
05 May 2024

Structural change detection by direct 3D model comparison / Marco Fanfani; Carlo Colombo. - STAMPA. -
V:(2019), pp. 760-767. (Intervento presentato al  convegno 14th International Conference on Computer
Vision Theory and Applications VISAPP 2019 tenutosi a Prague, Czech Republic nel February 2019)
[10.5220/0007260607600767].

Original Citation:

Structural change detection by direct 3D model comparison

Publisher:

Published version:
10.5220/0007260607600767

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1150223 since: 2019-09-04T12:04:07Z

Scitepress

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Structural Change Detection by Direct 3D Model Comparison

Marco Fanfani and Carlo Colombo
Department of Information Engineering (DINFO), University of Florence, Via S. Marta 3, 50139, Florence, Italy

{marco.fanfani, carlo.colombo}@unifi.it

Keywords: Change Detection, 3D Reconstruction, Structure from Motion.

Abstract: Tracking the structural evolution of a site has important fields of application, ranging from documenting the
excavation progress during an archaeological campaign, to hydro-geological monitoring. In this paper, we
propose a simple yet effective method that exploits vision-based reconstructed 3D models of a time-changing
environment to automatically detect any geometric changes in it. Changes are localized by direct comparison
of time-separated 3D point clouds according to a majority voting scheme based on three criteria that compare
density, shape and distribution of 3D points. As a by-product, a 4D (space + time) map of the scene can also
be generated and visualized. Experimental results obtained with two distinct scenarios (object removal and
object displacement) provide both a qualitative and quantitative insight into method accuracy.

1 INTRODUCTION

Monitoring the evolution over time of a three-
dimensional environment can play a key role in se-
veral application fields. For example, during an
archaeological campaign it is often required to re-
cord the excavation progress on a regular basis. Si-
milarly, tracking of changes can be useful to con-
trast vandalism in a cultural heritage site, to prevent
natural damages and reduce hydro-geological risks,
and for building construction planning and manage-
ment (Mani et al., 2009).

A simple strategy to change tracking requires that
photos or videos of the scene are acquired and in-
spected regularly. However, a manual checking of
all the produced data would be time consuming and
prone to human errors. To solve this task in a fully
automatic way, 2D and 3D change detection methods
based on computer vision can be employed.

Vision-based change detection is a broad topic
that includes very different methods. They can be
distinguished by the used input data—pairs of ima-
ges, videos, image collections or 3D data—and by
their application scenarios, that can require different
levels of accuracy. In any case, all methods have
to consider some sort of registration to align the in-
put data before detecting the changes. Through the
years, several methods have been proposed (Radke
et al., 2005). The first approaches were based on
bi-dimensional data, and used to work with pairs of
images acquired at different times. In order to de-

tect actual scene changes, geometric (Brown, 1992)
and radiometric (Dai and Khorram, 1998; Toth et al.,
2000) registration of images were implemented to
avoid detection of unrelevant changes due to differen-
ces in point of view or lighting conditions. Video-
surveillance applications (Collins et al., 2000) were
also considered: In this case a video of a scene acqui-
red from a single point of view is available, and
change detection is obtained by modelling the back-
ground (Toyama et al., 1999; Cavallaro and Ebrahimi,
2001)—typically using mixture-of-Gaussian models.
Successively, solutions exploiting three-dimensional
information were introduced, in order to obtain bet-
ter geometric registration and mitigate problems rela-
ted to illumination changes. In (Pollard and Mundy,
2007), the authors try to learn a world model as a
3D voxel map by updating it continuously when new
images are available—a sort of background model-
ling in 3D. Then change detection is performed by
checking if the new image is congruent with the le-
arned model. However, camera poses are supposed
to be known and lighting conditions are kept almost
constant. Other methods exploit instead a 3D model
pre-computed from image collections (Taneja et al.,
2011; Palazzolo and Stachniss, 2017) or depth esti-
mates (Sakurada et al., 2013) of the scene so as to
detect structural changes in new images. After regis-
tering the new image sequence on the old 3D model—
using feature matching and camera resectioning (Ta-
neja et al., 2011; Sakurada et al., 2013) or exploiting
also GPS and inertial measurements (Palazzolo and



Stachniss, 2017)—change detection is obtained by re-
projecting a novel image onto the previous views by
exploiting the 3D model, so as to highlight possible
2D misalignments, indicating a change in 3D. Howe-
ver, these solutions find not only structural changes
but also changes due to moving objects (i.e. cars, pe-
destrians, etc.) that can appear in the new sequence:
in order to discard such nuisances, object recogni-
tion methods have been trained and used to select
changed areas to be discarded (Taneja et al., 2011).
In (Taneja et al., 2013), a similar solution is adop-
ted, using instead a cadastral 3D model and panora-
mic images. Differently, in (Qin and Gruen, 2014)
the reference 3D point cloud is obtained with an accu-
rate yet expensive laser scanning technology; chan-
ges are then detected in images captured at later ti-
mes by re-projection. Note that, in order to register
the laser-based point cloud with the images, control
points have to be selected manually. More recently,
even deep network have been used to tackle change
detection (Alcantarilla et al., 2016) using as input re-
gistered images from the old and new sequences.

Differently from the state-of-the-art, in this pa-
per we propose a simple yet effective solution ba-
sed on the analysis of 3D reconstructions computed
from image collections acquired at different times. In
this way, our method focuses on detecting structural
changes and avoids problem related to difference in
illumination, since it exploits only geometric infor-
mation from the scene. Moreover, 3D reconstruction
methods such as Structure from Motion (SfM) (Sze-
liski, 2010), Simultaneous Localization and Mapping
(SLAM) (Fanfani et al., 2013) or Visual Odome-
try (Fanfani et al., 2016) build 3D models of fixed
structures only, thus automatically discarding any mo-
ving elements in the scene. By detecting differences
in the 3D models, the system is able to produce an
output 3D map that outlines the changed areas. Our
change detection algorithm is fully automatic and is
composed by two main steps: (i) initially, a rigid re-
gistration at six degrees of freedom has to be esti-
mated in order to align the temporally ordered 3D
maps; (ii) then, the actual change detection is per-
formed by comparing the local 3D structures of cor-
responding areas. The detected changes can also be
transported onto the input photos/videos to highlight
the image areas with altered structures. It is worth
noting that our method is easy to implement and can
be sided with any SfM software—as for example Vi-
sualSFM (Wu, 2013) or COLMAP (Schönberger and
Frahm, 2016), both freely available—to let even non
expert users build their own change detection system.

2 METHOD DESCRIPTION

Let I0 and I1 be two image collections of the same
scene acquired at different times t0 and t1. At first, our
method exploits SfM approaches to obtain estimates
for the intrinsic and extrinsic camera parameters and
a sparse 3D point cloud representing the scene, for
both I0 and I1. We also retain all the corresponden-
ces that link 2D points in the images with 3D points
in the model. Then, the initial point clouds is enri-
ched with region growing approaches (Furukawa and
Ponce, 2010) to obtain more dense 3D data. Note that
camera positions and both the sparse and dense mo-
dels obtained from I0 and I1 are expressed in two in-
dependent and arbitrary coordinate systems, since no
particular calibration is used to register the two col-
lections.

Hereafter we present the two main steps of the
change detection method: (i) to estimate the rigid
transformation that maps the model of I0 onto that of
I1, implicitly exploiting the common and fixed struc-
tures in the area, (ii) to detect possible changes in the
scene by comparing the registered 3D models.

2.1 Photometric Rigid Registration

Since 3D models obtained through automatic re-
construction methods typically include wrongly es-
timated points, before using a global registration
approach—such as the Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992)—our system ex-
ploits the computed correspondences among image
(2D) and model (3D) points, to obtain an initial esti-
mate of the rigid transformation between the two 3D
reconstructions.

Once computed the sparse reconstructions S0 and
S1, from I0 and I1 respectively, for each 3D point we
can retrieve a list of 2D projections and, additionally,
for each 2D projection a descriptor vector based on
the photometric appearance of its neighbourhood is
also recovered. Exploiting this information, we can
establish correspondences among images in I0 and I1,
as follows. Each image in I0 is compared against all
images in I1 and putative matches are found using the
descriptor vectors previously computed. More in de-
tail, let f i

0 = {mi
0, ,m

i
N} be the set of N 2D features

in image Ii
0 ∈ I0 that have an associated 3D point, and

f j
1 = {m j

0, ,m
j
M} the set relative to I j

1 ∈ I1. For each
2D point in f i

0 we compute its distance w.r.t. all points
in f j

1 by comparing their associated descriptor vec-
tors. Then, starting from the minimum distance ma-
tch, every point in f i

0 is put in correspondence with a
point in f j

1 .



Since we know the relation between 2D and 3D
points in S0 and S1, once obtained the matches bet-
ween the 2D point sets, we can promote these rela-
tionships to 3D: Suppose the point mi

n ∈ f i
0 is rela-

ted to the 3D vertex X0 ∈ S0, and similarly the point
m j

m ∈ f j
1 is related to the 3D vertex X1 ∈ S1, then if

mi
n matches m j

m, X0 and X1 can be put in correspon-
dence with each other. In this way, all the 2D matches
found can be transformed into correspondences of 3D
points.

3D correspondences obtained by comparing all
images in I0 with every image in I1 are accumulated
into a matrix Q. Since erroneous matches are possi-
ble, inconsistent correspondences could be present in
Q. To extract a consistent matching set Q̂, we count
the occurrences of a match in Q (note that, since a 3D
point can be the pre-image of several 2D points, by
comparing all images, we can find multiple occurren-
ces). Starting from the most frequent, a match is se-
lected and copied into Q̂, then all matches in Q that in-
clude points already present in Q̂ are removed. Once
completed this analysis, and emptied Q, Q̂ will de-
fine a consistent 3D matching set without repetitions
or ambiguous correspondences.

An initial rigid transformation between S0 and S1
is then computed using (Horn, 1987), by exploiting
the 3D matches in Q̂. Since wrong correspondences
could still be present in Q̂, we include a RANSAC fra-
mework by randomly selecting three correspondences
per iteration. Inliers and outliers are found by obser-
ving the cross re-projection error. For example, if
T1,0 is a candidate transformation that maps S1 onto
S0, the system evaluates re-projection errors between
the transformed 3D S̃1 = T1,0(S1) and the 2D points
of the images in I0 and vice-versa, using 3D points
from S̃0 = T−1

1,0 (S0) and 2D points from I1. The best
transformation T ∗1,0 is estimated using the largest in-
lier set. Now, let D0 and D1 be the dense reconstructi-
ons obtained respectively from S0 and S1 using a re-
gion growing approach. As final step, our system runs
an ICP algorithm using as input D0 and D̃1 = T ∗1,0D1
to refine the registration.

Note also that, once the registration is completed,
the 3D maps can be easily overlapped so as to visually
observe the environment evolution and produce a 4D
map (space + time).

2.2 Structural Change Detection

Once the 3D models are registered, surface normal
vectors are computed for both D0 and D1: for each
vertex, a local plane is estimated using neighbouring
3D points, then the plane normal is associated to the
3D vertex.

Quantity Orientation Occupancy

V

B

Figure 1: Graphical representation of our change detection
method. Top: the volume B and the voxel V that shifts
across the point cloud. Bottom: the three criteria used to
detect changes: Quantity, that takes into account the num-
ber of 3D points enclosed in V , Orientation, that is rela-
ted to the local 3D shape, and Occupancy,that describes the
spatial point distribution in V .

Change detection works by shifting a 3D box
over the whole space occupied by the densely recon-
structed model. A bounding volume B is created so
as to include all points in D0 and D1, then a voxel V
is defined whose dimensions (Vx,Vy,Vz) are respecti-
vely (Bx

10 ,
By
10 ,

Bz
10 ). V is progressively shifted to cover

the entire B volume with an overlap of 3
4 between ad-

jacent voxels. Corresponding voxels in D0 and D1 are
then compared by evaluating the enclosed 3D points
with three criteria named Quantity, Orientation and
Occupancy (see Fig. 1).

Quantity Criterion. The quantity criterion compa-
res the effective number of 3D points in V for D0 and
D1. If their difference is greater than a threshold α,
the criterion is satisfied. Note that, even if counting
the 3D points easily provides hints about a possible
change, this evaluation can be misleading since D0
and D1 could have different densities—i.e. the same
area, without changes, can be reconstructed with finer
or rougher details, mostly depending on the number
and the resolution of the images used to build the 3D
model.



Figure 2: The angles used to describe normal vector orien-
tation.

Orientation Criterion. To evaluate local shape si-
milarity, the normal vectors of points included in V ,
both for D0 and D1, are used. For each normal n we
define its orientation by computing the angles θ1, be-
tween n and its projection n′ onto the XY -plane, and
θ2, between n′ and the X axis (see Fig. 2). Quantized
values of both θ1 and θ2 for all considered 3D points
are accumulated in a 2D histogram to obtain a des-
criptor of the surfaces enclosed in V , both for D0 and
D1. These descriptors are then vectorized by concate-
nation of their columns, and the Euclidean distance
(spanning the dimensions of the histogram bins) is
employed to evaluate their similarity. If the distance
is greater than a threshold β, the orientation criterion
is satisfied. Note that the reliability of this criterion is
compromised if too few 3D points (and normal vec-
tors) are included in V ; hence, we consider this crite-
rion only if the number of 3D points in V is greater
than a threshold value µ for both D0 and D1.

Occupancy Criterion. This last criterion is used to
evaluate the overall spatial distribution of points in V .
The voxel V is partitioned into 33 = 27 sub-voxels.
Each sub-voxel is labeled as “active” if at least one
3D point falls into it; again, for both D0 and D1
we construct this binary occupancy descriptor. If
more than γ sub-voxels have different labels, then the
occupancy criterion is satisfied.

If at least two out of these three criteria are satis-
fied, a token is given to all points enclosed in V , both
for D0 and D1. Once V has been shifted so as to cover
the entire B volume, a 3D heat-map can be produced
by considering the number of tokens received by each
3D point in B, referred to as change score.

2.3 2D Change Map Construction

Since it could be difficult to appreciate the change de-
tection accuracy just by looking at the 3D heat-map
(examples of which are in Fig. 6), results will be pre-

sented in terms of a 2D change map. This is con-
structed by projecting the 3D points onto one of the
input images, and assigning a colour to each projected
point related to the local change score. Although bet-
ter than the heat-map, the 2D map thus obtained is
sparse and usually presents strong discontinuities (see
e.g. Fig. 8). This is mainly due to the use of a sparse
point cloud as 3D representation. Since any surface
information is missing, we cannot account for cor-
rect visibility of 3D points during the projection. As
a consequence, some points falling on scene objects
actually belong to the background plane.

In order to improve the 2D map, we split the
input image into superpixels, using the SLIC met-
hod (Achanta et al., 2012) (see Fig. 10a and 10c) and
then, for each superpixel, we assign, to all the pixels
in it, the mean change score value of the 3D points
that project onto the superpixel. The resulting 2D
change maps is denser and smoother w.r.t. the pre-
vious one (see Fig. 10b and 10d).

3 EXPERIMENTAL EVALUATION

To evaluate the accuracy of the proposed method we
ran two different tests with datasets recorded in our
laboratory. In the first test (”Object removal”), we
built a scene simulating an archaeological site where
several artefacts are scattered over the ground plane
and we acquired a first collection of images I0. Then
we removed two objects (the statue and the jar) and
acquired a second collection I1 (see Fig. 3).

For the second test (”Object insertion and displa-
cement”), using a similar scene with objects positi-
oned according to a different setup, we recorded the
collection I2. The original setup was then changed
by inserting two cylindrical cans on the left side, by
laying down the statue on the right side and by dis-
placing in a new position the jar, the rocks, and the
bricks. A new collection I3 was then acquired (see
Fig. 4).

(a) (b)

Figure 3: Example frames of the two sequences. (a) I0 se-
quence; (b) I1 sequence. Note that the statue in the middle
and the jar in the top left corner have been removed.



(a) (b) (c) (d)

Figure 5: Dense 3D reconstructions obtained respectively from (a) I0, (b) I1, (c) I2, and (d) I3.

(a) (b)

Figure 4: Frames from the sequences I2 (a) and I3 (b). Two
cylindrical cans were added in the left side, the statue on the
right was laid down, and the jar, the rocks, and the bricks
were moved to a different position.

All images were acquired with a consumer camera
with resolution 640x480; for I0 and I1, 22 and 30 ima-
ges were recorded respectively, while I2 and I3 are
made of 22 and 18 images. Parameters were selected
experimentally as follows: α is equal to the average
number of points per voxel computed over D0 and D1,
β = 0.5, γ = 10, and µ = 75.

3.1 Qualitative Results

Figure 5 shows the dense 3D models obtained with
SfM for the four image collections described before.
To visually appreciate the detected changes, in Fig. 6
we present the obtained 3D heat-maps for the first (I0
vs I1) and the second (I2 vs I3) test setups. Hotter areas
indicate a higher probability of occurred change.

As clear from the inspection of Fig. 6a, the remo-
ved jar and statue correspond to the hottest areas of
the heat-map for the ”Object removal” test. Similarly,
all the relevant objects of the ”Object insertion and
displacement” test are correctly outlined by red areas
in Fig. 6b. However, some false positives are present
in both the 3D heat-maps: This is probably due to
errors in the 3D reconstruction. Indeed, these false
positives appear mostly on peripheral areas of the re-
construction, related to background elements that are
under-represented in the image collection (the acqui-
sition was made circumnavigating the area of interest)
and thus reconstructed in 3D with less accuracy.

In order to better assess the performance of the
proposed method, and also to observe the impact of
the false positives visible in the heat-maps, we com-
plemented the above qualitative analysis with a quan-
titative one.

3.2 Quantitative Results

Ground-truth (GT) masks highlighting the changes
occurred between the two image sequences were ma-
nually constructed. Fig. 7 reports two example of GT
masks: Fig. 7b shows the changes between I0 and I1,
reported in the reference system of I0, while Fig. 7d
depicts the comparison of I2 and I3, in the coordinate
frame of I2.

The GT masks were used to evaluate the Receiver
Operating Characteristic (ROC) curve and assess the
performance of our method for both the tests at hand.

Fig. 8 shows the performance obtained with the
sparse 2D change maps. In Figure 9 ROC curves
obtained for I0 vs I1 and I2 vs I3 are reported. The
values of the Area Under the ROC Curve (AUC) are
respectively 0.76 and 0.89.

Improving the 2D change maps as described
in Sect. 2.3 by exploiting superpixel segmentation
(see Figs. 10a and 10c), yields denser and smoother
maps—see Figs. 10b and 10d. The corresponding
ROC curves are shown in Figs. 11a and 11b respecti-
vely. AUC values are 0.96 for I0 vs I1, and 0.92 for I2
vs I3. With the improved change maps, the AUC for
the ”Object insertion and displacement” test increases
only by 3%, while in the ”Object removal” test the
AUC increases by almost 20% (0.19). This is due to
the fact that the reconstructed 3D maps from I2 and
I3 are denser that those obtained from I0 and I1 (see
again Fig. 5). As a result, the sparse 2D change map
for the ”Object insertion and displacement” test is of
better quality than its homologous for the ”Object
removal” test. For completeness, we report in Table 1
True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) values obtained at
the ROC cut-off point that maximizes the Younden’s



(a) (b)

Figure 6: Heat-maps obtained from (a) I0 vs I1 and (b) I2 vs I3.

(a) (b)

(c) (d)

Figure 7: Example of ground-truth masks: (a) an image
from I0 and (b) its GT mask, (c) an image from I2 and (d)
its GT mask. It is worth noting that, while the GT mask
of I0 vs I1 is simply obtained by highlighting the removed
object only, in the mask for I2 vs I3 highlighted areas have to
account for removed, displaced or inserted objects. For this
reason, the GT map (d) was obtained by fusing the masks of
I2 with those of I3—after having performed view alignment
based on the registered 3D models.

Index, i.e.

max{Sensitivity+Speci f icity−1}=
max{T PR−FPR}

(1)

where TPR and FPR are the True Positive Rate and
the False Positive Rate, respectively.

(a) (b)

Figure 8: Sparse 2D change maps obtained by projecting
the computed 3D heat-map onto a reference frame of I0 (a),
and I2 (b).

Table 1: True Positive (TP), False Positive (FP), True Nega-
tive (TN), and False Negative (FN) percentage obtained at
the ROC cut-off point for each test sequence, plus the rela-
ted AUCs. The subscript SPX indicates the improved change
maps using superpixel segmentation.

Scene TP FP TN FN AUC
I0vsI1 0.12 0.04 0.74 0.10 0.76
I0vsI1SPX 0.13 0.10 0.76 0.01 0.96
I2vsI3 0.23 0.11 0.61 0.05 0.89
I2vsI3SPX 0.15 0.10 0.72 0.03 0.92

4 CONCLUSIONS AND FUTURE
WORK

In this paper, a vision-based change detection met-
hod based on three-dimensional scene comparison
was presented. Using as input two 3D reconstructions
of the same scene obtained from images acquired at
different times, the method estimates a 3D heat-map
that outlines the occurred changes. Detected chan-
ges are also highlighted into the image space using a
2D change map obtained from the 3D heat-map. The
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Figure 9: ROC curves obtained from the sparse 2D change
map. In (a) ROC for I0 vs I1 achieving an AUC of 0.76. In
(b) ROC for I2 vs I3 achieving an AUC of 0.89.

method works in two steps. First, a rigid transfor-
mation to align the 3D reconstructions is estimated.
Then, change detection is evaluated by comparing lo-
cally corresponding areas. Three criteria are used to
assess the occurrence of a change: a quantity crite-
rion based on the number of 3D points, an orientation
criterion that exploits the normal vector orientations
to assess shape similarity, and an occupancy criterion
to evaluate the local spatial distribution of 3D points.
As a by-product, a 4D map (space plus time) of the
environment can be constructed by overlapping the

(a) (b)

(c) (d)

Figure 10: Superpixel segmentation examples and impro-
ved 2D change maps.

aligned 3D maps. Qualitative and quantitative results
obtained from tests on two complex datasets show the
effectiveness of the method, that achieves AUC values
higher than 0.90.

Future work will address a further improvement
of the 2D change map, based on the introduction of
surface (3D mesh) information into the computational
pipeline.
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