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a  b s t  r a c  t

The fast  tracking of invasion  spatial patterns  of alien  species  is  crucial  for  the  implementation  of pre-

ventive  and management  strategies of those species. Recently,  a  honeybee pest,  the small  hive  beetle

Aethina tumida  (hereafter  SHB),  has been  reported  in Italy,  where it colonized  more  than  50 apiaries in an

area of about 300 km2. SHB  is  a nest  parasite  and scavenger  of honeybee colonies native  of  Sub-Saharian

Africa.  Likely being helped by the  globalization of apiculture, SHB  underwent several  invasions  in the  last

twenty years,  causing  locally  relevant  economic impact.  While many  features of its  biology  have been

addressed,  an  important knowledge gap  concerns  the  spatial invasion  dynamics  in invaded  areas. In  this

paper we coupled  two spatial  analysis  techniques  (geographic  profiling  and a density-based  spatial  clus-

tering algorithm) to uncover the  possible  invasion  pattern  of  SHB  in Italy.  We identified the  port town

of Gioia Tauro  as  the  most  likely point from  which  SHB  may  have  spread  and  suggested  the  possible

successive  axes  of diffusion.  These putative  diffusion  paths  suggest  that the  SHB spread  in south  Italy

might  have  been  due  to  a  mix  of natural  dispersal between close apiaries and  longer  distance  movement

through  faster, likely human-mediated, communication  routes.

© 2018 Published  by  Elsevier  Editora Ltda.  on behalf of Sociedade  Brasileira  de  Entomologia. This  is  an

open  access article under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

Introduction

The fast tracking of the spatial pattern of Invasive Alien Species

(hereafter IAS) invasion in new areas right after their arrival is

of overwhelming importance in order to adopt fruitful preventive

strategies to reduce the spread of IAS in the invaded areas, pre-

vent possible recurrent introductions and prepare management

protocols (Hulme et al., 2008). An  effective and fast reaction to  the

invasion is facilitated by the identification of the possible spreading

centre(s) and the early post-invasion diffusion pathways.

SHB is a sub-Saharian coleopteran, exotic to  Europe, which has

been detected in  South Italy since about 5 years (Mutinelli et al.,

2014; Palmeri et al., 2015). More recently, new invasions of this

pest were recorded in  Brazil where it appears to  be still at the

beginning of its spread (Toufailia et al., 2017). SHB is  a  parasite and

scavenger of honeybee colonies, and both SHB larvae and adults

feed on honey, pollen, bee larvae and also on dead adult bees (Ellis

et al., 2002; Neumann et al., 2016). The main impact on honeybee

is related to larvae feeding on combs, which sometimes may  result

∗ Corresponding author.

E-mail: cini.ales@gmail.com (A. Cini).

in a complete collapse of the nest (Schmolke, 1974).  Additional

damages may  also be provoked by SHB attacking stocked honeybee

products, such as combs in storage containing honey (Elzen et al.,

1999)  and, potentially, spreading of bee viruses (Eyer et al., 2009).

While SHB does not represent a  relevant pest species in  its native

range, it can cause from moderate to  big impacts in invaded areas

(Neumann and Elzen, 2004; Spiewok et al., 2007).  Finally, SHB has

been suggested to  be able to exploit colonies of other Apidae, such

as bumble bees and stingless bees (Spiewok and Neumann, 2006;

Hoffmann et al., 2008).

SHB moved repeatedly across international borders, leading to

a  worldwide diaspora that brought it to colonize several states in

the U.S., Australia, Korea, South America and also invading Canada,

even if  in the latter country fast detection, movement restrictions

and possibly also climatic conditions allowed to avoid establish-

ment (Lounsberry et al., 2010; Al Toufailia et al., 2017; Lee et al.,

2017).

Europe (where SHB is a  honeybee notifiable pest, Commis-

sion Decision 2004/216/EC) faced the risk of an invasion for the

first documented time in 2004, when SHB was  detected in Portu-

gal during queen bee import control in the laboratory (Murilhas,

2004)  and rapidly destroyed. In September 2014 SHB was again

reported in Europe, having been spotted in three honey bee nucleus
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colonies in South Italy, near the coastline of region of Calabria,

where it has probably accidentally introduced from Africa (Granato

et al., 2017). SHB was detected in  58 apiaries and one natural

colony, spanning over an area of about 316 km2 (Mutinelli et al.,

2014). New infested apiaries have  been detected in  2015, 2016 and

2017 (http://www.izsvenezie.com/aethina-tumida-in-italy/), and

the invasion is thus not resolved.

Despite research efforts strongly increased the knowledge on

SHB during the last few years, many knowledge gaps still remain

(Neuman et al., 2016). Among them, one of the top priorities is to

understand the invasion dynamics, in particularly the spatial pat-

tern of diffusion after the arrival in  new areas (Neumann and Elzen,

2004).

Here, we propose a two-step spatial analysis in order to  iden-

tify the possible post-invasion spatial dynamics of IAS starting from

presence-only reports, using the recent invasion of small hive bee-

tle Aethina tumida Murray, 1867 (Coleoptera: Nitidulidae, hereafter

SHB)  as a model. The detection of spreading centres, in  addition to

facilitate the prevention of recurrent IAS introduction, may  also

allow the identification of the possible idiosyncratic features that

boosted the invasion (e.g. ecological requirements). Starting from

the spreading centre(s), diffusion may  then take place in several

spatial ways, being influenced by  the ecological needs and life his-

tory traits of the IAS as well as the environmental heterogeneity and

possible man-assisted displacement (Wilson et al., 2009). Our anal-

ysis aims to (a) identify the most likely spreading centre, (b) infer

the  likely early post-invasion diffusion pathways of SHB invasion

in Italy and (c) provide a model for other invasions of A. tumida in

other geographical areas. IAS spreading centre(s) are those invaded

areas which more likely allowed the first successful establish-

ment of the IAS and thanks to which the IAS then spread to other

areas.

In order to infer the possible invasion dynamics of SHB in  Italy

from presence reports, we coupled Geographic profiling – here-

after GP – (Rossmo, 2000), a modelling technique widely used to

infer spreading centre of invasive species, together with a density-

based spatial clustering algorithm (DBSCAN, Ester et al., 1996).

Geographic profiling (GP) is  an analytic tool for the identification

of the geometrical origin of linked events, which has been recently

applied to a range of ecological issues, among which the identifica-

tion of the source population(s) of invasive species using the known

positions of their current populations (Stevenson et al., 2012; Cini

et al., 2014; Faulkner et al., 2017; Papini et al., 2013, 2017a,b), while

several enhancements of the method are under study in  order to

refine the reliability of the analysis (Papini and Santosuosso, 2017;

Santosuosso and Papini, 2018).

The DBSCAN is a  clustering algorithm defined as density based as

it produces clusters of points (on a plane) that are grouped together

according to the concept that each point of the cluster must be  close

to at least a given number p of other points of the clusters within a

given radius r (Xu and Wunsch, 2005). DBSCAN has several features

that seem advantageous in biological invasions, since it is quite

robust to outliers (Smith et al., 2002), minimally affected by points

ordering and it requires little a  priori information about the dataset

parameters values, such as number and shape of the clusters (Smiti

and Eloudi, 2013), a case which is typical of biological invasions in

their first years after IAS introduction.

Our aim was to draw the likely spatial pattern of SHB invasion in

Italy, thus setting the stage for further implementation of specific

monitoring protocols in  this area.

Material and methods

Data collection

SHB presence data were retrieved from Mutinelli et al.

(2014) which provides the data of the National Reference Cen-

tre for Apiculture (available at http://www.izsvenezie.it/aethina-

tumida-in-italia/), collected during the apiary surveillance pro-

gramme  after the discovery of SHB in  Italy. Briefly, a subsample

of the apiary present in  a  radius of 20 and 100 km from the first

report were inspected, and apiary were considered infested if at

least one hive showed the presence of SHB, in any developmental

stage. As  georeferentiation of infested apiaries is not freely avail-

able due to  privacy reasons, we georeferenced apiary site directly

from the map. Using this procedure estimated spatial accuracy was

25 metres, which was  thus not expected to affect the resolution

at which our spatial analysis was  performed (tens to hundreds of

kilometres). As  we focus on the very early post-invasion dynamics

in the arrival zone (Calabria region) and we aimed at understand-

ing possible axes of diffusion using only early post-invasions data,

we did not  take into account the presence report from Sicily (one

infected colonies in a 56-hives migratory apiary, likely due to

human hive translocation, Mutinelli et al., 2014), nor the pres-

ence data referring to  2015 or 2016 surveys, an approach already

used (Cini et al., 2014).  Moreover, 2015 and 2016 data have been

collected after sanitary measures, such as hive destruction, were

performed, so that they might not  properly represent the initial

spatial dynamics of SHB. Data were mapped on the South Italy map

(obtained by the open access website www.openstreetmap.org).

Identification of the most likely spreading centre: geographic

profiling

GP uses coordinates on a  map  of linked events (e.g. locations

where an IAS has been reported) to generate a probability surface,

which will be superimposed on the original map  to produce the so-

called geoprofile. Such geoprofiles, based only on presence data, do

not provide the exact origin of the events, but produces decreasing

probability density, thus prioritizing geographical areas (Rossmo,

2000)  where monitoring protocols should be implemented and tar-

geted researches carried out. We  used the model for Geoprofiling

analysis described by Rossmo (2000) and modified according to

Papini et al. (2013).  For each pixel with coordinates (i, j) of  the tar-

get area, the score function (p) is calculated as follows (redrawn

from Stevenson et al., 2012):

Pij = k ∗

c
∑
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�  =

{

1, if distance > B

0,  otherwise

For a point P of coordinates (i,  j) the formula sums the prob-

ability across all the locations where the invading organism was

found. This model is based on two  components: a distance decay

function (in which the probability of a  presence report decreases

as distance from the invasion site  increases) and a  buffer zone

of radius B, within which the likelihood increases when distance
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Fig. 1. Graphical explanation of the DB scan algorithm. Items within a  given distance

(radius) r (indicated as circles) from at  least a given number p (three in the example)

of  other points are  assigned to the same cluster (i.e. the blue circles all belong to  the

same cluster because each blue circle  is  within a given radius r of three other blue

circles). The two green items cannot be assigned to the blue cluster, since they are

within distance r from fewer than three points of the blue cluster. The red item is

positioned at a distance that is  ≥ to distance A and therefore it does not belong to

the blue cluster.

increases. The distance-decay function can be explained by disper-

sal costs while the buffer zone may  be due to habitat unsuitability of

invasion sites. Stevenson et al. (2012) suggested that it is conceiv-

able to use general, taxon or habitat specific values for the model

parameters in cases where no data on the target species exist. In

our case, we chose model parameters according to previously pub-

lished analyses on invertebrate invasive species, such as Stevenson

et al. (2012) and Cini  et al. (2014).  Since we do not have any infor-

mation about the possible real values of the crucial buffer zone

radius (B) for this or related species, and since it might depend

on several factors (such as dispersal ability, habitat heterogene-

ity, etc.), we selected the values obtained for the only available

insect species from Stevenson et al. (2012) (B values: 0.38–0.42),

which, scaled to our map  was about B =  10 (it is not  straightfor-

ward to obtain this data, since Stevenson et al. did not  indicate

how large is B in  km or  the resolution of their map). In order to

evaluate the robustness of the model when B varies, we  ran the

analysis using B values ranging from B = 5 to  B = 20 (correspond-

ing to a range of about 0.125–5 km), which spanned across the

values found for other terrestrial flying insects (Stevenson et al.,

2012,  adapted to the different map  scale). For this purpose we used

the python script written by the authors: Geoprof2 0 5csv.py on

Bitbucket (https://bitbucket.org/ugosnt/al and ugo/).

Identification of the possible diffusion pathways: cluster analysis

and density maps

The DBSCAN algorithm was used to produce clusters of points

corresponding to observations on the used map. The points of

a given cluster must be close to at least a  given number p of

other points within a given radius r  (Xu and Wunsch, 2005)

(Fig. 1). In order to separate different clusters of observations we

used the following algorithms implemented in python: Kmeans

(number of clusters assessed with Silhouette) (Python script

Kmeans sil 0 0 2.py) with the following space Voronoi tessellation

as proposed in detail by Santosuosso and Papini (2016) and the

Density-based spatial clustering (DBSCAN), as defined by Ester et al.

(1996). DBSCAN was implemented in Python as dbscan1.0.0.py

and after preliminary trials we used r  =  6 (pixels), corresponding

to about 100 m and p  = 5 (number of points to be found within

the radius) as parameters. Finally, in  order to infer possible spatial

invasion dynamics, we  coupled GP and DBSCAN results by drawing

the putative invasion directions considering as a  starting point the

centre of the identified 95% spreading areas identified by the GP

and the tip of each direction arrows as the centre of  mass of each

cluster identified by DBSCAN method.

Results

The GP analysis identified an area of about 27 km2 on the coast,

north/northeast of the town of Gioia Tauro as the 95% (in red)

most likely spreading centre of SHB in  South Italy (Fig. 2a)  on the

basis of the infected apiaries. Overlapping the area identified by

GP as the spreading centre, using as input sources infected apiary

only or both infected and non infected apiary (null model, Fig.  2b),

showed that the second area of 95% probability (in red) of  origin,

was located in a  more northern position with respect to  the first

(only infected apiaries), suggesting that the area identified by  GP

was not  simply reflecting apiary density. The intersection between

the two areas is shown in Fig. 2c and it corresponds to  less than

4% of the total number of red pixels, which can be  considered a

significant difference. GP results are robust, as varying the B value,

the result about the localization of the area of highest probability

of spreading centre did not vary more than few pixels (data not

shown).

DBSCAN clusterization assigned the 57 cases of infected api-

aries to three clusters and identified 17 apiaries as outliers (i.e.

not necessarily belonging to any cluster). Two  of the three clus-

ters fall indeed at the border of the spreading centre identified by

the GP approach (compare Fig. 2 with Fig. 3). The third one (as pur-

ple ovals in Fig. 3) is about 10 km southward from Gioia Tauro and

about 15 from the putative spreading centre, as identified by GP.

Considering this coupled analysis, it seems very likely that a  main

axis of SHB spread, pointing southward, can be identified (Fig. 3a

and b).

Discussion

The identified area of about 27 km2 around the Port of Gioia

Tauro as the most likely spreading centre of SHB in  Italy supports

the strict relationship of this invasion with the presence of one of

the most important ports in South Italy.

The position of the three main clusters of SHB identified by

the DBSCAN analysis showed that while two are close to the

supposed spreading centre (tentatively identified with GP), the

third one is  positioned 15 km southward. This coupled approach

thus suggests (a) that a port, Gioia Tauro, might be the entrance,

and (b) that  SHB might have had three main diffusion direc-

tions, with different easiness of penetration along different spatial

gradients.

The importance of marine ports as likely points of  IAS entry

has been widely recognized (Keller et al., 2011; McCullough et al.,

2006). Travelers’ baggage, cargo and trade items may  easily intro-

duce exotic invertebrates and plant weeds from all over the world.

Several alien insects are indeed suspected of having spread into

new areas diffusing from marine port town. It is the case of wood-

boring beetles (Haack, 2001) and of the small fruit pest Drosophila

suzukii (Cini et al., 2014). Indeed, the possibility that SHB might

also enter through ports has been proposed for the USA East-coast

and Australia invasions (Hood, 2004) and was already suggested

for Italy (Mutinelli et al., 2014). Our GP approach strongly supports

this suggestion.

The finding of two  very close clusters and one more distant

southern cluster suggests that SHB Italian invasion might have

proceeded thanks to  a  mix  of leading-edge dispersal (i.e. diffusive

spread from the edge of the invasion range, likely driven by

natural dispersal) and jump dispersal (long-distance dispersal over

substantial distances likely due to accidental human mediated

https://doi.org/10.1016/j.rbe.2018.11.005
https://bitbucket.org/ugosnt/al_and_ugo/
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Fig. 2. Identification of the possible diffusion centre. (a) The 95% most likely spreading centre is  in red and corresponds to the  results of the geographic profiling (GP) applied

only  to the infected apiaries; (b) a null model, with GP results (the red areas) based on all the apiaries present in the  area, both infected and uninfected. The red area is

localized  in a more northern area with respect to (a);  (c) intersection of the red areas (a)  and (b). Since the intersection is less than 5% (in our case the difference is  4% or less)

of  the total red area, we  can  consider the difference as significant. The blue points correspond to uninfected apiaries and red points to  infected apiaries. (c) is  positioned in

the  middle between (a) and (b) to better show the intersection. ×300,000.

Fig. 3. Possible spreading pathways from the identified spreading centre are mapped in the invaded region on the basis of the algorithm DBSCAN. The pink and blue lines

represent the Voronoi tessellation of the  space after the  Kmeans analysis for three clusters (checked with Silhouette method, see the text). The dashed arrows connect the

centroid  of the clusters and should give suggestions about the axes of diffusion. (a)  Results of the GP analysis. (b) Representation of the recorded observations (infection

cases) on the territory with the representatives of the different clusters highlighted with different colours. The blue points correspond to  uninfected apiaries. ×250,000.

transport), in agreement with previous findings (Hood, 2004;

Spiewok et al., 2008). We  must also consider that winds in  Calabria

blow most commonly northward from south and southeast regions

(Fratianni and Acquaotta, 2017),  and the third most distant cluster

is positioned just south to  the first two. Hence, dispersal appears

to be in the opposite direction with respect to  the sirocco wind.

Moreover, in the area of the third cluster no main road is present,

hence apparently the spreading was due to short distance local

movements. The proposal of a  spreading model with beekeepers

infesting their other apiaries through ‘unintentional transfer’

was called “distance and ownership model” (EFSA, 2015) and

this model of spreading would be supported by our data. On the

contrary the first two northern clusters are  in industrial areas

where the human presence is very common: here the spreading

occurred at relatively low distance (less than 1 km)  and may  be

due partly to  the natural movement of the pest and partly by

accidental transport by human activity.

Policies to  reduce the risk of further spreading of the pest may  be

hence centred mainly on the regulation of the activity of beekeepers

proposing guidelines aiming to  reduce the transfer of material from

one hive to another or to transport hives from one area to another.

As with any modelling approach, GP has some limitations. First,

its reliability reflects the accuracy of presence data. Unfortunately,

standardized presence data are very difficult to obtain for invasive

species right after their invasion. In the SHB case presented here,

contrary to  what usually happens with many IAS, the pest species

was already recognized as a honeybee notifiable pest (Commis-

sion Decision 2004/216/EC), so that veterinary services rapidly put

in place a  standardized survey in  a  wide area around the first SHB

reports (Mutinelli et al., 2014), which resulted in a  reliable database,

https://doi.org/10.1016/j.rbe.2018.11.005
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thus providing strength to our  modelling approach. A second pos-

sible source of biased sampling is  represented by the ability of SHB

to survive on non-honeybee related resources, such as rotten and

fermenting fruits or other species (such as bumblebees, Hoffmann

et al., 2008), which might represent a  refuge for SHB allowing fur-

ther re-infestations (Neumann and Elzen, 2004). However, so far

no SHB has been detected on rotten fruits in  a field investigation

carried out in the infested area between 2014 and 2015 suggesting

that fermenting fruits do  not represent a  possible alternative food

resource for SHB in Calabria (Mutinelli et al., 2015). However, it has

been shown that these alternative resources are less preferred and

less successful food sources, that also reduce SHB fitness (Ellis et al.,

2002), so that we are confident that the used dataset represent a

reliable presence dataset.

Despite these possible limitations, we thus believe that our

results provide a  first reliable hypothesis of SHB invasion dynamics

in Italy, supporting the hypothesis of a seaport mediated invasion

(Mutinelli et al., 2014 for Italy, and Hood, 2004 for US and Australia),

and further highlighting the role  of seaports as IAS introduction

sites (Mack et al., 2000). The Voronoi tessellation and the dashed

lines linking groups of observations (see  Fig. 3a) should represent

an estimate of the spreading direction, while the distance from the

hypothesized point of origin, related to the guessed time of arrival

of SHB, should give an idea about the speed of the diffusion itself

in the territory.

More generally, we believe our  results show that the coupling of

GP and DBSCAN might represent a  promising and rapid approach

to  use these data to prioritize areas, inside IAS invaded ranges, in

which to focus future monitoring and managing efforts.

This analysis may  be used efficiently in areas where the invasion

is  still at the beginning as in Brazil (Al Toufailia et al., 2017), in order

to better understand the causes of the invasion and its spreading

directions in order to  undertake suitable actions.
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