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Abstract

This thesis presents a new lattice Boltzmann model for both steady and unsteady 
two-dimensional shallow water equations. Throughout this work, the usage of 
different collision operators (CO) for the lattice Boltzmann solution of shallow 
water equations is proposed and investigated: BGK linear CO based on a single 
relaxation time (SRT), cascaded and cumulant CO with a multiple relaxation 
times approach (MRT). The motivation in using a MRT collision operator 
instead of the standard BGK, was to introduce the maximum number of 
adjustable parameters, which leads to an improvement of both stability and 
accuracy. The thesis focuses on the development, validation and applications of 
the aforementioned CO for shallow water flows. The cascaded LBM is based on 
the use of central moments as basis; it overcomes the defects in Galilean 
invariance of the original MRT method and it has been shown to further 
improve stability. An adaptation of the original formulation proposed for a 
single-phase fluid is therefore proposed and developed to reproduce shallow free 
surface flow. Furthermore, an alternative and more concise approach is based on 
the use of a cumulant collision operator, which relaxes, in the collision step, 
quantities (i.e. cumulants) that are Galilean invariant by construction. In the first 
part of the thesis, a convergence study of the different approaches, based on the 
use of the Taylor Green Vortex as test case, is performed, to compare 
conventional and innovative solution methods from stability and accuracy point 
of view. Then, the second part is devoted to analyzing different strategies to 
introduce, in the innovative models, the treatment of external forces term and 
various kinds of boundary conditions, that maintain the accuracy characteristics 
of the model. Special attention is due to the wet-dry front in shallow flows; in 
fact, a correct simulation of such processes plays a crucial role in practical 
engineering studies. The proposed methodologies are tested and validated 
through the use of analytical solutions and experimental solutions, taken as 
benchmarks throughout the thesis. Finally, the suitability of the proposed 
mathematical model for hydraulic engineering applications is discussed through 
the modelling of a real flood event.
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Zusammenfassung

Diese Arbeit präsentiert ein neues Gitter-Boltzmann-Modell für stationäre und 
instationäre zweidimensionale Flachwassergleichungen. In dieser Arbeit wird die 
Verwendung verschiedener Kollisionsoperatoren (CO) für die Gitter-Boltzmann-
Lösung von Flachwassergleichungen vorgeschlagen und untersucht: der lineare 
BGK CO basierend auf einer einzelnen Relaxationszeit (SRT), der kaskadierte und 
der Kumulanten CO mit multiplen Relaxationszeitansatz (MRT). Die Motivation 
bei der Verwendung eines MRT-Kollisionsoperators anstelle des standardmäßigen 
BGK bestand darin, die maximale Anzahl an einstellbaren Parametern 
einzuführen, was zu einer Verbesserung sowohl der Stabilität als auch der 
Genauigkeit führt. Die Arbeit konzentriert sich auf die Entwicklung, Validierung 
und Anwendung des oben genannten CO für die Flachwassergleichung. Die 
kaskadierte LBM basiert auf der Verwendung zentraler Momente als Basis. Sie 
überwindet die Verletzung der Galilei-Invarianz der ursprünglichen MRT-
Methode und verbessert nachweislich die Stabilität. Eine Anpassung der 
ursprünglichen Formulierungfür die Flachwassergleichung wird daher 
vorgeschlagen und entwickelt. Darüber hinaus basiert ein alternativer Ansatz auf 
der Verwendung eines Kumulantenkollisionsoperators, der in dem 
Kollisionsschritt Größen (d. H. Kumulanten) relaxiert, die per Konstruktion 
Galilei-Invarianten sind. Basierend auf der Verwendung des Taylor Green Vortex 
als Testfall wird im ersten Teil der Arbeit eine Konvergenzstudie der verschiedenen 
Ansätze durchgeführt. Damit werden die konventionellen und innovativen 
Lösungsmethoden aus Sicht der Stabilitäts-und Genauigkeit  verglichen. Der zweite 
Teil widmet sich der Analyse verschiedener Strategien, um in den innovativen 
Modellen die Behandlung von äußeren Kräften und verschiedene Arten von 
Randbedingungen einzuführen, die die Genauigkeitseigenschaften des Modells 
beibehalten. Besonderes Augenmerk liegt auf der Nass-Trocken-Front in flachen 
Strömungen. Eine korrekte Simulation solcher Prozesse spielt eine entscheidende 
Rolle in praktischen Ingenieurstudien. Die vorgeschlagenen Methoden werden 
durch die Verwendung von analytischen Lösungen und experimentellen Lösungen 
in Form von Benchmarks in der Arbeit getestet und validiert. Abschließend wird 
die Eignung des vorgeschlagenen mathematischen Modells für wasserbauliche 
Anwendungen durch die Modellierung eines realen Hochwasserereignisses 
diskutiert.
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v
′
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′
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wα Reticular weight
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zb Bed topography
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∆x Spatial resolution
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δ (x) Dirac delta function
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′
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Ω Collision operator
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Introduction

The lattice Boltzmann method (LBM) is a numerical method derived from
the discretization of the kinetic equation of Boltzmann. From a statistical per-
spective, the approach is defined as mesoscopic, because it works at a level
of detail between the microscopic and macroscopic scales, tracking the evo-
lution of the probability distribution function of particles. While traditional
CFD methods (finite difference, finite element and finite volume method)
solve the macroscopic equations of fluid mechanics (Navier Stokes equa-
tions), LBM solves the discrete kinetic equations reproducing the fluid me-
chanics equations, in the macroscopic limit. The LBM approach is a versatile
method and it has been extensively applied in different fields, such as tur-
bulent flows, multiphase flows (Falcucci, Ubertini, and Succi, 2010), multi-
component flows, flow of complex fluids and in complex geometries (Uber-
tini, Bella, and Succi, 2003), porous media and thermal flows (Zarghami,
Francesco, and Biscarini, 2014). However, it is not so common to use the
LBM approach to simulate large scale hydraulic problems such as flooding
events, dam breaks and propagation of tsunamis. The shallow water equa-
tions (SWE), representing an approximation of Navier Stokes equations, in
the field of hydraulic engineering, provide a reasonable and simplified so-
lution at a scale that is of interest to engineers and professionals. An in-
depth analysis of the LBM approach applied to the solution of shallow water
equations started with the work of Salmon (Salmon, 1999) and Dellar (Dellar,
2002); the research activity then continued with the comprehensive revision
of the method by Zhou (Zhou, 2004), who opened the way to further work;
basically, this work adopted the Zhou approach, at least in its principal out-
lines (i.e. collision operator, force schematization, turbulence model) and ap-
plied it to different test-cases. Only a few of them dealt with the simulation
of large scale problems (Thommes, Seaid, and Banda, 2007), (Shafiai, 2011),
(Prestininzi, Sciortino, and Rocca, 2013) and the problem of the effective ap-
plicability of a shallow water lattice Boltzmann model to complex hydraulic
problems remains substantially open in term of efficiency, stability and accu-
racy. Moreover, the model that is in general used is based on the standard
BGK approach in the collision step; only a small number of authors (Peng,
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2012), (Liu, 2009), (De Rosis, 2017) have dealt with testing the different re-
sults obtaining using multi relaxation time (MRT) collision operators (CO).
Therefore, the objective of this thesis is to test shallow water models using
non - conventional MRT collision operators: central moments and cumulants
CO (Geier et al., 2015) and compare the new methods with the standard BGK
approach. In order to make the model applicable, in practice, to the solution
of large-scale problems, an in-depth analysis of the treatment of the mod-
elling of external forces will be performed and different boundary conditions
(solid and inlet/outlet BC) will be analyzed. Moreover, a method schematiz-
ing the wetting-drying boundaries is proposed, based on a double limiter of
the depth and of the Froude number. The non-conventional models will be
tested and validated using the standard benchmark problems. Finally, the
correctness of the proposed mathematical model for hydraulic engineering
applications is discussed through the simulation of a real flood event, the
Malpasset dam – break. This is an important test-case not only for its tragic
importance, but also fo the availability of experimental and surveyed data.

Introduction
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Chapter 1

Lattice Boltzmann method

In this chapter, some fundamentals of the Lattice Boltzmann method the-
ory will be introduced; particular attention will be paid to the different ap-
proaches in the collision step and to the meaning of Galilean invariance in
LBM. In the last part, a brief explanation of the force term and boundary
conditions is reported.

1.1 The Lattice Boltzmann equation

The basic idea of Boltzmann’s work (Boltzmann, 1872) (Boltzmann, 1896) is
that a gas is constituted of particles interacting with each other and can be
described by classical statistical mechanics, and, because there are so many
particles, a statistical treatment is required and applicable. The particles be-
haviour can be extremely straightforward and explained by just the concepts
of streaming in space and a multitude of collision interactions. The Boltz-
mann equation describes the behaviour of particles by the evolution equa-
tion:

∂t f + ξ∂ξ f = Ω (1.1)

where f is a statistical function, the particle probability distribution function,
t is the time, ξ is the microscopic particle velocity, and Ω is the collision term
(collision operator, CO). The distribution function f can be seen as the prob-
ability of a particle to be in a certain state in the momentum space. The left
side of equation 1.1 indicates the streaming of particles while the right side
indicates the collision between particles. The collision term Ω is not straight-
forward to solve. Several attempts have been made to model the collision
term, and the first solution obtaining a certain relevance was proposed by
Bhatnagar, Gross and Krook (BGK) in 1954 (Bhatnagar, Gross, and Krook,
1954). They assumed that the collision is the process that returns particles to
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the state of the local Maxwellian equilibrium:

Ω =
f − f eq

τ
(1.2)

where τ is the collision mean free time. In equation 1.2 the rate of change (i.e.
the molecular collision frequency ω) is related to the collision mean free time
as ω = 1

τ . The numerical solution of equation 1.1 is possible by discretizing it
in space, time, and particle velocity. In fact, in the lattice Boltzmann method,
the particles are allowed only to have a discrete number of velocities. The
velocities are selected such that particles travel a predefined distance in a
certain time. When the distances between particles and the length of the
time-steps is chosen such that they move from node to node on a Cartesian
grid, all interpolations are avoided and the streaming step is exact. All non
linearity is confined to an algebraic collision term, the discrete analogue of
Ω in equation 1.1. Hence, the lattice Boltzmann evolution equation in three
dimensions is written as (Geier et al., 2015):

fijk(x+ic∆t)(y+jc∆t)(z+kc∆t)(t+∆t) = fijkxyzt + Ωijkxyzt (1.3)

where i, j and k∈Z and x, y and z are the variables in space, ic, jc and kz
are the variables in velocity space with ξ = (ic, jc, kc), ∆x and ∆t are, respec-
tively, the grid spacing and the time-step, c = ∆x

∆t is the discrete speed. Figure
1.1 shows a three-dimensional discretization of the velocity space with 27 dis-
crete speeds, the D3Q27 lattice. In fact, it is generally used the notation DdQq
for a q-velocity model in a d-dimensional space. The node in the middle is the
source point (zero velocity) from which f streams into the directions of the
26 neighbours. The distance between the source node and any of the neigh-
bours is unitary with i, j and k∈ {−1, 0, 1}. The lattice Boltzmann method
is a numerical method for solving the Navier-Stokes equations, based on the
discretization of space and velocity and is able to exactly satisfy the conserva-
tion laws (mass, momentum and angular momentum). The hydrodynamic
variables such as density, velocity are represented by the moments of the
Probability Distribution Function f (PDF).
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FIGURE 1.1: Moment distribution in D3Q27 lattice. The point
in the middle is the source point at rest. The others are the
links to the other neighbour directions. The volume of the
spheres shows the weight of the states in the equilibrium
distribution (Geier, 2006).

The most relevant difficulties of LB method can be found in the colli-
sion operator. The widespread solution based on a single relaxation time
approach (SRT BGK method) (Qian, D’Humières, and Lallemand, 1992) is
characterized by a relatively simple implementation. The relaxation rate is
chosen only considering binary collisions, that are the collisions with the
highest probability to happen (Geier, 2006). In order to maximize the number
of adjustable parameters and increase both stability and accuracy, the multi-
ple relaxation times MRT was introduced (D’Humières, 1994). Even though
it was demonstrated that MRT CO improves the solution of LBM, it intro-
duces an additional Galilean invariance violation and hyper-viscosity prob-
lems (Geier et al., 2015). The first problem is due to the definition of the mo-
ments. In fact, the MRT method modifies the PDF into a set of raw moments
(Geier et al., 2015) using a linear transformation. Each moment is orthogonal
to all the others and relaxes with its own rate. However, the orthogonality of
the moments is not reference frame independent (Krafczyk et al., 2015) and
orthogonality is not maintained if the reference frame is changed. Therefore,
the original MRT method further violates the Galilean invariance, compared
to a BGK model. Hyper-viscosity problems come from the coupling of the
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different relaxation rates, because the moments are not statistically indepen-
dent. The cascaded LBM (Geier, Greiner, and Korvink, 2006) solves the first
problem, using as observable quantities central moments, defined in a frame
co-moving with the fluid. However, a co-moving frame of reference did not
guarantee that the moments evolved independently. In fact, this assumption
leads to incorrect results when the relaxation rates of different moments are
not optimally selected. A solution to this problem is the factorized central
moment method (FCM). By means of the factorization, the degrees of free-
dom are decoupled and the central moments turn into moments statistically
independent of each other.

1.1.1 Cumulant LBM

The factorization in (Geier, Greiner, and Korvink, 2009) was theorized with
the cumulant LBM (Geier et al., 2015), which at the same time oversteps
the two problems of statistical independence of the moments and hyper-
viscosity.
The discrete probability distribution function (PDF) can be written in con-
tinuous form using the microscopic velocities ξ = (ξ, υ, ζ) and the Dirac δ

function:

f (ξ) = f (ξ, υ, ζ) = ∑
ijk

fijkδ (ic− ξ) δ (jc− υ) δ (kc− ζ) (1.4)

The two-sided (bilateral) Laplace transform of this distribution f (ξ) is con-
tinuous and smooth in the frequency space Ξ = (Ξ, Υ, Z) and it is equal to:

F (Ξ) = L { f (ξ)} =
∫ ∞

−∞
f (ξ) e−Ξ·ξdξ (1.5)

In frequency space, for the observable quantities cα, statistically independent
and Galilean invariant, the joint probability function can be expressed in the
form:

F (Ξ) = F (Ξ, Υ, Z) = ∏
α

Fα (cα) (1.6)

i.e., the F (Ξ) represents the product of the individual probabilities of cα (fac-
torization). If the logarithm of joint probability is considered, the probability
distribution function can be expressed in Taylor series. The cumulants of the
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distribution cα are equal to the coefficient of the series:

cαβγ =
∂α∂β∂γ

∂Ξ∂Υ∂Z
ln
(

F (Ξ, Υ, Z)
$0

)
|
Ξ,Υ,Z=0

(1.7)

where $0 is a density metric for dimensional consistency (Kian Far et al.,
2016a). Cumulants respect the hypothesis of statistical independence be-
tween different degrees of freedom and frame invariance by definition. Each
collision process can be modeled by an individual rate equation:

c∗αβγ = ceq
αβγ ωαβγ +

(
1−ωαβγ

)
cαβγ (1.8)

The asterisk * indicates the post-collision cumulant, ceq
αβγ is the equilibrium

value of the cumulant and ωαβγ is the relaxation frequency. In frequency
space the equilibrium distribution is smooth and the logarithm form can be
expanded into Taylor series:

ln (Feq (Ξ, Υ, Z)) = ln
$

$0
− Ξu− Υv− Zw +

c2
s

2

(
Ξ2 + Υ2 + Z2

)
(1.9)

where c2
s is the square speed of sound and u,v,w are the macroscopic velocity

values. The logarithm of the Laplace transformed equilibrium is a polyno-
mial function with a finite number of terms in Taylor expansion; hence the
series is characterized by a finite number of coefficients (i.e. cumulants). The
complete discussion about theory of cumulants is in (Geier et al., 2015). Re-
cent applications of cumulant LBM can be found in (Pasquali, 2017), (Pasquali,
Geier, and M., 2017) and (Kian Far et al., 2016b).

1.1.2 Raw moments and central moments

As the bilateral Laplace transform function of f , F (Ξ, Υ, Z), can be consid-
ered equivalent to the moments generating function of the distribution (Dupré,
2010), raw moments can be obtained as:

mαβγ =
∂α∂β∂γ

∂Ξ∂Υ∂Z

(
F (Ξ, Υ, Z)

$0

)
|
Ξ,Υ,Z=0

= ∑
i,j,k

iα jβkγ fijk (1.10)
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Hereafter, non-orthogonal central moments, used in the cascaded LBM as
observable quantities and derived from a centred distribution function:

καβγ =
∂α∂β∂γ

∂Ξ∂Υ∂Z

(
F̃ (Ξ, Υ, Z)

$0

)
|
Ξ,Υ,Z=0

= ∑
i,j,k

(i− u/c)α (j− v/c)β (k− w/c)γ fijk

(1.11)
where F̃ is a centred distribution function as in (Geier et al., 2015); u, v, and
w are the components of the local velocity vector.

1.2 Relevant scales in CFD models

The lattice Boltzmann method can be considered a mesoscopic approach be-
tween the microscopic methods and the conventional numerical methods
based on the solution of Navier Stokes equation. In Figure 1.2, the hierar-
chy of lengths and time scales in CFD models is shown (Krüger et al., 2016).

la

la

ta

lm

lm l

Microscale simulations

Length scale

Ti
m

e 
sc

al
e

Mesoscale simulations 
(kinetic theory, LBM)

Macroscale 
simulations

tm

tdiff

tconv

FIGURE 1.2: Hierarchy of lengths and time scales in CFD
models. Adapted from (Krüger et al., 2016).

The x-axis shows the specific lengths for different scales: la is the size
of the fluid atom or molecule in microscale simulations; lm is the distance
travelled between two successive collisions in mesoscale simulations; l is the
typical scale related to tangible properties (velocity, density) in a macroscale
simulation. Coupled with the previous lenght scales, there are the following
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time scales: ta, tm and tconv or tdi f f at macroscopic scale. The kinetic theory,
at which LB method is related, operates at mesoscopic scale. To the length
lm, representing the distance covered between two successive collisions of
particles, is associated, in the y-axis, tm, the mean flight time between two
successive collisions; tm is equal to lm

vT
, where vT represents the average ther-

mal velocity of the molecules.
In a macroscale simulation, it is possible to have inertial or viscous regime
(respectively, advective or diffusive dynamics); it depends on what is the
shortest (most relevant) time scale: tconv ' l

u or tdi f f ' l2

ν , where u is the
macroscopic velocity and ν is the kinematic viscosity.
The ratio between these two hydrodynamic time scales is the well-known
Reynolds number Re = ul

ν .
The Mach number (Ma) defines the ratio between the acoustic and advec-
tive time scales. In practice, we can usually assume steady fluid flow with
Ma ≤ 0.1 to be incompressible.

1.3 Galilean invariance in LBM

Recently, the issue of violation of Galilean invariance in LBM has been largely
discussed (Lallemand and Luo, 2000), (Geier, Greiner, and Korvink, 2006),
(Geier, 2006), (Geier et al., 2015), (Geier, Fakhari, and Lee, 2015).
The Boltzmann equation in 1.1, defined in the continuum space, is invariant
under Galilean transformations. In kinetic theory, this is expressed by using
the velocity ξ − u, the difference between ξ and the local fluid velocity u. The
lattice Boltzmann approach fulfils computational efficiency by restricting the
infinite set of particle velocity ξ in equation 1.1 to a finite set and evolving
the finite set of functions fα (x, t) α = 1, ..., N rather than f (x, ξ, t). However,
the adoption of a finite velocity set fα leads to a finite number of indepen-
dent moments; this breaks Galilean invariance at the level of the discrete
Boltzmann equation. The problem is, in general, solved within the limit of
second order accuracy (Geier et al., 2015). However, beyond the second or-
der, the violation of Galilean invariance leads to spurious dependencies; i.e.,
the dependence of the viscosity from the velocity of the flow; the coupling
between moments with different relaxation rate in the collision; a phase lag
in the advection of vortexes with a superimposed velocity field. The first two
problems have been resolved introducing the cumulant CO; a solution for
the third problem is discussed in (Geier and Pasquali, 2018) where different
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strategies are analyzed. In particular, the proposed solutions deal with in-
creasing of the number of speeds or using a different arrangement of reticular
speeds; it is also proposed a modified equilibrium of second order cumulants
based on finite differences corrections.

1.4 Evaluation of the force term in LB method

Different approaches can be considered in order to include the force term in
LBM. Luo (Luo, 1993) suggested that the force term can be introduced into
the collision term; in (Shan and Chen, 1994) the body force is introduced in
the collision operator. Later, in (Li-Luo, 1998) Luo demonstrated that the first
choice is a special case of the second. In (Buick and Greated, 2000) it was
concluded that the best results can be obtained by adding the force term in
the collision process and shifting the field velocity of a quantity proportional
to the external force. Zhou, in his BGK shallow water model, demonstrated
that the external forces can be included in the mathematical models simply
adding them to the streaming process (Zhou, 2004).

1.5 Boundary conditions

Infinitely large systems cannot be simulated. The size of the simulation do-
main must be bounded, and the domain edges must be treated by using some
boundary condition (BC). In this section, different kind of solid boundary
conditions and inlet/outlet boundary conditions are described. Several stud-
ies show that boundary conditions play a critical role on the results of simu-
lation and can affect the accuracy, efficiency and stability of the simulation.
Indeed, even though the boundary conditions concern a limited part of the
fluid domain, they can extremely affect the flow solution. Some representa-
tive works about boundary conditions are due to (Ginzburg and d’Humieres,
2003), (Junk and Yang, 2005), (Latt et al., 2008). Boundary conditions and ini-
tial conditions are still a non-trivial task in LBM and its determination is more
complex than in conventional numerical methods solving the Navier Stokes
equations (Krüger et al., 2016). In fact, rather than specifying the macroscopic
variables of interest at the boundary (i.e. velocity or pressure), in LB method
conditions for the mesoscopic populations have to be set up.



1.5. Boundary conditions 11

1.5.1 Periodic boundary conditions

Periodic boundary conditions apply only when the edge of the system is con-
nected to the opposite edge; they state that the fluid leaving the domain on
one edge will, instantaneously, re-enter at the opposite edge. Consequently,
periodic boundary conditions conserve mass and momentum over time. For
example, a periodic boundary condition in the x-direction can be applied
by specifying the unknown distributions at inflow boundary after streaming
with the corresponding distributions at outflow boundary (see Figure 1.3):

fα (1, t) = fα (Nx, t) α = 1, 5, 8

fα (Nx, t) = fα (1, t) α = 6, 3, 7

inflow outflow

i i+1i-1i=1 i=Nx

f3

f7

f6

f1

f8

f5f2

f4

f1

f8

f5

f3

f7

f6

FIGURE 1.3: Periodic boundary condition in the x direction.

Similarly, a periodic boundary condition in the y direction can be applied.

1.5.2 Solid boundary conditions

No-slip boundary conditions

One of the most simple and common treatment of boundary conditions is
the no-slip BC. The correct implementation is crucial for modelling confined
fluid flow phenomena and other problems including solid boundaries. The
standard LB boundary condition to model walls is the bounce-back method
(He et al., 1997), (Ginzbourg and Adler, 1994). The basic rule of bounce-back



12 Chapter 1. Lattice Boltzmann method

is illustrated in Figure 1.4. When the bounce-back is applied at boundaries,
the populations moving against the wall during the streaming step are re-
flected towards where they originally came from. During the collision with
the wall, normal and tangential momentum components are reversed. Then,
the average momentum of populations along the direction in Figure 1.4, be-
fore and after collision, is equal to zero; in fact: mv (t + ∆t) = −mv (t), where v
is the particle velocity and m the mass. In bounce-back boundary conditions,
the populations leaving the nodes at boundaries at time t meet the surface
of the wall and they are reflected back, arriving at time t + ∆t at the node
from which they came. For these populations, the standard streaming step is
replaced by the equations (see Figure 1.5):

fα (i, t + ∆t) = fα (i, t)

where i is the grid coordinate at the boundary; fα and fα are respectively,
the leaving and the reflected populations. It has to be pointed out that the
bounce back method here illustrated and used in this study is the half-way
bounce back (Sukop and Thorne, 2006): particles travel only half of the dis-
tance between the nodes at boundary and solid node, so that the inversion
of the velocity occurs during the streaming step. The bounce back method
can be implemented easily also for flows in arbitrary complex geometries. In
fact, the position of solid points is not required and the code results efficient
and easy to implement (Gallivan et al., 1997).

wall

solid

fluid
m	v(t)

m	v(t+∆t)

∆t

FIGURE 1.4: Principle of bounce back method. Reproduced
from (Krüger et al., 2016).
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f7 f8f4

f6 f5
f2

Boundary	
nodes

𝑓" i, 𝑡 𝑓"& i, 𝑡 + ∆𝑡

𝐢 i

FIGURE 1.5: Evolution in time of the bounce-back rule
equation at a bottom wall.

For the case depicted in Figure 1.5, the implementation is:

f6 (i, t + ∆t) = f8 (i, t)

f2 (i, t + ∆t) = f4 (i, t)

f5 (i, t + ∆t) = f7 (i, t)

The bottom grey shaded domain is the solid region, and the dashed line cor-
responds to the location of the no-slip boundary; red and white circles denote
boundary and solid nodes, respectively.

1.5.3 Inlet/outlet boundaries

Due to computational limitations, the simulation domain has to be truncated
and boundary conditions have to be set where physical problems do not have
boundaries. This kind of boundaries are called inflow/outflow boundary
conditions (hereinafter, i/oBC). The i/oBC boundaries are essentially inlets
or outlets where the flow either enters or leaves the computational domain
and where it should be imposed, for example, the velocity or the density.
The problem is often not insignificant, and it can produce both physical and
numerical difficulties. The i/oBC used in this work are described in chapter
3, section 3.3.
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Chapter 2

Lattice Boltzmann shallow water
equations

2.1 Shallow water equations

The shallow water equations (SWE) derive from the three dimensional in-
compressible Navier-Stokes equations and are valid for problems in which
vertical dynamics can be neglected compared to horizontal effect, with sev-
eral simplified assumptions: the water depth is small enough so that such
flows are characterized by horizontal motion; the assumption of hydrostatic
pressure replaces the momentum equation in the vertical direction and the
vertical acceleration can be neglected.
The shallow water equations derive from the Navier Stokes equations, the
continuity equation and the momentum equation, hereinafter written in ten-
sor form using the Einstein summation convention:

∂uj

∂xj
= 0 (2.1)

∂ui

∂t
+

∂
(
uiuj

)
∂xj

= Fi −
1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
(2.2)

where the subscripts i and j are space direction indices, t the time, u the
velocity, Fi the body force per unit mass in i direction, ρ the fluid density, ν

the kinematic viscosity, p the pressure. The term on the left is the inertial

term, where
∂(uiuj)

∂xj
is called convective term. On the right side, the pressure

term and the viscous term are shown.
The governing equations for shallow water can be derived from 2.1 and 2.2.
In fact, they are obtained using an integration over depth in order to obtain
vertically averaged quantities. The second term on the right of the equation
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2.2 (pressure term) becomes:

∫ h+zb

zb

1
ρ

∂p
∂x

dz = gh
∂(h + zb)

∂x
(2.3)

where h is the water depth, zb is the bed elevation above datum. In fact, shal-
low water equations are characterized by a pressure p approximately hydro-
static over the vertical direction:

∂p
∂z

= −ρg (2.4)

where ρ is the water density and g the gravity acceleration. Integration of the
equation 2.4 over depth with the boundary condition that the pressure at free
surface is the atmospheric pressure pa = 0 leads to the hydrostatic pressure
approximation in shallow water flow:

p = ρg (h + zb − z) (2.5)

The following system of 2D shallow water equations are given as in (Zhou,
2004) and can be written in the following form:

∂h
∂t

+
∂(huj)

∂xj
= 0 (2.6)

uj =
1
h

∫ zb+h

zb

udz (2.7)

∂(hui)

∂t
+

∂(huiuj)

∂xj
= −g

∂

∂xi

(
h2

2

)
+ ν

∂2(hui)

∂xj∂xj
+ Fi (2.8)

where h his the water depth, u is the velocity, ν is the kinematic viscosity, Fi

is the external force in the i direction. The shallow water regime is shown in
Figure 2.1. The external force term can be written as follows:

Fi = FPi + Fsi + Fwi + FCi (2.9)

where the FPi is the force due to gravity and defined in 2.3, the Fsi the bed
shear stress defined as:

Fsi = Cbui
√

uiui (2.10)

where Cb = g
n2

f

h1/3 is a friction factor in which n f is the Manning’s coefficient
at the seabed. The terms Fwi and FCi are, respectively, the wind shear stress
and the force representing the Coriolis effect. The last two terms are not
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considered in this study.

𝑥

𝑧

𝒛𝒃

water	surface

𝑦

𝒉
𝒖

𝒗

FIGURE 2.1: Parameters of shallow water equations (SWE).
Horizontal velocities (u, v); water depth h; water surface
(continuous line: steady flow; dashed line: unsteady flow).

2.1.1 Literature review

The shallow water equations (SWE) allow to simulate flows in water bod-
ies where the horizontal length scale is larger than the fluid depth. If vertical
variations must be taken into account, these variations can be separated from
the horizontal ones using a set of shallow water equations for a series of hor-
izontal fluid layers (i.e., multilayer SWE) (Prestininzi, Sciortino, and Rocca,
2013). The SWE are largely adopted in ocean engineering (Salmon, 1999), hy-
draulic engineering (Meselhe, Sotiropoulos, and Holly, 1997), (Valiani, Cal-
effi, and Zanni, 2002) and coastal engineering (George, 2006), (Brocchini and
Dodd, 2008), (Huynh, Dodd, and Zhu, 2017). In fact, the SWE allow to study
a wide range of physical problems such as storm surges, tidal flows and fluc-
tuations in estuary and coastal water regions, tsunami and bore wave prop-
agation, stationary hydraulic jump, off-shore structures and open channel
flows. The SWE can also be coupled to transport equations to model the con-
veyance of several quantities such as temperature, pollutants, salinity and
sediments.
It is not trivial to model such realistic large scale flow problems since the
terrain topography can be complicated and irregular. Traditional numerical
methods (finite difference, finite volume and finite element methods) have
been used to simulate the SWE (Bermudez and Vazquez, 1994); (Randall
J.LeVeque, 1998); (Stansby and Zhou, 1998), (Prestininzi, Lombardi, and La
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Rocca, 2016); (Toro, 1992); (Vazquez, 1999), inter alia. Most of these methods
put in evidence that the application of bed slope and friction forces can lead
to inaccurate solutions due to numerical errors, i.e. (Bermudez and Vazquez,
1994); (Randall J.LeVeque, 1998); (Vazquez, 1999). In addition, the exten-
sion of these schemes to complex geometries is not straightforward (Benkhal-
doun, Elmahi, and Seaid, 2007). Some of these approaches are very computa-
tional expensive if applied to real flows (Vukovic and Sopta, 2002). Since the
problems are posed at a large scale, it should be the aim to develop a simple
and accurate representation of the source term to simulate realistic shallow
water flows without resorting to upwind discretization or Riemann problem
solvers (Benkhaldoun, Elmahi, and Seaïd, 2010).

2.1.2 LBM for shallow water equations

Hereafter, a description of standard SRT and MRT model for the solution of
shallow water lattice Boltzmann equations is given; moreover, in the next
paragraphs, the most significant works concerning the two type of models
are briefly introduced.

Single relaxation time models

The conventional models solving the shallow water equations are generally
based on a BGK CO (section 1.1). The implementation scheme, solved on
a regularly spaced domain, is described by the discrete Lattice Boltzmann
relation :

fα (x + ea∆t, t + ∆t) = fα (x, t) + Ωα + Fα α = 0, ..., n− 1 (2.11)

where x represents the position of the particle in the discretized space at time
t, fα (x, t) are the particle distribution functions and eα represents the set of
discrete speeds, along the allowed n - 1 lattice directions. In a D2Q9 model
n=9. Ωα is the collision operator, Fα represents the external force. Several au-
thors dealt with the solution of shallow water using the LBM. Dellar proved
that the shallow water lattice Boltzmann model, based on the typical trun-
cation of the EDF, from continuum Boltzmann equation of kinetic theory ("a
priori" approach), is not stable for the coupling between the hydrodynamic
and "ghost" modes (Dellar, 2002). Different and stable equilibria have been
introduced by Salmon (Salmon, 1999) who reduced the instability effects of
D2Q9 shallow water model. Zhou (Zhou, 2004) built a model with EDF
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and evolution equation equal to Salmon, but enhanced it with an external
force treatment, different boundary conditions and a turbulence model. This
model was successfully applied in highly efficient simulations of structure-
fluid interaction (Geveler et al., 2011), multilayer shallow water equations
(Prestininzi, Sciortino, and Rocca, 2013) and (Prestininzi, Lombardi, and La
Rocca, 2016), modelling of wetting–drying processes (Liu and Zhou, 2014).
The aforementioned authors suggest to express the equilibrium PDF as a
power series in macroscopic velocities up to second order, assuring mass and
momentum conservation:

f eq
α =

h− 5gh2

6 − 2h
3 u · u α = 0

βh
(

gh
6 + 1

3 (eα · u) + 1
2 (eα · u)2 − 1

6 u · u
)

α = 1, ..., 8
(2.12)

where u is the velocity vector and β assumes the value 1 if β = 1, ..., 4 and 1
4

otherwise (De Rosis, 2017).

Multi relaxation time models

MRT Lattice Boltzmann Models have been recently proposed as alternative
to BGK models. Several authors introduced in shallow water LB model the
MRT originally developed by d’Humieres et al. (D ’Humieres et al., 2002).
Just to name a few, Liu (Liu, 2009) put in evidence the longer simulation times
by using an MRT rather than an SRT CO; on the other hand, Tubbs (Tubbs
and Tsai, 2011) highlighted the higher stability compared with an SRT model,
thanks to the possibility to choose in the best way relaxation rates not related
to physical parameters. Peng (Peng, 2012) put in evidence the improvement
of the stability of the model and its capability of simulating flows with higher
Reynolds number.
Lately, a formulation based on central moments has been proposed by De Ro-
sis (De Rosis, 2017). Starting from the equilibrium functions used in (Salmon,
1999) and (Zhou, 2004), De Rosis chose a suitable non-orthogonal basis in or-
der to define a set of pre-collision central moments, then separately relaxed
with independent relaxation rates. The method is consistent with the BGK
operator, as the latter is recovered exactly if all the moments relax with a
common frequency.
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2.2 Stability conditions in LBM shallow water

Several researchers (Liu, 2009), (Zhou, 2004), (Shafiai, 2011), dealing with
the solution of shallow water with the lattice Boltzmann method, assert that
the method has been tested to remain stable under some conditions. First
of all, there must be diffusion phenomena for a water flow, so the kinematic
viscosity ν should be positive. Then:

ν = c2
s

(
τ − 1

2

)
∆x2

∆t
> 0

It follows that:
τ >

1
2

Secondly, it is necessary to respect the Courant-Friedrichs-Lewy (CFL) (LeV-
eque, 1996) condition to make the simulation stable. The Courant number
Cr allows to compare the speed ∆x

∆t of the propagation of informations in the
model with the physical speed of the advection of the fluid. i.e. if Cr > 1,
the simulation cannot propagate the physical solution quickly enough and
the simulation becomes unstable. Therefore, generally Cr < 1 is a necessary
condition for stability. It means that:

√
uiuj <

∆x
∆t

and √
gh <

∆x
∆t

where
√

gh is the celerity of a shallow wave. Finally, it is generally consid-
ered that, in the lattice Boltzmann shallow water method, the Fr > 1 should
remain lower than one so that the flow is limited to sub-critical flow (Zhou,
2004). Then:

Fr =

√uiuj√
gh

< 1

In the shallow water framework, the limitation on the Froude number is a
serious defect for real applications, where transcritical flows are frequently
encountered. It is noteworthy that La Rocca (La Rocca et al., 2015) proposed
a multispeed model with sixteen speeds, able to simulate transcritical and
supercritical 2D shallow water flows, thanks to the higher order equilibrium
terms.
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2.3 From lattice units to physical units

In the LB simulation, the grid spacing ∆x is assumed as the space unit. There-
fore, if a linear size of L meters is represented using N grid points, the space
unit is expressed in meters:

∆x =
L
N

(m)

In a similar way, the time unit of LB simulations is the elementary lattice time
step. Its physical value can be defined via the speed of sound as follows, as
cs = c

′
s

∆x
∆t , where cs and c

′
s are, respectively, the physical value and the lattice

value of the speed of sound. Then:

∆t =
c
′
s

cs
∆x (s)

The speed of sound represents the velocity at which the waves travel (Succi,
2001).
In shallow flow simulations, the speed of sound can be assumed equal to√

gh
2 (section 3.1.2); then, the value of the lattice time step expressed in sec-

onds becomes:

∆t =

√
g′h′

2√
gh
2

∆x (s)

where g
′

and g, h
′

and h are the value of the gravity acceleration and of the
depth, respectively, in lattice and physical units. If the value of the depth h
is maintained not scaled then (h

′
= h) the expression of the lattice time step

becomes:

∆t =
√

g′

g ∆x (s) (2.13)





23

Chapter 3

Innovative models for shallow
water equations

In this chapter, an explanation of the principal frameworks of the innovative
models studied in this work: the lattice pattern and the characteristics of the
speed of sound, the different collision operators taken into consideration, the
concept of aliasing, the approach for the inclusion of the force term and the
different boundary conditions.
About the style of this chapter, the parameters in the formulas have to be
intended as expressed in lattice units, if not differently specified. In fact, the
equations are written as they were implemented in the code and, in a LB
code, it recommended to work with lattice units, as the use of physical units
could bring to numerical errors.

3.1 D2Q9 model

3.1.1 Lattice pattern

The Figure 3.1 depicts lattice directions and velocities for the D2Q9 lattice
pattern (Wolf-Gladrow, 2004) adopted in our models. The lattice pattern in
LBM has the two functions to represent the points of the grid and to deter-
mine the motion of particles directions. In two dimensions, the vectors of the
particles speed are defined as:

e0 =

(
0
0

)
e1 =

(
1
0

)
e2 =

(
0
1

)
e3 =

(
−1
0

)
e4 =

(
0
−1

)

e5 =

(
1
1

)
e6 =

(
−1
1

)
e7 =

(
−1
−1

)
e8 =

(
1
−1

)
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e8 = (1, -1)

FIGURE 3.1: D2Q9 lattice velocity scheme and corresponding
lattice velocity components.

The D2Q9 pattern satisfies the homogeneity requisite, strictly related to
the definition of Galilean invariance (Geier, 2006). In fact, an homogeneous
velocity distribution implies that it is always necessary to have sD speeds,
where D is the number of dimensions and s is the number of discernible
states in a single dimension.

3.1.2 Speed of sound in SW model

In shallow water model the speed of sound in viscosity is not constant but is
a function of fluid elevation h and gravity acceleration g:

c
′2
s =

g
′
h
′

2
(3.1)

This is in accordance with the theory: in fact, two-dimensional compressible
Navier-Stokes equations can be obtained from the shallow water equations
using as equation of state the expression: P = 1

2 gρ2 (Dellar, 2002). It com-
pletely differs from standard Lattice Boltzmann models, in which the speed
of sound is constant and equal to c

′2
s = 1/3.

3.1.3 Viscosity

In LBM, the relaxation rate ω is related to the mean free time between two
binary collisions and it is defined as the inverse of the parameter τ (Geier,

(-1, -1)
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2006). The kinematic viscosity ν (transport coefficient) can be expressed as:

ν
′
= c

′2
s τbinary (3.2)

and, consequently:

ν
′
= c

′2
s (

1
ω
− 1

2
) (3.3)

where c
′
s is the lattice speed of sound as defined in section 3.1.2. In standard

LBM, the value of c
′2
s is given by the aliasing of the (raw) moments m10 and

m30 as explained in section 3.1.7. In SRT models, the values of ω is unique;
on the other hand, in MRT models (i.e. cascaded and cumulant models),
different relaxation rates exist for different moments. The relation between
them is explained in section 3.1.5.

3.1.4 Macroscopic variables

The macroscopic properties (water depth h and velocity field ui) of the flow
are computed, respectively, from the zero order moment m00 and first order
moment m10 and m01 of the PDF:

h
′
=

n

∑
α=1

fα u
′
i =

1
h′

n

∑
α=1

eαi fα α = 0, ..., n− 1 (3.4)

with n=9.
During the collision, update rules are applied at each node. The rules depend
only on the state of the probability distribution function (PDF) on the node
and are ignorant of other variables in the system. Collision is supposed to
observe the given conservation laws, generally for mass and momentum. In
fact, m00, m10, m01 moments are quantities that do not change during the
collision.

3.1.5 Cascaded model

As described in chapter 1, the cascaded model (CaLB) is based on a CO in
which, differently from traditional MRT models, central moments are relaxed
instead than raw moments. The central moments can be defined as:

καβ = ∑
i,j

(
i− u

′
)α(

j− v
′
)β

fij i, j = −1, 0, 1 (3.5)



26 Chapter 3. Innovative models for shallow water equations

where the sum of α and β indices represents the moment order. The sub-
scripts ij indicate the corresponding components of the velocity vectors of
PDF (Miller convention). In the D2Q9 velocities scheme, the equilibrium cen-
tral moments are given by (Geier, 2006):

κ00 = h

κ10 = 0

κ01 = 0

κ20 = c
′ 2
s h

′

κ02 = c
′ 2
s h

′

κ11 = 0

κ12 = 0

κ21 = 0

κ22 = c
′ 4
s h

′

(3.6)

where c
′
s is the speed of sound. In the CaLB model, the collision is performed

by relaxing central moments to their local equilibrium values, separately. As
anticipated before in chapter 1, the Galilean invariance is naturally guaran-
teed. In fact, by definition, central moments can be considered independent
of velocity (Geier, 2006).
Regarding the implementation procedure, before the collision, the PDF are
transformed into the central moments using the equations in Appendix A;
after the collision step, the post-collision central moments are transformed
back to PDF. In the collision step, central moments are relaxed following the
equations:

κ
pc
αβ = καβ −ωαβ

(
καβ − κ

eq
αβ

)
(3.7)

where κ
pc
αβ is the post-collision central moment. Following the relation 3.2,

the moments that are related to the definition of the value of the transport
coefficient ν is κ11 and the corresponding central moments obtained from the
rotational invariance constraint (Geier, 2006). Then, in order to conserve the
isotropy of the model, κ20 and κ02 are relaxed together:κ

pc
20+02 = κ20+02 −ω20+02

(
κ20 − κ

eq
20 + κ02 − κ

eq
02
)

κ
pc
20−02 = κ20−02 (1−ω20−02)

(3.8)
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The relaxation rates related to the kinematic viscosity are ω11 and ω20−02:

ω11 =
1

3ν
′ + 0.5

ω20−02 = ω11 (3.9)

Generally, it can be considered that the only relaxation rates that influence
the leading order errors are the ones related to the transport parameter, ω11

and ω20−02. The relaxation rate ω20+02 can be imposed equal to the unity
or related to the bulk viscosity. The others are free parameters and can be
chosen in the range {0, ..., 2} to improve stability; however, they are generally
imposed equal to one.

3.1.6 Cumulant model

A brief description of the theory of the cumulants has already been done
in section 1.1.1. About practical implementation, in D2Q9 cumulant model
(CumLB) the observable quantities relaxed during collision, the cumulants,
can be found by means of central moments equations. In fact, cumulants,
until third order, are identical to central moments. In particular:

C00 = κ00

C10 = κ10

C01 = κ01

C20 = κ20

C02 = κ02

C11 = κ11

C12 = κ12

C21 = κ21

(3.10)

In equations 3.10 the normalization is omitted and it has to be considered
that the cumulant of order a + b, Cab, is given by: Cab = cab · h

′
.

Cumulants start to differ from central moments at fourth order. The fourth
order cumulants can be derived from central moments by means of the ex-
pressions (Geier et al., 2015):

C22 = κ22 −
(

κ20 κ02 + 2κ11
2
)

/h
′

(3.11)

The collision step is performed in term of cumulants. The equation in Ap-
pendix A can be used in CumLB model substituting central moments with
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cumulants by means of 3.10 and 3.11 equations; after the collision, the back-
ward transformation in Appendix A is applied, to obtain PDF from cumu-
lants.

3.1.7 Aliasing

In a D2Q9 lattice Boltzmann model the velocity set is reduced to nine veloc-
ities, then just nine independents (raw) moments are available to precisely
reconstruct the discrete velocity distribution function. In fact, the generic
moment can be expressed as:

mαβ = ∑
i,j

iα jβ fij i, j = −1, 0, 1 (3.12)

𝒎𝟑𝟎

𝒎𝟎

𝒎𝟏𝟎 𝒎𝟎𝟏

𝒎𝟐𝟎 𝒎𝟎𝟐𝒎𝟏𝟏

𝒎𝟐𝟏 𝒎𝟏𝟐

𝒎𝟐𝟐

𝒎𝟎𝟑

𝒎𝟏𝟑𝒎𝟑𝟏𝒎𝟒𝟎 𝒎𝟎𝟒

𝒎𝟓𝟎 𝒎𝟎𝟓𝒎𝟒𝟏 𝒎𝟏𝟒𝒎𝟑𝟐 𝒎𝟐𝟑

FIGURE 3.2: Dependent and independent moments in D2Q9
model. Higher-order moments (black on light grey) depend on
nine lower-order independent moments (black on white).
Reproduced from (Krüger et al., 2016).

For example, from such formula derives that m30 = m10:

m30 = ∑
i,j

i3 fij = m10 = ∑
i,j

i fij

Moreover, from equation 3.12 it is also possible to say, in the D2Q9 velocity
set, that:

m03 = m01 m31 = m11 m13 = m11

The non-existence of the moments m30, m03, m31, m13 as independent moments
and their coincidence with lower order moments is known as aliasing.
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From the theory of cumulants (Geier et al., 2015), the non-conserved cumu-
lants are equal to zero in the equilibrium. Then, the definition of cumu-
lants in section 1.1.1 helps in computing the equilibrium of moments. This
value could also be traditionally calculated using the Taylor expansion of
the Maxwell-Boltzmann distribution up to second order in the Mach number
(Chen and Doolen, 1998). The third order equilibrium moment m30 is:

m30 =
(

3 · c′ 2
s · u

′
+ u

′3)
h
′

(3.13)

If the normalized value of m30 is considered and the high order term u
′3

is
neglected, the moment m30 becomes:

m30 = 3 · c′ 2
s m10 (3.14)

but m30 should be equal to m10 in order to respect the aliasing in relation 3.14.

3.1.8 Difference between conventional and innovative model

In the last section, the relation 3.14 explains why, in usual lattice Boltzmann
models, the speed of sound is considered constant and equal to 1

3 .
However, in the shallow water model, the speed of sound is not constant but
variable with the water depth. Anyway, the relation 3.14 has to be respected.
This problem can be solved in two different way.
The first solution could be the one adopted in cascaded/cumulant model; i.e.

in these models, the speed of sound square is c
′ 2
s = g

′
h
′

2 and this expression
enters in the definition of the central moments/cumulants of equilibrium.
Moreover, it has to be pointed out that, in the collision step, the relaxation rate
of 2nd order central moments/cumulants are adjusted in order to conserve
the isotropy during the collision, in such a way:

ω11 =

(
2

3g′h′

(
1
ω
− 1

2

)
+

1
2

)−1

(3.15)

and

ω20−02 =

 2
3

(
1
ω −

1
2

)
1− g′h′

2

+
1
2

−1

(3.16)

where the relaxation rate ω is related to the actual viscosity of the fluid (sec-
tion 3.1.3).
On the other hand, in the conventional SRT model (section 2.1.2), the speed
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of sound is decoupled from the third order moment m30. As a result, this

model uses a speed of sound square different from g
′
h
′

2 in the diffusion pro-
cess. This can be evinced observing the equilibrium equations of conven-
tional SW model, where the part related to the viscosity appears equal to the
one in the standard two dimensional lattice Boltzmann model, whereas the
part related to the density is different and takes into account the dependency
of the speed of sound from the water depth. This observation appears clear
if the EDF shown in section 2.1.2, for α = 1, ..., 8, is written in the following
form:

f eq
β = βh

(
c
′ 2
s
3

+
1
3

(
eα · u

′
)

+
1
2

(
eα · u

′
)2
− 1

6
u
′ · u′

)
(3.17)

where u
′

is the velocity of the fluid u
′
= [u

′
, v
′
].

3.1.9 Improvement of the isotropy in cumulant model

In chapter 6, it will be shown that it is advantageous to consider, during the
collision step, both the cumulant model and the model of De Rosis, briefly
described in section 2.1.2. Hence, it becomes possible to take advantage of
the positive features of each model.
In De Rosis model, the 3th order cumulant occurs as follows:

cDeRosis
21 =

1
3

h
′
v
′ − h

′2
g
′

2
v
′

whereas in the cumulant model it is approximately equal to zero.

ccum
21
∼= 0

Then, the different contribution of the two model can be considered in the
collision step introducing, in the cumulant model, the following value of the
equilibrium 3th order cumulant:

c∗21 = ccum
21 + KcDeRosis

21 (3.18)

where K is a constant, variable between 0 and 1 (i.e. if K is equal to 0 the
model of De Rosis is not considered). In section 3.1.8, it was explained that,
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in cumulant/cascaded model, the isotropy of the model is restored by intro-
ducing in the relaxation rates related to the transport parameter the depen-

dency on the speed of sound c
′ 2
s = g

′
h
′

2 .
If the rule 3.18 is applied in the collision, the actual speed of sound is changed
in:

c
′ 2
s =

g
′
h
′

2
+ K

(
1
3
− g

′
h
′

2

)
(3.19)

and, consequently, the relaxation rates ω11 in equation 3.15 and ω20−02 in
equation 3.16 are changed using the value of the speed of sound in equation
3.19. The resulting relaxation rates are:

ω11 =

 1

3
(

g′h′

2 + K
(

1
3 −

g′h′

2

)) ( 1
ω
− 1

2

)
+

1
2


−1

(3.20)

ω20−02 =

 2
3

(
1
ω −

1
2

)
1−

(
g′h′

2 + K
(

1
3 −

g′h′

2

)) +
1
2


−1

(3.21)

3.2 Evaluation of the force term

Zhou (Zhou, 2004) has successfully demonstrated that the approach of adding
the external force to the streaming step (section 1.4) is a simple and general
method in BGK LBM and it represents the underlying physics, producing ac-
curate solutions to many flows.
In our non-conventional models (CumLB and CaLB), the presence of the ex-
ternal force has been taken into account also in the transformation from dis-
tribution to central moments/cumulants and vice-versa. In this regard, the
macroscopic variables h, u, v in the equations in Appendix A are modified
using the following relations (Geier et al., 2015):

h
′
=

n

∑
α=1

fα ui
′
=

∑n
α=1 eαi fα

h′
+

Fi
′

2h′
(3.22)

The equations to be considered for the transformation from PDF into central
moments/cumulants and vice versa are shown in Appendix B.
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3.2.1 Computation of the weights

The weights state the mass distribution in a force. The weights can be ob-
tained by EDF from cumulants shown in Appendix A, imposing the veloci-
ties (u, v) equal to zero (absolute equilibrium):

fα =


1
9(h

′ − 3)2h
′

α = 0

− 1
18(h

′ − 3)h
′ 2 α = 1, 2, 3, 4

h
′ 3

36 α = 5, 6, 7, 8

(3.23)

Then, the previous equation are normalized in order to have the sum along
the x direction or y direction equal to 1. The reticular weights become:

wα =


1

3h′

(
−3 + h

′
)2

α = 0

−1
6

(
−3 + h

′
)

α = 1, 2, 3, 4
h
′

12 α = 5, 6, 7, 8

(3.24)

Actually, the sum of the weights along the x direction or along the y direction
is equal to 1:

4 · h
′

12
− 2 · 1

6
·
(

h
′ − 3

)
= 1

Then, the external force in the x direction can be expressed as:

F
′
αx = wα

(
F
′
xeα

)
(3.25)

where wα represent the reticular weight in equations 3.24. An analogous
expression can be used for the force along the y direction.

3.3 Boundary conditions

The standard boundary conditions (BC) used in this work (periodic BC, no-
slip BC) have been already synthetically described in chapter 1, paragraph
1.5.
About inlet/outlet boundaries, hereafter the boundary conditions originally
derived for the innovative models are explained. In particular, in the para-
graph, the derivation and implementation of Zou-He BC are reported. More-
over, non-reflecting outlet BC are compared with Zou-He BC, in order to put
in evidence the decrease of wave reflection using the non-reflecting BC (para-
graph 3.3.3).



3.3. Boundary conditions 33

3.3.1 Zou-He BC: derivation and implementation

The Zou-He (Zou and He, 1997) boundary condition is often used for mod-
elling i/oBC. These i/oBC are based on the bounce-back of the non equilib-
rium part of the distribution function. The scheme hereinafter described is
adapted to the equilibrium of the innovative models described in sections
3.1.5 and 3.1.6. For the standard implementation of Zou-He BC refers to
(Zhou, 2004).
In a straight channel of length L, we want to impose the discharge at the inlet
section (qin) and a constant water depth (hout) at the outlet section. With-
out loss of generality, it can be assumed that the velocity u (velocity along
the direction of the channel) is equal to zero at x = 0 and x = L. After the
streaming step, the unknown distribution functions at boundaries can be de-
termined from the conservation equations of mass and momentum and from
the bounce-back rule for the non-equilibrium part:

f1 − f eq
1 = f3 − f eq

3 at x = 0

f3 − f eq
3 = f1 − f eq

1 at x = L

In detail, the following equations are used at the inlet for the unknown dis-
tributions f1, f5, f8 (Figure 3.3), with the discharge q

′
= h

′
u
′
, defined by the

initial conditions:

f1 =
1
2

(
2h
′
u
′ − g

′
(

h2u
′
)
+ 2 f3

)
f5 =

1
4

(
g(h

′2
u
′
)− 2 f2 + 2 f4 + 4 f7

)
f8 =

1
4
(g(h

′2
u
′
) + 2 f2 − 2 f4 + 4 f6)

At the outflow, the distributions f3, f6, f7 are:

f3 =
1
2

(
−2hu

′
+ g

′
(

h
′2

u
′
)
+ 2 f1

)
f6 =

1
4

(
−g

′
(h2u

′
) + 2 f2 + 2 f4 + 4 f8

)
f7 =

1
4
(−g

′
(h
′2

u
′
) + 2 f2 − 2 f4 + 4 f5)
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where h
′
= h

′
out and the value of velocity u is derived from the equation:

u
′
out =

( f0 + f4 + f2 + 2 ( f1 + f5 + f8))

h′
− 1

inlet outlet

f1

f8

f5

f3

f7

f6

f1

f5

f3

f7

f6

i i+1i-1i=0 i=Nx

f8

j

j-1

j+1

j=0

j=Ny

FIGURE 3.3: Distribution functions at inlet and outlet nodes.
The dashed lines denote the unknown distributions.

3.3.2 Inflow/outflow BC based on velocity

The i/oBC hereinafter described is based on the bounce-back principle. The
equations are derived from the ones in (Geier et al., 2015) with the simplifi-
cation that the wall is always located at the nodes of the grid and the inter-
polation is not necessary. For example, at the inlet, directly using the post-
collision state of the distributions (indicated by an asterisk), the fα entering
into the domain (see Figure 3.3) can be found using the equations 3.26, 3.27,
3.28:

f1̄ [0, j] = f ∗3 [0, j]− 6 · w3 · u
′ · h′ (3.26)

f5̄ [0, j] = f ∗7 [0, j]− 6 · w7 · u
′ · h′ (3.27)

f8̄ [0, j] = f ∗6 [0, j]− 6 · w6 · u
′ · h

′
(3.28)

where the wα are the weights as defined in section 3.2.1, u
′

is the velocity at
the inlet and h

′
the imposed depth in order to have a flux equal to q = h

′
u
′
.

Similarly, an OBC at the outlet can be obtained.
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3.3.3 Non-reflecting outlet boundary conditions

At the outflow of the domain a traditional strategy is to use an extrapola-
tion boundary condition. The extrapolation replaces the distributions that
enter into the domain with those ones from the node close to the outlet. For
example, considering the x direction:

f1 [i, j] = f1 [i− 1, j] (3.29)

However, this method introduces acoustic reflections. To decrease this effect
non-reflecting BC (NRBC) can be used. NRBC let waves propagate smoothly
out of the system without being reflected back. Geier (Geier et al., 2015)
introduced NRBC based on a linear interpolation between the distributions
at the outlet and the distributions from where the pressure wave came from :

f1 [i, j] (t) = f1 [i− 1, j] (t′−∆t)(c
′
s
1/2
−u

′
)+ f1 [i, j] (t′−∆t)(1− (c

′
s
1/2
−u

′
))

(3.30)
where c

′
s is the speed of sound and u

′
is the velocity at the outlet. The different

behaviour of the two BC at outlet can be explained by means of the Figure
3. The simulation was run in a channel 25 m long with slip-BC at wall with
τ=0.8, ∆x=0.01 m, ∆t=0.001 s. At the inlet, the magnitude of the velocity is
1.5 m/s. The difference between the reflection of the two velocity wave is
substantial. In fact, the Zou-He BC are characterized by a strong reflection
and the value of the wave increases almost two times; on the other hand, the
NRBS present a reflection essentially not significant.
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Chapter 4

Convergence study

4.1 Introduction

The accuracy of a numerical simulation allows to understand the sensitivity
of the solution to the parameters of the model. We can also evaluate the code
implementation, e.g., identifying code mistakes or inconsistencies in the the-
oretical and numerical algorithm. Generally, the validation and verification
of the code are essential topics in computational fluid dynamic (Christopher
J.Roy, 2005).

4.2 Diffusive scaling

The convergence of the simulation towards the solution is related to the anal-
ysis of the accuracy of the model. The truncation error of a discretization
scheme defines the accuracy of a numerical model. The accuracy must in-
crease when the time step (∆t) and the grid spacing (∆x) decrease. The order
of accuracy can be interpreted as the rate of the decreasing of the discretiza-
tion error when the grid spacing and time step decrease.
In our case, the error has been measured using the diffusive scaling. It means
that the time step scales proportionally to the square of the grid spacing
(∆t ∝ ∆x2). The setting allows to keep constant the value of the Reynold
number and the value of the Mach number low, in order to maintain the sim-
ulation in the incompressible limit of the Navier Stokes equations.

4.3 Accuracy evaluation

The measure of the accuracy of a model can be done through different ap-
proaches. It can be used an "intrinsic" measure of the error, evaluating the
transport parameter of the model (viscosity) and the phase lag; on the other
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hand, the quantification of the error can take place comparing the results (i.e.
velocity values) with the analytical solution.

4.3.1 Error in viscosity

The asymptotic behaviour of the numerical viscosity νn is determined by fit-
ting the logarithm of Fast Fourier Transform (FFT) of the amplitude of the
wave to a linear function. The slope is related to the numerical viscosity
through the square of the wave vector. The normalized error of the viscosity
ERν, with respect to the theoretical viscosity ν = c2

s

(
τ − 1

2

)
∆x2

∆t , is defined
as: ERν = |νn − ν|/ν.

4.3.2 Error in phase

The phase lag can be considered a measure of the level of Galilean invariance
in the model. In order to test the level of Galilean invariance, the phase lag
ERΦ is calculated every turn, when the wave comes back to its original posi-
tion. Once the stability of the simulation has been reached, the phase lag is
measured by the difference in phase between a wave turn over time and the
previous.

4.3.3 Comparison with the analytical solution

In order to quantify the error in comparison with the analytical results, the
relative error norms L∞ L1 L2 can be used. Given the analytic value, for ex-
ample the x-axis velocity ua, function of space and time, and its numerical
equivalent un, we define the error norms as:

‖err‖L∞
=

max ‖un (x, t)− ua (x, t)‖
max ‖un (x, t)‖

‖err‖L1 =
∑x ‖un (x, t)− ua (x, t)‖

∑x ‖un (x, t)‖

‖err‖L2 =

√
∑x ‖un (x, t)− ua (x, t)‖2√

∑x ‖un (x, t)‖2

The sums are defined over the whole spatial domain, where u is determined.
Generally, the L2 norm is preferred. An advantage of this definition is that
local errors cannot cancel each other and the error remains conditioned by
any deviation from the analytical value (Krüger et al., 2016).
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4.4 Shear wave test

In the shear wave test, the asymptotic behaviour in diffusive scaling (∆t ∝
∆x2) of a one dimensional decaying shear wave is investigated. The di-
mensions of the domain are L × 3 nodes, with L varying from 32 to 256
nodes; the boundary conditions are periodic. The simulation was run for
20000(L/L0)

2 time steps and the FFT of the wave amplitude was measured
every 1000(L/L0)

2 time steps. In order to avoid any influence of the initial
conditions on the asymptotic decay, the values of viscosity and phase were
measured after 10000(L/L0)

2 time steps.
The initial conditions are given by:

u
′
(t = 0) = u

′
0

L0

L
v
′
(t = 0) = v

′
0

L0

L
sin

2πx
L

with L0 = 32, u
′
0 = 0.01 and v

′
0 = 0.1. All the quantities are expressed in

lattice units (l.u.). The physical values of the aforementioned quantities are:
L0∆x, u

′
0 (∆x/∆t), v

′
0 (∆x/∆t), with ∆x = 1m and ∆t given by the relation

2.13.
The analytic solution is:

v
′
(t) = v

′
0

L0

L
sin

2πx
L

e−ν
′
t( 2π

L )
2

where x and t are expressed in l.u. Hereafter, the results of the CumLB and
BGK SW models are shown. In such one-dimensional simulation, the error
in viscosity and in phase for the cascaded and cumulant models are basically
very similar. Hence, results of cascaded model are not shown.
To adopt the diffusive scaling, the velocity has to be scaled with L/L0 and
the sampling interval is K(L/L0)

2, K = 1000; K is a constant value, suitable
to define a sampling interval that allows to measure of the viscosity before
the decay of the wave.
The error in viscosity in CumLB model is comparable with the one of BGK
model. For example, with ν

′
= 0.01 and h

′
= 1, in CumLB model the normal-

ized error in viscosity is 0.00284 for L = 32 nodes and 0.0000443 for L = 256
nodes. In BGK SW model, it is generally slightly higher, 0.0029 for L = 32
nodes and 0.0000453 for L = 256 nodes. Anyway, all the models show a sec-
ond order accuracy with the increase of the resolution.
The error in phase (phase lag) is measured when the wave comes back to its
original position. The number of time steps in which the wave turns is equal
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to u
′
0

L0
L . The error in phase shows a fourth order accuracy. It should be clari-

fied that a fourth order phase lag is due to the alignment of the wave with the
grid and that, in general, the method is second order accurate (Geier et al.,
2015). The value of the phase lag is similar in CumLB and BGK SW model.
Results related to different depths are not shown. It is preferred to go forward
with the two dimensional case of Taylor Green vortex text that results more
significant. In fact, it allows to take into consideration, in a non-symmetric
domain, the results of a simulation where the main directions of the motion
are not aligned with the axes.
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FIGURE 4.1: Comparison of normalized error in viscosity ERν,
for the three viscosities: ν

′
= 0.01(a), ν

′
= 0.001(b),

ν
′
= 0.0001(c) (l.u).
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FIGURE 4.2: Comparison of error in phase ERΦ, for the three
viscosities: ν

′
= 0.01(a), ν

′
= 0.001(b), ν

′
= 0.0001(c) (l.u).

4.5 Taylor Green vortex test

The decay of a Taylor Green vortex in a fully periodic domain is here inves-
tigated, to assess the accuracy of the transport coefficient (viscosity) and the
phase lag. The length of the computational domain in lattice units is L, with
L equal to 32, 64, 128, 256 nodes, the width W is equal, respectively, to 48, 96,
192 and 384 nodes. Hence, the components of the wave vectors are:

kx =
2π

L
ky =

4π

3L
kx

ky
=

3
2

(4.1)

The difference in the dimensions of the domain (L 6= W) allows to check
possible defects in the isotropy of the model and the presence of (eventual)
preferential directions.
At the beginning of the simulation, the value of the velocity, along the x - axis
and y - axis, and the value of the depth, are respectively:

u
′
= u

′
0

L0

L
−U

′ L0

L

√
ky

kx
cos (kxx) sin

(
kyy
)

(4.2)
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v
′
= U

′ L0

L

√
kx

ky
sin (kxx) cos

(
kyy
)

(4.3)

h
′
= h

′
0

1−

(
U
′ 2 L2

0
L2

)
4c′ 2

s

(
ky

kx
cos (2kxx) +

kx

ky
sin
(
2kyy

)) (4.4)

where x and y are expressed in lattice units; L0 = 32, u
′
0 and U

′
that depend

on the chosen velocity set. The slow set expressed in physical units is u
′
0 =

0.01 ∆x/∆t and U
′
= 0.00035 ∆x/∆t; the fast set is: u

′
0 = 0.096 ∆x/∆t and

U
′
= 0.0035 ∆x/∆t. The viscosity is ν

′
= c

′ 2
s (τ − 1/2) ∆x2

∆t . The value of the
grid spacing is ∆x = 1 m; the value of ∆t is given by the formula 2.13.
The value of the analytic solution of the velocity of the wave along the y-axis
is given by:

U
′ L0

L

√
kx

ky
sin (kxx) cos

(
kyy
)

e
t

tD (4.5)

where tD (decay time of the wave) is equal to:

tD =
1

ν
′
(

k2
x + k2

y

) (4.6)

whith x and y and t expressed in lattice units. The aforementioned initial
conditions are set as in (Krüger, Varnik, and Raabe, 2010), with the difference
that our domain is not symmetric.
Simulations are run with viscosities ν

′
= 0.01, 0.001, 0.0001 and different

depths h
′
= 1, 0.5, 0.1.

As in the shear wave test, the simulation setup is performed in order to use
the diffusive scaling. Then, velocities and times are always multiplied by a

factor, respectively, L0
L and

(
L0
L

)2
. It is noteworthy that the asymptotic be-

haviour of the viscosity of the different models has been compared for vari-
ous depths of the water h; the reason of such kind of study can be explained
with the fact that in shallow water models, the speed of sound changes with
the depth (Dellar, 2002); then, it becomes important to analyze the behaviour
of the model in relation to the value of the water depth (section 3.1.2).
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4.5.1 Error in viscosity

In this section, a comparison between the normalized error in viscosity in
three different models is performed: CumLB, CaLB and BGK SW model. In
particular, the comparison takes into consideration different viscosities and
depths.
In the next figures, the x-axis shows the logarithm of the number of nodes
along the x-directions of the domain; the y-axis shows the logarithm of the
normalized error of viscosity. Moreover, it is important to clarify that the
BGK SW model becomes unstable for a value of h

′
equal to 1.0, for all the vis-

cosities (ν
′
= 0.01, 0.001, 0.0001) considered in this section. In section 4.5.3,

the conditions under which this model becomes stable, for h
′
= 1, will be

clarified. Then, it can be noted that the error in viscosity for cumulant and
cascaded models is generally comparable (Geier, Pasquali, and Schönherr,
2017), for all the values of h

′
.

Slow velocity set

For h
′
= 1, in CumLB and CaLB model, the trend of the slope of viscosity error

is in between second order and third order accuracy; i.e., in CumLB model,
ν
′

= 0.01, the slope is about -2.35 (Figure 4.3, 4.4 and 4.5); but, it becomes
constantly equal to -2 for lower values of the depth. The BGK SW model
is characterized, for h

′
= 0.1, by a relative viscosity error much lower than

cumulant and cascaded models; for example, if h
′

= 0.1 and ν
′

= 0.01, L = 32,
ERν = 0.00049 for the BGK model and 0.0017 for cumulant/cascaded model
(Figure 4.3).
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FIGURE 4.3: Slow velocity set - comparison of normalized
error in viscosity ERν, for the three depths:
h
′
= 1(a), 0.5(b), 0.1(c) - ν

′
= 0.01.

In Figure 4.4, it should be noted that results for CumLB and CaLB models,
for h

′
= 0.5 and ν

′
= 0.001, are characterized by a non uniform slope for a

number of nodes equal to L = 64 nodes.
The BGK SW method, if stable, is always characterized by a slope trend equal
about to -2.0 and by an accuracy higher than cascaded and cumulant model.
It should be noted that, generally, in cumulant and cascaded models the error
in viscosity increases with the reduction of viscosity, as it has already been
noted in (Geier et al., 2015). On the other hand, the viscosity error in the BGK
model changes in a limited manner with the reduction of the viscosity. If h

′

= 0.1 and ν
′

= 0.0001 (Figure 4.5), the CumLB shows an accuracy higher than
CaLB model and a slope of the trend higher than -2.
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FIGURE 4.4: Slow velocity set - comparison of normalized
error in viscosity ERν, for the three depths:
h
′
= 1(a), 0.5(b), 0.1(c) - ν

′
= 0.001.
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FIGURE 4.5: Slow velocity set - comparison of error in viscosity
ERν, for the three depths: h

′
= 1(a), 0.5(b), 0.1(c) - ν

′
= 0.0001.
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Fast velocity set

Simulations performed with a fast velocity set are characterized by some
cases missing due to instability; in fact, with a viscosity ν

′
= 0.001 the case

with h
′

= 1 is missing (Figure 4.7) ; with ν
′

= 0.0001 it was possible to simu-
late only for a depth value h

′
= 0.5 (Figure 4.8).

For h
′

= 1, in CumLB and CaLB model, the trend of the slope of viscosity
error is higher than second order accuracy; for example, in CumLB model, ν

′

= 0.01, the slope is about -2.2 (Figure 4.6).
Results are characterized, for all the models, by a viscosity error much higher
than for the slow set, as it should be expected. For example, taking into con-
sideration the results of CumLB for viscosity ν

′
= 0.01 and h

′
= 1.0, an incre-

ment in the fast set of translational velocity u
′
0 and of the amplitude of the

velocity of the wave U
′

of about tenth times, leads to a medium increase,
for different domain size, of the error of forty times (for comparison, Figure
4.3 and 4.6). Nevertheless, it has to be pointed out that for a simulation that
remain always stable, we are speaking about errors that are low and that as-
sume a maximum value of 0.015% for CumLB/CaLB model and 0.02% for
BGK SW model.
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FIGURE 4.6: Fast velocity set - comparison of normalized error
in viscosity ERν, for the three depths: h

′
= 1(a), 0.5(b), 0.1(c) -

ν
′
= 0.01.
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FIGURE 4.7: Fast velocity set - comparison of normalized error
in viscosity ERν, for the depths: h

′
= 0.5(a), 0.1(b) - ν

′
= 0.001.
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FIGURE 4.8: Fast velocity set - comparison of normalized error
in viscosity ERν, for the three depths: h

′
= 0.5 - ν

′
= 0.0001.

4.5.2 Phase lag measure

In this section, a comparison between the error in phase in three different
models is performed: CumLB, CaLB and BGK SW model, taking into consid-
eration different viscosities and depths. In the next graphs, the x-axis shows
the logarithm of the number of nodes along the x-directions of the domain;
the y-axis shows the logarithm of the phase lag.

Slow velocity set

In all the models that have been examined, the error in phase is defined by
a slope of the trend equal to −2, as generally expected in lattice Boltzmann
models. As observed in the previous section 4.5.1, the instability that charac-
terizes the BGK model for depths between 0.5 and 1.0, does not allow to have
measures in such case. At slow velocities, for CumLB and CaLB model, the
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error in phase looks to be conditioned by viscosity values: it increases if the
viscosity decreases. i.e., the percentual difference between the error for the
viscosities ν

′
= 0.01 and ν

′
= 0.0001 is about 2.5% for h

′
= 1 and about 40%

for h
′
= 0.1 (see Figure 4.9 and 4.11 for comparison). On the other hand, the

BGK model is characterized by an error in phase less variable with the depth
of the water (for example, it is observable in Figure 4.9). Similar observations
can be done for lower viscosities (see Figures 4.10 and 4.11). For h

′
= 0.1, vis-

cosity ν
′
= 0.0001 and L = 32, the cascaded / cumulant models are not stable.

(Figure 4.11).
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FIGURE 4.9: Slow velocity set - phase lag ERΦ, for the three
depths: h

′
= 1.0 , h

′
= 0.5 , h

′
= 0.1 - ν

′
= 0.01.
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FIGURE 4.10: Slow velocity set - phase lag ERΦ, for the three
depths: h

′
= 1.0 , h

′
= 0.5 , h

′
= 0.1 - ν

′
= 0.001.
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depths: h
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= 1.0 , h
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= 0.5 , h
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= 0.0001.
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Fast velocity set

In all the models, the error in phase increases with the velocity. For example,
in CumLB/CaLB models, the phase lag grows in percentage, adopting the
fast set of velocities instead of the slow set, of about 0.5% for h

′
= 1; 0.4%

for h
′

= 0.5; 0.3% for h
′

= 0.1. The percentage was calculated considering
the medium value for all the viscosities. In BGK SW model, the phase lag
grows of about 0.5% for all the depths. It has to be pointed out that these
percentages do not change significantly with the change in viscosity value
(see figures 4.12 and 4.13 and 4.14).
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FIGURE 4.12: Fast velocity set - phase lag ERΦ, for the three
depths: h

′
= 1.0 , h

′
= 0.5 , h

′
= 0.1 - ν

′
= 0.01.
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FIGURE 4.13: Fast velocity set - phase lag ERΦ, for the three
depths: h

′
= 1.0 , h

′
= 0.5 , h

′
= 0.1 - ν

′
= 0.001.
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FIGURE 4.14: Fast velocity set - phase lag ERΦ, for the three
depths: h

′
= 1.0 , h
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= 0.5 , h
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= 0.0001.
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4.5.3 Observations about results for high viscosities

First of all, it should be noticed that, in the evaluation of errors for viscosi-
ties higher than ν

′
= 0.01, a shorter time sampling of measurements has to

be taken into consideration, as the wave decays with the exponential of the
viscosity. In our case, for a viscosity equal to ν

′
= 0.1, the sampling interval is

K
(

L
L0

)2
with K =100. In such a case, cumulant and cascaded models continue

to display a stable behaviour for the value of viscosity ν
′

equal to 0.1 and for
h
′≥1 (see the stability range in Figure 4.17). Analyzing simulations results of

CumLB and CaLB model for high viscosities, it was noted that the trend illus-
trated in the previous cases (section 4.5.1 and 4.5.2) was maintained; in fact,
an accuracy decrease, both in viscosity and in phase, can be put in evidence
adopting viscosity ν ≥ 0.1. About BGK SW model, it results stable for ν = 0.1
and h ≥ 1 (stability range in Figure 4.18). Maintaining the trend already ob-
served in previous sections, its behaviour is surely characterized by a slightly
higher accuracy than CumLB/CaLB models for the slow velocity set, but it
results generally less stable than innovative models for high velocities.

4.5.4 Velocity error in cumulant model

In order to have a further confirmation of the high accuracy of the new mod-
els, the velocity error norms (section 4.3) were measured in correspondence
of the decay time of the wave tD, using the diffusive scaling. Figure 4.15,
for h

′
= 1 and ν

′
= 0.001, shows the comparison between the analytical and

numerical solution for the cumulant model. The different formulation of the
errors, shown in Table 4.1, do not differ significantly. As expected, in CumLB
model the value of the errors increase with the decreasing of the viscosity.
As shown in the table, the error raises of about 8% if the viscosity becomes
tenth times lower. In Figure 4.16, the trend of the value of the L2 error norm
is shown. In logarithmic scale, the slope of the trend is equal to −2.
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TABLE 4.1: L∞, L1, L2 norms as function of the number of
nodes - logarithmic scale.

ν
′
= 0.01 ν

′
= 0.001

L L ∞ L1 L2 L ∞ L1 L2
32 0.008520 0.008511 0.008539 0.069956 0.070018 0.069759
64 0.002123 0.002121 0.002125 0.017475 0.017468 0.017489

128 0.000530 0.000530 0.000530 0.004369 0.004368 0.004369
256 0.000132 0.000133 0.000132 0.001091 0.001091 0.001091
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FIGURE 4.16: CumLB model - L2 norm of the velocity v along
the y-axis for the values of L equal to 32, 64, 128, 256 nodes, at
the decay time tD, h

′
= 1, ν

′
= 0.001 and ν

′
= 0.001 - logarithmic

scale.

4.6 Observations about stability range

In this chapter, different models for the solution of the shallow water lattice
Boltzmann equation have been compared, from the point of view of stability
and accuracy. In particular, the Taylor Green vortex test in a rectangular do-
main has been considered significant to evaluate the behaviour of the models
from the point of view of isotropy, also along the directions not coincident
with the longitudinal and transversal axis of the domain. In Figures 4.17 and
4.18, the stability range of the models is shown. The stability range changes
for the different values of depths of the water, h

′
, translational velocity, u

′
0

and viscosity ν
′
. It should be noted that, to define the range of stability, an

intermediate velocities value (between the fast and slow set) was considered
with translational velocity u

′
0 = 0.05 and wave amplitude U

′
= 0.00175. In

the graphs, the values of the quantities previously listed are expressed in l.u.
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(lattice units); since ∆x = 1 m, the value of the depth in l.u. coincides with
the physical value. Circles indicate the points where the simulation was per-
formed.
As it is possible to conclude from the previous sections, the CumLB and CaLB
models, in their stability range, show, in viscosity and error phase, a second
order accuracy, as generally expected in a lattice Boltzmann model (Krüger
et al., 2016). Moreover, the stability range of CumLB and CaLB model is sim-
ilar and is represented with the same graph. But it has been pointed out that
cascaded model, for the lowest depths, shows an higher viscosity error (sec-
tion 4.5.1). The depth h

′
characterized by the most stable behaviour is 0.5,

for which the simulations are stable for all the value of the viscosities taken
into consideration. If the value of the depth moves towards lower or higher
values, the stability properties change. In particular, for low depths (h

′
= 0.1),

CaLB and CumLB models are stable for the lowest viscosities (ν
′

= 0.001 and
ν
′
= 0.0001) only using low translational velocities. For depths going towards

values around 1 m, the models are always stable for the slow set of transla-
tional velocities, but for the fast set, we have to arrive to a viscosity value ν

′

equal to 0.01 to reach a stable behaviour. Moreover, for depths higher than
1, it can be generally noted a decreasing in accuracy. The BGK SW model is
generally characterized by a more limited range of stability, for the different
depths. In particular, it exhibits instability for h

′
equal to 1 and low viscosi-

ties (ν
′

= 0.01, ν
′

= 0.001 and ν
′
= 0.0001). It starts to become stable only for

viscosities ν
′
equal or higher than 0.1. In the end, the models based on a vari-

able speed of sound are surely characterized by a wider stability range, also
if, as put in evidence in the previous sections, the error is obviously depend-
ing on the value of depth more than the BGK model. Moreover, when it is
stable, the BGK model shows a slightly lower error in viscosity and in phase
than cumulant and cascaded models.
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FIGURE 4.17: Stability range of CumLB/CaLB model with the
variation of viscosity and translational velocity (l.u.).
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Chapter 5

Model validation

In the next sections, the cumulant or the cascaded collision operator are used
in the numerical model (respectively, CaLB or CumLB). The model is speci-
fied at each section.
It has to be pointed out that in all the test cases the quantities (depth, velocity,
etc.) are expressed in physical units, except if it is differently specified.

5.1 One-dimensional validation

Hereafter, the standard benchmark of the Stoker dam break and of the flow
over a bump in a channel are presented. Both the tests have an analytical so-
lution. The numerical results of the Stoker dam-break are compared with the
solution at a certain time (non-stationary solution), while the water surface
(WS) and velocities in the bump test are measured once the steady state is
reached (stationary solution).

5.1.1 Stoker dam break

The one dimensional (1D) shock tube for a incompressible isothermal fluid
is a standard benchmark test for hydrodynamic codes. Analytic solutions of
the one dimensional dam break problem can be found in Stoker (Stoker J.
J., 1957). A fluid domain of 200 m x 200 m was taken into account. At t=0,
the flow region is characterized by two different water levels, hl= 10 m and
hr= 5 m, with the presence of a step-wise discontinuity located at x = 100 m
(Figure 5.1). A transient flow arises, consisting of two waves. The former
reflects from the discontinuity to the region with the higher water level. The
latter is a shock wave moving in the opposite direction. Assuming a flat bed
surface without friction, this phenomenon can be considered as a Riemann
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problem. The initial conditions are:
u = 0 everywhere

hl = 10 200 > x ≥ 100

hr = 5 100 > x ≥ 0

with hl, hr, x expressed in m and u in m/s. At the boundaries, it is imposed a
no-slip BC. The relaxation rate τ was set equal to 0.7 and different values of
the grid space were considered: ∆x=2, 1, 0.5, 0.25 and 0.125 m.
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FIGURE 5.1: Dam Break Stoker test case. Top: simulation
setup. Bottom: solution comparison at section A - A for
different grid spacing - water depth h (m) and velocity u (m/s).

The analytical solution of the problem is reported in (Delestre et al., 2013).
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The sensitivity of the numerical solution to the grid size is analyzed by grad-
ually decreasing the ∆x, as it is reported before. After 6 s, the values of the
water depth and fluid velocity, in correspondence of the vertical section A-A
located at the centre of the domain, are shown (Figure 5.1). The analytical so-
lution exhibits four knees. The presence of such marked gradients makes the
solution difficult to be estimated. Anyway, the flat zones of both the curves
(h and u) are well represented by the CaLB, even for relatively coarse grids.
On the contrary, an high resolution is required in order to catch the sharp
knees. In fact, for the highest resolutions ∆x=0.125 m, the value of the L2

norm (section 4.3.3) of h and u is, respectively, 0.02 and 0.1.

5.1.2 Flow over a bump

A numerical scheme is considered to be well balanced if it can reproduce an
exact solution to a stationary case in an uneven bed (Zhou, 2004). For this
reason, the 1D test case of a still flow over a channel is considered.
The setup of the simulation is the same as in (Randall J.LeVeque, 1998). The
channel is 1 m long. The BC are periodic at the east and west boundaries; on
the south/north boundaries the bounce-back BC are imposed. In the numer-
ical model, ∆x=0.01 m, ∆t =0.026 s and τ = 0.85 and the bed topography is
expressed by the equation:

zb (x) =

0.25
(

cos π(x−0.5)
0.1 + 1

)
|x− 0.5| ≤ 0.1

0 otherwise
(5.1)

with x, zb expressed in m. Initially, the water is still (u = 0) with the water
level (WS) equal to 1 m, i.e. WS=h + zb = 1, where h is the water depth. The
exact solution for this case is u = 0 and h + zb = 1. The model used in this
test-case is the CumLB.
The formulation of gravity force derives from the equation 2.3 and can be
expressed by different discretization schemes. Then, three different schemes
can be considered in order to simulate the force due to the gravity: the basic
scheme, the central scheme and the second order scheme (Zhou, 2004). In
the basic scheme, the force term is evaluated at the lattice point and it can be
discretized in the following form:

Fi = −gh (i, j)
[zb (i + eα∆x, j)− zb (i− eαi∆x, j)]

2∆x
α = 0, ..., 8 (5.2)
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where the subscript i indicates the component of the force along the i-direction.
Zhou demonstrated that the use of this scheme leads to a LB equation only
first order-accurate; on the other hand, the use of a suitable form for the force
term can make the lattice Boltzmann equation second order accurate in the
recovery of macroscopic continuity and momentum equation. In the second
order scheme the force term assumes the averaged value of the two values at
the lattice point and its neighbouring lattice point, respectively:

Fi = −
1
2

gh (i + eα∆x, j)
[zb (i + 2eα∆x, j)− zb (i, j)]

2∆x
α = 0, ..., 8 (5.3)

Finally, in the centred scheme, the force term is evaluated at the mid point
between the lattice point and its neighbouring lattice point:

Fi = −g
[(h (i + eα∆x, j) + h (i, j))]

2
· [zb (i + eα∆x, j)− zb (i, j)]

∆x
α = 0, ..., 8

(5.4)
It has to be pointed out that for constant forces, the three schemes are iden-
tical; for a linear force term, the centred and the second-order schemes are
equivalent, but they becomes different for a non-linear force (i.e. the gravity
force).
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FIGURE 5.2: Basic-scheme: WS after 5000 time steps.
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FIGURE 5.4: Second order scheme: WS after 5000 time steps.

The Figure 5.2 shows the WS in CumLB model that uses the basic scheme
in order to model the force. The steady state is reached after 5000 time steps.
The WS shows an irregular trend over the bump. The simulation becomes
unstable after 9000 time steps. In fact, the artificial velocity created along the
x-axis leads to the instability of the numerical simulation. In Figure 5.3 it is
shown the steady-state solution for the centred scheme of the force, reached
after 1000 time steps, is in agreement with the solution. In fact, in this scheme
the value of the velocity remains very low (<= 10−3) as predicted from the
analytical solution. Moreover, the simulation runs until 10000 time steps,
remaining always stable. On the contrary (see Figure 5.4) the second order
scheme leads to a profile of the water surface not corrected; it produces a
solution with a relative error as large as about 20 %. Then, the steady-state
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solution takes a time much longer than in the centred scheme (∼= 5000 time
steps) to be reached. The artificial velocities result much more higher than
in centred scheme (∼= 0.06 m/s). As in (Zhou, 2004), it is found that only the
centred scheme can produce accurate results in agreement with the analytical
solution.

5.2 Two-dimensional validation

About the two-dimensional (2D) validation, the Pouseuille flow between two
plan plates was used to test the Zou-He BC and the external force model.
Moreover, the external force model was tested in a domain with a 2D bump;
the results refer to a steady solution (stationary case). On the other hand,
the asymmetrical dam-break of Fennema-Chaudhry allows to test the model
referring to an unsteady solution.

5.2.1 Pouseuille flow

Zou-He BC

In order to test the Zou-He BC based on the non-equilibrium bounce back
and introduced in chapter 3, they were used in the standard benchmark of a
laminar flow between two parallel flat plates (Pouseuille flow). The channel
of the test-case is 8 m long and 0.8 m wide, the discharge at the inlet and
the water stage imposed at the outlet are, respectively, Q = 0.06 m3/s and
h = 0.05 m. The viscosity considered is ν = 0.05 expressed in lattice units. At
the inlet, the velocity profile entering corresponds to the analytical Pouseuille
law and, at the wall, a no-slip boundary condition based on bounce back rule
is applied. Under diffusive scaling, the velocity profiles at the section A - A,
B - B and C - C (Figure 5.5) are measured and compared with the analytical
solution, using different grids (∆x = 0.02 m, 0.01 m, 0.005 m). The accuracy
of the boundary conditions can be evaluated using the relative global error
in term of the Euclidean second norm, defined in chapter 4. It represents
the difference between the numerical and the analytical value of the velocity
(Table 5.1).
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TABLE 5.1: Grid convergence analysis for different channel
sections - L2 norm values.

∆x (m) L2B− B L2A− A L2C− C
0.005 0.000289 0.000429 0.00148
0.01 0.001153 0.001713 0.000593
0.02 0.00453 0.006734 0.002307

The Figures 5.5, 5.6 and Table 5.1 highlight the satisfying accordance be-
tween the analytical velocity profile and the simulations, for different reso-
lutions. The second norms, in logarithmic scale and for all the considered
sections, have slopes close to -2 (second order accuracy). Moreover, it should
be noted that the accuracy of the presented boundary conditions slightly in-
creases from the inlet to the outlet of the channel.
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Pouseuille flow with external force

Not many analytical solutions for non-linear kinetic equations are known.
One of them is the steady plane Poiseuille flow in a channel of 2L width
and with constant water depth (Liu, 2009). Consequently, the shallow water
equations simplify an ordinary differential equation of the flow velocity in
the y-direction (v):

ν
∂2u
∂y2 + Fx = 0

where Fx is the source term in the x direction. If a no-slip boundary condition
is applied at y = ±L (L is the lateral distance from the middle of the channel
width), i.e. v(y) = 0 when y = ±L, the analytical solution is a parabola:

v (y) =
Fx

2ν

(
L2 − y2

)
(5.5)

The geometry setup is the same for both the test cases (Figure 5.7, Figure 5.8)
and the parameters of the simulations are: h = 1 m, ∆x=1 m and ∆t=1 s.
The results of the first test case are shown in Figure 5.7. It highlights that
the profile of the velocities of the numerical model perfectly corresponds to
the analytical solution, for different viscosities. The value of the Fx is equal
to 0.001 (l.u.); the viscosities taken into consideration were 0.15, 0.117, 0.083,
0.05 (l.u.) respectively correspondent to a τ value equal to 0.95, 0.85, 0.75,
0.65.
The L2 norm of the velocity value v (refer to chapter 3 for errors calculation)
slightly increases with the reduction of the viscosity as it is shown in Table
5.2.
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TABLE 5.2: L2 norm for different viscosities.

τ L2 norm

0.95 0.00017
0.85 0.00020
0.75 0.00029
0.65 0.00052



5.2. Two-dimensional validation 67

0.000	

0.200	

0.400	

0.600	

0.800	

1.000	

1.200	

1.400	

0 5 10 15 20 25 30 35 40 45

v’
(l.
u.
)

N	- number	of	nodes

viscosity=	0.05	Fx=	0.0001 viscosity=	0.05	Fx=	0.0002 viscosity=	0.05	Fx=	0.0003

FIGURE 5.8: Velocity profiles for different force values Fx=
0.0001, 0.0002, 0.0003 and ν=0.05 (l.u) in correspondence of the
transversal section of the channel. The analytic solution is
indicated with a continuous line. Velocity values expressed in
l.u.

In Figure 5.8 it can be observed that the profile of the velocities of the
numerical model, for increasing values of the force, perfectly corresponds to
the analytical solution. As expected, the L2 norm of the velocity v slightly
increases with the increase of the value of the force (Table 5.3):

TABLE 5.3: L2 norm for different value of the force Fx - Forces
expressed in lattice units.

Force Fx L2 norm

0.0001 0.00053
0.0002 0.00058
0.0003 0.00070

5.2.2 Flow over a two dimensional bump-stationary case

The simple two-dimensional case of still water over a variable bottom is here
investigated. The setup of the simulation is illustrated in (Liu and Zhou,
2014). The domain is a 10 m long and 10 m wide basin. In the basin, the
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initial water level is 0.6 m. The equation that describes the bed is:

zb (x) =

0.5 e−2[(x−5)2+(y−5)2] (x− 5)2 + (y− 5)2 ≤ 4

0 otherwise

where zb, x and y are expressed in meters (m). In the numerical model,
∆x=0.05 m, ∆t = 0.013 s and τ = 0.85. Periodic conditions are applied at
the boundaries (fully periodic domain). About the force model, the basic
and centred schemes are considered. The steady state is reached after a few
time steps (∼= 100 time step), for both schemes. It is observed that, in such
test, also the basic scheme is stable and leads to a correct profile of the wa-
ter surface. However, the spurious velocities assume very high values, not
acceptable and not in agreement with the analytical solution that predicts a
velocity equal to 0 (Figure 5.9).
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FIGURE 5.9: Basic scheme - zb bottom level (m) , WS (m),
spurious velocities (m/s) and analytic solution.

On the contrary, the centred scheme leads to an acceptable solution, with
negligible values of the spurious velocities. In fact, the maximum value is
negligible and equal to 0.0022 m/s. Anyway, it has to be pointed out that the
incidence of the spurious velocities on the solution of the numerical problem
should be evaluated on a case by case basis.
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The errors (L∞, L1, L2 norms) for the basic and central scheme are shown
in the following Table 5.4:

TABLE 5.4: WS L∞, L1, L2 norms - correspondence of numerical
results with analytical solution.

norm L ∞ L1 L2
centred scheme 0.00031 0.00035 0.000082

basic scheme 0.00275 0.00246 0.00071

5.2.3 Asymmetrical dam break of Fennema - Chaudhry

The submersion wave due to the partial collapse of a dam in a closed box 
without friction is here simulated. This test-case has been largely used in 
literature with the shallow water approach (Fennema and Chaudhry, 1990),
(Alcrudo and Garcia-Navarro, 1993). The spatial domain is a 200 m x 200 m 
flat region, with a dam in the middle (Di Francesco, Biscarini, and Manciola, 
2015). In the numerical simulation, ∆x=1 m, ∆t=0.0082 s and τ=0.7. At the 
beginning of the simulation the water surface level is set 10 m and 5 m for 
the upstream and the downstream region, respectively (Figure 5.12, simula-
tion set-up). The asymmetrical dam-break was simulated using the CumLB 
model. The accordance between the numerical solution and the benchmark 
test case is satisfying. In fact, the cumulant solution appears more realistic 
than the one in (Biscarini, Di Francesco, and Manciola, 2010). In particu-
lar, the profile in section A-A (Figure 5.15) shows at the wave front a pick 
higher than the finite volume (FV) solution, more in accordance with the pick 
height of the benchmark (Figure 5.11, the height of the downstream knee in
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FIGURE 5.11: Asymmetrical dam break - Fennema - Chaudhry,
1990.

Fennema-Chaudhry dam break is 7.75 m). In Figure 5.15 the good agreement
between the contours level of Fennema - Chaudhry and of the numerical
simulation can be put in evidence. In Figure 5.14 the glyph representation of
velocity vector in CumLB model at 7.2 s can be observed. In Figure 5.16 the
distribution of the values of the Froude number Fr (see section 2.2) during the
simulation of the asymmetrical dam break is shown; it is possible to observe
that the simulation remains stable even for Fr higher than one; in particular,
the simulation runs correctly until a value of the Fr equal to 2. However,
it must be stated that the value of the Froude number higher than one can-
not be considered a correct result from the physical point of view. In fact,
the D2Q9 model is characterized by a number of speeds too low to allow a
correct propagation of the wave of trans-critical and supercritical flows. Re-
ferring to (La Rocca et al., 2015), a two-dimensional multi-speed model is
presented as a possible solution for the numerical simulation of flows with a
Froude number equal or higher than one.
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A-A

B-B

FIGURE 5.12: At the top: Dam-break simulation setup; at the
bottom: Three-dimensional view of the dam-break simulation
at 7.2 s.
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FIGURE 5.13: At the top: section A-A; at the bottom: section
B-B, as specified in the simulation setup. Comparison between
the numerical solution of cumulant model (continuous line)
and a finite volume solution of shallow waters (Biscarini,
Di Francesco, and Manciola, 2010) (red dots).
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5.2 6.3 7.4 8.6 9.7
(m)h

FIGURE 5.14: Comparison between contours level of
Fennema-Chaudhry (left) and CumLB (right) at 7.2 s.

velocity u

FIGURE 5.15: CumLB: Glyph representation of velocity vector
(m/s) at 7.2 s.
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FIGURE 5.16: Distribution values of the Fr at different times.
(a) 6.2 s; (b) 7.2 s; (c) 8.2 s.
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Chapter 6

Wet-dry approach

6.1 Introduction

An important natural process in shallow-water flows of rivers and coastal
regions is the wetting–drying process in water flows such as wave run-up
and flooding. In a real situation, the position of the moving wet–dry bound-
ary is decided by a large number of factors (i.e. external forces, dispersion
effect due to wave breaking on steep slopes). For example, external forces
include gravity, bed friction, wind stress and they greatly influence the posi-
tion and movement of water fronts. In addition, a long wave could be dis-
persed through wave breaking, which also leads to the difficulty in water
front prediction. Therefore, the movement of wetting–drying fronts (run-
up/run-down) is a highly complex phenomenon and a correct simulation of
such process plays a crucial role in practical engineering studies.
Several models were developed for wave run-up with conventional numeri-
cal methods. Most models need a moving boundary algorithm at the shore-
line, as for example discussed by Lynett (Lynett, Wu, and Liu, 2002), who
employed a technique based on linear extrapolation. Madsen et al. (Mad-
sen and Sorensen, 1997) used a permeable beach with small porosity, (Que
and Xu, 2006) used a thin film in the dry areas of the beach slope. Carrier
et al. (Carrier, 2003) proposed a semi-analytic solution technique to evaluate
tsunami run-up and down motions on a uniformly sloping beach, based on
non linear shallow-water wave theory.
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6.2 Lattice Boltzmann approaches of wetting-drying

process

Some attempts have been done to solve wet-dry processes with lattice Boltz-
mann methods. In 2008, Frandsen (Frandsen, 2008) proposed a D1Q3 lattice
Boltzmann model for wave run-up and simulated a one dimensional tsunami
on a plane beach with the standard BGK LBM, without a turbulence model.
She incorporated both the linear extrapolation scheme and the thin water
film method. Shafiai (Shafiai, 2011) adopted similar schemes and compared
the solutions of the different techniques (thin film, interpolation technique).
Geveler et al. (Geveler et al., 2011) adopted a mixed method comprehensive
of a thin film delimited by a threshold value and a limiter for the velocity. Liu
(Liu and Zhou, 2014) presented a new method where the Chapman–Enskog
analysis is applied to set up a relation of the particle distribution functions
between a dry bed cell and its neighbouring wet cells in a manner consistent
with the LBM. External forces such as bed friction can be included straight-
forwardly in this method.
The approach described in the next sections to model wet-dry boundaries is
based on a threshold value of the water depth and on the limitation of the
Froude number. The method is validated in stationary and non stationary
flow through the test-case of the 2D flow over a bump (section 6.5.1) and of
the dam-break over a triangular obstacle (section 6.5.2).
About the system of units, the examples and the test cases introduced for the
validation of the model are always presented in physical units. For sake of
simplicity, the formulas are expressed in lattice units but the superscript ′ is
omitted.

6.3 Depth-velocity limiter strategy

At wet-dry boundaries, the value of the water depth is limited by a threshold
value hlim that allows the code to avoid the error due to the division by zero.
Then, if the value of the depth is below the threshold value hlim, the value
of the probability distribution functions are updated, in the equilibrium, as
follows:

f eq
α (h = hlim, u = 0, v = 0) (6.1)

The nodes below the threshold in depth are treated as dry nodes (dry nodes
as slightly wet nodes) in order to keep the flow from creeping up slopes.
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The effect of the limit on the depth can be observed in the simulation of the
flow over a triangular obstacle (Figure 6.1), the test case treated in deep in
the next section 6.5.2. The difference between the cumulant model with the
limiter and the one without is evident. In fact, the model without the limiter
is characterized by the presence of spurious velocities where the depth is
equal to zero. In addition, the water surface moves slower if compared with
the simulation in section 6.5.2.
Then, in order to avoid inadmissible velocity values due to very low values
of the water depth, the approach chosen in this work makes use of a velocity-
limiter based on the value of the Froude number (section 2.2). A value of the
Froude number is chosen as limiter (i.e. Frlim); it represents a threshold that
cannot be overcome. If the values of the velocity u leads to a Froude number
higher than the limiter, the velocity is newly computed by the Frlim imposed
(Figure 6.2). The value of the updated velocity u∗ is expressed as a percentage
1− δ of the actual velocity by means of the ratio Frlim

Fr :

‖u∗‖ = ‖u‖ · (1− δ)

the Froude number limiter can be written as:

Frlim =

√
‖u‖ · (1− δ) ‖u‖ · (1− δ)

gh
= (1− δ) ·

√
‖u‖ · ‖u‖

gh

and the value of δ is:

δ = 1− Frlim

√
gh

‖u‖ · ‖u‖

‖u∗‖ = ‖u‖ ·
(

1− 1 + Frlim

√
gh

‖u‖ · ‖u‖

)
= ‖u‖ · Frlim

Fr
(6.2)
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FIGURE 6.1: Comparison of the behaviour of the models with
and without the limiter on the height.
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FIGURE 6.2: Solution procedure of cumulant LB model
incorporating the wet-dry boundary model.
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6.4 Isotropy improvement of the collision in CumLB

model

As it is explained in section 3.1.9, it could be possible to consider both De
Rosis model (section 2.1.2) and cumulant model in the collision step, in or-
der to investigate the different behaviours and take advantage of the positive
features of each model.
In Figure 6.3 the evolution in time of the asymmetrical dam-break of Fennema-
Chaudhry is shown. The geometry setup is the same as in section 5.2.3;
the water height upstream of the breach is hu = 10 m, downstream it is ap-
proximately equal to zero (hd=0.0001 m). The parameters of the model are:
∆x=1 m; ∆t=0.00824 s and τ=0.75. In correspondence of the wet-dry bound-
ary, the model with the cumulant CO is characterized by a lightly stronger
anisotropy; on the other hand, the MRT model based on De Rosis work (De
Rosis, 2017) shows a behaviour more isotropic, but it results less stable than
the model based on cumulants. The geometric scheme setup and viscosity
parameter are equal for both the models.

water	surface	(m)

FIGURE 6.3: Evolution of the wave due to the dam-break at
t=1.23 s. On the left, cumulant model; on the right, De Rosis
model.
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6.5 Validation of the wet-dry approach

6.5.1 Flow over a bump in a lake at rest-stationary case

The setup of the simulation is the same as in section 5.2.2 but the initial water
height is 0.3 m, in order to leave the bump partially emerged. Periodic con-
ditions are applied at the boundaries, to have a fully periodic domain. In the
numerical model, ∆x=0.05 m, ∆t = 0.013 s and τ = 0.85.
The steady state is reached after a few time steps (∼= 100 time step), as for the
submerged bump. Likewise, the maximum value of the spurious velocities
is comparable with the one shown in section 5.2.2 and is equal to 0.0026 m/s.
In Figure 6.4 the water surface is shown, once the stationary condition has
been reached. The water surface is horizontal (as expected) and the spurious
velocities assume values acceptably low.
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FIGURE 6.4: Water surface WS (m) and velocity u (m/s) in
stationary condition.

The force modelling is the centred scheme, already analyzed in section
5.1.2. The adopted scheme leads, as expected, to a correct level of the water
surface in correspondence of the two-dimensional bump.

6.5.2 Dam break over a triangular bottom sill

The test case described in the present section is an experimental dam break
over a triangular obstacle performed at the Université Catholique de Lou-
vain, in the laboratory of the Civil Engineering Department (Soares Frazao,
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2000). The experimental setup consists in a closed rectangular channel 5.6 m
long and 0.5 m wide, with glass walls. The upstream reservoir extends over
2.39 m and is initially filled with 0.111 m of water at rest. Downstream from
the gate, there is a symmetrical bump 0.065 m high with a bed slope of 0.014.
The obstacle and the end walls define a second pool which contains 0.025
m of water. The gate separating the reservoir from the channel is pulled up
rapidly, causing the water block to disintegrate and a fast running wave to
be generated. Therefore, it is a closed system where the water flows between
the two tanks is reflected against the obstacle and the walls of the channel.
The setup of the simulation is illustrated in Figure 6.5. Hereafter, a compar-
ison between the two dimensional model CCHE2D (Yafei Jia, 1999) and the
cumulant model is performed. The CCHE2D and the experiment test refer
to (Biscarini, Di Francesco, and Manciola, 2010), where the accuracy of a 3D
BGK lattice Boltzmann is evaluated in comparison with a 2D model.
In our test case, the model considered is the CumLB.

FIGURE 6.5: Experimental set-up and initial conditions for the
dam break over a triangular obstacle test case.

The simulation has been performed on a 447 x 120 lattice node domain,
corresponding to lattice spacing of 0.0125 m. The water surface level shows
a good correspondence with the CCHE2D model, in particular in the first
times: t = 1.8 s, 3 s, 3.5 s (Figures 6.6, 6.7, 6.8). In Figure 6.6 the excellent
correspondence between the CCHE2D model and lattice Boltzmann model
at t=1.8 s is shown. However, the wave approaching the triangular bump ap-
pears to travel more slightly in the two dimensional models than in the real
one, as it has already been shown in (Biscarini, Di Francesco, and Manciola,



82 Chapter 6. Wet-dry approach

2010).
At t=3.0 s, the correspondence between the two shallow water models is
maintained and the 2D model results are more in agreement with the ex-
perimental ones. Moreover, the 2D wave moves synchronized with the real
wave. However, the experiment shows an higher crest at the obstacle and,
respectively, a level lower upstream and higher downstream (Figure 6.7).
At t=3.5 s, the 2D shallow water wave continues to move together with the
experiment. The CCHE2D model water surface is in acceptable accordance
with the LB model, but the first shows a crest downstream the obstacle. The
crest does not appear in the experimental model; in such sense, the LB model
fits better the real model (Figure 6.8).
At t=8.4 s (Figure 6.9), the CumLB model is synchronized with CCHE2D
model, but, upstream of the obstacle, the level of the water surface is dif-
ferent in the two model. The level of the water surface of the CumLB model
seems more in accordance with the experimental one. Downstream, the 2D
models shows an acceptable agreement. At t=15.5 s, the 2D models seem
synchronized again but they are completely different.
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FIGURE 6.6: t=1.8 s - excellent corrispondence between
CCHE2D and CumLB results.
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FIGURE 6.7: t=3.0 s - satisfying agreement of experimental
results, CCHE2D and CumLB model.
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FIGURE 6.8: t=3.5 s - 2D models appear slower than
experimental one.
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FIGURE 6.9: t=8.4 s - acceptable agreement between 2D models
downstream the obstacle.
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FIGURE 6.10: t=15.5 s - 2D models seem synchronized but they
are completely different.

6.6 Discussion

The proposed modelling of wetting-drying boundary gives satisfying results
in the stationary case, in particular in determining the level of the water
depth h. The spurious velocities are characterized by low values, even if
their effect should be assessed in different benchmarks. In the unsteady case,
the LB model leads to results comparable with shallow water solvers, at least
in the first time-steps of the simulation. However, in the analyzed test-case,
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the difference between the experimental and simulation results is slightly im-
portant. Further analyses should be performed in order to test the effective
capability of the model to simulate dam- break or dam-breach problems.
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Chapter 7

Parallel code computation

7.1 Lattice Boltzmann method parallelization

Generally, for practical use of Lattice Boltzmann methods in large scale hy-
draulic analyses, a huge number of lattices are required and it needs a re-
markable computational power. In such cases, the parallelization of the code
is useful, for all types of numerical methods. One of the most appealing
features of the LBM is that it is easy to implement the parallel computa-
tion. In fact, in LB methods, the current value of the distribution function
varies only with the previous conditions and the collision step is completely
local. In these methods, the parallel calculation can further be improved
by using the CPU-based processing structures, which has attracted the in-
terest of many researchers (Succi, 2001), (Wellein et al., 2006). The parallel
calculation on CPU architectures could be realized on both distributed and
shared memory systems. Moreover, the lattice Boltzmann algorithm is par-
ticularly suitable for implementation on GPGPUs (Banari et al., 2014), (Tölke
and Krafczyk, 2008), (Schönherr et al., 2011), thanks to its utilization of Carte-
sian lattices and its typical interaction between nodes based on the restriction
of the movement of the particles only towards the next neighbour directions.
In (Banari et al., 2014), the computational efficiency of a GPU and a multi-core
implementation of the LBM for non-uniform grids is highlighted. The com-
putational performance, frequently considered as a measure of the efficiency
of an LBM code, results unaffected by refinement procedure of the grid. The
parallel computation of LBM for shallow water based on CPU and GPU was
used by Tubbs (Tubbs, 2010). More recently, in (Janssen, Grilli, and Krafczyk,
2012) an efficient GPGPU implementation (NVIDIA CUDA framework) of
a Lattice Boltzmann model for the solution of the non-linear shallow water
(NSW) equations is presented, including a simple model for the treatment of
wet-dry interface.
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7.2 CPU parallel computing

In this thesis, a LBM SW code using C-Language was written, following the
theoretical framework described in chapter 2.
Just to simplify the explanation, we can consider the information at each
node of the grid contained in a cell of a matrix, representing the whole grid.
In an LB code, the calculation of the value of the cell of the matrix does not
depend on the value of the other cells of the same matrix at the same time,
but it only depend on values at the cell calculated at the previous time; in
other words, every cell of the matrix does not depend from other cells of the
same matrix. Then, in theory it would be possible to calculate all the cells of
the matrix at the same time.
The SW LB code used in this work is based on the calculation in parallel of
a number of cells equal to the number of processors. In order to achieve the
parallelization target, every matrix was divided in a number of sections equal
to the CPU threads available. Every section consists of a subset of columns
and rows. For each section, a thread is instantiated in order to compute the
actual cells value. In this way, the whole matrix is computed in parallel by
the code algorithm.
In Figure 7.1, the flow chart of the LBM code is shown. The red blocks indi-
cate the segments of the algorithm that can be parallelized using the previous
procedure; the green blocks indicate the segments that cannot be treated in
this straightforward way. The segments in which the code has been divided
are:

1. parallel preparation: execution of the variables update and calculation
of the force;

2. preparation: execution of the streaming step;

3. parallel iteration: update equilibrium and execution of the collision
step;

4. finalization: generation of the reports (*.vtk file) for the visualization in
the Toolkit Paraview.
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parallel preparation

preparation

parallel iteration

finalization

FIGURE 7.1: Flow chart of the implemented SW LBM code.

7.3 Amdahl’s law

If f is the fraction of code that can be performed in parallel, the time spent
using P processors is:

T (P) = T (1)
(

f
P
+ (1− f)

)
(7.1)

As consequence, the "parallel speed up" is given by:

S (P) =
T (1)
T (P)

=
1

f/P + (1− f)
(7.2)

The equation show that, even in the limit of an infinite number of processors
(P→ ∞), the asymptotic speed-up flattens at the upper limit of 1/1− f.
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FIGURE 7.2: Taylor Green vortex test case: average simulation
time for one iteration v.s. number of threads - Intel(R) Xeon(R)
CPU E5-2687W, 8 core, 2 x 8 threads, RAM 64Gb.

The data shown in the graph are obtained using the two-dimensional Tay-
lor Green Vortex test - case, in a 256 x 384 nodes domain. The calculation was
performed by means of an Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz, 8
core, 2 x 8 threads, RAM 64Gb DDR3.
The code has been parallelized only in the portion of the code dealing with
the collision phase. The graph is based on the use of the Amdahl’s law. In
fact, before, the simulation times measured for the various numbers of pro-
cessors have been used to obtain the (mean) parallelized fraction of the code
f; the percentage obtained is ∼= 75%. Then, using the equation 7.1, it is possi-
ble to find the trend in equation 7.2.
It can be observed that there is a similar trend between the real parallel speed-
up and the Amdahl’s law, even if the asymptotic value of simulation time has
not yet been reached, and, with an higher number of threads, the velocity
could still increase.
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Chapter 8

Case study

8.1 Introduction

The final purpose of this work was the implementation and the subsequent
application of a semi-automatic procedure for modelling flood events. The
lattice Boltzmann method with Cumulant CO is chosen as a numerical tech-
nique for the solution of the hydrodynamic problem. The chosen mesoscopic
model, thanks to the peculiar characteristic of LBM codes of being easily par-
allelized also in GPGPUs, could allow to considerably reduce the calculation
time compared to the classical continuous formulation. The method could
allow a full wave prediction accurate and realistic, introducing the possible
application for the assessment of hydraulic risk.

8.2 GIS-LB routine: pre and post processing

The preparation and the assessment of the input data (pre-processing) and
the analysis of the modelling results (post-processing) are assisted by an in-
terchange routines using the open source Qgis platform (version 2.18.14).
In pre-processing part, information derived from digital terrain model (DTM),
land use and hydrological parameters are organized and geographically su-
perimposed by means of a GIS platform.
GIS is an acronym for Geographical Information System and aims the super-
imposition of geographical georeferenced data characterized by attributes.
In Qgis – LB routine, the Qgis platform allows to set the information re-
lated to topography, initial conditions (water depth and velocity values dis-
tribution), boundary conditions (position and type of solid and inlet/outlet
boundaries), external force (value and distribution of roughness coefficients,
obstacles position) and to make this data available for the execution of the
numerical model. In particular, by means of a python procedure, the data set
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is automatically converted in raster format with resolution coincident with
the size of the calculation mesh; this allows to assign the information directly
to the grid node. Once the simulation has taken place, the modelling results
are exported in raster format, in order to be managed again through the Qgis
platform.
The post processing allows the construction of thematic maps (i.e. flooding
maps) for a fast evaluation of the hydraulic hazard, the first step in the as-
sessment of floods risk and mitigation plans.
Figure 8.1 shows the conceptual scheme of the described procedure.

Topographic	data

External	force		data

Boundary	conditions

Initial	conditions

inlet	
outlet	

obstacles	position

water	depth
velocity	field
temperature

pollutants	concentration

manning’s	coefficient
wind	velocity

GIS	ROUTINE

LB	
shallow water	

CODE

interchange data

GIS	ROUTINE interchange data
Thematic	maps

(Hydraulic	Hazard	maps)

FIGURE 8.1: GIS-LBM routine: semi-automatic procedure for
thematic maps of hydraulic interest (i.e. floods maps,
pollutants concentration).

8.3 The Malpasset Dam break

The Malpasset dam was an arch dam built in the period from 1952 to 1954
in the Reyran River Valley, located about 12 km upstream of the Frejus in the
Cote d’Azur area in the southern France. It was a doubly curved equal angle
arch type with variable radius; it was initially constructed to supply water
and irrigation for the region and for flood risk management, in order to man-
age the potential inundation hazard of the Reyran river. Downstream of the
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dam, the valley has two narrow curves; then it expands, before narrowing
again at the arrival to the sea.
On 21 December of 1959, the dam failed explosively giving rise to a flooding
wave more than 40 m high. The wave arrived at the Frejus gulf about 21 min
after the dam break. During the event, about 50 millions m3 of water crossed
the river valley down to the town of Frejus; 421 people were killed and the
wave produced a damage close to $ 70 millions (Biscarini et al., 2016). Only
a small portion of the dam arch still remained in its original position. Several
inquests were successively managed to understand the cause of the disaster.
The reports state that the engineers did not properly assessed the exceptional
rainfall that occurred before the failure. Furthermore, the lack of an accurate
geological survey negatively influenced the safety of the dam.
The Reyran valley morphology changed drastically, because of the strength
of the flood wave caused from collapse of the dam.
The computational mesh in pre-event is due to an historical 1:20000 map,
dated 1931, provided by the Institut Geographique National (IGN) and later
digitized in the Laboratoire National d’Hydraulique of EDF (Electricité de
France), (Alcrudo and Gil, 1999). The valley geometry provided by EDF
(Hervouet, 2000) is a non-structured grid of 13000 points reported in Fig-
ure 8.2. The bounding box of the domain of interest is 17500 m wide and
10000 m high; the topographic elevation ranges from 0 to 100 m above sea
level; the 100 m level is the upstream boundary condition corresponding to
the initial reservoir water level. The rest of the valley is assumed to be in dry
conditions although a certain discharge was flowing out of the dam at failure
time.

8.3.1 Results and discussion

Several field data are available for this test case. The flood wave arrival times
are available as the three hydroelectric plants along the Reyran were turned
off by the flood impact. Then, maximum water depth values were registered
by the police after the flooding event in about one hundred points of the
right and left bank of the river valley (Hervouet and Petitjean, 1999). The
uncertainty of such water elevation field data is not available. Moreover, the
National Hydraulic and Environment Laboratory of EDF in 1964 built a 1:400
physical scale model of the case study, simulating the flood wave and mea-
suring both water depth and arrival time values in the domain (Goutal, 1999).
These field and laboratory data are utilized to verify the performances of the



94 Chapter 8. Case study
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Elevation	(m)

FIGURE 8.2: Map of the region of interest in a local coordinate
system (reproduced from (Biscarini et al., 2016)). The points
surveyed by the police after the dam break are indicated as Pi
with i = 1,...,17. The gauge points of the laboratory-scale model
built in the laboratory of EDF are indicated as Gi with i =
1,...,14. A, B and C are the Electrical Transformers (ETs) of
three hydroelectric plants placed along the Reyran River.

hydraulic modelling and, in particular, efficiency and accuracy in simulating
unsteady complex flood flows within domains of very complex geometry
(Biscarini et al., 2016).
A transient two-dimensional simulation of the flood propagation, starting
from the collapse of the dam, is performed in the entire domain (Figure 8.2).
The flow is initialized with water at rest and with a 100 m water depth in the
reservoir. The parameter of the CumLB simulation are: two different grid
spacing ∆x= 20 m and ∆x= 10 m and respectively, time step ∆t= 0.736 s and
∆t= 0.368 s, relaxation time τ= 0.8. The friction force is based on the for-
mula 2.10, simulated with a Manning parameter n f =0.03 s m−1/3 according
to (Hervouet and Petitjean, 1999). In Table 8.1 are reported the available data
of the flood wave arrival times (ATobs) at the three electrical transformers,
including the position of the ETs. The distance from each ET and the follow-
ing one on the centreline is named ∆s. The flood wave arrival time at each
transformer obtained with the 2D CumLB model (grid spacing ∆x=20 m) is
compared with the observations. It is interesting to note that the numerical
results match the surveyed data, especially at ETs A and C.
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TABLE 8.1: Summary information of the flood wave travel
time obtained at each Electrical Transformer (ET) A, B and C,
placed downstream the dam. The flood wave arrival coincides
with the shutdown time (ST) of each ET. ∆s is the distance
from each ET and the following one.

ET X Y ATobs ATsim ∆s
- - - [s] [s] [m]

A 5500 4400 100 98.6 —
B 11900 3250 1240 1314 6502
C 13000 2700 1420 1465 1230

A further validation of the numerical simulation is performed at points
surveyed by police, denoted as P1–P17 (Figure 8.2). The coordinates of the
points Pi and the maximum water depth at observed stages are listed in Ta-
ble 8.2. The maximum WS predicted by the 2D model at gauge points Pi is
compared with the in situ surveys (WSobs) in Table 8.2. With a grid spacing
∆x=20 m, the difference between 2D model results and the field data mea-
sured by the police is less than 5% at points P1, P2, P5, P7, P8, P9, P10, P11
and P17 with a mean error of 4.7%. With a grid spacing ∆x=10 m, this differ-
ence is less than 5% at points P1, P2, P3, P5, P6, P8, P9, P10 and P11 with a
mean error of 4%. It can be noted that in correspondence of the points P2, P4,
P5, P7, P10 and P13, where the relative error is higher for ∆x=10 m than for
∆x=20 m, the WS simulated results more in agreement with the model from
Literature in (Valiani, Caleffi, and Zanni, 2002). In Figure 8.3 a graphical rep-
resentation of the values of the water surface observed (WSobs), the water
surface simulated (WSsim) and from literature (WSLit), listed in Table 8.2.
Figures 8.4 and 8.5 show the flood hydrograph predicted by the 2D model
at points P8 and P11 (left bank) and P1, P5, P9 (right bank). The dashed line
shows the observed reference value (WSobs). The hydrograph represents the
water surface elevation as a function of time. It is interesting to note that the
maximum value predicted by the model is generally very close to the one
surveyed by the police after the failure break (Pi points). Table 8.3 refers to
the points G6-G14, representing the arrival time ATlab and the WS measured
in the LNH laboratory of EDF. The accordance between the arrival time sim-
ulated and measured in laboratory is satisfying at almost all the points, even
if the model looks generally slightly slower than the laboratory model (8.6).
Figure 8.7 shows the flood hydrograph at points G10 and G13. The red line

refers to the arrival time, at which the measure is taken (AT). Finally the
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TABLE 8.2: Coordinates X and Y of the points P1-P17 surveyed
by the police and corresponding observed maximum Water
Stage (WSobs), maximum WS from numerical model (WSsim)
and WSLit from Literature (Valiani et al.).

PTs X Y Bank WSobs WS20sim WS10sim WSLit
P1 4913.1 4244 right 79.15 80.12 79.172 81.82
P2 5159.7 4369.6 left 87.2 86.66 86.64 89.55
P3 5790.6 4177.7 right 54.9 58.31 55.982 55.21
P4 5886.5 4503.9 left 64.7 60.8 58.735 58.84
P5 6763 3429.6 right 51.1 51.39 49.389 46.42
P6 6929.9 3591.8 left 43.75 50.7 43.048 45.98
P7 7326 2948.7 right 44.35 44.1 40.166 40
P8 7451 3232.1 left 38.6 38.7 37.808 36.26
P9 8735.9 3264.6 right 31.9 33 31.882 31.79

P10 8628.6 3604.6 left 40.75 40.14 40.111 37.99
P11 9761.1 3480.3 left 24.15 25 25.116 24.53
P12 9832.9 2414.7 right 24.9 27 29.515 27.2
P13 10957.2 2651.9 right 17.25 20.55 21.729 24.25
P14 11115.7 3800.7 left 20.7 22.52 21.978 22.4
P15 11689 2592.3 right 18.6 20.7 19.856 22.45
P16 11626 3406.8 left 17.25 18.63 19.557 18.89
P17 12333.7 2269.7 right 14 13.65 12.897 15.08
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FIGURE 8.4: Water Surface hydrograph points P8 and P11 (left
bank). The dashed line shows the observed WS.

TABLE 8.3: Coordinates X and Y of the points G6-G14, arrival
time ATlab and WSlab from LNH of EDF and the simulated
WS. ∆x=20m.

PTs X Y ATlab WSlab ATsim
G6 4947.4 4289.7 10.2 84.2 14
G7 5717.3 4407.6 102 49.1 119
G8 6775.1 3869.2 182 54 250
G9 7128.2 3162 263 40.2 266

G10 8585.3 3443.1 404 34.9 413
G11 9675 3085.9 600 27.4 650
G12 10939.1 3044.8 845 21.5 850
G13 11724.4 2810.4 972 16.1 994
G14 12723.7 2485.1 1139 12.9 1365
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wave propagation in the Reyran valley at different times (50 s, 200 s, 1500
s, 2400 s) after the collapse of the dam is given, showing the opportunity of
obtaining a detailed picture of the flood event (Figure 8.8). Moreover, a three-
dimensional representation at different times of the flood evolution is given
in Figure 8.9. Referring to Figure 8.8, at time t=200 s after the dam collapse,
the flood wave has already overtopped the yard of the A8 highway. In Figure
8.10, the flood at t=200 s is superimposed to an aerial historical image of the
Malpasset area, showing the good coincidence between the water extension
and the destroyed area. The flood wave has propagated towards the valley
and reached the town of Frejus about 21 minutes after the rupture of the dam
(see the flooded area at 1500 s). The simulation results are also consistent
with the damage reported during the flood, when 3 km of the mainline rail
were destroyed between 1500 s and 2000 s after the dam collapse.
It is possible to conclude that this 2D representation of the flood propagation
is consistent with surveyed and laboratory data. Then, the 2D CumLB model
seems suitable to be used for flood mapping, activity strictly connected to the
prediction of hazard over the flooded area of a catastrophic event. Obviously,
further validations with different test-case would be advantageous, in order
to investigate eventual deficiencies of the model and to promote the appro-
priate improvements in the model.
An additional development of this study could be the identification of pa-
rameters to define how to couple 2D and 3D hydraulic models, in order to
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make more efficient numerical simulations. In fact, 3D models allow the sim-
ulation of fairly complex phenomena, especially in meandering river chan-
nels (Biscarini et al., 2016), but are absolutely characterized by higher com-
putational costs.

FIGURE 8.10: Comparison of simulated flood extent at t=200 s
with historical aerial photo of the Malpasset area (picture from
http://frejus59.fr).
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FIGURE 8.8: Flooded area at different time steps after dam
break - Google Maps Orthophoto.
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FIGURE 8.9: Malpasset flooding at 50, 100, 200, 500, 1000 and
2000 s after the dam collapse.
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Conclusions

This thesis dealt with the construction, from the point of view of the theoret-
ical perspective and implementation, of a shallow water Lattice Boltzmann
model to be applied to large scale hydraulic analyses and a case study for
hydraulic engineers. The LB model mainly used until now to solve the shal-
low water (SW) equations is based on the SRT BGK collision operator (CO).
A restricted number of researchers use a multi-relaxation time CO in LB shal-
low water models. In this respect, this work is innovative. The present thesis
examined an innovative lattice Boltzmann approach based on the use of non-
conventional MRT collision operators (CO), the cascaded and the cumulant
CO (respectively, CaLB and CumLB). The cascaded model, operating in a
frame co-moving with the fluid, overcame the Galilean invariance violation
of the standard MRT models; the model based on cumulants as observable
quantities also assured the hypothesis of statistical independence between
different degrees of freedom in the collision step. A convergence analysis
based on the test cases of the Shear Wave and the Taylor Green vortex was
performed using the diffusive scaling, that allows to maintain the simula-
tion in the incompressible limit of the Navier Stokes equations; the accuracy
and the stability of the two new presented models, CaLB and CumLB SW,
was verified in comparison with the standard BGK SW model. In particu-
lar, the observation of the Taylor Green vortex test results leads to the con-
clusion that all models, in their stability range, show a second order accu-
racy in viscosity and phase error. The CaLB and CumLB present compara-
ble characteristics, as it can be expected in a two-dimensional model. But,
in comparison with the CaLB and CumLB models, the traditional BGK SW
model is generally characterized by a more limited range of stability, for dif-
ferent depths and velocity fields. In particular, the standard BGK model is
less stable for low viscosities. It is possible to conclude that the BGK model,
due to its lower stability properties, seems to be less suitable to such kind
of large scale analyses, that generally involve complex bed topography and
complex boundary conditions, in addition to the treatment of a wide vari-
ety of external forces; this makes it necessary that the model has well deter-
mined properties of accuracy, stability and consistency. In this work, the new
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models were originally described in its principal and innovative features and
the main theoretical differences from the standard BGK were underlined. A
particular attention was given to explain how, in the SW model, a speed of
sound that depends on the water depth (a dependence that comes from the
derivation of the SW from the NSE, that consider average macroscopic quan-
tities on the vertical direction) intervenes in the definition of the equilibrium
central moments/cumulants and in the collision step of the evolution equa-
tion. In fact, it is necessary to introduce the functional dependence of the
speed of sound from the water depth in the relaxation rates connected to the
transport parameter, in order to conserve the characteristics of isotropy of the
model. The validation of the central moments and cumulants models with
the external force and boundary conditions treatment was executed on 1D
and 2D test cases, in stationary and non-stationary states; the simulations, in
the examined conditions, gave accurate results and presented good stability
characteristics. The suggested schematization of wetting-drying boundaries,
based on a double limiter on the water depth and on the velocity (by means
of the Froude number), gave adequate outcomes in the stationary condition,
in comparison with the analytical solution of a 2D bump test case. In the
unsteady case, the LB model leads to results comparable with other shallow
water solvers. However, in the test-case of a dam-break over a triangular
bump, the difference between experimental and simulation results highlights
the insufficient suitability of a two-dimensional model to simulate condition
where the three-dimensional effects are not negligible. Finally, a real flood
event, the Malpasset Dam break, was simulated using the CumLB model.
Such an event is of intrinsic interest, for the tragic importance of the caused
damages. Moreover, this is an important test-case for the availability of ex-
perimental data and field data sets. The first results are encouraging, show-
ing, generally, good accordance between recorded water level and simulated
water level. However, the procedure should be tested considering different
resolutions of the DTM (Digital Elevation Model) of the bed topography, in
order to assess the accuracy of the method. Anyway, the proposed procedure
is promising. The shallow water Lattice Boltzmann model method based on
non-conventional CO exhibits characteristics of accuracy and stability that
allow to realistically and accurately predict a flood wave, introducing the
possible application for the assessment of the hydraulic risk.
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Appendix A

From PDF to CMs and vice versa

In cascaded/cumulant model, the PDF is transformed into central moments/cumulants
before the collision using the following equations:

κ00 = f7 + f3 + f6 + f4 + f0 + f2 + f8 + f1 + f5 (A.1)

κ10 = 0 (A.2)

κ01 = 0 (A.3)

κ20 = (−1− u)2 f7 + (−1− u)2 f3+

+ (−1− u)2 f6 + u2 f4 + u2 f0 + u2 f2+

+ (1− u)2 f8 + (1− u)2 f1 + (1− u)2 f5

(A.4)

κ02 = (−1− v)2 f7 + v2 f3+

+ (1− v)2 f6 + (−1− v)2 f4 + v2 f0 + (1− v)2 f2+

+ (−1− v)2 f8 + v2 f1 + (1− v)2 f5

(A.5)

κ11 = (−1− u)(−1− v) f7 − (−1− u)v f3 + (−1− u)(1− v) f6+

− u(−1− v) f4 + uv f0 − u(1− v) f2 + (1− u)(−1− v) f8+

− (1− u)v f1 + (1− u)(1− v) f5

(A.6)
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κ21 = (−1− u)2(−1− v) f7 − (−1− u)2v f3 + (−1− u)2(1− v) f6+

+ u2(−1− v) f4 − u2v f0 + u2(1− v) f2 + (1− u)2(−1− v) f8+

− (1− u)2v f1 + (1− u)2(1− v) f5

(A.7)

κ12 = (−1− u)(−1− v)2 f7 + (−1− u)v2 f3

+ (−1− u)(1− v)2 f6 − u(−1− v)2 f4 − uv2 f0 − u(1− v)2 f2

+ (1− u)(−1− v)2 f8 + (1− u)v2 f1 + (1− u)(1− v)2 f5

(A.8)

κ22 = (−1− u)2(−1− v)2 f7 + (−1− u)2v2 f3

+ (−1− u)2(1− v)2 f6 + u2(−1− v)2 f4 + u2v2 f0

+ u2(1− v)2 f2 + (1− u)2(−1− v)2 f8+

(1− u)2v2 f1 + (1− u)2(1− v)2 f5

(A.9)

After the collision, the PDF is found using the following equations:

f0 = −κ20 + κ22 + 2κ12u + κ02(−1 + u2) + 2κ21v + 4κ11uv + κ20v2+

+ κ00

(
−1 + u2

) (
−1 + v2

) (A.10)

f1 =
1
2
(κ20 − κ22 + κ00u− κ02u+

+κ00u2 − κ02u2+

−κ12(1 + 2u)− 2κ11v− 2κ21v− 4κ11uv− κ20v2 − κ00uv2 − κ00u2v2
)

(A.11)

f2 =
1
2
(κ02 − κ22 − 2κ11u− 2κ12u+

−κ02u2 + κ00v− κ20v− 4κ11uv+

−κ00u2v + κ00v2 − κ20v2 − κ00u2v2 − κ21 (1 + 2v)
) (A.12)
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f3 =
1
2

(
κ12 + κ20 − κ22 − κ00u + κ02u− 2κ12u + κ00u2+

−κ02u2 + 2κ11v− 2κ21v− 4κ11uv− κ20v2 + κ00uv2 − κ00u2v2
) (A.13)

f4 =
1
2

(
κ02 + k21− κ22 + 2κ11u− 2κ12u− κ02u2 − κ00v + κ20v− 2κ21v+

−4κ11uv + κ00u2v + κ00v2 − κ20v2 − κ00u2v2
)

(A.14)

f5 =
1
4

(
κ12 + κ21 + κ22 + κ02u + 2κ12u + κ02u2 + κ20v + 2κ21v+

+κ00uv + κ00u2v + κ20v2 + κ00uv2+

+κ00u2v2 + κ11 (1 + 2u) (1 + 2v)
) (A.15)

f6 =
1
4

(
κ21 + κ22 − κ02u + κ02u2 + κ12(−1 + 2u) + κ20v + 2κ21v+

−κ00uv + κ00u2v + κ20v2 − κ00uv2+

+κ00u2v2 + κ11 (−1 + 2u) (1 + 2v)
) (A.16)

f7 =
1
4

(
−κ21 + κ22 − κ02u + κ02u2 + κ12 (−1 + 2u)− κ20v+

+2κ21v + κ00uv− κ00u2v + κ20v2 − κ00uv2+

+κ00u2v2 + κ11 (−1 + 2u) (−1 + 2v)
) (A.17)

f8 =
1
4

(
κ12 − κ21 + κ22 + κ02u + 2κ12u + κ02u2 − κ20v + 2κ21v+

−κ00uv− κ00u2v + κ20v2 + κ00uv2+

+κ00u2v2 + κ11 (1 + 2u) (−1 + 2v)
) (A.18)
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From PDF to CMs and vice versa -
with external force

In cascaded/cumulant model with external force, the PDF is transformed
into central moments/cumulants before the collision using equations that
differ from the one in Appendix A only for the moments/cumulants κ10 and
κ01:

κ10 = − f0u + f1(1− u)− f2u + f3(−u− 1)− f4u + f5(1− u)+

+ f6(−u− 1) + f7(−u− 1) + f8(1− u)
(B.1)

κ01 = − f0v− f1v + f2(1− v)− f3v + f4(−v− 1) + f5(1− v)+

+ f6(1− v) + f7(−v− 1) + f8(−v− 1)
(B.2)

In the previous equations B.1 and B.2 the velocities are calculated using the
relations in section 3.22. After the collision, the PDF is found from central
moments/cumulants using the following equations:

f0 = κ00

(
u2 − 1

) (
v2 − 1

)
+ 2κ01u2v− 2κ01v + κ02

(
u2 − 1

)
+

+ 2κ10uv2 − 2κ10u + 4κ11uv + 2κ12u + κ20v2 − κ20 + 2κ21v + κ22

(B.3)

f1 =
1
2

(
−κ00u2v2 + κ00u2 − κ00uv2

)
+

+
1
2

(
κ00u− 2κ01u2v− 2κ01uv− κ02u2 − κ02u

)
+

+
1
2
(−κ10(2u + 1)

(
v2 − 1

)
− 4κ11uv− 2κ11v)+

+
1
2

(
−κ12(2u + 1)− κ20v2 + κ20 − 2κ21v− κ22

)
(B.4)
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f2 =
1
2

(
−κ00u2v2 − κ00u2v + κ00v2

)
+

+
1
2

(
κ00v− κ01

(
u2 − 1

)
(2v + 1)− κ02u2 + κ02 − 2κ10uv2

)
+

+
1
2
(−2κ10uv− 4κ11uv− 2κ11u− 2κ12u) +

+
1
2

(
−κ20v2 − κ20v− 2κ21v− κ21 − κ22

)
(B.5)

f3 =
1
2

(
−κ00u2v2 + κ00u2 + κ00uv2 − κ00u− 2κ01u2v

)
+

+
1
2

(
2κ01uv− κ02u2 + κ02u− κ10(2u− 1)

(
v2 − 1

))
+

+
1
2

(
−4κ11uv + 2κ11v− 2κ12u + κ12 − κ20v2 + κ20 − 2κ21v− κ22

) (B.6)

f4 =
1
2

(
−κ00u2v2 + κ00u2v + κ00v2 − κ00v− κ01

(
u2 − 1

)
(2v− 1)

)
+

+
1
2

(
−κ02u2 + κ02 − 2κ10uv2 + 2κ10uv− 4κ11uv

)
+

+
1
2

(
2κ11u− 2κ12u− κ20v2 + κ20v− 2κ21v + κ21 − κ22

) (B.7)

f5 =
1
2

(
κ00u2v2 + κ00u2v + κ00uv2 + κ00uv + 2κ01u2v + κ01u2 + 2κ01uv

)
+

+
1
2

(
κ01u + κ02u2 + κ02u + 2κ10uv2 + 2κ10uv

)
+

+
1
2

(
κ10v2 + κ10v + κ11 (2u + 1) (2v + 1)

)
+

+
1
2

(
2κ12u + κ12 + κ20v2 + κ20v + 2κ21v + κ21 + κ22

)
(B.8)

f6 =
1
4

(
κ00u2v2 + κ00u2v− κ00uv2 − κ00uv + 2κ01u2v + κ01u2

)
+

+
1
4

(
−2κ01uv− κ01u + κ02u2 − κ02u + 2κ10uv2 + 2κ10uv− κ10v2 − κ10v

)
+

+
1
4

(
κ11(2u− 1)(2v + 1) + κ12(2u− 1) + κ20v2 + κ20v + 2κ21v + κ21 + κ22

)
(B.9)
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f7 =
1
4

(
κ00u2v2 − κ00u2v− κ00uv2 + κ00uv + 2κ01u2v− κ01u2 − 2κ01uv

)
+

+
1
4

(
κ01u + κ02u2 − κ02u + 2κ10uv2 − 2κ10uv− κ10v2 + κ10v

)
+

+
1
4

(
κ11(2u− 1)(2v− 1) + κ12(2u− 1) + κ20v2 − κ20v + 2κ21v− κ21 + κ22

)
(B.10)

f8 =
1
4

(
κ00u2v2 − κ00u2v + κ00uv2 − κ00uv + 2κ01u2v− κ01u2

)
+

+
1
4

(
2κ01uv− κ01u + κ02u2 + κ02u + 2κ10uv2 − 2κ10uv + κ10v2 − κ10v

)
+

+
1
4

(
κ11(2u + 1)(2v− 1) + 2κ12u + κ12 + κ20v2 − κ20v + 2κ21v− κ21 + κ22

)
(B.11)

In order to effectively apply the force, the central moments/cumulants κ10

and κ01 in equations B.1 and B.2 have to change the sign. In fact, half of the
force is applied before the collision and half after the collision. The method is
symmetric in time and then second order accurate in time (Geier et al., 2015).
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