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Abstract

This paper introduces a novel class of models for binary data, which we call log-mean

linear models. The characterizing feature of these models is that they are specified by

linear constraints on the log-mean linear parameter, defined as a log-linear expansion of

the mean parameter of the multivariate Bernoulli distribution. We show that marginal

independence relationships between variables can be specified by setting certain log-mean

linear interactions to zero and, more specifically, that graphical models of marginal inde-

pendence are log-mean linear models. Our approach overcomes some drawbacks of the

existing parameterizations of graphical models of marginal independence.

Keywords: Contingency table; Graphical Markov model; Marginal independence; Mean

parameter

1 Introduction

A straightforward way to parameterize the probability distribution of a set of categorical vari-

ables is by means of their probability table. Probabilities are easy to interpret but have the

drawback that sub-models of interest typically involve non-linear constraints on these parame-

ters. For instance, conditional independence relationships can be specified by requiring certain

factorizations of the cell probabilities; see Lauritzen (1996) and Cox and Wermuth (1996). For

this reason, it is useful to develop alternative parameterizations such that sub-models of interest

correspond to linear sub-spaces of the parameter space of the saturated model. In particular,

we are interested in graphical models of marginal independence, which were introduced by Cox

and Wermuth (1993, 1996) with the name of covariance graph models, but later addressed
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in the literature also as bidirected graph models following Richardson (2003). These models

have appeared in several applied contexts as described in Drton and Richardson (2008) and

references therein.

In this paper we consider binary data and introduce a novel parameterization based on a

log-linear expansion of the mean parameter of the multivariate Bernoulli distribution, which

we call the log-mean linear parameterization. We then define the family of log-mean linear

models obtained by imposing linear constraints on the parameter space of the saturated model.

We show that marginal independence between variables can be specified by setting certain

log-mean linear interactions to zero and, more specifically, that graphical models of marginal

independence are log-mean linear models.

In the discrete case, two alternative parameterizations of bidirected graph models are avail-

able: the Möbius parameterization (Drton and Richardson, 2008) and the multivariate logistic

parameterization (Glonek and McCullagh, 1995; Lupparelli et al., 2009). Our approach avoids

some disadvantages of both these parameterizations: log-mean linear interactions can be in-

terpreted as measures of association, which allows one to specify interesting sub-models not

readily available using the Möbius parameterization, and the likelihood function can be written

in closed form, which is not possible with the multivariate logistic parameterization. Further-

more, the log-mean linear approach to bidirected graph modelling is computationally more

efficient than the multivariate logistic one.

2 Preliminaries

2.1 Parameterizations for binary data

Given the finite set V = {1, . . . , p}, with | V | = p, let XV = (Xv)v∈V be a random vector of

binary variables taking values in the set IV = {0, 1}p. We call IV a 2p-table and its elements

iV ∈ IV the cells of the table. In this way, XV follows a multivariate Bernoulli distribution

with probability table π(iV ), iV ∈ IV , which we assume to be strictly positive. Since IV =

{0, 1}p = {(1D, 0V \D) | D ⊆ V }, we can write the probability table as a vector π = (πD)D⊆V

with entries π = pr(XD = 1D, XV \D = 0V \D). We refer to π as to the probability parameter of

XV and recall that it belongs to the (2p − 1)-dimensional simplex, which we write as π ∈ Π.

In general, we call θ a parameter of XV if it is a vector in R2p that characterizes the joint

probability distribution of XV , and use the convention that the entries of θ (called interactions)

are indexed by the subsets of V , i.e., θ = (θD)D⊆V . If ω is an alternative parameter of XV ,

then a result known as Möbius inversion states that

ωD =
∑
E⊆D

θE (D ⊆ V ) ⇐⇒ θD =
∑
E⊆D

(−1)|D\E|ωE (D ⊆ V ); (1)

see, among others, Lauritzen (1996, Appendix A). Let Z and M be two (2p × 2p) matri-

ces with entries indexed by the subsets of V × V and given by ZD,H = 1(D ⊆ H) and
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MD,H = (−1)|H\D|1(D ⊆ H), respectively, where 1(·) denotes the indicator function. Then, the

equivalence (1) can be written in matrix form as ω = ZTθ if and only if θ = MTω, and Möbius

inversion follows by noticing that M = Z−1.

We now review some well-known alternative parameterizations for the distribution of XV ,

each defined by a smooth invertible mapping from Π onto a smooth (2p − 1)-dimensional

manifold of R2p . For simplicity, we denote both the mapping and the alternative parameter it

defines by the same (greek) letter.

Multivariate Bernoulli distributions form a regular exponential family with canonical log-

linear parameter λ computed as λ = MT log π. The parameterization λ captures conditional

features of the distribution of XV and is used to define the class of log-linear models, which

includes as a special case the class of undirected graphical models; see Lauritzen (1996, Chap. 4).

The mean parameter of the multivariate Bernoulli distribution is µ = (µD)D⊆V , where µ∅ =

1 (on grounds of convention) and µD = P (XD = 1D) otherwise. This was called the Möbius

parameter by Drton and Richardson (2008), because one finds µ = Zπ. The linear mapping

π 7→ µ is trivially Möbius-inverted to obtain π = Mµ, for all µ ∈ µ(Π). However, the structure

of µ(Π) is rather involved, and actually well-understood only for small p. The parameterization

µ captures marginal distributional features of XV and thus satisfies the upward compatibility

property, i.e., it is invariant with respect to marginalization.

Ekholm et al. (1995), in a context of regression analysis, proposed to modify the mean

parameter by replacing each entry µD of µ such that | D |> 1 with the corresponding dependence

ratio defined as τD = µD/(
∏

v∈D µ{v}); see also Ekholm et al. (2000) and Darroch and Speed

(1983), where these ratios were used in models named Lancaster additive. We define τD = µD

for | D |≤ 1 and call τ = (τD)D⊆V the dependence ratio parameter.

Bergsma and Rudas (2002) developed a wide class of parameterizations capturing both

marginal and conditional distributional features, named marginal log-linear parameterizations,

which have been applied in several contexts; see Bergsma et al. (2009). Broadly speaking, any

marginal log-linear parameter is obtained by stacking subvectors of log-linear parameters com-

puted in suitable marginal distributions. This class of parameterizations includes as special,

extreme, cases the log-linear parameterization λ, where a single margin is used, and the mul-

tivariate logistic parameterization of Glonek and McCullagh (1995), denoted by η = (ηD)D⊆V ,

where each ηD is computed in the margin XD. The parameterization η clearly satisfies the

upward compatibility property, while the structure of η(Π) is rather involved. A disadvantage

of these parameterizations is that their inverse mappings cannot be analytically computed (but

for the special case of λ).

2.2 Bidirected graph models

Graphical models of marginal independence aim to capture marginal independence relationships

between variables. Following Richardson (2003), we use the convention that the independence

3



bb
1

b b
2 43

Figure 1: Bidirected graph with disconnected sets {1, 3}, {1, 4}, {2, 4}, {1, 2, 4} and {1, 3, 4},
encoding the independencies X{1,2}⊥⊥X4 and X1⊥⊥X{3,4}.

structure of variables is represented by a bidirected graph. Nevertheless, we recall that these

same models have been previously discussed by Cox and Wermuth (1993) adopting a different

graphical representation with undirected dashed edges.

A bidirected graph G = (V,E) is defined by a set V = {1, . . . , p} of nodes and a set E of

edges drawn as bidirected. A set D ⊆ V is said to be connected in G if it induces a connected

subgraph and it is said to be disconnected otherwise. Any disconnected set D ⊆ V can be

uniquely partitioned into its connected components C1, . . . , Cr such that D = C1∪ · · · ∪Cr; see

Richardson (2003) for technical details.

A bidirected graph model is the family of probability distributions for XV satisfying a

given Markov property with respect to a bidirected graph G. The distribution of XV satisfies

the connected set Markov property (Richardson, 2003) if, for every disconnected set D, the

subvectors corresponding to its connected components XC1 , . . . , XCr are mutually independent;

in symbols XC1 ⊥⊥XC2 ⊥⊥ · · · ⊥⊥XCr . We denote by B(G) the bidirected graph model for XV

defined by G under the connected set Markov property. See Figure 1 for an example.

Parameterizations for the class B(G) have been studied by Drton and Richardson (2008)

and Lupparelli et al. (2009), where B(G) is defined by imposing multiplicative constraints on

µ and linear constraints on η, respectively; see also Forcina et al. (2010), Rudas et al. (2010),

Evans and Richardson (2012) and Marchetti and Lupparelli (2011).

3 Log-mean linear models

We introduce a new class of models for the multivariate Bernoulli distribution based on the

notion of log-mean linear parameter, denoted by γ = (γD)D⊆V . Each element γD of γ is a

log-linear expansion of a subvector, namely (µE)E⊆D, of the mean parameter:

γD =
∑
E⊆D

(−1)|D\E| log(µE), (2)

so that in vector form we have γ = MT log µ. Notice that by replacing µ with π in (2)

one obtains the canonical log-linear parameter λ. Indeed, we will show in the next section

that the log-mean linear parameterization defines a parameter space where the multiplicative

constraints on the Möbius parameter of Drton and Richardson (2008) correspond to linear sub-

spaces and, from this perspective, it resembles the connection between log-linear interactions
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and cell probabilities. It should be stressed, however, that the parameter space where γ lives

has, like µ(Π) and η(Π), a rather involved structure.

It is worth describing in detail the elements of γ corresponding to sets with low cardinal-

ity (its low-order interactions). Firstly, and trivially, γ∅ = log µ∅ is always zero. Secondly,

for every j ∈ V , the main log-mean linear effect γ{j} = log µ{j} is always negative, because

µ{j} is a probability. Then, for every j, k ∈ V , the two-way log-mean linear interaction

γ{j,k} = log{µ{j,k}/(µ{j}µ{k})} coincides with the logarithm of the second-order dependence

ratio. Finally, for every triple j, k, z ∈ V , the three-way interaction is

γ{j,k,z} = log
µ{j,k,z}µ{j}µ{k}µ{z}
µ{j,k}µ{j,z}µ{k,z}

and thus differs from the third-order dependence ratio; the same is true for each γD with

| D |≥ 3. Note that, already from two-way log-mean linear interactions, it is apparent that γ

is not a marginal log-linear parameter of Bergsma and Rudas (2002).

We now formally define the log-mean linear parameterization as a mapping from Π.

Definition 1 For a vector XV of binary variables, the log-mean linear parameterization γ is

defined by the mapping

γ = MT logZπ, π ∈ Π. (3)

The multivariate logistic parameter η can also be computed as η = C log(Lπ) for a suitable

choice of matrices C and L, so that the mapping π 7→ η resembles (3), but with the major

difference that C and L are rectangular matrices of size t× 2p, with t� 2p, so that the inverse

transformation is not available in closed form. On the other hand, in our case the inverse

transformation can be analytically computed by applying Möbius inversion twice to obtain

π = M expZTγ. Clearly, the bijection specified by π 7→ γ is smooth, so that it constitutes

a valid reparameterization. Finally, like µ and η, the parameterization γ satisfies the upward

compatibility property.

We next define log-mean linear models as follows.

Definition 2 For a vector XV of binary variables and a full rank (2p × k) matrix H, where

k < 2p and the rows of H are indexed by the subsets of V , the log-mean linear model Γ(H) is

the family of probability distributions for XV such that HTγ = 0.

It is not difficult to construct a matrix H such that Γ(H) is empty. However, the family Γ(H) is

non-empty if the linear constraints neither involve γ∅ nor the main effect γ{j}, for every j ∈ V .

More formally, a sufficient condition for Γ(H) to be non-empty is that the rows of H indexed

by D ⊆ V with | D |≤ 1 be all equal to zero; see § 4.

Proposition 1 Any non-empty log-mean linear model Γ(H) is a curved exponential family of

dimension (2p − k − 1).
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Proof. This follows from the mapping defining the parameterization γ being smooth, and the

matrix H imposing a k-dimensional linear constraint on the parameter γ. 2

Maximum likelihood estimation for log-mean linear models under a Multinomial or Poisson

sampling scheme is a constrained optimization problem, which can be solved by means of stan-

dard algorithms. Specifically, we adopt an iterative method typically used for fitting marginal

log-linear models which also gives the asymptotic standard errors; see Appendix B for details.

In our case, the algorithm is computationally more efficient than for marginal log-linear mod-

els, especially when these are obtained by constraining the multivariate logistic parameter,

because, as remarked above, rectangular matrices of size t × 2p with t � 2p are replaced by

square matrices of size 2p × 2p.

The elements of γ, as well as those of µ and of τ , are not symmetric under relabelling of

the two states taken by the random variables, because they measure event specific association.

Ekholm et al. (1995, § 4) show that in some contexts this feature may amount to an advantage;

see also the application in § 5. Furthermore, this is not an issue in the definition of bidirected

graph models, which is illustrated in the next section.

4 Log-mean linear models and marginal independence

We show that the log-mean linear parameterization γ can be used to encode marginal inde-

pendencies and, also, that bidirected graph models are log-mean linear models. Hence, the

log-mean linear parameterization can be used in alternative to the approaches developed by

Drton and Richardson (2008) and Lupparelli et al. (2009). Our approach is appealing because

it combines the advantages of the Möbius parameterization µ and of the multivariate logistic

parameterization η: the inverse map γ 7→ π can be analytically computed, as for µ, and the

model is defined by means of linear constraints, as for η.

The following theorem shows how suitable linear constraints on the log-mean linear param-

eter correspond to marginal independencies; see Appendix A for a proof.

Theorem 1 For a vector XV of binary variables with probability parameter π ∈ Π, let µ = µ(π)

and γ = γ(π). Then, for a pair of disjoint, nonempty, proper subsets A and B of V , the

following conditions are equivalent:

(i) XA⊥⊥XB;

(ii) µA′∪B′ = µA′ × µB′ for every A′ ⊆ A and B′ ⊆ B;

(iii) γA′∪B′ = 0 for every A′ ⊆ A and B′ ⊆ B such that A′ 6= ∅ and B′ 6= ∅.

We remark that the equivalence (i)⇔(ii) of Theorem 1 follows immediately from Theorem 1

of Drton and Richardson (2008). Furthermore, it is straightforward to see that (ii) could be

restated by replacing the µ-interactions with the corresponding τ -interactions.

6



The next result generalizes Theorem 1 to the case of three or more subvectors; see Ap-

pendix A for a proof.

Corollary 1 For a sequence A1, . . . , Ar of r ≥ 2 pairwise disjoint, nonempty, subsets of V , let

D = {D | D ⊆ A1 ∪ · · · ∪ Ar with D 6⊆ Ai for i = 1, . . . , r}. Then XA1 , . . . , XAr are mutually

independent if and only if (γD)D∈D = 0.

An interesting special case of Corollary 1 is given below; see Appendix A for a proof.

Corollary 2 For a subset A ⊆ V with | A |> 1, the variables in XA are mutually independent

if and only if γD = 0 for every D ⊆ A such that | D |> 1.

We stated in § 3 that Γ(H) is non-empty whenever the rows indexed by D ⊆ V with | D |≤ 1

are equal to zero. This fact derives from Corollary 2, because the distribution of mutually

independent variables satisfies the constraint HTγ = 0.

It follows from Theorem 1 that the probability distribution of XV satisfies the pairwise

Markov property with respect to a bidirected graph G = (V,E) if and only if γ{j,k} = 0 whenever

j and k are disjoint nodes in G. The following theorem shows that bidirected graph models

for binary data are log-mean linear models also under the connected set Markov property; see

Appendix A for a proof.

Theorem 2 The distribution of a vector of binary variables XV belongs to the bidirected graph

model B(G) if and only if its log-mean linear parameter γ is such that γD = 0 for every set D

disconnected in G.

For instance, if G is the graph in Figure 1 the bidirected graph model B(G) is defined by the

linear constraints γ{1,3} = γ{1,4} = γ{2,4} = γ{1,2,4} = γ{1,3,4} = 0.

5 Application

Table 1 shows data from Coppen (1966) for a set of four binary variables concerning symptoms

of 362 psychiatric patients. Wermuth (1976) analysed these data within the family of decompos-

able undirected graphical models, but a visual inspection of Table 6 of Wermuth (1976) suggests

that also investigating the marginal independence structure may be useful. For this reason, we

performed an exhaustive model search within the family of bidirected graph models and se-

lected the model with optimal value of the Bayesian information criterion among those whose

p-value, computed on the basis of the asymptotic chi-squared distribution of the deviance, is not

smaller than 0.05. The selected model has deviance χ2
(5) = 8.6 (p = 0.13, BIC = −20.85) and

corresponds to the graph of Figure 1, where X1 = Stability, X2 = Validity, X3 = Depression

and X4 = Solidity.

The application of bidirected graph models is typically motivated by the fact that the ob-

served Markov structure can be represented by a data generating processes with latent variables.
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Figure 2: A generating model for Coppen’s data.

In particular, the independence structure of the selected model is compatible, among others,

with the generating process represented in Figure 2, where U is a latent factor. Under the

generating model in Figure 2, one may be interested in investigating substantive research hy-

potheses on the role of the latent. For instance, U might be a binary variable representing a

necessary factor for Depression: {U = on} might be a necessary condition for patients to have

acute depression, that is, for {X3 = yes}. Formally, we might have pr(X3 = yes | U = off) = 0,

whereas 0 < pr(X3 = yes | U = on) < 1; see Ekholm et al. (2000, § 3.1).

If, in the above generating process, U represents a necessary factor, then the context-

specific independence X{1,2}⊥⊥X4 | {X3 = yes} holds but, typically, X{1,2} 6⊥⊥X4 | {X3 = no}.
Furthermore, if the levels of X3 = Depression are coded so that yes = 1, the above context-

specific independence is satisfied in the selected marginal independence model if and only if

some additional log-mean linear interactions are equal to zero, namely, γ{2,3,4} = γ{1,2,3,4} = 0;

see Appendix C for details. Thus, by properly coding the levels of X3, we can specify a log-mean

linear model that encodes the independence structure of the graph in Figure 2 together with

the context-specific independence implied by the assumption that U is a necessary factor for

{X3 = yes}. This model has deviance χ2
(7) = 17.08 (p = 0.02, BIC = −24.16) and, therefore,

the necessary factor hypothesis is only weakly supported by the data. We remark that this

log-mean linear model is invariant with respect to the coding of X{1,2,4}, because it is fully

specified by the constraints X{1,2}⊥⊥X4, X1⊥⊥X{3,4} and X{1,2}⊥⊥X4 | {X3 = 1}. On the other

hand, the log-mean linear model specified by the same zero constraints, but coding the levels of

X3 = Depression so that no = 1, allows one to verify the hypothesis that U is a necessary factor

for the absence of depression, that is, for {X3 = no}. The latter log-mean linear model provides

an adequate fit with deviance χ2
(7) = 9.3 (p = 0.23, BIC = −31.94) so that the hypothesis is

not contradicted by the data.

Table 1: Data from Coppen (1966) on four symptoms of 362 psychiatric patients.

Solidity hysteric rigid

Stability Depression Validity psychasthenic energetic psychasthenic energetic

extroverted no 12 47 8 14

yes 16 14 22 23

introverted no 27 46 22 25

yes 32 9 30 15

8



6 Discussion

Our log-linear expansion of µ provides the first instance of a parameterization for binary data,

not belonging to the class of marginal log-linear parameterizations, which allows one to specify

bidirected graph models through linear constraints.

We deem that the log-mean linear parameterization represents an appealing candidate for

the implementation of Bayesian procedures for this class of models because the likelihood func-

tion under Multinomial or Poission sampling is explicitly available and marginal independencies

correspond to zero-interactions. However, there are still difficulties related to the involved struc-

ture of the parameter space, which is a common trait of marginal parameterizations.

The specification of log-mean linear models encoding substantive research hypotheses, possi-

bly by exploiting the asymmetry of our parameterization with respect to variable coding which

we briefly touched upon in § 5, represents an open research area. Clearly, log-mean linear mod-

els can incorporate any linear constraint on log(τ), because the latter is a linear transformation

of γ. Some instances of substantive research assumptions that can be expressed in this way,

such as, for instance, horizontal and vertical homogeneity of dependence ratios, can be found

in Ekholm et al. (1995) and Ekholm et al. (2000).
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Appendices

A Proofs of technical results

The following Lemma is instrumental in proving Theorem 1.

Lemma 1 Let g(·) be a real-valued function defined on the sub-sets of a set D. If two non-

empty, disjoint, proper sub-sets A and B of D exist, such that A ∪ B = D and g(E) =

g(E ∩ A) + g(E ∩B) for every E ⊆ D, then
∑

E⊆D (−1)|D\E| g(E) = 0.

Proof. We start this proof by recalling a well-known fact. It can be proven by induction that

any non-empty set D has the same number of even and odd sub-sets. Consequently, it holds

that ∑
E⊆D

(−1)|E| =
∑
E⊆D

(−1)|D\E| = 0 for all set D 6= ∅. (4)

We will use this fact twice in the remainder of this proof.

9



If we set h =
∑

E⊆D (−1)|D\E| g(E), then we have to show that h = 0. Since A and B form

a partition of D, we can write

h =
∑
A′⊆A

∑
B′⊆B

(−1)|(A∪B)\(A′∪B′)| g(A′ ∪B′),

where A′ = E ∩ A and B′ = E ∩ B. Then, from the fact that A ∩ B = A′ ∩ B′ = A′ ∩
B = B′ ∩ A = ∅ it follows both that (−1)|(A∪B)\(A′∪B′)| = (−1)|A\A

′| × (−1)|B\B
′| and that

g(A′ ∪B′) = g(A′) + g(B′). Hence, we obtain

h =
∑
A′⊆A

∑
B′⊆B

(−1)|A\A
′|(−1)|B\B

′| {g(A′) + g(B′)}

=
∑
A′⊆A

(−1)|A\A
′|
∑
B′⊆B

(−1)|B\B
′| {g(A′) + g(B′)}

=
∑
A′⊆A

(−1)|A\A
′|

{
g(A′)

∑
B′⊆B

(−1)|B\B
′| +

∑
B′⊆B

(−1)|B\B
′|g(B′)

}
.

By assumption B 6= ∅, so that equation (4) implies
∑

B′⊆B(−1)|B\B
′| = 0 and thus

h =
∑
A′⊆A

(−1)|A\A
′|

{∑
B′⊆B

(−1)|B\B
′|g(B′)

}
.

Since we also have A 6= ∅, equation (4) also implies that
∑

A′⊆A (−1)|A\A
′| = 0 and therefore

that h = 0, as required. 2

Proof of Theorem 1

We first show (i)⇔(ii). The implication (i)⇒(ii) is straightforward. To prove that (i)⇐(ii) we

use the same argument as in the proof of Theorem 1 of Drton and Richardson (2008), which

for completeness we now give in detail.

We want to show that for every iA∪B ∈ IA∪B it holds that

P (XA∪B = iA∪B) = P (XA = iA)P (XB = iB) (5)

and we do this by induction on the number of 0s in iA∪B, which we denote by k, with 0 ≤
k ≤ |A ∪ B|. More precisely, point (ii) implies that the factorization (5) is satisfied for k = 0,

also when A and B are replaced with proper subsets, and we show that if such factorization

is satisfied for every k < j ≤ |A ∪ B| then it is also true for k = j. Since j > 0, there exists

v ∈ A ∪ B such that iv = 0 and, in the following, we assume without loss of generality that

v ∈ A, and set A′ = A\{v}. Hence,

P (XA∪B = iA∪B) = P (XA′∪B = iA′∪B)− P (XA′∪B = iA′∪B, Xv = 1)

= P (XA′ = iA′)P (XB = iB)− P (XA′ = iA′ , Xv = 1)P (XB = iB)

= {P (XA′ = iA′)− P (XA′ = iA′ , Xv = 1)}P (XB = iB)

= P (XA = iA)P (XB = iB)
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as required; note that the factorizations in the second equality follow from (ii) and the inductive

assumption, because the number of 0s in iA′∪B is j−1, and furthermore that for the case A′ = ∅
we use the convention P (XA′ = iA′) = 1 and P (XA′ = iA′ , Xv = 1) = P (Xv = 1).

We now show (ii)⇔(iii). The implication (ii)⇒(iii) follows by noticing that

γD =
∑
E⊆D

(−1)|D\E| g(E),

where g(E) = log µE. Hence, if we set D = A′ ∪ B′, with A′ and B′ as in (iii), the statement

in (ii) implies that for every E ⊆ D

g(E) = log µE = log µA′∩E + log µB′∩E = g(A′ ∩ E) + g(B′ ∩ E)

so that the equality γD = 0 follows immediately from Lemma 1. We next show that (ii)⇐(iii)

by induction on the cardinality of A ∪B, which we again denote by k.

We first notice that the identity µA∪B = µA × µB is trivially true whenever either A = ∅
or B = ∅ because µ∅ = 1. Then, if |A ∪ B| = 2, so that |A| = |B| = 1, γA∪B = 0 implies

µA∪B = µA×µB as an immediate consequence of the identity γA∪B = log{µA∪B/µAµB}. Finally,

we show that if the result is true for |A ∪ B| < k then it also holds for |A ∪ B| = k. To this

aim, it is useful to introduce the vector µ∗ indexed by E ⊆ A ∪B defined as follows:

µ∗ =

{
µE for E ⊂ A ∪B;

µA × µB for E = A ∪B.

Condition (iii) is recursive and, therefore, if it is satisfied for A and B then it is also satisfied

for every A′ ⊆ A and B′ ⊆ B such that |A′ ∪ B′| < k, that is, such that A′ ∪ B′ ⊂ A ∪ B. As

a consequence, the inductive assumption implies that µA′∪B′ = µA′ × µB′ for every A′ ⊆ A and

B′ ⊆ B such that A′ ∪B′ 6= A∪B, and this in turn has two implications: firstly, we only have

to prove that (iii) implies µA∪B = µA×µB; secondly, we have
∑

E⊆A∪B (−1)|(A∪B)\E| log µ∗E = 0

by Lemma 1. Hence, we can write

γA∪B =
∑

E⊆A∪B

(−1)|(A∪B)\E| log µE

= log µA∪B +
∑

E⊂A∪B

(−1)|(A∪B)\E| log µ∗E

= log µA∪B − log µA − log µB +
∑

E⊆A∪B

(−1)|(A∪B)\E| log µ∗E

= log µA∪B − log µA − log µB (6)

and since (iii) implies that γA∪B = 0 then (6) leads to µA∪B = µA × µB, and the proof is

complete.

Proof of Corollary 1

For i = 1, . . . , r, we introduce the sets A−i =
⋃

j 6=iAj andDi = {D|D ⊆ Ai∪A−i, with both D∩
Ai 6= ∅ and D ∩ A−i 6= ∅} and note that, by Theorem 1, XAi

⊥⊥XA−i
if and only if γD = 0
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for every D ∈ Di. The mutual independence XA1 ⊥⊥ · · · ⊥⊥XAr is equivalent to XAi
⊥⊥XA−i

for every i = 1, . . . , r and, by Theorem 1, the latter holds true if and only if γD = 0 for every

D ∈
⋃r

i=1Di. Hence, to prove the desired result we have to show that D =
⋃r

i=1Di.

It is straightforward to see that Di ⊆ D for every i = 1, . . . , r, so that D ⊇
⋃r

i=1Di. The

reverse inclusion D ⊆
⋃r

i=1Di can be shown by noticing that for any D ∈ D one can always

find at least one set Ai such that D ∩ Ai 6= ∅; since D 6⊆ Ai by construction, it holds that

D ∩ A−i 6= ∅ and therefore that D ∈ Di. Hence, we have D ∈
⋃r

i=1Di for every D ∈ D, and

this completes the proof.

Proof of Corollary 2

It is enough to apply Corollary 1 by taking A = A1∪· · ·∪Ar with |Ai| = 1 for every i = 1, . . . , r.

Proof of Theorem 2

Every set D ⊆ V that is disconnected in G can be partitioned uniquely into inclusion maximal

connected sets D̃1, . . . , D̃r with r ≥ 2. It is shown in Lemma 1 of Drton and Richardson (2008)

that π ∈ B(G) if and only if XD̃1
⊥⊥· · ·⊥⊥XD̃r

for every disconnected set D ⊆ V . Hence, it is

sufficient to prove that the mutual independence XD̃1
⊥⊥· · ·⊥⊥XD̃r

holds for every disconnected

set D in G if and only if γD = 0 for every disconnected set D in G.

We assume that D = D̃1∪ · · ·∪ D̃r is an arbitrary subset of V that is disconnected in G and

note that, in this case, also every set E ⊆ D̃1 ∪ · · · ∪ D̃r such that E 6⊆ D̃i for every i = 1, . . . , r

is disconnected in G. Then, if XD̃1
⊥⊥ · · ·⊥⊥XD̃r

it follows from Corollary 1 that also γD = 0.

On the other hand, if every element of γ corresponding to a disconnected set is equal to zero,

then γE = 0 for every E ⊆ D̃1 ∪ · · · ∪ D̃r such that E 6⊆ D̃i for every i = 1, . . . , r and, by

Corollary 1, this implies that XD̃1
⊥⊥· · ·⊥⊥XD̃r

.

B Algorithm for maximum likelihood estimation

Let n = (nD)D⊆V be a vector of cell counts observed under Multinomial sampling from a binary

random vector XV with probability parameter π > 0. If we denote by ψ = Nπ the expected

value of n, where N = 1Tn is the total observed count (sample size) and 1 is the unit vector of

size R2|V | . We can deal with maximum likelihood estimation of π by considering n as coming

from Poisson sampling with parameter ψ > 0 and, in this case, we will find 1T ψ̂ = N and

N−1ψ̂ = π̂. Thus, using the reparameterization ω = logψ to remove the positivity constraint

on ψ, we can write the log-likelihood function (up to a constant term) as

`(ω;n) = nTω − 1T exp(ω), ω ∈ R2|V | .

The log-mean linear parameter γ is obtained from ω through the reparameterization γ =

MT log{Z exp(ω)}, ω ∈ R2|V | , so that the linear constraint on γ defined by HTγ = 0 can be

12



transformed into the following non-linear constraint on ω:

g(ω) = HTMT log{Z exp(ω)} = 0.

Maximum likelihood estimation in the log-mean linear model defined by H can thus be formu-

lated as the problem of maximizing the objective function `(ω;n), with respect to ω, subject

to the constraint g(ω) = 0.

A well-known method for the above constrained optimization problem looks for a saddle

point of the Lagrangian function `(ω;n)+ τg(ω), where τ is a k-dimensional vector of unknown

Lagrange multipliers, by solving for ω and τ the gradient equation

∂`(ω;n)

∂ω
+
∂g(ω)

∂ω
τ = 0

together with the constraint equation g(ω) = 0. If ω̂ is a local maximum of `(ω;n) subject

to g(ω) = 0, and ∂g(ω)/∂ω is a full rank matrix, then a classical result (Bertsekas, 1982)

guarantees that there exists a unique τ̂ such that the gradient equation is satisfied by (ω̂, τ̂). In

the following we assume that the maximum likelihood estimate of interest is a local (constrained)

maximum.

The gradient equation requires that the gradient of `, that is, the score vector

s(ω;n) =
∂`(ω;n)

∂ω
= n− exp(ω),

be orthogonal to the constraining manifold defined by g(ω) = 0, that is, belong to the vector

space spanned by the columns of

G(ω) =
∂g(ω)

∂ω
=

∂{Z exp(ω)}
∂ω

∂ log{Z exp(ω)}
∂{Z exp(ω)}

MH

= diag exp(ω)ZT[diag{Z exp(ω)}]−1MH,

where diag v is the diagonal matrix with diagonal entries taken from the vector v. We remark

that G(ω) has full rank, for all ω ∈ R2|V | , because H has full rank by construction.

Since no closed-form solution of the system formed by the gradient and constraint equations

is available (in our case) we resort to an iterative procedure inspired by Aitchison and Silvey

(1958) and Lang (1996). Specifically, we use the Fisher-score-like updating equation[
ωt+1

τ t+1

]
=

[
ωt

0

]
+

[
F(ωt) −G(ωt)

−G(ωt)T 0

]−1 [
s(ωt;n)

g(ωt)

]

to take step t + 1 of the procedure, where ωt and τ t (unused) are the estimates of ω and τ

(respectively) at step t, and F(ω) is the Fisher information matrix

F(ω) = −E
{
∂s(ω;n)

∂ω

}
= −E{−diag exp(ω)} = diag exp(ω)

13



at ω ∈ R2|V | . The above updating equation is obtained using a first order expansion of s(ω;n)

and g(ω) about ωt; see Evans and Forcina (2011) for details.

The matrix inversion in the updating equation can be solved block-wise as follows (Aitchison

and Silvey, 1958): [
F(ωt) −G(ωt)

−G(ωt)T 0

]−1
=

[
R Q
QT −P−1

]
,

where

P = G(ωt)TF(ωt)−1G(ωt),

Q = −F(ωt)−1G(ωt)P−1,

R = F(ωt)−1 + F(ωt)−1G(ωt)QT.

Then, introducing the relative score vector

e(ωt;n) = F(ωt)−1s(ωt;n) = {diag exp(ωt)}−1{n− exp(ωt)},

the updating equation can be split and simplified as

τ t+1 = −P−1{G(ωt)Te(ωt;n) + g(ωt)},

ωt+1 = ωt + e(ωt;n) + F(ωt)−1G(ωt)τ t+1,

so that the instrumental role of Lagrange multipliers becomes apparent, and it is clear that the

algorithm actually runs in the space of ω. Notice that the updates take place in the rectangular

space R2|V | , so that there is no risk of out of range estimation.

Since the algorithm does not always converge when the starting estimate ω0 is not close

enough to ω̂, it is necessary to introduce a step size into the updating equation. The standard

approach to choosing a step size in unconstrained optimization problems is to use a value for

which the objective function to be maximized increases. However, since in our case we are

looking for a saddle point of the Lagrangian function, we need to adjust the standard strategy.

Specifically, Bergsma (1997) suggests to introduce a step size in the updating equation for ω,

which becomes

ωt+1 = ωt + stept{e(ωt;n) + F (ωt)−1G(ωt)τ t+1},

with 0 < stept ≤ 1, while the updating equation for τ is unchanged, in light of the fact that

τ t+1 is computed from scratch at each iteration. Our choice of stept is based on a simple step

halving criterion, which has proven satisfactory for our needs, but more sophisticated criteria

are available. At convergence we obtain γ̂ = MT log{Z exp(ω̂)} with asymptotic covariance

matrix

asy cov(γ̂) = JTRJ,

where J = diag exp(ω̂)ZT[diag{Z exp(ω̂)}]−1M is the Jacobian of the map ω 7→ γ.

Finally, concerning the choice of the initial estimate ω0, we start from the maximum likeli-

hood estimate under the saturated model: this choice is believed to result in quick convergence,

because it makes the algorithm start close to the data, and our experience confirms this belief.
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C Details on the application

In this section we provide a formal description of some technical details of our application of

log-mean linear models to the data by Coppen (1966).

Under the connected set Markov property, the bidirected graph in Figure 1 encodes the

marginal independencies X{1,2}⊥⊥X4 and X1⊥⊥X{3,4}, which are satisfied if and only if

γ{1,3} = γ{1,4} = γ{2,4} = γ{1,2,4} = γ{1,3,4} = 0; (7)

note that variable coding in uninfluential here. The directed acyclic graph in Figure 2 is a possi-

ble data generating process for the above bidirected graph model, because the directed Markov

property (Lauritzen, 1996, § 3.2.2) implies, among others, the same marginal independencies

and, moreover, it is associated with the recursive factorization

pr(XV = xV , U = u) = pr(x2 | x1, u)pr(x3 | x4, u)pr(x1)pr(x4)pr(u), (8)

where u ∈ {on, off} and x3 ∈ {yes, no}; see Lauritzen (1996) and Drton and Richardson (2008)

for details.

We claimed that, if the latent U is a necessary factor for Depression, that is, pr(X3 = yes |
U = off) = 0, then X{1,2}⊥⊥X4 | {X3 = yes}. This follows by noticing that

pr(X{1,2,4} = x{1,2,4}, U = u | X3 = yes) ∝ pr(X{1,2,4} = x{1,2,4}, X3 = yes, U = u)

so that marginalizing over U one obtains

pr(X{1,2,4} = x{1,2,4} | X3 = yes) ∝ pr(X{1,2,4} = x{1,2,4}, X3 = yes, U = on), (9)

because pr(X{1,2,4} = x{1,2,4}, X3 = yes, U = off) = 0 by the definition of necessary factor.

Hence, one can factorize the the right hand side of (9) as in (8) and the required context-

specific independence follows immediately from the application of the factorization criterion;

see Lauritzen (1996, eqn. (3.6)).

We now show that, if the levels of the variable X3=Depression are coded so that yes = 1,

then the bidirected graph model in Figure 1 satisfies the additional context-specific indepen-

dence X{1,2}⊥⊥X4 | {X3 = 1} if and only if, in addition to (7), it holds that γ{2,3,4} = γ{1,2,3,4} =

0. To this aim, we first notice that for the conditional distribution of X{1,2,4} | {X3 = 1} the

mean parameter, denoted by µ(3), has entries

µ
(3)
D = pr(XD = 1D | X3 = 1) =

pr(XD = 1D, X3 = 1)

pr(X3 = 1)
=
µD∪{3}

µ{3}
(10)

for every D ⊆ {1, 2, 4}. From (10) it is possible to compute the corresponding log-mean linear

parameter, denoted by γ(3), as a function of µ. In particular, if one computes γ
(3)
{1,4}, γ

(3)
{2,4},

γ
(3)
{1,2,4} and then γ{1,3,4}, γ{2,3,4}, γ{1,2,3,4} by exploiting the factorizations of µ implied by (7) and

Theorem 1, then it is straightforward to see that

γ
(3)
{1,4} = γ{1,3,4} = 0, γ

(3)
{2,4} = γ{2,3,4} and γ

(3)
{1,2,4} = γ{1,2,3,4}. (11)
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The context-specific independence X{1,2}⊥⊥X4 | {X3 = 1} is a marginal independence in the

distribution of X{1,2,4} | {X3 = 1} and thus, by Theorem 1, it holds if and only if γ
(3)
{1,4} =

γ
(3)
{2,4} = γ

(3)
{1,2,4} = 0. Therefore, if (7) holds true, it follows from (11) that γ{2,3,4} = γ{1,2,3,4} = 0

is a necessary and sufficient condition for X{1,2}⊥⊥X4 | {X3 = 1} to hold.
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