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Highlights 

 The line of thrust closest to the geometrical axis of a rigid-block arch is researched 

 A numerical procedure based on the finite difference method is formulated 

 A “performance factor”, the Heymanian geometrical factor of safety revisited, is formulated 

 The full-range of equilibrium thrust lines is computed with a step by step algorithm 

 The domain of the equilibrium states is identified 
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Safety evaluation of masonry arches. A numerical procedure based on the thrust line 

closest to the geometrical axis. 

Giacomo Tempesta (1), Stefano Galassi(1)(*) 

(1) Department of Architecture, University of Florence, Piazza Brunelleschi, 6, 50121, Florence, Italy, 

Phone: +39.055.2756846, giacomo.tempesta@unifi.it, stefano.galassi@unifi.it. 

ABSTRACT 

In this paper a numerical procedure for computing the full range of equilibrium thrust lines in 

masonry arches is presented. According to Heyman, the range can be obtained by shifting the 

thrust line upwards and downwards until it touches the upper and lower boundary of the arch. This 

thrust line is computed in such a way as to be the closest one to the geometrical axis. The two limit 

thrust lines, corresponding to the upper and lower bound of the range, are finally used to compute 

the degree of safety of an arch through the identification of a domain of equilibrium states and the 

Heymanian geometrical factor of safety, revisited in the form of a performance factor, that is more 

practical and immediate to understand.  

KEYWORDS: Masonry arches; Heyman; “best" line of thrust; geometrical factor of safety; full-range 

factor of safety; finite differences. 
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Notation 
The following symbols are used in the paper: 

 
e(x) Function of the extrados profile of the continuous arch 

 
i(x) Function of the intrados profile of the continuous arch 

 
g(x) Function of the geometrical axis of the continuous arch 

 
[a,b] Left and right boundary of the arch 

 
p(x) Function of the thrust curve of the continuous arch 

 
p’’(x) Second derivative of function p(x) 

 
f(x) Function of the vertical load acting on the continuous arch 

 
H Thrust of the arch 

 
K The reciprocal of H 

 
C1, C2 Constants of integration of function p’’(x)=0 

 
D

2
 Mean squared error 

 
   

  
  Derivative of D

2
 with respect to K 

 
   

   
  Derivative of D

2
 with respect to C1 

 
   

   
  Derivative of D

2
 with respect to C2 

 
n Number of elements of the discrete arch (i = 1 to n) 

 
F1,F2,…Fn Vertical forces applied to the element centroids 

 
G1,G2,…Gn Element centroids 

 
α,β Slope of the two sides of the funicular polygon connected to the generic node i 

 
hi Distance between the lines of action of load vectors applied on two subsequent elements 

 
Yi Ordinate of the i-th node of the funicular polygon 

 
A,B Points through which the first and the last side of the funicular polygon are obliged to pass 

 
Y0, Yn+1 Ordinates of points A and B respectively 

 
YGi Ordinate of the i-th element centroid 

 
smin Minimum thickness of the arch measured along the joints (Heymanian method) or vertical thickness 

measured along the action lines of the load vectors (method proposed in the paper) 
 

sid Thickness of the ideal arch measured along the joints (Heymanian method) or vertical thickness of the 
domain of the full-range of equilibrium thrust lines (method proposed in the paper) 
 

k Performance factor of safety 
 

GFS Acronym of Geometrical Factor of Safety 
 

FRS Acronym of Full-Range factor of Safety 
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1. Introduction 

Referring to the voussoir arch bridge at Pontypridd (1751), which collapsed immediately after the 

removal of the centering, Heyman [1] clearly demonstrated that collapse, in masonry arches, is 

much more likely to occur due to a geometrical problem rather than a problem in strength of 

material. Indeed, stresses are typically very low in this type of structures and, therefore, failure is 

not initiated by failure (crushing) of masonry. In this regard, Gregory, in 1697 [2], was the first to find 

that the shape of an inverted catenary is the best profile for an arch of constant thickness subject 

only to self-weight and he stated that “an arch of any other shape could stand only in virtue of a 

catenary being contained within its thickness” [1]. It follows that the safety of masonry arches can 

be effectively assessed based upon the comparison of the shape of the thrust line with the shape of 

the profile of the arch, or, in a more targeted way, with the shape of the geometrical axis. 

Methods for assessing the safety of arches based on the comparison between the shape and 

position of the thrust line and the shape of the arch have been developed in the field of limit 

analysis [3-13] and have also been used for the analysis of any masonry load-bearing structure 

[3,14]. In the original Heymanian theory [1], masonry was assumed to have no tensile strength, 

infinite compressive and friction strength. These assumptions enabled Heyman to formulate the 

famous safe theorem: if any line of thrust in equilibrium with loads is found within the profile of the 

arch, the arch is stable. In the context of limit analysis, in order to ascertain the existence of any line 

of thrust within the profile of an arch, methodologies based on the static theorem [5,10], usually 

referred to as thrust line methods, or the kinematic theorem [7,9], usually referred to as mechanism 

methods, have been formulated. With the thrust line methods, the calculation of the thrust line 

location within the profile of the arch is performed using the equilibrium equation or by solving a 

linear programming problem. Conversely, with the mechanism methods the four hinges that 

transform the arch into a mechanism are searched considering the possible positions of the four 
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hinges and computations are performed using the moment equilibrium equations at the hinges, as 

in [7], or the equations of virtual work, as in [9]. Furthermore, the safety of arches has also been 

investigated searching for the minimum thickness, as in [8] where the authors analyze circular 

arches with different angles of embrace. In [15] both the static and kinematic theorems are applied 

to the analysis of masonry arches modeled as rigid blocks with unilateral constraints. 

In [6,12,13,16] the limit analysis approach, originally developed considering the three Heymanian 

strength criteria above, is also extended to the case in which sliding is permitted. In [17], in addition 

to sliding failure, also the crushing of masonry is taken into account for the limit analysis of masonry 

arch bridges. In [11] it was also shown that, the kinematic approach is the preferable method to 

obtain the line of thrust if the original Heymanian assumption of infinite friction is adopted; 

conversely, in the case of finite values of friction, since the kinematic problem is difficult to be 

solved because it is governed by two unknowns (the axial and shear force), the static approach is 

suggested. 

Furthermore, in last decades thrust line-based methods used for the analysis of arches have also 

been extended to the analysis of vaults. In the context of limit analysis, in [18-23] the concept of the 

existence of a line of thrust within the profile of an arch to assure the equilibrium has been 

translated to a tridimensional network of only compression forces in equilibrium with the loads 

constrained to lie within the extrados and intrados surfaces of the vault. This methodology is known 

as thrust network analysis. 

For the analysis of arched structures, subject to vertical loads, lateral inertial loads and support 

movements, targeted investigational tools have been developed [24-37]. Furthermore, effective 

strengthening strategies, such as those based on composite materials [38-47], are currently the 

subject of an extensive research. 

With regard to the analyses pivoted on the comparison between the shape of the thrust line and the 

shape of the geometrical axis, fewer works exist in literature and the most significant researches 
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have been done in the past. For example, it is worth mentioning the Yvon Villarceau’s inverse 

method [48] for designing an arch such that its geometrical axis coincides with the line of thrust of 

the external loads. In this regard, Heyman noted that Villarceau picked, in so doing, the safest of all 

the safe designs. Later on, Fuller [49 78], citing an earlier work by Bell [50], addressed the same 

problem by providing a fully graphical tentative method for finding the approximate curve of 

equilibrium for a rigid arch rib under vertical forces. Finally, in the last century, Inglis [51] provided a 

formula that represents a family of curves (i.e. geometrical axes) for designing arches supporting a 

level roadway. It is worth noting that the profile of an arch computed according to the Inglis formula 

slightly differs from that obtained using Villarceau’s method. 

All these methods, that are intuitively a pre-formulation of the safe theorem of plastic theory, share 

a common purpose: designing an arch with a geometrical axis as close to the thrust line of the 

external loads as possible. In this paper, instead, the opposite problem is investigated: detecting 

the line of thrust closest to the geometrical axis of existing arches, with the aim of evaluating, only 

with respect to this requirement, the safety degree of the structure. In this regard, among the ∞3 

likely lines of thrust, that satisfy the equilibrium conditions of the arch as respects to the external 

loads, the choice of the one closest to the geometrical axis corresponds to the one that generates 

the lowest values of bending moment and shear stress at the cross sections and, consequently, a 

better and more uniform distribution of the compressive stresses transmitted through the section 

itself. Compared to a similar investigation conducted by applying the classical principles of limit 

analysis, the approach proposed here takes into account the fact that the solution obtained, among 

all those equilibrated and compatible with the properties of the material, is characterized by the 

lowest presence of dangerous stress concentrations in some points: a circumstance which, on the 

contrary, frequently occurs in the cases where solutions refer to limit configurations of the line of 

thrust. In terms of safety, such a situation offers a more conservative assessment of this marker.  
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In order to account for the line of thrust closest to the geometrical axis, a numerical procedure, 

based on the finite difference method, is formulated. In Section 1 the general procedure for the 

continuous arch is presented but limits of application imposed by the formulation of a continuous 

function of loads acting on the arch encouraged the authors to search for a different approach. 

Therefore, in Section 2 the same procedure is reformulated considering a discrete pattern of loads 

in such a way that any arch profile and load case can be taken into account and, accordingly, the 

continuous arch is subdivided into discrete elements that allow to compute the values of loads 

easily. In Section 3 the degree of safety is computed. Taking inspiration from the Heymanian 

formulation of the “geometrical factor of safety”, we have formulated a “performance factor”, that is 

an additional factor useful for carrying out safety verifications effectively. While the geometrical 

factor of safety is computed considering an ideal arch obtained by reducing the thickness of the 

arch until the line of thrust is tangent to the new narrower profile, the performance factor is 

computed by shifting the line of thrust, provided by the analysis, downwards and upwards until it 

touches the intrados and the extrados of the arch. In this way, the Heymanian ideal arch is 

reinterpreted as a region that contains all the equilibrium thrust lines parallel to that provided by the 

analysis. In Section 4 the whole procedure is illustrated with reference to some selected case 

studies, in order to demonstrate the versatility and the reliability of the method. The circular and the 

segmental arch, widespread in Roman architecture for building mostly aqueducts and bridges 

respectively, the pointed and rampant arch, the first used to cover the naves of Gothic churches 

and the second to act against the thrust of them, the catenary-shaped arch (considered to be the 

ideal profile) and a random arch are the arch types that we have selected to illustrate the 

procedure. For a complete historic background information on the arch types analyzed herein, their 

development and diffusion, the construction techniques, materials used (brickwork, stonework, 

concrete) and block arrangements the reader can refer to [52]. Finally, in Section 5 an additional 

case study is discussed, in order to demonstrate that the line of thrust closest to the geometrical 
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axis, unlike it is generally thought, is not always the best. Finally, the last section is dedicated to 

concluding remarks. 

2. The thrust line closest to the geometrical axis 

2.1. Numerical procedure for the continuous arch 

Let us consider the continuous arch in Fig. 1, delimited by the extrados        and intrados 

       curves, on the interval [a, b]. Let us denote        the geometrical axis between the 

intrados      and extrados     . Furthermore, we assume that the Fuller condition [49], that 

assures the existence of at least one thrust curve        contained inside the profile of the arch, 

is satisfied: 

                     (1) 

 

Fig. 1. Reference scheme for the continuous arch 

Lastly, let us assume that        is the function of the vertical load acting on the arch on the 

interval      . The thrust curve       , that is the funicular polygon, is related to the load 

function by Eq. 2: 

                     (2) 

where K=H1 with H being the constant horizontal component of the thrust curve. 
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In order to solve Eq. 2, we consider the constant K and the integral C1x + C2 of the associated 

homogeneous equation p’’(x)=0. H, C1 and C2 are the three parameters that define the actual thrust 

curve. The general integral of (2) is then expressed by Eq. 3: 

                        (3) 

The measure of the mean squared error can be defined as follows: 

   ∫               
 

 
      (4) 

Therefore, substituting eq. (3) into eq. (4), eq.(5) is obtained, which represents the upper 

unbounded function to be minimized: 

   ∫                        
   

 

 
   (5) 

As a consequence the following conditions (6), that express the zeroing of the partial derivatives of 

funcion D with respect to the three variables K, C1 and C2 respectively, 

   

  
  

   

   
  

   

   
  

       (6) 

joined to inequalities (7): 

                              (7) 

provide the solution to the problem. 

As an alternative to the general closed-form analytical solution to the problem above briefly 

described, that after all is not always applicable to cases of discontinuous functions, it is possible to 

address the problem through a discretized procedure, attributable to finite-difference analysis. 

2.2. Numerical procedure for the discrete arch 

If the problem described above is reconsidered through a discrete approach, an alternative 

approach is needed. A workaround for such a problem is provided by the use of the finite difference 

method, that is to develop, in general form, algebraic equations related to the analytical formulation 

expressed in closed form. 
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Thanks to its easy development in a typically computational procedure, this type of approach allows 

a more effective and general control of the problem and provides the solution also in the cases 

characterized by geometrical and/or load discontinuities. 

In this regard, let us consider an arch subdivided into n elements (Fig. 2a). In the analysis of a rigid-

block arch, the elements and the lines of separation between them could correspond to the actual 

arrangement of the blocks and to the real joints. Let F1, F2, …, Fn be the weights of the elements, 

comprising any vertical additional external loads, applied at their centroids G1, G2, …, Gn. 

 

Fig. 2. a) Reference scheme for the discrete arch; b) force polygon used to draw the funicular 

polygon 

As is well known, ∞3 funicular polygons can be drawn related to the load system, each funicular 

polygon featuring a different equilibrium condition between loads and abutment reactions. With the 

purpose of identifying a specific funicular polygon, three conditions, or parameters, must be 

assigned. In our formulation, the parameters that have been assigned are the ordinate of a generic 

point A through which the first side of the funicular polygon must pass, the ordinate of a generic 

point B through which the last side of the funicular polygon must pass, and the horizontal 

component of the thrust H that, graphically, represents the distance of the pole of the force polygon 

from the load resultant (Fig. 2b). It is worth noting that the horizontal component of the thrust H is 

constant in each cross section of the arch since the loads are vertical vectors. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 
 

The proposed procedure translates, de facto, in analytical form, the graphical method that is used 

to draw a funicular polygon related to a generic vector system. Therefore, referring to the generic 

vertex i (hereafter: node) of the funicular polygon related to the load system, the equilibrium 

condition between internal and external forces acting on it (Fig. 3a) has been written as follows: 

                     (8) 

 

Fig. 3. a) Equilibrium between internal and external forces in correspondence to the generic node i 

of the funicular polygon; b) exemplification of the finite difference method applied to node i 

In Eq. 8 angles α e β describe the slope of the two sides of the funicular polygon connected to node 

i and, therefore, the lines of action of the interactions that are at the right and the left of the node. 

For the node equilibrium, the equation of forces in the horizontal direction has not been considered 

because, as aforementioned, the component H is constant everywhere throughout the structure. 

Putting hi = xi – xi-1 the distance (generally different) between the lines of action of load vectors 

applied on two subsequent elements and expressing the tangents of the angles in Eq. 8 in the form: 

     
       

  

     
       

    

      (9) 

then the equilibrium condition of the vertical forces in Eq. 8, relative to the generic node i located at 

the height Yi, is written in the updated form that follows: 

(
  

  
)       (

       

       
)     (

  

    
)       

  

 
    (10) 
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Eq. 10, extended to all nodes of the funicular polygon, leads to the system of n equations in n+3 

unknowns: 

{
 
 
 

 
 
 (

  

  
)     (

     

     
)     (

  

  
)     

  

 

(
  

  
)     (

     

     
)     (

  

  
)     

  

 
                    

(
  

  
)       (

       

       
)     (

  

    
)       

  

 
                    

(
  

  
)       (

       

       
)     (

  

    
)       

  

 

    (11) 

In the set of equations (11) the unknowns of the problem are the ordinates Yi of the n+2 nodes of 

the funicular polygon plus the value of the horizontal component of the thrust H and that the system 

is, therefore, undetermined. 

Regardless the value of the horizontal component of the thrust H, among all the unknowns present 

in the set of equations (11), we focused specifically on these two: the ordinate Y0 of point A and 

Yn+1 of point B. 

Putting K=1/H and isolating the three redundant unknowns above, the system of equations (11) is 

written explicitly, in matrix form, as: 

[
 
 
 
 
 
 
 (

     

     
) (

  

  
)   

(
  

  
) (

     

     
) (

  

  
)  

    

 (
  

  
) (

       

       
) (

  

    
)

    

  (
  

  
) (

       

       
)]
 
 
 
 
 
 
 

 

{
 
 

 
 

  

  

 
  

 
  }

 
 

 
 

 

{
 
 

 
 
  

  

 
  

 
  }

 
 

 
 

   

{
 
 

 
 
    

 
 
 
 
 }

 
 

 
 

    

{
 
 

 
 

 
 
 
 
 

      }
 
 

 
 

      (12) 

or more compactly as: 

   { }  {  }    {  }     {  }          (13) 

Defining, for convenience, the following vectors: 

{  }       {  }

{  }       {  }

{  }       {  }

      (14) 

the solution of system (13) is shortly expressed by Eq. 15: 
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{ }  {  }    {  }     {  }          (15) 

Obviously, this equation, has ∞3 solutions depending on the three unknown parameters Y0, Yn+1 and 

K. 

Assumed that the objective of this analysis is detecting the thrust line closest to the geometrical 

axis in a generic masonry arch, the chosen strategy is that of minimizing the function that 

expresses the differences, computed in correspondence to the nodes of the polygon, between the 

node heights Yi and the ordinates YGi of the element centroids of the arch. 

Referring to Fig. 3b and putting           , the expression of the mean squared error is the 

function S to be minimized, as follows: 

  ∑      
   

   ∑         
  

        (16) 

that is: 

   {  }    {  }     {  }       {  }     (17) 

subject to: 

  

  
             

  

   
             

  

     
             

     (18) 

The conditions (18), that express the zeroing of the partial derivatives of funcion S with respect to 

the three variables Y0, Yn+1 and K respectively, lead to the system of 3 equations in 3 unknowns 

(Eq. 19) that provides the solution to the problem: 

{

{  }
    {  }{  }     {  }{  }       {  }{  }  { }

{  }
     {  }{  }    {  }{  }       {  }{  }  { }

{  }
       {  }{  }    {  }{  }     {  }{  }  { }

   (19) 

This system, written explicitly in matrix form, assumes the form: 

[

{  }
 {  }{  } {  }{  }

{  }{  } {  }
 {  }{  }

{  }{  } {  }{  } {  }
 

]  {
 
  

    

}  {

{  }{  }

{  }{  }

{  }{  }
}    (20) 

or more compactly as: 
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   { }  { }      (21) 

The solution to system (21), in which matrix [N] of the coefficients of the unknowns {P} is a 

symmetric matrix, provides the values of the three unknowns Y0, Yn+1 and K that allow one to obtain 

the thrust line closest to the geometrical axis, that is: 

{ }       { }      (22) 

In order to draw this polygon quickly, it is sufficient to compute the ordinates of the nodes Yi, by 

substituting the coefficients of vector {P} in Eq. 15. 

3. The geometrical factor of safety  

According to Heyman [1, 53], once the line of thrust, that we assume to be contained within the 

profile of the arch in such a way as to assure its stability condition (the Heymanian master safe 

theorem), is obtained, the next step of the analysis consists in computing a factor capable of stating 

the degree of safety of the structure. 

In order to compute the value of such a factor, Heyman suggested reducing the arch in thickness 

by shifting both the extrados and intrados profiles in a homothetic manner until they touch the line 

of thrust. The outcome is an ideal arch, of reduced thickness, contained within the real one (Fig. 4). 

 

Fig. 4. The Heymanian geometrical factor of safety. (Adapted from [53]) 

According to the original formulation by Heyman, the ratio between the thickness of the real arch 

and the thickness of the ideal arch is defined to be “the geometrical factor of safety” of the structure. 

Conversely, in this paper we propose obtaining the ideal arch using the inverse approach. That is 

the line of thrust is shifted both upwards and downwards, until it becomes tangent to the intrados 
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and extrados curve of the real arch in at least one point, while still remaining contained within its 

profile. The outcome is a region that represents the domain of all the likely lines of thrust, parallel to 

that provided by the analysis, entirely contained within the thickness of the arch. In so doing, the 

“geometrical factor of safety”, computed as the ratio between the thickness of the real arch and that 

of the ideal arch, measured in the vertical direction, can be re-denoted as the “full range factor of 

safety”. 

 

Fig. 5. Full-range of equilibrium thrust lines 

The algorithm proposed here allows one to identify the two funicular polygons (parallel to that 

provided by the analysis) that define the lower and upper bounds of the region named above. In this 

regard, we define “lower bound funicular polygon” and “upper bound funicular polygon” as the 

polygons that are respectively over the intrados profile and below the extrados profile of the arch 

and tangent to them at least in one point, but such that they do not intersect them anywhere. 

Referring to a generic discrete arch (Fig. 5), the main steps of the algorithm are: 

1) determine the vertical scanning lines ri passing through the n+1 vertices Ui that identify the 

intrados poly-line of the arch. These straight lines intersect the funicular polygon, provided by 

the analysis, at points Ri; 
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2) determine the n+1 vertical vectors           , whose moduli     
    

  measure the 

vertical distances of the vertices Ui of the intrados points of the arch from the funicular 

polygon; 

3) compute the distance to which the funicular polygon must be vertically translated, obtained 

as the maximum modulus among all vectors   :          {    
    

 }. If the sign of such 

a distance (defined as a vector) is negative, the funicular polygon must be translated 

downwards, otherwise it is translated upwards; 

4) compute the vector {Yinf}, whose entries are the ordinates of the vertices of the lower bound 

funicular polygon, obtained as the algebraic sum of vector {Y}, whose entries are the 

ordinates of the funicular polygon provided by the analysis, and the distance      : {    }  

{ }       . 

Following a similar procedure, the upper bound funicular polygon is then obtained, as follows: 

5) determine the vertical scanning lines si passing through the n+1 vertices Vi that identify the 

extrados poly-line of the arch. These straight lines intersect the funicular polygon, provided 

by the analysis, at points Si; 

6) determine the n+1 vertical vectors           , whose moduli     
    

 , measure the 

vertical distances of the vertices Vi of the extrados points of the arch from the funicular 

polygon; 

7) compute the distance to which the funicular polygon must be vertically translated, obtained 

as the minimum modulus among all vectors   :          {    
    

 }. If the sign of such a 

distance (defined as a vector) is negative, the funicular polygon must be translated 

downwards, otherwise it is translated upwards; 

8) compute the vector {Ysup}, whose entries are the ordinates of the vertices of the upper bound 

funicular polygon, obtained as the algebraic sum of vector {Y}, whose entries are the 
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ordinates of the funicular polygon provided by the computation, and the distance      : 

{    }  { }       . 

Finally, the constant thickness of the ideal arch, characterized by the same profile as that of the line 

of thrust, is obtained from the difference between the ordinate of any point of the upper bound 

funicular polygon and the ordinate of the point of the lower bound funicular polygon located along 

the same vertical line (i.e., considering two points of the same abscissa located on the two limit 

polygons). In the numerical procedure the thickness measured in correspondence to the first vertex 

of the funicular polygon is computed: 

                          (23) 

Eq. 23, in addition to computing the thickness of the ideal arch, automatically returns the stability 

verification of the arch. Indeed, according to the Heymanian master safe theorem, the existence of 

even one funicular polygon within the thickness of the arch is assured by the sign of Eq. 23, that 

must be positive, that is: 

            
              

      (24) 

In the following section the case of       will be exemplified and discussed in detail. 

The degree of safety of an arch is defined by Heyman through the “geometrical factor of safety”, 

given by the ratio between the thickness of the real arch and the thickness of the ideal arch. In the 

opinion of the authors, although such a coefficient can effectively quantify the degree of safety of a 

generic arch, it does not have the same capability of clearly providing a comparison among the 

various degrees of safety of a set of arches for which, for example, it could be important to develop 

a temporal plan of intervention for securing or reinforcing them based on their level of risk. 

The Heymanian geometrical factor of safety, de facto, is a number that, starting from the unit value, 

increases as the thickness of the ideal arch decreases, and assumes the value of infinity when the 

thickness of the arch is zero. This corresponds to the maximum degree of safety because the line 

of thrust exactly coincides with the geometrical axis of the arch in this case. However, the floating-
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point arithmetic returns very high numerical values that, in a sense, point to the value of “infinity”. 

Therefore, if it is required to analyze and compare two or more arches characterized by values of 

such high safety factors, the comparison could result not to be so effective, because it is not 

possible to clearly understand how much safer an arch is as compared to another. This subject is 

also discussed in the following section. 

For the aforementioned reasons, in this paper the “performance factor”, computed as the reciprocal 

of the “full range factor of safety” (corresponding to the “geometrical factor of safety” of the 

Heymanian approach), is proposed as an identifier of safety: 

  
   

    

     
      (25) 

In this way, the range of the factors indicating the degree of safety of a generic arch is always 

comprised between 0 (the limit condition of maximum risk) and 1 (the condition of maximum safety 

or performance). It is also interesting to note that, in Eq. 25, the thickness of the real arch smin is 

computed considering the minimum vertical thickness among all the thicknesses measured in 

correspondence to the action lines of the loads passing through the centroids of the elements . In 

so doing, the verification procedure can be applied to arches of any geometry, comprising those of 

variable and/or discontinuous thickness. 

4. Numerical examples and discussion 

In this section some numerical models are presented and discussed in order to exemplify the 

proposed procedure. Arches of different types have been chosen in such a way to demonstrate the 

versatility and usefulness of the method whatever the profile of the structure. In order to model and 

analyze these examples with a computer, routines that implement the numerical procedure for 

computing the line of thrust closest to the geometrical axis have been written in VisualBasic 6.0 and 

added to the computer program ArchiVAULT [29], the software developed by the authors for the 

analysis of rigid-block arches subject to horizontal loads and/or support movements. 

4.1. The inverted catenary-shaped arch 
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The line of thrust of a constant thickness arch, subject to the sole self-weight, coincides with its 

geometrical axis only if the shape of the axis corresponds exactly to an inverted catenary and if the 

structure is assumed to be a continuum. In this case, the loads distribute uniformly within the 

structure and each cross section is solicited only by the compressive axial force. 

In the case of a discrete arch the analysis is highly affected by the dimension of the elements or, 

which is the same, by their number : the smaller the element dimension, the greater the 

correspondence between the geometrical axis and the catenary. 

In order to test the proposed numerical procedure, an arch model corresponding to an inverted 

catenary-shaped arch has been defined. 

The analytical solution of a catenary curve is well known. It can be expressed in the form of Eq. 26: 

   
 

 
    (

 

 
    )        (26) 

where   is the constant density of the vertical load distributed along the curve and    and    are the 

constants of integration that are determined by accounting for suitable boundary conditions. 

As demonstrated in [54], the analytical solution of the differential equation of the thrust curve of a 

circular arch of radius R, with constant thickness and subject to its self-weight, again represented 

by the value  , is provided by Eq. 27: 

   
  

 
*        

 

√     
 √     +           (27) 

Therefore, by comparing the curves described by Eq. 26 and 27, it is deduced that, in general, also 

considering the same boundary conditions and the same value of the horizontal component of the 

thrust H, the catenary curve and the thrust curve are different. 

In this regard, using the numeric procedure through the software ArchiVAULT, we have obtained 

the same result modeling a circular arch, subject to its self-weight, working around the problem of 

the closed-form analytical solution. The line of thrust provided by the computer program, which is 

nothing but a discrete representation of the curve in Eq. 27, has been assumed as the reference 

geometrical datum for defining the geometrical axis of a corresponding arch of constant thickness. 
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The number of the elements of this arch has been obtained in such a way as to define, along its 

geometrical axis (i.e., line of thrust), a set of equidistant points assumed as the element centroids 

(Fig. 6). Subsequently, with the purpose of making the problem non-dimensional, the self-weight 

loads applied at the element centroids have been assumed to be one. The dimensions of the 

generating circular arch and the obtained catenary arch are listed in Table 1. The 80 cm thickness 

of the generating arch has been chosen in such a way as to obtain a line of thrust (the discrete 

catenary curve) entirely contained within the profile of the arch. However, for the sake of clarity, it is 

worth noting that, for any value of the thickness, the shape of the catenary curve that is obtained is 

always the same if the geometrical axis is fixed. 

 

Modeling steps 
Span 

[cm] 

Rise 

[cm] 
Thickness [cm] Angle of embrace [°] 

 

Element 

no. 

1. Generating circular arch 600 300 80 180 25 

2. Inverted catenary-shaped arch 644.1 280.2 40 128.9 24 

 

Table 1. Modeling steps to obtain an inverted catenary-shaped arch 

 

Fig. 6. a) Generating circular arch; b) inverted catenary-shaped arch 

Therefore, the arch was analyzed using the procedure presented herein. The analysis is aimed at 

ascertaining that the line of thrust closest to the geometrical axis of the arch cannot be anything 

else other than that which is coincident with the geometrical axis of the arch. 
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First, the three redundant unknowns K, Y0 and Yn+1, that is entries of vector 

{ }  {      |       |       } (Eq. 22), that provided the horizontal component of the thrust 

H=1/K=60.53 N, were computed. Then, using Eq. 15, the ordinates Yi of the vertices of the line of 

thrust closest to the geometrical axis were calculated. Fig. 7 clearly shows that the line of thrust 

provided by the analysis and the geometrical axis of the arch are almost overlapping. 

 

Fig. 7. Line of thrust (Yi series) vs. geometrical axis (YG series) 

Although it is difficult to see in Fig. 7, due to the almost perfect coincidence of the two curves, it is 

possible to note a slight divergence in correspondence to the key of the arch, where the catenary 

takes a very pronounced curvature. 

As aforementioned, this slight divergence is caused by the dimension of the elements. Indeed, 

although the catenary arch was modeled applying a thickness to the catenary-shaped axis line, the 

centroids of the elements (that are trapezoidal) are not positioned along the ideal axis line 

corresponding to a continuous structure exactly. Clearly, modeling the arch using smaller elements 

could gradually reduce the divergence. 

Fig. 8 shows the diagrams of the compressive axial force (N), the shear force (T) and the 

eccentricities (Ecc) of the line of thrust from the centroid of the interfaces between the elements. 
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Fig. 8. Solicitation Diagrams: a) axial force N and shear force T; b) distance of the line of thrust 

from the joint centroid 

Fig. 8a,b clearly shows the structural performances of a discrete catenary arch . Shear forces are 

almost zero and the values of eccentricities, measured from the joint centroid, are slightly relevant 

only in correspondence to the joints near the key of the arch, exactly where the mesh of elements, 

not very refined, affects the approximation of the solution the most. 

Below, the safety verification of the arch, assessed using both the original procedure proposed by 

Heyman and that presented in this paper, is carried out. In Fig. 9a,b the safety factors, obtained 

using both approaches, are graphically represented. 

 

Fig. 9. Safety verification: a) the Heymanian geometrical factor of safety (ideal arch); b) the full-

range factor of safety proposed by the authors (“domain of equilibrium states” or “domain of safety”) 

Fig. 9a shows an ideal arch, within the real one, with a thickness of only 2.60 cm that, compared to 

the actual thickness of 40 cm, provides the Heymanian geometrical factor of safety of 15.41, a very 

high value that, however, does not furnish additional information. The very reduced thickness of the 

ideal arch (tending to zero) suggests that, according to the Heyman school of thinking, the line of 

thrust provided by the analysis could be vertically shifted both upwards and downwards with a total 
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displacement value almost equal to the thickness of the real arch, without violating the equilibrium 

condition [1]. As a consequence of this reasoning, in Fig. 9b the corresponding verification 

procedure based on the use of the “full-range factor of safety” is shown. With this in mind, the ideal 

arch within the real one is the domain containing exactly all the equilibrium states, that is all the 

lines of thrust parallel to that provided by the analysis. Using this approach, the thickness of the 

domain is 40 cm, exactly equal to the thickness of the real arch and, therefore, both the full-range 

factor of safety and the performance factor are practically equal to 1. This is the condition of 

maximum safety (i.e., maximum performance) of the arch, regardless, of course, of the actual 

compressive strength of the masonry, as indeed already widely discussed by Heyman himself [1]. It 

is interesting to note that both the approaches are coherent and provide, although with a different 

meaning, a factor of safety based on a purely geometric formulation. However, the proposed 

methodology seems to be more effective for the actual assessment of the factors, because the 

maximum degree of safety, in the range of the likely values comprised between 0 and 1, is clearly 

identified by the factor 1 provided by the analysis. Conversely, the Heymanian factor of 15.41, 

certainly indicates that the arch is safe, but does not permit (in a range where the likely values are 

comprised between 1 and infinity) the actual level of safety to be estimated. 

4.2. Arch bridge subject to a travelling point load 

In an arch subject only to its self-weight, when the thickness of the ideal arch tends to zero, the 

Heymanian geometrical factor of safety tends to infinity; conversely, the full range factor of safety 

tends to 1. This condition of maximum safety states that the shape of such an arch (i.e., of its 

geometrical axis) coincides exactly with the funicular of loads, that is with the shape of an inverted-

catenary. 

However, according to Heyman [1], also a catenary arch could be “in a practical sense potentially 

unstable” and a second measure of safety should be defined considering the stability of the arch 

under the action of a disturbing load, such as, for example, a travelling point load. 
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The case of an arch subject to a travelling point load is discussed here and the factor of safety is 

computed using both the approaches, the original one by Heyman and that proposed by the 

authors. 

Thus, let us consider the generic case of a segmental arch, on which the travelling point load is 

simulated by a point force applied at the centroid of each element and it is increased, gradually, 

until the occurrence of the collapse condition (Fig. 10). 

 

Fig. 10. Arch bridge subject to a travelling point load 

The geometrical and load features of the arch under study are reported in Table 2. 

Span 
[cm] 

Rise 
[cm] 

Thickness 
[cm] 

Angle of 
embrace 

[°] 

 
Element 

no. 

Element 
width [cm] 

 Element weight 
[kN] 

Travelling point load (F) 
[kN] 

600 173 50 120 24 32 2.91 10 

 

Table 2. Geometrical features and load conditions of the segmental arch subject to a travelling 

point load 

A specific factor of safety corresponds to each increase of the travelling load. The higher the value 

of the load, the lower the factor of safety. When the incremental load attains the maximum value 

that identifies the condition of limit equilibrium, the factor of safety is equal to 1. 

In Fig. 11 the laws of modification of the collapse factors as a function of the number of the element 

on which the travelling point load is individually applied are represented. They were computed using 

both the approach of the geometrical factor of safety (Fig. 11a) and that of the full-range factor of 

safety (Fig. 11b). However, in practical applications it is not possible to require the structure to 

support a service load corresponding to a unit factor of safety because, in this case, there would be 

no guarantee that the structure would continue to stand if the external conditions changed. Indeed, 
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in practical applications a structure must be designed to respond to a specific factor of safety, 

chosen by a professional or obliged by a building code. With this in mind, in the same figure next to 

these curves the laws of modification of the collapse factors of the travelling point load computed as 

a function of predetermined values of the factor of safety are traced. 

 

Fig. 11. Travelling point load factor vs. element number, for pre-determined factors of safety: a) 

geometrical factor approach; b) full-range factor approach 

It is worth noting that the curves represented in Fig. 11 are of practical use, because the factors of 

the travelling point load were made non-dimensional as a function of the weight of the elements P 

and the initial value of the incremental load F. 

In so doing, for any assigned structural geometry, it is always possible to use the proposed 

procedure in order to trace the law of modification of the collapse factors of the incremental loads 

related to a predetermined value of the factor of safety that is required for the structure, from which 

the value of the maximum load can immediately be deduced. Using Fig. 11, this limit value is 

obtained by multiplying the minimum value of the ordinate of the reference curve by F/P. 

4.3 Pointed arch 

A widespread type in the Gothic architecture, the pointed arch allowed the cathedrals to reach 

larger heights than the Romanesque ones. In this context, the pointed arch shown in Fig. 12 is 

analyzed and its safety level is assessed. The geometrical and load features are presented in Table 

3. 
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Span 
[cm] 

Rise 
[cm] 

Thickness 
[cm] 

Angle of 
embrace 

[°] 

Element 
no. 

Element 
width [cm] 

Element weight 
[kN] 

Keystone 
weight [kN] 

600 400 50 180 24 47 4.64 0.65 

 

Table 3. Geometrical features and load conditions of the pointed arch 

 

Fig. 12. Safety verification of the pointed arch: a) the Heymanian geometrical factor of safety (ideal 

arch); b) the full-range factor of safety proposed by the authors (“domain of equilibrium states” or 

“domain of safety”) 

The Heymanian approach points a 29.86 cm thick ideal arch within the profile of the real one, 50 cm 

thick (Fig. 12a). Accordingly, the geometrical factor of safety is computed to be equal to 1.67. 

Instead, using the full-range factor of safety approach, the thickness of the domain of the 

equilibrium thrust lines results to be equal to 41.33 cm, that provides the performance factor of 0.79 

(Fig. 12b).  

4.4 Rampant arch 

Flying buttresses were mostly built to act against the thrusts of the cross-vaults covering the naves 

of Gothic churches. In this section, a simplified model of these arches, referred to as rampant arch, 

is analyzed. As a development of the counterfort, a massive structure that was built against a wall 

to support lateral forces, the rampant arch is a slender structure characterized by a support higher 

on one side than on the other. The geometrical and load features of the model are summarized in 

Table 4. 
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Span 
[cm] 

Rise 
[cm] 

Thickness (interface no.) 
[cm] 

Angle of 
embrace [°] 

Element  
no. 

Element weight (element no.) 
[kN] 

387 394 

79(1), 113(2), 90(3), 
73(4), 63(5), 59(6), 61(7), 

68(8), 82(9), 102(10), 
92(11) 

90 10 

7.74(1), 12.60(2), 8.64(3), 
7.38(4), 6.83(5), 6.98(6), 

7.83(7), 9.42(8), 11.88(9), 
13.58(10) 

 

Table 4. Geometrical features and load conditions of the rampant arch 

Fig. 13 shows the results of the analysis. The line of thrust closest to the geometrical axis fits well 

within the profile of the arch, but, in correspondence to the left abutment, it is close to touch the 

extrados profile. For this reason, the extrados of the ideal arch identified using the Heymanian 

approach (Fig 13a) passes through this point and is almost tangent to the extrados of the real arch 

at the mid-span. Furthermore, the intrados of the ideal arch touches the line of thrust in 

correspondence to the second and the second to last interfaces. The minimum thickness of the 

ideal arch equal to 35.40 cm, compared to the minimum thickness of the real arch of 59 cm, leads 

to the geometrical factor of safety of 1.67, a value that points to a not very safe arch. Instead, using 

the full-range factor approach (Fig 13b), the upper bound thrust line passes through the extrados 

point of the left abutment interface and the lower bound is tangent to the intrados of the real arch. 

The minimum vertical thickness of the domain of equilibrium thrust lines equal to 62.44 cm provides 

the performance factor of 0.76. This value confirms that the safety level of this arch is not very high. 
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Fig. 13. Safety verification of the rampant arch: a) the Heymanian geometrical factor of safety (ideal 

arch); b) the full-range factor of safety proposed by the authors (“domain of equilibrium states” or 

“domain of safety”) 

4.5 Arch of generic shape 

In this section the analysis of an arch with a generic shape is presented. The case of study is 

similar to that analyzed in [55] under the name of “random arch”. This structure describes well the 

landform of natural arches that are formed when soft rock material is eroded rapidly by wind or 

water.  

This arch was analyzed, in order to highlight the versatility and the wide field of application of the 

procedure, also in the case of more complex structural shapes. The line of thrust closest to the 

geometrical axis of the structure was determined and both the geometrical factor of safety and the 

performance factor were computed (Fig. 14). 
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Fig. 14. Safety verification of the random arch presented in [55]: a) the Heymanian geometrical 

factor of safety (ideal arch); b) the full-range factor of safety proposed by the authors (“domain of 

equilibrium states” or “domain of safety”) 

Using the Heymanian approach the geometrical factor of safety was computed to be equal to 1.75, 

a rather low value in the range of 1 to infinity due to the variable thickness of the arch. One could 

conclude that the arch is not very safe. Instead, using the full-range factor approach, the 

performance factor is equal to 0.92, a very high value in the range of 0 to 1. One concludes that the 

arch is rather safe. 

4.6 Comparison of arches in a given set 

Let us consider the family of segmental arches represented in Fig. 15, with the same span, rise and 

thickness. The only parameter that differentiates them is the angle of embrace α. The geometrical 

features of these arches are reported in Table 5. 

 

Fig. 15. Sketch of the family arches 
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Family Arch 
Span 

[cm] 

Rise 

[cm] 

Thickness 

[cm] 

Angle of 

embrace α [°] 

Element 

no. 

1 

600 

230 

50 

150 

60 

 2 210 140 

3 191 130 

 4 173 120 

 5 156 110 

 6 140 100 

 7 124 90 

 8 109 80 

 9 95 70 

 10 80 60 

 

Table 5. Geometrical features of the arches 

For each arch, the line of thrust closest to the geometrical axis was computed and, afterwards, also 

the geometrical factor of safety according to the Heymanian approach and the performance factor 

according to the proposed approach. In Table 6 the factors of safety computed through both 

approaches are presented and in Figure 16 they are plotted as a function of the arch number in the 

family. 

In Figure 16 the original approach by Heyman clearly highlights that a less spanning arch (that is, 

with a slight curvature and pseudo-vertical joints) is safer than one that covers a wider span, such 

that the flat arch, as is well known, is considered to be the safest structure, obviously regardless of 

the actual strength of the material. However, if one compares the values of the geometrical factors 

of safety, it is practically impossible to understand how much safer an arch is as compared to 

another and, above all, all the arches under study seem to be, in a sense, “not very safe” if it is 

considered that such factors are located in the wide range [1,∞]. 

 

 

Family Arch 
Geometrical Factor 

of Safety 
Performance 

Factor 

 1 2.48 0.84 

 2 3.12 0.89 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31 
 

 3 3.96 0.93 

4 5.10 0.95 

5 6.68 0.97 

6 8.95 0.98 

 7 12.33 0.99 

 8 17.60 0.99 

 9 26.30 0.99 

 10 41.77 1 

 

Table 6. Geometrical factor of safety vs. performance factor 

Furthermore, the Heymanian approach represented by the Geometrical Factor of Safety (GFS) 

curve in Fig. 16a, that grows rapidly as the angle of embrace of the arch decreases, seems to 

highlight that the family arch with the minimum angle of embrace is much safer than that with the 

maximum one . However, this evidence is misleading. Indeed, considering the full-range factor 

approach, the Full Range Factor of Safety (FRS) curve that depicts the safety condition of such 

arches, plotted on the same scale as the GFS curve, appears to be almost a horizontal straight line. 

Although this is due to the fact that the values and the increments of the geometrical factors of 

safety have a different “weight” as respects to the performance factors, the values of the 

performance factors of the family arches, comprised in a very narrow sub-range [0.85,1] of the 

interval [0,1] of the likely performance factors, indicate that there is not a substantial difference 

among the degree of performance in all these structures. In Fig. 16b, the FRS curve has been 

scaled in order to show its actual curvilinear shape: it is concave downwards and reaches the 

maximum value 1 in such a way as if 1 were an asymptote. 
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Fig. 16. Analysis of arches in a given set: a) geometrical factor approach (GFS) vs. full-range factor 

approach (FRS); b) curve of the full-range factors of safety (FRS) 

Hereafter, a comparative analysis of the family arch is performed to evaluate the effect of the 

thickness on the safety factors that the procedure returns. Four thicknesses have been considered 

(30, 40, 50, 60 cm), all corresponding to safety conditions. Figure 17 shows the results. As 

expected, the higher the thickness of an arch, the higher the safety factor. This is due to the line of 

thrust that fits better within the profile of an arch if its thickness is greater. Figure 17 also indicates 

that the increase of the thickness is mostly beneficial for the first arches of the family, that is for the 

almost complete arches. Conversely, for the very segmental arches (arches 5 to 10), that are 

considered to be the safest ones if the strength of material is neglected, the increase of thickness 

does not correspond to an effective increase of the safety factors. 

 

Fig. 17. Comparative analysis of the family arch performed as a function of the thickness (30 to 60 

cm). In a) the safety factors computed exploiting the geometrical factor approach (GFS); in b) those 

computed exploiting the full-range factor approach (FRS). 

5. When the line of thrust closest to the geometrical axis fails 

There are some arches whose shape and thickness prevent the line of thrust closest to the 

geometrical axis, obtained through the numerical procedure proposed, from being entirely 

contained within the arch profile. In these cases, even though the global equilibrium conditions are 

satisfied, the assumption of a no-tension material is not respected. This occurs when the 

equilibrium configuration described by the line of thrust corresponds to a limit position within the 

profile of the arch and, as a consequence, it is the only admissible line of thrust. 
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As an example, let us consider the circular arch in Fig. 18, whose geometrical features are reported 

in Table 7, subject only to its self-weight. 

Span 

[cm] 
Rise [cm] 

Thickness 

[cm] 

Medium 

radius 

[cm] 

Angle of 

embrace 

[°] 

Element 

no. 

567.75 283.9 32.25 32.25 180 60 

 

Table 7. Geometrical features of the circular arch model 

The arch under study, subdivided into 60 elements, is characterized by a thickness-to-medium 

radius ratio t/Rm = 0.1075. Heyman [1] provided a closed-form solution that proves that the limit 

equilibrium condition of a circular continuum arch subject to its self-weight is given by the ratio t/Rm 

= 0.106. However, considering that the arch in Fig. 18 is a discrete structure, the thickness-to-

medium radius ratio chosen can be assumed to be the limit ratio of equilibrium of this specific arch 

and, therefore, that only one line of thrust entirely contained within the profile of the arch exists. 

This line of thrust (Fig. 18), obtained using the procedure described in [ 29,35], passes through the 

extrados points in the keystone joint and at the abutments and is also tangent to the intrados at the 

haunches, prone to develop the typical five-hinge symmetrical mechanism. 

 

Fig. 18. Limit equilibrium condition of the arch: the five-hinge mechanism prone arch 

Therefore, since no other equilibrated configurations for the arch under study is possible, if the 

procedure proposed, aimed precisely at minimizing the bending moment and shear force in 

correspondence to the joints (i.e. at detecting the line of thrust closest to the geometrical axis) is 
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used, a line of thrust not entirely contained within the profile of the arch is obtained and, therefore, 

that is not admissible under the assumption of a no-tension material (Fig. 19). 

Figure 19 shows that the line of thrust closest to the geometrical axis falls out of the profile of the 

arch, from the extrados, in correspondence to the joints located near the abutments; this condition 

violates the equilibrium condition under the assumption of a no-tensile material. 

 

Fig. 19. Safety verification of the circular arch: a) the Heymanian geometrical factor of safety (ideal 

arch); b) the full-range factor of safety proposed by the authors (domain) 

Using the Heymanian approach of the geometrical factor of safety, through the numerical procedure 

the minimum thickness of the ideal arch that holds the line of thrust was computed to be equal to 

35.40 cm, a value higher than the thickness of the arch. From this it is deduced a Heymanian 

geometrical factor of safety equal to 0.91<1, therefore corresponding to an unsafe arch (Fig. 19a). 

Instead, using the approach of the full-range factor of safety, the instability condition of the arch is 

highlighted by a domain with a negative thickness (-11.29 cm), that is bounded by a limit funicular 

polygon tangent to the intrados that is positioned at a height greater than that tangent to the 

extrados. From this it follows a negative full-range factor of safety (-2.86) or, that is the same, a 

performance factor equal to -0.35<0, corresponding again to an unsafe arch (Fig. 19b). 

Therefore, it is deduced that, if the approach based on the research of the line of thrust closest to 

the geometrical axis is adopted, for the arch under study, in which the medium radius is preserved 

constant, to be in equilibrium a greater thickness is required than that obtained using the limit 

analysis approach. 
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In this regard, for the line of thrust closest to the geometrical axis to be within the profile of the arch, 

if the medium radius is preserved equal to 300 cm, the thickness must be at least 49.00 cm. It 

corresponds to a thickness-to-medium radius ratio t/Rm = 0.163 (Fig. 20). In so doing, the thickness 

of the ideal arch that holds the line of thrust was computed to be equal to 35.44 cm. Following the 

Heymanian approach, the geometrical factor of safety is 1.38 > 1 (Fig. 20a). Instead, using the full-

range factor of safety approach proposed herein, the value of the performance factor is equal to 

0.44, thus comprised in the range [0,1] (Fig. 20b). 

 

Fig. 20. Safety verification of the thicker circular arch: a) the Heymanian geometrical factor of safety 

(ideal arch); b) the full-range factor of safety proposed by the authors (domain) 

This explains the reason why the use of circular arches employed in ancient times to span large 

areas and to form arcades and aqueducts, was successively replaced, by the Romans, by the use 

of segmental arches especially for building bridges. With this flatter shape, the structure is more 

performing thanks to the line of thrust that fits better within the profile of the arch that also allows a 

reduction in thickness and, as a consequence, of the self-weight. 

6. Conclusions 

The paper analyzes the equilibrium condition of a masonry arch of any profile subject to a vertical 

pattern of loads by comparing the shape of the thrust line with the shape of the profile of the arch. 

In order to assess the equilibrium condition, a numerical procedure that computes the line of thrust 

closest to the geometrical axis, among the ∞3 funicular lines of thrust related to the loads, has been 

presented. In order to overcome the limitations typical of the mathematical formulation of the 
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equilibrium problem of a continuous arch, the arch has been subdivided into discrete elements 

subject to system of point forces. In so doing, this procedure, which leads to a system of linear 

equations allows to analyze any profile of arches very quickly and effectively. The assumption of 

no-tensile strength of masonry, generally used for the analysis of masonry arches as well as for any 

other masonry load-bearing structure in the context of limit analysis, is herein exploited only to 

require that the line of thrust is contained within the profile of the structure. 

This procedure is also used to compute the degree of safety of an arch through the identification of 

a domain of safety (the full-range of equilibrium thrust lines) and the Heymanian geometrical factor 

of safety, revisited in the form of a performance factor, that is more practical and immediate to 

understand. 

This numerical procedure has two limits in the current formulation: 1) the elements forming the arch 

must be small enough so that the poly-line that joins the centroids, used as the reference in the 

minimization procedure, does not differ too much from the actual geometrical axis; 2) the horizontal 

component of the thrust H in correspondence to the joints of the arch was assumed to be constant; 

this assumption obliges the analysis with load conditions consisting only of vertical actions 

(gravitational loads and additional disturbing loads, also incremental, are currently considered). The 

procedure proposed herein will be further extended in order to include also the horizontal actions 

produced by wind or an earthquake, in a following article. 

Finally, for the sake of clarity, it is in the authors’ intention to underline that the procedure proposed 

is not aimed at predicting the collapse mechanism or the crack pattern, because the structure under 

analysis is conceived as a continuous arch, even if it is discretized in a finite number of elements, 

that does not correspond to a real mechanical model composed of blocks and joints. 
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