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Abstract

Artificial lighting is everywhere, from the light bulbs on our ceilings to car

headlights. This makes Visible Light Communication (VLC) an attracting

technology since it uses modulated optical radiation in the visible light spec-

trum, exploiting the light emission of LEDs. The main advantage of VLC

is that it can provide both standard illumination and data connection. Also

VLC systems are suitable for many different applications due to their rela-

tively simple design for basic functioning, efficiency and large geographical

distribution. Recently both Vehicular VLC (V 2LC) and LED-based Posi-

tioning Systems (LPS) are gaining a lot of attention from industry and the

scientific community due to their great potential in terms of driver safety

and positioning accuracy, respectively.

The aim of this PhD dissertation is to investigate two different VLC

systems: a V 2LC system and an LPS technique. Both are designed for

using low-cost components and for being analyzed in realistic environments

by exploiting two dedicated testbeds. An LED-based traffic light for sending

traffic and safety information, and a 2D localization algorithm implemented

on an open source platform (OpenVLC), are studied.

For the V 2LC topic, after a preliminary study of a simple propaga-

tion VLC channel, an IEEE 802.15.7-complaint low-cost software-defined

transceiver along with an experimental VLC application are presented. The

transceiver implements the specific standard PHY-level for outdoor VLC and

it is able to stream data at 100 kbit/s.

For the positioning system, a new multipath detection technique for filter-

ing out reflections and better positioning with light is designed and tested in

realistic scenarios. More in details, the multipath detection does not require

the knowledge of the channel impulse response, and that it is suited to be

implemented in low-cost positioning receivers that use a single photodiode.

To develop this technique, (i) the statistical properties of Non-Line-of-Sight

(NLOS) components is analyzed, (ii) an automated testbed to study the re-

flections of different types of surfaces and materials is developed, and (iii)

an algorithm to remove the NLOS components affecting the positioning is

designed. Experimental evaluation shows that in complex environments this

methodology can reduce the localization error using a single photodiode up

to 93%.
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Chapter 1

Introduction

1.1 Motivations

Artificial lighting is everywhere, from the light bulbs on our ceilings to car

headlights. Visible Light Communication (VLC) is a promising and attrac-

tive technology as it uses modulated optical radiation in the visible light

spectrum. VLC exploits the light emission of fast-switching sources like

LEDs (Light Emission Diodes), providing both standard illumination and

data connection, at the same time. As rule of thumb, each LED that is

being used for lighting can be used also for transmitting data.

Generally speaking VLC technology is still in its infancy as is being re-

searched since 2003 [31]. Recently both the research community and the

industrial companies have started to invest their time and money after LEDs

became much more affordable and widely used (last 5 years) in almost all the

lighting applications. VLC has a great potential for many applications due

to their relatively simple design for basic functioning, efficiency and large

geographical distribution. Since the human eye perceives only the average

intensity when light is switched on and off fast enough, then it is possible to

transmit information data using LEDs without a notable effect on the light

illumination level by humans. Recent advances in materials and solid-state

technologies have enabled the development of highly efficient LEDs that are

now being widely used both in indoor and outdoor lighting and signaling.

Lately both Vehicular VLC (V 2LC) and LED-based Positioning Systems

(LPS) are gaining a lot of attention from industry and the scientific com-

munity due to their great potential in terms of driver safety and positioning

1



2 Introduction

accuracy, respectively.

The automotive industry is under a major change and new vehicles are

being enriched by the recent advances in communication. Transportation is

becoming more intelligent with smart roads that connect smart cars (see Fig.

1.1). Moreover, in the context of an increasing interest towards reducing the

number of traffic accidents and of associated victims, communication-based

vehicle safety applications have merged as one of the best solutions to en-

hance road safety. Actual vehicular system, like Intelligent Transportation

System (ITS) and Intelligent Traffic System (ITF), are based on radio fre-

quency (RF) and typically suffer from the lack of spectrum. Furthermore,

many automotive manufacturers have started to employ LEDs due to their

high resistance to vibration, improved safety performance, and long life span.

LEDs can be now found in brake lights, turn signals, and headlamps in most

of new vehicles. The outdoor and on-vehicle omnipresence of LEDs makes

the use of VLC for vehicular communications feasible.

Figure 1.1: Vehicular intelligent system.

The widespread usage of LEDs for illumination constitutes an opportu-

nity to design ubiquitous and economical positioning systems. LPS might

be a solution for positioning with better accuracy with respect to traditional

RF-based systems given the great capillarity of VLC transmitters (see Fig.

1.2). LPS can easily be integrated into the existing lighting infrastructure

(i.e., facilitates the reuse of existing infrastructure) for the purpose of local-

ization in addition to its essential function of illumination, typically without

requiring rewiring. It is also important to note that positioning systems can

be deployed not only for indoor applications, but also for outdoor applica-

tions such as street lights, car lights, and airport taxi-way lighting [47].

However, one of the reasons for finding new positioning techniques using vis-
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ible light is not just about the current limitations of RF-based techniques,

but also the prospects of exploiting VLC in the Internet of Things (IoT)

paradigm. For these reasons VLC requires continuous effort to overcome

Figure 1.2: LED-based Positioning System scenario.

challenges, especially in automotive communications and positioning appli-

cations. Finally, it is important to note that the state-of-the-art lacks of a

proper study of such VLC systems in realistic conditions, since to date the

majority of research has aimed at achieving and demonstrating high data

rates capable to outclass existent RF communication systems [20].

1.2 Objectives

This PhD dissertation has two main objectives as it involves two different

VLC systems: a V 2LC system and an LPS technique. For both automotive

and positioning applications proper experimental campaigns will help inves-

tigating issues in realistic environments. The first goal is to exploit a COTS

(Commercial Off The Shelf) LED-based traffic light as a VLC transmitter

for analysing the vehicular channel in a realistic scenario and, at the same

time, sending traffic and safety information to vehicles. The second goal is

the analysis of a 2D (two-dimensional) relative positioning algorithm in the

presence of multipath (i.e. object reflections). As the first goal, also this one

is based on a measurement campaign in realistic scenarios.
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1.3 Contributions

The main contributions of this thesis are the following:

� Chapter. 5: a preliminary study of a simple propagation VLC channel

and the design and the implementation of a VLC transceiver for ve-

hicular applications. In particular, a propagation channel model of a

simple visible light system through an experimental measurement cam-

paign is presented; and an IEEE 802.15.7 PHY-I compliant physical

layer is developed with a Software Defined Radio (SDR) toolkit (i.e.

GNURadio).

� Chapter. 6: investigation of the multipath effect on a 2D relative posi-

tioning VLC system. Different type of materials are employed in real-

istic mobile scenarios for understanding the impact of reflections and

studying and proposing countermeasures against the positioning error

due to multipath. This part proposes a new multipath detection tech-

nique for positioning with light that does not require the knowledge of

the channel impulse response, and that it is suited to be implemented

in low-cost positioning receivers that use a single photodiode.

The second subject refers to an 11-month internship at the IMDEA Networks

Institute (Leganés, Madrid, Spain). More in details, the following arguments

are investigated:

1. VLC vehicular and positioning system state of the art revision:

� Non-Line-Of-Sight (NLOS) propagation analysis in vehicular VLC

systems;

� impact of reflection in a VLC positioning system;

� usage and analysis of light polarizer in VLC systems.

2. OpenVLC platform1 receiver ADC (Analog-to-Digital Converter) stage

analysis:

� acquisition and sampling process analysis;

� electrical circuit design and revision;

� data storage design and implementation.

1For details, please refer to Sec. 4.3.1.
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3. Experimental study:

� testbed setup and validation test performing;

� test campaign performing.

4. Acquired data set processing:

� characterization and detection of material reflections (i.e. NLOS

path detection);

� multipath effect analysis on a two-dimension (2D) relative posi-

tioning algorithm with a single low-cost LED;

� design and development of an algorithm for filtering out reflec-

tions.
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Chapter 2

Visible Light Communications,

the Internet of Light

This chapter gives an overview of the technology called Visible

Light Communication (also know as VLC or “Li-Fi”, Light Fi-

delity), a relatively new wireless optical communication technique

that exploits the visible light emitted by LEDs. Along the chap-

ter a brief introduction of the IEEE standard for VLC is given

as well as a discussion of the advantages and challenges of this

breakthrough technology compared to classic radio-frequency solu-

tions.

2.1 Background

The solid-state lighting is a game changer for indoor illumination. Current

incandescent and fluorescent lamps are being replaced by LEDs at a rapid

pace (see Fig. 2.1). Apart from extremely high energy efficiency, LEDs have

other advantages such as longer lifespan, lower heat generation and improved

color rendering without using harmful chemicals. One additional benefit of

LEDs is that they are capable of switching to different light intensity at

a very fast rate, as fast as the human eye can notice any variation. This

functionality has given rise to a novel communication technology (known as

Visible Light Communication, VLC or “Li-Fi”1) where LED luminaries can

1Professor Harald Haas, Chair Professor of Mobile Communications at the University

of Edinburgh and co-founder of “pureLiFi”, coined the term “Li-Fi” (Light Fidelity) at his

7



8 Visible Light Communications, the Internet of Light

(a) (b)

Figure 2.1: Development of illumination technology. Artificial illumination

evolution (left), efficacy and lifetime evolution [73] (right).

be used for high speed data transfer.

VLC is an emerging field in Optical Wireless Communication (OWC)

which utilizes the superior modulation bandwidth of LEDs to transmit data.

In modern day communication systems, the most popular frequency band is

Radio Frequency (RF) mainly due to little interference and good coverage.

However, the rapidly dwindling RF spectrum along with increasing wireless

network traffic has leaded to the need of greater bandwidth and spectral

relief. By combining illumination and communication, VLC provides ubiq-

uitous communication while addressing the short-falls and limitations of RF

communication [46]. VLC technology is anyway fully compatible with RF

communications and the two can complement each other, forming hybrid or

heterogeneous networks and further enhancing the communication perfor-

mances. In the last few years, VLC research has shown that it is capable of

achieving very high data rates (nearly 100 Mbps in IEEE 802.15.7 standard

and up to multiple Gbps in research), indoor localization, device-to-device

(D2D) communication with LCD screens or camera sensors, traffic control

between traffic lights and vehicles or traffic signals among vehicles, special

applications in electromagnetic-sensitive environments such as hospitals, air-

planes, and the underground mining industry [46]. For these capabilities and

its versatility, VLC has become another potential candidate technology for

fifth generation (5G) networks. For instance, in outdoor environment VLC

can provide internet hot spots using street lighting and mobile access as part

2011 TED Global Talk where he introduced the idea of “wireless data from every light”.
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of the 5G technology in highly congested areas, and within indoor environ-

ment it can be used for localization and small cells coverage networks.

2.1.1 Comparison between VLC and RF systems

Even with efficient frequency and spatial reuse, the current RF spectrum

is expected to be scarce to meet the near future increasing user traffic de-

mand. Compared to this, the visible light spectrum which includes hundreds

of terahertz of license free bandwidth (see Fig. 2.2) is completely untapped

for communication. VLC can complement the RF-based mobile commu-

Figure 2.2: Visible light spectrum [73].

nication systems in designing high-capacity mobile data networks. Due to

its high frequency, visible light cannot penetrate through most objects and

walls creating small cells (or areas) of LED transmitters with no intercell

interference issues beyond the walls. Moreover, the inability of visible light

to penetrate through the walls provides an inherent wireless communication

security. Finally, VLC facilitates the reuse of existing lighting infrastructure

for the purpose of communication. This means that such systems can be

deployed with relatively lesser effort and at a lower cost [73].

Hence, the most important advantages of VLC technology can be listed as

below:

� spectrum crunch alleviation;

� interference absence;

� security enhance;

� spatial reuse possible;

� safety of VLC transmission for human beings;
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� energy efficiency of LEDs;

� easy implementation into existing infrastructure;

� low cost devices.

Fifth generation wireless systems represent the novelty in next mobile telecom-

munications, beyond the current diffuse 4G standard. Compared to the exist-

ing 4G systems, 5G systems should achieve much higher capacity, data rate,

spectral efficiency, energy efficiency, and user real-time experience. Concur-

rently, lower battery consumption and lower implementation costs are also

deemed to be a must. Small cell has emerged as one of the most promis-

ing 5G technologies due to its ability to significantly increase the network

capacity/coverage, extend the battery life of mobile devices, and achieve

high network energy efficiency. Millimeter-wave (mmWave) spectrum, with

a small coverage area and abundant available bandwidth, has been one the

firsts technologies to become a promising candidate for 5G networks to en-

able gigabit-per-second data transmission with the frequency range from 3

to 300 GHz [34]. Although the mmWave spectrum is aimed at high-speed

short-range communications in both indoor and outdoor areas, wireless net-

works will eventually face a capacity explosion that could even overstretch

the mmWave spectrum. This motivates the research community to continue

exploring new technologies and new architectures for 5G systems as VLC.

Moreover, mmWave has no evident propagation advantages over VLC, espe-

cially in the indoor scenario, since the very strong penetration loss of both

technologies. Generally speaking, VLC can take advantage of free licenses,

low cost implementation and low power consumption [34]. A general “RF vs

VLC” comparison summary is reported in Table 2.1. These reasons, primar-

ily the spectral and bandwidth drawbacks of RF communication, motivates

the use of visible band for communication purposes.

2.1.2 Typical VLC links and types of reflection

The simplest typical VLC system features a point-to-point scheme: a trans-

mitter (TX, i.e. an LED) emits visible light towards a receiver (RX, i.e. a

photodiode) which detects the signal. This wireless connection link can be

classified into two categories:

� Line-Of-Sight (LOS) link: where a transmitter is within the receiver

Field Of View (FOV);
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Table 2.1: Comparison of VLC to RF [46] and [80].

Characteristic RF VLC

Available spectrum ∼ 300 GHz ∼ 400 THz

License Licensed Unlicensed

Safety Intensity regulated Unregulated

Noise interference Little High

Security Limited High

Coverage Wide Limited

Multipath High Low

System complexity High Low

Electromagnetic interference Yes No

Ambient light Not affected Sensitive

Weather conditions Robust Sensitive

Infrastructure Access point Illumination

Power consumption Medium Low
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� Non-Line-Of-Sight (NLOS) link: relying generally upon the reflection

of the light from the ceiling or some other diffusely reflecting surfaces.

The path loss of the NLOS link is generally much larger, while link robust-

ness and ease of use increase, allowing the link to operate even when barriers,

such as people or other posts, stand between the transmitter and receiver.

When light hits a surface, there are three possible outcomes. Light may be

absorbed by the material, it may be transmitted through the surface or it

may be reflected. Materials often show some mix of these behaviors, with

the proportion of light that goes to each component depending on the prop-

erties of the material, the wavelength of the light, and the angle of incidence.

The fraction of the light that is reflected increases with increasing angle of

incidence θi [35]. Generally speaking, reflected light can be divided into

two categories: specular reflection and diffuse reflection. Specular reflec-

TX

Specular 
reflection

Diffuse 
reflection

Phong
reflection

RX

Figure 2.3: Types of reflections.

tor reflects all light which arrives from a given direction at the same angle,

whereas diffuse reflector reflects that light in a broad range of directions. An

example of the distinction between specular and diffuse reflection would be

glossy and matte finishing. The latter has almost exclusively diffuse reflec-

tion, while the glossy cover has both specular and diffuse reflection. Thus

many mixed-type reflections (see Fig. 2.3) can be found, as materials are

not pure. A piece of metal, for example, can exhibit a specular or diffuse

reflection if its surface has been polished or not.

More formally, let us consider the basic largely diffuse Phong reflection

model, an empirical model of the local illumination of points on a sur-

face [74]. Let us consider a single light ray impinging on the surface of
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a material whose reflection and shininess coefficients are denoted by ρ and

n. Let β be the incidence angle of the emitter to the reflecting point P , and

let θ be the angle between the direction of maximum reflection of the light

and the direction pointing from the reflecting point P to the receiver. Let n

be the shininess constant of the reflection material. This parameter increases

with the material’s shininess, namely, n is larger for the materials of more

mirror-like. The amount of light irradiating from the impinging point P and

going towards the direction of the receiver has to be identified. By denoting

ka as the line-of-sight component at P , and ks and kd as the fractions of the

impinging light transformed into specular and diffused reflections, respec-

tively, then the reflected light towards the receiver hr under the basic Phong

model is given by [74]:

hr = ka + ρ · (kd · cosβ + ks · cosn θ). (2.1)

According to the Phong model eq. 2.1, for each light ray i ∈ I, its corre-

sponding reflection towards the receiver hr,i is given by:

hr,i = ka + ρi · (kd,i · cosβi + ks,i · cosni θi), i ∈ I (2.2)

where ρi ∈ {ρH , ρL, ρB} and its value is chosen based on the material where

the ray i is impinging on. ρi = ρL). Similar rules apply to ni, kd,i and ks,i.

The angles βi and θi are calculated based on the positions of the emitter

and receiver. Given the contributions of each light ray i in eq. 2.2, and the

free path loss model for propagation to account for signal attenuation, the

total receiver signal is calculated by summing up the contributions of all rays

i ∈ I.

2.1.3 Intensity Modulation with Direct Detection

LEDs emit incoherent light2 allowing the usage of an Intensity Modulation

(IM) scheme where the transmitted signal is modulated into the LED’s in-

stantaneous optical power [73]. In particular, non-negative input signals at

the transmitter modulate the intensity of the emitted wave, since phase con-

trol of the optical carrier is not possible with incoherent light sources such

as LEDs. In the receiver, a photodetector (PD) is used to convert the inci-

dent optical intensity into an output current signal, essentially linearly with

2Photons have different wavelength and phase, unlike coherent light sources such as

lasers.
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the received number of photons. At the transmitter the radiant intensity

is controlled by the forward current through the LED, and must be in the

operating region within the linear portion of V-I curve. Fig. 2.4 shows the

ideal current-output modulation behavior under constant bias. Ideally, an

Figure 2.4: Intensity Modulation behavior [73].

input current ILED with constant DC bias current IDC and current swing

ISP can be expressed as

ILED = IDC + ISP . (2.3)

This would produce an output optical power of

PO = PDC + PSP . (2.4)

Since IM changes the instantaneous power of the LED, Direct Detection

(DD) is the only feasible down conversion method. DD uses a photodiode to

convert the incident optical signal power into a proportional current. Fig. 2.5

shows a general VLC link structure for an IM/DD based VLC system. The

optically modulated signal waveform, It,sig and average DC level, IDC are
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superimposed using a bias tee as shown in equation 2.3. The driving signal,

ILED is used to drive the LEDs which converts the electrical signal into

intensity modulated optical signal. The light with optical power, PO travels

across the optical channel and is passed through an optical filter and is

focused onto the PD by a focusing lens (if necessary). At this stage, the

PD converts the optical signal back to the electrical signal. Noise adds up

to the system at this level which are comprised of thermal and shot noise3.

The received photo-current, Irec is then amplified which is followed by signal

processing and demodulation to retrieve the transmitted data [73].

Figure 2.5: Intensity Modulation with Direct Detection scheme [73].

2.2 IEEE 802.15.7 standard brief introduction

The IEEE 802.15.7 Visible-light communication Personal Area Network (VPAN)

standard describes the use of VLC for Wireless Personal Area Networks

(WPAN) and covers topics such as network topologies, addressing, colli-

sion avoidance, acknowledgement, performance quality indication, dimming

support, visibility support, colored status indication and color-stabilization.

Moreover it provides (i) access to several hundred THz of unlicensed spec-

3Thermal noise is the electronic noise generated due to thermal agitation of charge

carriers inside a conductor, whereas photon-generated shot noise is induced by ambient

light.
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trum; (ii) immunity to electromagnetic interference and noninterference with

RF systems; (iii) additional security by allowing the user to see the commu-

nication channel; and (iv) communication augmenting and complementing

existing services (such as illumination, display, indication, decoration, etc.)

from visible-light infrastructures.

2.2.1 Scope

The standard defines a PHY and MAC layers for short-range optical wire-

less communications using visible light in optically transparent media. The

visible light spectrum extends from 380 nm to 780 nm in wavelength. The

standard is capable of delivering data rates sufficient to support audio and

video multimedia services and also considers mobility of the visible link, com-

patibility with visible-light infrastructures, impairments due to noise and

interference from sources like ambient light and a MAC layer that accom-

modates visible links. The standard also adheres to applicable eye safety

regulations [1].

2.2.2 PHY and MAC layers

The PHY layer supports multiple PHY types, as follows [1]:

� PHY I: this PHY type is intended for outdoor usage with low data

rate applications. This mode uses On-Off Keying (OOK) and Variable

Pulse Position Modulation (VPPM) with data rates in the tens to

hundreds of kb/s, depending on the modulation and the coding defined

in the standard;

� PHY II: this PHY type is intended for indoor usage with moderate

data rate applications. This mode uses OOK and VPPM with data

rates in the tens of Mb/s, depending on the modulation and the coding

defined in the standard;

� PHY III: this PHY type is intended for applications using Color-Shift

Keying (CSK) that have multiple light sources and detectors. This

mode uses CSK with data rates in the tens of Mb/s, depending on the

modulation and the coding defined in the standard.

The IEEE 802.15.7 standard maps the intended applications to three topolo-

gies: peer-to-peer, star, and broadcast, as shown in Fig. 2.6.
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Figure 2.6: Supported MAC topologies [1].

In the star topology, the communication is established between devices

and a single central controller, called the coordinator. In the peer-to-peer

topology, one of the two devices takes the role of coordinator. The net-

work formation is performed by higher layers, but they are not part of the

standard.

2.2.3 Security

From a security perspective, IEEE 802.15.7 VPAN is slightly different from

other wireless networks, due to directionality and visibility. In fact, because

of its characteristics, if an unauthorized receiver is in the path of the commu-

nication signal, it can be recognized. Also, the signal will not travel across

medium such as walls, unlike RF-based wireless networks. However, security

algorithms are still provided in the standard for features such as data confi-

dentiality, authentication and replay protection [1]. Devices can be low-cost

and have limited capabilities in terms of computing power, available storage,

and power drain. Communications cannot rely on the online availability of a

fixed infrastructure and might involve short-term engagements between de-

vices that may never have previously communicated. These constraints limit

the choice of cryptographic algorithms and protocols and influence the de-

sign of the security architecture because the establishment and maintenance

of trust relationships between devices need to be addressed with care. In

addition, battery lifetime and cost constraints can put severe limits on the

security overhead these networks can tolerate [1]. The cryptographic mecha-

nism in the standard is based on symmetric-key cryptography and uses keys

that are provided by higher layer processes.
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2.3 Challenges

VLC is gaining a lot of attention because the advantages and the peculiarities

the technology has. However the research community has still to face some

big important challenges and to give effort for solving them, making VLC

an affordable and reliable mean of communication. To date, as the state of

the art, the most crucial open points are the following:

� lack of a well defined uplink method;

� interference analysis (natural and artificial sources);

� channel modeling and multipath effect analysis.

Even if an InfraRed (IR) connection is often used as uplink, this solution

limits a lot the responsiveness and the range of the communication [12,

18]. A very few papers reported the usage of LEDs for both emission and

detection, ensuring a bi-directionality [27], [82]. Another relevant option is

the usage of mixed Wi-Fi and VLC system, where one technology compensate

the lacks of the other [14, 16, 69]. A few papers analyse the interference

generated by natural and/or artificial sources. Finally, a proper channel

model is still lacking for both indoor and outdoor communication. IEEE

802.15.7 refers to simple case studies [1] for indoor, whereas for outdoor, most

of the work is based on simulation analysis [54] and a very few investigate

realistic scenarios [13,81].



Chapter 3

Visible Light Communication

for vehicular applications

In this chapter the importance of using wireless communications

in vehicular environments and future intelligent automotive sec-

tors is presented and discussed. Along the chapter VLC systems

are compared with radio-frequency techniques, by analysing ad-

vantages, challenges and direction of future work. Moreover a

brief introduction of the IEEE standard suite for vehicular com-

munication is given.

3.1 Intelligent Transportation Systems intro-

duction

The number of automobiles that use the transportation infrastructure is con-

stantly increasing. Within this context, the number of victims resulting from

traffic accidents is also increasing, making road accidents one of the leading

causes of death [71]. The scientific community, the automotive industry and

the governmental agencies are joining their efforts to increase the safety of

vehicles and roads. This effort have led to a new paradigm: “help peo-

ple avoid accidents” instead of the old one “help people survive accidents”.

With the advent of self-driving cars, a reliable communication infrastructure

is needed also for achieving more efficiency in transportation systems. For

example, a traffic management could be implemented exploiting a commu-

19
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nication among road infrastructure and vehicles. Vehicular communications

are divided mainly into two branches:

1. Infrastructure-to-Vehicle (I2V) or Vehicle-to-Infrastructure (V2I) com-

munications;

2. Vehicle-to-Vehicle (V2V) communications.

Intelligent Transportation Systems (ITS) involves the application of the ad-

vanced information processing, control technologies, sensors, and communi-

cations in an integrated approach to improve the functioning of the road

transportation systems. Generally speaking, ITS considers using state-of-

the-art cooperative technologies in order to reduce the number of accidents

and of associated fatalities. It also aims at improving efficiency in trans-

portation system, e.g. reducing the CO2 emissions. Moreover, this kind of

system adds value to the transportation system by providing real-time access

to relevant traffic information. By using I2V/V2I and V2V communications,

ITS continuously collects traffic data, analyzes it and distributes it, in order

to increase the vehicle awareness. Furthermore, this information enables an

efficient management of the transportation system, increasing efficiency and

reducing traffic jams. A system like this requires a specific deployment of

intelligent infrastructures able to collect data and process it. Of course the

biggest challenge is to maintain the implementation cost as low as possible

without lack of reliability.

Considerable efforts have been made in the last decade by researchers from

both academia and industry to enable the cooperative ITS, which is seen as

the next generation of ITSs and it is enabled by V2V and V2I communica-

tions. Worldwide efforts in this area include cooperative ITS research pro-

grams1. The IEEE has also developed a standard for radio communication

systems, known as the Wireless Access in Vehicular Environments (WAVE),

to provide interoperable wireless networking services for transportation [80].

Vehicular VLC oriented standard Even if IEEE has not released a

proper standard for Vehicular VLC (V 2LC) yet, the IEEE 802.15.7 includes a

1Vehicle Safety Communications (VSC), Crash Avoidance Metrics Partnership/VSC-2,

and IntelliDrive run by the U.S. Department of Transportation, the PATH program lead

by the University of California, Berkeley, CAR2CAR Communication Consortium, COMe-

Safety2, Drive C2X, iTETRIS, AKTIV, and eImpact projects in Europe, and SmartWay

in Japan among others [80].
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PHY layer type for outdoor communication (PHY-I, as reported in Sec. 2.2.2)

which could regulate vehicular systems. It has a lot of limitations, and it

is not properly meant for this kind of environments [22]. A new dedicated

standard for vehicular applications should be very strict concerning the ro-

bustness to perturbations and to latencies. In order to do that, a proper

standard should further simplify the frame structure, for reducing the over-

head and enhance the throughput. Other aspects that should be approached

are related to the message generation rate and to vehicular-specific network-

ing. Here, the standard should provide information referring to dynamic

mesh topologies, able to provide rapid and efficient channel access [22]. A

gratifying aspect concerning the future development of the VLC technology

is the fact that a revision of the standard, known as IEEE 802.15.7r1, is now

under development. This revised version includes vehicular communications

as a fundamental VLC use case, mentioning here V2I and V2V applications.

In this case, the standard considers the requirements of vehicular communi-

cations and aims to enhance mobility, data rates, robustness, and to enhance

the networking protocols [22].

3.2 IEEE Wireless Access in Vehicular Envi-

ronments standard brief introduction

Dedicated Short-Range Communications (DSRC) is a suite of standards that

aim at the exchanging of vehicular safety messages. Also referred as “Wire-

less Access in Vehicular Environments” (WAVE) (both acronymous are in-

distinguishable used), is a radio communication system intended to provide

seamless, interoperable services to transportation. These services include

those recognized by the U.S. ITS architecture and many others contemplated

by the automotive and transportation infrastructure industries around the

world, such as communications between vehicles and infrastructure, and com-

munications among vehicles [2]. WAVE is meant to be used in conjunction

with the family of IEEE 1609.x standards that are focused on MAC and

network layers. It is quite complex and is built over the IEEE 802.11.p

standards by amending many tweaks to guarantee fast reliable exchange of

safety messages. A DSRC network is built over two basic units: Road-Side

Unit (RSU) and On-Board Unit (OBU). The RSU is a stationary unit that

connects roaming vehicles to the access network, which is connected to a

backbone network. The OBU is a network device fixed in a roaming vehicle



22 Visible Light Communication for vehicular applications

Figure 3.1: Simplified DSRC Standards suite [66].
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and is connected to both the DSRC wireless network and to an in-vehicle

network. The wireless connection between RSU and OBU is based on WAVE

standards suite shown in Fig. 3.1. As OBUs move between communication

zones, vehicles exchange information with the roadside. In addition, vehicles

use the same WAVE media to communicate with each other [66].

3.3 Advantages and challenges

As Tab. 3.1 shows, VLC is well positioned to address both the low latency

required in safety functionalities (e.g., emergency messages, intersection col-

lision warning or platooning) and high speeds required in so-called infotain-

ment applications (e.g., map, media and updates downloads, point of interest

notifications). One of the strongest advantages of VLC is its low complexity

and the reduced implementation cost. Being already half integrated in the

existing transportation infrastructure, as well as in vehicle lighting systems,

make VLC an ubiquitous technology and could allow a fast market penetra-

tion. Moreover communication bi-directionality is, even if not trivial, quite

straightforward since modern vehicles have already LED-based illumination

systems, both on the front and on the back.

Automotive applications don’t need high throughput, but larger distances

need to be achieved. As several indoor implementations report, this tradeoff

is possible. In fact, high speed connections drop their data rates as far as the

receiver is placed. However, if communication-based vehicle safety applica-

tions are considered, this use case requires very high Packet Delivery Ratio

(PDR) and latencies as low as 20 ms, meaning that a higher robustness to

disturbances is expected [20]. VLC is also appealing for vehicular scenarios

in which the use of a RF band is restricted or banned due to the safety

regulations (e.g., oil/gas/mining industries, and military vehicle platoons).

Another attractive feature of VLC is the positioning and navigation capa-

bilities. Since Globral Positioning System (GPS) fails to provide a sufficient

accuracy in environments where there is no LOS paths such as tunnels or ur-

ban canyons, VLC-based positioning systems could be used to complement

the accuracy exploiting the lighting fixtures. A resolution error of up to

of tens of centimeters, obtained with VLC, outclasses a typical positioning

error of up to 10 m associated with the GPS. This could pave the road to

a much more reliable vehicle safety applications. Of course, V 2LC also has

many challenges to overcome. Here a list of the most important:
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Table 3.1: Comparison of IEEE 802.15.7 and 802.11.p standards [80].

Type 802.15.7 802.11.p

Communication mode P2P (LOS or diffuse) P2M / broadcasting

Latency Very low < 50ms

Data rate Up to 400 Mb/s Up to 54 Mb/s

Range Up to 100 m (single hop) Up to 1 km

Frequency band 400-790 THz 5.8-5.9 GHz

License Unlicensed Licensed

Cost Low High

Mobility Medium High

EMI No Yes

Power consumption Relatively low Medium

Coverage Narrow Wide

Weather conditions Sensitive Robust

Ambient light Sensitive Not affected
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� communication range need to be increased;

� robustness to weather conditions, sunlight and ambient light;

� mobility of devices has to be studied and enhanced;

� visible light positioning algorithms need to be improved;

� parallel visible light communications have to be developed in order to

increase the reachable distance and maximum rate;

� RF and VLC systems should be integrated in unique networks in order

to be as much ubiquitous as possible.

3.4 Contributions

In this dissertation, the following V 2LC contributions are presented:

1. an outdoor vehicular link characterization (I2V VLC system) proposal

which exploits an LED-based traffic light for communicating with ve-

hicles, which is described at Chapter 5;

2. a simple, preliminary, VLC propagation model proposal based on ex-

perimental measurements, which is detailed in Sec. 5.3;

3. an IEEE 802.15.7 PHY-I complaint, low-cost transceiver design and

first implementation, which is detailed in Sec. 5.4.
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Chapter 4

LED-based Positioning Systems

This chapter introduces LED-based Positioning Systems (LPS)

and discusses the potentials of this technology with respect to tra-

ditional radio-based techniques. A positioning system based on

a single LED, chosen as a case study for this dissertation, is

introduced and its algorithm fully described.

4.1 Introduction

Positioning systems used for the purpose of estimating user location are the

basis for navigation-based services. As the present mainstream in position-

ing systems, GPS is widely used in aircraft, vehicles, and portable devices in

order to provide real-time positioning and navigation. However, in challeng-

ing environments, such as urban canyons and indoors, GPS positioning and

navigation is inaccurate and discontinuous since the signals transmitted by

satellites are usually degraded and interrupted by clouds, ceilings, walls, and

other obstructions. A hot topic in the positioning service is the “last meter”

problem, in that indoor applications require much more accurate positioning

than outdoor applications. Consequently, Indoor Positioning Systems (IPS)

using indoor wireless signals (WiFi, Bluetooth, RFID, etc.) have been pro-

posed to fill the gap of GPS signals to improve the performance of indoor

positioning. Over the last few decades, these signals have been employed

in IPS technologies, among which WiFi and Bluetooth positioning systems

are mostly utilized and which have already been widely deployed in cur-

rent smart devices. LED-based positioning systems (LPS) emerged in recent

27
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years, which leverages visible light signal instead of radio frequency. Over

the past few years, many algorithms for LPS have been proposed and verified

by experiments. LPS have shown to be more accurate (0.1-0.35 m position-

ing error) when compared to WiFi (1-7 m), Bluetooth (2-5 m), and other

technologies [40]. Furthermore, some systems have achieved millimeter-level

positioning accuracy [45,68].

4.2 Advantages and challenges

Compared with other systems mentioned before, LPS have the following

advantages:

� they can be used in indoor spaces where GPS doesn’t work;

� they can be installed inexpensively since they utilize existing lighting

systems with very few modifications applied;

� the precision of visible light positioning is higher than traditional posi-

tioning. For example, the research shows that the number of LED lu-

minaries is ten times more than Wi-Fi in a typical indoor building [59],

which contributes to the higher accuracy;

� they can be used in RF sensitive areas like hospitals and air crafts

because it does not generate RF interference.

Since the beginning of investigation in this field is quite recent, LPS have

many challenges to face as well. Here some of them can be cited:

� as well as in general VLC systems, the lack of a channel model limits

the complete understanding of the real capabilities the technology has;

� the performance of current LPS is limited by the demodulation band-

width of VLC, especially for multi-source scenarios. Here, the multi-

path transmission is extremely challenging for IPS receivers with lim-

ited processing capability, such as “complementary metal oxide semi-

conductor” (CMOS) cameras;

� technically, the receiver only senses the light lobes within its field-of-

view; therefore, a receiver with a wider FOV is used for a large-scale

indoor environment. A wider FOV, however, results in receiving more

undesired signals from Non-Line-Of-Sight reflections or ambient light,
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which may lead to performance degradation. Hence, a trade-off needs

to be made for the choice of FOV in the IPS design [59];

� because Signal-to-Noise Ratio (SNR) is essential to evaluate the perfor-

mance of the VLC systems, the noise in a LPS should not be neglected.

Many LED IPSs report large positioning errors (above 0.4 m) in the

outer region, i.e., outside the area surrounded by the LEDs, or marginal

area [59]. This is mainly because the light power received from far-off

LED transmitters is largely degraded by the long distance travel and

a large irradiance angle, which is quite comparable to the noise and

leads to a relatively low SNR in the area;

� since LED is an illumination source, luminous fluxes are dispersed in

the environment. This creates reflecting components from the walls,

ceilings, tables, mirrors, and any other surfaces around. Although

the reflecting components are much weaker than the LOS channel,

due to multipath effect, they are still perceptive to the optical sensor

and may contribute to a diffuse channel in the VLC system which will

influence SNR, “Bit Error Rate” (BER), and other system performance

metrics. Most of the LPS perform an Received Signal Strength (RSS)

based positioning by transferring received light power to distances.

Therefore, the distance estimation will become worse if the reflected

components are mixed into the received signals, leading to a larger

positioning error [89].

4.3 An LPS case study

In the following section a brief description of a relative two-dimensional po-

sitioning system [36] and of the platform it uses, are given. The full system

is exploited in Chapter 6 and it is taken as a case study for analysing the

effect of multipath on a LPS.

4.3.1 OpenVLC platform

OpenVLC is a general-purpose software-defined platform for networked VLC.

The node is built around the BeagleBone Black (BBB) board [4] a cost-

effective, user-friendly, versatile single-board computer with a small form

factor. OpenVLC consists of a BBB board, a VLC front-end transceiver,
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and a software-defined system implementation. The front-end transceiver

adopts a single LED together with a few basic electronic components for

both transmission and reception (see Fig. 4.1). OpenVLC’s software com-

ponents are implemented as a Linux driver that communicates directly with

the LED front-end and the Linux networking stack. As a result of this de-

sign choice, the VLC communication interface can take advantage of the vast

range of Linux tools. The communication between two OpenVLC nodes is

illustrated in Fig. 4.2 [7] The software-defined transmitter (TX) selector can

Figure 4.1: OpenVLC board.

Figure 4.2: OpenVLC system - block scheme [7].

choose the TX between a low-power LED and a high-power LED. Similarly,

the software-defined receiver (RX) selector can select as a receiver between a
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PD and a low-power LED (working as a sensor). The communication stack of

OpenVLC is illustrated on the left of Fig. 4.3. Primitives are implemented to

build various PHY and MAC layer protocols in the Linux operating system.

Figure 4.3: OpenVLC system - communication stack [82].

TX, RX, and TX/RX switching In TX mode, the BBB outputs the

signal to the anode of LED for a symbol period. In RX mode, the small

photo-current is amplified by the TIA (Trans-Impedance Amplifier), and

then sampled by the ADC and converted into a digital signal. The BBB

samples the output of the ADC at a fixed interval equal to one symbol period.

The RX samples the output of ADC and stores the value in a sequence that

will be decoded by the driver at a later time. The LED can be used as a TX

and RX at the same time, so it can switch between those two modes through

the software-defined that runs on the BBB.

Modulation and detection Intensity modulation for data transmission

is used. Binary information is mapped to the presence (symbol HIGH) or

absence (symbol LOW) of the visible light carrier. At the transmitter, the

on-off keying (OOK) modulation and the Manchester Run-Length Limited

(RLL) code are used. At the receiver, demodulation is performed with di-

rect detection (DD). Based on the measured voltage, the receiver detects

a received signal as a sequence of symbols HIGH and LOW that are then

converted to binary data.

Preamble The PHY layer transmits each frame with a fixed-length pream-

ble, consisting of an alternate sequence of HIGH and LOW starting with a
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HIGH symbol. The numbers of HIGH and LOW symbols in the preamble

are the same. To convert symbols into binary data, an adaptive symbol de-

tection threshold is adopted because the received light intensity is greatly

affected by the free path loss attenuation of light transmitted from the TX

to the RX. This detection threshold is obtained on a per-frame basis by av-

eraging out the digital samples of the preamble sequence. A special frame

delimiter (SFD) field is appended to the end of the preamble.

Frame format The frame format is shown in Fig. 4.4. If the frame has no

payload (length = 0), it is inferred to be an ACK. Otherwise, it is a DATA

frame. Each frame can carry a payload from 0 to MAX (a predefined value)

bytes. The destination and source addresses follow the Length field, and each

occupies 2 bytes. The 2-byte Protocol field identifies the upper layer protocol

encapsulated in the frame pay-load. A two-byte cyclic redundancy check

(CRC) over the MAC header and payload is appended after the payload.

The Reed-Solomon (RS) error correcting code is appended to the end of

each frame.

Figure 4.4: OpenVLC system - frame composition [82].

4.3.2 Relative two-dimensional positioning system

Consider two nodes1, A and B, where node A wants to know the relative

position of node B with respect to its position. The aim of the system is: as

long as a node is within the illumination coverage of a neighbor, the node

1Nodes could be any object containing a single light such as motorbikes or robots.
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should be able to obtain its relative position without any prior knowledge of

its surroundings. These relative positions could be used for safe driving in

the case of motorbikes or for task coordination in the case of robots [36].

Consider an LED light source (transmitter) and an optical receiver, as

illustrated in Fig. 4.5. Given any output power at the transmitter (LED),

the received signal strength at the receiver (PD) depends on three key pa-

rameters: the distance between them (d), the irradiation angle (ψ) and the

incidence angle (θ). The longer the distance, or the wider any of these an-

gles, the lower the RSS. The interplay among these three parameters leads to

Lambertian radiation patterns, where the maximum length of the coverage is

mainly determined by the output power of the LED and the maximum width

is determined by the Lambertian order (m). A small value of m leads to a

broad coverage of the LED; a large m leads to a long but narrow coverage.

Figure 4.5: Propagation properties of LEDs [36].

Formally, this pattern is captured by the well-known Lambert’s cosine

law:

Rt(ψ) =
m+ 1

2π
cosm(ψ). (4.1)

The channel loss H(0) between the transmitter and receiver

H(0) = ARX ·
m+ 1

2πd2
cosm(ψ) · cos(α) (4.2)

where ARX is the sensing area of the photodiode of the receiver, and Θc

is the PD’s field-of-view.

Letting Pt and Pr denote the optical transmission power of the LED and

the received power at the PD, respectively; and letting N refer to the sum of
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ambient noise and the PD’s shot and thermal noise; then Pr can be written

as:

Pr = Pt ·H(0) · gr(θ) +N (4.3)

where gr(θ) is the optical gain of the PD. gr(θ) is a non-zero constant

when θ ∈ [0, θc], and is zero otherwise. Therefore, gr is used to denote gr(θ)

in the calculation of Pr.

Figure 4.6: Iso-contours of received power [36].

Basic location principle Given a received power Pr, the TX can be

located in multiple positions with respect to the RX. By referring to Eq. 4.2,

for example, for a low Pr, the TX can be far away but aligned to the RX

(ψ = θ = 0), or it can be nearby but misaligned. If the TX orientation is fixed

and it moves at different perpendicular distances from the RX, as illustrated

in Fig. 4.6, each distance provides two locations where the received power is

measured as Pr. All these locations form an iso-contour where the received

power is the same. The principle behind the algorithm is to exploit changes

in the iso-contours due to nodes’ movements, see Fig. 4.7. If the RX rotates,

the iso-contour changes from its original shape (red) to a new shape (blue). In

this particular case, the change in the iso-contour is caused by the change in

the incidence angle θ. The intersection of these two iso-contours can be used

to estimate the relative position of the TX. Consider a system of two mobile

nodes: one acts as a reference point (referred as receiver) that has a PD;

and the other is a target to be localized (referred as transmitter) that has an
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Figure 4.7: Localization using iso-contours intersection [36].

LED light source. Both nodes can measure their orientations and movement

through on-board sensors, compasses and accelerometers respectively. The

transmitter has information of the optical properties of its LED lights, such

as the transmission power and Lambertian order. The transmission power

and Lambertian order together with the transmitter real-time orientation are

shared with the receiver via visible light communication. The receiver can

decode the transmitted information through its PD and it can also measure

the received power. Since it is assumed that both nodes are mobile, a state

of the system S can be defined as follows:

S = (αtx, αrx, d, Pr) (4.4)

where αtx and αrx are the orientations of the transmitter and receiver with

respect to North, respectively, d is the relative distance of the transmitter

with respect to the receiver, and Pr is the received power at the receiver.

Assuming that the system is currently in state S1(α1
tx, α

1
rx, d1, P1), then ac-

cording to Eq. 4.3, the received power P 1
r for state S can be written as

follows:

P 1
r = PtARX

m+ 1

2π(d1)2
cosm(ψ1)cos(θ1) · gr +N. (4.5)

A similar equation can be derived for a later state S2(α2
tx, α

2
rx, d2, P2), where

the relative position and the orientations of the transmitter and receiver

change, and they are denoted by d2, α2, and α2, respectively. So the mea-

sured received power is P 2
r :

P 2
r = PtARX

m+ 1

2π(d2)2
cosm(ψ2)cos(θ2) · gr +N. (4.6)
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In the above two equations, we have six variables: the irradiation angles ψ1,

ψ2, the incidence angles θ1, θ2, and the relative distance d1 and d2 between

the transmitter and receiver. So they cannot be solved directly. To overcome

the aforementioned challenges some hypothesis are stated:

1. nodes are forced to broadcast continuously and periodically their ori-

entation and LED parameters via visible light communication. And,

at the receiver, we only consider changes in orientation detected within

a very short period of time, so we can assume that the locations of the

TX and RX remain “constant”. It reduces the number of variables in

the above equations from six to five, because over a short period of

time we can assume that d1 = d2 = d.

2. the information coming from the compasses are exploited to derive

dependencies among the five remaining variables, allowing the identify

of a single solution in most cases.

After some dependencies calculation (refer to [36]) and substituting them

into Eq. 4.5 and 4.6, the following equation system is obtained:

P 1
r = PtARX

m+ 1

2π(d)2
cosm(ψ1)cos(f(α1

tx, α
1
rx, ψ1) · gr +N (4.7)

P 2
r = PtARX

m+ 1

2π(d)2
cosm(g(α1

tx, α
2
tx, ψ1)cos(f(α1

tx, α
2
tx, α

1
rx, α

2
rx, ψ1) ·gr +N.

(4.8)

In these two equations there are only two unknowns (ψ1 and d), and thus,

they can be solved numerically.

Variable distances Until know, the analysis has focused solely on events

where rotations are expected. But some mobile scenarios may not have any

rotations. For example nodes moving on a straight path at variable speeds

will not change their orientations, but their relative distances will change.

For these types of scenarios, the equations describing the system at states

S1 and S2 are

P i
r = PtARX

m+ 1

2π(di)2
cosm(ψ)cos(θ) · gr +N (4.9)

with i ∈ (1, 2). If the difference in distances between states S1 and S2

is assumed that can be estimated (by, for example, performing a double
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integral of an accelerometer):

ε = d2 − d1 (4.10)

then, based on Eq. 4.9 and Eq. 4.10, a closed-form expression for the relative

distance is obtained as follows:

d2 = ε/
(

1−
√
P 2
r /P

1
r

)
. (4.11)

After some substitutions (refer to [36]), the following expression is reached:

2πd2
2P

2
r

(m+ 1)ARX
−N = cosm(θ + π + αtx − αrx)cos(θ) (4.12)

where θ can be calculated numerically. An important point to consider for

these no-rotations cases is that the relative location is no longer obtained

by intersecting two Lambertian iso-contours, but by intersecting a single

Lambertian iso-contour and a circle. This implies that unless the TX and

RX are aligned (ψ = θ = 0), two possible locations are always obtained. In

this case the system reduces its accuracy to one dimension distance.

Implementation The localization algorithm is implemented on the Open-

VLC platform 4.3.1. The platform is customized to satisfy the requirements

of the localization technique. The system functional block scheme is shown

in Fig. 4.8. To run the localization method, the following information from

the TX are needed: transmitted power, Lambertian order m of its transmit-

ting LED and its orientation; and these from the RX: received power and its

orientation.

Measuring the relative positions Orientation plays a crucial part in

the system and it can be measured by inertial sensors. The sensor used

is Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout - BNO055,

which does sensor fusion of the magnetometer and accelerometers for higher

accuracy. OpenVLC node communicates to the sensor using the serial port,

as shown in Fig. 4.9. The sampling rate of the sensors is equal to 500 Hz.

The transmission power, Lambertian order of the LED at the TX, and

the TX orientation are shared with the RX through VLC. In order to have

controlled environment for our evaluation, measurements are done in a dark

environment without external light sources. The localization algorithm is

implemented to operate in real time, with interactions among the blocks
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Figure 4.8: Functional blocks of LPS case study [36].

Figure 4.9: Hardware used in the implementation [36].
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illustrated in Fig. 4.8. Raw power readings from the data frame preamble

are collected and shared with the user space. A listener program collects

the orientation information from sensors by continuously polling the serial

port in the BBB board. The listener thread then sends the data to the

computer every second using UDP. In the computer, a program reads the

UDP messages and every two messages, runs the localization algorithm based

on Eq. 4.8.

Experimental evaluation - Relative distance variation Since at Chap-

ter 6 only a distance variation movement is analysed, here, only the algo-

rithm experimental evaluation of the relative distance variation is reported.

In these experiments both the TX and RX are free to move assuming that

they do not change their orientation with respect to each other. In order

to compute the correct value of the system, the distance difference needs to

be known as well as the received power. In these experiments the distance

change is assumed to be known (in a real environment it can be estimated by

performing, for example, a double integration of the accelerometer input).

In the experiments, the distance between the TX and RX changes between

the first and the second measurement with different steps (10, 20, 40, 50

cm). This is performed for different angles in degrees between the TX and

RX (0, 20, 45, 60, -20, -45, -60). The results of the experiments are depicted

in Fig. 4.10. The average distance errors in the x-axis and y-axis are both

less than 2 cm.

Figure 4.10: Accuracy results for distance changes [36].



40 LED-based Positioning Systems

4.4 Contributions

The main contribution of this thesis about LED-based Positioning Systems

is an in-depth performance analysis of a relative positioning system (intro-

duced in Sec. 4.3.2) in realistic scenarios. This study, performed at IMDEA

Network Institute of Madrid during an 11-month internship, exploits a small

scale mobile environment featuring OpenVLC platforms and different types

of reflective object samples. The experimental campaign as well the data

processing are detailed at Chapter 6.



Chapter 5

Infrastructure-to-Vehicle VLC

link characterization with

LED-based Traffic Light

This chapter presents the preliminary work that leads to an out-

door vehicular link characterization (I2V VLC system) proposal.

It exploits a LED-based traffic light for broadcasting messages to-

wards vehicles. In particular, a preliminary propagation study

of a simple VLC system and a first IEEE 802.15.7 PHY-I com-

plaint SDR VLC transceiver implementation are here introduced

and detailed.

5.1 Proposal overview

The aim of this dissertation section is to present an outdoor vehicular link

characterization (I2V VLC system) proposal. The main idea is to exploit

a COTS LED-based traffic light for designing a VLC system able to send

traffic and safety information towards vehicles. The system is also a mean

to analyse the outdoor optical wireless channel in realistic scenarios (see

Fig. 5.1). The link characterization is due to be done through an experimen-

tal campaign in which several scenarios and realistic conditions are deployed.

In particular numerous distances and angles between the traffic light and a

vehicle, and three different receiver onboard locations, are supposed to be

41
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Figure 5.1: Infrastructure-to-Vehicle VLC system with LED-based Traffic

Light.

experimented. As shown in Fig. 5.2 a grid of several positions along a two-

lane road is considered, involving different distances and angles in which

the received signal varies. Figure 5.3 presents the initial proposal of testing

30 m

2 m5 m

First
lane

Second
lane

Figure 5.2: Experimental measurement setup - Distances and angles between

traffic light and vehicle.

three locations onboard a vehicle: at headlamp, at wing mirror, at rear-view

mirror. The optimal receiver location should be pinpointed. Further topics

(e.g. a vehicle that acts as a relay and forwards messages towards a following

vehicle for platooning systems) will be investigated during the experimenta-

tion that is supposed to be a future work as well as processing the acquired
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A

B

C

Figure 5.3: Experimental measurement setup - Receiver onboard locations.

raw data (refer to Chapter. 7) for study the multipath contribution. In the

following, the preparatory work useful to deploy the aforementioned system

is presented and detailed. In particular a preliminary propagation study of

a simple VLC system and a first IEEE 802.15.7 PHY-I complaint SDR VLC

transceiver implementation are described.

5.2 Related work

A few papers have already investigated a I2V system which involves a traffic

light. In [11] a traffic information system using existing LED traffic lights is

developed. It focuses on its visible rays and power used for traffic control,

the number and location of the traffic lights, and the movement toward LED

traffic lights. Authors design the best service area not to interfere with

other service areas and analyse its basic performance such as the suitable

modulation, required SNR and the amount of receivable information. A

conceptual integration method of VLC into ITS along with reference model

is presented in [51]. Some interesting experiment results show performances

(BER and throughput) of a case study with different modulations.

Authors in [70] propose a road-to-vehicle visible communication system

for ITS. In this system, a LED traffic light is used as transmitter and a pho-

todiode is used as receiver. The paper focus on problems related to receiving
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information from long distance and related to tracking the transmitter along

a certain moving distance between a vehicle and the traffic lights. Imaging

optics are applied for handling the communication over long distances. Two

cameras are used to solve the relationship between the transmitter and the

receiver position changes with time, and vibrational correction technique is

also fixed to the system to minimize vibrational affections. Experiments have

been conducted to confirm the proposals.

Often image sensor and image processing are used in outdoor VLC sys-

tem, as in [28] and [83]. The performance of a LOS link in an empirical

outdoor environment has been carried out in [28]. Possible interference in

the LOS link is first characterized, including both background solar radi-

ation and artificial light sources. The frequency response of COTS LED

traffic light lamps as transmitter devices is then investigated, which reveals

a modulation bandwidth up to 5 MHz for common LED traffic lights. Also

the theoretical LOS path loss model is proposed and validated by the mea-

surement results. Finally, the practical communication system performance

based on the above characterization is evaluated, with results shown that a

data rate of 1 Mb/s could be achieved at a distance of 75 m with a raw BER

of 10−2 in the electronics noise limited case.

In [83] a receiving method for VLC with LED-based traffic lights using 2-

D image sensor receiver is proposed. The maximum receiver field-of-view and

the best vertical inclination are discussed. Authors analyzed and quantified

the possible SNR improvement when different numbers of pixels are applied.

Results indicate that using more pixels can increase the received SNR and

the service area becomes wider compared to the conventional system using

Avalanche Photodiode (APD) receiver. Then the optimum pixel number

has been computed for accomplishing a reliable communication. Also in [44]

proposes camera for detecting signal broadcasted by an LED traffic light.

In this paper experiments in real-world environment verify the proposed

algorithm, using the sequence captured by a high-speed camera (1000 fps)

fixed on a vehicle moving straight at 30 km/h.

The aforementioned works don’t take into account the effect of ambient-

light noise which varies largely from day time to night time. Authors of [53]

propose an analytical daylight noise model based on a modified blackbody

radiation model to capture the effect of ambient-light noise and conduct an

in-depth study on the impact of daylight on the system performance. The

proposed daylight noise model allowed the authors perform an analytical
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analysis which produces relatively accurate results with less complexity, as

compared to the existing simulation. The authors also introduce a new re-

ceiver structure employing the selective combining technique to significantly

reduce the effect of background noise, able to achieve an enough-reliable link

and establish a stable communication link at any time of the day. [19]

and [21] introduce receiver sensor and adaptive receiver sensor design in-

tended for vehicular communication applications, also offering a review of

the solutions found to mitigate the effect of the problematic conditions (dis-

tance and weather conditions).

Vehicle-to-Vehicle links are experimentally studied in [49] and [88] using,

in the former, a critical weather condition like fog and, the latter a COTS

headlamp. Both experimental results demonstrate that the proposed VLC-

based V2V system offers a reliable V2V data transmission. Beside weather

condition, another critical condition for V 2LC is the relative movement of

vehicles. [50] proposes a motion modeling of VLC transmitter for image

sensor based VLC receiver. All the three vehicular channel types (I2V, V2I,

V2V) are investigated and simulated.

Dual channel communication between vehicles (i.e. full duplex V2V) is

studied in [79]. This paper show the dependency of the received optical

power of single channel VLC on the angle and distance, and demonstrate

that Lambertian model does not represent the automotive LED fog light

radiation pattern accurately. Then it demonstrates that dual channel usage

increases the angular limitation by up to 10◦ compared to the single channel

VLC. Also authors show that dual channel improves the packet delivery

error rate performance at only short distances due to the photodiode (PD)

saturation led by light intensity overlapping at higher distances.
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5.3 Preliminary propagation model study

In this section a propagation model of a simple visible light system through

an experimental measurement campaign is presented [67]. The scope is to

come up with a fine tuned propagation model which also accounts for reflec-

tions from the optical bench. The experiments were conducted in the Eu-

ropean Laboratory of Non Linear Spectroscopy (LENS) of Sesto Fiorentino

(Florence, Italy).

5.3.1 Test description

A measurement campaign is performed in order to study a simple indoor

VLC transmission channel. A 3W LED green light Epistar WX-PAXG851A3

is used as a fixed transmitting source, whereas a Vishay BP34W photodiode

is exploited as a photodetector and moved around on an 80-location mea-

surement grid (a 1200 × 900 mm optical bench enclosed by black walls). A

counter-polarization circuit, a transimpedance stage and a low-noise ampli-

fier completes the receiving chain. Each measurement position is 100 mm far

from another in both directions (X-axis and Y-axis). Since the photodetec-

tor has a fixed orientation angle, it always faces the short side of the bench

(see Fig. 5.4).

Figure 5.4: Optical bench used for the measurement campaign [67].

The LED is modulated via a sine-like signal with center frequency of 5
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Table 5.1: Parameter legend

Parameter Description

E irradiance at the photodetector

Pi incident optical power

S photodetector sensible area

ig photodetector generated current

R(λ) photodetector responsivity

Vt transimpedance output voltage

rt transimpedance feedback resistance

Vo amplifier output voltage

Ga total amplifier gain

kHz (generated by a signal generator) spanning a range of amplitude from

2.3 to 4 V so that the source varies its emitting light power from 0 to 120 mW.

For each position of the photodiode a portion of the received signal after the

amplifying circuit is recorded with a digital oscilloscope. The amplitude of

this signal is proportional to the irradiance at the detector since:

E =
Pi

S
=

ig
S ·R(λ)

=
Vt
rt

1

SR(λ)
=
Vo
Ga

1

rt

1

SR(λ)
(5.1)

with parameter legend listed in Tab. 5.1.

Since the radiation propagation can be assumed symmetric with respect to

XZ plane, the obtained irradiance pattern is depicted in Fig. 5.5. In the

following the experimental data are analysed by introducing four physical

propagation models that take into account different types of optical charac-

teristics.

5.3.2 Experimental results

In order to find the mathematical model that best fits the experimental data,

the following models are considered:

� Point source with spherical propagation.
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Figure 5.5: Irradiance as a function of detector position. The legend is

expressed in Volts (V).

� Point source with Lambertian propagation.

� Point source with spherical propagation and reflection.

� Point source with Lambertian propagation and reflection.

Point source and constant spherical intensity model

First, let us define the receiver solid angle dΩ as

dΩ =
dS cosα

r2
(5.2)

where dS is the photo-receiver surface, α is the angle between the x-

axis and the line connecting the LED to the receiver, and r is the distance

between the LED and the receiver. Using (5.2) we can obtain the radiation

flux Φ:

dΦ = I(α)dΩ = I(α)
dS cosα

r2
(5.3)
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where I(α) is the luminous intensity of the LED. Now, let us suppose

that the source is point and the intensity is constant over the surface of a

semi-sphere I(α) = I0. Then, the irradiance is

E =
dΦ

dS
=
I(α) cosα

r2
=
I0 cosα

r2
. (5.4)

The irradiance E of (5.4) can be drawn as a function of the distance.

Fig. 5.6a shows data results from the point-source-constant-spherical-intensity

propagation model, while Fig. 5.6c shows the percentage error between the

experimental data and the data derived by (5.4).

The error appears to be high and spread around. The average error is above

40%. Fig. 5.6b shows the quantity E · r2 for the experimental data (red line)

and the data from (5.4). This first simple model does not fit the experimental

data at all.

Point source and Lambertian intensity model

The second model now is assumed. The LED is still a point source, but a

Lambertian model is considered for the irradiance. Then E is then given by

E =
I0(cosα)2

r2
. (5.5)

The obtained irradiance is reported in Fig. 5.7a while the quantity E · r2

for the experimental data (red line) and the data from (5.5) is reported in

Fig. 5.7b.

Fig. 5.7c shows the percentage error between the experimental data and

the Lambertian propagation model. Although the Lambertian model pro-

vides a better fit than the spherical model, the fitting is still not accurate.

Point source and constant spherical intensity model with reflection

The above mentioned models do not take into account reflections and it is

quite evident that they do not correctly reproduce the experimental results.

In fact, the average error is at least above 30%. In order to improve this

result the surface reflection needs to be taken into account. In this particular

experiment the optical bench is made of stainless steel so a specular reflection

is assumed1. Let us consider a point source and a constant spherical intensity.

1Other surface materials are studied in Chapter 6.
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Figure 5.6: Spherical intensity propagation model: (a) data results from

the propagation model (in Volt, V); (b) experimental data (red line) and

propagation model (blue line); error (%) between the propagation model

and the experimental data.
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Figure 5.7: Lambertian propagation model: (a) data results from the propa-

gation model (in Volt, V); (b) experimental data (red line) and propagation

model (blue line); error (%) between the propagation model and the experi-

mental data.
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The irradiance, in this case, is

E =
I0 cosα

r2︸ ︷︷ ︸
Direct path

+ρ
I0 cosα cosβ

(htx + hrx)2 + r2︸ ︷︷ ︸
Reflected path

(5.6)

where ρ ∈ [0, 1] is the reflectivity of the bench surface and β is the angle of

incidence of the radiation on the bench (see Fig. 5.8). It can be geometrically

obtained from

sinβ =

√
r2

(htx + hrx)
2

+ r2
(5.7)

with htx and hrx being the height of the LED and the detector with respect

to the optical bench surface (Fig. 5.8).

Figure 5.8: Angle and height parameters between source (LED) and receiver

(photodiode) [67].

The obtained irradiance is reported in Fig. 5.9a whereas the quantity E·r2

for the experimental data (red line) and the data from (5.6) is reported in

Fig. 5.9b. Even if by considering the reflection effect the error, shown in

Fig. 5.9c, decreases and the model fits better the experimental data, the

average error is around 20% and another model should be considered.
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Figure 5.9: Spherical propagation model with reflection: (a) data results

from the propagation model (in Volt, V); (b) experimental data (red line)

and propagation model (blue line); error (%) between the propagation model

and the experimental data.
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Point source and Lambertian intensity model with reflection

The last model taken into account is a Lambertian model with reflection.

With the same assumption made in Sec. 5.3.2,(5.5) can be modified as fol-

lows:

E =
I0(cosα)2

r2

[
1 + ρ(sinβ)4

]
(5.8)

where ρ is the bench surface reflectivity and β is the angle of incidence

of the radiation on the bench. The reflection coefficient ρ can be used as a

fit parameter to obtain a better agreement. As can be seen from Fig. 5.10c

in this case the percentage error is almost everywhere below 10% except

the points with large Y values. However, the measured irradiance for these

points is extremely low, making them the least significant.

Fig. 5.10b shows the quantity E · r2 for the experimental data (red line)

and the data from model (5.8), whereas the relative percentage error is re-

ported in Fig. 5.10c. It is evident from Fig. 5.10 that the Lambertian model

with reflection (5.8) fits well the experimental data.
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Figure 5.10: Lambertian propagation model with reflection: (a) data results

from the propagation model (in Volt, V); (b) experimental data (red line)

and propagation model (blue line); error (%) between the propagation model

and the experimental data.
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5.4 IEEE 802.15.7 complaint VLC transceiver

Here a first implementation of an IEEE 802.15.7 PHY-I complaint VLC

transceiver is presented. In particular a small and simple VLC system is

described. Both transmitter (TX) and receiver (RX) are designed and im-

plemented from scratch using low cost electronic components. The physical

layer follows the standard presented in Sec. 2.2 and, specifically, the “type

I” is deployed, since it is meant for outdoor communication systems.

5.4.1 Hardware and Software

In the following a short description of the hardware and software suite used

for designing the system is given.

Ettus USRP boards

Universal Software Radio Peripheral (USRP) is a range of SDR designed

and sold by Ettus Research (now part of National Instruments) [9]. Usually

implied for RF systems, the USRP family are designed for accessibility and

many of the products are open source hardware (i.e. board schematics are

freely downloadable). USRPs are commonly used with the GNU Radio soft-

ware suite to create flexible SDR systems. In this thesis, SDRs are used only

in their baseband stage since the information has to be transmitted through

a visible light channel and not via an RF link.

Figure 5.11: Ettus Research USRP1 [9].
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GNU Radio

GNU Radio is a free software development toolkit [5] that provides signal pro-

cessing blocks for implementing SDRs and signal processing systems. It can

be used with external hardware or without any equipment in a simulation-

like environment. The GNU Radio software provides framework and tools to

build and run software radio or general signal-processing applications. The

GNU Radio applications themselves are generally known as “flowgraphs”

(i.e. a high level programming model), which are a series of signal process-

ing blocks connected together describing a data flow. As with all software-

defined radio systems, reconfigurability is a key feature. Instead of using

different transceivers designed for specific but disparate purposes, a single,

general-purpose, radio can be used as the front-end, and the signal-processing

software handles the processing to specific application.

5.4.2 System design

The VLC system is composed by a TX and an RX. Both terminals can be

divided in three main functional blocks:

1. the electrical implementation of a transceiver (on a breadboard);

2. two Software Defined Radio (SDR) boards for interfacing the electrical

part (ADAC stages) and handling the lowest ISO/OSI communication

levels (data flows from and towards the higher levels);

3. two GNU Radio flowgraphs which implement the IEEE 802.15.7 pro-

tocol (PHY-I type level), control the USRP (Universal Software Radio

Peripheral) boards and handle the higher ISO/OSI level towards the

user. They also provide a HDI (Human Device Interface) with an user

friendly interface.

As Fig. 5.12 shows two independent USRPs are used. Both terminals are

controlled by the user exploiting a proper GNU Radio flowgraph. In here

both the PHY layer and the user upper layers are implemented.

Transceiver electrical implementation

As mentioned before, both TX and RX are designed from scratch using low-

cost electronics and simple configuration schemes. Fig. 5.13 and Fig. 5.14
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show the electrical schematics for the transmitter and the receiver respec-

tively. By referring to Fig. 5.13, a typical bias-T scheme (see Sec. 2.1) is

implemented for polarizing the transistor in a liner region and allowing the

signal coming from USRP’s DAC modulate the current that passes through

the LED. In this way the light intensity is modulated as the information bit

arrives from the DAC. Figure 5.14 shows the front-end receiver. It consists

of a high-pass filter and of a two-stage amplifier. This kind of amplifier is

necessary as the output voltage coming from the phototransistor (PT) has

to be adapted to the input range allowed by the USRP’s ADC. Two diodes,

placed between the first and the second, are used for clipping the signal,

allowing the second stage amplifier to work always with the same values.

Table 5.2 lists the main features of the IEEE 802.15.7 PHY-I complaint

VLC transceiver.

IEEE 802.15.7 PHY-I level implementation

As referred in Sec. 2.2.2, IEEE 802.15.7 PHY-I is designed for outdoor usage.

Here this type of standard’s physical layer is implemented using GNU Radio.

In fact, the aim of this part of the investigation is to design and implement

a transceiver for vehicular VLC. In Fig. 5.15 the flowgraph of a complete

IEEE 802.15.7 PHY-I transceiver chain is presented.

The transmitter part consists in (i) a HDLC2 (High-Level Data Link

Control) framer which builds a proper frame containing data and synchro-

nization information; (ii) an OOK modulation with Manchester coding, and

(iii) a raised-cosine filter for interpolating the signal, shaping the electrical

pulse. Since a dispersive channel is supposed, this method (a pulse shaping

filter similar to those used in RF wireless communications) helps minimizing

the effect of signal distortion, i.e. the Inter-Symbol Interference (ISI) and

control the BER. Moreover with this filter a synchronization block can be

used at the receiver. More in depth, the receiver part is essentially com-

posed by (i) an Automatic Gain Control (AGC), (ii) a synchronization and

decimating block which recovers the timing from the frame header, (iii) an

OOK demodulator that takes into account the Manchester coding at TX,

and (iv) a HDLC de-framer which extracts the information. “USRP sink”

and “USRP source” blocks are used for sending/receiving data flows to/from

USRPs.

2HDLC is a bit-oriented code-transparent synchronous data link layer protocol devel-

oped by the International Organization for Standardization (ISO).
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Figure 5.12: VLC transceiver block scheme.

Table 5.2: VLC transceiver features.

Parameter Value

Terminals 2 USRPs

LED CREE C503B

LED luminous flux 5000 mcd

LED FOV 46◦

LED spectral wavelength 624 nm

PT Vishay BPW77NA

PT FOV 20◦

PT spectral range 450 - 1080 nm

PT cut-off frequency 110 kHz

Sampling 12 bits @200 kHz



60 I2V VLC link characterization with LED-based Traffic Light

Figure 5.13: VLC transmitter electrical schematic.

Figure 5.14: VLC receiver electrical schematic.
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Figure 5.15: GNU Radio flowgraph - IEEE 802.15.7 PHY-I.

Experimental preliminary tests

Figure 5.16a shows the LED driver and the front-end receiver presented

in schematics of Fig.s 5.13 and 5.14, respectively. A breadboard electrical

implementation is deployed using low-cost components. The full laboratory

bench is shown in Fig. 5.16b. Here two different computers connected via

USB with two USRPs are used. One platform for each terminal is deployed.

Using the GNU Radio flowgraphs of Fig. 5.17 and 5.183, for TX and RX

respectively, an UDP connection is established. Both an “iperf” bandwidth

test at 100 kbps and an audio stream (an 96kbps stereo mp3 file, at 44100Hz,

with Variable Bit Rate) transmission are successfully performed. The system

is able to work also in the presence of direct ambient light, within a distance

of 30 cm between the two terminals. Larger distances could be achieved by,

both, using a much powerful light source or by employing a more sensitive

receiver.

3Basically, the complete transceiver chain flowgraph of Fig. 5.15 has been divided in

two fundamental parts, one implementing the TX side and one the RX side.
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(a) Transceiver electrical implementation.

(b) Testbench overview.

Figure 5.16: Preliminary transceiver test.
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Figure 5.17: GNU Radio flowgraph - VLC Transmitter.

Figure 5.18: GNU Radio flowgraph - VLC Receiver.
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Chapter 6

Filtering Out Reflections in

Low-cost LED-based

Positioning System

This chapter proposes a new multipath detection technique for

positioning with light that does not require the knowledge of the

channel impulse response, and that it is suited to be implemented

in low-cost positioning receivers that use a single photodiode.

To develop the technique, (i) the statistical properties of Non-

Line-of- Sight (NLOS) components are analyzed, (ii) an auto-

mated testbed to study the reflections of different types of sur-

faces and materials is developed, and (iii) an algorithm to re-

move the NLOS components affecting the positioning is designed.

The experimental evaluation shows that in complex environments

the proposed methodology can reduce the localization error using

LEDs by 93%.

6.1 Introduction and motivation

As described in Sec. 1.1, artificial lighting is everywhere, from the light bulbs

on our ceilings to car headlights. It is expected that before 2020, there will

be 6-7 billion LED lights worldwide [6]. This trend makes VLC an attracting

technology for data, and more recently, to locate objects and people using

65
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LED-based Positioning Systems (LPS). LPS is gaining a lot of attention from

industry and the scientific community due to their high accuracy.

Broadly speaking, LPS can be divided into two categories depending

on the type of optical receiver they use: photodiode (PD) or image sensor

(camera) [52, 55, 89]. PDs provide higher throughput and energy-efficiency

than cameras, and thus, are a better choice for wearable devices (low energy)

and vehicular networks (high throughput). Image sensors are popular due to

their widespread availability in smartphones, but they have a reduced data

rate (only kb/s rather than Mb/s or more [42]) and a higher energy cost (in

the order of 300 mW rather than a few mW [56]).

While the area of LPS for smartphones is relative mature with products

already in the market [8], this is not the case for LPS in wearable devices

and vehicular networks in real environments. Compared to cameras, the

main constraint of PDs is their sensitivity to interference caused by optical

reflections: all incoming optical rays sum up at the PD because it operates

as a single pixel [38]. Image sensors can instead solve optical interference by

exploiting multiple pixels [72]. Therefore, LPS with PD receivers are affected

by location errors in real deployments [38].

Discerning the direct Line-of-Sight (LOS) path for positioning using a

PD receiver is not a trivial issue. Estimating the channel response to infer

the direct and reflected Non-Line-of-Sight (NLOS) paths requires a powerful

analogue-to-digital converter (ADC) and high processing capabilities on the

receiver side, which may not be available or desired [64]. Reflected paths

have been ignored in several recent experimental papers [36,55,87]. Instead,

the characterization of reflected paths has been done prevalently using sim-

ulations, and their detection/discrimination (seen as multiple sources) has

been done with cameras and image processing techniques [29,32].

6.2 Contribution

Within this context, the main contribution of this thesis part is the ability

to experimentally discern and filter reflected paths using a single PD. The

key idea is to trade-off the need for in-depth knowledge of the channel with

the instantaneous channel impulse response, with a less complex yet prac-

tical approach based on time series of the Received Signal Strength (RSS)

collected with a low-cost PD. This trade-off is possible in the considered

scenarios (vehicular and wearable networks) because:
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1. nodes are mobile, and thus, changes in reflection occur over a short

period of time;

2. the reflections from materials have unique statistical properties that

can be exploited to filter out NLOS components;

3. our scenarios can accept some marginal delay, which allows us to work

with short time series.

To wrap up, the main contributions of this work are:

� Sec. 6.5: The first testbed that allows to make controllable and realis-

tic down-scaled characterization of visible light multipath in low-cost

receivers, as caused by various types of surfaces.

� Sec. 6.6.5: A statistical method to identify and discriminate Non-Line

Of Sight (NLOS) components with limited sampling rate of the re-

ceiver.

� Sec. 6.7.3: A decision tree algorithm that can run in low-cost receivers

and it uses only two observables, yet it can differentiate between dif-

ferent types of reflections.

� Sec. 6.7.4: We remove NLOS components and the experimental eval-

uation shows that our method can improve the accuracy of LPS up to

93%.

6.3 State of the art

The majority of the related works about visible light reflections considers

indoor scenarios. Mainly studied through simulations [15], most of works

rely on the ray-tracing algorithm in which different reflection patterns (e.g.

Lambert-Phong) are exploited [32]. Optical and illumination design software

like Zemax [10] are employed for modeling complex indoor scenarios. Reflec-

tive material and node mobility lead to significant RSS variation introducing

shadowing and performance degradation (higher Bit-Error-Rate) depending

on the scenario [33]. Generally speaking, reflections bring interferences, lim-

iting data rate with the need of an equalizer for compensating the undesired

effect [64] and [37].
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Reflective material shape and relative height between TX and RX also

lead to intensity variation [86]. Simpler NLOS analyses consider each reflec-

tion point on surfaces as a new LOS optical source [32] and, typically, no

more than 3 reflection paths are considered since later paths do not bring

significant contribution in terms of RSS variation [86]. Different types of

material emit different kinds of reflection, and the pattern reflected by the

surfaces has to be taken into account when reflections are modeled for in-

door channels [26,58]. Closeness of the direct light path to reflective surfaces

of course count in varying significantly the RSS, but many reflection paths

cannot be taken into account since they are not intercepted by the receiver

incidence angle [38]. [24, 25] have performed an efficient characterization of

the NLOS components to model Channel Impulse Response. In some cases,

taking advantage of indirect paths is also possible, exploiting the time dif-

ference between the LOS and the first reflection [41]. These solutions come

at the cost of high computational resources, even if only up to 2nd order

reflections are considered.

The NLOS component also affects LPS [61,65] as the positioning error in-

creases linearly with the reflection coefficient of materials [85]. A multipath-

related severe error (from a few cm to 1 m) has been reported when it is taken

into account in LPS [38,39,77]. Proper countermeasures need to be adopted

for avoiding the localization error. A LOS-NLOS identification algorithm

exploiting different LED IDs for calculating the Signal-to-noise Interference

Ratio have been investigated to reduce the impact of multipath [43]. Yet,

this approach requires a sufficient number of LED luminaries, which may

not be available. Image sensors are also often used for canceling the effect of

reflections and get more reliable systems [72]. Image sensors have been of-

ten employed also for analyzing vehicular VLC channels and estimating how

the path loss varies over time in real traffic scenarios [29, 30, 84]. However,

they come with much higher energy consumption cost and lower data rate

of communication. If simple scenarios are assumed, propagation and multi-

path models obtained for indoor have been used for outdoor modeling [60]

even if more complex mobility scenarios need to be simulated with specific

software [54,75], with limited practical usage for low-cost systems. Realistic

headlamp pattern models [60], car rotations [63] or vehicle vertical move-

ments due to road surface irregularity [23], link asymmetry in mobility [78]

and vehicles reflective surfaces [57] have been studied for deriving the effect

signal variation and the performance of C2C (Car-to-Car) VLC systems.
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6.4 Motivation

This section, first introduces the predictable channel attenuation model used

by all previous practical works in LPS [36,52,55,87,89], and we show through

experiments that reflections negatively affect LPS with PD receiver. Then

it presents the basic intuition behind the proposed solution and the research

challenges which need to be addressed.

6.4.1 Positioning with reflected light

The inverse-square law accurately characterizes the relation between distance

and RSS in pure LOS scenarios. Here this finding is validated changing the

distance between the Transmitter (TX) and a low-cost PD Receiver (RX),

and collecting RSS measurements. The results in Fig. 6.1 show that there

is a good match between theory and practice, with only a small deviation

at short distance due to the saturation of the low-cost receiver. This good

match has been the foundation behind all the uptake of LPS in the last few

years. Yet, this monotonic curve becomes less predictable and more noisy

if a fraction of the light does not reach the RX through the LOS link, but

current experimental studies do not quantify this phenomena.

From theory, when light hits a surface, there are three possible outcomes.

Light may be absorbed by the material, it may go through the surface or it

may be reflected, creating the NLOS link. Materials often show some mix

of these behaviors, with the proportion of light that goes to each component

depending on the properties of the material, the wavelength of the light, and

the angle of incidence. Reflections affect LPS working with a PD receiver

because the primitive used by the majority of solutions for positioning is the

super-imposition of received signal strength (RSS) from all components [89].

In order to quantify the impact of reflection, first, the ideal environment

(considering only the LOS component) is considered, and subsequently, the

presence of different materials reflecting light are included. Using the ex-

perimental setup presented in Sec. 6.5, the distance from a TX and a RX

based on the power received is estimated. For the test, the TX and RX are

placed at different distances, and at each distance, the range following the

inverse-square law [89] is estimated (see Fig.6.1). As the aim is to study

realistic mobile scenarios, here are considered different reflective indoor and

outdoor materials.
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Figure 6.1: Comparison of inverse-square law with respect to RSS measure-

ments using low-cost PD receivers in ideal LOS links. The study shows that

there is a good match between theory and practice. Power normalized w.r.t.

the maximum value.

Figure 6.2: Experimental distance error. Reflections increase the error in

the positioning system. The error depends on the type of material (glass =

shiny glass, metal = grey satin metal, rwood = chipboard, swood = plywood,

wfoam = foamcore).



6.4 Motivation 71

Moving	reflec,ve	surface	

TX	 RX	

Moving		
direc,on	

NLOS	reflec,ng	
zone	

Figure 6.3: Schematic representation of reflections in the presence of mobil-

ity. The red dotted line depicts the reflecting zone.

Subsequently an evaluation of the distance error1 with respect to the

distance to the reflective material is performed using the algorithm proposed

in [36]. The results are plotted in Fig. 6.2. From the plot it can observed

that the smallest error is obtained when there is only a LOS component (no

reflective material), as expected. In this case, the position accuracy is 0.55

cm. Depending on the reflective material, the relative error can be up to 4

times the minimum error, decreasing the accuracy of any localization system

(up to 11.76 cm of error). Also it can be observed that the error is different

for each material, since each material interacts in a different way with light.

6.4.2 Basic Intuition behind the proposed solution

The detection of NLOS components could be performed in systems with an

expensive receiver with high gain-bandwidth product that sample quickly the

channel impulse response [26]. This requires a very fast impulse generator

at the transmitter and a very high sampling rate at the receiver. In low-

end systems, these requirements are not feasible. Instead of looking at the

instantaneous Channel Impulse Response (CIR), here it is exploited the fact

that, in a dynamic environment, a reflector does not appear suddenly, but

instead enters the illuminated area and the reflections are received by the

PD at a certain speed (creating the NLOS component), c.f. red dotted

1Percent distance error means the positioning error w.r.t. the ground truth, that is

equal and fixed to 70cm.
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(a) Slow relative speed.
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(b) Fast relative speed.

Figure 6.4: The RSS (shown as normalized power w.r.t. the maximum value)

also changes when the TX and RX get closer to each other. Faster speeds

create steeper slopes.

line in Fig. 6.32. Over time, the receiver first observes an RSS variation

due to the transition between the LOS and “LOS+NLOS” components, and

subsequently, a transition between the “LOS+NLOS” and LOS components

(when the reflective material is moving away).

2In this work a mobile reflector and static TX and RX are considered, but the same

concept applies to other cases, such as mobile TX and RX and a static reflector; or mobile

TX and RX and a mobile reflector at different speeds.
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6.4.3 Challenges

This study addresses three main problems (P) in LPS:

P1. Do not filter out valid RSS variations caused by relative changes in

distance and rotation between TX and RX. At first sight, eliminating reflec-

tions may look like a simple problem. Given that reflections only increase

the light intensity, a naive solution would be to use a peak-removing algo-

rithm to obtain the baseline RSS. Changes in RSS, however, are also caused

by relative movements between the TX and RX, and these dynamics should

not be filtered out since they are indispensable for an accurate position es-

timation [36]. As shown in Fig. 6.4, when the TX and RX get closer to

each other, the RSS increases with the relative speed of the movement. The

presented method relies on a simple PD to discern changes in RSS caused

by legitimate movements and by undesired reflections.

P2. Identify reflections caused by different types of materials. There is no

one-size-fits-all metric to detect reflections. Reflections have unique prop-

erties depending on the type of material and how the light is reflected on

the surface. Here is proposed a robust yet-simple mechanism to identify

reflections from a wide variety of materials without having the luxury of

performing the CIR.

P3. Controlled experimental environment. Arguably, one of the main road-

blocks in the community to study the effect of reflections in LPS is the

difficulty of performing controlled and replicable experiments. From the au-

thor’s knowledge, there is no such infrastructure in the community. Due to

this reason, most studies focus only on theory and simulations [38,39,41,43,

61,65,77,85]. A key contribution of this work is the design of a novel mobile

testbed to analyze and improve the performance of LPS.

6.5 Testbed

6.5.1 Description

Moving from the realm of theory and simulations into empirical evaluations

requires a testbed. The first challenge was to solve P3. A testbed with mod-

ules capable of providing light-based positioning and mobility is required. To

tackle the positioning requirement, the OpenVLC boards are used for LPS

algorithm [36]. To tackle the mobility requirement, these boards are mounted

onto a structure that was originally designed for medium-scale 3D printing:
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Figure 6.5: Testbed.
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(a) System schematic with mate-

rial moving in the x-axis.
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(b) System schematic with mate-

rial moving in the y-axis.

Figure 6.6: Testbed: the material moves in both the x and y-axis.

the OpenBuilds ACRO movement structure [3] (see Fig. 6.5). These two

systems are then bundled together (mechanically, electrically and with soft-

ware) to provide a precisely controlled environment. The testbed deployed

here can reproduce fully customizable down-scaled mobile scenarios and au-

tomatizes the collection of raw data. Without loss of generality, the reflecting

materials are moved and the TX and RX are kept fixed (as the movement

can be considered relative). The reflective surface is fixed on top of the mo-

bile unit of the system (see Fig. 6.6a), and it can move at a maximum speed

of 1.5km/h and a maximum acceleration of 2m/sec2 per axis. Table 6.1

reports the features of our testbed.
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Table 6.1: Testbed features.

Parameter Value

Nodes 2 OpenVLC units

LED luminous flux 956 lm

LED FOV 110◦

LED spectral range 380-780 nm

PD area 7.02 mm2

PD FOV 120◦

PD spectral range 400-1100 nm

PD spectral sensitivity 80 nA/lx

Sampling 12 bits @200 kHz

Movement grid 130 cm x 130 cm

All the experiments use the following setup. The TX, which emits a

fixed light intensity, and the RX are placed at a distance of 70 cm. The RX

acquires a trace of 7.5 seconds (i.e. 1.5 million samples) for each movement3.

The same measurement is repeated 30 times in order to have statistical

relevance. To consider various distances between the LOS and the reflecting

materials (blue arrow in Fig. 6.6b), the test starts from a lateral distance of

20 cm, and then moves the reflective surface down in steps of 5 cm up to a

distance of 65 cm (10 different distances). 300 traces are collected for each

material, plus another 300 for the “pure LOS” condition.

6.5.2 Materials employed

As realistic mobile scenarios have to be studied, some typical, indoor and

outdoor, materials are considered in the experimentation. In particular:

1. Glass (sample of acrylic shiny glass, 420x297mm, Fig. 6.7a);

2. Metal (sample of grey satin metal sheet, 320x320mm, Fig. 6.7b);

3. Foam (sample of foam core, 320x320mm, Fig. 6.7c);

4. Wood (sample of plywood 320x320mm, Fig. 6.7d);

5. Chipboard (sample of 320x320mm, Fig. 6.7e);

3Each movement consists of a back-and-forth object shift.
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(a) Acrylic glass. (b) Satin metal. (c) Foam core.

(d) Plywood. (e) Chipboard.

Figure 6.7: Sample materials used in the experimentation.

are employed. Selected samples have different reflective properties and, in

particular, they are supposed to have progressively less specular-like reflec-

tion (from glass to chipboard) or, vice versa, more diffuse-like reflection (from

chipboard to glass).

6.5.3 Validation tests

In order to validate the reliability and to characterize our testbed, here are

performed a set of experiments. In particular, the environment and derived

the acquisition noise are experimentally analysed.

Environmental and system noise analysis

For ensuring an external-interference free testbed, the movement grid is cov-

ered with a black cotton blanket4. Figure 6.8 shows the reliability of the

test in terms of avoiding external interferences (e.g. a Continuous Wavelet

Transform (CWT) is presented). More in detail, by comparing Fig. 6.8a and

Fig. 6.8b, it can be noted that all the strongest frequency components (both

at 100 Hz and 40 kHz5) are removed just by placing the receiver inside the

4This kind of blanket is usually employed as a background in studio photography for

absorbing unwanted scattered light.
5By referring to Fig.6.8a, both these components (and their harmonics) are due to the

artificial illumination (neon) of the laboratory. 100 Hz is the fundamental frequency of
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(a) Receiver placed outside the box. (b) Receiver placed inside the box.

Figure 6.8: External interference analysis made with CWT.

testbed “box”.

LOS characteristics

Here the statistical results for the pure LOS test are shown (see Fig. 6.9).

In particular, mean value, median, standard deviation and variance are pre-

sented. As it can be seen from plots, experiments can be repeated in the

testbed with a good precision6, since acquired values show a low uncertainty

(e.g. the mean value uncertainty is 2,024 while the standard deviation un-

certainty is 0,064).

6.6 Identifying reflections

As stated in Section 6.4, removing the effects of reflections in LPS implies

identifying those reflections (P2) and discerning valid RSS changes (P1). In

this section, the identification problem P2 for a series of RSS measurements

is tackled. Instead, the differentiation problem is tackled in the next section.

these type of illumination, while 40 kHz is due to the switching power supplies inside each

neon.
6Accuracy calculation was not possible since any measured reference value of light

intensity was given.
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Figure 6.9: Pure LOS statistical results.

6.6.1 Understanding reflection ‘peaks’

Reflections cause peaks in light intensity, but these peaks can take widely

different shapes depending on the properties of the reflecting material. The

first task is to define a minimal set of features to identify all such peaks.

When light impinges upon a material, all reflected components are summed-

up at the receiver. The final received intensity depends on two key prop-

erties. First, the reflection coefficient, the more reflective the material is

(e.g. a mirror), the higher the light intensity reflected. Second, the ma-

terial’s smoothness, a very diffuse material (e.g. white paper) has a wide

contribution because it reflects light in all directions, c.f. Fig. 6.10a. This

type of materials lead to short but wide reflection peaks, c.f. Fig. 6.11a. A

specular material on the other hand (e.g. a smooth metallic plate) will only

reflect light near the Snell angle (Fig. 6.10b). These specular materials lead

to tall but narrow peaks, c.f. Fig. 6.11b. Furthermore, the shape of the

peaks is also affected by the size of the reflective material (bigger materials

lead to wider peaks), and by their relative speed (slower speeds lead to wider

peaks). The number of materials, and their various sizes and speed, would

lead to a large number of peak shapes. The identification approach should

be material-, size- and speed-independent.
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(a) Light rays on diffuse material.

(b) Light rays on specular mate-

rial.

Figure 6.10: Light reflection on diffuse and specular materials.

(a) Power received when a diffuse

object moves into an illuminated

area.

(b) Power received when a spec-

ular object moves into an illumi-

nated area.

Figure 6.11: Power received over time at the receiver with diffuse and spec-

ular materials.
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6.6.2 Making the approach size independent

The common trend in all reflection peaks is that the power received by the

NLOS component increases when the reflective object enters the illuminated

area, reaches a maximum when all the material is illuminated and starts

decreasing when the material gets out of the illuminated area. The plateau

of the peak is determined by the size of the reflective material. Thus, to

make the system size-independent here it is proposed to focus solely on

the intrinsic properties of the channel transitions, that is the upward and

downward slopes, c.f. Fig. 6.11 red dotted squares. The mechanism to select

these slopes from the trace is explained later in this section. For now, the

focus is on analyzing the distribution of the light intensity.

Let us consider a “Pure LOS” scenario and four “LOS+NLOS” scenarios

composed by materials with distinct reflective features (glass, metal, plywood

and chipboard). Using the experimental setup introduced in Section 6.5, in

Fig. 6.12a is depicted the raw trace and distribution for the “Pure LOS” con-

dition. As expected, the distribution is a normal distribution with µ = 238

and σ = 2.91. For the “LOS+NLOS” scenarios, there are some peaks that

would lead to localization errors, c.f. Fig. 6.12c-6.12j. To highlight the behav-

ior hidden underneath the environmental noise, a moving average filtering

(white line) is shown. Except for the chipboard, which has a minimal effect

due its low reflection coefficient and diffuse reflection, all the other materi-

als have bimodal distributions. These bimodal distributions have different

trends, but all distributions are clearly distinguishable from the “Pure LOS”

case. As an example, glass produces a sharper reflection than metal or ply-

wood. Here sharp means that the incoming signal at the receiver has fast

slopes when the object enters the illuminated area. This property can be

evaluated from the histogram since the received signal, when glass is con-

sidered, has two well separated groups of values (i.e. bimodal distributions,

see Fig. 6.12d). Instead, signals related to metal or plywood interference

have smoother transitions (Fig. 6.12e and Fig. 6.12h). Finally, chipboard is

the less reflective object of this sets as the received signal and its histogram

look very close to the “Pure LOS” condition. The important insights are

that these bimodal distributions are i) a representation in the time domain

of the channel impulse response, and ii) solely caused by the slopes, not by

the plateau (which only adds samples to the main AWGN, Additive White

Gaussian Noise, distribution), and thus the system is size-independent.
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Figure 6.12: Typical raw signal for “LOS+NLOS” condition with sample

materials. Left to right: raw data and smoothed signal (sample number on

x-axis and sample value on y-axis), histogram (sample value on x-axis and

number of occurrences on y-axis).
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6.6.3 Statistical analysis

As said previously, the algorithm should try to exploit the peculiar char-

acteristics of the variation in the received signal when light bounces on a

given surface. With the constrain of using a given sequence of RSS samples

collected with low-cost receivers, here it is proposed to look at the statisti-

cal moments up to the 4-th order as candidate observables to monitor the

channel transitions of the NLOS component, and identify those material

properties. Apart from the mean µ, and the standard deviation σ, then the

skewness skew (third order) and the kurtosis k (fourth order) are considered.

skew = E

[(
X − µ
σ

)3
]
, (6.1)

where E is the expectation operator, Kurtosis is a measure of whether the

data are heavy-tailed or light-tailed relative to a normal distribution. That

is, data sets with high kurtosis tend to have heavy tails, or outliers. Vice

versa, distributions with low kurtosis tend to have light tails, or lack of

outliers. Whereas the kurtosis k is:

k = E

[(
X − µ
σ

)4
]
. (6.2)

The reference standard is a normal distribution, which has k = 3. The

skewness gives the amount and direction of skew (departure from horizontal

symmetry), and kurtosis gives how tall and sharp the central peak is, relative

to a standard bell curve (i.e. normal distribution) [17]. Since only low-

computation solutions are considered, in here Higher-Order Statistics (HOS)

are not taken into account because the higher the moment, the harder it is to

estimate. Moreover, larger sample intervals are required in order to obtain

estimates of similar quality. This is due to the excess degrees of freedom

consumed by the higher orders. Finally, due to the higher powers, HOS are

significantly less robust than lower-order statistics.

6.6.4 Identifying NLOS samples

The detection of NLOS component in the signal depends on the statistical

properties of the signal itself. As observed in the previous section, the infor-

mation the algorithm wants to exploit lies in the transition between LOS and

“LOS+NLOS”. Therefore, the region of interest (ROI) is computed to select
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Figure 6.13: Typical signal cropped in the region of interest (ROI); sample

number on x-axis and sample value on y-axis.

the subset of significant samples by searching for changes in the signal [48].

Here, a change in the signal is given by a significant variation of a statistical

moment.

The ROI is selected by taking the part between the rising and falling edge

and the same amount of signal before and after the statistical variation.

This procedure of interval selection is performed in order to not alter the

ratio between the LOS and “LOS+NLOS”, and consequently, its statistical

properties. Starting from the whole traces of Fig. 6.12, the signal is processed

for detecting regions of interest (with a double passage back and forth, there

are two ROIs) and only one ROI (since their symmetry) is selected. As

examples of this procedure, the ROI for three different materials are shown

in Fig. 6.13.

6.6.5 Assessment of observables to identify reflections

As a statistical analysis is performed, in Fig. 6.14 is shown the trend of

each observable (µ, σ, skewness and kurtosis) over distance (“step number”,

where the step is constant, see Section 6.5). Since they feature different

kinds of reflection, only values for glass and metal are discussed as the most

interesting examples. By analyzing the results, it can be noted that µ and σ

follow the same trend for both sample materials. Their values decay expo-

nentially to the pure LOS value along distance and the only difference is in

magnitude. For example the metal sample reflects more than the glass one

for its particular reflective properties, bringing a strong NLOS component

over all the steps. Something more peculiar can be stated for skewness and

kurtosis.

In the experiment involving glass, skewness tends to zero more quickly
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Figure 6.14: Statistical parameters µ (Fig. a-c), σ (Fig. d-f), skewness

(Fig. g-i), kurtosis (Fig. j-l) and comparison among “Pure LOS” (a, d, g,

j), “LOS+glass” (b, e, h, k) and “LOS+metal” (c, f, i, l). Step number on

x-axis and statistical parameter value on y-axis.
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Table 6.2: Example values of skew and k

Condition skew k

Pure LOS 0.18 6.32

LOS+metal 1.05 2.41

LOS+rwood 0.67 2.08

LOS+glass 0.64 1.77

LOS+wfoam 0.55 2.20

LOS+rwood 0.17 4.92

with respect to the one related to metal. Glass produces a reflection more

directive than metal and only in a determined position along the movement.

This is why the NLOS due to glass (specular-like) is lost after a few steps,

becoming indistinguishable from noise. The trend for kurtosis is very differ-

ent among the experiments. While in the case of metal it is quite constant

just below 3, in the case of glass, it converges to 6 along distance (i.e. when

the reflection contribution becomes weaker). Skewness and kurtosis values

for all the scenarios acquired at “step 1” are reported in Tab. 6.2. As previ-

ously stated, “Pure LOS” condition can be identified very well by exploiting

these two parameters and also an estimation of different types of reflection

can be given. In particular, it can be stated that specular-like and diffuse-

like reflection implies unique characteristics. The chipboard sample has very

close values to the “Pure LOS” since it absorbs almost all the light and it

does not produce a significant reflection, even at the closest distance. On

the other hand, when a reflective material is far, the introduced NLOS com-

ponent becomes weaker. This can be observed by looking at Fig. 6.15 in

which, as the distance increases (marker dimension in the plot decreases),

all the “LOS+NLOS” scenarios (all the markers but circles) tend to look the

same, approaching the “Pure LOS” (asterisks) condition. Therefore, after a

certain distance, identification cannot be performed anymore. However, in

those cases, reflection due to a specific material leads to a very weak contri-

bution and the generated noise into the system can be considered negligible.

Another important aspect to verify is the statistical analysis dependence

from the object speed. The sample object is moved at the maximum speed

(v1 = 1.5 km/h) and, subsequently, at half the speed (v2 = 0.75 km/h).

As it can be seen from Fig. 6.16, the ROIs have the same data distribution
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Figure 6.15: ”Pure LOS”, “LOS+NLOS” characteristics along distances and

“Movement” (mean values for each step).
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Figure 6.16: Example of object (plywood) passage at different speeds. Left to

right: ROI (sample number on x-axis and sample value on y-axis), histogram

(sample value on x-axis and number of occurrences on y-axis).

with same statistical values (skewness = 0.72, kurtosis = 2.11). This result

fulfills the need to make the analysis speed independent. We note note that

i) the absolute value of both histograms is different, because the larger the

number of samples, the slower the object goes, and ii) speed independence

will hold as long as the number of samples taken is large enough to contain

the properties of the movement. This occurs as long as the movement is

sufficiently slow compared to the sampling rate.

6.7 Multipath detection proposal

We start this section by solving the remaining problem of discerning valid

RSS changes (P1), and then introduce a low-cost decision tree algorithm to

learn which RSS sequences are caused by reflections.
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6.7.1 Relative movement of devices

As seen until now, a quick object passage produces a reflection which can

lead to a significant amplitude signal variation. As shown in Sec. 6.4.2 a rel-

ative linear movement between devices cannot be distinguished easily from

an object. Here relative movements are investigated for understanding if a

statistical analysis is still valid in detecting them. This is helpful to make

sure that the presented solution does not remove information about the real

position of the devices. A set of relative movements (approaching or moving

away devices) at five different speeds is acquired. Figure 6.17 shows four

tests performed at different speeds (v1 = 1.5 km/h and v2 = 0.38 km/h).

Raw data look specular as the reflective object approaches or moves away at

the same speed. Skewness assumes positive and negative values with respect

to the direction of the movement, but overall both the considered statistical

parameters have very similar values to those related to “LOS+NLOS” con-

ditions, as seen in Fig. 6.14. For this reason, a way for discriminating the

relative movement of devices is needed.

By considering that dynamics change fast in mobile environments and a

certain NLOS component may last over a short period of time, an option

would be to introduce a time metric. But this would come at the cost of a

speed dependent measure, which is undesired. Here instead it is proposed to

use as metric the sum of the difference between consecutive samples, called

“isMov”:

isMov =

N∑
i=2

(xi − xi−1) (6.3)

which gives an intuition on how the system is at the end of the measuring

window compared to the beginning. If they are very different, the system

has changed. Else, the system relative distance did not change significantly.

This let the algorithm distinguish between a signal variation which returns

to the same value of the beginning after a fast perturbation (like the one

coming from a reflection) and an increased final value. Typical values of

“isMov” are relative high (always above 100) only for relative movements.

This avoids that devices are relatively moving are not confused with a LOS

to “LOS+NLOS” transition (see Fig. 6.15).
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(d) Backwards at speed v2 - skew =

0.21, k = 1.43.

Figure 6.17: Typical signal for a linear movement towards and backwards

the transmitter; sample number on x-axis and sample value on y-axis.
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6.7.2 Insights

Skewness and kurtosis, contrary to the first and second moment, are in-

dependent of signal intensity, and they can be efficiently used as features

in a classification model where three classes are discerned: “Pure LOS”,

“LOS+NLOS” and “Movement”. Figure 6.18 shows a scatter plot of skew-

ness vs kurtosis vs “isMov”. Here, the “LOS+NLOS” class aggregates all

the different materials in the tests. It can be observed that classes are well

separated as the “Pure LOS” and “Movement” persist in a very limited area.
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Figure 6.18: Scatter plot skewness vs kurtosis - “Pure LOS”/“LOS+NLOS”.

6.7.3 Multipath detection

Here the algorithm to detect NLOS components in fully dynamic scenarios

is introduced. A supervised machine learning classifier is chosen in order

to classify different scenarios. The technique exploits a Decision Tree (DT)

algorithm to let low-cost devices take advantage of NLOS recognition. DTs

are easy to interpret, fast for fitting and prediction, and low on memory

usage, but they may have low predictive accuracy. In particular, here, a

coarse tree is used as it has a simple structure, fast prediction speed, small

memory usage and low computational cost [62,76]. The exploited classifica-
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tion model is shown in Fig. 6.19. As mentioned before, it is a coarse tree

algorithm with only two decision nodes. It uses only kurtosis and “isMov”

as predictors since they are sufficient for discriminating the three labels (or

classes): “Pure LOS”, “LOS+NLOS” and “Movement”.

isMov	>=	185.326	isMov	<	185.326	

k	>=	5.50279	k	<	5.50279	

Pure	LOS	

Movement	LOS	+	NLOS	

Figure 6.19: Coarse tree classification model.

For training the classification model, a data set (A) of 1320 collected ob-

servations (200 traces for each NLOS scenario and 120 for movement) is used.

A 5-fold cross validation is employed for avoiding an overfitted training. The

model has an accuracy of 100%. Finally, for testing the trained classification

model, another different data set (B) of 660 collected observations (100 for

each NLOS condition, 60 for movement) is used.

From Tab. 6.3, it can be seen how the model performs in discerning among

classes. In particular, “Pure LOS” and “Movement” are always detected

correctly. The “LOS+NLOS” class instead suffers the condition in which the

NLOS contribution is very poor, and the classification model fails to detect

it, with an error up to 26.8%. More in detail, plots of Fig. 6.20 show results

when the model is tested with dataset B. Figure 6.20a reports the error along

the distance of the passing object when all the steps and all the materials are

considered, whereas Fig. 6.20b shows the error with all the steps included,

but chipboard is not taken into account. The difference is very noticeable

since in the first case, starting from the closest step, chipboard is predicted as

“Pure LOS”. Therefore, as expected, there are conditions with low predictive

accuracy. Yet, we will show in Sec. 6.7.4 that in the scenarios where there is

a higher likelihood to fail, the localization system does not suffer from the
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Table 6.3: Confusion matrix, model trained on data set A and tested on

data set B.
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Figure 6.20: Classification model error with distance.

error in the detection algorithm.

Using the results obtained in Sec. 6.7.3, a NLOS removal algorithm design

is possible. This algorithm detects and corrects the NLOS components that

appear in moving environments. As input, the algorithm takes the raw data

from the ADC. Data are statistically analyzed and the NLOS detected using

the analysis introduces in Sec. 6.7.3. Then, the NLOS component is removed,

as explained in the following.

6.7.4 NLOS removal

After the statistical analysis, it is known if the signal contains a NLOS

component. In order to remove it, the algorithm computes the moving av-

erage (MA) of the signal (which is given by all the components, LOS and

LOS+NLOS), removes it from the signal, and it finally adds the median (M)
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Figure 6.21: Function block of the algorithm implemented.

of the signal (only given by LOS components). That is:

Filtered signal = RAW −MA+M (6.4)

The function block of the algorithm can be found in Fig. 6.21.

6.7.5 Algorithm Evaluation

In order to derive the performance of the NLOS removal algorithm, here, it is

analysed and tested with the same data set used for localization in Fig. 6.2 of

Sec. 6.4.1. As it can be seen in Fig. 6.22 and Tab.6.4, the localization error is

always below 2%7 and the accuracy increases up to 93%. The reason why the

error stays low even if the relative power of the NLOS component changes is

that the removal algorithm works better with higher NLOS components. In

fact, when the NLOS component is low (i.e. the reflective material is far),

the removal does not work very well, but the effect on the localization is, as

seen in Sec. 6.4.1, negligible.

Fig.s 6.23 and 6.25 show the significant difference in terms of position

accuracy among conditions and reflector distance. Overall the impact of

the correction algorithm is higher when the NLOS component is stronger.

In general since the system can discern, and consequently operate, among

“Pure LOS”, “LOS+NLOS” and movement, good results can be achieved.

A prove of this is that the worst accuracy (after filtering out reflections) is

1.32 cm.
7Percent distance error means the positioning error w.r.t. the ground truth, that is

equal and fixed to 70cm.
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Figure 6.22: Distance calculation error after applying correction algorithm

(glass = shiny glass, metal = grey satin metal, rwood = chipboard, swood

= plywood, wfoam = foamcore).

Table 6.4: Position accuracy (worst cases)

Condition W/o correction [cm] With correction [cm] Improvement [%]

Pure LOS 0.58 0.58 0

LOS+glass 5.15 1.32 74.3

LOS+metal 11.79 0.8 93.2

LOS+rwood 1.5 1.06 28.8

LOS+swood 4.7 0.7 85.3

LOS+wfoam 3.94 0.99 74.8

Finally the CDF (Cumulative Distribution Function) of the distance er-

ror is given in Fig.6.25a and Fig.6.25b, for positioning without and with

correction respectively. By focusing on the second plot, it can be seen that

with the correction algorithm the accuracy is below 1 cm almost 80% of the

time.



6.7 Multipath detection proposal 95

LO
S

LO
S+g

la
ss

LO
S+m

et
al

LO
S+r

w
oo

d

LO
S+s

w
oo

d

LO
S+w

fo
am

Condition

70

72

74

76

78

80

82

E
s
ti
m

a
te

d
 T

X
-R

X
 D

is
ta

n
c
e

 [
c
m

]

(a) Position accuracy based on different condition.

20 25 30 35 40 45 50 55 60 65

Reflector Distance [cm]

70

72

74

76

78

80

82

E
s
ti
m

a
te

d
 T

X
-R

X
 D

is
ta

n
c
e
 [
c
m

]

(b) Position accuracy based on different reflector distances.

Figure 6.23: LPS accuracy without correction algorithm.
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(b) Position accuracy based on different reflector distances.

Figure 6.24: LPS accuracy with correction algorithm.



6.7 Multipath detection proposal 97

0 2 4 6 8 10 12

Estimated TX-RX Distance Error [cm]

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Without correction algorithm.

0.4 0.6 0.8 1 1.2 1.4

Estimated TX-RX Distance Error [cm]

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) With correction algorithm.

Figure 6.25: CDF of distance error.
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Chapter 7

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

7.1 Summary of contribution

The main contributions of this PhD thesis are: a preliminary study of a

simple propagation VLC channel and the design and the implementation of a

VLC transceiver for vehicular applications (Chapter. 5), and the introduction

of a multipath detection-and-removal for LPS (Chapter. 6). The former is

a preliminary work which lead to an outdoor vehicular link characterization

proposal which exploits an LED-based traffic light for broadcasting messages

towards vehicles. Results show that a Lambertian model that takes into

account the ground reflection component fits well the experimental data and

that the spatial distribution of the errors between the real measurements

and the model is satisfactory. The latter presents a new multipath detection

technique for positioning with light that does not require the knowledge of

the channel impulse response, and that it is suited to be implemented in low-

cost positioning receivers that use a single photodiode. With the introduced

technique, the selected positioning algorithm accuracy increases up to 93%.

This research topic has been carried out during an 11-month internship at

the IMDEA Networks Institute (Leganés, Madrid, Spain).
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7.2 Directions for future work

Two main guidelines are envisioned for continuing investigating the contri-

bution introduced in this dissertation. The Infrastructure-to-Vehicle VLC

link characterization with LED-based Traffic Light needs to be performed

since, as mentioned in Sec. 5.1, in this thesis, only the preparatory work is

presented. Basically two topics can be pursued and consist of:

1. an extensive Infrastructure-to-Vehicle experimental test campaign in

realistic environments;

2. in realistic scenarios affected by multipath, processing of the acquired

experimental data with the “filtering reflection” algorithm introduced

in Chapter 6.

Finally, the NLOS removal technique for LPS needs to be improved and

tested in different scenarios, including, for example, more reflective materials

and device rotations.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Conferences and Workshops

1. L. Mucchi and F. S. Cataliotti and L. S. Ronga and S. Caputo and Thesis

Author. “Experimental-based propagation model for VLC”, in 2017 Eu-

ropean Conference on Networks and Communications (EuCNC), Oulu (Fin-

land), 2017.

Submitted

1. Thesis author, A. Galisteo, M. Zuniga, L. Mucchi, D. Giustiniano. “Fil-

tering Out Reflections in Low-cost LED-based Positioning Systems”, 2019

IEEE International Conference on Computer Communications (INFOCOM),

2018.

National Conferences

1. Thesis Author. “Channel Modeling for Vehicular Visible Light Communi-

cations”, in GTTI, Poster Session, Udine, Italy, 2017.

1The author’s bibliometric indices are the following: H -index = 3, total number of
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