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Abstract
The paper deals with mathematical modelling of the growth of tumours characterized by
the presence of cancer stem cells (CSC). These cells are assumed to be immortal and multi-
potent, in the sense that they can generate either CSC or ordinary cancer cells (CC). We
present a synthetic review of some models that have been proposed in the literature and we
report the development of new original models, to open a complete multi-approach window
on modellization of the problem. The mathematical models are presented without technical
details, but numerical simulations are displayed that exhibit the so-called “tumour growth
paradox” that consists in the fact that tumours with a larger death rate for the CC may grow
faster than tumours with a lower death rate for the same class of cells. The occurrence of this
paradox has important consequences also on the strategy of treatment of tumours.

Keywords Cancer stem cells · Mathematical modeling of tumours · Cellular automata ·
Ordinary differential equations · Integro-partial differential equations · Reaction–diffusion
equations

Mathematics Subject Classification 93A30 · 92Cxx · 37B15

1 Introduction

In the last few years several papers have been devoted to the construction, discussion and
analysis of mathematical models designed to describe of the growth of tumours in presence of
cancer stem cells (CSC), see for instance (Betteridge et al. 2006; Borsi et al. 2015; Enderling
et al. 2009; Fasano et al. 2016; Ganguly and Puri 2006; Hillen et al. 2013). The heterogeneity
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Mathematical models for tumours with cancer stem cells 6545

of tumour cells in breast cancers was put in evidence in Al-Hajj et al. (2003) where the term
tumorigenic cells was introduced; this fact is now widely accepted (see, e.g., Lathia et al.
2015) and CSC have been identified in many cancers, as well in sarcomas and leukemia (see,
e.g., Dittmar and Zänker 2013). The relevance of CSC in the progression of these and other
tumours and the investigation of their role has been the object of many experimental papers as
well as of more theoretically oriented articles, see (Michor 2008) and the bibliography cited
therein as well as (Dingli and Michor 2006; Dittmar and Zänker 2013; Kakarala and Wicha
2008; Lathia et al. 2015; Maddalena 2014; Solé et al. 2008). One of the features of tumours
with CSC is the so-called tumour-growth-paradox that consists in the fact that tumours with
a larger death rate for ordinary (non-stem) cancer cells might grow bigger than tumours with
a lower death rate for the same class of cells (Enderling et al. 2009; Hillen et al. 2013). Of
course, since the death rate is influenced by medical treatment, understanding the reasons of
this paradox can be relevant in the control of the tumours (Gurova and Gudkov 2003;Wodarz
and Komarova 2007). In Rodriguez-Brenes et al. (2017) a negative feedback from CC on the
proliferation of CSC is incorporated in the system of the ODEmodelling the growth rate, and
this fact is considered to originate the paradoxical behaviour in some cases of drug treatment.
Concerning mathematical models, that are the object of this short review, we have to stress
that they are not intended to give quantitative prediction of the progression of cancers, nor to
include all possible factors and aspects that influence their growth. They are rather oriented
to offer a conceptualization of the phenomenon and to isolate the mechanisms that seem to
be crucial for the essential features of the evolution of tumours in presence of CSC. In other
words, the models that we present essentially fall in the “descriptive” camp rather than in
the “mechanistic” camp, according to the classification of Anderson and Quaranta (2008).
Nevertheless, we believe they can offer some suggestions to conceptualize the phenomenon
in terms of its essential components. On the other hand, presenting and analyzing various
mathematical modelling techniques and the corresponding numerical simulations outlines in
particular the model-independence of the occurrence of the tumour growth paradox. In the
models thatwe describe somedrastic simplifications are introduced to provide amathematical
scheme such that the properties of its solutions can be investigated and simulated. On the
other hand, it is important that the model does not contain a too high number of parameters,
whose values would be hardly estimated form experimental data. In other words, as Albert
Einstein said, “a model should be as simple as possible. . . but not simpler”. In this paper,
we will present, analyze and discuss some mathematical models that have been proposed in
this context (see Betteridge et al. 2006; Borsi et al. 2015; Enderling et al. 2009; Fasano et al.
2016; Hillen et al. 2013; Maddalena 2014; Stiehl and Marciniak-Czochra 2012), avoiding
technical details and displaying some numerical simulations. In addition, we will present the
development of an original model based on cellular automata to provide a comprehensive
overview on modelling of the phenomenon. We will see, in particular, in which sense and
cases the models exhibit the paradoxical behaviour outlined above and we will mimic the
response of tumours to different treatments. We will not describe mathematical models more
based on stochastic arguments and/or dealing with the mutation of the normal cells to CSC
(Ganguly and Puri 2006; Sun and Komarova 2015).

2 Basic ingredients of themodels

The models that we will describe contain two basic simplifications. The first simplification
consists in assuming that the population of tumour cells consists of just two sub-populations:
cancer stem cells (CSC) and ordinary non-stem cells (CC) and that all the cells in each
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6546 L. Meacci, M. Primicerio

subpopulation have the same properties. This implies in particular that it is assumed (and
this is the second drastic approximation) that cells have age-independent replicative potential
and mortality. More specifically, for CC there is a fixed probability of generating new CC
or of undergoing apoptosis, while CSC are assumed to be immortal and to be capable of
generating new CSC (symmetrical mitosis) or CC (unsymmetrical mitosis), with a fixed
ratio between the two probabilities. Of course these are very strong simplifications because
in practice multipotent cells generate various cell lineages and because cells are subject
to senescence and their parameters (replication potential, mortality) vary accordingly. In
Rodriguez-Brenes et al. (2014) a model is presented in which the cell population is organized
in three types of cells: stem cells, progenitors, and differentiated cells. Mutations associated
with malignancies have different effects if they take place in the stem cells or downstream.
On the other hand, in themodels consisting in systems of equations (ODE, integro differential
equations, reaction–diffusion equations) the unknown functions represent averaged fractions
of CC and CSC and thus the characteristics of each cell (age among them) cannot be taken
into account. This is the limit of this class of models that can represent just a conceptual
idea of the complex phenomenon. Nevertheless, even with these simplifications, the models
we discuss here are sufficiently rich and in particular they are able to describe the tumour
paradox adequately. We may add that it could be possible to encompass age-dependence in
themodels, introducing compartmental models in which the unknown functions represent the
fractions of cells belonging to a sequence of different classes of age, as inWerner et al. (2011,
2016), Michor et al. (2005), and Dingli et al. (2007). The “cost” of this approach will be the
introduction of a larger number of parameters that have to be fitted with experimental data.
In a different context (hematopoietic development) a multi-compartment model has been
proposed (see Marciniak-Czochra et al. 2009) to describe the proliferation (and senescence)
of different age classes of cells.

An important effect that is included (although in a very idealized way) in all the models
that will be described is the “crowding effect” (Betteridge et al. 2006; Borsi et al. 2015;
Enderling et al. 2009; Fasano et al. 2016; Hillen et al. 2013). This means that mitosis is
supposed to be inhibited when the density of cells in a neighborhood of the would-be mother
cell exceeds a threshold value. Models based on the basic concepts of population dynamics,
but not taking into account the crowding effect have been proposed starting fromMichor et al.
(2005) but were unable to explain the tumour growth paradox. In what follows we do not take
into account explicitly the movement of cells induced by mutual pushing by effect of mitosis.
In some sense, this mechanism is is implicitly included in the mean field approximation (4)
because the “crowding” term 1 − u − v represents the availability of space in the whole
region of interest.1 According to some authors (e.g., Betteridge et al. 2006; Enderling et al.
2009; Hillen et al. 2013) “pushing” effect can be included in integro-differential models
(see Sect. 5) by adding diffusion and this is reflected, in reaction–diffusion models (see
Sect. 6), by additive terms in the coefficients of Uxx and Vxx . From the point of view of
the mathematical well-posedness and of the qualitative aspects of the numerical simulations
this does not make any relevant difference (just the appearance of two more parameters). In
case of agent-based models one could possibly consider different probabilities of replication
when space is available in a close neighborhood of the mother cell with respect to the case
in which the space is available at some distance and some energy has to be spent to displace
the neighboring cells. More generally, some papers have taken into account the role if the
extra-cellular matrix (ECM) and themechanical effects induced by tumour growth (Kiel et al.

1 Possibly, this term could be modified by a different function of u + v vanishing when the whole region is
filled by tumour cells.
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2007). This is essential when processes of encapsulation are to be described, but we will not
include this process in our models.

3 Agent-basedmodels

This approach is based on the so-called “cellular automata” (CA). As it is well-known, CA
were introduced by John vonNeumann (following the idea of StanislawUlam) to study global
properties from local processes (Kari 2005) and are currently applied in several contexts
(Chopard and Droz 1998).2 In the present case we imagine cells as living in a square (or
cubic) lattice and we prescribe (probabilistic) rules for their motion, replication or death.
When we run a simulation, the individual behaviour of each cell contributes to the evolution
of the system that is visualized by the collective behaviour. Possibly, one may average over
several simulations to get insight of the response of the model to different setup of parameters
and conditions. According to the remark on the crowding effect, we assume that cells can
proliferate only if in their neighborhood some lattice sites are vacant. It is also assumed
that dying cells leave immediately blank the site they occupied. In the simplest version
that we present here cells are supposed to be immobile, but also a random motion (e.g.,
diffusion) or drift can be incorporated in the model. Different definitions of “neighbourhood”
are possible: for the 2-D lattice Von Neumann’s or Moore’s neighbourhood can be used
(4 orthogonal neighbours—north, south, east, west—or 8 neighbours—adding northwest,
northeast, southwest, southeast—respectively). But larger neighbourhood can also be used,
such as squares of 5 × 5 lattice sites centered in the considered cell. In the simulation we
present here, each site in the lattice grid can be in one of three different states:

• vacant sites (white),
• sites occupied by CSC (black),
• sites occupied by CC (red).

Starting from a given situation at time tk each CC red) has a probability μ of undergoing
apoptosis (becomingwhite). Then, the surviving cells have a probabilityρ of being potentially
replicant. But, in this case, mitosis is only possible if there are vacant (white) sites in the
chosen neighbourhood; if this situation occurs a daughter CC appears and one of these white
sites becomes red. The situation with CSC is similar, but with two differences: (1) μ = 0,
and (2) if mitosis occurs a daughter CSC appears with probability δ, while the unsymmetrical
proliferation (i.e., the appearance of new born CC) has probability 1 − δ. The replication
probability ρ can be different for the two classes of cells (ρu for CSC, ρv for CC) and could
be assumed to be age-dependent, i.e., decreasing for each mitosis undergone.We will neglect
this latter fact and assume that the replication potential is age-independent. We also neglect
the possibility of diffusion and movement of the cells, as considered e.g. in Betteridge et al.
(2006), Enderling et al. (2009) and Hillen et al. (2013). When the simulation stops before
the growing tumour reaches the boundary of the grid, as in the simulations displayed in the
sequel, it is not necessary to specify boundary conditions. In other cases the boundary of the
grid (not necessarily rectangular) can be identified with a physical boundary beyond which
no tumour cell can appear; this means that a form of no-flux boundary conditions are applied
and this modifies the form of neighbourhood for the cells close to the boundary. Finally, to
mimic an unbounded medium, it can be convenient to impose periodicity, i.e. the boundary
“wraps” on itself so that cells of each side of the square interact with cells of the opposite side.

2 For an application to a social problem see Meacci et al. (2012) and Meacci (2015).
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Fig. 1 Fraction of tumour cells (CC plus CSC) as function of time for different mortalities

In Fig. 1 (and later in Figs. 4, 5, 6) we display the evolution with respect to time of the fraction
of tumour cells, i.e., the number of lattice sites occupied by tumour cells divided by the total
number of the lattice sites (in our case 2500). The Figure shows the results of two simulations
corresponding to different mortality of CC. In particular, the two cases considered are with
μ1 = 0.005 (blue line) and μ2 = 0.01 (red line). The parameters of this simulation are
δ = 0.2, ρu = 0.01 and ρv = 0.005. In Figs. 2 and 3 we show the screenshots correspondent
to the two simulations. The results of these simulations show clearly that the model exhibits
the tumour paradox. More precisely, a higher number of CC (case μ = 0.005) inhibits the
growth of CSC and thus of the whole tumour. To conclude this section we consider the case
in which, at a prescribed time, a treatment takes place such that all the CC are destroyed.
Displaying the fraction of total number of tumour cells as function of time in the case with
treatment and without treatment we see that the treatment produces instantly a reduction of
the volume of the tumour but in the long run it does not cause a lower growth of the tumour
(see Fig. 4).

We conclude this Section with the following remark. If the initial situation in the CA
simulation only consists of a set of red sites, black sites will never appear since CSC can
only be generated by stem cells. Thus, this case would formally describe tumours in which
stem cells are not present. But in this case the intrinsic approximations introduced in the
modelling (in particular age-independence) lead to an oversimplified description in which
the final steady state will consist either in a configuration with all white sites (if μ > ρ) or
in a fixed fraction (< 100%) of red sites and the tumour paradox does not appear. Therefore,
our models only make sense if the initial fraction of CSC is positive.

4 Mean field approximation

Consider the situation described in the previous section with no flux boundary conditions
and define u(tk) the fraction of the CSC, i.e., the number of the lattice sites occupied by
CSC cells at time tk , divided by the total number of sites. Similarly, v(tk) will represent the
fraction of CC at time tk . To obtain a mean field approximation, one formally considers [as it
was done in Borsi et al. (2015)] that the neighbourhood of each cell is the entire grid, so that
the fraction, at time tk , of the vacant sites where a new cell can appear is 1 − u(tk) − v(tk).
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Mathematical models for tumours with cancer stem cells 6549

Fig. 2 Distribution of tumour cells CSC (black) and CC (red) for a mortality μ1 = 0.005 at certain times
(t = 0, t = 500, t = 2000 and t = 5000)

Therefore, if we look for a continuous evolution system, we are brought to the following pair
of ordinary differential equations:3

du

dt
= ρuδu(1 − u − v) (1)

dv

dt
= ρu(1 − δ)u(1 − u − v) + ρvv(1 − u − v) − μv (2)

According to the remark at the end of Sect. 3, our discussion is confined to tumours with
cancer stem cells and thus we assume that u(0) > 0.

We note that under this assumption the system (1)–(2) has an invariant set Σ = {(u, v) :
u > 0, v ≥ 0, u + v ≤ 1} and has an unique steady state u = 1 and v = 0 that is the only
global attractor (see Borsi et al. 2015) in the invariant setΣ . This corresponds to a situation in
which, independently of the proliferation and death rate of the two subpopulations, the tumour
invades the whole available space and consists of stem cells only. Of course, normalizing
time, we have a system with three parameters δ, ρ = ρv/ρu and μ∗ = μ/ρu . To simplify
notation we will write μ instead of μ∗:

3 An interesting generalization of system (1)–(2) is presented in Rodriguez-Brenes et al. (2011, 2015) where
the proliferation rate ρu and the fraction of symmetric mitosis δ depend on v. This produces a sort of feedback
regulation of the system that can be broken by phenotypical mutations, thus leading to abnormal cellular
growth.
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Fig. 3 Distribution of tumour cells CSC (black) and CC (red) for a mortality μ2 = 0.01 at certain times
(t = 0, t = 500, t = 2000 and t = 5000)

{
u̇ = δu(1 − u − v)

v̇ = (1 − δ)u(1 − u − v) + ρv(1 − u − v) − μv
(3)

Figure 5 shows that the model still exhibits the tumour paradox although this fact is less
evident than in the examples displayed in Sect. 3. But this fact can be easily explained: the
“crowding” effect is the key factor producing this paradox and in the CAmodels this effect is
taken into account locally, whereas in the mean field approximation the term (1−u− v) just
represents the fraction of “empty spaces” irrespectively from their location or distance from
the mother cell. To introduce a qualitative correction to this fact the term 1− p (p ≡ u + v)

has been replaced by 1− pn or e−np − e−n , n > 1 (see Borsi et al. 2015). Also in this mean
field approximation we can simulate a treatment that “kills” the CC at given time. Figure 6
shows an effect that is similar to the one for the CAmodel presented in Fig. 4 and according to
which a sudden decrease of the tumour cells does not provide long-term substantial benefits.

5 A integro-differential model

Of course, the mean-field approach only contains global information on the evolution of the
tumour but does not take spatial variation into account. In the sequel we present a continuous
time model that includes crowding as a local effect, in the sense that a daughter cell can be
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Fig. 4 Fraction of total number of tumour cells (averaged over 20 simulations) as function of time in the case
with treatment (blue line) and without treatment (red line). The treatment has the effect of the destruction of
the CC cells at the time td = 100. Here the setup of parameters is μ1 = 0.005, δ = 0.2, ρu = 0.01 and
ρv = 0.005

Fig. 5 Fraction of tumour cells (u + v, u and v separately) as function of time. The setup of parameter is
u0 = 0.016 and v0 = 0.0036 (initial conditions, as for CA simulations), δ = 0.2, ρ = 0.5 for the two cases
μ1 = 1.5 and μ2 = 0.5

generated only if there is space available in a neighbourhood of its progenitor. The radius
of this neighborhood is also depending on the possibility that cells are displaced to allow a
mitosis to take place. Thus the birth rate of CC’s at location x originating by CCmother cells
can be expressed as

ρv

∫
Ω

K
(
|x − y|

)
F

(
(u(x, t) + v(x, t)|) v(y, t)) dy (4)

whereΩ is the domain where the phenomenon takes place (R3 for simplicity), K is a positive
decreasing function whose integral over R3 equals 1 and F is a positive decreasing function
such that F(0) = 1, F(1) = 0. In other words, F takes into account the crowding and K is a
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Fig. 6 Fraction of total number of tumour cells as function of time in the case with treatment (black line)
and without treatment (blue line). The treatment has the effect of the destruction of the CC cells at the time
td = 15. Here the setup of parameters is ρ = 0.5, μ = 0.5 and δ = 0.2

kernel indicating “how far” the proliferation capability of a cell can have an effect. Therefore,
the system that has to be considered is the following:

∂u(x, t)

∂t
= ρuδ

∫
Ω

Ku

(
|x − y|

)
F

(
(p(x, t)

)
u(y, t) dy (5)

∂v(x, t)

∂t
= ρu(1 − δ)

∫
Ω

Ku

(
|x − y|

)
F

(
(p(x, t)

)
u(y, t) dy

+ ρv

∫
Ω

Kv

(
|x − y|

)
F

(
(p(x, t)

)
v(y, t) dy

−μv(x, t) (6)

where we put
p(x, t) = u(x, t) + v(x, t) (7)

and we assumed, for sake of generality, that the kernels could be different for CSC and CC.
Again, we can assume

F
(
(p(x, t)

) = 1 − p(x, t) (8)

and typically

Ku

(
|x − y|

)
= 1√

πσu
exp

(
− (x − y)2

σ 2
u

)
. (9)

In Borsi et al. (2015) it is shown (see also Maddalena 2014) that the model is mathematically
well-posed (existence, uniqueness, continuous dependence on the data, boundedness of the
solutions) and some numerical simulations are shown that provide evidence of the following
basic facts: (1) if the mortality rate of CC is higher, then the tumour is more aggressive
and (2) incomplete treatment of cancers can enhance their growth. Indeed CSC are less (or
not) sensitive to treatments and hence the stress applied to the tumour acts in favour of a
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Fig. 7 Plot of u, v, p = u + v at selected time instants, with initial conditions 12 and parameters from 10 and
11. Case μ = 0.2

selection of stem cells, thus enhancing the fitness of tumour and its growth. For simplicity,
numerical simulations are confined to one-dimensional situation. The choice of parameters
is the following

ρu = 1 ρv = 0.5 δ = 0.2 (10)

and the kernels are taken as Gaussian curves with

σu = 0.5 σv = 0.1. (11)

The initial conditions are the following

u(x, 0) = e−10 x2 v(x, 0) = 0. (12)

The plots of Figs. 7 and 8 correspond to two different values of the mortality of the CC. In
Fig. 7 μ = 0.2 and the invasion of the tumour is clearly dominated by CC while CSC are
in the centre of the cancer. In Fig. 8 (μ = 2) we see that the progression of the tumour is
dominated by CSC. Finally, Fig. 9 displays for two values of μ the time evolution of the total
tumour mass

Π(t) =
∫ ∞

−∞
p(x, t)dx (13)

and the progression of the level line p = 0.8. Indeed, the latter gives an idea of the motion of
the boundary of the tumour and we can take its slope as a measure of the invasion speed of
the tumour. Figure 9 (left) shows that tumours with μ = 2 have a total mass that, after some
time, exceeds the mass of tumours with μ = 0.2. The slope of the curves in Fig. 9 (right)
shows that tumours with higher mortality of CC have an higher invasion speed. The tumour
paradox is evident.
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Fig. 8 Plot of u, v, p = u + v at selected time instants, with initial conditions 12 and parameters from 10 and
11. Case μ = 2

Fig. 9 Left: time evolution of total population Π(t), for μ = 0.2 (dotted line) and μ = 2.0 (solid line). Right:
time evolution of the level line p = 0.8, for μ = 0.2 and μ = 2.0

The model can also be used to visualize the effect of treatment. Take μ = 0.2 and assume
that at t = 50 we apply a radiation treatment that destroys a fraction φ of the CC and has no
effect on CSC. Figure 10 displays p at time t = 50 (just after the treatment) and t = 100
and the comparison with the case of no treatment. In Fig. 11 the total tumour mass and the
rate of invasion in the two cases are compared. A more precise way of taking into account
the effect of treatment should also include (as in Jackson and Byrne 2000) the diffusion of
the drug through the extracellular matrix. Here, for sake of simplicity, we consider that the
treatment has an instantaneous effect everywhere.
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Fig. 10 Plot of p at selected time instants in case of radiation treatment at t = 50. Case μ = 0.2

Fig. 11 Left: time evolution of total population Π(t), for φ = 0.95 and μ = 0.2. Right: time evolution of the
level line p = 0.8 , for φ = 0.95 and μ = 0.2

6 A reaction–diffusionmodel

Consider the integral appearing in Eq. (5) in the one-dimensional case (Ω ≡ (−∞,+∞))
and approximate u(y, t) till the second order as it was done in Fasano et al. (2016)

ρv

∫ +∞

−∞
K (|x − y|) F ((p(x, t)) v(y, t) dy

� ρvF ((p(x, t))
∫ +∞

−∞
K (|x−y|)

[
v(x, t)+(y − x)vx (x, t)+(y − x)2

vxx (x, t)

2

]
dy

� ρvF ((p(x, t)) [A v(x, t) + B vxx (x, t)] (14)
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Fig. 12 Plots for u, for v and for p = u + v at the time t = 20

where A is the integral of K and B is half of its second order momentum (the first order
momentum vanishes since K is symmetric). In particular, if K is a Gaussian curve

A = 1 B = σ 2
v

4
. (15)

By this approximation (see (Capasso and Serio 1978)), we transform system (5)–(6) in the
following

∂u

∂t
= ρuδF(p)

[
u + σ 2

u

4
uxx

]
(16)

∂v

∂t
= ρu(1 − δ)F(p)

[
u + σ 2

u

4
uxx

]
+ ρvF(p)

[
v + σ 2

v

4
vxx

]
− μv. (17)

System (16)–(17) is a classical reaction–diffusion model (by the way an additional diffusion
effect can be taken into account if it is present in the original setting of the problem). In Fasano
et al. (2016) a proof is given of the local existence for problem (16)–(17) supplemented
with smooth initial data and usual vanishing conditions at ±∞. Numerical simulations give
results quite similar to the ones displayed in the previous section. Using the same setting of
parameters and performing numerical simulations with μ = 0.25 and μ = 2.50 we have the
following plots for u, for v and for p = u + v at the time t = 20 (Fig. 12), t = 30 (Fig. 13).
Only the part of the plot for x > 0 is displayed. Figure 14 shows the time evolution of Π .

7 Conclusions

We have presented four classes of mathematical models to describe the growth of a tumour
characterized by the presence of cancer stem cells (CSC). The simpler model averages over
the space variables and represents a sort of mean field approximation to the phenomenon
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Fig. 13 Plots for u, for v and for p = u + v at the time t = 40

Fig. 14 Time evolution of Π(t)

thus resulting in a system of ordinary differential equations for the time evolution of the
total number of CSC and of ordinary cancer cells (CC). Notwithstanding this (and other)
drastic simplifications, our numerical simulations provide evidence of the basic features that
characterize tumours with CSC, in particular the so-called “tumour paradox”: if the mortality
of the CC is increased the growth of the tumour is accelerated. If space dependence is taken
into account, the mathematical aspects of the problem appear to be more complicated. We
presented a model based on integro-differential equations and subsequently we have shown
how this model (under suitable assumptions) can be transformed in a system of parabolic
PDEwth reaction diffusion terms. In these cases, numerical simulations have been performed
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in a one-dimensional setting and show how the radius of the tumour grows with time. Also in
this case the effect of “tumour paradox” is present. Simulations with cellular automata have
also been performed. In a two-dimensional grid three categories of sites are presents: sites
where no cells are present, sites occupied by CSC and sites occupied by CC. The simulations
show how the tumour grows, without any prescribed symmetry, and how the two families of
cells proliferate. As in the cases described above, the “crowding” effect of the cells appear
to be responsible for the occurrence of the tumour paradox. As a consequence, a chemical or
radiative treatment that destroys CCmay have the effect of increasing, instead of controlling,
the speed at which tumoral cells invade the surrounding space.

As we said, the models do not provide quantitative results but a conceptual framework to
interpret experimental data. Simulations with parameters estimated by “in vitro” experiments
could just give hints on the strategy of treatment (frequency and intensity of applications)
and suggestions on situations to be avoided. Summing up, this paper shows that the tumour
paradox can be explained on the basis of a few basic assumptions on the mechanisms of
cell proliferation and that the phenomenon could be put in evidence in different classes of
mathematical models, considering, therefore, a complete multi-approach point of view.
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