP level. Figure 4.16 illustrates the SP residuals for five consecutive simulation runs. As
expected, there is no difference between the randomized and non-randomized designs if there
is no linear trend (NRDWT and RDWT datasets). On the other hand, we see a pronounced
difference between the NRDCT and the RDCT datasets when the linear trend is present in
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the data. More precisely, the non-randomized case is exactly the same as the plots when
there is no linear trend. However, the plot of the residuals for the randomized design clearly
identifies the trend. The results is also confirmed when considering the general pattern for
the SP residuals for the first hundred simulations (Figure 4.17). In fact, the SP error variance
for the RDCT data is inflated by the linear trend as illustrated by the mean square box-plots
for the SP residuals (Figure 4.18). These findings confirm that randomization allows to
effectively detect any systematic effect. As a consequence, if the residual plot clearly show
the presence of the trend, the analyst will be also able to correct for it through the inclusion
of the linear trend as a covariate in the statistical model.

Finally, it must be noted that we simulated also a third case in which both the WP and the
SP factors are not randomized. The plots show the same impacts at the WP level as for Case
A), and the same results at the SP level as for Case B). For this reason, the results are not
reported.

4.8 The Impact of Different Trend Effects

In this Section we carried out a further analysis in order to study the impact of different
magnitudes for the trend effects, η and γ , on the results. The trend effects η and γ control
the impact of the linear trend at the WP and SP levels respectively. Therefore, an important
issue to consider is to what extent is still possible to see the impact of the systematic effect.
To illustrate this issue, we use the following values for the trend effects at the WP and the SP
levels respectively:

• η = 1.4 (Case A) and γ = 1.4 (Case B);

• η = 0.7 and γ = 0.7;

• η = 0.35 and γ = 0.35 (considered small for technical knowledge).

First, we examine the impact of the linear trend at the WP level (Case A) by considering
the three different values for η . Figure 4.19 displays the box-plots for the blade-spindle-
revolution WP estimates in terms of the three values for η . By specifically considering the
NRDCT datasets, more the trend effect η decreases, slighter is the impact in terms of bias on
the WP estimates (Figure 4.19). Furthermore, whatever is the magnitude of the trend effect,
the RDCT dataset still perfectly preserves unbiased coefficient estimates. The only impact of
the magnitude of the trend effect on the RDCT data is that smaller is its value, smaller is the
inflated variability in the WP estimates distribution.
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When considering case B), the results are even more pronounced. The linear trend at the
SP level in terms of different values for γ is reported in Figure 4.20. It is straightforward to
show that more the trend effect decreases, slighter is the linear trend at the SP level (Figure
4.20). The impact of the trend effects on the SP estimates is consistent with what obtained
for the WP estimates for case A). More precisely, for the dicing machine SP factor, as γ

decreases, so does the variability in the coefficient estimates for the randomized experiment,
and so does the bias in the estimated coefficient for the non-randomized experiment (Figure
4.21).

Last, we report the SP residuals for the randomized design in terms of the three values
for the trend effect γ (Figures 4.22 and 4.23). The SP residual plots for five consecutive
simulation runs clearly highlights the linear trend (Figure 4.22). More precisely, for large
values of γ (e.g. γ = 1.4), the linear trend in the SP residuals is very strong. As the γ value
decreases, it becomes ever more slighter. Moreover, for small values of γ (e.g. γ = 0.35), the
SP residuals still show the trend. The overall decreasing pattern for the SP residuals when the
trend effect decreases is clearly highlighted when considering the residual plots for hundred
simulations (Figure 4.23). Again, we see the decrease in variability as γ decreases in the
box-plots of the mean squared residuals for the randomized design (Figure 4.24).

4.9 Conclusions

Randomization is a fundamental principle for the design and analysis of experiments. It plays
a key role, and it primarily allows us to protect the factor estimates by the presence of bias,
which could derives from any systematic effect when conducting the experiment. Through
the simulation study carried out in this project we showed which is the real impact of lacking
of randomization. Although our study investigates the implications in a split-plot design, the
main consequences due to lacking of randomization discussed in the previous Sections are
valid also in general. More precisely, by not randomizing the application of the experimental
factors to the experimental units, any systematic effect that could be present during the
conduct of the experiment will lead to biased coefficient estimates. This bias created by
the linear trend if we do not randomize is a very serious issue. More precisely, coefficients
that are not practically significant from an engineering perspective can become statistically
significant. Conversely, coefficients that are of practical significance can become statistically
insignificant. The bias clearly can lead to very inappropriate conclusions from the statistical
analysis. Moreover, the results related to the different trend effects discussed in the previous
Subsection confirm that also a small systematic effect will still produce biased estimates.
Consequently, the analyst will draw unmeaningful conclusions about the importance of the
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factors in the analysis. On the other hand, randomization provides a protection against the
presence of any systematic effect. A fundamental issue to stress is that randomization does
not remove the systematic effect. Rather, it moves it to the error term making it larger so as
preserving unbiased coefficient estimates.

The split-plot experiment on which we have assessed the effect of lacking of random-
ization is nowadays a basic design for industrial experimentation. Its bi-randomization
procedure due to the presence of two types of the experimental units should be carefully
considered when planning and analyzing the design. To this end, if the WP factors could not
be randomized we expect to obtain biased WP estimates but unbiased SP estimates and this
is what we have demonstrated through the simulation results. Conversely, if the SP factors
could not be randomized we obtain biased SP estimates but unbiased WP ones. Moreover,
differently from the linear trend at the WP level, the trend at the SP level was large enough
to allow randomization to effectively distribute the trend. The simulation study establishes
that if one can randomize the SP factor settings but not the WP, then there is no effect on the
SP inferences, which is very important. Almost always, the SP effects are of most interest,
especially in split-plot designs with a small number of WP experimental units. It also shows
that if only the SP factors are not randomized, then all of the impact of the non-randomization
are at the SP level. Once again, the SP effects typically are very important. As a result, one
must be very careful when the design is not randomized at the SP level.

In this simulation study, we have assumed that the systematic effect consists in a linear
trend. We are fully aware that in practice other possible forms could occur for the systematic
effect, and further investigations could also consider this issue. Nevertheless, the basic
linear form of the trend allows to fully address the main aim of this project; that is, the
presence of the linear trend illustrates excellently the main implications of not randomizing
the experiment.

A last important issue to note is that our simulation study is based on a real case study for
which some of the SP factors was not randomized due to production process requirements. In
practical industrial experimentation this situation is very frequent than expected. Engineers
and analyst therefore should to carefully keep in mind the fundamental role of randomization
in the design and analysis of experiment by especially considering that by not randomizing
there is no way to remove the effect of any systematic effect that almost surely occurs during
the experimentation.
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Fig. 4.3 Case A: estimated coefficients box-plots for the blade-spindle-revolution WP factor.
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Fig. 4.4 Case A: estimated coefficients box-plots for the dicing machine SP factor.
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Fig. 4.5 Case A: WP residual plots for simulations no.3-7.
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Fig. 4.6 Case A: WP residual plots for simulations no.1-1000.
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Fig. 4.7 Case A: Mean square box-plots of the WP residuals.
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Fig. 4.8 Case A: SP residual plots for simulation no.103.
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Fig. 4.9 Case A: SP residual plots for simulations no.1-100.
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Fig. 4.10 Case A: mean square box-plots for the SP residuals.
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Fig. 4.11 Case B: linear trend at the SP level.
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Fig. 4.12 Case B: estimated coefficients box-plots for the blade-spindle-revolution WP factor.
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Fig. 4.13 Case B: estimated coefficients box-plots for the dicing machine SP factor.
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Fig. 4.14 Case B: WP residual plots for simulations no.3-7.
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Fig. 4.15 Case B: WP residual plots for simulations no.1-1000.
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Fig. 4.16 Case B: SP residual plots for simulations no.103.
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Fig. 4.17 Case B: SP residual plots for simulations no.1-100.
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Fig. 4.18 Case B: mean square box-plots for the SP residuals.
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Fig. 4.19 Case A: estimated coefficients box-plots for the blade-spindle-revolution WP factor
in terms of different values for η .
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Fig. 4.20 Case B: linear trend at the SP level in terms of different values for γ .
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Fig. 4.21 Case B: estimated coefficients box-plots for the dicing machine SP factor in terms
of different values for γ .
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Fig. 4.22 Case B: SP residual plots for simulation no.103 - RDCT data.
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Fig. 4.23 Case B: SP residual plots for 1000 simulations - RDCT data.
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Fig. 4.24 Case B: mean square box-plots for the SP residuals in terms of different slope
values - RDCT.
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