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Abstract 

We  introduce a frequency domain version of the EM algorithm for general dynamic factor 
models. We consider both AR and ARMA processes, for which we develop iterative indirect 
inference procedures analogous to the algorithms in Hannan (1969). Although our proposed 
procedure allows  researchers  to estimate such models by maximum  likelihood with many 
series even without good initial values, we recommend switching to a gradient method that 
uses  the  EM  principle  to  swiftly  compute  frequency  domain  analytical  scores  near  the 
optimum. We  successfully  employ  our  algorithm  to  construct  an  index  that  captures  the 
common movements of US sectoral employment growth rates. 
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1 Introduction

Dynamic factor models have been extensively used in macroeconomics and finance since their

introduction by Sargent and Sims (1977) and Geweke (1977) as a way of capturing the cross-

sectional and dynamic correlations between multiple series in a parsimonious way. A far from

comprehensive list of early and more recent applications include not only business cycle analysis

(see Litterman and Sargent (1979), Stock and Watson (1989, 1993), Diebold and Rudebusch

(1996) or Gregory, Head and Raynauld (1997)) and bond yields (Singleton (1981), Jegadeesh

and Pennacchi (1996), Dungey, Martin and Pagan (2000) or Diebold, Rudebusch and Aruoba

(2006)), but also wages (Engle and Watson (1981)), employment (Quah and Sargent (1993)),

commodity prices (Peña and Box (1987)) and financial contagion (Mody and Taylor (2007)).

In principle, Gaussian (P)MLEs of the parameters can be obtained from the usual time do-

main version of the log-likelihood function computed as a by-product of the Kalman filter predic-

tion equations or from Whittle’s (1962) frequency domain asymptotic approximation. Further,

once the parameters have been estimated the Kalman smoother or its Wiener-Kolmogorov coun-

terpart provide optimally filtered estimates of the latent factors. These estimation and filtering

issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numerical

implementation (see Jungbacker and Koopman (2008)). In practice, though, researchers avoid

ML except in relatively small models because of the heavy computational burden involved, which

is disproportionately larger as the number of series considered increases.

To ameliorate this problem, Watson and Engle (1983) and Quah and Sargent (1993) applied

the EM algorithm of Dempster, Laird and Rubin (1977) to the time domain versions of these

models, thereby avoiding the computation of the likelihood function and its score. This iterative

algorithm has been very popular in various areas of applied econometrics (see e.g. Hamilton

(1990) in a different time series context). Its popularity can be attributed mainly to the effi ciency

of the procedure, as measured by its speed, and also to the generality of the approach, and

its convergence properties (see Ruud (1991)). However, the time domain version of the EM

algorithm has only been derived for dynamic factor models in which all the latent variables

follow pure Ar processes, and works best when the effects of the common factors on the observed

variables are contemporaneous, which substantially limits the class of models to which they can

be successfully applied. This limitation is particularly important in practice because recent

macroeconomic applications of dynamic factor models have often considered moving average

processes instead, sometimes treating the lagged latent variables as additional factors (see Bai

and Ng (2008) and the references therein).

The purpose of this paper is to introduce a frequency domain version of the EM algorithm
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for general dynamic factor models with latent Arma processes. Our algorithm reduces the

computational burden so much that researchers can estimate such models by maximum likelihood

with a large number of series even without good initial values. As is well known, though, this

algorithm slows down considerably near the optimum. At that point, the best practical strategy

would be to switch to a first derivative-based method. In that regard, we also explain in detail

how to use the EM principle to swiftly compute frequency domain analytical scores. Finally, we

illustrate our procedure with an empirical application to US employment data. Specifically, we

follow Quah and Sargent (1993) and construct an index that captures the common movements

of sectoral employment growth rates.

The rest of the paper is organised as follows. In section 2, we review the properties of dy-

namic factor models and their filters, as well as maximum likelihood estimation in the frequency

domain. Then, we derive our estimation algorithm and present a numerical evaluation of its

finite sample behaviour in section 3. This is followed by the empirical application in section

4. Finally, we discuss several interesting extensions for further research in section 5. Auxiliary

results are gathered in appendices.

2 Theoretical background

2.1 Dynamic factor models

To keep the notation to a minimum, we focus on single factor models, which suffi ce to

illustrate our procedures. A dynamic, exact, single factor model for a finite dimensional vector

of N observed series, yt, can be defined in the time domain by the system of equations

yt = µ+ c(L)xt + ut,

αx(L)xt = βx(L)ft,

αui(L)ui,t = βui(L)vi,t, i = 1, . . . , N,

(ft, v1,t, . . . , vN,t)|It−1;µ,θ ∼ N [0, diag(1, ψ1, . . . , ψN )],

where xt is the only common factor, ut the N specific factors, c(L) =
∑n

k=−m ckL
k a vector

of N possibly two-sided polynomials in the lag operator ci(L), αx(L) and αui(L) are one-sided

polynomials of orders px and pui , respectively, while βx(L) and βui(L) are one-sided polynomials

of orders qx and qui coprime with αx(L) and αui(L), respectively, It−1 is an information set that

contains the values of yt and ft up to, and including time t − 1, µ is the mean vector and θ

refers to all the remaining model parameters.
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A specific example would be y1,t
...

yN,t

 =

 µ1
...
µN

+

 c1,0
...

cN,0

xt +

 c1,1
...

cN,1

xt−1 +

 u1,t
...

uN,t

 , (1)

xt = αx1xt−1 + ft − βx1ft−1,

uit = αui1uit−1 + vit − βui1vit−1, i = 1, . . . , N.

Note that the dynamic nature of the model is the result of three different characteristics:

1. The serial correlation of the common factor xt

2. The serial correlation of the idiosyncratic factors ut

3. The heterogeneous dynamic impact of the common factor on each of the observed variables

through the series-specific distributed lag polynomials ci(L).

Thus, we would need to shut down all three sources to go back to a traditional static factor

model (see Lawley and Maxwell (1971)). Cancelling only one or two of those channels still

results in a dynamic factor model. For example, Engle and Watson (1981) considered models

with static factor loadings, while Peña and Box (1987) further assumed that the specific factors

were white noise. To some extent, characteristics 1 and 3 overlap, as one could always write any

dynamic factor model in terms of white noise common factors. In this regard, the assumption

of Arma(px, qx) dynamics for the common factor can be regarded as a parsimonious way of

modelling an infinite distributed lag.

2.2 Spectral density matrix

Under the assumption that yt is a covariance stationary process, possibly after suitable

transformations as in section 4, the spectral density matrix of the observed variables will be

proportional to

Gyy(λ) = c(e−iλ)Gxx(λ)c′(eiλ) + Guu(λ),

Gxx(λ) =
βx(e−iλ)βx(eiλ)

αx(e−iλ)αx(eiλ)
,

Guu(λ) = diag[Gu1u1(λ), . . . , GuNuN (λ)],

Guiui(λ) = ψi
βui(e

−iλ)βui(e
iλ)

αui(e
−iλ)αui(e

iλ)
.

Thus, Gyy(λ) is the sum of the rank 1 matrix c(e−iλ)Gxx(λ)c′(eiλ) and the diagonal matrix

Guu(λ), thereby inheriting the exact single factor structure of the unconditional covariance

matrix of a static factor model. We can easily ensure the separate identification of those two
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matrices when Guu(λ) has full rank provided N is suffi ciently large. The separate identification

of c(e−iλ) and Gxx(λ) is trickier, but it can be guaranteed (up to scale and time shifts) as long as

the N polynomials ci(.) do not share a common root (see Geweke (1977), Geweke and Singleton

(1981) and more recently Heaton and Solo (2004) for a more thorough discussion of identification

in dynamic factor models). To avoid dealing with nonsensical situations, henceforth we maintain

the assumption that the model that has to be estimated is identified. This will indeed be the

case in our empirical application in section 4.

For the model presented in (1),

Gxx(λ) =
βx(e−iλ)βx(eiλ)

αx(e−iλ)αx(eiλ)
=

1 + β2x1 − 2βx1 cosλ

1 + α2x1 − 2αx1 cosλ
,

where we have exploited the fact that the variance of ft has been normalised to 1 for identification

purposes.1

Similarly,

Guiui(λ) =
βui(e

−iλ)βui(e
iλ)ψi

αui(e
−iλ)αui(e

iλ)
=

1 + β2ui1 − 2βui1 cosλ

1 + α2ui1 − 2αui1 cosλ
ψi.

Finally,

c(e−iλt) = c0 + c1e
−iλ =

 c1,0 + c1,1e
−iλ

...
cN,0 + cN,1e

−iλ

 =

 c1(e
−iλt)
...

cN (e−iλt)

 . (2)

The fact that the heterogeneous impact of the common factor on each of the observed

variables is in principle dynamic implies that the spectral density matrix of yt will generally be

complex but Hermitian, even though the spectral densities of xt and uit are all real because they

correspond to univariate processes.

2.3 Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables. Specifically, let

yt − µ =

∫ π

−π
eiλtdZy(λ),

V [dZy(λ)] = Gyy(λ)dλ

denote the spectral decomposition of the observed vector process.

Assuming that Gyy(λj) is not singular at any frequency, the Wiener-Kolmogorov two-sided

filter for the common factor xt at each frequency is given by

dZx
K

(λ) = Gxx(λ)c′(eiλ)G−1yy(λ)dZy(λ), (3)

1Other symmetric scaling assumptions would normalise the unconditional variance of xt, or some norm of the
vector of loadings c0. Alternatively, we could asymmetrically fix one element of c0 to 1.
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where

Gxx(λ)c′(eiλ)G−1yy(λ)

is known as the transfer function of the common factor smoother. As a result, the spectral

density of the smoothed values of the common factors, xKt|∞, is

GxKxK (λ) = G2xx(λ)c′(eiλ)G−1yy(λ)c(e−iλ)

thanks to the Hermitian nature of Gyy(λ), while the spectral density of the final estimation

error xt − xKt|∞ will be given by

Gxx(λ)−G2xx(λ)c′(eiλ)G−1yy(λ)c(e−iλ) = ω(λ).

Similarly, the Wiener-Kolmogorov smoother for the N specific factors will be

dZu
K

(λ) = Guu(λ)G−1yy(λ)dZy(λ)

=
[
IN − c(e−iλ)Gxx(λ)c′(eiλ)G−1yy(λ)

]
dZy(λ) = dZy(λ)− c(e−iλ)dZx

K
(λ).

Hence, the spectral density matrix of the smoothed values of the specific factors will be given

by

GuKuK (λ) = Guu(λ)G−1yy(λ)Guu(λ),

while the spectral density of their final estimation errors ut − uKt|∞ is

Guu(λ)−GuKuK (λ) = Guu(λ)−Guu(λ)G−1yy(λ)Guu(λ) = ω(λ)c(e−iλ)c′(eiλ) = Ξ(λ).

Finally, the co-spectrum between xKt|∞ and uKt|∞ will be

GxKuK (λ) = Gxx(λ)c′(eiλ)G−1yy(λ)Guu(λ).

Computations can be considerably speeded up by exploiting the Woodbury formula under

the assumption that neither Gxx(λ) nor Guu(λ) are singular at any frequency (see Sentana

(2000) for a generalisation):

|Gyy(λ)| = |Guu(λ)|Gxx(λ)ω(λ),

G−1yy(λ) = G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ),

ω(λ) = [G−1xx (λ) + c′(eiλ)G−1uu(λ)c(e−iλ)]−1.

The advantage of these expressions is that Guu(λ) is a diagonal matrix and ω(λ) a scalar,

which greatly simplifies the computations.
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On this basis, the transfer function of the Wiener-Kolmogorov common factor smoother

becomes

Gxx(λ)c′(eiλ)G−1yy(λ) = ω(λ)c′(eiλ)G−1uu(λ),

so

GxKxK (λ) = ω(λ)Gxx(λ)c′(eiλ)G−1uu(λ)c(e−iλ) = Gxx(λ)− ω(λ),

where we have used the fact that

ω(λ)c′(eiλ)G−1uu(λ)c(e−iλ) = 1− ω(λ)G−1xx (λ), (4)

which can be easily proved by dividing both sides by ω(λ).

Similarly, the transfer function of the Wiener-Kolmogorov specific factors smoother will be

Guu(λ)G−1yy(λ) = IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ),

so

GuKuK (λ) = Guu(λ)− ω(λ)c(e−iλ)c′(eiλ).

Finally,

GxKuK (λ) = ω(λ)c′(eiλ).

2.4 The minimal suffi cient statistics for {xt}

Define xGt|∞ as the spectral GLS estimator of xt through the transformation

dZx
G

(λ) = [c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′iλ)G−1uu(λ)dZy(λ).

Similarly, define uGt|∞ through

dZu
G

(λ) = {IN − [c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)}dZy(λ).

It is then easy to see that the joint spectral density of xGt|∞ and uGt|∞ will be block-diagonal,

with the (1,1) element being

Gxx(λ) + [c′(eiλ)G−1uu(λ)c(e−iλ)]−1

and the (2,2) block

Gyy(λ)− c(e−iλ)[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ),

whose rank is N − 1.

This block-diagonality allows us to factorise the spectral log-likelihood function of yt as the

sum of the log-likelihood function of xGt|∞, which is univariate, and the log-likelihood function of
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uGt|∞. Importantly, the parameters characterising Gxx(λ) only enter through the first component.

In contrast, the remaining parameters affect both components. Moreover, we can easily show

that

1. xGt|T = xt + ζGt|T , with xt and ζ
G
t|T orthogonal at all leads and lags.

2. The smoothed estimator of xt obtained by applying the Wiener- Kolmogorov filter to xGt|∞

coincides with xKt|∞.

This confirms that xGt|∞ constitute minimal suffi cient statistics for xt, thereby general-

ising earlier results by Jungbacker and Koopman (2008), who considered models in which

c(e−iλ) = c for all λ, and Fiorentini, Sentana and Shephard (2004), who looked at the related

class of factor models with time-varying volatility (see also Gourieroux, Monfort and Renault

(1991)). In addition, the degree of unobservability of xt depends exclusively on the size of

[c′(eiλ)G−1uu(λ)c(e−iλ)]−1 relative to Gxx(λ) (see Sentana (2004) for a closely related discussion).

2.5 Maximum likelihood estimation in the frequency domain

Let

Iyy(λ) =
1

2πT

T∑
t=1

T∑
s=1

(yt − µ)(ys − µ)′e−i(t−s)λ (5)

denote the periodogram matrix and λj = 2πj/T (j = 0, . . . T − 1) the usual Fourier frequencies.

If we assume that Gyy(λ) is not zero at any of those frequencies, the so-called Whittle (discrete)

spectral approximation to the log-likelihood function is2

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gyy(λj)| −
1

2

T−1∑
j=0

tr
{
G−1yy(λj)[2πIyy(λj)]

}
(6)

(see e.g. Hannan (1973) and Dunsmuir and Hannan (1976)).

Expression (5), though, is far from ideal from a computational point of view, and for that

reason we make use of the Fast Fourier Transform (FFT). Specifically, given the T ×N original

real data matrix Y = (y1, . . . ,yt, . . . ,yT )′, the FFT creates the centred and orthogonalised

T ×N complex data matrix Zy = (zy0 , . . . , z
y
j , . . . , z

y
T−1)

′ by effectively premultiplying Y − `Tµ′

by the T × T Fourier matrix W. On this basis, we can easily compute Iyy(λj) as 2πzyj zy∗j ,

where zy∗j is the complex conjugate transpose of zyj . Hence, the spectral approximation to the

log-likelihood function for a non-singular Gyy(λ) becomes

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gyy(λj)| −
2π

2

T−1∑
j=0

zy∗j G−1yy(λj)z
y
j ,

2There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
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which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zyj does not depend on µ for j = 1, . . . , T − 1 because `T is proportional to the

first column of the orthogonal Fourier matrix and zy0 = (ȳT −µ), where ȳT is the sample mean

of yt, it immediately follows that the ML of µ will be ȳT . As for the remaining parameters, the

score function will be given by:

d(θ) =
1

2

T−1∑
j=0

d(λj ;θ),

d(λj ;θ) =
1

2

∂vec′ [Gyy(λj)]

∂θ

[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
2πzycj zy′j −G′yy(λj)

]
=

1

2

∂vec′[Gyy(λj)]

∂θ
M(λj)m(λj), (7)

where zycj = zy∗′j is the complex conjugate of zyj ,

m(λj) = vec
[
2πzycj zy′j −G′yy(λj)

]
(8)

and

M(λj) = G−1yy(λj)⊗G′−1yy (λj). (9)

The information matrix is block diagonal between µ and the elements of θ, with the (1,1)-

element being Gyy(0) and the (2,2)-block being

Q =
1

4π

∫ π

−π

∂vec′[Gyy(λ)]

∂θ
M(λ)

{
∂vec′[Gyy(λ)]

∂θ

}∗
dλ, (10)

a consistent estimator of which will be provided by either by the outer product of the score or

by

Φ(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)

{
∂vec′[Gyy(λj)]

∂θ

}∗
.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators under suitable regularity conditions have been provided by Dunsmuir and Hannan

(1976) and Dunsmuir (1979), who also show their asymptotic equivalence to the time domain

ML estimators.3

Appendix A provides detailed expressions for the Jacobian of vec [Gyy(λ)] and the spectral

score of dynamic factor models, while appendix B includes numerically reliable and effi cient

formulae for the information matrix. Those expressions make extensive use of the complex

3This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).
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version of the Woodbury formula described in section 2.3. We can also exploit the same formula

to compute the quadratic form zy∗j G−1yy(λj)z
y
j as

zy∗j G−1uu(λj)z
y
j − zy∗j G−1uu(λ)ω(λj)c(e−iλ)c′(eiλ)G−1uu(λ)zyj

= zy∗j G−1uu(λj)z
y
j − ω(λj)z

xK∗
j (θ)zx

K

j (θ),

where

zx
K

j (θ) = E[zxj |Zy,θ] = Gxx(λj)c
′(eiλj )G−1yy(λj)z

y
j = ω(λ)c′(eiλj )G−1uu(λj)z

y
j (11)

denotes the filtered value of zxj given the observed series and the current parameter values from

(3).

Nevertheless, when N is large the number of parameters is huge, and the direct maximisation

of the log-likelihood function becomes excruciatingly slow, especially without good initial values.

For that reason, in the next section we describe a much faster alternative to obtain the maximum

likelihood estimators of all the model parameters.

3 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm of Dempster, Laird and Rubin (1977)

adapted to static factor models by Rubin and Thayer (1982) was successfully employed to handle

a very large dataset of stock returns by Lehmann and Modest (1988). Watson and Engle (1983)

and Quah and Sargent (1993) also applied the algorithm in the time domain to dynamic factor

models and some generalisations, but they restricted common and specific factors to follow low

order Ar processes, which seems rather restrictive given the prevalence of the Arma(1,1) model

in univariate time series analysis.

We saw before that the spectral density matrix of a dynamic single factor model has the

structure of the unconditional covariance matrix of a static factor model, but with different

common and idiosyncratic variances for each frequency. Demos and Sentana (1998) applied

a time domain version of the EM algorithm to conditionally heteroskedastic factor models in

which the common factors followedGarch-type processes. We could easily adapt their algorithm

to models with white noise idiosyncratic factors and contemporaneous effects of the common

factors on the observed variables if we replaced the subscript t for time with the subscript j

for frequency. However, since we want to consider more complex models, we need to do some

additional algebra.
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3.1 Complete log-likelihood function

Consider a situation in which the common factor xt was also observed. The joint spectral

density of yt and xt, which is given by[
Gyy(λ) Gyx(λ)
G∗yx(λ) Gxx(λ)

]
=

[
c(e−iλ)Gxx(λ)c′(eiλ) + Guu(λ) c(e−iλ)Gxx(λ)

Gxx(λ)c′(eiλ) Gxx(λ)

]
,

could be diagonalised as[
IN c(e−iλ)
0 1

] [
Guu(λ) 0

0 Gxx(λ)

] [
IN 0

c′(eiλ) 1

]
,

with ∣∣∣∣[ IN 0
c′(eiλ) 1

]∣∣∣∣ = 1

and [
IN 0

c′(eiλ) 1

]−1
=

[
IN 0

−c′(eiλ) 1

]
.

Let us define as [Zy|zx] as the Fourier transform of the T × (N + 1) matrix [y1, . . . ,yN ,x] =

[Y|x] so that the joint periodogram of yt and xt at frequency λj could be quickly computed as

2π

(
zyj
zxj

)(
zy∗j zx∗j

)
,

where we have implicitly assumed that either the elements of y have zero mean, or else that

they have been previously demeaned by subtracting their sample averages.

In this notation, the spectral approximation to the joint log-likelihood function would become

l(y, x) = −(N + 1)T

2
ln(2π)− 1

2

T−1∑
j=0

ln

∣∣∣∣[ Gyy(λ) Gyx(λj)
G∗yx(λj) Gxx(λj)

]∣∣∣∣
−2π

2

T−1∑
j=0

(
zy∗j zx∗j

) [ IN 0
−c′(eiλj ) 1

] [
G−1uu(λj) 0

0 G−1xx (λj)

] [
IN c(e−iλj )
0 1

](
zyj
zxj

)

= −NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Guu(λj)| −
2π

2

T−1∑
j=0

zu∗j G−1uu(λj)z
u
j

−T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gxx(λj)| −
2π

2

T−1∑
j=0

G−1xx (λj)z
x
j z

x∗
j

=

N∑
i=1

−T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)z
ui
j z

ui∗
j

 (12)

−T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gxx(λj)| −
2π

2

T−1∑
j=0

G−1xx (λj)z
x
j z

x∗
j (13)

=

N∑
i=1

l(yi|x) + l(x) = l(Y|x) + l(x),

10



where4

zuij = zyij − ci(e
−iλj )zxj = zyij −

n∑
k=−m

ci,ke
−ikλzxj , (14)

so that

zuij z
ui∗
j = zyij z

yi∗
j − ci(e

−iλj )zxj z
yi∗
j − ci(e

iλj )zyij z
x∗
j + ci(e

−iλj )ci(e
iλj )zxj z

x∗
j

= Iyiyi(λj)− ci(e−iλj )Ixyi(λj)− ci(eiλj )Iyix(λj) + ci(e
−iλj )ci(e

iλj )Ixx(λj) = Iuiui(λj).

In this way, we have decomposed the joint log-likelihood function of y1, . . . ,yN and x as

the sum of the marginal log-likelihood of x in (13) and the log-likelihood function of y1, . . . ,yN

given x, l(Y|x), which in turn can be decomposed as the sum of N univariate components in

(12) by exploiting the diagonality of Guu(λj).

Importantly, these expressions can be computed using real arithmetic only since

ci(e
−iλj )Ixyi(λj) + ci(e

iλj )Iyix(λj) = 2real
[
ci(e

−iλj )Ixyi(λj)
]

and

ci(e
−iλj )ci(e

iλj )Ixx(λj) =
∥∥∥ci(e−iλj )∥∥∥2 Ixx(λj).

Let us classify the parameters into three blocks:

1. the parameters that characterise the spectral density of xt : θx

2. the parameters that characterise the spectral density of ut : ψ = (ψ1, . . . , ψN )′ and θu =

(θ′ui , , . . . ,θ
′
uN

)′

3. the parameters that characterise the dynamic idiosyncratic impact of the common factors

on each observed variable:

c = (c′1·, . . . , c
′
i·, . . . , c

′
N ·)
′, where c′i· = (ci,−m, . . . , ci,0, . . . , ci,n).

Importantly, θx only appear in (13) while θu and c appear in (12). This sequential cut on

the joint spectral density confirms that zx and therefore xt would be weakly exogenous for ψ,

θu and c (see Engle, Hendry and Richard (1983)). Moreover, the fact that ft is uncorrelated at

all leads and lags with vt implies that xt would be strongly exogenous too.

4Note that we could have expressed those log-likelihood in terms of Ixx(λj) = zxj z
x∗
j , Iuu(λ) = zuj z

u∗
j and

Iux(λ) = zuj z
x∗
j , but for the EM algorithm it is more convenient to work with the underlying complex random

variables.
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We can also exploit the aforementioned log-likelihood decomposition to obtain the score of

the complete log-likelihood function. In this way, we can write

∂l(Y,x)

∂θx
=
∂l(x)

∂θx
=

1

2

T−1∑
j=0

∂Gxx(λj)

∂θx
G−2xx (λj)

[
2πzxj z

x∗
j −Gxx(λj)

]
(15a)

∂l(Y,x)

∂θui
=
∂l(yi|x)

∂θui
=

1

2

T−1∑
j=0

∂Guiui(λj)

∂θui
G−2uiui(λj)

[
2πzuij z

ui∗
j −Guiui(λj)

]
(15b)

∂l(Y,x)

∂ci,k
=
∂l(yi|x)

∂ci,k
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
zuij e

ikλjzx∗j + e−ikλjzxj z
ui∗
j

]

=
2π

2

T−1∑
j=0

G−1uiui(λj)

[(
zyij -

n∑
l=−m

ci,le
−ilλzxj

)
eikλjzx∗j +e

−ikλjzxj

(
zyi∗j -

n∑
l=−m

ci,le
ilλzx∗j

)]
, (15c)

where we have used the fact that
∂zuij
∂ci,k

= −e−ikλzxj

in view of (14).

Expression (15a) confirms that the MLE of θx would be obtained from a univariate time

series model for xt. However, sinceGxx(λj) also depends on θx, there are no closed form solutions

for models with Ma components, and we would have to resort to the numerical optimisation of

(13). We revisit this issue in section 3.2.

In an Ar(1) example, in contrast, the derivative of Gxx(λ) with respect to αx1 would be

∂Gxx(λ)

∂αx1
=

2(cosλ− αx1)
(1 + α2x1 − 2αx1 cosλ)2

.

Hence, the log-likelihood score would become

∂l(x)

∂αx1
=

1

2

T−1∑
j=0

2(cosλj − αx1)
(1 + α2x1 − 2αx1 cosλj)2

(1 + α2x1 − 2αx1 cosλj)
2 ×

×
[
2πzxj z

x∗
j −

1

(1 + α2x1 − 2αx1 cosλj)

]
= 2π

T−1∑
j=0

(cosλj − αx1)zxj zx∗j ,

where we have exploited the fact that

T−1∑
j=0

(cosλj − αx1)
(1 + α2x1 − 2αx1 cosλj)

= γxx(1)− αx1γxx(0) = 0.

As a result, when we set the score to 0 and solve for αx1 we obtain

α̂x1 =

∑T−1
j=0 cosλjz

x
j z

x∗
j∑T−1

j=0 z
x
j z

x∗
j

=

∑T−1
j=0 cosλjIxx(λj)∑T−1

j=0 Ixx(λj)
.

But since

Ixx(λj) = γ̂xx(0) + 2
T−1∑
k=1

γ̂xx(k) cos(kλj),

12



we would have that
T−1∑
j=0

2πIxx(λj) = T γ̂xx(0)

and
T−1∑
j=0

cosλj [2πIxx(λj)] = T [γ̂xx(1) + γ̂xx(T − 1)],

which is the first sample (circulant) autocovariance of xt. Therefore, the expression for α̂x1

is (almost) identical to the one we would obtain in the time domain, which will be given by

γ̂xx(1)/γ̂xx(0), because γ̂xx(T − 1) = T−1xTx1 = op(1).

Similar expressions would apply to the dynamic parameters that appear in θui for a given

value of ci· in view of (15b), since in this case it would be possible to estimate the variances of

the innovations ψi in closed form.

Specifically, for an Ar(1) example the partial derivatives of Guiui(λ) with respect to ψi and

αui1 would be

∂Guiui(λ)

∂ψi
=

1

1 + α2ui1 − 2αui1 cosλ
,

∂Guiui(λ)

∂αui1
=

2(cosλ− αui1)ψi
(1 + α2ui1 − 2αui1 cosλ)2

.

Hence, the corresponding log-likelihood scores would be

∂l(yi|x)

∂ψi
=

1

2

T−1∑
j=0

(1 + α2ui1 − 2αui1 cosλj)
2(

1 + α2ui1 − 2αui1 cosλj
)
ψ2i

[
2πzuij z

ui∗
j − ψi

1 + α2ui1 − 2αui1 cosλj

]

=
1

2ψ2i

T−1∑
j=0

[
(1 + α2ui1 − 2αui1 cosλj)2πz

ui
j z

ui∗
j − ψi

]
,

∂l(yi|x)

∂αui1
=

1

2

T−1∑
j=0

2(cosλj − αui1)ψi(1 + α2ui1 − 2αui1 cosλj)
2

(1 + α2ui1 − 2αui1 cosλj)2ψ
2
i

×
[
2πzuij z

ui∗
j − ψi

(1 + α2x1 − 2αx1 cosλj)

]
=

2π

ψi

T−1∑
j=0

(cosλj − αui1)z
ui
j z

ui∗
j .

As a result, the spectral ML estimators of ψi and αui1 for fixed values of ci· would satisfy

ψ̃i =
2π

T

∑T−1

j=0
(1 + α̃2ui1 − 2α̃ui1 cosλj)z

ui
j z

ui∗
j ,

α̃ui1 =

∑T−1
j=0 cosλjz

ui
j z

ui∗
j∑T−1

j=0 z
ui
j z

ui∗
j

.

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance

of vit, which is the residual variance in the regression of uit on uit−1, and the slope coeffi cient in

the same regression.
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Finally, (15c) would allow us to obtain the ML estimators of ci· for given values of θui . In

particular, if we write together the derivatives for ci,k for k = −m, . . . , 0, . . . , n we end up with

the “weighted”normal equations:

T−1∑
j=0

G−1uiui(λj)
 eimλjzxj z

x∗
j e
−imλj + eimλjzxj z

x∗
j e
−imλj . . .

...
. . .

eimλjzxj z
x∗
j e

inλj + e−inλjzxj z
x∗
j e
−imλj . . .

e−inλjzxj z
x∗
j e
−imλj + eimλjzxj z

x∗
j e

inλj

...
e−inλjzxj z

x∗
j e

inλj + e−inλjzxj z
x∗
j e

inλj



 c̃i,−m

...
c̃i,n


=

T−1∑
j=0

G−1uiui(λj)

 zyij z
x∗
j e
−imλj + zyi∗j zxj e

imλj

...
zyij z

x∗
j e

inλj + zyi∗j zxj e
−inλj

 .

Thus, unrestricted MLE’s of c could be obtained from N univariate distributed lag weighted

least squares regressions of each yit on xt that take into account the residual serial correlation in

uit. Interestingly, given that Guiui(λj) is real, the above system of equations would not involve

complex arithmetic. In addition, the terms in ψi would cancel, so the WLS procedure would

only depend on the dynamic elements in θui .

Let us derive these expressions for the model in (1). In that case, the matrix on the left

hand of the normal equations becomes

T−1∑
j=0

G−1uiui(λj)

(
2zxj z

x∗
j (e−iλj + eiλj )zxj z

x∗
j

(eiλj + e−iλj )zxj z
x∗
j 2zxj z

x∗
j

)

=

T−1∑
j=0

G−1uiui(λj)2z
x
j z

x∗
j

(
1 cosλj

cosλj 1

)
,

while the vector on the right hand side will be

T−1∑
j=0

G−1uiui(λj)

(
zyij z

x∗
j + zyi∗j zxj

eiλjzyij z
x∗
j + e−iλjzyi∗j zxj

)
.

In principle, we could carry out a zig-zag procedure that would estimate ci· and ψi for given

θui , and then θui for a given ci· and ψi. This would correspond to the spectral analogue to the

Cochrane-Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(λj)

is in fact constant, so that the idiosyncratic terms are static.

Unfortunately, we would have to resort once again to numerical optimisation in models with

Ma components. While this would be relatively costless if those components only appear in

the common factor, it would be far more taxing if they also appeared in the idiosyncratic ones

because there would be N such optimisations at each Cochrane-Orcutt iteration. For that

reason, it would be useful to have a very fast way of estimating the parameters of processes with

Ma components, which would nevertheless remain asymptotically effi cient.
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3.2 Dealing with ARMA models by indirect inference

3.2.1 Pure MA terms

Consider the following Ma(1) model

xt = ft − βft−1, |β| < 1, ft|xt−1, xt−2, . . . ∼ N(0, 1)

The simplest consistent estimator of β is an indirect inference (II) one based on the misspecified

Ar(1) auxiliary model

xt = ρxt−1 + εt, εt|xt−1, xt−2, . . . ∼ N(0, 1)

(see e.g. Gouriéroux, Monfort and Renault (1993)), Chumacero (2001) or Ghysels, Khalaf and

Vodounou (2003)). This estimator is equivalent to the GMM estimator of β based on

E[mt(β)|β] = 0, mt(β) =

(
xt +

β

1 + β2
xt−1

)
xt−1,

which coincides with the score of the Ar(1) parameter ρ evaluated at the binding function

ρ(β) = − β

1 + β2
.

We could increase the effi ciency with which we estimate β by II if we considered higher

order Ar(k) models for k ≥ 2. Unfortunately, for any finite order k those II estimators of β

are generally ineffi cient relative to the ML estimator, which is effectively based on the moment

condition

E[st(β)|β] = 0, st(β) = [xt − νt(β)]
∂νt(β)

∂β
,

where

νt(β) = E(xt|xt−1, xt−2, . . . ;β) = −
∞∑
j=1

βjxt−j = − βL

1− βLxt

is the conditional mean of xt given its past under the maintained assumption that the Ma(1)

process is invertible.

At first sight, it would appear that this highly non-linear estimator cannot be obtained by

applying OLS to some auxiliary linear autoregressive model, but appearances can sometimes be

misleading. Define

ft(β) = xt − νt(β) =

∞∑
j=0

βjxt−j =
1

1− βLxt

as the “innovations”in xt. Similarly, let us use the shorthand notation

wt(β) = −∂νt+1(β)

∂β
=

∞∑
j=0

(j + 1)βjxt−j =
1

(1− βL)2
xt.
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We know that at the true value of β, say β0, ft(β0) will be white noise while wt(β0) will be

an Ar(1). In addition, it is easy to see that

wt(β) =
1

1− βLft(β)

so that

ft(β) = wt(β)− βwt−1(β).

Therefore, we can re-write the score of the Ma(1) model as

st(β) = −[wt(β)− βwt−1(β)]wt−1(β),

which coincides with the (minus) score of an Ar(1) model for w(β).

This regression is infeasible, but we can compute δ̄T as the OLS estimator in the regression of

wt(β̄T ) on wt−1(β̄T ), where β̄T is the II estimator of β based on the misspecified Ar(1) auxiliary

model for xt.

Unfortunately, δ̄T is even less effi cient than β̄T . Nevertheless, we can optimally combine

those two different consistent but ineffi cient II estimators. Specifically, we can easily prove

that β̃T = 2β̄T − δ̄T is the outcome of a Gauss-Newton iteration, and therefore asymptotically

equivalent to the ML estimator. In fact, it is possible to iterate the above procedure and obtain

a new estimator δ̄1T by regressing wt(β̃T ) on wt−1(β̃T ), which preserves asymptotic effi ciency.

The fixed point of these iterations is the ML estimator.

It turns out that Hannan (1969) proposed a simple iterative frequency domain procedure,

which is effectively identical to the iterated indirect inference procedure we have just discussed.

3.2.2 Mixed models

Let us now consider the extension of our indirect inference procedure to the Arma(1,1)

model

xt = αxt−1 + ft − βft−1, |α|, |β| < 1, ft|xt−1, xt−2, . . . ∼ N(0, 1)

The simplest consistent estimator of α and β is an indirect inference one based on the misspecified

Ar(2) auxiliary model

xt = δ1xt−1 + δ2xt−2 + wt, wt|xt−1, xt−2, . . . ∼ N(0, 1)

(see again Chumacero (2001)). This estimator is asymptotically equivalent to the GMM esti-

mator of α and β based on the moment conditions

E[mt(α, β)|α, β] = 0,

m1t(α, β) =

(
xt −

(α− β)(1− αβ)

1− α2 xt−1

)
xt−1,

m2t(α, β) =

(
xt −

α(α− β)(1− αβ)

1− α2 xt−2

)
xt−2.
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The exactly identified nature of these moment conditions implies that the indirect inference

estimator of α will coincide with the ratio of the second to the first autocorrelation of xt, which

is always between -1 and 1. As for the indirect inference estimator of β, we can obtain it from

the first moment condition if we keep α fixed at its indirect inference value. In large samples,

this procedure is effectively identical to the indirect inference estimator of β described in the

previous section obtained by fitting an Ar(1) model to the filtered series ηt(α) = xt − αxt−1.

Once again, we could increase the effi ciency with which we estimate α and β if we considered

higher orderAr(k) models. Unfortunately, for any finite order k those II estimators are generally

ineffi cient relative to the ML estimator, which is effectively based on the moment conditions

E[st(β)|β] = 0,

sαt(α, β) = [xt − νt(β)]
∂νt(α, β)

∂α
,

sβt(α, β) = [xt − νt(β)]
∂νt(α, β)

∂β

where

νt(α, β) = E(xt|xt−1, xt−2, . . . ;α, β) = (α− β)
∞∑
j=1

βj−1xt−j =
(α− β)L

1− βL xt

This highly non-linear estimator can also be related to a couple of auxiliary linear autore-

gressive models. Specifically, define

ft(α, β) = xt − νt(α, β) =
1− αL
1− βLxt

as the “innovations”in xt. Similarly, let us use the shorthand notation

rt(β) =
∂νt+1(α, β)

∂α
=

1

(1− βL)
xt

wt(α, β) = −∂νt+1(α, β)

∂β
=

(1− αL)

(1− βL)2
xt.

Then it is easy to see that

sαt(α, β) = [rt(β)− αrt−1(β)]rt−1(β)

sβt(α, β) = −[wt(α, β)− βwt−1(α, β)]wt−1(α, β)

so that we can estimate α for given β from the autoregression of rt(β) and β for given α from

the autoregression of wt(α, β). Again, these alternative indirect inference estimators will be

ineffi cient when the unknown Arma parameters are replaced by the indirect inference estimators

ᾱT and β̄T based on the misspecified Ar(2) auxiliary model for xt, but we can combine them
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by means of a Gauss-Newton iteration of the form

(
α̃T
β̃T

)
=

(
ᾱT
β̄T

)
+

{
1

T

T∑
t=1

[
r2t−1(β̄T ) −rt−1(β̄T )wt−1(ᾱT , β̄T )

−rt−1(β̄T )wt−1(ᾱT , β̄T ) w2t−1(ᾱT , β̄T )

]}−1

× 1

T

T∑
t=1

[
rt−1(β̄T )ft(ᾱT , β̄T )

−wt−1(ᾱT , β̄T )ft(ᾱT , β̄T )

]
.

Once again, it is possible to iterate the above procedure while preserving asymptotic effi ciency,

the fixed point of these iterations being the ML estimator.

Analogous procedures apply to general Arma(p,q) models5 if we define

ft(α,β) =
αx(L)

βx(L)
xt, rt(β) =

1

βx(L)
xt, wt(α,β) =

αx(L)

β2x(L)
xt.

Importantly, the variances, autocovariances and cross-covariances of the different filtered series

can be computed much faster in the frequency domain than in the time domain, which makes

these indirect inference estimators an ideal match to our spectral estimation techniques (see

again Hannan (1969)).

3.3 Expected log-likelihood function

In practice, of course, we do not observe xt. Nevertheless, the EM algorithm can be used to

obtain values for θ as close to the optimum as desired. At each iteration, the EM algorithm max-

imises the expected value of l(y1, . . . ,yN |x) + l(x) conditional on Y and the current parameter

estimates, θ(n). The rationale stems from the fact that l(y1, . . . ,yN ,x) can also be factorized

as l(y1, . . . ,yN ) + l(x|y1, . . . ,yN ). Since the expected value of the latter, conditional on Y and

θ(n), reaches a maximum at θ = θ(n), any increase in the expected value of l(y1, . . . ,yN ,x)

must represent an increase in l(y1, . . . ,yN ). This is the generalised EM principle.

In the E step we must compute

E[l(x)|Zy,θ(n)] = −T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gxx(λj)| −
2π

2

T−1∑
j=0

G−1xx (λj)E[zxj z
x∗
j |Zy,θ(n)],

E[l(yi|x)|Zy,θ(n)] = −T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)E[zuij z
ui∗
j |Z

y,θ(n)].

But

E[zxj z
x∗
j |Zy,θ(n)] = zxKj (θ(n))zxK∗j (θ(n)) + E

{
[zxj − z

xK
j (θ(n))][zx∗j − zx∗j (θ(n))]|zyj ,θ

(n)
}

= I
(n)

xKxK
(λj) + ω(n)(λj),

5The stationarity and strict invertibility of the estimated Ar and Ma polynomials in high order models could
be achieved by reparametrising them in terms of partial autocorrelations, as in Barndorff-Nielsen and Schou
(1973).
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where

zxKj (θ) = E[zxj |Zy,θ] = Gxx(λj)c
′(eiλj )G−1yy(λj)z

y
j ,

E
{

[zxj − z
xK
j (θ)][zxK∗j − zx∗j (θ)]|Zy,θ

}
= ω(λj),

and

IxKxK (λ) = 2πG2xx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)c(e−iλ)

= 2πω2(λ)c′(eiλ)G−1uu(λ)Iyy(λ)G−1uu(λ)c(e−iλ). (16)

is the periodogram of the smoothed values of the common factor.

In turn, if we define

IyxK (λ) = Iyy(λ)G−1yy(λ)c(e−iλ)Gxx(λ) = Iyy(λ)G−1uu(λ)c(e−iλ)ω(λ)

as the cross-periodogram between the observed series y and the smoothed values of the common

factor, we will have that

I
(n)
uu(λj) = E[zuj zu∗j |Zy,θ(n)] = E

{[
zyj − c(e−iλj )zxj

] [
zy∗j − z

x∗
j c′(eiλj )

]
|Zy,θ(n)

}
= [zyj − c(e−iλj )zxKj (θ(n))][zy∗j − c′(eiλj )zxK∗j (θ(n))] + c(e−iλj )ω(n)(λj)c

′(eiλj )

= Iyy(λj)− I
(n)

yxK
(λ)c′(eiλj )− c(e−iλj )I

(n)

xKy
(λ) + c(e−iλj )[I

(n)

xKxK
(λj) + ω(n)(λj)]c

′(eiλj ),

which resembles the expected value of Iuu(λj) but the values at which the expectations are

evaluated are generally different from the values at which the distributed lags are computed.

For the ith series, this expression reduces to

I(n)uiui(λj) = E[zuij z
ui∗
j |Zy,θ

(n)] = [zyij − ci(e
−iλj )zxKj (θ(n))][zyi∗j − ci(e

iλj )zxK∗j (θ(n))]

+ω(n)(λj)ci(e
−iλj )ci(e

iλj )

= Iyiyi(λj)− ci(e−iλj )I
(n)

xKyi
(λj)− I(n)yixK

(λj)ci(e
iλj ) + [I

(n)

xKxK
(λj) + ω(n)(λj)]ci(e

−iλj )ci(e
iλj ).

Therefore, if we put all these expressions together we end up with

E[l(x)|Y,θ(n)] = -
T

2
ln(2π)-

1

2

T−1∑
j=0

ln |Gxx(λj)| -
2π

2

T−1∑
j=0

G−1xx (λj)
[
I
(n)

xKxK
(λj)+ω(n)(λj)

]
, (17)

E[l(yi|x)|Y,θ(n)] = −T
2

ln(2π)− 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)I
(n)
uiui(λj). (18)

We can then maximise E[l(x)|Y,θ(n)] in (17) with respect to θx to update those parameters.

Similarly, we can maximise E[l(yi|x)|Y,θ(n)] in (18) with respect to ci·, ψi and θui to update

those parameters.
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In order to conduct those maximisations, we need the scores of the expected log-likelihood

functions.

Given the similarity between (17) and (13), it is easy to see that

∂E[l(x)|Y,θ(n)]

∂θx
=

1

2

T−1∑
j=0

∂Gxx(λj)

∂θx
G−2xx (λj)

{
2π
[
I
(n)

xKxK
(λj) + ω(n)(λj)

]
−Gxx(λj)

}
,

which, not surprisingly, coincides with the the expected value of (15a) given Y and the current

parameter estimates, θ(n).

In the case of an Ar(1) common factor the expected log-likelihood score becomes

∂E[l(x)|Y,θ(n)]

∂αx1
= 2π

T−1∑
j=0

(cosλj − αx1)
[
I
(n)

xKxK
(λj) + ω(n)(λj)

]
.

As a result,

α̂
(n+1)
x1 =

∑T−1
j=0 cosλj

[
I
(n)

xKxK
(λj) + ω(n)(λj)

]
∑T−1

j=0

[
I
(n)

xKxK
(λj) + ω(n)(λj)

] .

It is also straightforward to modify the indirect inference procedures discussed in section 3.2

to handle models with Arma terms if we replace the periodogram of the common factor by its

expected value given observables, which coincides with sum of the periodogram of the smoothed

values of the factor and its estimation error. Those periodograms can be obtained in no time in

the E step of the algorithm from the minimal “suffi cient statistics”discussed in section 2.4.

Similar expressions would apply to the dynamic parameters that appear in θui and ψi for a

given value of ci·. Specifically, when the idiosyncratic terms follow Ar(1) processes

∂E[l(yi|x)|Y,θ(n)]

∂ψi
=

1

2ψ2i

T−1∑
j=0

(1 + α2ui1 − 2αui1 cosλ)
[
2πI(n)uiui(λj)− ψi

]
,

E[l(yi|x)|Y,θ(n)]

∂αui1
=

2π

ψi

T−1∑
j=0

(cosλj − αui1)I(n)uiui(λj).

As a result, the spectral ML estimators of ψi and αui1 given ci· will satisfy

ψ̂
(n+1)

i =
2π

T

∑T−1

j=0

[
1 +

(
α̂
(n+1)
ui1

)2
− 2α̂

(n+1)
ui1

cosλj

]
I(n)uiui(λj),

α̂
(n+1)
ui1

=

∑T−1
j=0 cosλjI

(n)
uiui(λj)∑T−1

j=0 I
(n)
uiui(λj)

.

Finally, the derivatives of (18) with respect to ci,k for k = −m, . . . , 0, . . . , n for fixed values
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of θui will give rise to the modified “weighted”normal equations:

T−1∑
j=0

G−1uiui(λj)


eimλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

−imλj + eimλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

−imλj . . .
...

. . .

eimλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

inλj + e−inλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

−imλj . . .

e−inλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

−imλj + eimλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

inλj

...

e−inλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

inλj + e−inλj [I
(n)

xKxK
(λj) + ω(n)(λj)]e

inλj





ĉ
(n+1)
i,−m
...

ĉ
(n+1)
i,n



=
T−1∑
j=0

G−1uiui(λj)


I
(n)

yixK
(λj)e

−imλj + I
(n)

xKyi
(λj)e

imλj

...

I
(n)

yixK
(λj)e

inλj + I
(n)

xKyi
(λj)e

−inλj

 .

For the example in (2), the matrix on the left hand of the normal equations becomes

T−1∑
j=0

G−1uiui(λj)2[I
(n)

xKxK
(λj) + ω(n)(λj)]

(
1 cosλj

cosλj 1

)
,

while the vector on the right hand side will be

T−1∑
j=0

G−1uiui(λj)

(
I
(n)

yixK
(λj) + I

(n)

xKyi
(λj)

eiλjI
(n)

yixK
(λj) + e−iλjI

(n)

xKyi
(λj)

)
.

In principle, we could carry out a zig-zag procedure that would estimate ci· and ψi for given

θui and θui for a given ci· and ψi, although it is not clear that we really need to fully maximise

the expected log-likelihood function at each EM iteration since the generalised EM principle

simply requires us to increase it. Obviously, such iterations would be unnecessary when the

idiosyncratic terms are static.

3.4 Alternative marginal scores

The EM principle can also be exploited to simplify the computation of the score. Since

the Kullback inequality implies that E [l(x|Y;θ)|Y;θ] = 0, it is clear that ∂l(Y;θ)/∂θ can

be obtained as the expected value (given Y and θ) of the sum of the unobservable scores

corresponding to l(y1, . . . ,yN |x) and l(x). This yields

∂l(Y)

∂θx
=

1

2

T−1∑
j=0

∂Gxx(λj)

∂θx
G−2xx (λj)

[
2πE[zxj z

x∗
j |Zy,θ]−Gxx(λj)

]
∂l(Y)

∂θui
=

1

2

T−1∑
j=0

∂Guiui(λj)

∂θui
G−2uiui(λj)

[
2πE[zuij z

ui∗
j |Zy,θ]−Guiui(λj)

]
∂l(Y)

∂ci,k
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
eikλjE[zuij z

x∗
j |Zy,θ] + e−ikλjE[zxj z

ui∗
j |Zy,θ]

]
.

21



But since the scores are now evaluated at the values of the parameters at which the expec-

tations are computed, we will have that

E[zxj z
x∗
j |Zy,θ] = IxKxK (λj) + ω(λj),

E[zuj zu∗j |Zy,θ] = E[zuj |Zy,θ]E[zu∗j |Zy,θ] + E
[{

zuj − E[zuj |Zy,θ]
}{

zu∗j − E[zu∗j |Zy,θ]
}
|Zy,θ

]
= IuKuK (λj) + c(e−iλj )ω(λj)c

′(eiλj ).

E[zuj z
x∗
j |Zy,θ] = E[zuj |Zy,θ]E[zx∗j |Zy,θ] + E

[{
zuj − E[zuj |Zy,θ]

}{
zx∗j − E[zx∗j |Zy,θ]

}
|Zy,θ

]
= IuKxK (λj)− c(e−iλj )ω(λj)

where

zu
K

j = E[zuj |Zy,θ] = Guu(λj)G
−1
yy(λj)z

y
j = zyj − c(e−iλj )zx

K

j ,

E[(zuj − zu
K

j )(zu∗j − zu
K∗
j )|Zy,θ] = c(e−iλj )ω(λj)c

′(eiλj ),

E[(zuj − zu
K

j )(zx∗j − zx
K∗
j )|Zy,θ] = c(e−iλj )ω(λj),

IuKuK (λ) = 2πGuu(λ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ)

= 2π
[
IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
IN − ω(λ)c(eiλ)c′(e−iλ)G−1uu(λ)

]
(19)

is the periodogram of the smoothed values of the specific factors, and

IxKuK (λ) = 2πGxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ)

= 2πω(λ)c′(eiλ)G−1uu(λ)Iyy(λ)
[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
(20)

is the co-periodogram between xKt|∞ and uKt|∞.

Tedious algebra shows that these scores coincide with the expressions in appendix A. They

also closely related to the scores of the expected log-likelihoods in the previous subsection,

but the difference is that the expectations were taken there with respect to the conditional

distribution of x given Y evaluated at θ(n), not θ.

3.5 Some illustrations

We have generated samples of size T = 100 from the dynamic factor model in (1) in which

common and idiosyncratic factors follow Arma(1,1) processes. We carry out 5 Cochrane-Orcutt

iterations only within each EM iteration. As starting values for the EM algorithm, we assume

unit loadings on the contemporaneous and lagged values of the common factor, unit specific

variances, and all autoregressive and moving average coeffi cients set to 0.5 and 0.1, respectively.

These initial values are far away from the true parameters.
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Figure 1 illustrates a typical example with ten series, while Figure 2 corresponds to a model

with one hundred series. Remarkably, the first iteration of the EM yields a massive increase in

the log-likelihood function in both cases. In addition, successive iterations also provide noticeable

gains. As expected, though, the algorithm slows down considerably as we approach the optimum.

Nevertheless, if we conduct a suffi ciently large number of iterations, the value of the estimated

parameters coincides with the estimates obtained by maximising the marginal log-likelihood

function directly using the method of scoring with the analytical expressions for the score and

information matrix in appendices A and B.

4 Common dynamics in sectoral employment

There is a long tradition of analysing comovements of sectoral activity indicators (see for

example Abraham and Katz (1986), Lilien (1982) or Rogerson (1987)). In this context, dynamic

factor models have proved useful in assessing the extent to which observed fluctuations in sectoral

aggregates are accounted for by common sources of variation. In their seminal paper, Quah and

Sargent (1993) studied the behavior of annual employment series across sixty US industries over

the period 1948-1989. They found that the bulk of the time variation of the different sectors was

explained by a common factor, and that their estimated measure of “business activity”captured

aggregate dynamics in sectoral employment very well.

Motivated by their results, we downloaded employment series from the Bureau of Labor

Statistics corresponding to the 81 NAICS 3-digit sectors, measured at monthly frequency and

seasonally adjusted, for the period 1990M1-2014M4, which was the longest available (see Table

1 for the list of sectors). We decided to work with (annualised) growth rates for T = 291

months in view of the overwhelming evidence that the (log) levels of those employment series

are nonstationary.6

Since our latent factor is meant to capture the common source of variation across sectoral

employment growth rates, we followed Quah and Sargent (1993) and considered a dynamic

single factor model. In order to determine the dynamic specification of common and specific

factors, as well as the dynamic impact of the former on each sectoral series, we carried out

some preliminary empirical analysis. Given that we expected the common factor to mimic the

dynamics of total nonfarm employment, we fitted univariate Arma models of various orders to

the (geometric) rate of growth of this observed series. We found that an Arma(1,1) yields the

best fit according to both the Schwartz and Akaike criteria. Next we regressed the demeaned

6A preliminary check on data quality indicated that a handful of series display abnormal values. We treated
them as additive outliers in the (log) levels and replaced them by the average of the adjacent observations, which
is a simple fillter that is nevertheless optimal under the random walk hypothesis.
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changes of employment on the demeaned contemporaneous and one-month lagged changes of

total nonfarm employment. We found that the coeffi cients associated to the lagged changes were

significantly different from zero for a sizeable fraction of the series, which strongly suggests that

the sector-specific employment growth rates may be driven not only by the contemporaneous

value of the latent factor but also by its one-month lagged values. In addition, we conducted

LM tests for first- and second-order residual autocorrelation to assess whether the idiosyncratic

disturbances are likely to be serially correlated. We found that roughly 2/3 of the series require

serially correlated idiosyncratic terms.

In view of those findings, we began by estimating a special case of model (1) in which both

xt and xt−1 heterogeneously affect each of the sectoral growth rates, xt follows an Arma(1,1)

process while the idiosyncratic terms uit follow simple Ar(1)’s. Individual tests for H0 : αi = 0

indicated that there are 35 series for which the white noise hypothesis is not rejected,7 which we

decided to impose thenceforth. For the remaining 46 series we jointly tested the null of Ar(1)

against Arma(1,1) specific factors, the likelihood ratio statistic taking the extremely significant

value of 1369.9.8

Estimation of the final model with 46 Arma(1,1) and 35 white noise idiosyncratic processes

was conducted by means of the EM algorithm using the iterated indirect procedure discussed in

previous sections. As starting values, we assumed again unit loadings on the contemporaneous

and lagged values of the common factor, unit specific variances, and autoregressive and moving

average coeffi cients set 0.5 and 0.1, respectively, for both common and idiosyncratic factors. In

order to speed up the EM iterations, we conducted five Cochrane-Orcutt iterations only instead

of continuing until convergence. Despite the hundreds of parameters involved, this procedure

worked very well to begin with. Eventually, though, the norm of the gradients corresponding to

the idiosyncratic parameters of three series reached a positive lower bound. A careful inspection

suggested that the corresponding Ar andMa coeffi cients were probably too close to each other,

and the resulting quasi cancellations made the likelihood function rather flat. For that reason,

we switched to an alternative, slower version of the EM algorithm that replaced our iterative

indirect inference procedure by the direct maximisation of the expected log-likelihood function

in (18) using a scoring algorithm with analytical derivatives and information matrix. Although

the estimated parameters did not change much, the log-likelihood function improved slightly

and the norm of the gradients went down all the way to 0.

Finally, we computed standard errors of the parameter estimators using the analytical ex-

7The series are: 5 8 18 19 22 23 26 28 32 34 35 36 37 38 39 40 41 43 45 47 48 51 54 58 62 63 65 66 70 71 73
75 77 79 81, which by and large coincide with the LM tests computed for the total nonfarm regressions

8See Fiorentini and Sentana (2013) for computationally simple and intuitive individual and joint LM tests for
neglected serial correlation in common and specific factors.
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pressions for the information matrix in appendix B. The estimation results are reported in

Tables 2 and 3.

As is well known, the usual Wiener-Kolmogorov filter can lead to filtering distortions at

both ends of the sample. For that reason, we wrote the model in a state-space form and

applied the Kalman filter in the time domain with exact initial conditions derived from the

stationary distribution of the 165 state variables (3 for the common factor and 2 for each of

the idiosyncratic ones; see appendix C for details).9 Given that the standard fixed interval

smoother was numerically unstable with such a big state vector, we used the modified Bryson-

Frazier smoother instead (see Bierman (1977)). Figure 3 plots the yearly growth rate of total

nonfarm employment (red dashed line) and our estimated employment factor (solid blue line).

Importantly, our smoothed factor tracks remarkably well the actual growth rate of aggregate

employment, specially during recession phases, such as in 1991, 2001, and 2009, although it is

unsurprisingly smoother than the observed series.

5 Directions for further work

The spectral EM algorithm developed in the previous sections can be extended in several in-

teresting directions. One obvious possibility would be to models with multiple common factors.

Although this would be intensive in notation, such an extension would be otherwise straightfor-

ward after dealing with identification issues before estimating the model. In fact, in a follow up

paper (Fiorentini, Galesi and Sentana (2015)) we consider models with two levels of factors:

1. Pervasive common factors that affect all N series

2. Factors that only affect a subset of the series, such as the ones belonging to the same

country or region.

The main complication is keeping track of what factors affect which series.

Another interesting extension would deal with models in which the heterogeneous dynamic

impact of the common factor on each observed variable, which is characterised by the ci(L)

polynomials, can be represented by the ratio of two low order polynomials (see Hannan (1965)

and Hannan and Nichols (1972) for frequency domain estimators of some rational distributed

lag models when xt is observable).

9The main difference between the Wiener-Kolmogorov filtered values, xKt|∞, and the Kalman filter smoothed
values, xKt|T , results from the implicit dependence of the former on a doubly infinite sequence of past and future
observations. As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.
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Given their ubiquitousness in the recent empirical literature (see e.g. Bai and Ng (2008) and

the references therein), the extension of our methods to approximate factor models in which

(i) the cross-sectional dimension is non-negligible relative to the time series dimension; and (ii)

there is some mild contemporaneous and dynamic correlation between the idiosyncratic terms

would constitute a very valuable addition. In fact, a very large number of series constitutes

a computational blessing in this framework, because for large N the unobservable factors will

be consistently estimated by the Kalman-Wiener-Kolmogorov filter, and the model effectively

becomes a multivariate regression model. In this regard, Doz, Giannone and Reichlin (2012)

have recently proved the consistency of the Gaussian pseudo ML estimators that we have used

in such contexts. In principle, we could easily extend our numerical procedures to models with

non-diagonal idiosyncratic spectral density matrices because in those models the factorisation

of the complete log-likelihood function of observed series and common factors will still be true.

However, we would have to use frequency domain versions of multivariate regressions in those

contexts, whose effi cient estimation deserve further consideration.

Finally, it is worth mentioning that although we have exploited some specificities of dynamic

factor models, our procedures can be easily extended to most unobserved components time series

processes, and in particular to Ucarima models (see Fiorentini and Sentana (2014) for a closely

related analysis) and the state-space models underlying the recent nowcasting literature (see

Banbura, Giannone and Reichlin (2011) and the references therein). We are currently pursuing

some of these research avenues.
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Appendices

A Spectral scores

The score function for all the parameters other than the mean is given by (7). Since

dGyy(λ) = dc(e−iλ)Gxx(λ)c′(eiλ) + c(e−iλ)dGxx(λ)c′(eiλ) + c(e−iλ)Gxx(λ)dc′(eiλ) + dGuu(λ)

(see Magnus and Neudecker (1988)), it immediately follows that

dvec [Gyy(λ)] =
[
c(eiλ)Gxx(λ)⊗ IN

]
dc(e−iλ) +

[
IN ⊗ c(e−iλ)Gxx(λ)

]
dc(eiλ)

+
[
c(eiλ)⊗ c(e−iλ)

]
dGxx(λ) + ENdvecd [Guu(λ)] ,

where E′N = (e1e
′
1| . . . |eNe′N ), with (e1| . . . |eN ) = IN , is the unique N2 × N “diagonalisa-

tion”matrix that transforms vec(A) into vecd(A) as vecd(A) = E′Nvec(A), and Kmn is the

commutation matrix of orders m and n (see Magnus (1988)). But

c(e−iλ) =

M∑
m=0

cm(θ)e−imλ, (A1)

so

dc(e−iλ) =

M∑
m=0

dcm(θ)e−imλ.

Consequently, we can write

dvec [Gyy(λ)] =

M∑
m=0

{[
e−imλc(eiλ)Gxx(λ)⊗ IN

]
+
[
IN ⊗ eimλc(e−iλ)Gxx(λ)

]}
dcm(θ)

+
[
c(eiλ)⊗ c(e−iλ)

]
dGxx(λ) + ENdvecd [Guu(λ)] .

Hence, the Jacobian of vec [Gyy(λ)] will be

∂vec [Gyy(λ)]

∂θ′
=

M∑
m=0

{ [
e−imλc(eiλ)Gxx(λ)⊗ IN

]
+
[
IN ⊗ eimλc(e−iλ)Gxx(λ)

] } ∂cm
∂θ′

+
[
c(eiλ)⊗ c(e−iλ)

] ∂Gxx(λ)

∂θ′
+ EN

∂vecd [Guu(λ)]

∂θ′
. (A2)

If we combine this expression with the fact that

[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
zycj zy′j −G′yy(λj)

]
= vec

[
2πG′−1yy (λ)zycj zy′j G′−1yy (λ)−G′−1yy (λ)

]
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and I′yy(λ) = zycj zy′j we obtain:

2d(λ;θ) =

M∑
m=0

∂c′m
∂θ

{ [
e−imλGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ eimλGxx(λ)c′(e−iλ)

] } vec [2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)
]

+
∂Gxx(λ)

∂θ

[
c′(eiλ)⊗ c′(e−iλ)

]
vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
+
∂vecd′ [Guu(λ)]

∂θ
ENvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
=

M∑
m=0

∂c′m
∂θ

vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)e−imλ −G′−1yy (λ)c(eiλ)Gxx(λ)e−imλ

+2πeimλGxx(λ)c′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)− eimλGxx(λ)c′(e−iλ)G′−1yy (λ)

]
+
∂Gxx(λ)

∂θ
vec

[
2πc′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)− c′(e−iλ)G′−1yy (λ)c(eiλ)

]
+
∂vecd′ [Guu(λ)]

∂θ
ENvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
.

Let us now try to interpret the different components of this expression. The first thing to

note is that

e−imλvec
[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)−G′−1yy (λ)c(eiλ)Gxx(λ)

]
and

eimλvec
[
2πGxx(λ)c′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)−Gxx(λ)c′(e−iλ)G′−1yy (λ)

]
are complex conjugates because the conjugate of a product is the product of the conjugates, so

it suffi ces to analyse one of them.

If we further assume that Gxx(λ) > 0 and Guu(λ) > 0 we can write

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)e−imλ −G′−1yy (λ)c(eiλ)Gxx(λ)e−imλ

= G′−1uu (λ)
[
2πe−imλI′xKuK (λ)− e−imλG′xKuK (λ)

]
,

2πc′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)− c′(e−iλ)G′−1yy (λ)c(eiλ)

= G−2xx (λ) [2πIxKxK (λ)−GxKxK (λ)]

and

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ) = G′−1uu (λ)
[
2πI′uKuK (λ)−G′uKuK (λ)

]
G′−1uu (λ).

Therefore, the component of the score associated to cm will be the sum across frequencies

of terms of the form

G′−1uu (λ)
[
2πe−imλI′xKuK (λ)− e−imλG′xKuK (λ)

]
(and their conjugate transposes), which capture the difference between the cross-periodogram

and cross-spectrum of xKt−m and u
K
it inversely weighted by the spectral density of uit. As a result,
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we can understand this term as arising from the normal equation in the spectral regression of

yit onto xt−m but taking into account the unobservability of the regressor.

Similarly, the component of the score associated to the parameters that determineGxx(λ) will

be the cross-product across frequencies of the product of the derivatives of the spectral density

of xt with the difference between the periodogram and spectrum of xKt inversely weighted by

the squared spectral density of xt. In this case, we can interpret this term as arising from a

marginal log-likelihood function for xt that takes into account the unobservability of xt.

Finally, the component of the score associated to the parameters that determine Guiui(λ) will

be the cross-product across frequencies of the product of the derivatives of the spectral density

of uit with the difference between the periodogram and spectrum of uKit inversely weighted by

the squared spectral density of uit. Once again, we can interpret this term as arising from the

conditional log-likelihood function of uit given xt that takes into account the unobservability of

uti .

As usual, we can then exploit the Woodbury formula, as in expressions (16), (19) and (20),

to greatly speed up the computations. In particular, we will get

Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)−Gxx(λ)c′(eiλ)G−1yy(λ)

= Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
− ω(λ)c′(eiλ)G−1uu(λ)

= Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)
[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)− ω(λ)c′(eiλ)G−1uu(λ)

=
[
IxKuK (λ)− ω(λ)c′(eiλ)

]
G−1uu(λ),

G−1yy(λ)Iyy(λ)G−1yy(λ)−G−1yy(λ)

=
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
−
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
G−1uu(λ)

[
IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)

−G−1uu(λ)
[
Guu(λ)− ω(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)

= G−1uu(λ) [IuKuK (λ)−GuKuK (λ)] G−1uu(λ),

and

c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)c(e−iλ)−c′(eiλ)G−1yy(λ)c(e−iλ) = G−1xx (λ)[IxKxK (λ)−GxKxK (λ)]G−1xx (λ).
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B Spectral information matrix

Given the expression for the Jacobian matrix (A2), we will have that

∂vec′ [Gyy(λ)]

∂θ
=

M∑
m=0

∂c′m
∂θ

{ [
e−imλGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ eimλc′(e−iλ)Gxx(λ)

] }
+
∂Gxx(λ)

∂θ

[
c′(eiλ)⊗ c′(e−iλ)

]
+
∂vecd [Guu(λ)]

∂θ
E′N

and {
∂vec′ [Gyy(λ)]

∂θ

}∗
=

M∑
m=0

{ [
eimλc(e−iλ)Gxx(λ)⊗ IN

]
+
[
IN ⊗ e−imλc(eiλ)Gxx(λ)

] } ∂cm
∂θ′

+
[
c(e−iλ)⊗ c(eiλ)

] ∂Gxx(λ)

∂θ′
+ EN

∂vecd [Guu(λ)]

∂θ′
.

Hence, it is straightforward to see that the elements of the block of the information matrix

(10) corresponding to the dynamic factor loadings will be

∂vec′[Gyy(λ)]

∂cm

[
G−1yy(λj)⊗G′−1yy (λj)

]{∂vec′ [Gyy(λ)]

∂cn

}∗
=

{ [
e−imλGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ eimλGxx(λ)c′(e−iλ)

] } [G−1yy(λj)⊗G′−1yy (λj)
]{ [

einλc(e−iλ)Gxx(λ)⊗ IN
]

+
[
IN ⊗ e−inλc(eiλ)Gxx(λ)

] }

= G2xx(λ)


e−i(m+n)λG′−1yy (λj)c(eiλ)c′(eiλ)G−1yy(λj)

+ei(m+n)λ
[
G−1yy(λj)c(e−iλ)c′(e−iλ)G′−1yy (λj)

]
e−i(m−n)λc′(eiλ)G−1yy(λj)c(e−iλ)]G′−1yy (λj)

ei(m−n)λ
[
c′(e−iλ)G′−1yy (λj)c(eiλ)

]
G−1yy(λj)


Notice that since the information matrix is real, there will be cancellation between the

complex parts of the above matrices.

Similarly,

∂vec′[Gyy(λ)]

∂cm

[
G−1yy(λj)⊗G′−1yy (λj)

] ∂vec [Gyy(λ)]

∂θ′x

=

{ [
e−imλGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ eimλGxx(λ)c′(e−iλ)

] } [G−1yy(λj)⊗G′−1yy (λj)
] [

c(e−iλ)⊗ c(eiλ)
] ∂Gxx(λ)

∂θ′x

= Gxx(λ)

{ [
e−imλc′(eiλ)G−1yy(λj)c(e−iλ)

]
G′−1yy (λj)c(eiλ)

+
[
eimλc′(e−iλ)G′−1yy (λj)c(eiλ)

]
G−1yy(λj)c(e−iλ)

}
∂Gxx(λ)

∂θ′x
,

which again will be real.

In addition

∂vec′[Gyy(λ)]

∂cm

[
G−1yy(λj)⊗G′−1yy (λj)

] ∂vec [Gyy(λ)]

∂θ′uj

=

{ [
e−imλGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ eimλGxx(λ)c′(e−iλ)

] } [G−1yy(λj)⊗G′−1yy (λj)
]
EN

(
ej
∂Gujuj (λ)

∂θ′uj

)

= Gxx(λ)

{ [
e−imλc′(eiλ)G−1yy(λj)ej

]
G′−1yy (λj)ej

+
[
eimλc′(e−iλ)G′−1yy (λj)ej

]
G−1yy(λj)ej

}
∂Gujuj (λ)

∂θ′uj
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since

e′jE
′
N = e′j(e1e

′
1| . . . |eNe′N ) = e′j ⊗ e′j .

In turn,

∂vec′ [Gyy(λ)]

∂θx

[
G−1yy(λj)⊗G′−1yy (λj)

] ∂vec [Gyy(λ)]

∂θ′x

=
∂Gxx(λ)

∂θx

[
c′(eiλ)⊗ c′(e−iλ)

] [
G−1yy(λj)⊗G′−1yy (λj)

] [
c(e−iλ)⊗ c(eiλ)

] ∂Gxx(λ)

∂θ′x

=
[
c′(eiλ)G−1yy(λj)c(e−iλ)

] [
c′(e−iλ)G′−1yy (λj)c(eiλ)

] ∂Gxx(λ)

∂θx

∂Gxx(λ)

∂θ′x
.

Further

∂vec′ [Gyy(λ)]

∂θx

[
G−1yy(λj)⊗G′−1yy (λj)

] ∂vec [Gyy(λ)]

∂θ′ui

=
∂Gxx(λ)

∂θx

[
c′(eiλ)⊗ c′(e−iλ)

] [
G−1yy(λj)⊗G′−1yy (λj)

]
ENej

∂Gujuj (λ)

∂θ′uj

=
[
c′(eiλ)G−1yy(λj)ej

] [
c′(e−iλ)G′−1yy (λj)ej

] ∂Gxx(λ)

∂θx

∂Gujuj (λ)

∂θ′uj
.

Finally,

∂vec′ [Gyy(λ)]

∂θui

[
G−1yy(λj)⊗G′−1yy (λj)

] ∂vec [Gyy(λ)]

∂θ′uj

=
∂Guiui(λ)

∂θui
e′iE

′
N

[
G−1yy(λj)⊗G′−1yy (λj)

]
ENej

∂Gujuj (λ)

∂θ′uj

= e′i
[
G−1yy(λj)�G′−1yy (λj)

]
ej
∂Guiui(λ)

∂θui

∂Gujuj (λ)

∂θ′uj
,

where � denotes the Hadamard (or element by element) product of two matrices of equal size.

If we assume that both Gxx(λ) and Guu(λ) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions. In particular,

G−1yy(λj)c(e−iλ) = G−1uu(λ)c(e−iλ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)c(e−iλ),

G′−1yy (λj)c(eiλ) = G−1uu(λ)c(eiλ)− ω(λ)G−1uu(λ)c(eiλ)c′(e−iλ)G−1uu(λ)c(eiλ),

so that

c′(eiλ)G−1yy(λj)c(e−iλ) =
[
c′(e−iλ)G′−1yy (λj)c(eiλ)

]
= c′(eiλ)G−1uu(λ)c(e−iλ)G−1xx (λ)ω(λ)

in view of (4). Finally, further speed gains can be achieved by noticing that

c′(eiλ)G−1uu(λ)c(e−iλ) =
N∑
j=1

∥∥cj(eiλ)
∥∥2

Gujuj (λ)
.
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C State space representation in the time domain

There are several ways of casting the dynamic factor model in (1) into state-space format,

but the most straightforward one is to consider a huge state vector of dimension 2N+3 in which

the Arma(1,1) process for the common factor is written as a trivariate Var(1) in (xt, xt−1, ft)

and the N Arma(1,1) processes for the specific factors are written as first order bivariate Vars

in (uit, vit). As a result, we can write the measurement equation without an error term as

yt = Γxt,

xt = (xt, xt−1, ft;u1t, v1t; . . . ;uit, vit; . . . ;uNt, vNt)
′

and Γ is an N × (2N + 3) matrix with typical row equal to

[ci0, ci1, 0; 0, 0; . . . ; 1, 0; . . . ; 0, 0].

In turn, the transition equation will be xt
xt−1
ft

 =

 α 0 −β
1 0 0
0 0 0

 xt−1
xt−2
ft−1

+

 ft
0
ft

 ,
[
uit
vit

]
=

[
α −β
0 0

] [
uit−1
vit−1

]
+

[
vit
vit

]
(i = 1, . . . , N),

with a block diagonal covariance matrix for its innovations.

Given our stationary assumption, the initial conditions for the state will trivially be x1|0 =

0(2N+3)x1 and

P1|0 =



Qx 0 · · · · · · · · · 0
0 Q1 · · · · · · · · · 0
...

...
. . . . . . . . .

...
...

...
. . . Qi

. . .
...

...
...

. . . . . . . . . 0
0 0 · · · · · · 0 QN


,

in which the first 3× 3 block is

Qx =

 γx0 γx1 1
γx1 γx0 0
1 0 1

 ,
γx0 =

1 + β2 − 2αβ

1− α2 , γx1 =
(1− αβ)(α− β)

1− α2 ,

and the other N 2× 2 blocks are

Qi =

[
γi0 ψi
ψi ψi

]
,

γi0 =
1 + β2i − 2αiβi

1− α2i
ψi.
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Figure 1: A model with N = 10 series
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Figure 2: A model with N = 100 series
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Table 1: Sample of NAICS 3-digits sectors for estimating the employment index

Oil and gas extraction (211) Warehousing and storage (493)
Mining, except oil and gas (212) Publishing industries, except Internet (511)
Support activities for mining (213) Motion picture and sound recording industries (512)
Construction of buildings (236) Broadcasting, except Internet (515)
Heavy and civil engineering construction (237) Telecommunications (517)
Specialty trade contractors (238) Data processing, hosting and related services (518)
Wood products (321) Other information services (519)
Nonmetallic mineral products (327) Monetary authorities - central bank (521)
Primary metals (331) Credit intermediation and related activities (522)
Fabricated metal products (332) Securities, commodity contracts, investments, etc. (523,5)
Machinery (333) Insurance carriers and related activities (524)
Computer and electronic products (334) Real estate (531)
Electrical equipment and appliances (335) Rental and leasing services (532)
Transportation equipment (336) Lessors of nonfinancial intangible assets (533)
Furniture and related products (337) Administrative and support services (561)
Miscellaneous durable goods manufacturing (339) Waste management and remediation services (562)
Food manufacturing (311) Ambulatory health care services (621)
Textile mills (313) Hospitals (622)
Textile product mills (314) Nursing and residential care facilities (623)
Apparel (315) Social assistance (624)
Paper and paper products (322) Performing arts and spectator sports (711)
Printing and related support activities (323) Museums, historical sites, and similar institutions (712)
Petroleum and coal products (324) Amusements, gambling, and recreation (713)
Chemicals (325) Accommodation (721)
Plastics and rubber products (326) Food services and drinking places (722)
Miscellaneous nondurable goods manufacturing (312,6) Repair and maintenance (811)
Wholesale trade, durable goods (423) Personal and laundry services (812)
Wholesale trade, nondurable goods (424) Membership associations and organizations (813)
Electronic markets and agents and brokers (425) Federal, except U.S. Postal Service
Motor vehicle and parts dealers (441) State government, excluding education
Furniture and home furnishings stores (442) Local government, excluding education
Electronics and appliance stores (443)
Building material and garden supply stores (444)
Food and beverage stores (445)
Health and personal care stores (446)
Gasoline stations (447)
Clothing and clothing accessories stores (448)
Sporting goods, hobby, book, and music stores (451)
General merchandise stores (452)
Miscellaneous store retailers (453)
Nonstore retailers (454)
Air transportation (481)
Rail transportation (482)
Water transportation (483)
Truck transportation (484)
Transit and ground passenger transportation (485)
Pipeline transportation (486)
Scenic and sightseeing transportation (487)
Support activities for transportation (488)
Couriers and messengers (492)

Notes: NAICS 3-digit codes in parentheses.



Table 2: Dynamic loadings estimates

Series ci,0 std.err. ci,1 std.err. Series ci,0 std.err. ci,1 std.err.

1 0.510 (0.458) -0.183 (0.458) 42 0.956 (0.401) -0.469 (0.400)
2 0.606 (0.542) -0.201 (0.542) 43 0.026 (0.394) 0.275 (0.395)
3 0.233 (0.657) 1.180 (0.663) 44 0.049 (0.748) 0.178 (0.748)
4 1.757 (0.335) -0.957 (0.331) 45 1.080 (0.235) -0.522 (0.232)
5 2.004 (0.499) -1.343 (0.494) 46 0.279 (0.608) -0.136 (0.608)
6 2.195 (0.316) -1.351 (0.308) 47 -0.520 (0.461) 0.444 (0.461)
7 2.457 (0.385) -1.445 (0.377) 48 -0.341 (1.523) 0.836 (1.524)
8 2.031 (0.297) -1.226 (0.288) 49 0.572 (0.299) 0.011 (0.300)
9 1.582 (0.295) -0.135 (0.300) 50 0.312 (0.663) 0.241 (0.665)

10 1.060 (0.141) 0.038 (0.149) 51 0.877 (0.266) -0.486 (0.264)
11 0.720 (0.183) 0.479 (0.195) 52 0.290 (0.135) 0.247 (0.140)
12 0.447 (0.169) 0.236 (0.172) 53 1.518 (0.908) -1.227 (0.906)
13 0.741 (0.226) 0.166 (0.232) 54 -0.245 (0.216) 0.654 (0.221)
14 1.839 (0.483) -1.042 (0.478) 55 0.136 (0.232) 0.163 (0.233)
15 2.068 (0.243) -1.060 (0.234) 56 0.822 (0.339) -0.617 (0.338)
16 0.625 (0.168) -0.224 (0.167) 57 0.622 (0.430) 0.067 (0.430)
17 0.159 (0.200) -0.069 (0.200) 58 -0.018 (0.480) 0.106 (0.480)
18 2.786 (0.448) -1.992 (0.437) 59 0.030 (0.139) 0.010 (0.139)
19 2.037 (0.412) -1.298 (0.406) 60 0.212 (0.220) 0.337 (0.223)
20 1.760 (0.462) -1.068 (0.458) 61 0.029 (0.109) 0.040 (0.109)
21 0.677 (0.154) -0.289 (0.153) 62 0.416 (0.193) -0.174 (0.192)
22 0.391 (0.180) 0.212 (0.185) 63 0.456 (0.268) 0.212 (0.272)
23 0.329 (0.451) -0.316 (0.451) 64 -0.610 (0.745) 0.847 (0.746)
24 0.168 (0.132) 0.067 (0.133) 65 2.734 (0.272) -1.932 (0.255)
25 1.542 (0.236) -0.694 (0.232) 66 0.261 (0.323) -0.031 (0.323)
26 0.568 (0.358) -0.319 (0.357) 67 0.260 (0.085) -0.267 (0.085)
27 0.614 (0.098) -0.169 (0.098) 68 0.073 (0.063) -0.051 (0.063)
28 0.593 (0.125) -0.367 (0.123) 69 -0.092 (0.090) 0.038 (0.090)
29 0.778 (0.156) -0.502 (0.154) 70 -0.195 (0.301) 0.273 (0.301)
30 1.187 (0.136) -0.819 (0.132) 71 -1.157 (0.970) 1.437 (0.971)
31 2.035 (0.261) -1.352 (0.252) 72 0.093 (0.429) 0.174 (0.429)
32 1.547 (0.437) -0.925 (0.434) 73 0.736 (0.496) -0.374 (0.495)
33 1.668 (0.275) -1.202 (0.269) 74 0.953 (0.262) -0.544 (0.261)
34 0.119 (0.136) 0.031 (0.137) 75 0.683 (0.162) -0.479 (0.160)
35 0.171 (0.194) -0.006 (0.194) 76 0.967 (0.204) -0.587 (0.202)
36 0.205 (0.187) -0.016 (0.187) 77 0.520 (0.161) -0.310 (0.160)
37 1.621 (0.365) -1.326 (0.362) 78 0.182 (0.149) -0.134 (0.149)
38 1.238 (0.565) -0.821 (0.563) 79 -0.717 (1.330) 0.442 (1.329)
39 0.512 (0.318) -0.326 (0.318) 80 -0.156 (0.113) 0.203 (0.113)
40 0.828 (0.277) -0.303 (0.276) 81 -0.155 (0.137) 0.195 (0.137)
41 0.581 (0.420) -0.128 (0.420)



Table 3: ARMA parameter estimates

Series α std.err. β std.err. ψ std.err. Series α std.err. β std.err. ψ std.err.

x 0.969 (0.015) -0.448 (0.092) 1.000

1 0.974 (0.017) 0.828 (0.044) 60.096 (4.986) 42 0.695 (0.092) 0.347 (0.120) 40.336 (3.358)
2 0.722 (0.130) 0.528 (0.159) 78.369 (6.502) 43 0.000 0.000 46.122 (3.826)
3 0.903 (0.034) 0.470 (0.069) 112.757 (9.371) 44 -0.299 (0.276) -0.473 (0.255) 144.746 (12.001)
4 0.941 (0.031) 0.754 (0.060) 29.177 (2.465) 45 0.000 0.000 15.325 (1.288)
5 0.000 0.000 70.792 (5.926) 46 0.468 (0.088) 0.830 (0.055) 211.881 (17.568)
6 0.961 (0.024) 0.811 (0.052) 24.725 (2.125) 47 0.000 0.000 63.006 (5.227)
7 0.898 (0.062) 0.767 (0.091) 37.122 (3.168) 48 0.000 0.000 689.215 (57.149)
8 0.000 0.000 22.695 (1.942) 49 -0.424 (0.221) -0.203 (0.239) 32.114 (2.673)
9 0.980 (0.014) 0.819 (0.043) 22.489 (1.908) 50 -0.043 (0.188) 0.273 (0.181) 183.986 (15.264)
10 0.983 (0.012) 0.797 (0.044) 4.482 (0.394) 51 0.000 0.000 20.391 (1.702)
11 0.978 (0.014) 0.761 (0.047) 8.523 (0.725) 52 0.935 (0.042) 0.811 (0.069) 5.039 (0.422)
12 0.913 (0.030) 0.432 (0.067) 7.197 (0.601) 53 0.087 (0.320) 0.266 (0.309) 291.773 (24.221)
13 0.981 (0.015) 0.886 (0.038) 14.162 (1.188) 54 0.000 0.000 13.672 (1.140)
14 0.025 (0.302) 0.220 (0.295) 80.586 (6.733) 55 0.968 (0.018) 0.715 (0.050) 14.950 (1.240)
15 0.931 (0.047) 0.819 (0.075) 13.359 (1.172) 56 0.954 (0.028) 0.811 (0.054) 32.269 (2.686)
16 0.921 (0.100) 0.877 (0.124) 7.852 (0.657) 57 0.934 (0.026) 0.509 (0.062) 48.497 (4.027)
17 0.653 (0.175) 0.778 (0.146) 13.743 (1.140) 58 0.000 0.000 68.358 (5.667)
18 0.000 0.000 53.176 (4.522) 59 0.933 (0.026) 0.518 (0.062) 5.091 (0.422)
19 0.000 0.000 47.095 (3.964) 60 0.944 (0.029) 0.740 (0.059) 13.408 (1.115)
20 0.975 (0.020) 0.883 (0.042) 59.655 (4.991) 61 0.900 (0.037) 0.558 (0.071) 3.167 (0.263)
21 0.969 (0.027) 0.898 (0.048) 6.569 (0.551) 62 0.000 0.000 10.871 (0.904)
22 0.000 0.000 9.236 (0.773) 63 0.000 0.000 20.938 (1.745)
23 0.000 0.000 60.368 (5.006) 64 0.924 (0.057) 0.832 (0.082) 158.608 (13.160)
24 0.937 (0.046) 0.841 (0.071) 4.965 (0.412) 65 0.000 0.000 15.862 (1.431)
25 0.903 (0.057) 0.763 (0.086) 13.737 (1.174) 66 0.000 0.000 30.885 (2.562)
26 0.000 0.000 37.754 (3.135) 67 0.974 (0.016) 0.791 (0.045) 1.986 (0.166)
27 0.937 (0.029) 0.673 (0.062) 2.344 (0.200) 68 0.935 (0.028) 0.619 (0.061) 1.084 (0.090)
28 0.000 0.000 4.314 (0.363) 69 0.961 (0.021) 0.735 (0.052) 2.248 (0.186)
29 0.966 (0.019) 0.758 (0.049) 6.406 (0.541) 70 0.000 0.000 26.847 (2.227)
30 0.908 (0.033) 0.485 (0.070) 3.934 (0.356) 71 0.000 0.000 278.380 (23.109)
31 0.970 (0.022) 0.869 (0.046) 16.520 (1.434) 72 0.032 (0.386) 0.183 (0.379) 63.386 (5.257)
32 0.000 0.000 54.725 (4.571) 73 0.000 0.000 72.657 (6.031)
33 0.870 (0.081) 0.743 (0.111) 19.082 (1.626) 74 0.055 (0.368) -0.107 (0.366) 17.384 (1.454)
34 0.000 0.000 5.503 (0.457) 75 0.000 0.000 7.423 (0.622)
35 0.000 0.000 11.180 (0.928) 76 0.843 (0.078) 0.665 (0.109) 10.737 (0.904)
36 0.000 0.000 10.322 (0.857) 77 0.000 0.000 7.504 (0.626)
37 0.000 0.000 37.501 (3.148) 78 0.879 (0.048) 0.604 (0.080) 6.007 (0.499)
38 0.000 0.000 93.621 (7.783) 79 0.000 0.000 525.057 (43.536)
39 0.000 0.000 29.886 (2.481) 80 0.942 (0.035) 0.803 (0.061) 3.619 (0.301)
40 0.000 0.000 22.070 (1.841) 81 0.000 0.000 5.515 (0.458)
41 0.000 0.000 52.014 (4.318)


