
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN STATISTICA
CICLO XXXI

Sede amministrativa Università degli Studi di Firenze
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Abstract

Tree-based methods refer to a class of predictive models largely employed in many
scientific areas. Regression trees partition the variable space into a set of hyper-
rectangles, and fit a model within each of them. They are conceptually simple, ap-
parently easy to interpret and capable to deal with non linearities and interactions.
Random forests are an ensemble of regression trees constructed on subsamples of
statistical units and on a subset of explanatory variables randomly selected. The
prediction is a combination of this kind of trees. Despite the loss in interpretability,
thanks to their high predictive performance, random forests have achieved great
success. The aim of this thesis is to propose a class of models combining a linear
component and a tree, able to discover the relevant variables directly influencing
a response. The proposal is a semilinear model that can handle linear and non
linear dependencies and maintains a good predictive performance, while ensuring
a simple and intuitive interpretation in a generative model sense. Moreover, two
different algorithms for estimation, a two-stage estimation procedure based on a
backfitting algorithm and one based on evolutionary algorithms are proposed.
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Introduction

Regression trees (Breiman et al., 1984) are a class of predictive models used in
many scientific areas, such as artificial intelligence, engineering, information tech-
nology, medicine, epidemiology, bioinformatics, marketing and psychology. These
models are appealing as they easily deal with non linearities and interactions.
To this aim, regression trees based on the CART algorithm lead to a piecewise-
constant representation of the regression function trough the recursive partitioning
in binary split of the explanatory variable space. Moreover, these models are par-
ticularly appreciated for being easy interpretable, if small, due to the diagram
that represent the partition selected by the algorithm as a tree. Because of this
diagram, regression trees are sometimes used to select the relevant variables or risk
factors, which are interpreted as directly influencing the response variable (see, for
example, Karaolis et al., 2010). From regression trees introduction, many other
tree-based models have been developed to move on from their first formulation,
for example oblique trees (Murthy et al., 1994) and conditional inference trees
(Hothorn et al., 2006).

Alongside the vast work on regression trees, another class of predictive models,
the so-called ensemble methods, have been developed in the past decades. These
methods are based on the basic idea of using weak multiple learners and then
combine their predictions. Ensemble algorithms are usually significantly more
accurate in prediction than single learners. Thanks to their high performance,
ensemble methods have achieved great success. A representative example of en-
semble methods are the random forests (Breiman, 2001). This algorithm combines
several individual regression trees computed on samples of units and on a subset of
explanatory variables randomly selected. Random forests inherit from regression
trees the ability of handle non linearities and interactions. Despite their perfor-
mance, ensemble methods have an important drawback: they are in essence a black
box, as they lose the easy interpretation of regression trees. The interpretability
of these models raises lot of interest in the scientific community, strengthened fur-
ther from European new regulations. In fact, the European Parliament recently
adopted the General Data Protection Regulation AA.VV. (2016), introducing the
right for all individuals to obtain a meaningful explanation of the logic involved in
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the decision making automatic algorithms. When these algorithms are employed
in real contexts it is important to know if they induce biases and prejudice, leading
to unfair and wrong decisions (Guidotti et al., 2018).

The aim of this dissertation is to study a class of models based on trees, able
to discover the relevant variables, determinants or risk factors directly influencing
a response. As one of the major drawback of regression trees is their difficulty in
handle linear relationships, the class of model adopted here is particularly ade-
quate in case of linear and quasi-linear relationships, maintaining a good predictive
performance while ensuring a simple and intuitive interpretation.

This dissertation is organized as follows.
Chapter 1 gives a brief overview of regression trees and the CART algorithm

(Breiman et al., 1984), their extensions such as oblique trees (Murthy et al., 1994),
conditional inference trees (Hothorn et al., 2006), treed regression (Alexander and
Grimshaw, 1996) and evolutionary trees (Grubinger et al., 2011), random forests
(Breiman, 2001), their extensions such as extremely randomized trees (Geurts
et al., 2006) and reinforcement learning trees (Zhu et al., 2015), and Bayesian
additive regression trees (Chipman et al., 2010).

Chapter 2 presents some pitfalls for which the utilization of regression trees
and random forests gives erroneous information about the data generating process.
These pitfalls are due to the greedy search of the CART algorithm.

In Chapter 3 the Semilinear regression trees (SRT) is presented to overcome
these pitfalls. SRT are able to treat both linear and non linear relationships, and
are easy to interpret prediction rules. SRT integrates a linear and a tree com-
ponent in a semiparametric model, whose parameters can be estimated via two
new algorithms. The first proposed algorithm is a two-stage estimation proce-
dure based on a backfitting algorithm (Buja et al., 1989). The second proposed
algorithm is based on evolutionary algorithms (Grubinger et al., 2011).

Chapter 4 presents a Monte Carlo study and a real data study to asses the
estimation and the predictive accuracy of the proposals and to compare them with
the existing algorithms.

Some concluding remarks are reported in Chapter 5.



Chapter 1

Tree-based learning methods

1.1 Introduction

Regression trees (Breiman et al., 1984) are a class of predictive models used in
many scientific areas, such as artificial intelligence, engineering, information tech-
nology, medicine, epidemiology and bioinformatics.

Tree-based methods are conceptually simple, useful for interpretation yet pow-
erful for outcome predicting. They partition the variable space into a set of hyper-
rectangles, and fit a model within each of them. One of the most popular algorithm
for tree-based regression and classification is Classification and Regression Trees,
CART (Breiman et al., 1984). The CART algorithm recursively finds a binary
partition of the explanatory variable space that leads to an accurate piecewise-
constant representation of the regression function. Since classification problems
are out of the scope of this dissertation, for a detailed decription of classification
trees see Breiman et al. (1984) and Hastie et al. (2009).

The history of regression tree algorithms begins from the very first regres-
sion tree algorithm, which is Automatic Interaction Detection (AID) (Morgan and
Sonquist, 1963), that chooses the split that minimize the squared deviation in
two nodes. The result is a piecewise constant estimate of the regression function.
Then, THAID (Morgan and Messenger, 1973) algorithm extends the idea of AID
to categorical response. CHAID (Kass, 1980) employs a kind of stepwise regres-
sion for split selection. C4.5 Quinlan (2014) is an extension of the ID3 algorithm
Quinlan (1986). In this case, the split are binary only for continuous explana-
tory variables, whereas for categorical values the number of split is equal to the
number of categories of the variable involved in the split. FACT (Loh and Vanich-
setakul, 1988) performs a recursive linear discriminant analysis, which generates
linear splits. As a result, the algorithm splits each node into as many nodes as
the number of classes. To obtain splits, FACT uses the F-tests of ANOVA to
rank the explanatory variables. Then the LDA is applied to the most significant

13
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variable to split the node. QUEST (Loh and Shih, 1997) uses an F-tests only
for continuous variables, while for categorical variables it employs a contingency
table chi-squared tests. CRUISE (Kim and Loh, 2003) is a descendent of QUEST.
The difference is in the splitting in multiple nodes, which number depends on the
number of distinct values of the response variable.

Even if regression trees do not boast the maximum predictive performance,
they are nevertheless appreciated for being easily interpretable (see, among others,
Wolfson and Venkatasubramaniam, 2018), because of the accompanying recursive
diagram depicting as a tree the partition selected by the algorithm.

Random forests (Breiman, 2001) is an ensemble algorithm based on an aver-
age of regression trees each of which is based on randomly selected explanatory
variables and bootstrapped units. Random forests exhibit higher predictive perfor-
mance and lower predictive variability than regression trees, but the interpretation
of the results is less straightforward, being based on variable importance measures.

Bayesian Additive Regression Trees, BART (Chipman et al., 2010), are a sum
of tree models where each tree is constrained by a regularization prior to be a
weak learner. Fitting and inference are done via an iterative Bayesian backfitting
MCMC algorithm. Actually, BART reach excellent empirical performances that
are considerably superior with respect to other tree-based algorithm. Moreover,
another strength is the uncertainty quantification in the model.

In this Chapter, three tree-based methods will be presented: regression trees,
random forests and BART. After a brief review of the original models proposed
respectively by Breiman et al. (1984), Breiman (2001) and Chipman et al. (2010),
more recent development in these methods will be presented.

Throughout this thesis, I will consider X = (X1, . . . , Xp) as a vector of ex-
planatory variables taking values in X ≡ Rp and Y a response variable with values
in R. I suppose also to observe an iid sample of n units from this population, and
(Xi, Yi)train, with i = 1, . . . , ntrain, will be the training set or learning sample, with
which the prediction rule is constructed, and (Xi, Yi)test, with i = 1, . . . , ntest,
will be the test set, with which the prediction rule is validated. Later I will call
the training and the test set (X,Y )train and (X,Y )test.

1.2 Regression trees

Regression trees are a class of non parametric predictive models that leads to
a piecewise-constant representation of the regression function. One of the most
popular algorithm to find a partition of the explanatory variable space is the
CART algorithm (Breiman et al., 1984).

Definition 1.2.1. Given a training set, a regression tree T (X) is a tree structured
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(a) (b)

Figure 1.1: A graphical representation of a regression tree by a tree on the left (a)
and by the corresponding partition on the right (b).

predictor that, trough the recursive partitioning in binary split of the space X of
explanatory variables, predicts the response Y as a constant.

A regression tree model can be represented by a binary tree, see Figure 1.1(a).
The tree is constructed by repeated split of X , starting from X itself, called
root node. Then root node is divided in two disjoint subsets, called nodes. After
the recursive partitioning, the terminal nodes or leaves form a partition of X .
The construction of the tree moves around three elements: the splitting rule, the
stopping rule, and the prediction rule.

Definition 1.2.2. The splitting rule refers to the choice of the split variable Xj

at the split point s, which is the variable Xj that most decrease the Mean Square
Error (MSE) of the tree MSE = E(Y − T̂ (X))2.

Definition 1.2.3. The stopping rule is the criterion with which a node is declared
terminal.

Definition 1.2.4. The prediction rule for a regression trees with splitting rule
defined in 1.2.2 is the average of Y falling into each terminal node.

The algorithm stops the recursion when a minimum value of observations (gen-
erally 5) is in the node.

The regression tree model is

T (X) = T (X;RY ,µ) =
M∑
m=1

µRmI(X∈Rm) (1.1)

where RY = (R1, . . . , RM) is a binary recursive partition of X : X = ⋃M
m=1Rm,

µRm = E(Y |X ∈ Rm), the means of Y within the terminal regions (or nodes),
are the values that minimize the MSE of the tree, and I(X∈Rm) is the indicator
variable of the elements within the partition.
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CART algorithm starts from the root node and divides the explanatory variable
space in two half-plains: R1(j, sj) = {X : Xj ≤ sj} and R2(j, sj) = {X : Xj > sj}.
Then, the variable Xj at the split point s∗ that most decrease the MSE of the tree
is selected by solving

min
j,s

min
ζ1

∑
Xj∈R1

(Y − ζ1)2 + min
ζ2

∑
Xj∈R2

(Y − ζ2)2

 (1.2)

where the inner minimization gives ζ̂1 = µ̂R1 and ζ̂2 = µ̂R2 . In that way, the best
split and variable is the one that most successfully separates the high and the low
response.

However, exploring all the possible partitions is computationally infeasible.
For this reason, the CART, a top-down greedy approach, has been proposed by
Breiman et al. (1984). The CART algorithm is summarized in Algorithm 1. It
begins from the top of the tree, where all the units belong to the same node,
and then successively splits the predictor space in two new nodes, from which the
splitting procedure is repeated. The search is named greedy because at each step
the procedure is conditioned to the previous step, rather than looking ahead and
picking a split that will lead to a better tree in some future step.

Algorithm 1: Pseudo Algorithm for regression tree building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Regression tree

1 Initialization: all observations in the ROOT NODE;
2 Stopping rule = 0;
3 Node = 0;
4 for root node to nodes do
5 repeat
6 for j = 1 to p do
7 for s = 1 to S do
8 find the variable Xj at split point s∗ that minimize the MSE

of the tree;
9 end

10 end
11 partition the data in two nodes;
12 compute the mean of Y within the node;
13 Save → NODE
14 until #i 6 5→ Stopping rule = 1;
15 end

The size of the tree plays an important role: a large tree may overfit the data
while a short tree may not capture important patterns in the dependence structure.
The strategy proposed in the CART is to grow a large tree, and then prune it back
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collapsing some node of the tree on the basis of a complexity measure.

Definition 1.2.5. The Cost Complexity measure Cα is defined as

Cα(T ) = Dev(T ) + α|M | (1.3)

where Dev(T ) is the deviance at a node of the tree, |M | is the number of terminal
nodes of the tree T, and α ≥ 0 is the complexity parameter governing the trade-
off between tree size and the goodness of fit. Small values of α lead to a large
tree, instead larger values lead to smaller trees. The choice of α in order to select
the best pruned subtree can be done adaptively by k-fold cross-validation. This
approach involves randomly dividing the observations into k groups, or folds, of
approximately equal size. The first fold is treated as a validation set, and the
search is made on the remaining k − 1 folds.

Variable importance

Since one of the strengths of trees is the highly interpretability, an interesting
question is which variables are the most important. Breiman et al. (1984) defined
a measure, the variable importance (VI) , which reflects the relative importance,
or contribution, of each input variable in predicting the response. If it is simple to
think about the contribution of a splitting variable like the relative improvement
in the deviance of the model, more difficult can be rank those variables that
never occur in the tree structure. With this aim, the variable importance can be
computed with the support of the surrogate split.

Let X̃j define the surrogate variable, which is a variable that most accurately
predicts the action of the best split s on Xj selected by the CART algorithm.

Definition 1.2.6. The measure of VI of Xj is defined as

V I(Xj) =
∑
m∈T

∆Dev(T )Xj∪X̃j (1.4)

where m are the terminal nodes of the tree T and ∆Dev(T )Xj∪X̃j represents the
decrease of the deviance done by Xj and it surrogate. If there exist more than one
surrogate variable for Xj at any node, use the one with larger ∆Dev(T ) in (1.4).
The measure of importance of variables generally used are normalized quantities,
100V I(Xj)/maxj V I(Xj), so the most important feature has measure 100, the
others are in the range from 0 to 100.

Link with the single factor model

An interesting, unconventional, point of view links a regression tree to a single
factor regression model and ANOVA, in case of Gaussianity.
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In the regression tree model of (1.1) ∑M
m=1 I(xi∈Rm) = 1 as the terminal nodes

of the tree are mutually exclusive and collectively exhaustive regions. Therefore it
is possible to estimate the regression tree as a single factor regression model with
the intercept term is set to zero in order to obtain

E(Y |X) = µ1IX1∈R1 + · · ·+ µMIXj∈RM (1.5)

where the indicator functions define a factor with M levels.

Figure 1.2: An example of regression tree with 3 terminal nodes.

As example, let us write the vector of the partitions that define the regression
tree in Figure 1.2

R =
(
I(X∈R1), I(X∈R2), I(X∈R3)

)
.

With the OLS estimator (R′R)−1R′y we obtain:

(R′R)−1R′y =


1
n1

0 0
0 1

n2
0

0 0 1
n3



∑

X∈R1 Y∑
X∈R2 Y∑
X∈R3 Y

 =


1
n1

∑
X∈R1 Y

1
n2

∑
X∈R2 Y

1
n3

∑
X∈R3 Y


that are exactly the µ̂Rm estimates for (1.1).

As consequence of this point of view, in case we assume the Normality of
the error term we have the access to a large number of statistical tests (or we
can construct confidence intervals) that can be employed in trees, for example to
construct a pruning procedure based on a parametric test.

1.3 Extensions to regression trees

The advantages of regression trees over many other methods are their ability to
include a relatively large number of independent variables and to identify complex
interactions among these variables. In addition, regression trees can easy deal with
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(a) (b)

(c) (d)

Figure 1.3: Trees struggle in modelling steep structures: (a) scatterplot of ex-
planatory variables with a nonlinear dependence; (b) the regression tree surface
relative to (a); (c) scatterplot of explanatory variables with a linear dependence;
and, (d) the regression tree surface relative to (c).

missing data with trough the surrogate variables. Moreover, the simple graphic
representation of the model contributes to its wide use in applications. In fact, the
CART algorithm is largely employed in many scientific areas, such as medicine,
genomic, social science, etc. Some example of application can be found in Crichton
et al. (1997), Fan et al. (2006), Valera et al. (2007) or Lemon et al. (2003).

However, regression trees are not without drawbacks. They struggle in mod-
elling steep structures, since they need to perform many splits to recreate a linear
dependence. For example, in Figure 1.3 two different situations are illustrated: in
(a) the dependence among Y and X is non linear, while in (c) the dependence
is linear. The relative tree partitions in (b) for the non linear structure and (d)
for the linear structure show that in the second case the tree algorithm performs
much more splits than in the first one.

A further problem is the high variability of the trees. Often a small perturba-
tion in the data can result in a very different series of splits that can compromise
the utility of the trees in interpretation or prediction accuracy.

The depth of the tree is an important tuning parameter of the tree structure.
Deep trees may result in very small sets for the estimates in the terminal nodes,
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which may cause overfitting. In addition, the interpretability become difficult
when trees are very large.

The tree structure can easy shows interactions between variables, but a large
tree may give over-importance to these interactions.

Moreover, most of the algorithms for tree building are based on a greedy re-
cursive partitioning, which is essentially a forward selection of variables. An error
in the selection of the variables at the first stage will propagate in all the tree
structure. This issue will be investigated in the next chapter. Another impor-
tant drawback relative to the greedy search is that it is not guaranteed to find an
optimal solution. Actually, in most of the cases it reaches a local solution.

Many attempts have been made in order to try to overcome these limits, and
the scientific community expanded the research on trees. In next paragraphs, some
recent development on regression trees will be presented.

Trees via linear regression models

A difficulty in extending the greedy search of CART to piecewise multiple linear
regression models is the increase in computational complexity. Alexander and
Grimshaw (1996) avoid this difficulty by retaining the greedy search, but fitting a
simple linear regression model within each terminal node. These trees are called
treed regression models. The algorithm consists in the greedy search of the splitting
variables, which minimize the MSE of a linear regression within the partition. For
the linear regression, each independent variable is evaluated as regressor one at a
time. According to the authors, treed regression models are more parsimonious
than classical regression trees models because they result in shorter trees. Again,
the disadvantage is the greedy nature of the algorithm. Moreover, these models
evaluate the marginal effect of each variable rather than the conditional effect.

A related approach, suggested by Chaudhuri et al. (1994) and Loh (2002),
is to avoid the use of the greedy search and fit a piecewise multiple linear re-
gression model with standard statistical methods. See, for instance, Smoothed
and Unsmoothed Piecewise-Polynomial Regression Trees, SUPPORT (Chaudhuri
et al., 1994) and in Generalised, Unbiased, Interaction Detection and Estimation,
GUIDE (Loh, 2002).

SUPPORT is an algorithm that fit a multiple linear regression model to the
training data (X,Y )train. Each residual from this model is assigned to one class,
according to its sign. Therefore two groups are identified, and two tests for dif-
ferences in mean and variances of the two groups are performed for each Xj. The
explanatory variable with the smallest p-value in one of the two tests is selected
to be the splitting variable, and the splitting point is computed as the average of
the two class means.
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(a) (b)

Figure 1.4: Example of parallel (on the left) and oblique (on the right) partitions.

The GUIDE algorithm adopts a similar philosophy as SUPPORT. In fact, it
has been proposed to solve the limitations of SUPPORT, such as the exclusion of
categorical predictors and the inability to detect pairwise interactions. Therefore
the algorithm proceeds first obtaining the residuals from a linear regression model,
then performing a series of Chi-square tests among both continuous and categorical
predictors. The most significant explanatory variable is the splitting variable.
Both the sample mean and the sample median of the splitting variable can be
employed as splitting point.

The use of regression models and statistical tests for the tree construction is
the strength of these algorithms. Unfortunately the lack of implemented functions
for statistical software as R or Pyton limited their use.

Oblique trees

As a further extension of CART, Murthy et al. (1994) defined a class of models
called oblique decision trees. Essentially, oblique trees are a more general form of
axis parallel trees. In fact, instead of axis parallel hyperplanes, the oblique trees
use non parallels, or oblique, hyperplanes to partition X .

An example of oblique partition can be find in the right panel of Figure 1.4.
Here each node of the tree is delimited by an hyperplane that can take any orien-
tation in the explanatory variable space. More precisely, the oblique splits can be
defined as linear combinations of the X explanatory variables of the form

p∑
j=1

ωjXj + ωp+1 ≥ 0

where the ω1 . . . ωp+1 are real-valued coefficients.
Oblique trees are useful when the true decision boundaries are not aligned with

the variable axes. However, one of the major drawback is the time complexity
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of the algorithm, which makes the exhaustive search for the best oblique split
impractical. Recently Wickramarachchi et al. (2016) proposed a new algorithm
called HHCART to overcome this problem. Notice that this literature is specific
to classification problems, whereas for regression problems the oblique trees have
not been developed yet.

Trees via conditional inference

The conditional inference trees, Ctree have been proposed by Hothorn et al. (2006)
as a method to tackle the problems of overfitting and selection bias toward ex-
planatory variables with many possible splits or missing values. Since the recursive
partitioning is done after a statistical test to asses the independence of each covari-
ate and response variable, Ctree are so called unbiased recursive partitioning. The
test uses a linear statistic to measure the association between Y and Xj, which
distribution depends on the joint distribution between Y and Xj, not known in
most practical circumstances. Anyway, under the null hypothesis the dependency
can be recovered by fixing the covariates and conditioning on all possible permu-
tations of the responses. This follows a test procedures known as permutation
tests (Fisher, 1935). In the algorithm of Ctree, the conditional expectation and
covariance under the null hypotesis given all permutations are computed following
the theory of Strasser and Weber (1999). In addition, a multiple testing correction
is implemented: if the strongest association measure passes a statistical threshold,
a binary split is performed at that corresponding input variable. Otherwise the
node is set as terminal node. The Ctree algorithm is summarized in Algorithm 2.

The advantage of Ctree lies in the use of a well-defined theory of permutation
tests to select the splitting variable, which can reply to the need of a statistical
approach to recursive partitioning that takes into account the distributional prop-
erties of the splitting criterion (White and Liu, 1994). However, notice that in
case of continuous predictors and response, the permutation test is equivalent to a
test on correlations. Therefore the splitting variable is chosen on the basis of the
marginal correlation between the response and the explanatory variables, which
may leads to trees that do not reflect the real structure of the data generating
process (an example will be treated in the next chapter).

Trees as convex optimization problems

In recent years, the statistical community has been very interested in formulat-
ing predictive models as problems of convex optimization. Convexity constraints
are familiar in many fields such as economics, statistics, operations research and
financial engineering.
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Algorithm 2: Pseudo Algorithm for conditional regression tree building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Conditional inference regression tree

1 Initialization: all observations in the ROOT NODE;
2 Stopping rule = 0;
3 Nodes = 0;
4 for root node to nodes do
5 repeat
6 for j = 1 to p do
7 Test the independence between X and Y ;
8 Splitting variable ← Xj;
9 for s = 1 to S do

10 find split point s∗ of X that minimize the MSE of the tree;
11 end
12 end
13 partition the data in two nodes;
14 compute the mean of Y within the node;
15 Save → NODE
16 until #i 6 5→ Stopping rule = 1;
17 end

Hannah and Dunson (2013) introduce the convex adaptive partitioning. They
consider a regression model Y = f0(X) + ε, where ε is a random variable with
0 mean, and f0 is a convex function, that is f0(X1) + (1 − δ)f0(X2) ≥ f0(δX1 +
(1 − δ)X2) for every X1, X2 ∈ X and δ = (0, 1). Therefore, f0 is estimated
subject to the convexity (or concave, taking the negative of the convex function)
constraint. The algorithm, called convex adaptive partitioning (CAP), models the
convex function f0 through a series of hyperplanes by an adaptive partitioning of X
similarly to SUPPORT (Chaudhuri et al., 1994), described in Section 1.3. Thus,
for a given partition of X , it simply fit an OLS based on all the observations
within the partition and choose the model that minimize the MSE. Then, the
partitions are refined in two step. First, the set of candidate binary splits is
generated within the existing partition. A linear model is fitted within the new
partitions and the one that minimize the global MSE is chosen. Then, the new
partition induced by hyperplanes is used to generate a new model. With these two
simple rules, the adaptive partitioning and the refitting, the authors demonstrate
to produce a gain comparing on treed regression models. Consistency of CAP
has been demonstrated. However, the application of this method is indicated for
complex problems described by functions in multiple dimensions.

Petersen et al. (2016) propose a non-greedy procedure whose fit has a block
structure like CART. This method, called CRISP, predicts the response Y by
assuming a model Y = f(X) + ε, where ε is a random variable with 0 mean. The
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function f is estimated to be constant within the partition in bins of the variable
space X . The bins are constructed to be at the mean of a pair of covariates within
the quantile range of the observed variables. This produces a grid of values Γ
which is estimated by solving a convex optimization problem

min
Γ

1
2

n∑
i=1

(Y − Ω(Γ,X))2 + λ(Γ)

where Ω extracts the element of Γ corresponding to the bin of the observation
X. The estimate is penalized by λ, which is chosen to encourage neighbour bins
have the same values. This procedure is nice in the non-greedy estimation of the
function. It would be interesting to extend the estimation of the function within
the bins to other functions, for example the kernel functions. This could led to an
estimated smoothed function instead of an estimated piecewise-constant function.

Trees via evolutionary algorithms

As an alternative to greedy recursive partitioning methods that estimate the re-
gression model in a forward search, evolutionary algorithms (EA) can be adopted
to obtain a globally optimal trees, as proposed in Grubinger et al. (2011).

EA are inspired by the principles of genetics and natural selection. In nature,
individuals continuously evolving and constantly adapting to their living environ-
ment. In EA, each individual represents a candidate solution to a problem. At
each generation, individuals are evaluated by a fitness function, and the best in-
dividuals have a high probability to be selected for reproduction. The operations
proposed to the selected individuals are inspired by genetics, like mutation or
crossover. More details on EA can be found in (Back, 1996).

Grubinger et al. (2011) propose evtree, an evolutionary algorithm to learning
regression trees.

Recall the regression tree of (1.2) and define θ = (X1, s1, . . . , XM−1, sM−1) the
vector of the splitting variables and splitting points associated with a tree with
M terminal nodes, and ΘM the product of all the possible combinations of the
elements of θ. Evtree estimates a collection of trees which are simultaneously and
iteratively modified in a stochastic way. Therefore, the overall parameter space is
Θ = ⋃Mmax

M=1 ΘM , where Mmax is the maximum number of parameters obtainable.
The goal of the algorithm is to estimate the vector θ that optimize the trade-off
between the prediction task and the complexity of the tree. In case of regression
trees, it means to find the set of splitting variables and points which minimizes
the MSE of the tree with a complexity parameter which penalize the complex tree
structures.

The evtree algorithm starts from the initialization of each tree with a valid
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Figure 1.5: The variation operator in an evtree: grow, prune and mutation refers
to moves that can be done to perturb a single tree, while crossover takes two trees
and exchange the structure of one of their subtree.

randomly generated split rule in the root node. The first splitting variable X1

is randomly chosen with uniform probability 1
p
. The split point s1 is randomly

chosen with uniform probability 1
u−1 , where u are distinct values of X1. Then, at

every iteration, each tree is selected one at a time to be modified by a variation
operators. The variation operators are split, prune, mutation, and crossover. The
first two rules are essentially similar to the splitting rule in definition 1.2.2 and
the pruning rule of (1.3) for regression trees. Split selects a random terminal node
and performs an additional split. As consequence, the number of terminal nodes
of the tree become M +2. Prune selects a random non-terminal node and drop its
two successor nodes. Mutation is divided in major split rule mutation and minor
split rule mutation. In the first case a non-terminal node is randomly selected and
its splitting variable and splitting point are changed. In the second case, only the
splitting point is changed. Crossover is the unique move that select randomly two
trees. Then, it exchanges two branches, or subtrees, between the selected trees.
In Figure 1.5 all these possible moves are represented.

Finally, the accuracy of trees is evaluated by the MSE with a BIC-type com-
plexity penalty

MSEBIC = n log(MSE) + compθ (1.6)

compθ = λ · 4 · (M + 1) · log n

where M + 1 is the number of estimated parameters, taking into account the
estimates of mean parameter for each of the terminal nodes and the constant
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error variance term. With λ = 0.25 the criteria is equivalent to the BIC used by
Fan and Gray (2005), up to a constant. A conservative value of λ = 1 is suggested
by the authors due to the fact that the effective number of parameters is higher
considering the selection of the splitting variables and points (see for discussion
Gray and Fan (2008)).

Algorithm 3: Pseudo Algorithm for Evtree building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Evolutionary regression tree

1 nTrees= L;
2 niter=N ;
3 Stopping rule: fixed % of trees stabilize over niter;
4 Initialization: all observations in the ROOT NODE;
5 construction of l trees with a randomly generated split rule in the root node;
6 for niter = 1 to N do
7 for l = 1 to L do
8 Alter a tree by selecting a variation operator;
9 Evaluate each tree with the MSE-BIC measure;

10 find split point s∗ of Xj that minimize the MSE of the tree;
11 Save Tree;
12 end
13 end

Since the number of trees is decided a priori, during the evolution, only a
fixed subset of trees can be kept in memory. Evtree employs a deterministic
crowding approach, that is the comparison of each tree is limited only to its most
similar successor. The algorithm stops when the quality of the 5% of the best
trees stabilizes for 100 iterations, but not before 1000 iterations. The tree with
the highest value of the evaluation function is returned. The process of evtree
construction is summarized in Algorithm 3.

As a comment, notice that Evtree searches over all the parameter space Θ,
that becomes too large even for medium size problems. A complete search would
be computationally infeasible. Compared to the trees constructed by a forward
stepwise search, this approach allows to search a solution in larger space of poten-
tial trees. On the other hand, the algorithm is very slow even for relative small
number of explanatory variables, limiting its use.

Boosting trees

Generally, boosting algorithms combine weak learners into a single strong learner
in an iterative way. When regression trees (Section 1.2) are chosen as weak learner,
a boosted regression tree (Friedman, 2001) is defined as
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TBoost(X) =
K∑
k=1

T (X;Rk,Y ,µk) (1.7)

where K is the number of trees fitted, each one with associated regions Rk,Y and
mean parameters µk. The boosted tree model in (1.7) is induced in a forward
stagewise manner (Hastie et al., 2009). At each step, the algorithm solves

arg min
(Rk,Y ,µk)

N∑
i=1

Ψ(Yi, fk−1(Xi) + λTk(X,µk)) (1.8)

where Ψ is the loss function. The solution to (1.8) is simply the regression tree that
best predicts the current residuals Yi−fk−1(Xi) plus the mean of these residuals in
each corresponding region of the Tk tree. Note that each tree in (1.8) is penalized
by a shrinkage factor to avoid overfitting. For more details on this procedure see
Hastie et al. (2009). The boosting algorithm for regression trees is summarized in
Algorithm 4.

Algorithm 4: Pseudo Algorithm of boosting for regression tree
Data: {Yi,Xi}, i = 1, . . . , n
Result: Boosting for regression tree

1 Initialization: T0 = 0;
2 Residuals res0 = Y − T0;
3 for k = 1 to K do
4 Fit a tree to the training data (resk−1,X);
5 Update T̂k = T̂k−1(X),+λT̂k(X;Rk,resk−1 ,µk) ;
6 Compute the new residuals resk = resk−1 − T̂k
7 end
8 Compute the boosted tree model estimate
T̂Boost(X) = ∑K

k=1 T̂k(X;Rk,resk−1 ,µk)

A well-known problem in the context of boosting (Freund, 2001) is the risk of
overfitting. In fact, trees added at later iterations tend to impact the prediction
of only a few cases, and make a minor contribution towards the prediction of all
the remaining data.

Rashmi and Gilad-Bachrach (2015) propose the Dropouts meet Multiple Addi-
tive Regression Trees, DART, as a possible answer to the problem of overfitting
in boosting trees. In fact, the most common approach employed also in Friedman
(2001) or Friedman (2002) is to reduce the contribution of a new tree added by
shrinkage factor. In DART the technique of droputs (utilized for example in Wa-
ger et al. (2013)) is employed. When computing the (1.8) at each iteration, only
a random subset k′ < k of the existing ensemble of trees is considered. Moreover,
when adding a new tree to the ensemble, a normalization step is performed. This
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step consists in scaling the new tree by a factor 1
k′

such that the new tree will
have the same order of magnitude as the dropped trees. This results in a balanced
effect of the dropped trees together with the new tree.

1.4 Random forests

Breiman (2001) propose the random forests, an ensemble method that combines
several individual regression trees such that each tree depends on a random vector
of units sampled independently and with the same distribution for all trees in the
forest. The rationale behind ensemble methods is that combining the prediction
of many trees leads to a significant increase in the predictive performance as
compared to the performance of a single tree.

The idea of random forests was inspired by bagging, or bootstrap aggregation
(Breiman, 1996), that consists on drawing a collection of training sets from the
population by a random selection without replacement, then building a separate
prediction model using each training set and averaging the resulting predictions.
The key concept of random split selection is find also in Ho (1998), where multiple
trees are constructed in randomly chosen subspaces, and in Dietterich (2000),
where at each node of the tree the split is random selected from a number s of
best splits. Finally, the work that influenced substantially the ranfom forests idea
was the paper of Amit and Geman (1997) about shape recognition of image data.

Definition 1.4.1. A random forest for regression is a predictor consisting of a
collection of trees constructed on a bootstrapped sample of the original data using
a random selection of the explanatory variables.

The algorithm of random forests begins with sampling with replacement nh
units from the original learning set: only the sampled units are employed for a
tree construction. Each random sample reflects the same data generating process,
but differs slightly from the original training sample because of random variation.
Then, the growth of H trees is done as in CART, with the peculiarity that only a
subset of dimension l < p of variables is considered at each node of the construction
of the tree. The random forests predictor is

Trf(X) = T (X∗h;RYh,n∗ , µh,n∗) = 1
H

H∑
h=1

T (X∗h;RYh,n∗ ,µh,n∗)) (1.9)

where H is the total number of trees in the forest, X∗h denotes the random subset
of explanatory variables sampled for each node of the hth tree in the ensemble,
RYh and µh are respectively the regions and the mean on the bootstrapped sample
that defines the hth tree. Therefore, the number of randomly preselected splitting
variables and the total number of trees in the forest are parameters that affect
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the stability of the results of random forests. The process of random forests
construction is summarized in Algorithm 5.

Algorithm 5: Pseudo Algorithm for random forest building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Random forest

1 Initialization: h = H;
2 for h = 1 to H do
3 Select n∗ observations with or without replacement uniformly in (Y,X);
4 repeat
5 Select uniformly, without replacement, a subset l < p of predictors;
6 Select the best split according to the regression tree procedure;
7 Split the data in two nodes;
8 until #leaves < nmin;
9 Compute the predicted value as the average of Y falling in each

terminal node
10 end
11 Compute the random forest estimate T̂rf(X)

An important feature of random forests is their use of out-of-bag samples, the
bootstrapped data which are not used to fit the trees, for the out-of-bag error
estimates.

Definition 1.4.2. The out-of-bag estimate, OOB is calculated by predicting
the real value for each observation in the train set (Xi, Yi)train by using only the
trees for which this observation was not included in the bootstrap sample.

As proved by Breiman (1996), the out-of-bag estimates are as accurate as using
a test set with size equal to the training set. Therefore the use of the out-of-bag
estimates removes the need of splitting the data in training and test set. The out-
of-bag estimates are important also for their use in variable importance measures,
described in the next section.

Variable importance

As regression trees, random forests can be used to rank the predictive importance
of the variables. Two measures are available: the Mean Decrease Impurity (MDI,
Breiman and Cutler (2003)) and the Mean Decrease Accuracy (MDA, Breiman
(2001)).

Let Xj the variable for which the importance has to be evaluated. The MDI
for Xj is defined by

MDI(Xj) = 1
H

H∑
h=1

∑
t∈Th

qt∆Dev(T )
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where qt is the fraction of observation that fall in the node t, Th with 1 ≤ h ≤ H

is the collection of trees in the forest and ∆Dev(T ) represents the maximum
decreasing in the deviance obtained by the best split, according to (1.2). The
MDI computes the weighted decrease of MSE from splitting on the variable Xj,
and average that quantity over the trees of the forest.

The second measure, the MDA, relies to the permutation principle and involves
the out-of-bag estimates of definition 1.4.2. Let OOBh be the out-of-bag sample
of the hth tree. Let Xj,perm be the input variable vector where the jth variable has
been permuted, and let OOBh,perm be its corresponding out-of-bag sample. The
MDA for Xj is defined by:

MDA(Xj) = 1
H

H∑
h=1

[
1

|OOB|h,perm
(Y − Trf(Xj,perm))2

]
−

−
[

1
|OOB|h

(Y − Trf(X))2
] (1.10)

that is the average difference in accuracy of the out-of-bag versus permuted out-
of-bag observations over the H trees is the variable importance measure for Xj.

1.5 Extensions of Random Forests

The popularity of random forests, beside their predictive power, is that splitting
variables are chosen on random subsets: this make them applicable also in small n
large p problems. Moreover, random forests are capable in fitting high-dimensional
signals, both in terms of their stability and computational efficiency. As for re-
gression trees, random forests have proven to be effective across many application
areas. See for example Dı́az-Uriarte and De Andres (2006), Lunetta et al. (2004)
or Bureau et al. (2005). Interestingly, random forests have been extended to re-
gression trees not based on the CART algorithm. For example, Menze et al. (2011)
introduce random forests based on Oblique Trees, and Strobl et al. (2007) utilize
conditional inference trees for the random forests construction. However, even if
the performance of random forests is good in many contexts, the consistency has
been demonstrated only in case of independent variables, see for example Biau
et al. (2008), Ishwaran and Kogalur (2010), and Scornet et al. (2015). Moreover,
the overfitting problem may be mitigated by the use of random forests (as well as
every ensemble methods), but the difficulty to exploit smoothness in the surface
they are estimating still persists.

In next paragraphs, some recent development on random forests will be pre-
sented.
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Extra Trees

Geurts et al. (2006), propose the extremely randomized trees, Extra-Trees (ET),
a tree-based ensemble method that introduces randomization on both variable
choice and cut-point during the splitting and tree construction. The trees of the
ensemble are a collection of regression trees constructed by a top-down greedy
search, as in CART. The innovation of this algorithm is that the selection of the
split points is made fully at random. The choice of the explanatory variables is at
random, as in random forests. ET builds trees whose structures are independent
of the response variable of the learning sample. The ET model is

Tet(X) = T (X∗;R∗Yh , µh) = 1
H

H∑
h=1

T (X∗;R∗Yh ,µh)) (1.11)

where the R∗Yh denotes the regions induced by the random split. The parameters
that identify the ET are l, the number of variables randomly selected at each node,
nmin the minimum sample size for splitting a node, and H the total number of
trees. They play different roles: l determines the strength of the variable selection
process, nmin controls the strength of averaging output noise, and the total number
of trees controls the strength of the variance reduction of the ensemble model
aggregation. The algorithm proceeds as follows. First, a random subsample η of
dimension l of explanatory variable is drawn. Then, for each variable selected, a
random split point is picked. Then, the splitting variable Xj is chosen on the basis
of a score computed for each variable in η as

Scorej =
V ar(Y )− nXj≥sj

n
V ar(Y |Xj ≥ sj)−

nXj<sj
n

V ar(Y |Xj < sj)
V ar(Y ) (1.12)

that is the amount of variance reduction due to the split. The algorithm is sum-
marized in Algorithm 6.

According to the authors, the rationale behind the ET is to reduce variance
more strongly than the weaker randomization schemes used by other methods
such as bagging or random forests. Moreover, in order to minimize the bias, the
full original training set is used, rather than a bootstrap replicate as in random
forests.

The idea of the double randomization in the splitting procedure is very inter-
esting and could be insert in other kinds of models.

Reinforcement learning

Zhu et al. (2015) propose a new approach for the random forests construction
called reinforcement learning trees (RLT).
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Algorithm 6: Pseudo Algorithm for Extra Trees building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Extra Trees

1 Initialization: h = H;
2 for h = 1 to H do
3 repeat
4 Select uniformly, without replacement, a subset l < p of predictors,

η;
5 Select l split point randomly, one for each variable in η;
6 Choose the split variable and split point that give Scoremin (1.12);
7 Split the data in two nodes;
8 until #leaves < nmin;
9 Compute the predicted value as the average of Y falling in each

terminal node
10 end
11 Compute the extra tree estimate T̂et(X)

The proposed model is similar to random forests, with a special procedure of
splitting variable selection and noise variable muting, done by a reinforcement
learning mechanism (Sutton et al., 1998) at each internal node.

RLT starts with a first tree using a slight modification of the Extra Tree model
(1.5). The modification consists in applying the model to a bootstrapped sample
of the learning data as in random forests. Then, the split variable is chosen by the
MDA variable importance measure in (1.10). Since searching for a strong variable
becomes increasingly difficult moving down the nodes of the tree, a procedure
of variable muting is implemented to prevent some noise variables from being
considered as splitting variables. The variable muting consists of the allocation
of variables in the muted set or the protected set. The muted set includes the
variables with a low ranking of the variable importance. The muting rate is an
important tuning parameter of the method, which allow to control the sparsity
towards terminal nodes. The protected set includes variables used as splitting
rules. Both sets can be updated during the process. The final splitting rule
is a linear combination of the strongest variables. Therefore the reinforcement
procedure consists in growing trees excluding noise variables moving down the
depth of the tree.

According to the authors, this approach allows to concentrate the splitting
rule search process only on the strong variables at the early stage of the tree con-
struction while also reducing the number of candidate variables gradually towards
terminal nodes. This results in a more sparse tree structure, that focuses on a
smaller number of variables than a traditional tree-based model. In addition, the
authors proved the consistency of the model in case of independent explanatory
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variables.

Kernel regression forests

Scornet (2016) demonstrate how random forests can be rewritten as kernel es-
timators to obtain forests more interpretable and easier to analyse in terms of
properties. Since several properties of random forests remain unexplained, ker-
nel regression forests (KeRF) are shown to provide estimates more amenable to
mathematical analysis. The KeRF model can be written as

TKeRf(X) = T (X∗,RYh,n∗ , µh,n∗) = 1∑H
h=1N(RYh,n∗ )

H∑
h=1

T (X∗;RYh,n∗ ,µh,n∗))

(1.13)
where the weights N(RYh,n∗ ) represents the number of observation in each region
of the tree in the forest. The key idea in (1.13) lies in the weights applied to each
observation; these weights are the number of times that an observation appears
in the trees of the forests. As a consequence observations never sampled do not
contribute to the prediction.

Another example of random forests with a weighting function applied to the
trees of the ensemble can be find in Athey et al. (2018). They propose the Gen-
eralized Random Forests, which are based on the model in (1.4), except for the
weights. In this case the forests are treated as a type of adaptive nearest neighbor
estimator.

1.6 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees, or BART (Chipman et al., 2010), are bayesian
non-parametric regression models based on a sum of tree. The authors find their
inspiration among the aforementioned ensemble methods as boosting (Section 1.3),
random forests and bagging (Section 1.4). The essential idea is to regularize the
fit by imposing a prior to each tree. This leads to small effects of individual trees
as in the boosting models.

The BART model can be expressed as:

Y = f(X) + ε ≈ T1(X;RY ,µ1) + · · ·+ Th(X;RY ,µm) + ε, ε ∼ N(0, σ2I)

where there are h single regression trees, each composed by its structure defined
by the partitions RY and the parameter at the terminal nodes µm. The total num-
ber of leaves in a tree is represented by m. The model fitting and the inference
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are accomplished by a Bayesian backfitting MCMC algorithm that generates sam-
ples from the posterior distribution. Essentially the single regression trees that
compose the BART have the same structure for the splitting rules as the trees
described in CART. The sum of m terminal nodes value becomes the predicted
value of the tree. For simplicity of notation, in the next paragraph I will refer to
the tree structure with T instead of Th(X;RY ,µm)

The crucial point that distinguish BART from other ensemble methods is the
underlying probability model assumed in BART. In fact, as a Bayesian model,
BART consists of a set of priors for the trees structure and for the means of the
leaves of the trees, and a likelihood for the observations in the terminal nodes.

The priors for the BART have three components: the tree structure itself, the
parameters of the terminal nodes given the tree structure and the error variance
of the error term, which is independent from the other two priors. Therefore the
priors can be expressed as

P(T1, . . . , Th, σ
2) =

[
H∏
h=1

P(Th)
]
P(σ2) =

[
H∏
h=1

M∏
m=1

P(µm|Th)P(Th)
]
P(σ2) (1.14)

In (1.14), the prior component P(Th) affects the locations of the nodes within
the trees, thus the depth of the tree and the splitting rules associated to the
internal nodes of a tree. Nodes at depth d are nonterminal with a probability
D(1 + d)−Q, where D ∈ (0, 1) and Q ∈ [0, inf]. This prior has the function to
limit complexity structures of singles trees. For the splitting rules, the splitting
variable is randomly selected, and its splitting value is randomly chosen among
the available values via a discrete uniform distribution.

The prior component P(µm|Th) controls the leaf parameter. Typically it is
assumed that µm|Ta ∼ N(µµ, σ2

µ), where the expectation µµ is picked to be the
range center (Ymin + Ymax)/2 and the σµ is chosen empirically, so that the range
center plus or minus 2 variances cover the 95% of the response values in the
training set.

The final prior on the error variance is chosen to be σ2 ∼ InvGamma(ς/2,
ς($/2)). The choice of hyperparameters $ and ς is data-driven to assign sub-
stantial probability to the entire region of plausible values of σ, in order to avoid
overconcentration or overdispersion.

Along with the set of priors, BART specifies the likelihood of responses in the
terminal nodes, that is assumed normal with the mean being the best guess in the
leaf at the moment (i.e. in the current MCMC iteration) and variance being the
best guess of the variance at the moment.

BART algorithm now has to generate draws from the posterior distribution
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of f(T1, . . . , TH , σ
2|Y ). It employs a Gibbs sampler (Geman and Geman, 1984)

with a form of Bayesian backfitting (Hastie et al., 2000) where the hth tree is fitted
iteratively, holding all other trees constant by using only the partial residuals:

YResh = Y −
∑
t6=h

Tt(X) (1.15)

Figure 1.6: The alterations in a BART : grow consists in adding two child nodes
at a node, prune consists in dropping two child nodes, and change consists in
changing a split rule.

The Gibbs sampler proceeds iteratively drawing from (1.15) first the tree struc-
ture, then the parameter of the leaves. Finally, it sample the variance from the full
conditional. For the tree structure, the algorithm proceeds by proposing a new
tree from a perturbation of the current tree structure, and a Metropolis-Hastings
step (Gelman et al., 1995) accept or reject the new tree. The possible alterations
of the tree structure are growing terminal nodes by adding two child nodes at a
node, pruning two child nodes or changing a split rule. Notice that change rule is
allowed only on singly internal nodes of trees, that are nodes which both children
nodes ere terminal. In Figure 1.6 these moves are illustrated.

For a detailed description of the Metropolis-Hastings step see Kapelner and
Bleich (2016). In Algorithm 7, the pseudo-code for the BART building is reported.
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Algorithm 7: Pseudo Algorithm for BART building
Data: {Yi,Xi}, i = 1, . . . , n
Result: Bayesian Additive Regression Tree

1 Initialization: Residuals YResh = Y ;
2 Tree: two terminal nodes;
3 for u = 1 to U do
4 for h = 1 to H do

1. Generate a proposal tree T ∗by choosing from one of the following moves:

• GROW;
• PRUNE;
• CHANGE.

2. Accept/Reject the proposal by the Metropolis ratio and set Th;

3. Update the leaves parameters by drawing from (µm|Th, Sh, σ2);

4. Update residuals YResh

5 end
6 Update σ2 by drawing from (σ2|T1, S1, . . . , TH ,MH , ε);
7 Set Ŷu = ∑H

h=1 Th(X,µm)
8 end
9 Estimate E(f(X)|Y ) = 1

U

∑U
u=1 Ŷu



Chapter 2

Pitfalls in variable selection for
tree–based models

2.1 Introduction

The models described in Chapter 1 are appealing as they can deal with both non
linear relationships and interactions and have, apparently, an easy interpretation.

Regression trees and random forests are sometimes also used to discover the
relevant variables, determinants or risk factors, which are sometimes interpreted
as the variables directly influencing the response. This is encouraged by the mea-
sures of variable importance, where predictive importance is misinterpreted as a
generative importance. Some examples of a misleading interpretation of variable
importance are found in Karaolis et al. (2010); Ma et al. (2007); Fan et al. (2006).

This raises the question of whether an essentially predictive model can give also
information concerning the data generating process. This problem has been also
addressed in the discussion of Breiman et al. (2001) and by Shmueli et al. (2010).
In the literature (see for instance Wolfson and Venkatasubramaniam, 2018), the
discrepancy between a learning algorithm and the underlying true data generating
process is often ascribed to overfitting. The findings here presented discredit this
hypothesis detecting another source of incongruity. In this chapter, I discuss
some data generating processes based on directed acyclic graphs for continuous
variables and I show that the claimed important variables can be systematically
incorrectly identified. This issue occurs especially when there are background
variables strongly influencing intermediate variables with a direct effect on the
response. This situation may lead to an inaccurate interpretation of variable
importance in applications.

In next sections some examples of data generating process for which the vari-
able importance can give erroneous information about the true relationship among
variables are described.

37
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2.2 Identification of relevant variables: an example

As mentioned above, regression trees can provide predictions where it is possible to
identify which of the explanatory variables are most relevant to predict a response.
Consider now data generated by the directed acyclic graph (DAG) in Figure 2.1.

  Y

Figure 2.1: The generating process according to a DAG with three paths from X1
to Y .

Specifically, the variables (X1, X2, X3, X4, Y ) are generated by the equation

1 0 0 0 0
−a 1 0 0 0
−a 0 1 0 0
−a 0 0 1 0
0 −b −b −b 1





X1

X2

X3

X4

Y

 =



ε1
ε2
ε3
ε4
εY

 (2.1)

where (ε1, ε2, ε3, ε4, εY )′ ∼ N(0, I5). The (2.1) corresponds to the following regres-
sion models

Xj = aX1 + εj for j = 2, . . . , 4
Y = bX2 + bX3 + bX4 + εY .

As a consequence, model (2.1) implies that X2, X3, X4 have a direct influence on
Y , while X1 has only an indirect influence on it. Later the matrix of negative
regression coefficients on the left side of (2.1) will be denoted by L.

Interestingly, for data generated by model (2.1), for certain values of a and b,
both the CART algorithm and the random forests indicate the background vari-
able X1 as the most relevant to predict the response Y . As a matter of fact, the
predictive strategy departs from the generative model. In fact, an explanatory
variable which has an indirect effect on the response can sometimes be the most
relevant to predict the response variable. Differently, if the researcher is interested
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in discovering the variables that have a direct effect on the response, in these cases
CART and random forests variable importance could end up with misleading con-
clusions. It seems evident that variable importance provides a measure of relevance
summing up both direct and indirect effects. This confirms that interpreting the
variable importance as representative of the direct effects in a generative model
sense, as commonly done in some research fields, is incorrect. See also Breiman
et al. (2001) and Shmueli et al. (2010). In the following paragraph, it is provided
a further discussion of this issue in the case of Gaussian distributions.

First split criterion in the CART algorithm

Let (X1, . . . , Xp, Y ) be a random vector with a joint Gaussian distribution such
that (Y,Xj), j = 1, . . . , p, have a bivariate Gaussian distribution with zero means
and correlations ρY j. The basic CART algorithm for regression trees is based on
a greedy search of the best piecewise constant function on a binary partition of
the explanatory variable space. At the first step, the algorithm considers all the
variables Xj, j = 1 . . . , p and searches the variable with the minimal MSE after a
dichotomization. This corresponds to finding which choice of j and sj minimizes
the MSE of the one-factor regression model

Yi = β1 I{Xij≤sj} + β2 I{Xij>sj} + εi.

Now, under the assumption of a joint Gaussian distribution, it can be shown
that the MSE, is an increasing function of the marginal correlation ρY j between
Y and Xj for each possible cut point s. At this aim, consider the two following
results.

Proposition 2.2.1. Let (X1, . . . , Xp, Y ) be a random vector with a joint mean zero
multivariate normal distribution, and let ρY j the marginal correlations between Y

and Xj for j = 1, . . . , p. Given the dichotomized variable

W =
1 Xj > sj

0 Xj ≤ sj

then the conditional expected value of Y | W is given by

E[Y | W = w] = ρY Xj φ(sj)
(

w

Φ(−sj)
+ w − 1

Φ(sj)

)
(2.2)

where φ(·) and Φ(·) are the density and distribution function, respectively, of a
standard normal distribution.

Proof. As (X, Y ) are bivariate Gaussian distribution with zero means, unit vari-
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ances and correlation ρY Xj . Then, one can write that

Y = ρY XjX + εY.X , (2.3)

where is εY.X is has a gaussian distribution with zero mean and variance 1 −
ρ2
Y Xj

and it is uncorrelated with X. According to Cox and Wermuth (1992), the
conditional expectations of X given A can be written as

E [X | W = 1] = µ1
X(s) = φ(s)/Φ(−s)

E [X | W = 0] = µ0
X(s) = −φ(s)/Φ(s)

where φ(·) and Φ(·) are the standard Gaussian density and cumulative function
respectively. Now, for (2.3), E[Y | W ] = ρY XjE[X | W ]. Consequently,

E[Y | W = w] = ρY Xjµ
1
X ·w+ρY Xjµ0

X ·(1−w) = ρY Xj φ(s)
(

w

Φ(−s) + w − 1
Φ(s)

)
.

Figure 2.2 reports the behaviour of this expected value for several values of s
and ρY Xj .

Figure 2.2: Plot of E[Y | W ] when w = 0 (blue) and w = 1 (red), for ρY Xj = 0.75
(solid line), 0.5 (dashed line) and 0.25 (dotted line).

Proposition 2.2.2. The MSE of the prediction of Y given the binary variable W
is

MSE = E
[
(Y − E[Y | W ])2

]
= E(Y 2)− ρ2

Y j

φ(sj)2

Φ(sj)Φ(−sj)
. (2.4)
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As E(Y 2) is a constant and the factor multiplying ρ2
Y j is a function only of s,

the minimum of the MSE for a fixed s corresponds to the maximum of ρ2
Y j. The

variable Xj with the largest ρ2
Y j is selected and dichotomized, thus forming two

classes.

Figure 2.3: Plot of MSE at the first split for different values of s, when ρY Xj is
0.25 (solid line), 0.5 (dashed line) and 0.75 (dotted line).

As can be noticed in Figure 2.3, the marginal correlation between Y and an
explanatory variable uniformly determines the minimum value of the MSE, ruling
the choice of the first split.

At the second step, a similar criterion is used to select a variable and an
optimal split within the two previous regions. A high squared correlation between
the response and a specific dichotomized variable is sometimes persistent within
the classes in further steps and this may lead to an increase in variable importance.

When the data generating process follows that described in (2.1), depicted in
Figure 2.1, the correlation matrix of (X1, . . . , X4, Y ) can be obtain by the matrix
of the regression coefficients as

R =



1 a√
a2+1

a√
a2+1

a√
a2+1

3ab√
c

a√
a2+1 1 a2

a2+1
a√
a2+1

3a2b+b√
c
√
a2+1

a√
a2+1

a2

a2+1 1 a2

a2+1
3a2b+b√
c
√
a2+1

a√
a2+1

a2

a2+1
a2

a2+1 1 3a2b+b√
c
√
a2+1

3ab√
c

3a2b+b√
c
√
a2+1

3a2b+b√
c
√
a2+1

3a2b+b√
c
√
a2+1 1


,

where c = 9a2b2 + 3b2 + 1. The corresponding matrix of the partial correlation
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coefficient is

K =



3a2 + 1 −a −a −a 0
−a b2 + 1 b2 b2 −b
−a b2 b2 + 1 b2 −b
−a b2 b2 b2 + 1 −b
0 −b −b −b 1

 .

where it results that Y⊥⊥X1 | X2, X3, X4 is the only conditional independence in
the undirect graph obtained by moralizing the diamond graph. On the other side,
from the correlation matrix R, one can derive that Y⊥⊥/ X1 marginally whenever
both a and b are different from zero. The marginal correlations are

ρY 1 = 3ab√
c
, ρY j = 3a2b+ b

√
c
√
a2 + 1

, j = 2, 3, 4 (2.5)

where c = 9a2b2 + 3b2 + 1. Then, the CART algorithm at the first step chooses
the variable X1 when ρY 1 > ρY j, j = 2, 3, 4 or, equivalently, when

(b < 0 and a < 1/
√

3) or (b > 0 and a > 1/
√

3). (2.6)

Therefore, in these situations the algorithm chooses for the first split the variable
X1, which, as a matter of fact, does not directly influence Y .

Now, at the second step the CART algorithm looks for the value of k, with
k = 1, . . . , p and sk such that one of the two following one-factor regression model

Yi = β1 I{Xij≤sj}I{Xik≤sk} + β2 I{Xij≤sj}I{Xik>sk} + β3 I{Xij>sj} + εi,

Yi = β1 I{Xij≤sj} + β2 I{Xij>sj}I{Xik≤sk} + β2 I{Xij>sj}I{Xik>sk} + εi

provides the minimum MSE. Consequently, the first split choice has an important
role in the final tree as the first dichotomized variable is multiplied to each other
subsequent splitting variables. The final tree is therefore substantially depending
on the first split, which is chosen (see Proposition 2.2.2) on the most marginally
(and not conditionally) explanatory variable. A similar behaviour can be found
in a generating process involving only binary variables. This argument applies
to the trees forming a random forest, where the first splitting variable selected is
the most marginally explanatory within the randomly selected variables. This is
confirmed in the Monte Carlo simulations in Section 2.3.

Interesting situations can be found in data generating processes similar to those
presented in Figure 2.4. Both the graph Fig. 2.4(a)-(b) represents the case of a
single path from the background variables to the response Y . With these data
generating process, the CART selects as most important variable the one with the
direct effect on the response if b is not too weak, as no values of a and b guarantees a
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dominant marginal correlation between the background variables and the response.
The graph Fig. 2.4(c) represents the case of two paths from the ancestor X1 to the
response Y . With this data generating process, the CART algorithm tends to pick
at random (uniformly) the three explanatory variables for the first split, selecting
about the 25% of the times the variable with an indirect effect on Y . However,
in all the three data generating processes, the variable importance measure will
give misleading results as a increases, given to the background variables about the
same amount of importance as the variables with direct effect on the response.

X1

X2

Y

a

b

X1

X3 X4

Y

X2

a

b b

a

X1

X3X2

Y

a
a

b b

(a) (b) (c)

Figure 2.4: The generating process according to DAGs with one or two paths from
X1 to Y .

2.3 Monte Carlo study

Variable importance measures are defined specifically for each tree-based algorithm
and typically measure the predictive importance of variables. To compare the
variable importance measures I chose the following algorithms (with in parentheses
the R package used):

• CART, Breiman et al. (1984) (rpart)

• Random forests (RF), Breiman (2001) (randomForest)

• Conditional random forests (CRF), Hothorn et al. (2006) (party)

• Reinforcement Learning Trees (RLT), Zhu et al. (2015) (rlt)

• Bayesian additive regression trees (BART), Chipman et al. (2010)

(bartMachine)

To show how the variable importance measures can be misleading, I conducted
a minimal simulation with N = 1000 data sets with size n = 1000 generated from
model (2.1). The data sets are sampled from a multivariate normal distribution
with zero mean and precision matrix Σ−1 = LTL taking a = b = 3. Table 2.1
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Alg1: CART

Alg2: CTree

Alg3: Bart 1 tree

Alg4: RF

Alg5: CRF

Alg6: Bart 100 trees

Alg7: RLT

0.00 0.25 0.50 0.75 1.00
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A
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ith

m
Variable

X1
X2

Figure 2.5: Monte Carlo distributions of rescaled variable importance measures
of X1 and X2 in the 5 algorithms (CART, Ctree, RF, CRF, BART) for simulated
data generated according to the DAG of Figure 2.1.

reports the averages and standard deviations of the raw variable importance mea-
sures obtained by growing trees with default settings and no pruning.

Table 2.1: Monte Carlo averages and standard deviations (in parentheses) of vari-
able importance measures for simulated data generated according to the DAG of
Figure 2.1.

X1 X2 X3 X4

CART 704 091.2 525 987.4 526 636.9 526 591.6
(33801.7) (31162.3) (31258.9) (30479.0)

RF 194 582.0 186 209.6 186 190.0 186 160.5
(12571.1) (12816.4) (12046.2) (12221.4)

CTREE 998.9 18.3 18.4 18.2
(116.3) (5.8) (6.0) (5.6)

CRF 412.8 87.7 90.9 89.3
(27.8) (28.5) (29.3) (30.4)

RLT 41.8 2.9 2.9 2.9
(4.4) (0.6) (0.6) (0.6)

BART 0.097 0.301 0.301 0.301
(1 tree) (0.007) (0.005) (0.006) (0.006)
BART 0.096 0.301 0.301 0.301
(100 trees) (0.007) (0.006) (0.006) (0.005)

In Figure 2.5 are shown the results of the simulation as Monte Carlo distribu-
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tions of the variable importance measures for the six algorithms. The comparison
is limited to X1 and X2 as X3, X4 have a similar behaviour. To ensure compa-
rability the measures are rescaled between 0 and 1 by dividing by the maximum
observed value of the variable importance within each algorithm.

Figure 2.5 highlights that all the algorithms based on a greedy search fail to
discover the direct influence of variables X2, X3, X4 on Y and select as the most
important variable X1. With a difference: the classical random forest algorithm
essentially gives the same importance to X1 and X2 while the conditional variable
importance of CRF algorithm sharply separatesX1 fromX2 in the wrong direction.
Moreover, also RLT selects as the most important variable X1, even if its variable
importance has been proven to be consistent for independent covariates.

On the other hand, BART correctly separates the variables in the right direc-
tion and gives more importance to variable X2 as an explanatory variable.

Another simulation study has been conducted with data set generated from the
the DAG in Figure 2.4(c), as a less adverse example. Table 2.2 reports the results
according to this data generation process of the variable importance measures for
the five algorithms: CART, RF, Ctree, CRF and RLT. Also in this case both
CART and random forests fail to discover the direct influence of variables X2, X3

on Y and give the same importance to X1, X2 and X3. Conversely, Ctree, CRF
and RLT in this case select correctly X2 and X3 as most important variables.
Again, BART correctly separates the variables in the right direction and gives
more importance to variables X2, X3 as explanatory variables.

It is therefore evident how dangerous is to interpret the variables selected
by algorithms based on greedy search as representative of the generative model.
In addition, the CART algorithm is also used to identifies mutually exclusive and
exhaustive subgroups of population. The correct interpretation of these subgroups
is that units in the same subgroup share the same prediction of the response value.
However, the variables driving the individual stratification can be somehow linked
to the true risk factors, while not being a risk factor by themselves.

The pitfalls described here are probably due to the greedy search used in most
of the tree-based algorithms. The algorithms I am proposing in the next chapter
will avoid this pitfalls.
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Table 2.2: Monte Carlo averages and standard deviations (in parentheses) of vari-
able importance measures for simulated data generated according to the DAG of
Figure 2.4(c).

X1 X2 X3

CART 256 166.3 256 753.1 260 588.9
(22 979.3) (26 802.8 ) (26 944.4)

RF 112 092.3 114 561.6 114 573.3
(6 881.6) (6 626.8) (17 000.8)

CTREE 38.5 125.4 128.3
(77.7) (56.3) (57.5)

CRF 50.8 128.7 129.4
(38.5) (31.7) (31.8)

RLT 0.3 40.2 40.2
(0.2) (5.6) (5.5)

BART 0.115 0.443 0.443
(1 tree) (0.008) (0.007) (0.007)
BART 0.114 0.443 0.443
(100 trees) (0.001) (0.001) (0.001)



Chapter 3

Semilinear regression trees

3.1 Introduction

In Chapter 1, the difficulty of modelling linear structures for regression trees has
been mentioned. Indeed, the algorithms handle linear relationships between the
response and the covariate by approximating the structure of dependence with
long trees. In other words, to recover a simple type of relation among variables as
the linear dependence, a regression tree will perform lots of splits which result in
a complicated tree representation.

Chapter 2 dealt with the problem of the variable selection in tree-based models,
highlighting how the variable importance measures of these kinds of model can give
erroneous information about the generating process underlying the data structure.
This issue relates to the different goal in analysing data, the generative and the
predictive modelling as stated by Breiman et al. (2001) and Shmueli et al. (2010).
When analysing data with prediction goal, a model would be able to accurately
predict the response variable for new statistical units. When the goal is generative,
a model should be able to capture the information underlying the data generating
process.

Out of the ordinary technological usage, machine learning techniques are in-
creasingly applied in several scientific domains. Alongside this spread, an inter-
esting debate has arisen on predictive machine learning models transparency and
interpretability. See for instance Vellido et al. (2012), Doshi-Velez and Kim (2017),
Guidotti et al. (2018), among others. As noted by Doshi-Velez and Kim (2017), in
machine learning the need of a definition and rigorous evaluation of interpretabil-
ity is urgent and it represents an open scientific challenge. The European Union’s
General Data Protection Regulation (AA.VV., 2016) introduces the right for all
individuals to obtain meaningful explanations of the logic involved in an algorithm
when this algorithm makes decisions automatically.

In this chapter I study a class of tree-based models that can balance the pre-
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dictive and the generative point of view. The interest is to model jointly linear
and non linear relationships between the response and the covariates, taking into
account the requirement of interpretability. For these reasons I propose a model
that is a sum of a linear component and a tree, here called Regression Tree model
(SRT).

In the literature, examples on this kind of models can be found in Dussel-
dorp et al. (2010) and Liu et al. (2014). Dusseldorp et al. (2010) propose a new
algorithm called STIMA to estimate a model called regression trunk model (Dus-
seldorp and Meulman, 2004), which integrates a multiple regression model with
a regression tree. In Liu et al. (2014), the authors developed a new graphical
model, called sparse tree-embedded graphical model, which is able to capture both
linear and non linear associations among predictors. The construction of the as-
sociations of the graphical model is based on an integration of a generalized linear
model with a regression tree.

I propose two different kinds of model estimation procedures: a two-stage
estimation procedure based on a backfitting algorithm (Buja et al., 1989) and an
estimation procedure based on an evolutionary algorithm (Grubinger et al., 2011).

The chapter is organized as follows: in Section 3.2 I propose the Semilinear
Regression Tree model, while Sections 3.3 and 3.4 depict the two model estimation
procedures for SRT.

3.2 Semilinear Regression Tree model

In this section I am going to study a class of model, here called Semilinear Regres-
sion Tree model TSRT (X), that is characterized by a the sum of a linear regression
and a regression tree. Let X = (X1, . . . , Xp) be a vector of explanatory variables
and Y be a response variable, and suppose to observe an iid sample of n units
from this population. I consider modelling E(Y |X) by TSRT (X), that is

E(Y |X) = TSRT (X) = T (X;β,RY ,µ) = β1X1 + · · ·+ βpXp + T (X;RY ,µ) =

= β1X1 + · · ·+ βpXp +
M∑
m=1

µRmI(xi∈Rm).

(3.1)

The model is characterized by a first part that is a linear component without
intercept, with β1, . . . , βp unknown parameters associated with the Xp explana-
tory variables. The second part of the model is a regression tree, with µ and RY

unknown parameters. I propose two estimation procedures of the unknown pa-
rameters, one iterative and one simultaneous. These procedures will be presented
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in the next sections.
Notice that the model in (3.1) is a special case of the partial linear model

(Härdle et al., 2012) that employs a tree model for the nonparametric part. The
partial linear model is a semiparametric model largely employed in the econo-
metric field. Suppose to separate the vector of the explanatory variables X =
(X1, . . . , Xp) into U = (U1, . . . , Up) and W = (W1, . . . ,Wp). The regression of Y
on X = (U ,W ) is assumed to be

E(Y |U ,W ) = U ′β + f(W ) (3.2)

where f(·) is an unknown function of the vector W . Thus the partial linear model
is a sum of a purely parametric part U ′β and a purely nonparametric part f(W ).
By assuming a regression tree T (X;RY ,µ) for the nonparametric part, the SRT
model of (3.1) is obtained. This specification of the model will be useful for the
two-stage estimation procedure of Section 3.3.

Model (3.1) differs from a regression tree because of the inclusion of the linear
part. Instead of a piecewise constant estimate, a piecewise-linear approximation of
the conditional expectation is obtained, with slopes capturing the main direction of
the dependence. This aspect makes this model particularly useful for quasi-linear
dependence shapes. Two examples in three dimensions of the surface estimated by
the classical regression trees and the Semilinear regression trees on two different
simulation data are illustrated in Figure 3.1.

The SRT model differs also from treed regression model of Section 1.3, because
here there is only one model estimated for all the regions, while in treed regression
model several regressions, one for each region, have to be estimate.

The rationale behind this model is to capture separately the linear and the
non linear effect of the covariates through the estimate of a single model. The
linear part will capture the main direction of dependence, while the tree part will
capture interactions and non linearity. This is the crucial aspect of my proposal,
and not only important to recover the dependence structure of the data generation
process. In fact, the choice to sum an additive linear part to a tree component
helps to keep small the tree, with few splits describing interactions and non linear
terms. This point is particularly important for the interpretability of the proposed
model. The estimates of the β parameters are simply interpreted as in the linear
regression model, and the tree structure gives an immediate representation of the
interaction terms, which are not complicated to interpret given that the tree will
be possibly shorter.

In the literature, some particular case of the more general model proposed
in (3.1) can be found in Dusseldorp et al. (2010) and Liu et al. (2014). In the
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(a) (b)

(c) (d)

Figure 3.1: Two examples on two different simulation data of regression functions
in three dimensions: in (a) and (c), piecewise-constant surfaces obtained with a re-
gression tree; in (b) and (d), piecewise-linear surfaces obtained with the Semilinear
regression tree.

remaining of this Section, I am going to introduce these models along with the
estimation algorithm.

The STIMA algorithm

STIMA, is an algorithm to estimate a regression trunk model, that is a model
which integrates a regression model and a regression tree. The goal of STIMA
is to search for higher order interaction effects that can be added to a linear
regression model with main effects of the predictors (Doove et al., 2014).

Let Y be a continuous response and Xj, with j = 1, . . . , p a set of continuous
predictors. The model can be defined as

E[Y |X] = β0 +
p∑
j=1

βjXj +
M−1∑
m=1

βp+mI((X1, . . . , Xp) ∈ Rm).

where M denotes the total number of terminal nodes. Notice that one region serves
as reference group. Consequently, M − 1 is the total number of regions included
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in the model. The intercept parameter for the reference region RM is β0, while
β0 +βp+m are the intercept coefficients for the other regions Rm, m = 1, . . . ,M−1.
The slopes are denoted by βj, and allow different predicted values for units in a
same region, in contrast to regression trees where all subjects in the same region
receive the same predicted value.

The learning procedure works as follows. At the first step, the model considered
is the linear model with M = 1

E[Y |X] = β0 +
p∑
j=1

βjXj.

The model parameters are estimated via OLS. In the successive step, STIMA
determines the first split variable and the split point. This is done estimating for
all the covariates Xj and all over each split points s∗

E[Y |X] = β0 +
p∑
j=1

βjXj + βj+1I(Xj∗ > s∗).

where the indicator function represents a binary split of the data on the basis
of predictor Xj∗ at the point s∗. The chosen variable is the one that induces the
highest increment in the explained variance (minimum MSE). Call X1 the first Xj∗

chosen. The splitting procedure is repeated within the binary partition defined by
X1 at s1 with exhaustively searching among all the covariates. Again, the reference
model is updated by choosing the model that gives the highest increase in the
explained variance. The splitting continues until no further improvement in the
explained variance is possible. To avoid overfitting, at each step, a procedure of V -
fold cross validation is implemented to obtain the predicted values. Once a large
model has been constructed, the tree is pruned using a V -fold cross-validation.
Specifically, choosing V , the number of subsets for the cross-validation (CV) and
a parameter % = [0, 1] used in %-SE rule to select final regression trunk used,
the size of the best pruned tree is chosen by selecting the subtree that minimize
the sum of the relative cross-validated error RECV

m and the standard error of a
regression with m splits, that are

RECV
m =

∑V
v=1

∑
i∈(Y,X)test(Y v

i − Ŷ v
i )2∑N

i (Yi − Ȳ )2
(3.3)

SECV
m =

√∑N
i=1[(Yi − Ŷ cv

i )2)−N−1∑N
i=1(Yi − Ŷ cv

i )2)]2∑N
i (Yi − Ȳ )2

. (3.4)

In (3.3), the sum is over all the V cross-validated subsets and all over the i units
of the test set in the corresponding cross-validated subset. Therefore Y v

i are
the observations in the v − th subsets, and Ŷ v

i are the predicted values in this
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subset. In (3.4), the Ŷ cv
i is the vector of the sums of the predicted values from

all test sets Ŷ v
i . Let RECV

m∗ be the size of the model with lowest RECV
m . The

size of the pruned model m∗∗ corresponds to the minimum value of m such that
RECV

m∗∗ ≤ RECV
m∗ + %SECV

m∗ .
In summary, STIMA creates a sequence of nested regression models with the

purpose of reducing the bias by capturing the interactions among variables. The
innovation of STIMA is in the simultaneous estimation of the linear part and the
tree model by a linear regression model.

The STIMA algorithm is summarized in Algorithm 8.

Algorithm 8: Pseudo Algorithm for regression trunk building by STIMA
algorithm

Data: {Yi,Xi}, i = 1, . . . , n
Result: Regression Trunk model

1 Initialization: Fit a linear regression with main effect
E[Y |X] = β0 +∑p

j=1 βjXj;
2 Exhaustive search among all Xj of the first split variable and split point;
3 First model: E[Y |X] = β0 +∑p

j=1 βjXj + βj+1I(Xj∗ > s∗) ;
4 repeat
5 Search among all Xj of the split variable and split point within the

binary partition;
6 Select the model that gives the highest increase in the explained

variance;
7 Predict E[Y |X] by a V -fold cross validation.
8 until no further improvement in explained variance;
9 Obtain the final model
E[Y |X] = β0 +∑p

j=1 βjXj +∑M−1
m=1 βp+mI((X1, . . . , Xp) ∈ Rm).

Sparse tree-embedded graphical models

Liu et al. (2014) define a graphical model able to detect both linear and non linear
associations. They propose an algorithm based on a combination of a regression
model and a regression tree. As my interest is in how the authors construct the
algorithm for the associations detection, I will focus the attention on this part
rather than in the graphical model. Moreover, in next paragraphs I am explaining
the estimation procedure as described in Liu et al. (2014) and the modified version
implemented in the R functions made available by the authors.

Let Y be a continuous response and Xj, with j = 1, . . . , p be the continuous
predictors. The conditional expectation of the response is assumed

E[Y |X] = g(βTX + γT (X;RY , µ)) (3.5)
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where βTX is a the linear part, T (X;RY , µ) is the regression tree part and γ is
a parameter that measures the effect of the tree. The link function g depends on
the type of X, here assumed to be the identity.

The aim is to model separately linear and non linear effects. To discover the
association between Y and X the set of parameters to estimate are the nonzero
β and the RY and µ that identify the tree. This is done by an iterative fitting
algorithm that combine the LASSO estimate of the linear part and the CART
algorithm for the non linear part of the model in (3.5). The authors employ
the existent package RPART and glmnet in their algorithm. The procedure starts
with an estimation of the tree on Y . The β parameters and the tree T are then
estimated alternately. The predicted values from the tree enter in the LASSO
as an offset. Then the tree is estimated via the RPART routine. In the function
implementation, the usual CART splitting procedure is replaced by a splitting
procedure proposed by the authors (Therneau, 2018). Hence, the search of the
splitting point is done along the direction of maximum reduction of the negative
likelihood of a linear model of Y on the predicted values of the LASSO model as
offset. The algorithm proceeds until no further change are observed on the tree
structure. The estimation process is summarized in Algorithm 9.

Algorithm 9: Pseudo Algorithm to discover association in STGM
Data: {Yi,Xi}, i = 1, . . . , n
Result: β̂t, γ̂t, T̂ t−1

1 Initialization: Convergence= false ;
2 t=0;
3 Fit a tree via RPART to obtain Ŷtree;
4 repeat
5 Fit a LASSO regression E(Y |X) = offset(Ŷtree) +Xβ ;
6 Obtain ŶLASSO;
7 Fit a tree via RPART (authors splitting function);
8 If T t = T t−1 → Converge=TRUE;
9 until Convergence= true;

3.3 A new two-stage estimation procedure

The model of (3.1) could be useful to capture both linear and non linear asso-
ciation. Moreover, the employment of well-known estimation methods can lead,
without a stronger computational effort, to performances competitive with most of
the algorithms described in Chapter 1. My estimation proposal is to combine the
least square estimate and the regression tree estimate in a backfitting two-stage
iterative algorithm.
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Let τ = 0, . . . , t be the iteration number. The algorithm works as follows.

1. Initialize the tree at the mean of the response variable

T̂ (0)(X; R̂Y , µ̂) = Ȳ .

2. Compute the centred values of Y

Y
(1)
ct = Y − T̂ (0)(X; R̂Y , µ̂). (3.6)

3. Fit the model Ŷ (1)
ct = X ′β + ε by the OLS as (X ′X)−1X ′ŷ

(1)
ct to obtain

Ŷ
(1)
ols .

4. Compute the residuals given the linear model

Ŷ (1)
res = Y − Ŷ (1)

ols . (3.7)

5. Estimate the tree model to obtain

T̂ (1)(X; R̂
Y

(1)
res
, µ̂) =

M∑
m=1

µ̂R̂mI(xi∈R̂m).

6. Use the predicted values from step 5 Ŷ
(1)
tree = T̂ (1)(X; R̂

Y
(1)
res
, µ̂) to compute

the new centred values of Y , Y (2)
ct .

7. Repeat from step 2 to step 6 until the end of iterations t or convergence is
reached.

8. Obtain E(Y |X) = X ′β̂(t) + T̂ (t)(X; R̂
Y

(t)
res
, µ̂)

The tree estimate can be performed with four different algorithms (with in
parentheses the R package used): CART (rpart), conditional inference tree (party),
evolutionary trees (evtree), and random forests (randomForest). Some details
on the setting will be given in Chapter 4. Note that in step 5 of the two-
stage algorithm, if randomForest method is employed, the estimate changes in
T̂rf (X; R̂Yres , µ̂, B) as from (1.4). The pseudo-algorithm is reported in Algorithm
10.

Essentially, the proposed estimation procedure is similar to that of the par-
tial linear model in (3.2) with a backfitting approach (Härdle et al., 2012). The
backfitting (Buja et al., 1989) was originally proposed as an iterative algorithm
for fitting additive models. The key idea of backfitting is to regress the additive
components separately on partial residuals. Here this idea is followed, computing
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Algorithm 10: Pseudo Algorithm of backfitting for an iteratively two-stage
estimator of the Semilinear regression tree

Data: {Yi,Xi}, i = 1, . . . , n
Result: Two-stage Semilinear regression tree

1 Initialization step: Tree fit initialized to the mean of Y :T̂ (X; R̂Y , µ̂) = (Ȳ );
2 for t=1 to niter do
3 Compute centred values Yct = Y − T̂ (X; R̂Y , µ̂) ;
4 Fit the least square regression of Yct on X to obtain Ŷols = X ′β̂;
5 Compute residuals: Yres1 = Y − Ŷols;
6 Fit the regression tree of Yres1 on X and obtain Ŷtree = T̂ (X; R̂Yres1

, µ̂);
7 Update T̂ (X; R̂Y , µ̂) = Ŷtree
8 end
9 Compute Ŷ = Ŷols + Ŷtree.

iteratively the partial residuals from one of the components of the SRT model
to obtain the estimates of the other. Specifically, let us rewrite the Semilinear
regression tree in (3.1) in the form of the partial linear model of (3.2)

Y = X ′β + T (XTree;RY ,µ) + ε (3.8)

where X and XTree play the roles of U and W respectively, and the regression
tree function T (·) plays the role of the nonparametric function f(·). The error
component ε is assumed to have zero mean and finite variance. By taking the
expectation conditioned on XTree

E(Y |XTree) = E(X ′β|XTree) + E{T (XTree)|XTree}+ E(ε|XTree) (3.9)

and by subtracting (3.9) from (3.8) on obtain

Y − E(Y |XTree) = {X − E(X|XTree)}′β + ε− E(ε|XTree)

since E{T (XTree)|XTree} = T (XTree). By definition, E(ε|X,XTree) = 0, and it
can be shown that E(ε − E(ε|XTree)) = 0 holds by applying the law of iterated
expectations.

Therefore, once one of the two components of the SRT model is obtained, that
is β or T , the computation of the other can be carried out by the backfitting
approach. This is accomplished by subtracting X ′β from Y to obtain

E(Y −X ′β|XTree) = T (XTree). (3.10)

Hence the β parameters can be estimated by OLS. This occurs in step 3 of the
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proposed algorithm. PluggingX ′β̂ in (3.10) yields to the regression tree estimated
model T̂ (XTree). Then, as

E(Y − T̂ (XTree|X)) = X ′β

the β are updated given T̂ (XTree) and so on. These are the steps 4 and 5 of the
proposed algorithm.

Therefore, the SRT model

E(Y |X,W ) = X ′β + T (XTree)

consists of only two additive components. Denoting by P the projection matrix
P = X(X ′X)−1X ′ and a S a smoother matrix, backfitting mean to solve

Xβ = P (Y − T )

T = S(Y −Xβ)

As a consequence, the estimation procedure proposed is a backfitting algorithm
for an iteratively two-stage estimator. Because of its iterative nature, theoretical
results for backfitting have not been well explored and for my proposal are under
investigation. However, Opsomer and Ruppert (1999) provides the asymptotic
properties of semiparametric additive models both when the nonparametric com-
ponent is univariate ad multivariate. In case of univariate nonparametric model,
they give the asymptotic approximation of the conditional bias and variance of β̂
in case of local linear regression as smoother. In addition, Mammen et al. (1999)
proved the consistency and calculated the asymptotic properties under weaker
conditions when using kernel regression smoothers for the estimation of the non-
parametric component. The properties of my proposal are under study noticing
that the regression trees can be seen as a particular method for constructing re-
gressograms (Tukey, 1947), that is a particular linear smoother, see Wasserman
(2006).

3.4 A new evolutionary estimation procedure

The evolutionary estimation procedure is proposed with the aim to treat simulta-
neously the linear and the tree part of the model in (3.1). Moreover, this innova-
tive estimation method merges several notions described in Chapter 1, and tries
to overcome the pitfall presented in Chapter 2.

Recall that (see Section 1.2) a regression tree can be written as a single factor
regression model. Hence, the proposed model is viewed as a general linear model
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with continuous predictors and a factor with M -levels, that is an ANCOVA in
case of Gaussianity assumption. The model (3.1) in case of p continuous variables
and one single factor with 2-levels (one split tree) can be written as

E(Y |X) = β1X1 + · · ·+ βpXp + µ1I(Xj≥s1) + µ2I(Xj<s1) (3.11)

or, in matrix form


Y1

Y2

Y3
...
Yi
...
Yn


=



X11 . . . X1j′ . . . X1p 1 0
X21 . . . X2j′ . . . X2p 1 0
X31 . . . X3j′ . . . X3p 1 0

... . . .
... . . .

... 1 0
Xi1 . . . Xij′ . . . Xip 0 1

... . . .
... . . .

... 0 1
Xnp . . . Xnj′ . . . Xnp 0 1





β1

. . .

βp
µ1

µ2



In (3.11) Xj represents the splitting variable and s1 represents the splitting point.
The two indicator functions represent the partitions X of the tree. An additional
split corresponds to the inclusion multiplicatively of a further indicator variable,
such as

E(Y |X) = β1X1+· · ·+βpXp+µ1I(Xj≥s1)+µ2I(Xj<s1) ·I(Xj≥s2)+µ3I(Xj<s1) ·I(Xj<s2).

This model specification makes it possible to estimate the model parameters
β and µ via the ordinary least square estimator (X ′X)−1X ′y.

The algorithm proceeds as follows. First, the model is initialized to a linear
regression model which includes all the Xp covariates and an M -level factor ran-
domly chosen. The parameters are estimated with OLS. After that, the current
model is perturbed in the tree part to obtain the new estimated model parameters,
again, with OLS. At each step, a comparison between the old and the new models
is performed, and the one with minimum MSE is retained. The evolution contin-
ues until the last iteration or convergence is reached. At the end of the evolution,
the final model is returned and it is used to estimate the E(Y |X = x). As a fur-
ther extension, I implemented an honest version of the algorithm as suggested in
Wager and Athey (2018). Here, at each iteration, the tree is grown using two non-
overlapping subsamples of the training data, called (Xi, Yi)train1 and (Xi, Yi)train2 .
The tree structure is chosen only using the data in (Xi, Yi)train1 , while the model
is estimated only using the data in (Xi, Yi)train2 . Wager and Athey (2018) note
that for random forests predictors this kind of double subsampling can improve the
MSE of prediction. In the next chapter, I will compare the predictive performance



58

between an honest and a non-honest version of the proposed algorithm.

Algorithm 11: Pseudo Algorithm for Evolutionary Semilinear regression
tree building

Data: {Yi,Xi}, i = 1, . . . , n
Result: Evolutionary Semilinear regression tree

1 Initialization step: Model specification as in (3.1);
2 Estimation of the model with OLS: SAVE→ Current model;
3 for t=1 to niter do
4 Perturbation step: GROW, PRUNE or CHANGE the tree;
5 Evaluation step: estimates of the model perturbed: SAVE → New

model;
6 Comparison between current model and new model and choice of the

best model;
7 SAVE: Best model → Current model
8 end
9 Compute Ŷ = E(Y |X = x).

The entire process is summarized in Algorithm 11. In the next section, I will
give more details on the three phases that identify the process.

Initialization step

The starting model (3.1) is defined by the sum of a linear model and a tree
model. The tree forms an M -level factor, and the procedure is composed by the
following steps, where the superscript will denote the sampled splitting variable.
For example, X1

j will be the first splitting variable, X2
j will be the second splitting

variable and so on. The splitting variable may be the same all time, for example
X1 at each sample procedure, or may differ.

STEP 1: SPLITTING

• Sample from X the first splitting variable X1
j with probability 1

p

• Discard from the empirical distribution of X1
j 10% of observations from

the two tails, 5% from the right tail and 5% from the left tail. Call X1∗
j

the resulting vector of values of dimension n∗

• Sample from X1∗
j the splitting point s1 with probability 1

n∗

• Create two dummies I(X1
j≥s1) and I(X1

j<s1)

STEP 2 Repeat STEP 1 within the partitions I(X1
j≥s1) = 1 and I(X1

j<s1) = 1

STEP 3 Create the final dummies that identify the tree regions, such as,
if M = 4,
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R =
(
I(X1

j≥s1) · I(X2
j≥s2), I(X1

j≥s1) · I(X2
j<s2), I(X1

j<s1) · I(X3
j≥s3), I(X1

j<s1) · I(X3
j<s3)

)

STEP 4 Obtain the starting model: Y = βX +R + ε.

The first model that will be evaluated is a linear regression model with all the
Xp covariates and an M -level factor. An example of the tree part of the model is
illustrated in Figure 3.3, left side. The idea is to keep the depth of the tree small
whenever the functional form of the dependence is supposed to be quasi-linear. A
short tree can help to avoid overfitting and to improve efficiency. The exploration
of a space of the trees is achieved by a perturbation step.

In order to choose the split point, a modification of the CART splitting pro-
cedure is proposed. The first modification is the random selection of the splitting
variable. Moreover, since the choice of the split point among all the observations
of the empirical distribution is computationally intensive, the proposed algorithm
implements the strategy used in Extra-trees (Section 1.5) and in purely random
forests (Breiman, 2000), by introducing the random choice of the split point se-
lection. Note that for random forests, it has been shown that the random choice
of the split point can improve the performance of the MSE in presence of noise
variable (Geurts et al., 2006). Moreover, Biau et al. (2008) prove the consistency
of purely random forests for the case of independent explanatory variables.

The choice of leaving out 10% of the observations from the tails avoids the
case of a small number of observations in the leaves if the split point is on the
boundaries of the empirical distribution.

Figure 3.2: Moves of the perturbation step: GROW consists in the random selec-
tion of a node and its split. PRUNE consists in the random selection of a node
and its deletion from the tree. MUTATE consists in the random selection of a
node and its change in terms of splitting variable and splitting rule.
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Tree depth Possible moves
0 GROW
1 GROW, CHANGE
2, . . . , maxdepth−1 GROW, PRUNE, CHANGE
maxdepth PRUNE, CHANGE

Figure 3.3: On the left, an example of the tree structure of the SRT model in
(3.4). The tree nodes are labelled from 1 to 6, and d = 0, 1, 2 represents the depth
of the tree at each node. On the right, the possible moves of the perturbation step
depending from the depth of the tree.

Perturbation step

The idea of a perturbation step of the model arises from the perturbation step
of the BART model (Section 1.6) and from the modification by the variation
operators of the Evtree algorithm (Section 1.3). Starting from the current model,
the tree structure is modified in an evolutionary way, while the linear part of the
model is not involved in the modification. Three possible moves are allowed to
modify the tree structure: grow, prune, and mutate. They are illustrated in Figure
3.2. At each iteration of the algorithm, a valid move is randomly selected from
a Uniform distribution. The valid rules of perturbation depend on the position
of the node involved. Specifically, given the depth of the tree, the possible moves
are summarized in Figure 3.3, right side. For example, from the maximum depth
of the tree, grow move would not be possible. In next paragraphs details on the
three perturbation steps will be given.

Grow The GROW move is possible at each depth of the tree, except for
the maximal depth of the tree. The move consists in the random selection of a
node and its split into two leaves. The split provide two indicator functions to be
multiplied for the parent node. Taking as an example the tree T1 of Figure 3.2,
the dummy vector representing T1 is

RT1 =
(
I(X1

j≥s1) · I(X2
j≥s2), I(X1

j≥s1) · I(X2
j<s2), I(X1

j<s1)
)
.

The second tree of Figure 3.2 shows the tree T1 after the growing. For example,
by selecting X1

j < s1 in RT1 as node to grow, R becomes

RT1 =
(
I(X1

j≥s1) · I(X2
j≥s2), I(X1

j≥s1) · I(X2
j<s2), I(X1

j<s1) · I(X3
j≥s3), I(X1

j<s1) · I(X3
j<s3)

)
.
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Prune PRUNE consists in deleting a node of the tree randomly selected.
This is not possible at depth 0, since the root node cannot be pruned. The third
tree of Figure 3.2 shows the tree T1 after the pruning. For example, by selecting
X2
j ≥ s2 or X2

j < s2 in RT1 as node to prune R becomes

RT1 =
(
I(X1

j≥s1), I(X1
j<s1)

)
.

Mutate MUTATE is the hardest move in terms of computational intensity,
because in some situation it involves the entire redefinition of the tree. It consists
in the random selection of a node and its change in terms of splitting variable and
splitting point. In the proposed algorithm MUTATE is possible for all the nodes
of the tree. The fourth tree of Figure 3.2 shows the tree T1 after the mutation.
For example, by selecting X1

j ≥ s1 in RT1 as node to mutate R becomes

RT1 =
(
I(X∗j≥s∗) · I(X2

j≥s2), I(X∗j≥s∗) · I(X2
j<s2), I(X∗j<s∗)

)
where X∗j ≥ s∗ denotes the new variable and the new split point sampled in the
mutation step.

Evaluation step

The evaluation step involves the model parameters estimation and the computa-
tion of a measure on which two models will be compared. As already mentioned,
the specification of the model allow the use of the OLS estimator for both β and µ
parameters. Once the model parameters are estimated, its goodness of fit is usu-
ally computed by the MSE. The proposed algorithm utilizes the measure proposed
by Grubinger et al. (2011) and also adopted in Fan and Gray (2005), that is a
MSE with a BIC-type complexity penalty. This choice is made since in traditional
regression model building, the use of residual sum of square or R2 for the tree
fitness criterion results in large models and may lead to overfitting. Therefore the
MSE-BIC here adopted is

MSESRT = n log(MSE) + compSRT (3.12)

compSRT = λ · 4 · (G+ 1) · log n

where G+1 = M+p+1 is the number of estimated parameters, the µ parameters
for each of the terminal nodes, the β parameters for the linear part and the residual
variance term. This measure has been also adopted in evtree (1.6).

After the perturbation step, the current model is compared with his successor.
The best model is the one with minimum MSESRT . It is kept as current model
and employed in the subsequent iteration.
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3.5 Some remarks

In the previous sections, I proposed two algorithm for the estimation of the SRT
model. As already pointed out in Section 3.2, such model is essentially a semi-
parametric model, precisely a partial linear model, where the nonparametric part
is a regression tree. The SRT model is also is linked to an ANCOVA model in
the sense that it is equivalent to an ANCOVA with parallel line parametrization,
which implies a common slope and a specific intercept for each level of the factor.

The two-stage estimation procedure is to some extent related to the algorithm
proposed by Liu et al. (2014) ( see Section 3.2). Both these algorithms estimate
separately the linear and the tree components of the model and rely on the CART
algorithm for the non linear part. The main difference is in using the residuals
during the iterations. This makes possible to extract the information about the
relationship between the response and the covariates by subtracting each time the
variability explained by both components. In (3.6) the variability of Y captured
by the tree is subtracted to the total variability of Y . Then, in (3.7), the variabil-
ity captured by the linear regression is subtracted to the total variability of Y .
Therefore, my proposed algorithm is in fact a proper backfitting algorithm. The
coefficients associated to the linear terms are the partial effects of a predictor on
the response, while the tree parameters will handle the interaction and non linear
partial effects.

It is worth to notice that the functional form of the regression function is
assumed to be quasi-linear. In the presence of strong non linearities that affect the
data a quasi-linear specification could be not adequate. A possible development of
the SRT model is to replace the linear component with the regression splines. In
this way, the linear and non linear relationships would be handled by the splines,
and the tree component would handle the interactions.

The splitting procedure here adopted is the CART splitting rule, with the
recommendation to keep small the maximum depth of the tree. However, the tree
algorithm can be constructed using other tree-based algorithms. For instance,
one can choose among random forests, evolutionary tree or conditional inference
trees. These alternative formulations will be used in the next chapter, and their
differences in performance will be outlined.

The second algorithm here proposed, the evolutionary estimation procedure,
is based on a different construction of the SRT model. Note that the regres-
sion trunk model in STIMA (Dusseldorp et al., 2010) is similar to my proposal.
The difference between these two models is in the specification of the intercept
term, which is omitted in SRT because it is included through the tree component.
Looking at the estimation process, the splitting procedure in STIMA is performed
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by a greedy exhaustive search among all possible variables and splitting points,
while in my evolutionary procedure I introduce the randomizing component in
the search. This implies a significant gain in the computational time. Moreover,
in this estimation procedure a higher number of tree configurations is explored
thanks to the perturbation step. This choice reinforces the suggestion to keep
small the depth of the tree to avoid overfitting. Finally, in STIMA a procedure of
V -fold cross validation is implemented to estimate the MSE of the test set, while
I introduce the honest subsampling, which, again, is reflected by a considerable
gain in computational time.

The key point of the evolutionary estimation procedure proposed is the use of
the OLS estimator. This allows to avoid the greedy search algorithm and instead
obtain the parameter estimates of the tree and the linear components of the model
simultaneously. The parameter estimates can therefore be interpreted exactly as
those of a regression model with particular interaction terms. Specifically, the
interaction terms concern the product of dichotomized versions of the main effects.
An example of the parameters estimation via OLS of the evolutionary algorithm
for SRT model on simulated data is reported in Table 3.1. This model is without
the intercept term, 4 predictors and a two-level factor. The factor represents the
tree component of the model, that in this case it is a tree with one split and
two terminal nodes. The coefficients associated to the linear terms represent the
partial effects of a predictor on the response, while the coefficients associated to
the factor represent the averages of the units belonging to that partition.

Table 3.1: An example of OLS estimates of the evolutionary algorithm for the
Semilinear regression tree model on simulated data via Scenario 5 presented in
Chapter 4, Section 4.2.

Coefficient s.e. t-test p-valueEstimate
X1 0.2063 1.1583 0.18 0.8587
X2 -0.4082 1.1678 -0.35 0.7268
X3 -17.0082 1.1916 -14.27 0.0000
X4 11.2645 1.9819 5.68 0.0000
X5 4.3135 1.1690 3.69 0.0002
X4 ≥ 0.058 21.2648 2.4078 8.83 0.0000
X4 < 0.058 25.4495 2.0572 12.37 0.0000

However, by avoiding the greedy search in the algorithm construction, it is
generally possible to avoid the problems highlighted in Chapter 2 of methods
which gives the same or major importance to indirect effects than direct effects.
Looking at the tree part, the proposed tree specification could be an innovative
way to construct trees that move away from the complete nonparametric form
to a semiparametric model. As mentioned in Section 1.2, if the assumption of
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Normality of the error term ε is added, as in the BART algorithm, it is possible to
perform statistical hypothesis testing and to construct reliable confidence intervals
for parameter estimates. In my opinion, a powerful improvement can be the
employ of a statistical test for pruning the tree. In fact, a pruned tree is obtained
by constraining some parameters of the tree to be equal. The pruned model is
therefore nested in the unpruned one. Moreover, the normality assumption of
the error term entail the ML estimator for the parameters. In fact, note that in
principle the number of parameters in SRT model can increase with n, if the tree
is left free to grow. Therefore, it is relevant to fix the tree depth in advance in
order to achieve the ML estimator properties when the evolutionary algorithm
reach the convergence. Finally, the evolutionary estimate can easily be extended
to a regularized estimate of parameters as LASSO or adaptive LASSO (Zou, 2006)
in high dimensional frameworks.



Chapter 4

Comparison of the proposed
methods

4.1 Introduction

In Chapter 3, I studied the Semilinear regression tree model (SRT), an inter-
pretable tree-based regression model which can balance the trade-off between the
predictive and the generative modelling. Moreover, I proposed two estimation
procedures: a two-stage estimation procedure based on a backfitting algorithm
and an estimation procedure based on an evolutionary algorithm. In this chapter,
two comparisons of the proposed estimation methods via Monte Carlo study and
real data study are presented.

The chapter is organized as follows. In Section 4.2 are illustrated a comparison
on the proposed algorithms, and a study on the prediction and the estimation
accuracy of the proposed methods and some of the estimation methods presented
in Chapter 1. In Section 4.3 are described two applications on Boston housing
and Carseats data available in R software.

4.2 Monte Carlo study

4.2.1 Comparison of the proposed methods

The two-stage estimator proposed in Section 3.3 and the evolutionary estimator
proposed in Section 3.4 for the SRT model are compared by considering the fol-
lowing Scenario.

Scenario 1: independent linear regressors and two-level factor
Let Xj ∼ N (0, 1), for j = 1, . . . , 4 and let

Y = β1X1 + β2X2 + β3X3 + β4X4 + µ1I(X3≥s3) + µ2I(X3<s3) + ε,

65
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with ε ∼ N (0, 1). The coefficients are set to β1 = 3, β2 = 2, β3 = 0, β4 = 0,µ1 = 3,
and µ2 = 4. The splitting point for X3 is s3 = 0.5. In Figure 4.1 the pairwise
associations and correlations among variables on simulated data are represented.
I will call this scenario LR1.

Figure 4.1: Scenario 1: in the upper part, sample pairwise correlations. In the
lower part, plot of pairwise associations on simulated data according to LR1.

To compare the performances of the two estimation algorithms, I conducted a
minimal simulation study with N = 1000 data sets with size ntrain = 1000 and
ntest = 1000 generated from scenario LR1.

The model has been fitted with all the p = 4 explanatory variables, both for the
two-stage estimator and the evolutionary estimator. The settings that I employed
for the two-stage algorithm are growth of the tree choosing among CART trough
the R package rpart (TS rpart), conditional inference trees trough the R pack-
age party (TS ctree), and random forests trough the R package randomForest
(TS rf ). The comparison with evtree (evtree) is not reported here due to the
infeasible computational time of the evtree function. I am reporting the results
with maximum depth set to 2 for trees, while for random forests with maximum
number of trees set to 10. For the evolutionary algorithm proposed (EV, or HEV
for the honest version), the settings are Niter = 1000 and estimation based on
OLS.

Table 4.1 shows the proportions of splitting for each variable, the averages and
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Table 4.1: Summary of proportions of splitting for each variable, Monte Carlo
averages and standard errors of the splitting points and variable importance, and
Monte Carlo averages and standard errors of the β̂ parameters with data genera-
tion LR1.

Algorithms X1 X2 X3 X4 No split
EV

Depth=1
Proportion of splits 0.007 0.007 0.978 0.008 0.000
MC average splitting point 0.523
MC s.e. splitting point 0.007

Depth=2
Proportion of splits 0.000 0.000 0.178 0.000 0.822
MC average splitting point 0.499
MC s.e. splitting point 0.003
β̂ 2.999 1.999 -0.006 0.000
s.e.(β̂) 0.001 0.001 0.002 0.001
HEV

Depth=1
Proportion of splits 0.003 0.004 0.984 0.009
MC average splitting point 0.511
MC S.e. splitting point 0.006

Depth=2
Proportion of splits 0.000 0.000 0.090 0.000 0.910
MC average splitting point 0.494
MC s.e. splitting point 0.005
β̂ 2.999 2.000 -0.005 -0.001
s.e.(β̂) 0.001 0.001 0.003 0.001
TS rpart
Proportion of splits 0.000 0.000 1.000 0.000 0.000
MC average splitting point 0.500
MC s.e. splitting point 0.001
β̂ 2.998 2.000 -0.089 -0.001
s.e.(β̂) 0.001 0.001 0.003 0.001
TS ctree
Proportion of splits 0.000 0.000 0.000 0.000 1.000
β̂ 2.999 1.999 -0.352 -0.001
s.e.(β̂) 0.001 0.001 0.001 0.000
TS rf
Variable importance 7480.084 3957.764 1218.313 1077.464
MC s.e. Variable importance 12.900 8.194 2.564 1.556
β̂ 2.99 1.998 -0.273 -0.001
s.e.(β̂) 0.001 0.001 0.002 0.001

standard errors of the splitting points (in case of TS rf, the averages and standard
errors of the variable importance), and the averages and standard errors of the
β̂ parameters. While EV and HEV algorithms raise similar performances, the
two-stage algorithm shows slightly different behaviour. Despite the greedy search
employed in the tree construction, TS rpart has performances comparable with
EV and HEV. Differently, TS ctree estimates trees with no split. This is due
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to the ctree algorithm itself, that in case of continuous predictors and response
performs a test on correlations, as noted in Section 1.3. Therefore, combine a linear
component with the ctree estimation process for the tree is unhelpful, because of
the tree search is done on the residual variability of Y , after removing from the
total variability of Y the variability captured by the linear regression. With TS
rf, the comparison can be made looking at the variable importance. In this case,
the major variable importance is on X1, even if the true splitting variable is X3.
Therefore, the differences highlighted among the different estimation procedures
proposed are due to the different nature of the tree construction: as explained in
Chapter 3, while the two-stage perform a greedy search, the evolutionary algorithm
search for the best split in a non-greedy search, exploring a largest number of tree
configurations.

The time consumed for the model of Scenario 1 by the proposed algorithms are
showed in Figure 4.2. In the right panel, the time (in seconds) is function of the
number of parameters included in the model, with p = 4 parameters of interest
and the remaining noise parameters. In the left panel, the time (in seconds)
is function of the number of observations n. EV and HEV algorithms show a
higher computational burden, since their functions are completely implemented in
R software.

(a) (b)

Figure 4.2: Computational time of the proposed algorithms for the data generation
of Scenario 1. On the right, the time (in second) versus the number of parameters
included in the model, with p = 4 parameters of interest and the remaining noise
parameters. On the left, the time (in second) versus the number of observations
n.

4.2.2 Prediction and estimation accuracy

In this Section, the proposed algorithms are compared with respect to some algo-
rithms described in Chapter 1. In these Monte Carlo studies, the Scenario 1 of
Section 4.2.1 will be considered, along with the following Scenario.
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Scenario 2: independent linear regressors and four-level factor
Let Xj ∼ N (0, 1), for j = 1, . . . , 4 and let

Y =β1X1 + β2X2 + β3X3 + β4X4 + µ1I(X2≥s2) · I(X1≥s1) + µ2I(X2≥s2) · I(X1<s1)+
+ µ3I(X2<s2) · I(X1≥s11) + µ4I(X2<s2) · I(X1<s11) + ε,

with ε ∼ N (0, 1). Note that at depth 2 the splitting variable is X1 in both branches
of the tree. In order to distinguish the two split points, they have been labelled s1

and s11. The parameter setting is β1 = 3, β2 = 2, β3 = 0, β4 = 0, µ1 = 3, µ2 = 4,
and µ3 = −1. The splitting points are s2 = 1, s1 = 0 and s11 = −1. In Figure 4.4
the pairwise associations and correlations among variables on simulated data are
represented. I will call this scenario LR2.

Figure 4.3: Scenario 2: in the upper part, sample pairwise correlations. In the
lower part, plot of pairwise associations on simulated data according to LR2.

Scenario 3: diamond graph, linear associations
Let X1 ∼ N (0, 1), and Xj = aX1 + ε for j = 2, . . . , 4, and ε ∼ N (0, 1). Let

Y = bX2 + bX3 + bX4 + ε,

with ε ∼ N (0, 1). This data generation corresponds to the one described in Section
2.3, whose graph is depicted in Figure 2.1. The parameters a and b are set to 3. In
Figure 4.4 the pairwise associations and correlations among variables on simulated
data are represented. I will call this scenario DL.
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Figure 4.4: Scenario 3: in the upper part, sample pairwise correlations. In the
lower part, plot of pairwise associations on simulated data according to DL.

Scenario 4: diamond graph, non linear associations
Let X1 ∼ N (0, 1), and Xj = aX1 + ε for j = 2, . . . , 4, and ε ∼ N (0, 1). Let

Y = bX2
2 + bX2

3 + bX4 − bX2X3 + ε,

with ε ∼ N (0, 1). Again, this data generation corresponds to the one described in
Section 2.3, but the associations between the response and their direct influencing
variables X2, X3, X4 are both linear and non linear. Also in this case, the param-
eters a and b are set to 3. In Figure 4.5 the pairwise associations and correlations
among variables on simulated data are represented. I will call this scenario DNL.

Scenario 5: Friedman
Let Xj ∼ U(0, 1) for j = 1, . . . , 5. Let

Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε,

with ε ∼ N (0, 1). The relevant predictors are associated with the response in
both linear and non linear way, with an interaction term. This benchmark data
generation is suggested by Friedman (1991) as a very challenging situation where
standard parametric models struggle to recover the associations. Friedman (1991)
proposed the data generation with the inclusion of five irrelevant predictors, which
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Figure 4.5: Scenario 4: in the upper part, sample pairwise correlations. In the
lower part, plot of pairwise associations on simulated data according to DNL.

Figure 4.6: Scenario 5: in the upper part, sample pairwise correlations. In the
lower part, plot of pairwise associations on simulated data according to FR.

are not included in this scenario. In Figure 4.6 the pairwise associations and
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correlations among variables on simulated data are represented. I will call this
scenario FR.

In next simulations studies, the models have been fitted with all the p = 4
explanatory variables of Scenario 1, 2, 3 and 4, and p = 5 explanatory variables
of Scenario 5.

Prediction accuracy simulation study

In this case the prediction performances of the proposed algorithms are compared
with respect to some algorithms described in Chapter 1. Therefore, the accu-
racy of predictions is evaluated on the basis of the following algorithms (with in
parentheses the R packages used):

• Evolutionary estimation procedure (EV )

• Evolutionary estimation procedure, honest version (HEV )

• Two-stage estimation procedure with rpart for the tree estimation (TS
rpart)

• Two-stage estimation procedure with Ctree for the tree estimation (TS
ctree)

• Two-stage estimation procedure with randomForest for the tree estimation
(TS rf )

• Bayesian additive regression trees (Bart), Chipman et al. (2010)

(bartMachine)

• CART (Rpart), Breiman et al. (1984) (rpart)

• Random forest (RF), Breiman (2001) (randomForest)

• Conditional inference tree (Ctree), Hothorn et al. (2006) (party)

• Conditional random forest (Cforest), Hothorn et al. (2006) (party)

• Reinforcement Learning Trees (RLT ), Zhu et al. (2015) (rlt)

• Extra Trees (ExT ), Geurts et al. (2006) (extraTrees)

For the proposed algorithms, I employed the settings described in Section 4.2.1.
For the others, the growth of trees has been performed with default settings and
no pruning.
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Table 1.2 summarizes the averages and the standard errors of the Monte Carlo
distribution of the MSE on test sets for the 12 algorithms evaluated. The Monte
Carlo distributions of the estimates of the MSE are illustrated in Figures 4.7, 4.8,
4.9, 4.10, and 4.11.

Scenario 1 represents a linear regression with a one-level factor. In this case, EV
algorithm reaches the the minimum average of MSE estimates on test sets. The
performances of the two-stage algorithms are comparable with the performance of
the evolutionary algorithms. The worst MSE is obtained with Rpart.

Scenario 2 represents a linear regression with a four-level factor. Also in this
case, EV algorithm reaches the the minimum average of MSE estimates on test
sets. The averages estimated with he two-stage algorithms are slightly larger than
those computed by the evolutionary algorithms and better than Cforest, Ctree,
RF, ExT, RTL, and Rpart.

Scenario 3 represents the diamond graph of Figure 2.1, where all the associ-
ations of the relevant variables to the response are linear. In this case, TS ctree
reaches the minimum averages of MSE estimates on test sets. However, the per-
formances of all the evolutionary and the two-stage algorithms are comparable
and lower than the other algorithms considered. In these three scenarios, com-
bining a tree and a linear component using the two-stage algorithm results in an
improvement of performances with respect to Ctree, RF and Rpart without the
linear component.

Scenario 4 represents the diamond graph of Figure 2.1, where the associations
of the relevant variables to the response are both linear and non linear. In this
case, the smallest average of MSE estimates on test sets for the proposed algorithm
is obtained with TS rf. However, the averages of MSE estimates on test sets
obtained with EV algorithm are better that those obtained with TS rpart and TS
ctree. With respect the other algorithms, the averages of MSE estimates on test
sets obtained with the proposed algorithms are better that the one obtained with
Cforest. Among all the algorithms, the minimum MSE on test sets is obtained by
Bart.

Scenario 5 represents the Friedman data generation. In this case, for the
proposed algorithm, the averages of MSE estimates on test sets obtained with EV
algorithm are better that those obtained with TS rpart and Ts rf. Also in this
case, among all the algorithms, the minimum MSE on test sets is obtained by
Bart.

In Scenario 4 and 5, the integration of the linear component and the tree com-
ponent proposed in the Semilinear regression tree do not result in an improvement
of prediction performances. This confirms the proposed model to be more suitable
in the case of not too heavy non linearities. Nonetheless, it is worth to notice that
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despite the lack of predictive performance in case of non linearities, the proposed
algorithms are able to select the most relevant variables, both in cases of linear
and non linear dependences. This aspect will be highlighted in the next simulation
study.

Notice that the honest version of EV algorithm do not improve the averages
of MSE estimates on test sets. This suggest that, for a single tree, honesty do not
lead to an increase in MSE.

Table 4.2: Monte Carlo averages and standard errors (in parentheses) estimates
of MSE on test sets for the 12 algorithms evaluated for each simulation scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
EV 1.018 1.084 1.011 528.708 4.990

(0.001) (0.002) (0.001) (2.411) (0.012)
HEV 1.028 1.122 1.021 554.208 5.177

(0.002) (0.002) (0.001) (2.660) (0.013)
TS ctree 1.095 1.609 1.006 1677.014 3.883

(0.002) (0.011) (0.001) (5.985) (0.017)
TS rf 1.060 1.377 1.011 480.724 5.880

(0.002) (0.010) (0.001) (4.695) (0.013)
TS rpart 1.025 1.156 1.025 640.591 5.389

(0.001) (0.013) (0.001) (4.210) (0.010)
Bart 1.129 1.148 2.018 31.873 1.304

(0.002) (0.002) (0.014) (0.778) (0.002)
Cforest 1.578 1.574 11.096 2621.696 5.243

(0.003) (0.003) (0.053) (40.276) (0.008)
Ctree 1.989 1.801 17.467 264.128 7.788

(0.003) (0.004) (0.048) (8.227) (0.012)
ExT 1.976 2.172 3.238 59.131 4.572

(0.004) (0.005) (0.019) (0.828) (0.009)
RF 1.917 1.894 3.808 66.563 3.863

(0.004) (0.004) (0.019) (0.815) (0.007)
RLT 2.634 2.929 5.016 105.827 6.357

(0.006) (0.006) (0.039) (1.161) (0.012)
Rpart 3.247 3.081 56.674 272.952 9.712

(0.007) (0.008) (0.123) (1.488) (0.016)
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Figure 4.7: Monte Carlo distributions of MSE on test set for the 12 algorithms
evaluated, data generation LR1.

Figure 4.8: Monte Carlo distributions of MSE on test set for the 12 algorithms
employed, data generation LR2.
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Figure 4.9: Monte Carlo distributions of MSE on test set for the 12 algorithms
evaluated, data generation DL.

Figure 4.10: Monte Carlo distributions of MSE on test set for the 12 algorithms
evaluated, data generation DNL.
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Figure 4.11: Monte Carlo distributions of MSE on test set for the 12 algorithms
evaluated, data generation FR.

Estimation accuracy simulation study

The estimation accuracy is evaluated on the basis of the following algorithms (with
in parentheses the R package used):

• Evolutionary estimation procedure (EV )

• Evolutionary estimation procedure, honest version (HEV )

• Two-stage estimation procedure with rpart for the tree component (TS
rpart)

• CART (Rpart), Breiman et al. (1984) (rpart)

• Conditional inference trees (Ctree), Hothorn et al. (2006) (party)

For Rpart and Ctree trees the growth of trees has been performed with default
settings and no pruning.

The comparison is limited to the two-stage estimation procedure with rpart,
since with party for some scenarios the splitting is never performed, as already
noted in Section 4.2.1. Moreover, the comparison of the two-stage estimation pro-
cedure with randomForest can be done only in terms of variable importance, since
the splitting points and splitting variables are many and depend on a random sam-
pling of variables and units. Similarly for BART and other ensemble algorithms.
Therefore, these algorithms are excluded in this part of the Monte Carlo study.
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Scenario 1: independent linear regressors and two-level factor
Recall that the true regression function is Y = 3X1 + 2X2 + 0X3 + 0X4 +

3I(X3≥0.5) + 4I(X3<0.5) + ε.
In Table 4.3 the proportions of splits, the averages and standard errors of

the splitting points, and the averages and standard errors of the β̂ parameters
are shown. The proposed EV, HEV, and TS rpart algorithms correctly select
X3 as splitting variable. The mean of the Monte Carlo distribution of the split
point is near the true value with EV and HEV, while TS gets exactly the true
value on average. In contrast, Rpart and Ctree algorithms never select the true
splitting variable, but they always select X1. In fact (see Figure 4.1) X1 has the
highest marginal correlation with the response. The proposed EV, HEV, and TS
algorithms identifies the true β values on average. This comparison is limited to
these algorithms, since in Rpart and Ctree the linear parameters are not included.
Table 4.4 reports as example the parameters of one Semilinear regression tree
model estimated via OLS in HEV for this data generating process. As noted in
Section 3.5, the advantage of the proposed evolutionary algorithm is in its use of
the OLS estimator, for which we can obtain the coefficient estimates, the standard
error estimates, and the test on the significance of the parameter.

Scenario 2: independent linear regressors and four-level factor
Recall that the true regression function is Y = 3X1 + 4X2 + +0X3 + 0X4 +

3I(X2≥1) · I(X1≥0) + 4I(X2≥1) · I(X1<0) − 1I(X2<1) · I(X1≥−1) + 1I(X2<1) · I(X1<−1) + ε.
In Table 4.5 the proportions of splits, the averages and standard errors of the

splitting points, and the averages and standard errors of the β̂ parameters are
shown. While TS rpart, Rpart and Ctree algorithms correctly select the splitting
variables at both depth 1 and depth 2, EV and HEV show a different behaviour.
At depth 1 the majority of splits is correctly done with X2. At depth 2 the
splitting variable is not for the majority of cases X1, at least in one of the two
partitions. Moreover, not all trees arrive to depth 2. The proportion of missing
splits are reported in the column null. This is probably due to the evolutionary
nature of the algorithm, which in this case favours less complex models in the tree
part. For EV and HEV, the averages of splitting point are relative to the splitting
variable where the split is performed. When the algorithms select the true splitting
variable, both algorithms show bias in identifying the corrects splitting points at
depth 2, differently from TS rpart algorithm that identifies them. With respect the
β coefficients, both the proposed algorithms identifies the true values on average.
Table 4.6 reports as example the parameters of one Semilinear regression tree
model estimated via OLS in HEV for this data generating process.
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Table 4.3: Summary of proportions of splitting for each variable, Monte Carlo
averages and standard errors of the splitting points and variable importance, and
Monte Carlo averages and standard errors of the β̂ parameters with data genera-
tion LR1.

Algorithms X1 X2 X3 X4 No split
EV

Depth=1
Proportion of splits 0.007 0.007 0.978 0.008 0.000
MC average splitting point 0.523
MC s.e. splitting point 0.007

Depth=2
Proportion of splits 0.000 0.000 0.178 0.000 0.822
MC average splitting point 0.499
MC s.e. splitting point 0.003
β̂ 2.999 1.999 -0.006 0.000
s.e.(β̂) 0.001 0.001 0.002 0.001
HEV

Depth=1
Proportion of splits 0.003 0.004 0.984 0.009 0.000
MC average splitting point 0.511
MC S.e. splitting point 0.006

Depth=2
Proportion of splits 0.000 0.000 0.090 0.000 0.910
MC average splitting point 0.494
MC s.e. splitting point 0.005
β̂ 2.999 2.000 -0.005 -0.001
s.e.(β̂) 0.001 0.001 0.003 0.001
TS rpart
Proportion of splits 0.000 0.000 1.000 0.000 0.000
MC average splitting point 0.500
MC s.e. splitting point 0.001
β̂ 2.998 2.000 -0.089 -0.001
s.e.(β̂) 0.001 0.001 0.003 0.001
Rpart
Proportion of splits 1.000 0.000 0.000 0.0000 0.000
MC average splitting point 0.003
MC s.e splitting point 0.006
Ctree
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point -0.001
MC s.e. splitting point 0.006

Table 4.4: Example of OLS estimates of the evolutionary algorithm for the Semi-
linear regression tree model, data generation LR1.

Coefficient s.e. t-test p-valueEstimate
X1 3.0634 0.0447 68.58 0.0000
X2 2.0015 0.0436 45.91 0.0000
X3 0.0055 0.0651 0.08 0.9328
X4 -0.0236 0.0464 -0.51 0.6105
X3 ≥ 0.6303 2.8999 0.1154 25.12 0.0000
X3 < 0.6303 3.9244 0.0613 64.03 0.0000

Scenario 3: diamond graph, linear associations
Recall that in this case the interest is that the algorithms would be able to

discover the direct influences on Y . The true regression function is Y = 3X2 +
3X3 + 3X4 + ε, where all the associations of the relevant variables to the response
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Table 4.5: Summary of proportions of splitting for each variable, Monte Carlo
averages and standard errors of the splitting points and variable importance, and
Monte Carlo averages and standard errors of the β̂ parameters with data genera-
tion LR2.

Algorithms X1 X2 X3 X4 No split
EV

Depth=1
Proportion of splits 0.155 0.845 0.000 0.000 0.000
MC average splitting point -0.963 0.964
MC s.e. splitting point 0.023 0.003

Depth=2.1
Proportion of splits 0.139 0.553 0.000 0.000 0.308
MC average splitting point -0.002 1.002
MC s.e. splitting point -0.001 0.043

Depth=2.2
Proportion of splits 0.827 0.172 0.000 0.000 0.000
MC average splitting point -0.292 0.995
MC s.e. splitting point -0.010 0.076
β̂ 2.867 2.026 -0.001 -0.001
s.e.(β̂) 0.003 0.002 0.001 0.001
HEV

Depth=1
Proportion of splits 0.156 0.844 0.000 0.000 0.000
MC average splitting point -0.801 0.956
MC S.e. splitting point -0.064 0.032

Depth=2.1
Proportion of splits 0.043 0.505 0.000 0.000 0.452
MC average splitting point 0.045 1.004
MC s.e. splitting point 0.007 0.044

Depth=2.2
Proportion of splits 0.804 0.181 0.000 0.000 0.015
MC average splitting point 0.009 0.953
MC s.e. splitting point 0.001 0.071
β̂ 2.854 2.032 -0.002 -0.001
s.e.(β̂) 0.004 0.003 0.001 0.001
TS rpart

Depth=1
Proportion of splits 0.000 1.000 0.000 0.000 0.000
MC average splitting point 1.000
MC s.e. splitting point 0.032

Depth=2.1
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point -1.000
MC s.e. splitting point -0.031

Depth=2.2
Proportion of splits 0.996 0.002 0.002 0.000 0.000
MC average splitting point 0.016 1.063 1.065
MC s.e. splitting point 0.001 0.751 0.753
β̂ 3.003 2.000 -0.002 -0.001
s.e.(β̂) 0.001 0.001 0.001 0.001
Rpart

Depth=1
Proportion of splits 0.000 1.000 0.000 0.000 0.000
MC average splitting point 0.991
MC s.e. splitting point 0.031

Depth=2.1
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point 0.249
MC s.e. splitting point 0.008

Depth=2.2
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point 0.008
MC s.e. splitting point 0.001
Ctree

Depth=1
Proportion of splits 0.000 1.000 0.000 0.000 0.000
MC average splitting point 0.988
MC s.e. splitting point 0.001

Depth=2.1
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point 0.248
MC s.e. splitting point 0.005

Depth=2.2
Proportion of splits 1.000 0.000 0.000 0.000 0.000
MC average splitting point -0.005
MC s.e. splitting point 0.016

are linear. Table 4.7 shows the proportions of the splitting variables choice and
the averages and standard errors of the b̂ parameters. EV HEV and TS rpart
algorithms split for X2, X3 and X4, the variables that have a direct influence on
Y , around the 77% of times, while for X1, the variable with an indirect effect on Y ,
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Table 4.6: Example of OLS estimates of the evolutionary algorithm for the Semi-
linear regression tree model, data generation LR2.

Coefficient s.e. t-test p-valueEstimate
X1 2.8133 0.0572 49.17 0.0000
X2 1.9891 0.0645 30.82 0.0000
X3 -0.0166 0.0447 -0.37 0.7109
X4 -0.0995 0.0467 -2.13 0.0336
X2 ≥ 0.9578 & X2 ≥ 1.0116 3.6410 0.1457 24.98 0.0000
X2 ≥ 0.9578 & X2 < 1.0116 0.3487 0.4654 0.75 0.4540
X2 < 0.9578 & X1 ≥ -0.9249 -0.9426 0.0614 -15.36 0.0000
X2 < 0.9578 & X1 < -0.9249 0.5209 0.1570 3.32 0.0010

Table 4.7: Summary of proportions of splitting for each variable and Monte Carlo
averages and standard errors of the b̂ parameters with data generation DL.

Algorithms X1 X2 X3 X4 No split
EV

Depth=1
Proportion of splits 0.222 0.273 0.232 0.273 0.000

Depth=2.1
Proportion of splits 0.000 0.000 0.000 0.000 1.000

Depth=2.2
Proportion of splits 0.000 0.000 0.000 0.000 1.000
b̂ 0.002 2.999 2.999 2.999
s.e.(b̂) 0.005 0.001 0.001 0.001
HEV

Depth=1
Proportion of splits 0.224 0.264 0.250 0.262 0.000

Depth=2.1
Proportion of splits 0.000 0.000 0.000 0.000 1.000

Depth=2.2
Proportion of splits 0.000 0.000 0.000 0.000 1.000
β̂ 0.005 3.001 2.997 2.999
s.e.(β̂) 0.008 0.002 0.002 0.002
TS rpart

Depth=1
Proportion of splits 0.226 0.249 0.245 0.280 0.000

Depth=2.1
Proportion of splits 0.208 0.241 0.212 0.235 0.000

Depth=2.2
Proportion of splits 0.233 0.232 0.216 0.222 0.000
b̂ -0.002 2.998 2.998 2.998
s.e.(b̂) 0.006 0.001 0.001 0.001
Rpart

Depth=1
Proportion of splits 1.000 0.000 0.000 0.0000 0.000

Depth=2.1
Proportion of splits 0.983 0.008 0.004 0.005 0.000

Depth=2.2
Proportion of splits 0.988 0.006 0.003 0.003 0.000
Ctree
Proportion of splits 1.000 0.000 0.000 0.0000 0.000

Depth=2.1
Proportion of splits 1.000 0.000 0.000 0.0000 0.000

Depth=2.2
Proportion of splits 1.000 0.000 0.000 0.0000 0.000

around the 22% of times. Notice that in all Monte Carlo replications EV and HEV
estimate trees of depth 1, while for TS rpart the behaviour at depth 2 is equal to
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the one in depth 1. Conversely, Rpart and Ctree select wrongly X1 as splitting
variable at both depth 1 and 2. This pitfall has already been seen in Chapter 2.
Both the evolutionary and the two-stage algorithms provide an unbiased estimates
of the b parameter. Table 4.8 reports as example the parameters of one Semilinear
regression tree model estimated via OLS in HEV for this data generating process.

Table 4.8: Example of OLS estimates of the evolutionary algorithm for the Semi-
linear regression tree model, data generation DL.

Coefficient s.e. t-test p-valueEstimate
X1 -0.2938 0.2289 -1.28 0.2000
X2 3.0242 0.0441 68.60 0.0000
X3 3.0269 0.0440 68.80 0.0000
X4 3.0012 0.0465 64.51 0.0000
X4 ≥ -1.2139 0.0744 0.0668 1.11 0.2655
X4 < -1.2139 -0.2769 0.1098 -2.52 0.0120

Scenario 4: diamond graph, non linear associations
This data generation process is the same of the previous in the structure, while

the shape of associations between the response and their influencing variables is
in this case non linear. The true regression function is Y = 3X2

2 + 3X2
3 + 3X4 −

3X2X3 + ε.
In Table 4.9 the proportions of the splitting variables choice and the averages

and standard errors of the b̂ parameters are shown. At depth 1, the algorithms
EV, HEV and TS rpart split in most cases for X2 and X3, Rpart selects in quite
equal proportions among X1, X2 and X3, and Ctree selects in the majority of
cases X4. Note that also in this case, Ctree selects as primary splitting variable
the one with highest marginal correlation (see Figure 4.5) with Y . At depth 2,
the majority of splits of EV, HEV and TS rpart are for X2 and X3, while for
Rpart and Ctree the splits selected are for X1, X2 and X3, and only in a minimal
proportion for X4. Notice that the proposed algorithms select as splitting variables
for the majority of cases the variables with a direct effect on Y . Moreover, the
split is never performed on X4 even if it has a direct influence on Y . This is
thanks to the linear component included in the model, which capture the linear
associations and leave the tree component to deal with the non linear associations.
Both the evolutionary and the two-stage algorithms provide an unbiased estimate
of b coefficients. Table 4.10 reports as example the parameters of one Semilinear
regression tree model estimated via OLS in HEV for this data generating process.
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Table 4.9: Summary of proportions of splitting for each variable and Monte Carlo
averages and standard errors of the b̂ parameters with data generation DNL.

Algorithms X1 X2 X3 X4 No split
EV

Depth=1
Proportion of splits 0.031 0.480 0.489 0.000 0.000

Depth=2.1
Proportion of splits 0.066 0.461 0.473 0.000 0.000

Depth=2.2
Proportion of splits 0.071 0.463 0.466 0.000 0.000
b̂ -0.036 0.029 -0.086 3.016
s.e.(b̂) 0.173 0.156 0.158 0.023
HEV

Depth=1
Proportion of splits 0.062 0.483 0.455 0.000 0.000

Depth=2.1
Proportion of splits 0.102 0.458 0.431 0.009 0.000

Depth=2.2
Proportion of splits 0.106 0.416 0.472 0.006 0.000
b̂ 0.002 -0.015 0.229 2.988
s.e.(b̂) 0.229 0.154 0.155 0.033
TS rpart

Depth=1
Proportion of splits 0.113 0.439 0.448 0.000 0.000

Depth=2.1
Proportion of splits 0.101 0.460 0.439 0.000 0.000

Depth=2.2
Proportion of splits 0.177 0.400 0.419 0.004 0.000
β̂ -0.031 0.077 -0.083 2.971
s.e.(β̂) 0.199 0.094 0.096 0.025
Rpart

Depth=1
Proportion of splits 0.327 0.338 0.335 0.000 0.000

Depth=2.1
Proportion of splits 0.101 0.460 0.439 0.000 0.000

Depth=2.2
Proportion of splits 0.246 0.376 0.364 0.013 0.000
Ctree
Proportion of splits 0.106 0.027 0.032 0.819 0.000

Depth=2.1
Proportion of splits 0.131 0.387 0.405 0.007 0.000

Depth=2.2
Proportion of splits 0.352 0.286 0.289 0 0.000

Table 4.10: Example of OLS estimates of the evolutionary algorithm for the Semi-
linear regression tree model, data generation DNL.

Coefficient s.e. t-test p-valueEstimate
X1 -0.4944 5.4226 -0.09 0.9274
X2 3.9598 1.0213 3.88 0.0001
X3 -5.4996 1.1107 -4.95 0.0000
X4 1.7099 1.0702 1.60 0.1107
X3 ≥ 2.7134 & X3 ≥ 6.2496 211.4511 8.5741 24.66 0.0000
X3 ≥ 2.7134 & X3 < 6.2496 68.2177 3.4049 20.04 0.0000
X3 < 2.7134 & X2 ≥ -4.4508 13.0641 1.2006 10.88 0.0000
X3 < 2.7134 & X2 < -4.4508 81.9481 4.9151 16.67 0.0000

Scenario 5: Friedman
The regression function of the Friedman data generation is Y = 10 sin(πX1X2)+
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20(X3 − 0.5)2 + 10X4 + 5X5 + ε.
In Table 4.11 the proportions of the splitting variables choice and the averages

and standard errors of the β̂ parameters are shown. All the algorithms except for
EV select X3 as splitting variable at both depth 1 and depth 2. EV algorithm
splits at depth 1 for X3 around the 55% of times, while the remaining 45% of
times splits for X1 and X2. At depth 2, in one branch the splits are almost equally
distributed among X1, X2 and X3, while in the other branch the majority of splits
is again for X3. Notice that in this case, all algorithms select as splitting variable
the one with highest marginal correlation coefficient (see Figure 4.6), which has
the highest β coefficient associated to the quadratic term. Only EV algorithm, the
evolutionary algorithm without the honesty, selects less times this variable. Both
the evolutionary and the two-stage algorithms provide an unbiased estimate of β
parameters relative to the interactions and linear associations. Table 4.12 reports
as example the parameters of one Semilinear regression tree model estimated via
OLS in HEV for this data generating process.
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Table 4.11: Summary of proportions of splitting for each variable and Monte Carlo
averages and standard errors of the β̂ parameters with data generation FR.

Algorithms X1 X2 X3 X4 X5 No split
EV

Depth=1
Proportion of splits 0.208 0.247 0.545 0.000 0.000 0.000

Depth=2.1
Proportion of splits 0.311 0.277 0.290 0.000 0.000 0.000

Depth=2.2
Proportion of splits 0.135 0.138 0.727 0.000 0.000 0.000
β̂ 7.583 7.604 -0.287 10.002 4.997
s.e.(β̂) 0.040 0.043 0.127 0.008 0.008
HEV

Depth=1
Proportion of splits 0.001 0.001 0.998 0.000 0.000 0.000

Depth=2.1
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.2
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000
β̂ 0.011 -0.010 -20.061 9.958 4.990
s.e.(β̂) 0.023 0.024 0.376 0.022 0.022
TS rpart

Depth=1
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.1
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.2
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000
β̂ -0.015 0.0006 -19.972 9.986 4.998
s.e.(β̂) 0.017 0.017 0.017 0.017 0.017
Rpart

Depth=1
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.1
Proportion of splits 0.000 0.000 0.996 0.040 0.000 0.000

Depth=2.2
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000
Ctree
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.1
Proportion of splits 0.000 0.000 1.000 0.000 0.000 0.000

Depth=2.2
Proportion of splits 0.000 0.000 0.000 1.000 0.000 0.000

Table 4.12: Example of OLS estimates of the evolutionary algorithm for the Semi-
linear regression tree model, data generation FR.

Coefficient s.e. t-test p-valueEstimate
X1 0.5972 0.7432 0.80 0.4220
X2 0.2581 0.7251 0.36 0.7220
X3 -12.3471 1.1209 -11.02 0.0000
X4 10.0334 0.7254 13.83 0.0000
X5 3.7473 0.7388 5.07 0.0000
X3 ≥ -1.1158 & X3 ≥ 1.6425 87.9943 3.8986 22.57 0.0000
X3 ≥= -1.1158 & X3 < 1.6425 14.7746 0.8190 18.04 0.0000
X3 < -1.1158 & X3 ≥ -1.9662 60.9909 2.9060 20.99 0.0000
X3 < -1.1158 & X3 < -1.9662 168.2362 6.4756 25.98 0.0000
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4.3 Real data study

In this Section, two applications based on real data are presented. Both data sets
employed, Carseats and Boston housing, are available in R software. In the next
paragraphs, after a brief description of the data, the SRT model estimated trough
the evolutionary and the two-stage methods data will be discussed. Then, the
performances of the proposed method will be compared with the performances of
other estimation methods as in Section 4.2.

4.3.1 Carseats data

Carseats in the ISLR library is a simulated data set containing sales of child car
seats at 400 different stores. The Y variable is Sales, the unit sales (in thousands)
at each location, and it is measured for n = 400 observations. Here it has been
considered p = 5 continuous predictors, that are

• CompPrice: the price charged by competitor at each location;

• Income: the community income level (in thousands of dollars);

• Advertising: the local advertising budget for company at each location (in
thousands of dollars);

• Population: the population size in region (in thousands);

• Price: the price that company charges for car seats at each site.

In Figure 4.12 the sample pairwise correlations and the pairwise associations
among variables are represented.

A random subsample of the data has been selected to obtain ntrain = 200
and ntest = 200. Again, for the proposed algorithms, I employed the settings
described in Section 4.2.1. For the others, the growth of trees has been performed
with default settings and no pruning.

In Figure 4.13 are shown the MSE on the test set for Carseats data. In this
case, the proposed methods outperform the others, reaching the minimum MSE
on the test set.

Table 4.13 and 4.14 report the summary of the SRT parameter estimation,
respectively, obtained via EV and HEV algorithms. According to the model in
table 4.13, CompPrice, Income, Advertising and Price have a significant effect on
the response. The tree estimated has Population as splitting variable and has two
terminal nodes, both with a significant effect on the response. HEV algorithm
estimate a model with a similar behaviour. As already noted, the advantage in
the evolutionary estimation procedure is in the use of the OLS estimator also
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Figure 4.12: Carseats data, Sales versus 5 continuous explanatory variables: in
the upper part, sample pairwise correlations. In the lower part, plot of pairwise
associations.

Figure 4.13: Comparison of the MSE on test set in the proposed algorithms (EV,
HEV, TS rpart, TS ctree, TS rf ) and in other 7 algorithms (Rpart, Ctree, Bart,
RF, Cforest, RLT, ExT ), data Carseats.

for the tree part, that gives the significance of the coefficients associated to the
tree. Moreover, the model is interpreted as the linear regression models, with the
coefficients representing the partial effect of a covariate on the response, and the
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factors representing different average of the response in the subgroup defined by
the factor.

In table 4.15 are reported coefficients estimated with TS ctree, TS rpart and
TS rf. While all the coefficients estimated for the direct effect are similar among
each other for these 3 algorithms, it is possible to note that with respect EV and
HEV algorithms on obtain different coefficients for Population. In fact, for the
evolutionary algorithms Population has a negative effect on the response, while
for the two-stage algorithm it has a positive effect on the response. The tree
estimated with TS ctree has no splits, while the tree estimated with TS rpart has
tree splits, performed on Population at depth 1 and Price at 2. Therefore, TS
rpart algorithm find an interaction between Population and Price. Finally, TS rf
gives the highest variable importance to Price. Recall that, as already noted in
Section 4.2.1, TS ctree gives tree without split because of the algorithm for the
tree construction itself. As noted in the simulation study, the differences between
the estimates of the evolutionary and the two-stage algorithms can be ascribed to
the different nature of the estimation procedure.

Table 4.16 shows the variable importance estimated with Rpart, Ctree, Bart,
RF, Cforest, RLT and ExT algorithms. For all these estimation procedures, the
highest variable importance is reached by the variable Price.

Table 4.13: Summary of the Semilinear regression tree model, parameter estima-
tion via OLS in EV algorithm, Carseats data.

Coefficient s.e. t-test p-valueEstimate
CompPrice 1.5301 0.1866 8.20 0.0000
Income 0.4704 0.1450 3.24 0.0014
Advertising 0.8765 0.1523 5.76 0.0000
Population -0.5022 0.2698 -1.86 0.0642
Price -2.1415 0.1780 -12.03 0.0000
Population >= -0.4535 8.0842 0.2500 32.34 0.0000
Population < -0.4535 6.5531 0.3823 17.14 0.0000

As a final comment, for this study on Carseats data, the proposed algorithms
show the best performance in the MSE on the test sets. Since the estimation via
the algorithms as Rpart, Ctree, Bart, RF, Cforest, RLT and ExT would highlight
only Price as variable most relevant to predict the response, the proposed meth-
ods have been helpful to discover a possible interaction between Population and
Price. Note that the evolutionary algorithm gives the significance of the parameter
estimates, that is a key point of this procedure.
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Table 4.14: Summary of the Semilinear regression tree model, parameter estima-
tion via OLS in HEV algorithm, Carseats data.

Coefficient s.e. t-test p-valueEstimate
CompPrice 1.5700 0.2598 6.04 0.0000
Income 0.4270 0.2121 2.01 0.0470
Advertising 0.6684 0.2233 2.99 0.0035
Population -0.7136 0.3637 -1.96 0.0528
Price -2.1750 0.2602 -8.36 0.0000
Population >= -0.7792 8.3183 0.3459 24.05 0.0000
Population < -0.7792 5.9271 0.5853 10.13 0.0000

Table 4.15: Summary of proportions of splitting variables, splitting points (or
variable importance) and linear parameters for TS ctree, TS rpart and TS rf
algorithms, Carseats data.

CompPrice Income Advertising Population Price Mean leaves
TS ctree
Coefficient estimates 1.4768 0.4178 0.9275 0.1152 -2.1075
Split: None

TS rpart
Coefficient estimates 1.5585 0.4010 0.9698 0.6537 -2.3164
I(Population≥0.4082)·(Price<1.1106) 6.4178
I(Population≥0.4082)·(Price≥1.1106) 7.8137
I(Population<0.4082)·(Price<0.2410) 7.6142
I(Population<0.4082)·(Price≥0.2410) 8.6499

TS rf
Coefficient estimates 1.5588 0.4343 0.9198 0.1107 -2.0422
Variable importance 3.6899 14.1801 24.3866 9.5326 25.4883

Table 4.16: Variables importance estimated with Rpart, Ctree, Bart, RF, Cforest,
RLT and ExT algorithms, Carseats data.

CompPrice Income Advertising Population Price

Bart 0.2250 0.1494 0.1776 0.1443 0.3038

Cforest 0.6917 0.2988 1.5608 -0.0256 4.1336

Ctree 0.0432 0.0728 2.5134 -0.3465 4.5745

RF 233.5010 254.2103 235.0555 240.2288 406.4031

RLT 0.0305 0.0169 0.0868 0.0055 0.1908

Rpart 254.8877 154.4109 208.0568 95.8542 393.8215

4.3.2 Boston Housing data

The MASS library contains the Boston data set, which records medv (median house
value) for n = 506 neighbourhoods around Boston. The explanatory variables are
p = 14, 12 continuous variables and 2 categorical variables. In this application,
the explanatory variables considered are the p = 12 continuous predictors, that
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are

• crim: per capita crime rate by town;

• zn: proportion of residential land zoned for lots over 25000 sq.ft;

• indus: proportion of non-retail business acres per town;

• nox nitrogen oxides concentration (parts per 10 million);

• rm average number of rooms per dwelling;

• age: proportion of owner-occupied units built prior to 1940;

• dis weighted mean of distances to five Boston employment centres;

• tax: full-value property-tax rate per 10, 000 dollars;

• ptratio: pupil-teacher ratio by town;

• black: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town;

• lstat: lower status of the population (percent).

In Figures 4.14 and 4.15, the pairwise associations and correlations among
variables on Boston data are represented. Note that the Y variable is present in
both the Figures to help the reading of the correlations among the explanatory
variables and the response.

A random subsample of the data has been selected to obtain ntrain = 253 and
ntest = 253.

In Figure 4.13 are shown the MSE on the test set for Boston data. In this case,
among the proposed methods, TS rf shows the minimum MSE, and the MSE are
better than those obtained with Ctree, Cforest and Rpart. However, the best MSE
is reached by Bart, followed by ExT and RF. This suggest that for this application,
ensemble methods are more suitable to obtain optimal predictive performances.

Table 4.17 and 4.18 reports the summary of the SRT parameter estimation,
respectively, obtained via EV and HEV algorithms. According to the model in
table 4.17, crim, rm, dis, rad, ptratio and lstat have a significant effect on the
response. The tree estimated has rm and lstat as splitting variables and has
four terminal nodes, all with a significant effect on the response. HEV algorithm
estimate a model for which crim, ptratio and lstat have a significant effect on the
response, and a shorter tree with two terminal nodes defined by rm variable.

In table 4.19 are reported coefficients estimated with TS ctree, TS rpart and
TS rf. The tree estimated with TS ctree has no splits, while the tree estimated
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Figure 4.14: Boston data, medv versus first 6 explanatory variables: in the upper
part, sample pairwise correlations. In the lower part, plot of pairwise associations.

Figure 4.15: Boston data, medv versus last 6 explanatory variables: in the upper
part, sample pairwise correlations. In the lower part, plot of pairwise associations.

with TS rpart has tree splits, performed on rm at depth 1 and age at 2. Therefore,
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Figure 4.16: Comparison of the MSE on test set in the proposed algorithms (EV,
HEV, TS rpart, TS ctree, TS rf ) and in other 7 algorithms (Rpart, Ctree, Bart,
RF, Cforest, RLT, ExT ), data Boston.

TS rpart algorithm find an interaction between rm and age, differently from the
evolutionary algorithms that find rm and lstat. Finally, TS rf gives the highest
variable importance to rm.

Table 4.20 shows the variable importance estimated with Rpart, Ctree, Bart,
RF, Cforest, RLT and ExT algorithms. For all these estimation procedures, the
highest variable importances are reached by rm and lstat.

As a final comment, for this study on Boston data, the proposed algorithms
do not show the best performance in the MSE on the test sets, while all the
estimation procedures highlight rm and lstat as the variables relevant in the tree
part. Therefore, as noted in the prediction accuracy simulation study, the proposed
algorithms do not boast the best predictive performance in the presence of strong
non linearities in the data, but they are still helpful to discover the most relevant
variables that have a direct influence on the response. This happens not simply
choosing the variables with the highest marginal correlation coefficients. When
the variables with a direct influence on the response match the variables with the
highest marginal correlation coefficients, ensemble methods possibly reach best
performances.
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Table 4.17: Summary of the Semilinear regression tree model, parameter estima-
tion via OLS in EV algorithm, Boston data.

Coefficient s.e. t-test p-valueEstimate
crim -1.3010 0.2638 -4.93 0.0000
zn 0.8623 0.3389 2.54 0.0116
indus 0.3983 0.4127 0.97 0.3355
nox -1.4435 0.4340 -3.33 0.0010
rm 3.1373 0.5088 6.17 0.0000
age -0.4456 0.3724 -1.20 0.2327
dis -2.0594 0.4313 -4.77 0.0000
rad 2.2755 0.5707 3.99 0.0000
tax -1.8578 0.6082 -3.06 0.0025
ptratio -1.2300 0.2971 -4.14 0.0000
black 0.5168 0.2377 2.18 0.0307
lstat -3.7088 0.4484 -8.27 0.0000
rm >= -0.8221 & rm >= 1.6102 29.0539 1.3464 21.58 0.0000
rm >= -0.8221 & rm < 1.6102 21.1746 0.2565 82.54 0.0000
rm < -0.8221 & lstat >= 2.1939 31.1172 1.5627 19.91 0.0000
rm < -0.8221 & lstat <2.1939 23.7527 0.8441 28.14 0.0000

Table 4.18: Summary of the Semilinear regression tree model, parameter estima-
tion via OLS in HEV algorithm, Carseats data.

Coefficient s.e. t-test p-valueEstimate
crim -1.3603 0.3576 -3.80 0.0002
zn 0.7605 0.6369 1.19 0.2350
indus 0.2530 0.6921 0.37 0.7153
nox -1.9651 0.8439 -2.33 0.0217
rm 1.4604 0.8024 1.82 0.0714
age -0.8022 0.6466 -1.24 0.2173
dis -2.6966 0.7847 -3.44 0.0008
rad 1.9580 0.9673 2.02 0.0453
tax -1.0368 0.9898 -1.05 0.2971
ptratio -1.6899 0.5204 -3.25 0.0015
black 0.5621 0.4247 1.32 0.1884
lstat -3.1315 0.7208 -4.34 0.0000
rm >= 0.9897 30.8377 1.8672 16.56 0.0000
rm < 0.9897 21.6309 0.4463 48.47 0.0000
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Chapter 5

Concluding remarks

Regression trees are powerful and simple models that can easily handle with non
linear relationship and interactions among variables. They are appreciated for
being easy interpretable, because of the visual diagram that depicts as a tree the
partition selected by the algorithm. In terms of prediction accuracy, regression
trees do not boast great predictive performances, whereas can be done by random
forests or other ensemble methods.

Since regression trees and random forests are sometimes improperly used to
discover the relevant variable for the response, I presented some pitfalls that con-
firm that essentially predictive models can provide misleading information on the
data generating process. For some data generating process, variables importance
can systematically incorrectly identify direct dependencies. This pitfalls highlight
that variable importance measures are not able to distinguish between background
variables with indirect effects and intermediate variables with direct effects. The
results of the Monte Carlo study confirm this hypothesis for the algorithms based
on greedy search (CART, RF and CRF). Interestingly, the reinforcement learn-
ing trees fails on the task, even if its variable importance has been proven to be
consistent for independent covariates. On the other hand, BART, which is not
based on a greedy search, correctly gives higher importance to the variables having
direct influence. It is therefore evident how dangerous is to interpret the variables
selected by algorithms based on greedy search as representative of the generative
model.

To overcome this pitfall and to propose a model capable of treat linear and
non linear relationships, in this dissertation it has been proposed the Semilinear
regression tree model along with two new different estimation procedures. The
SRT is a semiparametric model composed of two parts: a linear component and
a tree component. This idea of such a model was actually proposed as a possible
extension to BART by Chipman et al. (2010). To estimate the SRT model pa-
rameters I proposed two new procedures: a two-stage estimation procedure (TS)
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based on a backfitting algorithm (Buja et al., 1989), and an estimation procedure
based on an evolutionary algorithm (EV) (Grubinger et al., 2011). The key point
in the proposed two-stage algorithm is in the iterative use of the residuals from
the two components of the model. This makes possible to extract the information
about the relationship between the response and the covariate by subtracting each
time the variability explained by both models. For the evolutionary algorithm, the
key point is the use of the OLS estimator, which allows to simultaneously obtain
the parameter estimates of the tree and the linear components of the model and
release the greedy search of the partitions of the tree. Moreover, the evolutionary
perturbation step of the tree component allows to quickly explore a wide space
of models. This results in a highly interpretable model, being essentially an or-
dinary linear regression model, for which, if the assumption of Normality of the
error term ε is added as in the BART algorithm, it is possible to perform statisti-
cal hypothesis testing and to construct reliable confidence intervals for parameter
estimates.

To asses the performances of the proposed estimation procedures, I conduct
a Monte Carlo study on five different data generation scenarios. The estimation
accuracy has been evaluated comparing the proposals with CART and Conditional
inference trees (Ctree). When the data generating process has linear and quasi-
linear dependencies, EV and TS select as splitting variables the one that influence
directly the response, while CART and Ctree always select as splitting variable
the one with the highest marginal correlation with the response, even if, for one
case, it is conditionally independent of it. Also when the data generating process
has non linearities, EV and TS select as splitting variables which direct influence
the response, whit a major proportion assigned to the variables associated in a
non linear way with the response. Conversely, CART at first split assigns an
equal proportion to variables with direct and indirect effect, while Ctree select
as first splitting variable in the majority of cases the one with highest marginal
correlation coefficient associated in a linear way with the response. The prediction
accuracy has been evaluated on the basis of a variety of algorithms. In data
generating process with linear and quasi-linear dependencies, EV and TS reach
the minimum MSE among all the methods, showing better performance than
ensemble methods as random forests and BART. Conversely, in the two case of
data generating process with non linearity EV and TS shows performance better
than Cforest in one case, and better than Ctree, ExT and RLT in the other.
Moreover, the proposed algorithms have been compared in two real data study,
confirming the general behaviour highlighted in the Monte Carlo simulations. Even
if the proposed algorithms do not boast the best predictive performance in presence
of strong non linearities in the data, they are still helpful to discover the most
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relevant variables that has a direct influence on the response, not simply choosing
the variables with the highest marginal correlation coefficients.

In summary, the Monte Carlo study performed for the model evaluation show
that both the proposed estimation procedures are able to capture the data gener-
ating process in the case of linear and quasi-linear dependencies, while the other
algorithms fail. In addition, in these cases, they show the best performances also
in terms of predictive accuracy. On the contrary the proposed model seems not
enough flexible in case of strong non linearities, even if it is able to capture the
data generating process also in this case. Future research will focus on extensions
of the SRT model to overcome this issue. A possibility is to add to the linear
component some spline function. In that way, the SRT model would become a
more flexible additive-type model, which would be able to handle the linearities
and non linearities via the spline functions and the interactions via the tree part.
In fact, as shown by the simulation study in Chapter 4, handle both non lineari-
ties and interactions with the tree can be too restrictive, and the model can show
difficulties in recovering the data structure. Nonetheless, a problem that can be
met with this extension is the overfitting. Another improvement in performances
could be reached by an interaction term between the linear component and the
tree in the case of a small number of predictors. Moreover, further extensions of
the SRT model could be to consider different link functions and different kind of
responses, such as binary, multinomial, Poisson or survival. For the estimation
procedures, they can easily be extended to a regularized estimate of parameters
as LASSO or adaptive LASSO (Zou, 2006) in high dimensional frameworks. For
example, in the two-stage estimator the parameters of the linear component would
be estimated via the LASSO, and the variables considered in the tree construction
could be only the variables selected after the regularization.
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