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Abstract: Compressive sensing (CS) is a recent technique that promises to dramatically speed up
the radar acquisition. Previous works have already tested CS for ground-based synthetic aperture
radar (GBSAR) performing preliminary simulations or carrying out measurements in controlled
environments. The aim of this article is a systematic study on the effective applicability of CS
for GBSAR with data acquired in real scenarios: an urban environment (a seven-storey building),
an open-pit mine, and a natural slope (a glacier in the Italian Alps). The authors tested the most
popular sets of orthogonal functions (the so-called ‘basis’) and three different recovery methods
(l1-minimization, l2-minimization, orthogonal pursuit matching). They found that Haar wavelets
as orthogonal basis is a reasonable choice in most scenarios. Furthermore, they found that, for any
tested basis and recovery method, the quality of images is very poor with less than 30% of data. They
also found that the peak signal–noise ratio (PSNR) of the recovered images increases linearly of 2.4 dB
for each 10% increase of data.

Keywords: compressive sensing; ground based synthetic aperture radar; radar; synthetic
aperture radar

1. Introduction

Ground-based synthetic aperture radar (GBSAR) systems are popular remote sensing instruments
for short-term [1] and long-term [2] monitoring of landslides, glaciers [3], and mines [4] as well as for
detecting small displacements of bridges [5] and dams [6].

The working principle of GBSAR is based on dense spatial sampling (steps smaller than a quarter
of wavelength) along the synthetic aperture (usually a linear mechanical guide).

Compressive sensing (CS) is a recent sampling paradigm [7,8] which asserts one can recover
certain signals from far fewer samples or measurements than traditional methods use. Its basic idea
relies on the ‘sparsity’ of the signals of interest (the radar signals typically have this property [9]), and
the incoherence of the sensing modality. The latter property is obtained through random sampling.

Generally speaking, CS can be applied in frequency domain (for reducing the number of
transmitted frequencies) or in spatial domain (for reducing the number of spatial steps along the
synthetic aperture).

In 2010, Huang et al. [10] applied CS to step-frequency through-wall radar that scanned along
a horizontal mechanical guide. In 2011, Karlina and Sato [11] proposed to apply CS to GBSAR and
they performed simulations, as well as Zonno in 2014 [12]. Yigit [13] extended CS to GB-SAR/ISAR
acquisition modality and performed measurements in controlled environment. The interferometric
properties of CS-GBSAR have been demonstrated by Giordano el al. [14] in 2015.
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At the state of the art, CS techniques appear very promising for GBSAR applications, but all
the cited works are relative to radar acquisitions in controlled environments (anechoic chamber or
short-range experiments with controlled targets). Therefore, the crucial question is if these techniques
are effectively applicable with data acquired in real scenarios, like GBSAR images of large buildings,
landslides, open-pit mines, and glaciers.

Furthermore, a few specific questions about the CS methods have to be addressed. The first one is
how to choose the orthogonal set of functions (the basis) that are used for recovering the signal. The
possible bases are countless. The possible recovery algorithms are many as well. Therefore, a general
selection criterion is necessary both for basis selection and recovery method. Another question is: what
is an acceptable compression with real data. The claims declared in works that use simulated data or
acquisitions performed in very cooperative scenarios are probably too optimistic.

Finally, we noticed that in previous papers [12,14] the ϕ matrix (see next chapter for his definition)
is built by under-sampling the complete set of data acquired along a single scan. It means that each
line could use a different set of positions along the scan. In this article, the ϕ matrix is built using the
same reduced set of data for all the lines. This could reduce the incoherence of sampling (and so the
quality of reconstruction), but it is a solution that could be easily implemented with a physical array or
with a MIMO (multiple input multiple output), such as in [15–17].

2. Materials and Methods

Compressive sensing theory states a sparse signal can be recovered by fewer samples than what is
required by the Nyquist theorem. With reference to Figure 1, a standard GBSAR transmits and receives
at N positions along a linear mechanical guide. The Nyquist theorem requires that the spatial step has
to be smaller than a quarter of wavelength (λ/4) for omnidirectional antennas (this constraint is a bit
more relaxed for directional antennas, but it is not essential in the discussion that follows). Let E be the
vector of the N samples acquired according the Nyquist theorem. A subset of M random positions
is selected between the N positions. These M positions are the effective points where the radar-head
performs the measurements that will be used for recovering the complete set of N samples.

Remote Sens. 2018, 10, 1960 2 of 21 

 

At the state of the art, CS techniques appear very promising for GBSAR applications, but all the 

cited works are relative to radar acquisitions in controlled environments (anechoic chamber or 

short-range experiments with controlled targets). Therefore, the crucial question is if these 

techniques are effectively applicable with data acquired in real scenarios, like GBSAR images of 

large buildings, landslides, open-pit mines, and glaciers.  

Furthermore, a few specific questions about the CS methods have to be addressed. The first one 

is how to choose the orthogonal set of functions (the basis) that are used for recovering the signal. 

The possible bases are countless. The possible recovery algorithms are many as well. Therefore, a 

general selection criterion is necessary both for basis selection and recovery method. Another 

question is: what is an acceptable compression with real data. The claims declared in works that use 

simulated data or acquisitions performed in very cooperative scenarios are probably too optimistic. 

Finally, we noticed that in previous papers [12,14] the ϕ matrix (see next chapter for his 

definition) is built by under-sampling the complete set of data acquired along a single scan. It means 

that each line could use a different set of positions along the scan. In this article, the ϕ matrix is built 

using a the same reduced set of data for all the lines. This could reduce the incoherence of sampling 

(and so the quality of reconstruction), but it is a solution that could be easily implemented with a 

physical array or with a MIMO (multiple input multiple output), such as in [15–17].  

2. Material and Methods 

Compressive sensing theory states a sparse signal can be recovered by fewer samples than what 

is required by the Nyquist theorem. With reference to Figure 1, a standard GBSAR transmits and 

receives at N positions along a linear mechanical guide. The Nyquist theorem requires that the 

spatial step has to be smaller than a quarter of wavelength (λ/4) for omnidirectional antennas (this 

constraint is a bit more relaxed for directional antennas, but it is not essential in the discussion that 

follows). Let E be the vector of the N samples acquired according the Nyquist theorem. A subset of 

M random positions is selected between the N positions. These M positions are the effective points 

where the radar-head performs the measurements that will be used for recovering the complete set 

of N samples. 

 

Figure 1. Sampling along the linear mechanical guide of a GBSAR. 

The next step is to define M variables (ym) as random linear combinations of the N samples 

using only the M positions as sketched in Figure 2. 

Figure 1. Sampling along the linear mechanical guide of a GBSAR.

The next step is to define M variables (ym) as random linear combinations of the N samples using
only the M positions as sketched in Figure 2.
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The vector y of the M variables can be written as

y = ϕE (1)

with ϕ matrix M × N as defined in Figure 2. It should be noted that the vector y is a measurable
quantity, as it can be calculated from the NA measurements.

A radar signal is often sparse in a suitable set of functions. As an example, an ideal scenario with
a single point-target in far field appears as a single peak in the domain of spatial frequencies. Inspired
by this idea, we can write the vector E as

E = ψb (2)

where

ψ = IFFT




1 0 . . . 0
0 1 . . . 0
0 0 . . . 0
0 0 0 1


 (3)

and where b is the vector of the coefficients of spatial Fast Fourier Transform (FFT) of the signal. If the
signal is sparse, many coefficient bn are almost null.

The FFT or the DCT (discrete cosine transform) should be able to effectively represent ideal
point targets, but they could be a too rough approximation for more realistic distributed targets.
Wavelets transforms give better results with distributed targets [18]. The possible complete sets of
wavelets are countless, so we have limited this study to the most popular sets [18–21] specifically:
Haar wavelets, Daubechies wavelets, biorthogonal wavelet, coiflets, symlets, LeGall wavelets, and
discrete Meyer wavelets.

By substituting Equaiton (2), in Equaiton (1), the vector y can be expressed as

y = ϑb (4)

with θ = ϕΨ. This matrix is the so-called ‘dictionary’. Equaiton (4) is a linear system with many more
variables than equations. It is an ill-posed problem, but it can be solved with a suitable recovery
method. The most popular are: l1-minimization [22], l2-minimization [23], and orthogonal matching
pursuit [24]. Using one of these methods, the vector b is recovered, so the E vector of N samples is
obtained by Equation (2).

The procedure described above has to be repeated for each frequency for obtaining the matrix Ek,i,
with k-index ranging from 1 to Nf (number of frequencies) and i-index ranging from 1 to N.

The next step is to focus the matrix Ek,i using a back-propagation algorithm that takes into account
of the phase history of each contribution relative to one specific position and one frequency.
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With reference to Figure 3, the image value I(x,y) in a generic image point P(x,y) can be
calculated as

I(x, y) =
N f

∑
k=1

N

∑
i=1

Ek,ie
√
−1 4π

c fk Ri(x,y) (5)

where c is the speed of light. This formula is correct but computationally very inefficient. More efficient
algorithms make use of FFT and interpolation (see for example: [25]).

Since I(x,y) is a complex number, it provides the phase information too. This can be exploited
for generating differential interferograms. Displacement maps can be obtained from differential
interferograms using the well-known relationship [5]

∆r(x, y) =
λ

4π
∆ϕ(x, y) (6)

where ∆r(x,y) is the displacement in the point P(x,y), ∆ϕ(x,y) is the differential phase in the point P(x,y),
and λ is the wavelength at the central frequency.
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Figure 3. Focusing geometry.

3. Results

3.1. Simulations

The CS algorithms have been preliminary tested with the simulation of a single target at 150 m
distance in front of radar. The used parameters were: initial frequency f 1 = 9.915 GHz, final frequency
f 2 = 10.075 GHz, number of frequencies Nf = 801, length of the mechanical scan L = 1 m, number of
samples (according to Nyquist theorem) N = 100.

The quality of the recovered images were estimated with the peak signal–noise ratio (PSNR)
calculated as

PSNR = 10 log10

 max
(∣∣Ii,j

∣∣2)
1

mn

m
∑

i=1

n
∑

j=1

∣∣Ii,j − Ri,j
∣∣2
 (7)

where Ri,j is the reference GBSAR image obtained from the data sampled according to Nyquist theorem
without application of CS techniques; Ii,j is the image obtained using the CS techniques. Both images
are complex matrix m × n. As rule of thumb, images with PSNR lower than 20–25 dB appear of low
quality, with features hardly recognizable [26].

The used basis was the Haar wavelets, the recovery method was l2–minimization (this choice
of Haar wavelets will be motivated in the experimental section, l2–minimization has been selected
because it works even with a number of variable smaller than the number of equations, nevertheless
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the choice of both basis and recovery method is not essential for the discussion that follows). The
PSNR has been calculated for an image 200 × 200 in polar coordinates. The range limits were 100 m
and 200 m. The azimuth limits were −30 deg and +30 deg.

Figure 4 shows the plots of PSNR versus M/N. Each PSNR was calculated as the average of
25 random iterations and the standard deviation of each value is reported in the plot (blue line). It
is interesting to note that for M/N > 0.3, PSNR increases linearly of 2.4 dB for each 10% increase
of M/N. This is a notable result that we found also true for simulations of more complex scenarios
(several targets), using different measurement parameters, different dictionaries, and different recovery
methods, and in experimental data too. Note that PSNR does not tend to infinity for M = N, but it
stops at about 37dB. The reason of it is related to the limited size of the ϕ matrix. As it is known, the
CS reconstruction relies on the incoherence of both random sensing and the random coefficients of the
matrix ϕ. When M = N, the sensing is no longer incoherent, but the incoherence of the ϕ coefficients
persists and limits the quality of reconstruction. The ϕ coefficients are uniformly distributed random
numbers between 0 and 1. When M = N, the number of elements is N × N = 100 × 100 = 10,000, the
sum of 10,000 uniformly distributed random numbers between 0 and 1 gives exactly 37.0 dB, that is
just the maximum PSNR obtained in Figure 4.
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The noise can affect both PSNR and displacement retrieved by interferometry. In order to
verify/evaluate it, we have repeated the simulations reported above with controlled Gaussian noise.
Figure 5 shows the PSNR versus M/N calculated with different SNR values (the SNR reported in the
plots is relative to one single measurement specified by one single frequency and one single position
along the mechanical guide). Each PSNR value of the plots in Figure 6 is calculated as the average
of 12 random iterations. As expected, by reducing the SNR the PSNR decreases. When the SNR of a
single measurement is >0, the PSNR is practically equal to the PSNR without noise calculated in the
previous chapter.
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As mentioned above, the noise can give an error in the displacement retrieved by interferometry.
In order to verify/evaluate it, we have estimated the phase error (∆ϕ) and we have converted it in
displacement error (∆R) using the well-known relationship [5]:

∆R =
λ

4π
∆ϕ (8)

Figure 6 shows the estimated error in function of SNR. Each PSNR value is calculated as the
average of 40 random iterations. For NA/N = 1 the error plot in function of SNR overlaps perfectly the
plot of the error calculated without CS that, in log scale, is a straight line with slope −1. As expected,
for M/N = 0.5 the error increases of 3dB and for M/N = 0.1 the error increases of 10 dB.
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the displacement error calculated without CS technique.

When M/N increases, the number of samples increases too. So the error should decrease. This
intuitive idea has been verified with a simulation. Figure 7 shows how the error decreases increasing
M/N, for two different values of the SNR. Both the plots are approximately straight lines with slope−1.
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Figure 7. Displacement error in function of M/N for different SNR (simulated data).

Generally speaking, the interferometric error could not depend only on Gaussian noise (i.e., on
thermal noise). In that case, calculating the error in function of M/N does not make much sense, as it
could be hard to obtain a straight line. On the contrary, the differential error (i.e., the error with respect
to the image obtained using the CS with 100% of the samples) is expected to have a linear behavior
(in log scale). Figure 8 shows the differential displacement in function of M/N for three different SNR.
It is evident that the plots can be approximated as straight lines with a slope of −2.

Remote Sens. 2018, 10, 1960 7 of 21 

 

 

Figure 7. Displacement error in function of M/N for different SNR (simulated data). 

Generally speaking, the interferometric error could not depend only on Gaussian noise (i.e., on 

thermal noise). In that case, calculating the error in function of M/N does not make much sense, as it 

could be hard to obtain a straight line. On the contrary, the differential error (i.e., the error with 

respect to the image obtained using the CS with 100% of the samples) is expected to have a linear 

behavior (in log scale). Figure 8 shows the differential displacement in function of M/N for three 

different SNR. It is evident that the plots can be approximated as straight lines with a slope of −2. 

 

Figure 8. Differential displacement error in function of M/N for different SNR (simulated data). 

3.2. Experimental Test Site “Campus”  

The CS techniques have been tested in a controlled experimental test site at the University of 

Florence (named “Campus”). A single metallic target, provided with a micrometric linear translator, 

has been positioned in front of the radar equipment at 150 m distance in a large flat garden, as 

shown in the pictures in Figure 9.  

Figure 8. Differential displacement error in function of M/N for different SNR (simulated data).

3.2. Experimental Test Site “Campus”

The CS techniques have been tested in a controlled experimental test site at the University of
Florence (named “Campus”). A single metallic target, provided with a micrometric linear translator,
has been positioned in front of the radar equipment at 150 m distance in a large flat garden, as shown
in the pictures in Figure 9.

The measurement parameters were the same used in the simulations. The acquired experimental
data have been used for testing the most popular bases and recovery methods. Specifically we used
discrete cosine transform (dct), fast Fourier transform (fft), the Haar wavelts (haar), the Daubechies
wavelets from order 2 to order 10 (db2–db10), seven biorthogonal wavelets (bior1.3, bior2.2, bior2.6,
bior3.1, bior3.5, bior3.9, bior5.5), the “coiflets” from order 1 to 5 (coif1–coif5), the “simlets” from
order 2 to 8 (sim2–sim8), LeGall wavelets (legal5.3), the discrete Meyer wavelets (dmey). As recovery
methods, we used l1-minimization (L1), l2-minimization (L2), and orthogonal matching pursuit (OMP).

Table 1 reports the obtained PSNR for M/N = 0.5 and M/N = 0.33. The PSNR has been calculated
for an image 200 × 200 in polar coordinates. The range limits were 100 m and 200 m. The azimuth
limits were −30 deg and +30 deg.
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Figure 9. Experimental test site “Campus”.

Table 1. PSNR calculated with different bases and recovery methods for experimental data acquired at
the test site “Campus”.

50% 33%

L1 (dB) L2 (dB) OMP (dB) L1 (dB) L2 (dB) OMP (dB)

Dct 22.92 22.89 22.29 18.77 19.02 19.62
Fft 22.61 22.73 21.89 17.00 17.16 17.45

Haar 24.83 24.83 26.01 18.30 18.30 20.03
Db2 24.32 24.29 24.32 18.14 18.13 18.13
Db3 24.32 24.33 24.36 17.68 17.66 18.01
Db4 23.97 23.97 23.67 18.22 18.23 17.98
Db5 23.71 23.73 23.10 17.49 17.48 17.35
Db6 23.87 23.90 22.74 17.76 17.77 17.98
Db7 23.24 23.25 22.60 17.41 17.45 16.11
Db8 23.24 23.23 22.48 17.71 17.70 17.82
Db9 23.26 23.27 21.46 17.71 17.72 17.82

Db10 23.04 23.07 23.48 17.74 17.74 18.52
Bior1.3 24.65 24.64 25.00 18.16 18.16 19.51
Bior2.2 24.45 24.45 23.53 17.00 16.99 16.96
Bior2.6 24.22 24.21 23.37 17.65 17.65 17.37
Bior3.1 23.51 23.51 22.66 17.39 17.39 15.87
Bior3.5 24.29 24.28 23.50 17.99 17.99 17.21
Bior3.9 24.00 24.04 23.67 17.60 17.60 17.67
Bior5.5 23.97 23.98 23.62 18.04 18.07 18.23
Coif1 24.04 24.09 23.52 17.71 17.72 17.25
Coif2 24.20 24.21 24.04 16.84 16.84 17.26
Coif3 23.72 23.72 23.27 17.39 17.39 17.36
Coif4 23.47 23.47 22.74 17.49 17.51 17.52
Coif5 23.28 23.18 22.79 17.05 17.04 16.90
Sym2 24.32 24.29 24.32 18.14 18.13 18.13
Sym3 24.32 24.33 24.36 17.68 17.66 18.01
Sym4 24.42 24.44 24.08 17.29 17.28 17.04
Sym5 23.77 23.77 23.62 17.63 17.64 17.54
Sym6 24.24 24.15 23.78 17.64 17.64 16.94
Sym7 24.26 24.27 24.18 18.02 18.03 17.68
Sym8 24.10 24.11 23.53 17.94 17.94 17.04

Legall5.3 24.17 24.17 24.49 18.31 18.30 18.51
Dmey 23.60 23.60 23.56 17.93 17.94 17.96
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In the table, we have highlighted the highest (in bold) and the lowest (in red bold) values. Using
50% of data, PSNR varies between 26.01 dB (Haar wavelets, OMP) and 21.89 dB (FFT, OMP). Using 30%
of data, PSNR varies between 20.03 dB (Haar wavelets, OMP) and 15.87 dB (Bior3.1 wavelets, OMP).

In simulated data, we have noted that PSNR increases linearly of 2.4 dB for each 10% increase of
M/N. This relationship is perfectly confirmed also for these experimental data as shown in Figure 10.
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Figure 10. PSNR in function of M/N (data acquired at the experimental test site “Campus”).

For evaluating the interferometric error we acquired 100 measurements in 96 h. By considering
one pixel associated to a stable point of one building at about 200 m in the background, we evaluated
the standard deviation of the displacement retrieved by interferometry. Figure 11 shows the obtained
values varying M/N. The error is rather constant. It means that thermal (Gaussian) noise is not the
main source of error. The effective contribution of thermal noise is more evident in the plot of the
differential error (Figure 12) that confirms the error (in log scale) linearly decreases with slope −2,
increasing the M/N (in log scale), as predicted by simulation.Remote Sens. 2018, 10, 1960 10 of 21 
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Figure 12. Differential displacement error in function of M/N for a stable point in the test
site “Campus”.

The metallic target in the middle of the grass was provided with a micrometric positioner able to
translate it with a nominal accuracy of 0.1 mm. So, we performed 20 radar acquisitions by moving the
target of 1 mm forward the radar after each acquisition. Figure 13 shows the cumulative displacement
detected by interferometry using 100% of data without CS, using 100% of data with CS, using 50% of
data with CS, and using 30% of data with CS. The four plots are practically overlapping. Figure 14
shows the plots of the differences. In the worst case (CS with 30% of data) the error is lower than
25 µm.
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3.3. A Seven-Storey Building

In order to test the application of CS techniques in an operative scenario representative of an
urban environment, we performed radar measurements using as target the seven-storey building
shown in Figure 15.
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Figure 15. Aerial picture of the seven-storey building used as urban test site.

The measurement parameters were: initial frequency f 1 = 9.915 GHz, final frequency
f 2 = 10.075 GHz, number of frequencies Nf = 801, length of the mechanical scan L = 1.8 m, number of
samples (according to Nyquist theorem) N = 180. The obtained radar image (without application of CS
techniques) is shown in Figure 16.

As well as for simulated data, and for the experimental data acquired at the “Campus” test site,
we verified that PSNR increases linearly of 2.4 dB for each 10% increase of M/N and this relationship
has been perfectly confirmed also for these experimental data (we do not report the graph for sake
of brevity).

Table 2 reports the obtained PSNR for M/N = 0.5 and M/N = 0.3. We have highlighted the highest
(in bold) and the lowest (in red bold) values. Using 50% of data, PSNR varies from 22.78 dB (db2
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wavelets, OMP) to 8.19 dB (dct, OMP). Using 30% of data, the PSNR ranges between 19.12 dB (db5
wavelets or sym2 wavelets, OMP) and 1.80 dB (fft, OMP).
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Table 2. PSNR calculated with different bases and recovery methods for experimental data acquired at
the seven-storey building.

50% 33%

L1 (dB) L2 (dB) OMP (dB) L1 (dB) L2 (dB) OMP (dB)

Dct 16.47 16.59 8.16 11.04 10.85 5.93
Fft 15.62 15.30 10.72 9.33 9.98 1.80

Haar 22.73 22.73 21.59 19.00 19.00 18.42
Db2 21.50 21.52 22.78 18.33 18.32 18.85
Db3 21.60 21.62 22.72 18.13 18.13 18.86
Db4 21.55 21.58 20.99 17.84 17.83 17.85
Db5 21.01 21.02 21.60 17.91 17.93 19.12
Db6 20.09 20.90 21.39 17.91 17.91 18.98
Db7 20.48 20.52 20.67 17.79 17.75 18.49
Db8 19.16 19.17 19.15 14.70 14.70 16.17
Db9 19.11 19.14 17.81 17.05 17.04 16.32

Db10 19.82 19.83 19.27 17.03 17.05 17.69
Bior1.3 22.26 22.27 21.49 18.78 18.79 17.58
Bior2.2 21.91 21.92 22.42 18.13 18.13 18.27
Bior2.6 21.31 21.32 22.36 17.67 17.68 18.58
Bior3.1 21.27 21.31 20.56 20.10 20.10 19.16
Bior3.5 20.12 20.12 19.63 17.49 17.54 17.33
Bior3.9 20.79 20.80 19.41 17.77 17.80 16.45
Bior5.5 22.13 22.14 22.76 17.80 17.83 19.11
Coif1 21.76 21.76 21.74 18.33 18.34 17.96
Coif2 21.98 21.96 21.90 17.85 17.85 17.86
Coif3 21.77 21.77 21.77 18.29 18.30 18.74
Coif4 20.21 20.21 21.88 17.87 17.89 18.89
Coif5 21.38 21.38 21.67 18.00 18.00 18.66
Sym2 21.50 21.52 22.78 18.33 18.32 18.84
Sym3 21.61 21.61 22.72 18.13 18.13 18.86
Sym4 21.45 21.44 21.18 18.15 18.25 18.00
Sym5 21.36 21.38 20.18 17.84 17.81 18.76
Sym6 21.13 21.12 20.96 17.47 17.44 18.04
Sym7 21.79 21.80 21.52 17.22 17.22 18.34
Sym8 21.47 21.47 20.04 16.90 16.93 17.86

Legall5.3 22.03 22.04 22.64 18.06 18.06 18.47
Dmey 20.55 20.59 19.16 17.46 17.46 16.95
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3.4. An Open-Pit Copper Mine

The most popular use of the GBSAR systems is the monitoring of open-pit mines. Therefore,
we tested the application of the CS techniques to a representative case study of a copper mine in
South America. The measurement parameters were: initial frequency f 1 = 17.1 GHz, final frequency
f 2 = 17.3 GHz, number of frequencies Nf = 5333, length of the mechanical scan L = 1.275 m, number of
samples (according to Nyquist theorem) N = 256. The obtained radar image (without application of CS
techniques) is shown in Figure 17.

As well as for previous data, we verified that PSNR increases linearly of 2.4 dB for each 10%
increase of M/N and this relationship has been perfectly confirmed also for these experimental data
(we do not report the graph for sake of brevity).

Table 3 reports the obtained PSNR for M/N = 0.5 and M/N = 0.3. Using 50% of data, PSNR varies
from 29.95 dB (Haar wavelets, OMP) to 17.25 dB (FFT, L2). Using 30%, the PSNR ranges between
29.44 dB (Haar wavelets, OMP) and 9.33 dB (FFT, OMP).

Table 3. PSNR calculated with different bases and recovery methods for experimental data acquired at
a copper mine in South America.

50% 33%

L1 (dB) L2 (dB) OMP (dB) L1 (dB) L2 (dB) OMP (dB)

Dct 17.54 18.23 17.36 15.84 16.31 15.90
Fft 17.41 17.25 15.26 11.69 12.44 10.05

Haar 29.39 29.39 29.95 25.81 25.81 29.44
Db2 28.29 28.30 28.25 26.29 26.30 27.69
Db3 25.34 25.37 27.85 23.94 23.94 26.22
Db4 24.54 24.53 23.14 22.48 22.48 22.94
Db5 25.69 25.70 23.68 21.38 21.37 22.74
Db6 25.24 25.24 26.30 22.26 22.26 22.49
Db7 25.88 25.89 24.14 21.48 21.49 23.01
Db8 24.08 24.10 21.70 20.82 20.82 19.29
Db9 24.04 24.05 19.98 21.28 21.29 16.25

Db10 23.68 23.68 18.82 22.25 22.26 18.27
Bior1.3 28.79 28.79 27.45 25.42 25.42 27.47
Bior2.2 27.60 27.59 26.63 22.73 22.72 18.68
Bior2.6 26.41 26.41 26.28 22.62 22.60 19.09
Bior3.1 26.43 26.44 22.56 24.38 24.38 14.96
Bior3.5 25.54 25.55 21.41 22.85 22.86 17.30
Bior3.9 25.18 25.19 20.49 22.70 23.17 18.03
Bior5.5 25.24 25.24 27.26 23.33 23.35 26.33
Coif1 27.13 27.14 26.58 21.32 21.33 20.95
Coif2 24.83 24.84 24.01 20.74 20.75 21.29
Coif3 25.05 25.06 23.73 22.37 22.37 21.18
Coif4 26.10 26.09 25.56 22.97 22.97 22.85
Coif5 26.05 26.05 25.94 22.80 22.80 25.93
Sym2 28.29 28.30 28.25 26.29 26.30 27.69
Sym3 25.34 25.35 27.85 23.94 23.94 26.22
Sym4 25.47 25.46 25.63 21.94 21.94 19.47
Sym5 27.62 27.63 25.54 23.01 23.06 24.35
Sym6 25.53 25.54 25.08 22.45 22.45 18.56
Sym7 24.95 24.96 26.10 24.48 24.48 25.98
Sym8 25.50 25.54 24.26 22.18 22.21 18.73

Legall5.3 28.78 28.78 29.39 26.78 26.78 27.58
Dmey 25.15 25.16 21.72 22.31 22.31 18.04
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Figure 17. Radar image (without application of CS techniques) of a copper mine in South America.

Figure 18 shows an interferogram between two images (focused without application of CS
techniques) taken at different time. It shows a clear movement on the left side of the slope. In order to
test the capability of the CS techniques to reconstruct interferograms, we applied them to 50% of data
(Figure 19) and to 33% of data (Figure 20) using Haar wavelets and OMP.
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In order to evaluate the interferometric error, we have processed 41 measurements acquired in
4 h and 20 min. By considering one pixel associated to one stable point (without visible fringes), we
have evaluated the standard deviation of the displacement retrieved by interferometry. The point is
labeled with letter A in Figure 17. Figure 21 shows the error (calculated as standard deviation) of the
displacement at the stable point A varying M/N. The error is rather constant. It means that thermal
(Gaussian) noise is not the main source of error. The effective contribution of thermal noise is more
evident in the plot of the differential error (Figure 22). It confirms that the error linearly decreases (in
log scale) with slope −2, increasing the M/N (in log scale), as predicted by simulation.
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In order to verify the capability of CS to detect a cumulative displacement, we have taken into
account the point B in Figure 18 where several fringes are evident in the interferograms (see Figure 19).
Figure 23 shows the plot obtained without CS and the plot obtained with CS applied to 100% of data are
perfectly overlapping. The CS plots with 50% and 30% of data tend to underestimate the displacement.Remote Sens. 2018, 10, 1960 17 of 21 
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Figure 23. Cumulative measured displacement of the point B in the open pit mine.

3.5. A Glacier

As test-site representative of a natural scenario we considered the “Belvedere” glacier in the Italian
Alps. The data was acquired during a measurement campaign in 2006, whose details are reported
in [3,27,28]. The measurement parameters were: f 1 = 5.97 GHz, f 2 = 5.99 GHz, Nf = 801, L = 1.71 m,
N = 141. The obtained radar image (without application of CS techniques) is shown in Figure 24.
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Figure 24. Radar image (without application of CS techniques) of a glacier in the Italian Alps.

As well as for previous data, we verified that PSNR increases linearly of 2.4 dB for each 10%
increase of M/N and this relationship has been perfectly confirmed also for these experimental data
(we do not report the graph for sake of brevity).

Table 4 reports the obtained PSNR for M/N = 0.5 and M/N = 0.3. The PSNR has been calculated
for an image 200 × 200 in polar coordinates. The range limits were 350 m and 1000 m. The azimuth
limits were −25 deg and +25 deg. Using 50% of data, PSNR varies from 21.16 dB (Haar wavelets,
OMP) to −3.50 dB (DCT, L2). Using 30%, the PSNR ranges between 16.52 dB (Haar wavelets, OMP)
and −5.09 dB (FFT, L1).

In order to verify the capability of CS to detect a cumulative displacement, we have taken into
account a pixel inside the sliding body of the glacier. Figure 25 shows the plots obtained without CS
and with CS applied to 100, 50, and 30% of data. The plots are almost perfectly overlapping.
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Table 4. PSNR calculated with different bases and recovery methods for experimental data acquired at
a glacier in the Italian Alps.

50% 33%

L1 (dB) L2 (dB) OMP (dB) L1 (dB) L2 (dB) OMP (dB)

Dct −2.26 −3.50 −2.77 1.34 1.39 0.21
Fft −1.67 1.85 −0.92 −5.09 −4.93 −4.06

Haar 20.53 20.53 21.16 15.01 15.02 16.52
Db2 13.53 13.53 19.27 8.21 8.26 14.09
Db3 9.54 9.54 18.83 5.64 5.75 14.02
Db4 4.05 4.10 13.05 8.75 8.75 8.56
Db5 5.56 5.69 11.14 7.17 7.19 10.53
Db6 2.89 2.87 17.51 3.79 3.87 11.77
Db7 11.26 11.24 10.67 8.68 8.67 5.58
Db8 2.62 2.64 8.83 1.78 1.77 0.92
Db9 6.69 6.74 10.25 5.53 5.52 −3.23

Db10 2.32 2.33 3.29 −2.96 −2.90 2.16
Bior1.3 13.96 13.95 10.27 11.45 11.41 8.57
Bior2.2 14.37 14.39 19.17 9.93 9.92 13.99
Bior2.6 9.84 9.86 18.15 6.91 7.01 13.03
Bior3.1 6.65 6.64 5.16 7.50 7.46 8.46
Bior3.5 4.81 4.81 2.93 7.21 7.21 10.65
Bior3.9 3.31 3.27 −3.01 6.08 6.53 7.56
Bior5.5 10.55 10.52 14.62 4.11 4.09 14.02
Coif1 10.98 11.11 19.72 10.58 10.61 14.27
Coif2 12.17 12.16 19.66 7.98 7.99 14.55
Coif3 9.48 9.48 18.72 6.56 6.56 10.16
Coif4 11.65 11.65 14.46 5.76 5.75 11.57
Coif5 5.87 5.88 11.36 9.49 9.49 3.42
Sym2 13.53 13.53 19.28 8.21 8.26 14.09
Sym3 9.54 9.54 18.83 5.64 5.75 14.02
Sym4 11.14 11.19 17.39 10.10 10.10 14.03
Sym5 9.52 9.51 9.78 4.83 4.51 3.63
Sym6 12.48 12.49 12.94 7.37 7.37 7.37
Sym7 9.35 9.37 16.86 2.44 2.45 11.40
Sym8 13.64 13.59 12.17 7.00 7.00 11.34

Legall5.3 11.76 11.79 15.75 9.43 9.40 14.62
Dmey 6.83 6.84 10.72 5.60 5.61 11.78
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Table 5 resumes the parameters of each measurement campaign and the highest value of PSNR
obtained using 50% of data.

Table 5. Parameters of each measurement campaign and the highest value of PSNR obtained using
50% of data.

Campus Building Mine Glacier

f1 (GHz) 9.915 9.915 17.1 5.97
f2 (GHz) 10.075 10.075 17.3 5.99

Nf 801 801 5333 801
L (m) 1 1.8 1.275 1.71

N 100 180 256 141
PSNR max 50% (dB) 26.01 22.78 29.95 21.16

4. Conclusions

Authors found that CS techniques are able to reconstruct GBSAR images of good quality
(PSNR > 20–30 dB) with almost 30–40% of data. Furthermore, they found that for more than 30% of
data, the PSNR of the recovered image increases linearly of 2.4 dB for each 10% increase of data for all
the tested bases and recovery methods. Nevertheless, the quality of reconstruction depends on the
selected basis and recovery method. In a test site with just one single strong target, the best image has
been obtained with FFT and OMP. In an urban scenario the best choice has been Daubechies wavelets
and OMP. For an open-pit mine the highest quality image has been reconstructed with Haar wavelets
and OMP. For a natural slope (a glacier) the optimal choice has been again Haar wavelets and OMP.
In all cases, Haar wavelets with OMP gave good results (even if not always the best). Therefore, we
can state that Haar wavelets with OMP is a reasonable choice for most practical cases. Furthermore,
we found that CS reconstruction does not worsen significantly the interferometric error. The plots of
the cumulative displacement recovered with 100, 50, and 30% of data overlaps almost completely the
plot obtained without application of CS techniques. All these findings constitute the basic scientific
starting point for designing optimal sparse array or multiple-input multiple-output (MIMO) radar
able to exploit the CS techniques.
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