
351© Springer Nature Switzerland AG 2018 
P. A. Borea et al. (eds.), The Adenosine Receptors, The Receptors 34, 
https://doi.org/10.1007/978-3-319-90808-3_14

Chapter 14
Adenosine and Oxygen/Glucose 
Deprivation in the Brain

Felicita Pedata, Ilaria Dettori, Lisa Gaviano, Elisabetta Coppi, 
and Anna Maria Pugliese

Abstract Extracellular adenosine concentrations in the brain increase dramatically 
during ischemia in concentrations that able to stimulate all (A1, A2A, A2B, and A3) 
receptors. Adenosine exerts a clear neuroprotective effect through A1 receptors dur-
ing ischemia mainly by reducing precocious excitotoxic phenomena. Unfortunately, 
the use of selective A1 agonists is hampered by undesirable peripheral effects. 
Evidence indicates that A2A receptor antagonists administered early after ischemia 
provide protection centrally by reducing excitotoxicity. After ischemia, the primary 
damage due to the early massive increase of extracellular glutamate is followed by 
activation of resident immune cells, i.e., microglia, and production or activation of 
inflammation mediators and blood cell infiltration. Evidences are that agonists at 
A2A, A2B, and A3 receptors mainly acting on blood and vascular endothelial cells 
provide protection by controlling neuroinflammation, endothelial leaking, and mas-
sive blood cell infiltration in the hours and days after brain ischemia. Since ischemia 
is a multifactorial pathology characterized by different events evolving in the time 
and protracted neuroinflammation is recognized as the predominant mechanism of 
secondary brain injury progression, adenosinergic drugs aimed at dampening dam-
age in the hours/days after ischemia appear promising.
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14.1  Introduction

Stroke is today evaluated as the second most common cause of death and a major 
cause of long-term disability worldwide. Ischemic stroke commonly accounts for 
approximately 80% of all stroke cases, and is caused from occlusion of a major 
cerebral artery by a thrombus or an embolism, which leads to loss of cerebral blood 
flow, a condition of hypoxia and glucose deprivation (oxygen/glucose deprivation: 
OGD) and subsequently tissue damage in the affected region. The only successful 
pharmacological treatment approved to date is tissue plasminogen activator (tPA) 
that aims to decrease ischemia-associated thrombosis risk. Yet, because of the nar-
row therapeutic time window involved, thrombolytic application is very restricted in 
clinical settings (Chen et al. 2014). Aspirin, other antiplatelets, and anticoagulants 
are used as preventive therapy of stroke (Macrez et al. 2011).

After stroke, brain injury results from a complex sequence of pathophysiological 
events consequent to hypoxia/ischemia that evolve over time (Dirnagl 2012). A pri-
mary acute mechanism of excitotoxicity and periinfarct depolarizations is due to 
increased extracellular concentration of glutamate (see Fig.  14.1). Excitotoxicity 
brings to activation of resident immune cells, i.e., microglia, and production or acti-
vation of inflammation mediators. In the hours and along days after ischemia, pro-
tracted neuroinflammation is recognized as the predominant mechanism of 
secondary brain injury progression (Tuttolomondo et al. 2009). Activated microglial 
cells proliferate, migrate, and, by production of inflammatory substances and che-
mokines, trigger an inflammatory response (Dirnagl et al. 1999). Pro-inflammatory 
mediators and oxidative stress give rise to the endothelial expression of cellular 
adhesion molecules and to an altered permeability of the blood-brain barrier (BBB) 
that allows infiltration of leukocytes that on their turn exacerbate neuroinflamma-
tion and ischemic damage (Haskò et al. 2008; Iadecola and Anrather 2011). A huge 
increase of extracellular adenosine concentrations matches the increase of gluta-
mate in the first hours after ischemia (see Fig. 14.1) as demonstrated under OGD 
conditions in vitro in the hippocampus (Dale et  al. 2000; Frenguelli et  al. 2007; 
Latini et al. 1998; Pedata et al. 1993) and in the in vivo models of brain ischemia 
(Dux et al. 1990; Hagberg et al. 1987; Matsumoto et al. 1992; Melani et al. 1999; 
Sciotti et al. 1992). In the first minutes after ischemia, the increase of extracellular 
adenosine concentration is due to the major part of extracellularly released ATP that 
is hydrolyzed by ectonucleotidases, and then, in the hours after ischemia, adenosine 
per se is mainly released from cells (Melani et al. 2012). After in vivo ischemia, the 
extracellular concentrations of adenosine are high enough to stimulate all adenosine 
receptor subtypes (A1, A2A, A2B, and A3 receptors) (Melani et al. 2012). All receptor 
subtypes are expressed at significant levels in neurons and glial cells and in periph-
eral blood inflammatory cells (Burnstock and Boeynaems 2014) (see Fig. 14.2). The 
wide distribution is consistent with the multifaceted neurochemical and molecular 
effects of adenosine and suggests that adenosine role in ischemia is the consequence 
of an interplay among different receptor activations in neuronal, glial, and inflam-
matory cells, which varies depending on the time-related development of the 

F. Pedata et al.



353

 pathological condition. Numerous authors have proposed adenosine and adenosine 
receptors as important targets for therapeutic implementation in the treatment of 
stroke.

14.2  Role of Adenosine Receptors in Ischemia

The increase in extracellular adenosine early after ischemia has long been known as 
an endogenous neuroprotective response (Pedata et  al. 2007). In fact, adenosine 
infusion into the ischemic striatum has been shown to significantly ameliorate neu-
rological outcome and reduce infarct volume after transient focal cerebral ischemia 
(Kitagawa et al. 2002). Adenosine protection has been attributed to stimulation of 
the A1 receptor subtype; however important roles of the other three receptor sub-
types have been outlined in the last 20 years.

Fig. 14.1 Cascade of pathogenetic mechanisms after ischemia. Primary mechanisms of excitotox-
icity lead to acute cell death in the ischemic core. Depolarization spreads in the periinfart areas. 
Glutamate and extracellular adenosine concentrations increase in the first 4  h after ischemia 
(Melani et al. 1999, 2003, 2012). The curves of increases of glutamate and adenosine evoked by 
ischemia and induced by middle cerebral artery occlusion (MCAo) were drawn on the basis of 
values obtained by striatal microdialysis (Melani et al. 1999). In the following several hours, acti-
vation of resident immune cells, i.e., microglia and production of a cascade of inflammation medi-
ators, occurs. Cell death/neurogenetic responses progress along days/weeks after ischemia (figure 
modified from Dirnagl et al. 1999). Putative therapeutic opportunities with purinergic drugs com-
prehend strategies aimed at reducing excitotoxicity in the first 4 h after ischemia with adenosine 
A2A and A2B receptor antagonists. In the hours and days after ischemia, agonists of adenosine A2A, 
A2B, and A3 receptors peripherally located on vascular and blood cells may dampen vascular adhe-
sion signals and neuroinflammation
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14.2.1  Adenosine A1 Receptors Are Protective

One of the prime adaptive mechanisms in response to hypoxia-ischemia is the cel-
lular activation of adenosine A1 receptors that inhibit excitatory synaptic transmis-
sion as demonstrated in  vitro and in  vivo (Latini and Pedata 2001). Adenosine 
protective effects are greatly attributed to adenosine A1 receptor activation that due 
to reduced Ca2+ influx, lower presynaptic release of excitatory neurotransmitters 
(Corradetti et al. 1984; Dunwiddie 1984) and in particular glutamate which exerts 
an excitotoxic effect during ischemia mainly by overstimulation of NMDA 

Fig. 14.2 Schematic drawing of adenosine receptors on different cell types. All adenosine recep-
tor subtypes are expressed both at the central level on presynaptic and postsynaptic neurons, on 
astrocytes, on microglia, and on oligodendrocytes and at the peripheral level on leukocytes and 
vasculature. After cerebral ischemia, leukocytes infiltrate into ischemic tissue due to increased 
permeability of BBB. During ischemia, extracellular adenosine levels increase mainly due to (i) 
extracellular ATP degradation by NTPDase and ecto-5′-nucleotidase enzymes; (ii) release per se 
from cells likely by the equilibrative nucleoside transporter (ENT) (Melani et al. 2012); and (iii) 
inhibition of adenosine uptake processes due to downregulation of concentrative nucleoside trans-
porters (CNT) 2 and 3 and of ENT. ADO, adenosine; ADP, adenosine diphosphate; AMP, adenos-
ine monophosphate; ATP, adenosine triphosphate; E5’-NT, ecto-5’-nucleotidase; NT, nucleoside 
transporter; NTDPase, ectonucleoside triphosphate diphosphohydrolases. The proportions of the 
various components of the nervous tissue have not been kept
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(Choi 1990) and AMPA receptors (Stockwell et al. 2016). In addition, by directly 
increasing the K+ and Cl− ion conductances, adenosine stabilizes the neuronal mem-
brane potentials, thus reducing neuronal excitability (Choi 1990). Consequent 
reductions in cellular metabolism and energy consumption (Greene and Haas 1991) 
and moderate lowering of the body/brain temperature (Tupone et al. 2013; Muzzi 
et  al. 2013) protect against ischemia. A continuous infusion of the adenosine A1 
receptor agonist (6)N-cyclohexyladenosine (CHA) that maintains the body tem-
perature between 29 and 31 °C for 24 h induces better survival and decreases the 
extent of brain damage in rats subjected to asphyxial cardiac arrest for 8 min (Jinka 
et al. 2015; Tupone et al. 2016).

Consistent data demonstrate that adenosine acting on adenosine A1 receptor 
reduces the ischemia-evoked increase of excitatory transmission. In brain slices, the 
OGD- induced depression of synaptic transmission is reversed by administration of 
selective adenosine A1 receptor antagonists (Pedata et al. 1993) that also increase 
OGD-evoked aspartate and glutamate efflux (Marcoli et al. 2003), impair the recov-
ery of synaptic potentials (Sebastião et al. 2001), and shorten the onset of anoxic 
depolarization (AD) induced by hypoxia (Lee and Lowenkopf 1993). Depression of 
excitatory synaptic transmission brought about by adenosine A1 receptors during 
hypoxia/ischemia involves AMPA receptor downregulation (Stockwell et al. 2016) 
in particular the internalization of GluA1 and GluA2 subunit-containing AMPA 
receptors (Stockwell et al. 2016). Depression of excitatory synaptic activity and a 
cross talk with A2A receptor are crucial for the functional recovery of hippocampal 
circuits upon reoxygenation when adenosine A2A receptors play a critical role by 
increasing excitatory amino acid efflux (Stockwell et al. 2017). The A1-mediated 
depression of excitatory synaptic transmission may also be due to the enhancement 
of inhibitory synaptic transmission in CA1 neurons (Liang et al. 2009).

In in vitro studies, both adenosine and selective A1 receptor agonists reduce neu-
ronal damage following hypoxia and/or OGD in primary cortical or hippocampal 
cell cultures (Daval and Nicolas 1994) and brain slices (Mori et al. 1992). A1 recep-
tor agonists increase survival in anoxia and anoxia/reoxygenation and decrease 
reactive oxygen species (ROS) production, while A1 receptor blockade increases 
ROS release and cell death in primary neuronal cultures (Milton et al. 2007). Studies 
in support of the neuroprotective role of adenosine A1 receptor stimulation demon-
strate that hippocampal slices from A1 receptor knockout (KO) mice showed a 
markedly reduced and delayed protective response to hypoxia compared to slices 
from wild-type (WT) mice (Johansson et al. 2001). In astrocytes prepared from A1 
receptor KO mice, more pronounced hypoxic cytotoxicity was observed (Bjorklund 
et  al. 2008). In murine astrocytes exposed to hypoxic injury, adenosine, through 
activation of A1 and A3 receptors, inhibits accumulation of the lipopolysaccharide 
(LPS)-induced hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen 
homeostasis (Gessi et al. 2013).

In in vivo animal models of global cerebral ischemia, it has been demonstrated 
that local administration of an adenosine analogue, 2-chloroadenosine (CADO), 
and of a nonselective A1 receptor agonist, N6-(L-2-phenylisopropyl) adenosine 
(L-PIA), attenuates neuronal loss in the CA1 region of the rat hippocampus 
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(Domenici et al. 1996; Evans et al. 1987). The acute systemic or intracerebroven-
tricular (i.c.v.) injection of the A1 agonists cyclohexyladenosine (CHA) and 
R-phenylisopropyl-adenosine (R-PIA) improves neurological deficits (Heron et al. 
1994; Von Lubitz and Marangos 1990; Zhou et al. 1994), protects the CA1 region of 
the hippocampus (Von Lubitz et al. 1988), and prevents the reduction of adenosine 
A1 receptors (Daval et al. 1989) in rats or gerbils. Similarly, acute administration of 
the A1 agonists N6-cyclopentyladenosine (CPA) and 2-chloro-N(6)-cyclopentyl-
adenosine (CCPA) reduces mortality and the loss of neurons after global forebrain 
ischemia in the gerbil (Von Lubitz et al. 1994a). Systemic administration of the A1 
receptor agonist adenosine amine congener (ADAC) after global ischemia in the 
gerbil increased survival, preserved neuronal morphology, and maintained spatial 
memory and learning ability (Phillis and Goshgarian 2001; von Lubitz et al. 1996).

Several intracellular mechanisms might account for adenosine A1 receptor- 
mediated neuroprotection in hypoxia/ischemia. Postischemic intraperitoneal (i.p.) 
administration of adenosine amine congener (ADAC) resulted in preservation of 
microtubule-associated protein 2 (MAP-2) (von Lubitz et al. 1996). CCPA adminis-
tered i.c.v. before focal ischemia reduces lipid peroxidation in the cerebral cortex 
(Sufianova et al. 2014). Chronic coadministration of CCPA and vitamin C i.p. after 
global ischemia, induced by common carotid arteries ligation, minimized ischemia- 
reperfusion damage by increasing the expression of antiapoptotic protein Bcl-2 and 
decreasing the expression of proapoptotic protein Bax in mice (Zamani et al. 2013).

In accordance with a protective role of adenosine A1 receptors in ischemia, acute 
administration of adenosine A1 antagonists exacerbates the damage (Phillis 1995). 
However, chronic administration of adenosine receptor antagonists administered 
before an ischemic insult reduced the neuronal injury (Rudolphi et al. 1989), and 
chronic administration of A1 agonists worsened survival and increased neuronal loss 
(Jacobson et al. 1996). It has been suggested these phenomena depend on A1 recep-
tor upregulation and desensitization, respectively.

Plastic changes in A1 receptors are critical to understand the effects of adenosine 
A1 agonists/antagonists but also whether adenosine maintains its neuroprotective 
efficiency after ischemia. Several studies have shown that short periods of focal or 
global ischemia produced a long-lasting decrease in the density of A1 receptors (Lee 
et al. 1986). In rat hippocampal slices, hypoxia leads to a rapid (<90 min) desensi-
tization of A1 receptor that is likely due to an internalization of A1 receptors in nerve 
terminals (Coelho et al. 2006), a process that may result in hyperexcitability and 
increased brain damage. In a chronic cerebral ischemic mouse model induced by 
common carotid artery occlusion, A1 receptor downregulation, a decreased proteo-
lipid protein (a marker of white matter myelination), inhibition of the anti- 
inflammatory interleukin-10 (IL-10) production, and cognitive impairment 
measured by the Morris water maze test have been reported (Cheng et al. 2015). 
However it has been reported that A1 receptor KO mice, when exposed to global 
ischemia, do not show increased neuronal damage in the CA1 region of the hippo-
campus, in the cortex, or in the striatum (Olsson et al. 2004). These discrepancies 
may reflect development of compensatory mechanisms after genetic deletion.

In models of hypoxia-ischemia in neonatal rats, it was reported that A1 receptors 
contribute to protection of hypoxic brain (Bona et al. 1997). In agreement, most 
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recently it has been reported that A1 receptor KO neonatal mice, from 10 to 17 days 
after brain hypoxia/ischemia, displayed larger infarctions, cognitive impairment, 
and exaggerated activation of myeloid cells (Winerdal et al. 2016). Since inflamma-
tion greatly affects the outcome after neonatal brain injury, activation of myeloid 
cells is proposed as cause of the increased damage in A1 receptor KO neonatal mice, 
(Winerdal et al. 2016). Thus, the decrease of adenosine A1 receptors (Aden et al. 
1994) and increase of adenosine deaminase (Pimentel et  al. 2015) that has been 
described after rat neonatal hypoxia/ischemia would worsen hypoxic brain damage 
in neonatal period. On the other end, adenosine acting on A1 receptors appears to 
mediate hypoxia-induced brain ventriculomegaly during early postnatal develop-
ment (Turner et  al. 2003). It should be remembered that in the formation of the 
central nervous system (CNS), A1 receptor activation potently inhibits the develop-
ment of axons and can lead to leukomalacia (Rivkees et al. 2001). Notably, caffeine, 
a competitive antagonist of adenosine A1, A2A, and A2B receptors, that is commonly 
used in neonates against apnea of prematurity has become a candidate for neuropro-
tection (Schmidt et al. 2007).

Adenosine by stimulating A1 receptors plays a crucial role in the “precondition 
phenomenon” consisting in protection by sublethal anoxic/ischemic insults from 
subsequent ischemic insults. The A1 receptor agonist, CADO, markedly enhanced 
and A1 receptor antagonists completely prevented the protective effect of ischemic 
preconditioning in rat hippocampal slices (Pugliese et al. 2003). In accordance with 
in  vivo models of ischemia, the selective A1 antagonist, 8-cyclopentyl-1,3- 
dipropylxanthine (DPCPX), attenuated the neuroprotective effect of ischemic pre-
conditioning (Cui et al. 2013) and CCPA pretreatment-induced ischemic tolerance 
against cerebral ischemia/reperfusion injury induced by middle cerebral artery 
occlusion (MCAo) in the rat (Hu et al. 2012). Preconditioning induced also by limb 
remote ischemia contributes neuroprotective effects against rat focal cerebral isch-
emic injury induced by transient MCAo, and the selective A1 antagonist DPCPX 
abolished the protective effects demonstrating the involvement of A1 receptors (Hu 
et  al. 2012). Interestingly ischemic preconditioning-induced neuroprotection 
appears transferable among cells through intervention of A1 receptors as studied in 
human neuroblastoma SH-SY5Y cells (Yun et al. 2014). Peculiarly, adenosine A1 
receptors activation is involved in the ischemic tolerance in mice induced by a keto-
genic diet (a high-fat, low-carbohydrate diet that increases acetyl-CoA that is 
involved in ketone body formation that represents an alternative energy source for 
brain cells under conditions of glucose deprivation) (Yang et al. 2017).

Although data, on the all, demonstrate a neuroprotective effect of adenosine 
through A1 receptors during ischemia, the use of selective A1 agonists is hampered 
by undesirable peripheral effects such as sedation, bradycardia, and hypotension. 
Interestingly, nowadays it is proposed that partial agonists at A1 receptor may be 
devoid of hemodynamic effects being therefore valuable drugs in ischemia (Baltos 
et  al. 2016). The possibility that new adenosine A1 receptor partial agonists are 
 protective in ex vivo and in vitro experimental models of ischemia was recently 
discussed by Martire and coworkers (personal communication 2016).
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14.2.2 Adenosine A2A Receptors in Brain Ischemia

14.2.2.1  Brain A2A Receptors Increase Glutamatergic Excitatory 
Transmission

A2A receptors play an important modulation of synaptic transmission counteracting 
depression brought about by A1 receptor (Lopes et al. 2011). In the CA1 area of the 
rat hippocampus, the selective A2A receptor agonist, 2-p-(2-carboxyethyl)
phenethylamino-5′-Nethylcarboxamidoadenosine hydrochloride (CGS21680), 
clearly reduces the OGD-induced depression of synaptic activity (Latini et al. 1999). 
In agreement, the selective A2A receptor antagonists, 4-(2-[7-amino-2-(2-furyl)
[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385) and 
7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4,triazolo[1,5-c]
pyrimidine (SCH58261), delay the appearance of AD, a phenomenon strictly related 
to cell damage and death (Somjen 2001), protect from the synaptic activity depres-
sion brought about by a severe (7 min) OGD period, and protect CA1 neuron and 
astrocyte from injury (Pugliese et al. 2009). The same effects of ZM241385 were 
observed after a severe 9 min OGD period in the gyrus dentatus of the hippocampus 
(Maraula et al. 2013).

Protective effects against OGD by A2A receptor antagonists are greatly attributed 
to antagonism of excessive excitatory transmission. In fact adenosine A2A receptor 
regulates glutamatergic excitatory transmission by several mechanisms. Adenosine 
by stimulating A2A receptors located presynaptically on glutamatergic terminals can 
directly regulate glutamate outflow under normoxic (Lopes et al. 2002) and isch-
emic conditions (Marcoli et al. 2003). Moreover A2A receptors modulate glutamate 
uptake transporter. In particular, A2A receptors located on astrocytes mediate inhibi-
tion of glutamate uptake by glutamate transporter-1 (GLT-1) (Pinto-Duarte et  al. 
2005). An imbalance of A1/A2A receptor expression might also contribute to inhibi-
tion of excitatory synaptic transmission under ischemia. Short periods of global 
ischemia decrease A1 adenosine receptor density in the brain likely due to an inter-
nalization of A1 adenosine receptors in nerve terminals (Coelho et al. 2006), thus 
switching the balance toward A2A receptor-mediated effects. Moreover, adenosine 
acting on A2A receptor increases AMPA (Dias et al. 2012) and NMDA receptor func-
tion (Rebola et al. 2008).

All the above-described modulatory effects of the glutamatergic excitatory trans-
mission by adenosine A2A receptors might be relevant in in vivo ischemia. A definite 
overexpression of A2A receptors was found in vivo in neurons of the striatum and 
cortex 24 h after focal ischemia (Trincavelli et al. 2008). The A2A agonist CGS21680 
increases excitatory amino acid outflow from the ischemic cortex during in vivo 
ischemia (O'Regan et al. 1992).

Several studies demonstrated that antagonists of adenosine A2A receptors were 
protective in in  vivo models of global ischemia. Gao and Phillis (1994) demon-
strated for the first time that the nonselective A2A receptor antagonist, 
 9-chloro-2-(2- furanyl)-[1,2,4] triazolo[1,5-c]quinazolin-5-amine (CGS15943), 
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reduced cerebral ischemic injury in the gerbil following global forebrain ischemia. 
Thereafter many reports have confirmed the neuroprotective role of A2A receptor 
antagonists in different models of ischemia. The selective A2A receptor antagonist, 
8-(3-chlorostyryl)caffeine (CSC), and the less selective antagonists, CGS15943 and 
4-amino [1,2,4] triazolo [4,3a] quinoxalines (CP66713), both administered preisch-
emia and protected against hippocampal cell injury during global forebrain isch-
emia in gerbils (Phillis 1995; von Lubitz et al. 1995). The selective A2A receptor 
antagonist, ZM241385, administered preischemia, reduced hippocampal injury, and 
improved performance in the Morris water maze in hyperglycemic four-vessel 
occluded rats (Higashi et  al. 2002). In all these studies, adenosine A2A receptor 
antagonists were administered preischemia. However, postischemic administration 
is more relevant to a possible clinical use of drugs in stroke. The selective A2A recep-
tor antagonist, SCH58261, acutely administered after hypoxia/ischemia in neonatal 
rats reduced brain damage (Bona et al. 1997) and acutely administered i.p. 5 min 
after focal ischemia in adult rats was protective from brain damage 24 h thereafter 
(Melani et al. 2003). The same antagonist, administered subchronically (i.p., 5 min, 
6 and 15 h) after focal ischemia, was protective not only against brain damage but 
also from neurological deficit (Melani et al. 2006, 2009; Pedata et al. 2005) and 
disorganization of myelin (Melani et al. 2009) 24 h after focal cerebral ischemia in 
the adult rat. In the model of global ischemia (i.e., 7 min asphyxic cardiac arrest) in 
newborn piglets, posttreatment infusion with SCH58261 improved neurologic 
recovery and protected striatopallidal neurons 4 days after ischemia (Yang et  al. 
2013).

The ability of adenosine A2A receptor antagonists in protecting against ischemic 
damage in vivo is largely attributed to the control of excessive glutamatergic trans-
mission and of the ensuing acute excitotoxicity after ischemia. The low dose of 
SCH58261 that 24 h after ischemia has protected against tissue damage induced by 
MCAo (Melani et  al. 2003) or quinolinic acid (QA) excitotoxicity (Popoli et  al. 
2002), has also reduced, in the first 4 h after ischemia, the increase of extracellular 
glutamate estimated by microdialysis in the striatum (Melani et al. 2003) and has 
reduced glutamate content in the hippocampus after occlusion of both carotids in 
the rat (Svenningsson et al. 1997). In agreement, adenosine A2A receptor KO mice 
are protected from an excess of striatal glutamate outflow and damage induced by 
transient MCAo (Gui et al. 2009).

In addition, ZM241385, injected directly to intrahippocampus, is protective 
against excitotoxicity induced by kainate (Jones et al. 1998), and SCH58261 admin-
istered directly in the hippocampus (Mohamed et al. 2016) ameliorates infarct size, 
memory impairment, and motor incoordination 24 h after occlusion of both carotids 
in the rat. A further mechanism by which A2A receptor antagonism is protective may 
be due to the capability of increasing brain GABA extracellular concentration dur-
ing ischemia (Cristóvão-Ferreira et al. 2009).

SCH58261 behaves as a significant protective agent at a dose (0.01 mg/kg) that 
does not have cardiovascular effects. This low dose does not affect motor activity in 
naive animals but decreases controlateral turning behavior after MCAo induced by 
the monofilament technique (Melani et  al. 2003, 2006). At a higher dose, in the 
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range that is effective in different models of Parkinson’s disease (PD), the same 
drug significantly increases motility and rearing in the rat (Svenningsson et  al. 
1997).

Control of several intracellular pathways activated by ischemia might account 
for protection by A2A receptor antagonism. Twenty-four hours after focal ischemia, 
the A2A receptor antagonist SCH58261 has decreased the ischemia-induced activa-
tion of p38 mitogen-activated protein kinase (MAPK) in activated microglia (Melani 
et al. 2006) and of JNK MAPK that is mainly expressed in mature oligodendrocytes 
and in oligodendrocyte progenitors (OPCs) (Melani et al. 2009). p38 is considered 
a death factor in ischemia (Barone et al. 2001), and phospho-JNK is a factor involved 
in oligodendrocyte death (Jurewicz et al. 2006). JNK MAPK KO mice are in fact 
protected from damage following cerebral ischemia (Kuan et al. 2003). Reduced 
activation of JNK might be directly due to A2A receptors located on OPCs (Coppi 
et al. 2015). In fact in primary OPC culture, selective stimulation of A2A receptors 
by CGS21680 inhibits maturation of OPCs (Coppi et al. 2013) and inhibits “delayed 
rectifier” K+ currents (KDR) (Coppi et al. 2013) that are known to promote prolifera-
tion and differentiation of OPC to mature oligodendrocytes, thus preventing myelin 
deposition.

Direct intrahippocampus administration of SCH58261 after global ischemia, 
24 h thereafter, has reduced also phospho-ERK 1/2 bringing to the reduction of dif-
ferent inflammation products and to the increase of the anti-inflammatory cytokine 
IL-10 (Mohamed et al. 2016).

The reduced MAPK activation by SCH58261 might be due to a direct effect of 
the A2A receptor antagonists on A2A receptors located on oligodendrocytes or 
microglia but also to the overall reduction of the excitotoxic cascade that in the 
initial hours after in vivo ischemia primes microglial activation and MAPK activa-
tion. In fact, oligodendroglial cells are extremely sensitive to glutamate receptor 
overactivation, and ensuing oxidative stress and p38 and ERK1/2 MAPK activation 
is definitely induced by glutamate receptor stimulation (Kurino et al. 1995).

The recent observation that the A2A receptor antagonist SCH58261 chronically 
administered after ischemia has not maintained protection 7  days after transient 
focal ischemia (Melani et al. 2015) supports the idea that the early protection offered 
by A2A antagonism is overwhelmed on time by the secondary damage due to blood 
cell infiltration and neuroinflammation.

14.2.2.2  Adenosine A2A Receptor Agonists Are Protective against Ischemic 
Damage

Considering that A2A receptor antagonists are protective after ischemia, in an appar-
ent paradoxical manner, also adenosine A2A agonists were found protective under 
hypoxia/ischemia. An early study demonstrated that the adenosine A2A receptor 
agonist 2-[(2-aminoethylamino)-carbonylethylphenylethylamino]-5’-N- 
ethylcarboxoamidoadenosine (APEC), administered systemically and chronically 
for 13 days, before a global 10-min ischemia in the adult gerbil, ameliorated animal 
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and neuron survival (von Lubitz et al. 1995). Also the selective A2A receptor agonist, 
CGS21680, administered immediately after 5 min of global ischemia in gerbil at the 
high dose of 10 mg/kg i.p., exhibited highly significant protection against neuronal 
loss (Sheardown and Knutsen 1996). In agreement, A2A receptor KO mice subjected 
to chronic cerebral hypoperfusion by permanent stenosis of bilateral common 
carotid artery showed impairment in working memory, increased demyelination and 
proliferation of glia, and increased levels of pro-inflammatory cytokines (Duan 
et al. 2009). The same transgenic mice, at neonatal age, showed aggravated hypoxic/
ischemic injury in comparison to WT littermates (Adén et al. 2003). Most recently, 
Melani et al. (2014) have demonstrated that the A2A receptor agonist, CGS21680, 
administered at the low dose of 0.01 mg/kg, twice/day for 7 days i.p. (chronic pro-
tocol) starting from 4 h after transient (1 h) MCAo, induced protection from neuro-
logical deficit, weight loss, cortical infarct volume, myelin disorganization, and 
glial activation evaluated 7 days after ischemia.

In considering translation to clinic, a main problem of A2A receptor agonists con-
sists in their cardiovascular effect because adenosine A2A receptors located on vas-
cular smooth muscle and endothelial cells exert a vasodilatory effect. Relevantly, 
Melani et  al. (2014) have demonstrated that the protective dose (0.01 mg/kg) of 
CGS21680 does not modify either mean blood pressure or heart frequency. 
Moreover, adenosine by stimulating A2AR Gs-coupled adenylate cyclase in platelets 
enhances the intracellular cAMP levels, a potent molecule that inhibits platelet acti-
vation (Cooper et al. 1995) having thus potential antithrombotic activity. Therapies 
under study in ischemia (i.e., neuroprotective drugs including hypothermia or anti-
oxidant/anti-inflammatory strategies) need to be associated with thrombolytic drugs 
since restoration of oxygen and glucose, at the moment, is considered the best ther-
apy to protect against cell death from stroke (Liu et al. 2017), although its efficacy 
may be limited by the potential hemorrhagic effects. Considering that tPA and/or 
antiplatelet drugs are also routinely used in prevention of the secondary stroke, 
administration of a further drug that has antiplatelet activity could potentiate a pre-
vious antiplatelet therapy increasing the hemorrhagic potential or on the contrary 
could be useful in maintaining an antiplatelet effect after the primary stroke. 
However we found (personal unpublished results) that a chronic treatment with 
CGS21680, twice/day for 7 days at the dose of 0.01 mg/kg administered i.p. in con-
trol rats, does not modify platelet aggregation induced by 10 μM ADP (technique 
described by Ma et al. 2016; Yang et al. 2015) (50.9% ± 11.5 of ADP induced aggre-
gation in control n = 3 versus 49.4% ± 1.3  in treated rats n = 4). In agreement, 
concentrations of CGS21680 that decrease production of free radicals of the oxygen 
from isolated human neutrophils were calculated three times lower (EC50 300 nM) 
than those that decrease human platelet aggregation (IC50 1090 nM) (Gessi et al. 
2000). Data suggest that adenosine A2A receptors exert antioxidant effects and 
inhibit granulocyte infiltration at doses /concentrations lower than those necessary 
to inhibit platelet aggregation.

Protection by CGS21680 after ischemia could be attributable to central effects 
because it easily crosses the BBB. As a vasodilator agent, adenosine acting on A2A 
receptors is in fact implicated in cerebral blood flow regulation and might favor 
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brain reperfusion after ischemia. Recently, importance of adenosine receptors 
located on vasculature as therapeutic targets in cardiovascular pathologies including 
stroke was pointed out (Sousa and Diniz 2017). Moreover CGS21680 administered 
directly into the rat striatum immediately prior to the induction of intracerebral 
hemorrhage reduces parenchymal neutrophil infiltration and tissue damage: an 
effect that was related to the inhibition of tumor necrosis factor-α (TNF-α) expres-
sion (Mayne et al. 2001). Activation of central A2A receptors is known to increase 
expression and release of neurotrophic factors such as nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic 
factor (GDNF) (Sebastião and Ribeiro 2009). The increase in neurotrophic factor 
expression by adenosine A2A receptor stimulation may contribute to restore neuro-
logical functions and cerebral damage after brain ischemia.

A bulk of evidences however indicates that A2A receptors located on blood cells 
greatly account for protective effects of adenosine A2A agonists after ischemia. The 
adenosine A2A receptors are expressed in fact both on cells of innate (microglia, 
macrophages, mast cells, monocytes, dendritic cells, neutrophils) and on adaptive 
(lymphocytes) immunity. After ischemia altered permeability of BBB allows infil-
tration of leukocytes (neutrophils, lymphocytes and monocytes) that on their turn 
exacerbate ischemic damage (Haskó et al. 2008). In the transient MCAo model in 
the rat, selective immunostaining for granulocytes, by anti-HIS-48 antibody, shows 
numerous infiltrated cells in ischemic striatal and cortical core, 2 days after transient 
MCAo (Melani et al. 2014). This is in agreement with observation that after tran-
sient MCAo, a peak of neutrophil infiltration occurs at 6 and 48 h thereafter (Zhang 
et al. 1994). Seven days thereafter, infiltrated blood cells were anymore observed 
(Melani et al. 2014). Chronic treatment with the A2A adenosine receptor agonist, 
CGS21680, 2 days after transient MCAo, has definitely reduced the number of infil-
trated blood cells in the ischemic areas (Melani et al. 2014). The importance of a 
protracted treatment with the A2A agonist in order to achieve protection is proved by 
the observation that the A2A agonist administered subchronically (4 and 20 h after 
induction of MCAo) did not prove protective 24  h after permanent MCAo nor 
7 days after transient MCAo (Pedata et al. 2014).

Many studies have reported that selective activation of A2A receptors directly on 
blood cells, including platelets, monocytes, some mast cells, neutrophils, and T 
cells, inhibits pro-inflammatory responses, reduces production of adhesion cell fac-
tors, and reduces neutrophil activation, thereby exerting antioxidant and anti- 
inflammatory effects. A2A receptor activation is known to reduce ischemia-induced 
rolling, adhesion, and transmigration of various peripheral inflammatory cells (such 
as lymphocytes, neutrophils) (Haskó et al. 2008). It has been reported that adenos-
ine A2A receptors are sensors of inflammatory disease and increase in number in 
blood cells in different human peripheral and central inflammation-based patholo-
gies including rheumatoid arthritis multiple sclerosis and amyotrophic lateral scle-
rosis (Borea et  al. 2016). Our (unpublished) results demonstrate that density of 
adenosine A2A receptor assayed by RT-PCR in leukocytes isolated from sham- 
operated (mean ± ES; sham-operated, 1.02 ± 0.02) is not modified 48 h after tMCAo 
(0.95 ± 0.01) but was significantly decreased after 7 days (0.92 ± 0.03*, unpaired 
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student’s t-test, *p  <  0.03 vs sham-operated rats; results are expressed as fold 
increase according to the 2^(−ΔΔCt) method, utilizing as target genes ADORA2A) 
when infiltrated blood cells were anymore observed (Adén et al. 2003).

In support that A2A receptors on blood cells are greatly responsible of the protec-
tive effects of A2A agonists, protection of motor deficits by A2A receptor agonists 
systemically administered after spinal trauma is lost in mice lacking A2A receptors 
on bone marrow-derived cells (BMDCs) but is restored in A2A receptor KO mice 
reconstituted with A2A receptors on BMDCs (Li et al. 2006). Moreover, in the spinal 
cord trauma model in the mouse, CGS21680 protected from damage when injected 
systemically but not when centrally injected into the injured spinal cord (Paterniti 
et al. 2011). Consistent with its anti-inflammatory and immunosuppressive role, the 
protective effect of adenosine A2A receptor stimulation has been observed in differ-
ent pathologies where inflammatory process has an important role in tissue damage 
such as ischemia/reperfusion liver injury (Day et al. 2004), spinal cord trauma (Day 
et al. 2004; Genovese et al. 2010; Paterniti et al. 2011), rheumatoid arthritis (Mazzon 
et al. 2011), acute lung inflammation (Impellizzeri et al. 2011), intestine ischemia/
reperfusion injury (Di Paola et al. 2010; Odashima et al. 2005), and experimental 
autoimmune encephalomyelitis (Xu et al. 2013).

14.2.2.3  A2A Receptor as Target of Protective Drugs after Ischemia

In conclusion information up to now indicates that stimulation or antagonism of A2A 
receptors might be a protective strategy secondary to the time-related development 
of phenomena typical of trauma and ischemia. Protective effects of A2A antagonists, 
at doses that do not modify hemodynamic parameters and inside a therapeutic win-
dow compatible with arrival in a stroke unit, would provide protection by dampen-
ing central excitotoxicity, while A2A agonists, at doses that do not modify 
hemodynamic parameters or platelet activity, provide protection by controlling 
massive infiltration in the hours after ischemia. Since a major mechanism underly-
ing reperfusion injury is that of poststroke inflammation, targeting anti- inflammatory 
targets as a combined therapy with pharmacological thrombolysis or mechanical 
thrombectomy after reperfusion is a potential useful strategy after stroke (Mizuma 
and Yenari 2017).

14.2.3  Adenosine A2B Receptors in Brain Ischemia

Among adenosine receptors, the adenosine A2B receptor subtype is the least studied 
and still remains the most enigmatic adenosine receptor subtype because of the rela-
tively low potency of adenosine at this receptor (EC50 value of 24 μM) (Fredholm 
et  al. 2011) and the very few specific agonists that have been described so far. 
Adenosine A2B receptors, although scarcely, are uniformly expressed throughout the 
CNS (Dixon et al. 1996) including the hippocampus (Perez-Buira et al. 2007). Their 
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expression in neurons, glial, and vascular endothelial cells increases after ischemia 
and mRNA protein expression of A2B receptor increased to a greater extent after 
ischemia-reperfusion than did expression of the other three adenosine receptors (A1, 
A2A, and A3) 24 h after transient MCAo in the rat (Li et al. 2017). Thus, during con-
ditions of hypoxia or ischemia when the extracellular adenosine levels rise, A2B 
receptors might be well activated (Xu et al. 2013).

Due to the existence of selective antagonists of A2B receptors, their role under 
OGD was most recently investigated. Our recent data demonstrate that, in the CA1 
area of the rat hippocampus, the selective A2B receptor antagonists, N-(4- 
cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl) phe-
noxy]–acetamide (MRS1754) and 8-[4-[4-(4-Chlorophenzyl) piperazide-1-sulfonyl) 
phenyl]] -1-propylxanthine) (PSB603), prevent the appearance of AD, a phenome-
non strictly related to cell damage and death (Pugliese et al. 2006), and protect from 
the synaptic activity depression, bringing to a significant recovery of an otherwise 
disrupted neurotransmission induced by 7-min OGD (see Fig. 14.3) (Fusco et al. 
2017). The damage to CA1 pyramidal neurons, assessed by the decrease of immu-
nofluorescence density of CA1 NeuN+ neurons, was completely antagonized by 
treatment with PSB603 (see Fig. 14.3) (Gaviano et al. 2017). A2B receptors are pres-
ent in mouse hippocampal glutamatergic terminals, where their selective stimula-
tion counteracts the A1 receptor-mediated inhibition of synaptic transmission 
(Goncalves et al. 2015). Moreover, in transfected cells, a synergy with A2A receptors 
has been envisaged because adenosine A2A receptor, when stimulated, facilitates A2B 
receptor externalization from the endoplasmic reticulum to the plasma membrane, 
possibly increasing the formation of the A2A-A2B dimer which could regulate gluta-
mate outflow (Moriyama and Sitkovsky 2010).

In primary murine astrocytes, the expression of A2B receptor is strongly stimu-
lated by LPS in concert with hypoxia (Gessi et al. 2013). In human astroglial cells, 
a selective A2B antagonist, N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo- 
1,3-dipropyl-1H-purin-8-yl) phenoxy]acetamide (MRS1706), completely prevents 
elongation of astrocytic processes (a morphological hallmark of in  vivo reactive 
astrogliosis) induced by selective stimulation of A2B receptors (Trincavelli et  al. 
2004). The selective A2B receptor antagonist, MRS1754, administered i.c.v., reduced 
an early ceramide production from primary astrocytes isolated from the hippocam-
pus of rats subjected to global cerebral ischemia (Gu et al. 2013). Specific secretion 
of ceramide from astrocytes has been associated with neuroinflammation and is 
considered a contributing factor to neuronal dysfunction and damage (Wang et al. 
2012). Such effect of the A2B antagonist might be due to an early reduction of p38 
MAPK activation (Wei et al. 2013) or to reduced expression of the “regulators of 
G-protein signaling” (RGS) in particular RGS-3 as demonstrated in astrocytoma 
cells (Eusemann et  al. 2015). A2B receptor desensitization described on astroglia 
might represent a cell defense mechanism in ischemia (Trincavelli et  al. 2008). 
Since A2B receptors are activated only by high adenosine concentrations as can be 
reached under brain ischemia, they might represent a good selective therapeutic 
target for antagonists that, by reducing excitotoxicity and neuroinflammation, can 
subserve a protective mechanism early after ischemia (Popoli and Pepponi 2012).
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Besides brain cells, A2B receptors are present on blood immune cells, i.e., neutro-
phils and lymphocytes (Eckle et al. 2008; Gessi et al. 2005), where in most cases 
they are coexpressed with A2A receptors. They are also expressed at low levels on 
platelets, where they are upregulated following injury and systemic inflammation 
in vivo and induce inhibition of platelet aggregation (Yang et al. 2010). Attenuation 
of hypoxia-associated increases in tissue neutrophil number in different tissues 
including brain largely depends on hematopoietic cell A2B signaling (Eckle et al. 
2008).

Fig. 14.3 The selective antagonism of adenosine A2B receptors counteracts functional and histo-
logical damage induced by severe OGD. (A) Upper panel: AD was recorded as the negative d.c. 
shift in response to 7-min OGD in the absence (OGD) or in the presence of 500 nM MRS1754 or 
50 nM PSB603. Lower panel: the graph shows the time course of 7-min OGD effects on fEPSP 
amplitude in OGD-untreated slice and in 500 nM MRS1754- or 50 nM PSB-603 treated slices. 
Amplitude of fEPSPs is expressed as percent of respective pre-OGD baseline. Note that, after 
reperfusion in oxygenated standard solution, a recovery of fEPSP was found in MRS1754 or 
PSB603 treated OGD slices. Gray bar, OGD time duration. Open bar, time of drug application. (B) 
Analysis of NeuN+ immunofluorescence in CA1 stratum pyramidale after the OGD insult. Upper 
panels: representative images of NeuN+ immunofluorescence in the region of interest of CA1 of a 
control slice (CTR), a slice where a 7-min OGD was performed (OGD), and a slice where a 7-min 
OGD was performed in the presence of 50 nM PSB-603 (OGD + PSB), all collected 3 h after the 
insult. Scale bar, 75 μm. Lower panel: quantitative analyses of NeuN+ immunofluorescence in the 
four experimental groups. Each column represents the area, expressed in pixels (x 106) above a 
threshold, maintained constant for all slices investigated. Statistical analysis: One-way ANOVA, 
Newman-Keuls multiple comparison test: *P < 0.05, OGD vs CTR; #P < 0.05, OGD + PSB vs 
OGD. CTR, n  = 6; OGD, n  = 5; OGD + PSB, n  = 3. All data in the graphs are expressed as 
mean ± S.E.M
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Moreover, A2B receptors are expressed on the surface of endothelial cells 
(Feoktistov et al. 2004) where they are upregulated by the hypoxia-inducible factor 
(HIF-1α) (Eltzschig et al. 2004). Studies in mice deleted of A2B receptors on bone 
marrow cells indicate an important contribution of vascular A2B receptors in attenu-
ating vascular leakage during hypoxia (Eckle et al. 2008). The A2B receptor antago-
nist MRS1754 increases adhesion in human microvascular endothelial cells 
(HMEC-1 s) exposed to hypoxia (Eltzschig et al. 2004), and adenosine A2B receptor 
KO mice show increased basal levels of TNF-α and expression of adhesion mole-
cules in lymphoid cells, resulting in increased leukocyte rolling and adhesion (Yang 
et al. 2006). Evidences indicate that A2B receptors are a valuable target to protect 
heart (Eltzschig et al. 2013) and kidney from ischemia (Grenz et al. 2008). Recent 
introduction of new pharmacological tools (Hinz et al. 2014) led to understand a 
role of A2B receptors in ischemia. The selective A2B receptor agonist BAY60–658380 
systemically administered in mice before in  vivo normobaric hypoxia exposure 
decreases vascular leak in the lung, liver, and colon (Eckle et al. 2008). It has also 
been demonstrated (Li et al. 2017) that treatment with BAY60–6583 (1 mg/kg intra-
venously), at the start of reperfusion after brain ischemia induced by 2-h transient 
MCAO, 24-h thereafter, reduced lesion volume and attenuated brain swelling and 
BBB disruption. In the presence of tPA (administered after ischemic stroke to dis-
solve intravascular clots), BAY60–6583 also mitigated sensorimotor deficits and 
reduced tPA-induced hemorrhages at 24 h (Li et al. 2017). The neurovascular pro-
tection afforded by BAY60–6583 appears to derive from stimulation of the tissue 
inhibitor of matrix metalloproteinase-1 (TIMP-1) production, inhibition of tPA- 
induced matrix metalloprotease (MMP) activation, and prevention of tight junction 
protein degradation. In fact overactivation of MMP leads to increased cerebrovascu-
lar permeability after ischemia-reperfusion injury (Mishiro et al. 2012). It is pro-
posed that A2B receptor agonists might be adjuvant to tPA and could be a promising 
strategy for decreasing the risk of hemorrhages during treatment for ischemic stroke 
(Li et al. 2017).

All together these studies point toward a role of central A2B receptors, in synergy 
with A2A receptors in promoting brain excitotoxicity, while A2B receptors located on 
vascular endothelial cells would play a pivotal role in attenuating hypoxia-induced 
increases in vascular leak. A2B receptor has been described as implicated in dampen-
ing vascular adhesion signals and hypoxia-induced inflammation (Koeppen et al. 
2011).

A further possible role of A2B receptors in hypoxia/ischemia might be secondary 
to promotion of an angiogenic response because activation of A2B receptors by ade-
nosine increases endothelial cell proliferation, chemotaxis, capillary tube forma-
tion, and release of vascular endothelial growth factor (VEGF) (Feoktistov et al. 
2004).
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14.2.4  Adenosine A3 Receptors in Brain Ischemia

Adenosine A3 receptor has an affinity of 300 nM in huis widespread in the rat and 
mouse brain but compared to A1 and A2A receptors has less affinity for adenosine 
(10–30 nM versus 1 μM) and is detected at relatively low levels (Gessi et al. 2008). 
However, since extracellular adenosine concentrations in the first hours after isch-
emia reach a μM range (Latini and Pedata 2001; Melani et al. 1999), also adenosine 
A3 receptor is involved in the tonic adenosine effects in ischemia.

Studies currently in the literature concerning the role of adenosine A3 receptor in 
the pathophysiology of cerebral ischemia are rather contradictory (Borea et  al. 
2009; Pedata et al. 2010). The use of mice with genetic deletion of the A3 receptors 
has pointed out a neuroprotective function of adenosine A3 receptors. Mice lacking 
A3 receptors showed in fact increased neurodegeneration in response to repeated 
episodes of moderate hypoxia (Fedorova et al. 2003) and an increase in cerebral 
infarction after transient ligation of MCA (Chen et al. 2006). Accordingly, a chronic 
administration (10-day pre-ischemic) of the A3 agonist N(6)-(3-iodobenzyl)-
adenosine-5’-N-methylcarboxamide (IB-MECA) reduced ischemic damage after 
global forebrain ischemia in the gerbil (von Lubitz et al. 1994b), and pretreatment 
with a selective A3 agonist, 1-[2-Chloro-6[[(3-iodophenyl)methyl]amino]-9H- 
purin- 9-yl]-1-deoxy-N-methyl-ß-Dribofuranuronamide] (Cl-IB-MECA), intracere-
broventricularly or repeatedly intravenously administered before MCA ligation 
decreased the size of infarction-induced by transient MCAo (Chen et al. 2006).

Under in vitro OGD (5 min), selective activation of adenosine A3 receptors by a 
brief (5 min) application of IB-MECA brings about an inhibition of excitatory neu-
rotransmission on cortical neurons (Hentschel et al. 2003), and application of the 
selective A3 receptor antagonist, 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2- phenyl- 
4-propyl-3-pyridine carboxylate (MRS1523), before a brief (2 min) OGD reduces 
the OGD-induced depression of fEPSP in the CA1 hippocampal area (Pugliese 
et al. 2007). These findings indicated an inhibitory role of A3 receptors on synaptic 
transmission during brief OGD periods and have suggested that A3 receptors have a 
synergistic role with A1 receptors in decreasing synaptic transmission, thus sustain-
ing the neuroprotective effect of A1 receptors.

On the other hand, when hippocampal slices are submitted to a severe (7-min) 
OGD, the selective antagonists of adenosine A3 receptors abolish or delay the occur-
rence of AD and significantly protect from the irreversible disruption of neurotrans-
mission caused by the severe ischemic episode in the CA1 region of rat hippocampal 
slices (Colotta et al. 2007, 2008, 2009; Poli et al. 2017; Pugliese et al. 2006, 2007). 
Depression of synaptic transmission following 15-min OGD was prevented by A3 
receptor antagonists also in the CA3 hippocampal area (Dennis et al. 2011).

To explain results above reported, we should consider that rat cortical neurons 
exposed to hypoxia in vitro show an increase in activation of protein kinase C (PKC) 
after selective adenosine A3 receptor stimulation (Nieber and Hentschel 2006). If 
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OGD is applied long enough to be considered severe, PKC activation induced by 
adenosine A3 receptor could account for an increase in intracellular calcium, which 
may participate in increasing tissue excitability and thus lead to irreversible synap-
tic failure. Thus while initially after OGD, massive excitotoxicity may be controlled 
by adenosine A3 receptors, later the ensuing cascade of cytotoxic events could be 
potentiated by prolonged adenosine A3 receptor stimulation. Moreover ischemia- 
induced plasticity of A3 receptors might be relevant to explain the A3 agonist effects 
in ischemia. A desensitization of A3 receptors might account for the effect of a long 
application (before and during OGD) of Cl-IB-MECA and of new selective A3 ago-
nists (Volpini et al. 2002, 2007) that like A3 antagonists protect from the depression 
of synaptic activity brought about by prolonged OGD and delay the appearance of 
AD in the CA1 region of rat hippocampal slices (Pugliese et al. 2007).

A3 receptor mRNA has been identified in mouse astrocytes, in microglia, and in 
oligodendrocytes. In human D384 astrocytoma cells, Cl-IB-MECA at relatively low 
concentration (0.8 μM) reduced ATP depletion and apoptosis caused by hypoxic 
conditions (Bjorklund et al. 2008). Primary astrocytes prepared from adenosine A3 
receptor KO mice were more affected by hypoxia than those prepared from WT 
mice (Bjorklund et al. 2008). In cultured murine astrocytes, stimulation of A3 recep-
tors decreases HIF-1 expression induced by LPS under hypoxic conditions (Gessi 
et al. 2013), leading to inhibition of genes involved in inflammation injury (Gessi 
et al. 2013). In the in vivo model of transient MCAo, IB-MECA administered after 
ischemia proved to decrease the intensity of reactive gliosis involving microglia and 
astrocytes as evaluated 7 days after ischemia (von Lubitz et al. 1996).

Besides being localized on central cells, adenosine A3 receptors are also local-
ized on blood cells (Gessi et al. 2013). The state of the art about the role of adenos-
ine A3 receptors in inflammatory responses appears conflicting because exposure of 
blood peripheral cell lines to selective adenosine A3 receptor agonists results in both 
anti- and pro-inflammatory effects (Borea et al. 2009). Choi et al. (2011) have dem-
onstrated that treatment with 2-chloro-N(6)-(3-iodobenzyl)-5’-N-methylcarbamoyl- 
4′-thioadenosine (LJ529), a selective A3 agonist administered by intraperitoneal 
injection 2 and 7  h after transient MCAo, markedly reduced cerebral ischemic 
injury 24 h thereafter. LJ529 also prevented the infiltration of monocytes and migra-
tion of microglia occurring after MCAo. A3 receptor agonists can mediate their 
protective effects via anti-inflammatory signaling (inhibition of pro-inflammatory 
cytokines) and/or concomitant inhibition of innate immune cell trafficking because 
of A3 receptor desensitization (Butler et al. 2012).

As adenosine A2A receptor, also A3 receptors are upregulated in lymphocytes 
obtained from patients affected by chronic autoimmune inflammatory rheumatic 
diseases, i.e., rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis 
(Ravani et al. 2017; Varani et al. 2011) raising the possibility to exploit adenosine 
A2A and A3 receptors as therapeutic targets to limit the inflammatory responses.

A3 agonists, under clinical evaluation for the treatment of inflammatory diseases 
and cancer, demonstrated excellent safety and efficacy (Fishman et al. 2012).

Overall, results raise the question of the time-related utility of A3 receptor antag-
onists/agonists for treatment of ischemia. It may be speculated, that after ischemia, 
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a prolonged treatment with adenosine A3 receptor agonists protects first by reducing 
glutamate-mediated excitotoxicity and later on after ischemia, by desensitizing 
 central A3 receptors and via anti-inflammatory effects mediated by A3 receptors on 
blood cells.

14.3  Conclusions

Information up to now acquired indicate that adenosine receptors located on any 
cell type of the brain and on vascular and blood cells partake in either salvage or 
demise of the tissue after a stroke. They thus represent important targets for drugs 
having different therapeutic time windows after stroke.

One of the prime adaptive mechanisms in response to hypoxia-ischemia is the 
cellular activation of adenosine A1 receptors which inhibits excessive excitatory 
synaptic transmission. At the same time but, on the contrary, adenosine A2A and A2B 
receptors contribute to excessive excitotoxicity. Unfortunately the use of selective 
A1 agonists is hampered by undesirable peripheral effects such as sedation, brady-
cardia, and hypotension. Early neuroprotective strategies with antagonists of ade-
nosine A2 receptors would be aimed at targeting the brain parenchima to antagonize 
excitotoxicity and ensuing production of harmful molecular events responsible for 
acute brain damage.

In the hours and days after ischemia, adenosine A2A, A2B, and A3 receptors periph-
erally located on vascular and blood cells may be the targets of drugs aimed at 
dampening vascular adhesion signals and neuroinflammation.

Overall, a therapeutic strategy with adenosine receptor antagonists/agonists 
should be carefully evaluated in terms of time after ischemia due to the balance of 
central versus peripheral adenosine receptor-mediated effects over time after isch-
emia. Besides early neuroprotective strategies with A2A and A2B receptor antago-
nists, strategies aimed at targeting events in a longer time window of days/weeks 
after ischemia appear promising in antagonizing inflammation and neurovascular 
protection and promoting neuroplasticity and neurogenesis. Considering that tPA is 
routinely used after ischemic stroke to dissolve intravascular clots, most recent data 
indicate that A2B receptor agonists, by providing neurovascular protection, might be 
a promising strategy against BBB damage and permeability and for decreasing the 
risk of hemorrhages after stroke.

Compounds active at adenosine receptors are drugs under development and 
already exist in therapy or in clinical experimentation for other indications; some of 
them could enter in a reasonable time in clinical trials for stroke. Still there is urgent 
need of novel compounds to be developed with higher selectivity, oral bioavailabil-
ity, stability in vivo, longer half-life, and better capability to cross the BBB.
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