


Abstract

Noise is ubiquitous, stemming from the surrounding environment or arising

from the inherent stochasticity of the system under consideration. Its pres-

ence may qualitatively change the behavior of a physical system, possibly

leading to surprising and unexpected phenomena, and, as such, it should be

accommodated for in realistic models.

In this work, I present several models, that bear interest for neuroscience,

in which noise plays a role of paramount importance. Throughout my thesis,

investigations are conducted by means of both analytical and computational

methods. First, I introduce, and further develop key analytical tools for

tackling analytically the dynamics of a stochastic system. More specifically,

I develop a perturbative technique which allows for computing the statis-

tics of such systems even if they do not obey a gradient dynamics. Second,

I focus on purely stochastic oscillators. I show that a collection of such

oscillators, occupying the nodes of a generic network, can organize at the

macroscopic level yielding noise-sustained spatiotemporal pattern with long-

range correlations. Then, the same oscillators are organized in a directed

unidirectional lattice with adjacent connections. The endogenous compo-

nent of noise, coupled to a certain topology of the embedding space, seeds
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a coherent amplification of the signal across the lattice. Almost periodic os-

cillations emerge that I thoroughly investigate. Finally, I demonstrate that

the coherent amplification of an imposed noisy perturbation destabilizes the

synchronous state of an ensemble made of deterministic oscillators also when

a conventional linear stability analysis would deem the system resilient to

small external disturbances.
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A mes parents.
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Chapter 1

Introduction

In 1827, botanist Robert Brown observed that pollen grains suspended in

water were executing a jittery motion. He demonstrated that this peculiar

phenomenon was not the manifestation of living mechanisms by showing that

the same kind of erratic dynamics could be observed in the suspension of in-

organic fine particles. It took almost 80 years including much progress in

kinetic theory and statistical physics to find a satisfactory explanation for

this phenomenon. In 1905 Albert Einstein published an article in which he

proposed the reason behind such motion, the fine particle undergoes frequent

and isotropic collisions from the molecules of the liquid in which they are sus-

pended [1]. He pointed out that, considering the complexity of the motion

and the staggering number of variables involved, a probabilistic formulation

was necessary. It is worth mentioning that Smoluchowski independently gave

the same explanation [2]. Subsequently after, Paul Langevin proposed a com-

plementary approach in which he considered the dynamics of the suspended

particle to be described by a differential equation containing an additional
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CHAPTER 1. INTRODUCTION

term acting as a random force and sharing the same statistical properties as

the fluctuations of the particle position [3]. This random force, here to con-

tain all the collisions undergone by the suspended particle, may be denoted

noise, and since it typically does not depend on the system itself, it is said

to be external. Brownian motion is the seminal example of a ubiquitous phe-

nomenon: doubtlessly there is all but one physical system perfectly isolated

and “external noise” takes on the role of an environment that is unpredictable

and incoherent due to its vast number of degrees of freedom. Take the radio

as an example: many of us experienced this unpleasant background crackling

when listening to it. There, noise takes its origin from the pollution of the

signal by all the natural electromagnetic processes in the atmosphere and the

interferences from other man-made radio signals.

I mentioned external noise, induced by interaction with the outside en-

vironment. However, most physical systems are inherently stochastic, either

at the fundamental level or by the level of description one chooses (i.e. pop-

ulation dynamics). In this thesis, I will primarly focus on the latter. Let

me clarify what I mean by ”level of description”. Every system which in-

volves entities in limited number, such as reactants for chemical reactions or

animals for ecological systems, can be described at a coarse-grained level by

average population densities. In this coarse-grained approach, either one opts

for a deterministic description by ordinary differential equations (ODEs) and

therefore disregard populations’ fluctuations, or one can probe the system at

an intermediate scale taking into account its finite nature and the discrete-

ness of its dynamics. The first option works well when the quantities in play

are large in numbers, but, and this constitutes one of the major point of my
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CHAPTER 1. INTRODUCTION

thesis, it lacks of accuracy for small size systems, where intrinsic fluctuations

may have remarkable effects that can qualitatively alter deterministic predic-

tions. There, the system is subject to its own fluctuations, which take on the

form of an endogenous noise term, which turns the mean field ordinary differ-

ential equations (ODEs) into stochastic differential equations (SDEs). This

endogeneus noise can be multiplicative. Due to the central limit theorem, it

vanishes for large particles numbers, N → ∞, scaling as 1/
√
N , so that in

the thermodynamic limit the purely deterministic mean-field descriptions is

recovered [4, 5]. It therefore becomes vital to use the stochastic formalism

to study these systems. This allows for making explicit the contribution of

endogenous noise for a system initially given in terms of birth-deat equations.

A detailed description of this procedure will be given in the second chapter,

where I will derive the correct form of this endogenous noise term through

an original perturbative approach.

Most of this thesis, however, is concerned with the following question:

what is the role played by noise in a mesoscopic level description regardless

of its nature? Often seen as a disturbance limiting the efficiency of the system

under consideration, noise may play an operative role: stochastic resonance,

noise-induced transitions or coherence resonance are just a few important

examples [6, 7, 8]. I will stress this point notably by showing how noise can

shift bistability bifurcation points and can lead to pattern formation with

long distance correlations or even sustain macroscopic oscillations instead of

the trivial fixed point dynamics achieved in the thermodynamic limit. I will

also show how certain non-normal network topologies are capable of largely

amplify arbitrarily small stochastic terms. These results are significant, as
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CHAPTER 1. INTRODUCTION

they show that properly taking into account stochastic corrections – often

of endogenous type – can qualitatively alter the deterministic mean-field dy-

namics. To elaborate along these lines, I will consider a set of models related

to neuroscience.

The thesis work consists in four main chapters.

• In the second chapter, I will introduce the Wilson-Cowan (WC) model

which provides a coarse-grained representation of a simplified visual

cortex model, where two populations of neurons, excitatory and in-

hibitory ones, interact through idealized feedback synaptic loops [9, 10].

Then, I will provide an inventory of tools to perform a mesoscopic

investigation of a system which carries finite-size populations of neu-

rons. To test for the consistency of the calculations, I will compute

the stationary probability distribution for both species under study in

a region where the system displays bistability, and to compare it with

simulations performed using Gillespie algorithm [11]. I observed that

noise extends the region of effective bistability. More importantly, I

will present a pertubative technique that allows for pursuing analytical

calculations despite the non-potential nature of the system.

• In the third chapter, I will consider a reduced version of the WC model.

This time the system under consideration displays purely stochastic

oscillations or quasi-cycles that I will fully characterize by means of

the power spectral density matrix [12, 13, 14]. The same tool suits

to demonstrate that a collection of such stochastic oscillators disposed

over a network may become coherent resulting in spatiotemporal pat-

terns, where contiguous nodes are in anti-phase. This result stresses
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CHAPTER 1. INTRODUCTION

that fluctuations, endogenous or external, may contribute to the pro-

cessing of information or to the spatiotemporal organization of physical

systems.

• In the fourth chapter, I will study this reduced WC model in a feedfor-

ward unidirectional chain. Starting from a trivial fixed point behavior,

which characterizes the mean field deterministic dynamics, I observed

both an amplification and a modulation of arbitrarly small stochastic

oscillations (due to either internal or external noise) along the chain.

Indeed, these oscillations converge towards a limit cycle dynamics with

a well-defined frequency. After quantifying and explaining those phe-

nomena, I will present a few possible applications for such a pacemaking

system and give its thermodynamic interpretation.

• In the fifth chapter, I will keep the unidirectional chain topology but

replace the stochastic oscillators with Ginzburg-Landau oscillators dis-

turbed by external noise. The same amplification takes place for the

fluctuations normal to the limit cycle. This destabilizes the fully syn-

chronized solution and leads to pattern formation, which is not ex-

pected using linear stability analysis.

• In the final section I will draw my conclusions, highlight the most im-

portant results of my work and suggest future developments.
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Chapter 2

Endogenous noise in neural

system

In this chapter we consider a stochastic version of the Wilson-Cowan model

which accommodates for discrete populations of excitatory and inhibitory

neurons. The model assumes a finite carrying capacity, namely that the

maximum population size of the populations that its environment can sustain

indefinitely in time is finite. The master equation that governs the dynamics

of the stochastic model is analyzed by an expansion in powers of the inverse

population size, yielding a coupled pair of non-linear Langevin equations with

multiplicative noise. Gillespie simulations show the validity of the obtained

approximation, for the parameter region where the system exhibits dynamical

bistability. We report analytical progress by silencing the retroaction of

excitatory neurons on inhibitory neurons, while still assigning the parameters

so as to fall in the region of deterministic bistability for the excitatory species.

The proposed approach forms the basis of a perturbative generalization which
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CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

applies to the case where a modest degree of coupling is restored.

2.1 Neural population dynamics: Wilson-Cowan

model

Neural models aim at elucidating the grounding architecture that regulates

information processing in biological systems [15]. The level of abstraction

that is accommodated for in the chosen mathematical scheme reflects the

specific topic under investigation. Detailed single neurons models can be

devised, which account for the sharp changes in the action potential. The

number of neurons in the human cortex is extraordinarily large and for many

practical aspects a bottom-up approach that moves from a detailed repre-

sentation of each individual unit is virtually impracticable. The physiology

of neurons is also quite intricate. A single neuron receives input from thou-

sands of axon terminals coming from other neurons, but the inherent degree

of redundancy contributes to drastically reduce the effective connections to

a limited subset. Irrespective of their intimate characteristics, neurons can

be pictured as complex switching devices organized, in the simplest scenario,

in two macroscopic families of homologous constituents, excitatory and in-

hibitory neurons. This enables, in turn, to climb the hierarchy of complexity,

and elaborate, to a suitable level of coarse graining, on the interlaced dynam-

ics of homogenous populations of neurons. Several approaches have been in-

deed proposed in the literature to reduce the dynamics of individuals neurons

interacting via pulse-like signals to low dimensional systems characterized by

few collective variables [16, 17, 18, 19, 20]. The WilsonCowan (WC) [9, 10]
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CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

model and its further extensions [21] provide an interesting, although highly

idealized, arena to shed light onto the complex dynamics of a multi-species

neuronal system. The model displays limit cycle behavior, mimicking neu-

ral oscillations. Stimulus-dependent evoked responses are also predicted, as

well as the existence of multiple stable states. The original WC model is

deterministic in nature and the average concentration of active/inactive ex-

citatory/inhibitory neurons appear to be self-consistently ruled by a pair of

coupled ordinary differential equations. A schematic representation of this

version of the WC is given in Figure 2.1. It has been used to predict the

qualitative and quantitative features of epileptiform activity especially the

propagation speed of epileptic seizures which is slower than normal brain

wave activity [22]. Spatially extended versions of the model can be designed

which in turn amount to operate with partial differential equations [23].

E I

Figure 2.1: Schematic view of the Wilson-Cowan model. Here E stands for
excitatory neurons population while I stands for inhibitory. Inhibitory and
excitatory interactions as displayed in the figure are controlled by a set of
positive constants w· . The coefficients h represent eventual input currents
from the outside.
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CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

2.2 On the stochastic model

As said, the WC model has originally been formulated as a deterministic

model. Here, we want to understand the particular role played by intrinsic

perturbations 1, stemming from the intimate discreteness of the system under

scrutiny. Individual-based effects should be taken into account in any sensible

model of natural phenomena; this yields to an endogenous stochastic contri-

bution. At first sight it might appear surprising that stochastic effects are

important when the interacting populations consist of a large number of in-

dividual constituents. Populations fluctuations can however amplify through

resonant effects [24] and drive the spontaneous emergence of collective macro-

scopic patterns, both in time [25, 26] and in space [27, 28, 29, 30, 31], marking

a clear distinction between stochastic and deterministic viewpoints. Endoge-

nous noise can be certainly relevant to neural systems [32]. Channel noise

arising from the variability in the opening and closing of a finite number of

ion channels, is a microscopic source of intrinsic disturbance. At the pop-

ulation level, the instantaneous state of the system is drawn by looking at

the number of active neurons, which are in on a given patch. The evolu-

tion of the inspected system can be monitored via a suitably defined master

equation, the mean field deterministic picture being eventually recovered in

the thermodynamic limit. Following these lines of reasoning, the WC model

has been recently revised under the generalized stochastic angle. This allows

for understanding on the specific traits which ultimately emanates from the

endogenous component of the noise[33].

1A point that we need to clarify before pursuing is that many deterministic systems
may look as if they were stochastics (set of inhomogeneously connected oscillators,...). It
is important to not confound erratic behaviour with stochasticity.
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CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

We will first write the dynamics of our system in terms of chemical rate

equations with non-linear transition rates. By means of step operators, the

obtained master equation will then be expanded in powers of the inverse

population size so to yield a Fokker-Planck equation giving an approximate

stochastic description for the density of the interacting species. The final

step will consist of mapping it onto a pair of non-linear Langevin equations

with multiplicative noise.

2.2.1 Birth and death reactions

In the historical derivation of the WC model, neurons are divided into two

classes, excitatory and inhibitory. Within those populations, we consider two

subpopulations, one is called active (a) and can be viewed as the fraction

of neurons that are spiking, the other is called inactive or quiescent (q) and

refers to neurons at rest. It is worth emphasizing that it defines a minimal

setting for carrying out the future analysis. Other effects, like time delays,

could be possibly invoked, so yielding a generalization of the aforementioned

framework (by e.g. motivating the introduction of a third distinct subpopu-

lation, that of the refractary neurons) [34].

In the following, individual excitatory and inhibitory neurons will be re-

spectively identified with the symbols X and Y . To identify to which sub-

population a neuron belongs, the quantities X and Y will be decorated with

the index a or q. More concretely, we will denote by Xa (resp. Ya) an ac-

tivated neuron of the excitatory type (resp. inhibitory), whereas Xq (resp.

Yq) identifies a quiescent excitatory (resp. inhibitory) neuron. The stochastic

dynamics of the system is ruled by a minimal set of birth and death reactions,
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CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

as summarized in the following:

Xq
fE [sE ]−→ Xa

Xa
αE−→ Xq

Yq
fI [sI ]−→ Ya

Ya
αI−→ Yq

(2.1)

where αE,I are constant rate function; fE,I(·) are non-linear firing rates,

sigmoid in shape, function of the synaptic currents sE,I , and bound to the

interval [0, 1]. Before completing the description of the elements that define

the stochastic model, we remark that, by definition, the number of excitatory

(resp. inhibitory) neurons, N (resp. M), is an invariant quantity. Label

with nXa the number of neurons of the type Xa, and with nXq the number of

elements Xq. Clearly, by virtue of equations (2.1), nXa +nXq = N . Similarly,

and with an obvious meaning of the involved notation nYa+nYq = M . Simply

stated, the conservation laws that we have here identified enable one to reduce

to a total of two the number of independent variables that uniquely lay out

the dynamics of the system. The idealized synaptic currents, as introduced

in [9], read:

sE = wEE
nXa
N
− wEI nYaM + hE

sI = wIE
nXa
N
− wII nYaM + hI

(2.2)

where the weights wkl are positive defined for any k, l = E, I. sE (resp.

sI) stands for the idealized synaptic current received by the excitatory (resp.

inhibitory) populations of neurons, since all the coefficients wkl are positively

defined it becomes clear that the more the coefficient wEE (resp. wIE) is

large, the more activated excitatory neurons will have a tendency to activate
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quiescent excitatory (resp. inhibitory) neurons. On the contrary, the more

wEI (resp. wII) is large, the more the activated inhibitory neurons will

prevent excitatory (resp. inhibitory) neurons from activating. The constants

hE and hI encode the interaction of the examined families of neurons with the

surrounding environment. These synaptic currents are then mediated by a

sigmoid function to compute the mean rate of activation for both populations

of neurons. The specific form of the sigmoid function fk(sk), with k = E, I

is not essential for the forthcoming discussion.

2.2.2 Master equation

The chemical equations introduced above define a continuous-time Markov

process which means that the probability of the system to be in state (x, y)

at time t solely depends on the (immediate) preceding state as reached by the

system. A probabilistic approach is necessary to understand such process.

The dynamics of the probability P (x, t) of seeing the system in a given state

at a given time can be described by means of a Master equation. A general

form of the Master equation is given below

∂P (x, t)

∂t
=
∑
y 6=x

[P (y, t)T (x|y)− P (x, t)T (y|x)] (2.3)

where x,y denote two distinct states of the system and T (x|y) is the transi-

tion rate from state x to state y. We can distinguish 8 possible transitions

12
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for our system, each associated to a specific transition rate

T1 : (x+ 1
N
, y)→ (x, y) T2 : (x− 1

N
, y)→ (x, y)

T3 : (x, y + 1
M

)→ (x, y) T4 : (x, y − 1
M

)→ (x, y)

T5 : (x, y)→ (x− 1
N
, y) T6 : (x, y)→ (x+ 1

N
, y)

T7 : (x, y)→ (x− 1
M
, y) T8 : (x, y)→ (x, y + 1

M
)

(2.4)

where we have introduced the number density x = nXa/N and y = nYa/M .

We further label with P (x, y, t) the probability of seeing the system in the

state (x, y), at time t. In our case, the Master equation reads

∂P (x,y,t)
∂t

=[−T1(x+ 1
N
, y|x, y)P (x, y, t)− T2(x− 1

N
, y|x, y)P (x, y, t)

−T3(x, y + 1
M
|x, y)P (x, y, t)− T4(x, y − 1

M
|x, y)P (x, y, t)

+T5(x, y|x− 1
N
, y)P (x− 1

N
, y, t) + T6(x, y|x+ 1

N
, y)P (x+ 1

N
, y, t)

+T7(x, y|x, y − 1
M

)P (x, y − 1
M
, t) + T8(x, y|x, y + 1

M
)P (x, y + 1

M
, t)]

(2.5)

The Master equation then be reformulated in a compact form involving the

so called step operators ε±x and ε±y defined as:

ε±x f(x) = f(x± 1
N

)

ε±y f(y) = f(y ± 1
M

)
(2.6)

They allow to reduce the number of distinct transition rates since

T5(x, y|x− 1
N
, y) = ε−x T1(x+ 1

N
, y|x, y) = (1− x)fE(x, y)

T6(x, y|x+ 1
N
, y) = ε+x T2(x− 1

N
, y|x, y) = αEx

T7(x, y|x, y − 1
M

) = ε−y T3(x, y + 1
M
|x, y) = (1− y)fI(x, y)

T8(x, y|x, y + 1
M

) = ε+y T4(x, y − 1
M
|x, y) = αIy

(2.7)
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Therefore, one can re-write the Master equation in the following form:

∂P (x,y,t)
∂t

= [(ε−x − 1)T1 + (ε+x − 1)T2

(ε−y − 1)T3 + (ε+y − 1)T4]P (x, y, t)
(2.8)

The Master equation (2.8) provides an exact description of the Markov

dynamics. We’ll see that will be able to extract from it both the ideal mean

field dynamics (formally recovered in the limit of infinite system size) and

the associated finite-size corrections.

In most cases, the Master equation cannot be solved analytically. Two

options are then available: we can resort to analytical techniques to obtain

an approximate solution or we can employ numerical methods to shed light

onto the system under inspection. The first option will be dealt with in

the following sections. The second one is based, for example, on the Gille-

spie algorithm which enables one to generate trajectories of the underlying

stochastic dynamics, which are consistent with the governing master equa-

tion [11]. An important fraction of the numerical results displayed within

this thesis, make use of the Gillespie algorithm. More details on the im-

plementation of the algorithm, as well on the mathematical foundation, are

given in Appendix A.

2.2.3 Kramers-Moyal expansion

To pursue our analytical investigations, we seek to approximate the exact

Master equation, via the Kramers-Moyal perturbative recipe [35, 36, 37, 38,

39]. To this end we first Taylor expand the step operators (assuming 1/N

14
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and 1/M small) up to the second order in 1
N2

2 and get:

ε±x f(x) = f(x± 1
N

) ≈ (1± 1
N

∂
∂x

+ 1
2N2

∂2

∂x2 + . . . )f(x)

ε±y f(y) = f(y ± 1
M

) ≈ (1± 1
M

∂
∂y

+ 1
2M2

∂2

∂y2 + . . . )f(y)
(2.9)

Then, inserting in the Master equation and performing the following time

rescaling τ = Nt, one eventually obtains

∂P (x, y, t)

∂τ
= [(− ∂

∂x
+

1

2N

∂2

∂x2
)T1 + (

∂

∂x
+

1

2N

∂2

∂x2
)T2 (2.10)

(−1

γ

∂

∂y
+

1

γ2

1

2N

∂2

∂y2
)T3 + (

1

γ

∂

∂y
+

1

γ2

1

2N

∂2

∂y2
)T4]P (x, y, t)

where γ = M/N measures the relative population of inhibitors over activa-

tors. This is a two dimensional Fokker-Planck equation, which we shall write

in a more transparent form by introducing the vector x = (x, y). In formulae:

∂P (x, t)

∂τ
= −

∑
i

[
∂

∂xi
Ai(x)P (~x, t)

]
+

1

2N

∑
i,j

∂

∂xi

∂

∂xj
[Bij(x)P (x, t)]

(2.11)

where A is called the drift vector and B the diffusion matrix. They are

respectively given by

A =

 T1 − T2

1
γ
(T3 − T4)

 , B =

 T1 + T2 0

0 1
γ2 (T3 + T4)

 (2.12)

2Here, the truncation has been done with out preliminary verification.
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2.2.4 Langevin equation

While the Fokker-Planck equation reflects the statistical evolution of our

system, it is also interesting to look at individual stochastic trajectories.

To this aim we invoke the well known equivalence between a Fokker Planck

equation and its associated Langevin description [40, 41]. To this end, we also

need to choose the most convenient stochastic calculus. We decide to pick

the Itô description for two reasons; because it implies simpler calculations,

and more importantly because it shows good agreement with the simulations

performed using the Gillespie algorithm. This was expected since the Itô

convention is often used to describe stochastic processes discrete in time and

that the Gillespie scheme is itself a discrete time algorithm. Hereinafter, we

are always going to use the Itô description. Please refer to Appendix B for

more information. This leads to the following system of non-linear Langevin

equations

ẋ = −αEx+ (1− x)fE(x, y) + 1√
N

√
αEx+ (1− x)fE(x, y) η1

ẏ = 1
γ

(−αIy + (1− y)fI(x, y)) + 1√
γN

√
αIy + (1− y)fI(x, y) η2

(2.13)

where ηi stands for a Gaussian white noise process with zero mean and delta

correlated in time 〈ηi(t)ηj(t′)〉 = δijδ(t− t′), with i, j = 1, 2. Also we have

fE(x, y) = f
(1)
E + f

(2)
E tanh(βEsE) (2.14a)

fI(x, y) = f
(1)
I + f

(2)
I tanh(βIsI) (2.14b)
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where sE,I are the idealized synaptic currents introduced previously and

which depends on the parameters wkl and hE,I , the coefficients βE,I are called

the slope parameters.

We have hence obtained a system of non-linear Langevin equations that

constitute the fluctuating hydrodynamics approximation of the exact Markov

dynamics. Note that the noise is multiplicative: the amplitude of the stochas-

tic perturbation is self-consistently adjusted, as function of the density of the

simultaneously evolving species.

2.3 Effects of noise

2.3.1 Thermodynamic limit

Before pursuing our investigations on the role played by endogenous fluctu-

ations we must better understand the deterministic dynamics of the system.

We consider the thermodynamic limit N → ∞ (at constant γ). The noise

term vanished and one recovers a slightly modified version of the classic WC

model

ẋ = −αEx+ (1− x)fE(x, y)

ẏ = 1
γ

(−αIy + (1− y)fI(x, y))
(2.15)

As compared to the original WC formulation, the first (resp. second)

equation of (2.15) displays an additional factor (1−x) (resp. (1− y)), which

multiplies the sigmoid function fE (resp. fI). This term reflects the finite

carrying capacity of the system, as imposed at the microscopic level: working

under diluted condition, i.e. assuming x, y << 1 one readily converge to an

other version of the WC model [32]. Based on the choice made for the
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parameters (ωkl, αE,I , hE,I , βE,I , and f
(1,2)
E,I ) the system may evolve toward a

single fixed point, present multiple fixed points with their associated basins of

attraction or even exhibits an oscillatory periodic attractor. In this chapter,

we will be primarily interested in a parameter setting that yields bistability.

As illustrated in Figure 2.2, the system possesses two attractive fixed points

(green dots), which are separated by an unstable saddle point (not displayed).

Deterministic WC trajectories are asymptotically attracted towards one of

the stable equilibria, depending on their initial condition. The dynamics of

the system in the thermodynamic limit is therefore quite trivial. We will

show that the stochastic corrections, presently silent, are going to reestablish

the dynamics.

2.3.2 Effect of endogeneous noise

More rich is the dynamics of the WC model in its stochastic representation:

endogenous noise drives seemingly erratic transitions between the two, de-

terministically stable, fixed points. This picture is exemplified in Figure 2.3,

where the time evolution of species x is plotted. This is an individual tra-

jectory obtained upon integration of the Markov WC model via the already

mentioned Gillespie algorithm which belongs to the Monte Carlo class of al-

gorithm. At each iteration two random numbers are generated; one to decide,

depending on the transition rates, which will be the next reaction to occur,

and the second to determine the timestep increment. More details on the

Gillespie algorithm are given in Appendix A.
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Figure 2.2: The phase space of the deterministic WC model is displayed.
The (green) filled circles stands for the stable fixed points. Large (red)
arrows represent the stable and unstable manifolds of the saddle node
(not displayed). Tiny (black) arrows provide a quantitative description
of the velocity vector field of the model in its deterministic limit. Here,
fE,I = f

(1)
E,I + f

(2)
E,I tanh(βE,IsE,I) where β is the gain parameter. The quanti-

ties f
(1)
E,I and f

(2)
E,I enters in the definition of the sigmoid non-linear function

and allow for a swift control of the location of the fixed points. The offset
f

(1)
E,I sets in particular the degree of residual activity when sE,I = 0. The

parameters here employed read wII = 1, wIE = 0.5, wEI = 2, wEE = 7.2,
αE = 1.5, αI = 0.4, hE = 1.2, hI = 0.1, N = 300, γ = 0.25, βE = 3.7,
f

(1)
E = 0.25, f

(2)
E = 0.65, βI = 1, f

(1)
I = 0.5, f

(2)
I = 0.5.
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Figure 2.3: The number density x = nXa/N is plotted versus time. The time
series is obtained as an individual realization of the stochastic WC model,
integrated via the Gillespie Monte Carlo scheme. The parameters are set as
in figure 2.2

To test the adequacy of the approximate Langevin description, we con-

ducted a series of numerical simulations. The distribution P (x) (resp. P (y))

as obtained via the Gillespie algorithm [11], in accordance with the exact

governing master equation, are displayed in Figure 2.4, with (cyan) sym-

bols. The same quantities computed via a direct integration of the Langevin

equation is depicted with (light purple) diamonds [42] . The agreement is

very good and points to the validity of the approximate Langevin picture.

The multiplicative component of the noise is essential to reach this level of

correspondence at moderate system sizes. P (x) shows the typical bimodal

distribution, signature of a bistable dynamics. Conversely, at this noise level
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Figure 2.4: Left panel: the distribution P (x) is plotted versus x in semi-
logarithmic scale. The (cyan) circles refer to the exact, Gillespie based,
stochastic simulation. The error bars are computed by averaging over 10
independent realizations. The (light purple) diamonds are obtained by inte-
grating numerically the approximate Langevin equations (2.13) via a stan-
dard Euler-Maruyama scheme and averaging over 10 independent realiza-
tions. Right panel: P (y) is plotted versus y. The choice of symbols (and
colors) follows that of the left panel.

the two bumps of P (y) merge together in a unique isolated crest.

After this preliminary analysis, the remaining part of this chapter is de-

voted to analytically characterizing the above probability distributions in

the region of bistability. We will in particular start to explore a simplified

setting, which ignores the excitatory feedback on the inhibitors population

(wEI). By operating in this context, one can significantly reduce the com-

plexity of the model: the two governing Langevin equations, as obtained

under the Kramers-Moyal expansion, will be packed in just one stochastic

differential equation for the excitatory species. Remarkably, the inhibitors

will be shown to affect the amplitude of the multiplicative noise, and thus

magnify the stochastic component of the excitatory dynamics.
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In principle, the coupled non-linear Langevin equations introduced above

could be studied by resorting to methods from multiscale stochastic analy-

sis [43]. The two aforementioned equations define a paradigmatic example

of a stochastic system with different temporal scales, γ acting in this respect

as a crucial parameter.

2.4 Analytical characterization of the distri-

bution: the case wIE=0

The aim of this section is to proceed further in the study of the fluctu-

ating hydrodynamics of the WC model. We will start from the Langevin

equations (2.13), which proved adequate versus numerical simulations of the

underlying Markov process, to build up an approximate analytical solution

for the distribution of of the stochastic variables x and y. To pursue this

objective we shall specialize first on the simplified setting that is recovered

when ωIE = 0. In concrete, we will ignore the action of the activators over

the inhibitors, while still constraining the system to evolve in the region of

deterministic bistability for the excitatory species. The concentration of the

inhibitors will instead converge to a stationary stable fixed point, in the mean

field limit. This is a definite simplification which enables us to reduce the sys-

tem to just one Langevin equation for the excitatory species. In Figure 2.5

the phase space portrait of the system as obtained under these operating

condition is outlined. The two stable fixed points (represented as green filled

circles) lie horizontally, since, by construction, they display an identical value

of inhibitory concentration.
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Figure 2.5: The phase space of the deterministic WC model is displayed. The
(green) filled circles identify the location of the stable fixed points. Large
(red) arrows stands for the stable and unstable manifolds of the saddle node
(not shown). Tiny (black) arrows represents the vector field of the model.
The parameters are set as in Figure 2.2, except for wIE = 0. Right panel: the
excitators xed x̄ point is plotted as function of wEE to visualize the region
of bistability. Solid traits stand for the stable branch, dashed line for the
unstable one.

For convenience, we write the Langevin equations (2.13) in the compact

form

ẋ = A(x, y) + 1√
N

√
B(x, y) η1

ẏ = 1
γ

(
C(y) + 1√

N

√
D(y) η2

) (2.16)

with:

A(x, y) = −αEx+ (1− x)fE(x, y)

B(x, y) = αEx+ (1− x)fE(x, y)

C(y) = −αIy + (1− y)fI(y)

D(y) = αIy + (1− y)fI(y)

(2.17)

and where C(·) and D(·) are just function of y. To proceed in the analysis

we take advantage of the fact that y has a peaked distribution, under the
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chosen operating conditions. More precisely, we will operate under the small

noise approximation. To that end, we first proceed to the following change

of variable:

y = ȳ + u (2.18)

where ȳ solves the mean field equilibrium condition C(ȳ) = 0 and u encodes

for the stochastic contribution. This yields to

u̇ = 1
γ

(
C(ȳ + u) + 1√

N

√
D(ȳ + u) η2

)
(2.19)

where 〈η2(t)η2(t′)〉 = δ(t− t′). We then expand for u3 and arrest the pertur-

bative calculation at the first order. In formulae one readily gets:

u̇ =
1

γ

(
∂yC|ȳ u+

1√
N

√
D(ȳ)η2

)
(2.20)

This is a linear Langevin equation for the variable u which stationary prob-

ability distribution reads

P (u) = N exp

(
− 1

2σ2
u2

)
(2.21)

where N stands for a proper normalization constant and σ denotes its vari-

ance which itself reads

σ2 = − D(ȳ)

2Nγ∂yC|ȳ
(2.22)

We can then easily compute, P (y), the probability distribution of inhibitory

3The expansion may seem not valid since u is an unbounded variable. The a posteriori
results will tend to justifiy this perilous operation.
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neurons, that takes the followin form:

P (y) = N exp

(
− 1

2σ2
(y − ȳ)2

)
(2.23)

Let us now return to the first of equations (2.16) and assume, in light of the

above, we decide to write y ' ȳ + ση3, where η3 is a normally distributed

random variable, with zero mean and variance equal to one. Expanding the

Langevin equation for x at the first order in the stochastic perturbation v

one obtains

ẋ = A(x, ȳ) + ∂yA|ȳση3 +
1√
N

√
B(x, ȳ) η1 (2.24)

This is a non-linear stochastic equation with two distinct noise sources, which

can be combined by using the sum rule for Gaussian variables yielding the

more compact expression:

ẋ = A(x, ȳ) +
1

N

√
− D(ȳ)

2γ∂yC|ȳ
(∂yA|ȳ)2 +B(x, ȳ) ξ (2.25)

where ξ is a Gaussian white noise with zero mean and variance equal to one.

Note that the derivative ∂yC|ȳ is negative, leaving the term under the square

root to be always positive. The dynamics of the activator species is there-

fore ruled by a non-linear Langevin equation, endowed with a multiplicative

noise term, whose amplitude encodes, at this order of approximation, for the

inhibitors contribution. The strength of the noise is modulated by γ. De-

creasing the ratio M/N , which in turn signifies reducing the relative weight of

inhibitory over excitatory neurons, enhances the degree of effective stochas-
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ticity. It is possible to obtain an equivalent Fokker-Planck equation:

∂P (x, t)

∂t
= − ∂

∂x
[A(x, ȳ)P (x, t)] +

1

2

∂2

∂x2
[Γ(x)P (x, t)] (2.26)

where:

Γ(x) =
1

N2

(
− D(ȳ)

2γ∂yC|ȳ
(∂yA|ȳ)2 +B(x, ȳ)

)
(2.27)

Based on the above, one can immediately calculate P (x) the stationary prob-

ability distribution for species x, as [41]

P (x) =
N

Γ(x)
exp

(
2

∫ x

0

A(x′, ȳ)

Γ(x′)
dx′
)

(2.28)

Equations (2.23) and (2.28) constitute a theoretical approximation for the

probability distributions of species x and y, as determined via the governing

stochastic model. However, the above solution applies to a rather specific

parameter settings: ωIE is in fact set to zero to silence the retroaction of

the activators on the inhibitors. The analysis will then be extended in the

forthcoming section to the case where a small modulation ωIE is allowed for.

In Figure 2.6 the numerically determined distributions are plotted: in

both panels, (cyan) circles refer to the exact Master equation and (light

purple) diamonds stand for a direct numerical integration of the Langevin

equations (2.16). The parameters have been set as in Figure 2.5. The acti-

vated inhibitory concentration y admits therefore a unique fixed point, while

two stationary stable equilibria are found for x. The distribution P (y) (right

panel of Figure 2.6) displays the expected bell shaped profile, the peak being

located in ȳ. The solid line refers to the analytical solution (2.23) which
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Figure 2.6: The distributions P (x) (left panel) and P (y) (right panel) are de-
picted. The (cyan) circles stand for the Gillespie stochastic simulation. The
(light purple) diamonds refer to the numerical solution of the Langevin equa-
tions (2.13), via a straightforward implementation of the Euler-Maruyama
scheme. In both cases the error bars are computed by averaging over 10
independent realizations. The solid lines are the theoretical predictions com-
puted after equations (2.23) and (2.28).

.

appears to correctly interpolate the recorded numerical profiles. The distri-

bution P (x), as reported in the left panel of Figure 2.6: in this case, a bimodal

profile is found, which reflects the simultaneous presence of two competing

equilibria for the associated deterministic dynamics. The analytic profile

traced after Equation (2.28) (solid line) agrees with the simulated data, at a

satisfying degree of accuracy.

In Figure 2.7 the comparison between simulated and analytic P (x) is

drawn for different choices of the parameters βE. The data reported in the

upper panels of Figure 2.7 are obtained for a choice βE that positions the sys-

tem inside the region of x bistability. The correspondence between theory and

simulations is again satisfying. The lower left plot refers instead to a choice

of βE that falls outside the region of bistability: in this case the deterministic
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model predicts the presence of an isolated stable fixed point, characterized by

a low level of activity. The distribution P (x) extends however to large x, the

small rightmost bump being a relic of the lost bistability. By modulating γ,

one can eventually make the second bump more pronounced, seeding a noise

induced bistability, which has no immediate counterpart in its corresponding

deterministic framework.

2.5 Extending the analysis to the general set-

ting: the case ωIE 6= 0.

The purpose of this section is to discuss a possible extension of the previous

analysis. We assume a feedback of excitatory neurons on the population of

inhibitors, that is, ωIE 6= 0. The approach that we shall present hereafter im-

plements a perturbative iterative scheme, which implies dealing with a weak

coupling, or stated differently, a sufficiently small value of ωIE. The key idea

is to treat the additional contribution stemming from ωIE as a perturbation.

As a first step, one needs to inspect the null unperturbed scenario which

corresponds to setting ωIE = 0. One can follow step by step the approach

outlined in the preceding section and eventually obtain a probability distri-

bution function for x. We will hereafter denote the distribution obtained

under this limiting condition, namely for ωIE = 0, by P0(x).

The stochastic dynamics of y is ruled by the following non-linear Langevin

equation:

ẏ =
1

γ

(
C(z, y) +

1√
N

√
D(z, y)η2

)
(2.29)

28



CHAPTER 2. ENDOGENOUS NOISE IN NEURAL SYSTEM

x
0.1 0.2 0.3 0.4 0.5

P
(x

)

10
-1

10
0

10
1

x
0.1 0.2 0.3 0.4 0.5

P
(x

)

10
-1

10
0

10
1

x
0.1 0.2 0.3 0.4 0.5

P
(x

)

10
-1

10
0

10
1

x
0.15 0.2 0.25 0.3 0.35 0.4

P
(x

)

10
0

10
1

Figure 2.7: The distributions P (x) is plotted for different choices of the
gain parameter βE. The two upper panels refer to βE = 4.5 and βE = 3.7.
In both cases the system falls in the region of deterministic bistability. The
lower panels refer instead to βE = 2. In this case the deterministic bistability
is lost, and the mean field dynamics for the species x predicts the existence
of an isolated stationary stable fixed point. The other parameters are set as
in Figure 2.2. Symbols stand for the simulations (see caption of Figure 2.4
for details on the selected graphic outline). The solid line stands for the
theoretical prediction based on (2.28). Dot-dashed and dashed curves are
traced according to (2.23) for, respectively, γ = 1 and γ = 0.1.
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where:

C(z, y) = −αIy + (1− y)fI(sI)

D(z, y) = αIy + (1− y)fI(sI)
(2.30)

and sI = z−ωEIy+hI with z = ωIEx << 1. By exploiting the fact that ωIE

is small one can assume that a Taylor expansion is possible, we eventually

obtain:

C(z, y) ' C(0, y) +R(x, y) +O(ω2
IE) (2.31)

where R(x, y) = ωIEx
∂sI
∂z

∂C
∂sI
|0,y. Notice that ∂sI

∂z
is the gain parameter, iden-

tically equal to βI for the family of non-linear function fI(·) here considered

(see caption of Figure 2.3). In equation (2.29) the function D(z, y) is rescaled

by 1/
√
N , a small factor that encodes for the system size. For this reason,

we set as a first approximation D(z, y) ' D(0, y) and ignore all terms that

combine ωIE and 1/
√
N . Summing up, for small ωIE, the above equation

(2.29) can be cast in the approximate form:

ẏ =
1

γ

(
C(0, y) +R(x, y) +

1√
N

√
D(0, y)η2

)
(2.32)

Note that the deterministic term in equation (2.32) depends linearly on

x, a non trivial modification which restores the bidirectional coupling with

the homologous Langevin equation for species x. The assumed bistability on

x reflects in fact on y, which also faces the simultaneous coexistence of two

attracting equilibria. The linear noise approximation hence breaks down, as

it is not possible to identify a unique fixed point of y that would act as pivotal

point for the linear noise expansion to be carried out. On the other hand, for

ωIE sufficiently small, the two fixed points associated to y are evidently close.
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It seems plausible to hypothesize that the two peaks of P (y) would merge

together, giving rise to a single bell shaped profile. Clearly, the endogenous

noise should be large enough (hence the system size sufficiently small) for

the coalescence of the peaks to take place. This is the scenario depicted in

Figures 2.2 and 2.3 and which ultimately inspires the analysis to which the

remaining part of this section is entirely devoted.

To proceed further we propose to replace the time dependent factor x

appearing in equation (2.32) with x̄0 =
∫
xP0(x)dx, a constant approximate

quantity which follows the determination of the distribution function P0(x),

as obtained in the limiting setting ωIE = 0. The fixed point ȳ1 of equa-

tion (2.32) should fulfill the condition

C(0, ȳ1) +R(x̄0, ȳ1) = 0 (2.33)

Here, a single fixed point is expected, the distribution P (y) being, by assump-

tion, unimodal. To characterize the fluctuations associated to the stochastic

variable y, we perform a linearization of (2.32) around the fixed point ȳ1.

More explicitly we posit y = ȳ1 + u, and carry out a Taylor expansion in

u, the supposedly small stochastic perturbation. A mathematical operation

yields the linear stochastic equation:

u̇ = Q(ȳ1)u+
1

γ
√
N

√
D(0, ȳ1)η2 (2.34)

where Q(ȳ1) = ∂C
∂sI
|0,ȳ1 +

(
∂2C
∂y∂sI

)
|0,ȳ1 . Note that in the last term we have

deliberately dropped the linear contribution in u. As remarked earlier, the
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amplitude of the stochastic term is already scaled by 1/
√
N , a small factor

that senses the size of the system. We approximate u as a Gaussian δ-

correlated noise of variance:

σ2
1 =

(−D(0, ȳ1)

2γNC ′
1

1 + C ′′/C ′

)
(2.35)

where C ′ =
(
∂C
∂sI

)
|0,ȳ1 and C

′′
=
(

∂2C
∂y∂sI

)
|0,ȳ1 . Summing up, at this order

of approximation, the stochastic variables y follow a Gaussian distribution

P1(y) of mean ȳ1 and variance σ2
1. With this we can proceed as illustrated

in the preceding Section to eventually obtain an updated expression for the

distribution of x, namely P1(x). The reasoning can be repeated further, by

exploiting P1(x) to calculate a novel estimate x̄2, which would allow in turn

to self-consistently calculate P2(x) and P2(y), the updated distribution of,

respectively, x and y. In Figure 2.8 the distributions computed according

to the above procedure are confronted to direct simulations assuming the

parameters setting of Figures 2.2 and 2.3. The 0th order of approximation

corresponding to the limiting condition ωIE = 0 is depicted with a dashed

line. The solid line refers to the prediction obtained after three successive

iterations of the outlined procedure. The method converges quickly, and the

improvements are already remarkable after the first round of iteration.

2.6 Observations and conclusions

Endogenous fluctuations arising from finite-size fluctuations can play a role of

paramount importance in shaping the self-emerging macroscopic dynamics of
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Figure 2.8: The distributions P (x) (left panel) and P (y) (right panel) are
represented. The (cyan) circles refer to the stochastic Gillepsie based sim-
ulations. The (light purple) diamonds are obtained upon integration of the
non-linear Langevin equations (2.13). The dashed lines represent the initial
theoretical guess (ωIE = 0). The solid lines stand for the solution obtained
after three consecutive iterations of the method described in the main body
of the paper. In particular, ωIE = 0.5.

a multi-species model. Populations perturbations resulting from the inherent

discreteness of the inspected medium can be rationalized by resorting to a

linear noise treatment, which proves perfectly adequate when the underlying

deterministic dynamics admits a trivial fixed point. In general, non-linearities

are present and may eventually yield more complex dynamical behaviors,

including multistability.

In this case, the linear noise machinery can be punctually employed to

resolve the local dynamics of the system around each of the mutually com-

peting equilibria. To quantify the statistics of rare events that materialize

in the transitions from one attractor of the deterministic dynamics to an-

other, and reconstruct the underlying stationary probability distributions,

requires extending beyond the domain of application of the linear noise ap-
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proximation. We have here considered a stochastic version of the Wilson

Cowan (WC) model, which accommodates for a finite population of excita-

tory and inhibitory neurons. The model assumes a finite carrying capacity,

the population census summing up to a constant. The relative ratio of in-

hibitory over excitatory neurons acts as a control parameter of the model.

The master equation that rules the dynamics of the stochastic WC model

is expanded in powers of the inverse population size: a diffusion approxi-

mation is consequently obtained, which consists in a coupled pair of non-

linear Langevin equations, with multiplicative noise. These latter equations

are solved numerically and shown to return a statistical description of the

stochastic dynamics, which adheres quantitatively with that displayed by the

exact Markov model.

Our analysis is specifically targeted to the region of bistability, a phe-

nomenon that can a priori interest both the interacting families. To gain

analytical insight into the investigated process we considered a simple sce-

nario, assigning the parameters to have just one stationary stable equilibrium

for the population of inhibitors. The excitatory neurons can instead undergo

bistable behavior. There, we operate a substantial reduction in complexity

since the equation ruling the dynamics for the inhibitors becomes one dimen-

sional and therefore solvable. In particular, the dynamics of the excitatory

species is ruled by an independent, non-linear Langevin equation: the in-

direct imprint of the inhibitors is reflected in a modified noise term, while

the deterministic contribution is evaluated at the fixed point of species y.

The population of inhibitors can be considered as an additional noise source.

This latter contribution becomes the more pronounced the smaller the rel-
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ative ratio of inhibitory versus excitatory neurons are broadening in turn

the region where a bistable-like behavior is detected. Analytical expressions

for the distributions of, respectively, excitatory and inhibitory neurons are

obtained, which show a satisfying degree of agreement with the simulated

data. The methods are subsequently generalized to the setting in which

both populations display multiple fixed points. An iterative scheme is in fact

devised that builds on the zeroth order approximation described above and

allows us to explain the modifications displayed in the recorded probability

distribution function when a modest feedback of the excitatory on inhibitory

neurons is accommodated for. In conclusion, we have contributed to the

understanding of the stochastic WC model, focusing on a dynamical regime

for which the linear noise approximation is manifestly inadequate. The non-

linear Langevin equations which represent the diffusion approximation limit

of the original model can be characterized under suitable operating condi-

tions, so contributing to shed light on the subtle dynamical interplay between

distinct families of interacting neurons.

We also want to end this chapter by pointing out an interesting feature.

Indeed, finite size noise and its inhibitory based component cause an ex-

tension of the region deputed to the excitatory bistability, as compared to

deterministic predictions. This contributes, in turn, to elevate the degree of

inherent exibility of the system and broaden its adaptiveness.

This work led to the following publication: Diffusion approximation of

the stochastic Wilson-Cowan model, Zankoc C., Biancalani T., Fanelli D.

and Livi R., Chaos, Solitons & Fractals 103 504-512 (2017)
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Entangled stochastic motifs in

networks

1 In the second chapter, we have considered a stochastic version of the WC

model accounting for the finiteness of the system. We decided to set our

system parameters in a region where it displays bistability. Working in this

setting, we introduced, and then applied, a selection of techniques for dealing

with stochastic systems. These latter tools will be hereafter employed to shed

light on a different problem: our system will no longer be a single, isolated

unit but an assembly of identical nodes organized on a network.

Living systems execute an extraordinary plethora of complex functions

that result from the intertwined interactions among key microscopic ac-

tors [44]. Positive and negative feedbacks appear to orchestrate the necessary

degree of macroscopic coordination [45], by propagating information to dis-

tant sites while supporting the processing steps that underly categorization

1By motifs we mean a pattern or design.
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and decision-making. Excitatory and inhibitory circuits play, in this respect,

a role of paramount importance. As an example, networks of excitatory and

inhibitory neurons constitute the primary computational units in the brain

cortex [9, 10, 15]. They can flexibly adjust to different computational modal-

ities, as triggered by distinct external stimuli [46, 47]. Genetic regulation is

also relying on sophisticated inhibitory and excitatory loops [48, 49, 50, 51].

Specific genes are customarily assigned to the nodes of a given structure,

which can be abstractly pictured as a complex network [52, 53, 54] .

In this chapter, we will to consider a network made of identical patches on

which stochastic oscillations, termed in the literature quasi-cycle, take place.

In fact, quasi-cycles are simply stable focus driven by noise. We want to

understand whether and how stochastic oscillations from distant nodes can

eventually synchronize. We will realize that inter-nodes correlation exist and

persist even at large distances. Anti-phase synchrony at small frequencies is

resolved on adjacent nodes and found to promote the spontaneous generation

of coordinated pattern of actions, that invade the network as a whole. These

patterns are absent under the idealized deterministic scenario, and could

provide novel hints on how living systems implement and handle a large

gallery of delicate computational tasks. They could indeed represent the basic

architectural units for natural systems to perform efficient computations [55,

56, 57].

As a first step in the analysis we shall introduce the minimal stochastic

model to be investigated. We will begin by discussing an isolated system and

turn then to consider the coupled dynamics of a multispecies, excitatory and

inhibitory model distributed on a network. The simple setting where just
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two nodes are considered will serve as a basis to develop the main reference

tools.

3.1 Reduced Wilson-Cowan model and quasi-

cycles

3.1.1 Reduced WC model

Here again we denote by X and Y two individuals of, respectively, the exci-

tatory and the inhibitory populations. We further label with V the volume

of the patch (node) where the dynamics takes place. This time X and Y

undergo the following reactions:

∅ f [sx]−→ X

X
1−→ ∅

∅ f [sy ]−→ Y

Y
1−→ ∅

(3.1)

where ∅ denotes an infinite reservoir. This set of reactions is different from 2.1,

as it describes the stochastic dynamics in the diluted limit. Here again f is

a sigmoid function but this time the synaptic currents are

sx = −r
(
nX
V
− 1

2

)
sy = r

(
y − nY

V

) (3.2)

We notice that r > 0 is the only free parameter. Indeed, we have proceeded

to a substantial reduction in the number of parameters (8 in the original
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WC model), hence its name of reduced Wilson-Cowan model. nX and nY

respectively identify the numbers of elements of type X and Y . From the

definition of sx,y, and recalling the expression for f(·), it is immediately clear

why X and Y are referred to as the excitatory and the inhibitory species. To

obtain the deterministic dynamics of our system we can proceed following the

same strategy as outlined in the Chapter 2, that is, writing down the master

equation, expanding it in powers of the inverse of the volume V to get a

Fokker-Planck that we convert into an equivalent set of Langevin equation

and finally take the deterministic limit V → ∞. To avoid redundancy, we

will skip technicalities and simply write the equations we derived. In the

limit where the volume V (hence the number of molecules) is large, one can

describe the system in terms of the concentrations of the chemical species

x = limV→∞
<X>
V

and y = limV→∞
<Y >
V

, this leads to

ẋ = −x+ f
(
−r(y − 1

2
)
)

ẏ = −y + f
(
r(x− 1

2
)
) (3.3)

where f(sx,y) = 1
1+exp(−sx,y)

is a sigmoid function. The above system admits

a single nontrivial fixed point (or steady state) xf = yf = 1
2
. Note that

the refraction terms (1 − x), (1 − y) in front of the sigmoid functions in

both equations were dropped since we are in the high diluted limit. It is

straightforward to characterize the stability of (xf , yf ) by computing the

eigenvalues λ of the Jacobian matrix J associated to system (3.3), evaluated

at fixed point

J =

 −1 −r/4
r/4 −1

 (3.4)
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Performing the calculation one gets λ = λRe + iλIm = −1± i√r/4. The real

part of λ is negative and the fixed point is therefore stable. Furthermore, the

eigenvalues are complex: sustained stochastic oscillations around the fixed

point, also called quasi-cycle, can eventually set in.

3.1.2 Quasi-cycles

To understand what happens when we turn on stochastic corrections we

are going to employ once again the small noise approximation [35]. More

specifically, we proceed to the following change of variables

x(t) = xf + V −1/2ξ1

y(t) = yf + V −1/2ξ2

(3.5)

where ξ = (ξ1, ξ2) stands for the stochastic perturbation. The small noise

limit assumes V to be large, so that only linear terms in ξ are to be retained

when the above ansatz is inserted in the governing Master equation. The

fluctuations can be shown to obey a set of linear Langevin equations [58] in

the form

ξ̇i =
∑
j

J ijξj + ηi (3.6)

where ηi(t) is a Gaussian noise term with zero mean and with correlator

〈ηi(t)ηj(t′)〉 = δijδ(t− t′), and J the Jacobian of the system given by (3.4).

To solve the above linear system we perform a Fourier transform. Denot-
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ing the Fourier transform of the ξi(t) as ξ̃i(ω), one readily gets

ξ̃i(ω) =
2∑
j=1

Φ−1
ij (ω)η̃j(ω) (3.7)

where Φij = −J ij−iωδij. One can hence calculate the power spectral density

matrix (PSDM):

P ij(ω) =< ξ̃j(ω)ξ̃∗j (ω) >=
2∑
l=1

2∑
m=1

Φ−1
il (ω)δlm

(
Φ†
)−1

mj
(ω) (3.8)

The diagonal entries of the PSDM are real and coincide with the power spec-

tra for the fluctuations, associated to each species. The (generally complex)

off-diagonal elements of the PSDM can be properly normalized so to yield

the Complex Coherence Function (CCF) or Coherency [59]

Cij(ω) =
P ij(ω)√

P ii(ω)P jj(ω)
(3.9)

As explained in [60] the magnitude |Cij| tells us the coherence between two

signals, as a function of ω. The phase φij = arctan[(Cij)Im/(Cij)Re] quanti-

fies the phase lag between the two inspected signals. In Figure 3.1 we depict

the power spectra P11 and P22 (scale on the left), together with |C12| = |C21|
(scale on the right). The power spectra display an identical profile (due to

the symmetry of the equations) which is peaked at ω ' λIm: the endoge-

nous fluctuations are amplified through a resonant mechanism that yields

quasi-cycle oscillations. Symbols in the upper panel of Figure 3.1 refer to

the numerically computed power spectra via the Gillespie scheme and con-
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Figure 3.1: The theoretical power spectrum P 11(ω) = P 22(ω) is depicted
with a solid line. Symbols refer to the power spectra computed from averag-
ing independent realization of the Gillespie dynamics. The squares refers to
excitators (X), while the circles stand for inhibitors (Y ). The vertical dotted
line is traced at ω = λIm =

√
r/4. The dashed line represents |C12| = |C21|.

A phase lag equal to π/2 is predicted. Here r = 50 so to allow for the isolated
peak in the power spectra to be distinctively revealed.

firm the adequacy of the linear noise calculation. The magnitude of |C12| is

maximum, when the power spectra are. At this point the phase lag between

the two oscillators, the excitators and the inhibitors, is π/2. In Figure 3.2

we plot the dynamics of both species, as obtained via the Gillespie scheme.

The quasi-cycle oscillations around the mean-field equilibrium are evident,

as well as the phase lag of about π/2 predicted by the LNA.

Starting from this, and building on the just introduced methodology, we

shall proceed to study the issue of synchronization when two or more replica
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Figure 3.2: Stochastic trajectories (nx
V

and nY
V

versus time). The fixed point
of the underlying deterministic model is depicted with a dashed black line.

of model (3.1) are coupled together.

3.2 A two patches model of coupled excitatory-

inhibitory dynamics

3.2.1 Deterministic dynamics and stability

We now turn to a more complex version of the above model. We begin by

assuming a simple two patches (nodes) model. Symbols used to identify

individual entities are now decorated with an additional index, so to specify

the node to which they refer to. More concretely, we now deal with the

elements Xi and Yi, with i = 1, 2. Each element obeys the same birth and
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death chemical equations given by (3.1). The only noticeable modification

has to do with the definition of the synaptic currents s(·). More specifically,

and with an obvious meaning of the notation involved we have

sx1 = −r
(nY1

V
− 1

2

)
+D∆

sy1 = r
(nX1

V
− 1

2

)
+D∆

sx2 = −r
(nY2

V
− 1

2

)
−D∆

sy2 = r
(nX2

V
− 1

2

)
−D∆

(3.10)

where ∆(nX1 , nX2 , nY1 , nY2) = (
nX2

V
− nX1

V
) − (

nY2

V
− nY1

V
) and D is the cou-

pling parameter. The ∆ term, now part of the synaptic currents, represents

the diffusive interaction taking place between each node, while the first r.h.s.

term stands for the inner dynamics between excitatory and inhibitory popu-

lation within the same node. The dynamics of the system is still ruled by a

master equation, where now n = (nX1 , nY1 , nX2 , nY2). In the limit V → ∞,

these quantities (normalized to V ) converge to the mean field concentrations

(x1, y1, x2, y2). The ODEs that govern the time evolution of the deterministic

variables constitute the natural generalization of equations (3.3). They read

ẋ1 = −x1 + f
(
−r(y1 − 1

2
) +D(x2 − x1)−D(y2 − y1)

)
ẏ1 = −y1 + f

(
r(x1 − 1

2
) +D(x2 − x1)−D(y2 − y1)

)
ẋ2 = −x2 + f

(
−r(y2 − 1

2
) +D(x1 − x2)−D(y1 − y2)

)
ẏ2 = −y2 + f

(
r(x2 − 1

2
) +D(x1 − x2)−D(y1 − y2)

)
(3.11)

The imposed coupling feels the gradient of concentrations, for both excitatory

and inhibitory populations. One can realize that x1 = x2 = xf and y1 =

y2 = yf is an equilibrium solution of the underlying deterministic model. To
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assess the stability of the fixed point, we compute the eigenvalues of the 4×4

Jacobian matrix J given by

J =


−1−D/4 −(r −D)/4 D/4 −D/4
(r −D)/4 −1 +D/4 D/4 −D/4
D/4 −D/4 −1−D/4 −(r −D)/4

D/4 −D/4 (r −D)/4 −1 +D/4

 (3.12)

The Jacobian is a block matrix that may be partitioned by means of two

distinct 2×2 matrix; one depending on both parameters r andD and standing

along the diagonal, the other being in each corner and only dependent on

parameter D. Two eigenvalues coincide with the ones calculated above for

the isolated patch setting, λ1,2 = −1±i(r/4). The two additional eigenvalues

read

λ3,4 = ±
√
r

4
(D − r

4
)− 1 (3.13)

and depend on the coupling strength D 2. For D > Dc = r/4 + 4/r, λ3 is

real and positive and the fixed point turns therefore unstable. For D < Dc,

however the solution x1 = x2 = xf = 1/2 and y1 = y2 = yf = 1/2 is

stable and the deterministic system displays a uniform level of activity, for

both excitators and inhibitors, across the nodes. In other words, the system

undergoes a pitchfork bifurcation at D = Dc where two symmetric stable

branches appear. This is illustrated in Figure 3.3.

To gain further insight into the dynamics of the system, we perform a

linear expansion close to the bifurcation point, D = Dc = r/4 + 4/r. More

specifically, we carry out a change of variables: x1 = xf − εx, y1 = yf − εy,
2Notice that for D = 0, λ3,4 converges λ1,2, as it should be
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Figure 3.3: Diagram of bifurcation for a two nodes system. The solid black
line refers to the fixed point for x1,2 while the dashed-dotted refers to y1,2.
The dashed line refers to the unstable fixed points for both x1,2 and y1,2.

x2 = xf + εx, y2 = yf + εy. By inserting the above ansatz into the full non-

linear equations (3.11) and performing a linear expansion in the perturbation

parameters (εx, εy) eventually yields:

εx = −εy
r
8
− 2

r

1 + Dc
2

a closed expression that allows to immediately appreciate the relative mod-

ulation of the fixed points above the instability threshold. In particular for

r > 4, εx and εy have opposite signs. Imagine that the concentration of the

excitators on node 1 displays a level of activity that is larger than 1/2. In

other words x1 belongs to the upper stable (solid) branch in Figure 3.3. Then,
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x2 is forcefully associated to the lower branch of the bifurcation diagram; y1

and y2 display in turn an opposite internal arrangement. In other words,

above the bifurcation point, the deterministic system manifests a degree of

spatial organization (across nodes) that, to some extent, preditcs the noise

driven motifs for D < Dc that we will discuss in the coming section.

3.2.2 Finite-size corrections

We consider now the full stochastic model and operate at finite V . The two

nodes are formally decoupled when D is set to zero. Excitators (respectively

inhibitors) on the first node will execute stable focus driven by noise oscil-

lations about the trivial deterministic fixed point. Analogous considerations

hold for the homologous quantities hosted on the second node. Stochastic

trajectories referred to distinct nodes are however disentangled. Conversely,

when 0 < D < Dc inter-nodes species are effectively coupled, the degree of

reciprocal influence being more pronounced the closer D is to Dc. Can the

imposed coupling enforce a synchronization of the emergent stochastic oscil-

lations? This is the question that we are going to answer hereafter, building

on the methodology we used to study the single node and computing the

4× 4 PSDM associated to the system at hand

P ij(ω) = 〈ξ̃i(ω)ξ̃∗j(ω)〉 (3.14)

Since the two nodes share identical parameters, the PSDM can be com-

pletely characterized in terms of 6 different entries, namely P11(ω) = P33(ω),

P22(ω) = P44(ω), P12(ω) = P34(ω), P13(ω) = P24(ω), P14(ω) = P23(ω). Focus
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first on the diagonal elements of the PSDM , i.e. the power spectra Pii(ω),

i = 1, . . . , 4. The results of the analysis are plotted in the left panel of Fig-

ure 3.4, for i = 1. When D = 0, the power spectrum displays an isolated

peak, located at ω ' r/4 (rightmost vertical dashed line) in agreement with

the analysis carried out for the single patch case study. When D increases,

a second peak develops and progressively gains in magnitude. Its position is

well captured by the (positive) imaginary component of the eigenvalues λ3,4

(dashed lines). When D approaches the critical threshold Dc, the leftmost

peak stands alone, and the other fades away. For intermediate parameter set-

tings, the stochastic oscillators are forged by the simultaneous presence of two

leading frequencies, whose relative importance can be controlled as wished.

Gillespie bases simulations, performed for different values of D, shows good

agreement with the theory. Similar observations apply to i = 2, 3, 4.

Consider now the off-diagonal entries of the PSDM and build the corre-

sponding CCF. To shed light onto the inter-nodes correlation between exci-

tators, we plot in the right panel of Figure (3.4) |C13|, in the plane (ω,D),

using an apt color code. For small D, the signals are, as expected, completely

independent. By increasing D, two regions are found where |C13| takes values

close to unit. Quasi-cycles displayed by the excitatory populations attached

to distinct nodes do synchronize, for sufficiently large values of the coupling

strength. Intriguingly enough, and at odds with the examples so far reported

in the literature, the synchronization is established for two different charac-

teristic frequencies. These are the indirect reflex of the two peaks identified in

the power spectrum. Even more importantly, the two aforementioned regions

are separated by a distinct frontier (white dashed line) where |C13| is found

48



CHAPTER 3. ENTANGLED STOCHASTIC MOTIFS IN NETWORKS

to be identically equal to zero: in the left portion of the plan, with respect

to the white dashed separatrix, the phase lag is exactly π. The stochastic

trajectories are hence predicted to be in anti-phase, on short frequencies,

or equivalently, long periods. In the complementary portion of the plane,

i.e. on the right of the separatrix, φ is found to be zero, thus implying in

phase synchrony at large frequencies or short periods. Direct simulations

confirm the scenario depicted above; see trajectories annexed to the right

panel of Figure (3.4). Stochastic trajectories referred to the same species

attached to contiguous nodes are entangled. The result of a measurement at

one node roughly determines the outcome of a measurement simultaneously

performed at the other node. Leaving aside more fundamental reflections, we

remark that such entangled states can be hierarchically assembled to yield

macroscopic patterns, as we shall demonstrate herafter.

Complementary information can be drawn by inspecting the other off-

diagonal elements of the PSDM. We know that, when D = 0, excitators

and inhibitors belonging to the same node oscillate with a phase of π
2
. This

condition is perpetrated when D is made to increase inside the region of in-

terest (D < Dc), with however the emergence of a frequency of anti phase

synchrony. This can be observed on the left panel of Figure 3.5 where |C12|,
which quantifies the amount of synchrony between inhibitory and excitatory

in the same node, is reported in the reference plane (D,ω). One can distin-

guish a new branch on which |C12| takes significant value. This new branch

progessively converges towards low frequencies as D increases. The phase

lag associated to this frequency of synchronization is progressively modu-

lated and eventually approaches π, for large enough coupling. Also in this
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Figure 3.4: Left panel: the power spectrum P11 is plotted as function of ω,
for different choices of D. Lines refer to the theoretical predictions. Symbols
are obtained by averaging over many realizations of the stochastic simula-
tions. Right panel: |C13| is plotted in the plane (ω,D). Two regions can be
identified where the synchronization take place. These are separated by the
dashed (white) line, obtained by setting |C13| = 0. The synchronization at
small frequencies occur in anti-phase (φ = π), while at high frequencies the
theory predicts φ = 0. The stochastic trajectories (nX1 and nX3 vs. time
t) confirm the adequacy of the LNA. In phase and anti-phase regimes of
synchronization are highlighted in the boxes. Here, r = 50 and V = 20000.
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Figure 3.5: Left panel: map describing the magnitude of C12 in the reference
plane (D,ω). This parameter allows to resolve the degree of synchronization
between excitators and inhibitors in the same node. Right panel: |C14| is
plotted in the plane (D,ω).

case, numerical experiments are found in excellent agreement with the theory

predictions. Similar conclusions can be drawn by analyzing C24 and C34. In

the right panel of Figure 3.5 the magnitude of |C14| in plotted in the plane

(D,ω).

3.3 Excitatory-inhibitory interactions on a com-

plex network

3.4 Mean-field approximation

We are now in a position to extend the analysis to the relevant case where

the interactions between excitators and inhibitors is mediated by a complex

network. As outlined for the two nodes setting, the interactions is supposed
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to be diffusive in that it senses the difference of concentrations between ho-

mologous species on distinct nodes. Furthermore, the coupling is embedded

in the non-linear function f(·), here introduced to exemplify the activation

process. Consider now an extended collection of Ω nodes and label with A

the associated adjacency matrix: Aij = 1 if nodes i and j are connected,

Aij = 0 otherwise.

In the following we will consider symmetric coupling Aij = Aji, in line

with the above treatment. We however anticipate that our conclusions re-

main unchanged, when asymmetric couplings are accommodated for. The

state of the system is photographed by the 2Ω components vector n =

(nX1 , nY1 , nX2 , nY2 , . . . , nXω , nYΩ
, ). Correspondingly, in the limit V → ∞,

we deal with the mean field concentrations z = (x1, y1, x2, y2, . . . , xΩ, yΩ).

Generalizing the expression introduced above for the case of two nodes, we

set

sxi = −r
(nyi
V
− 1

2

)
+D

∑Ω
j ∆ij

nxj
V
−D∑Ω

j ∆ij
nyj
V

syi = r
(nxi
V
− 1

2

)
+D

∑Ω
j ∆ij

nxj
V
−D∑Ω

j ∆ij
nyj
V

(3.15)

where this time ∆ij = Aij −κiδij is the standard discrete Laplacian operator

and κi stands for the connectivity of node i. The deterministic equations

read

ẋi = −xi + f
(
−r
(
yi − 1

2

)
+D

∑Ω
j ∆ijxj −D

∑Ω
j ∆ijyj

)
ẏi = −yi + f

(
r
(
xi − 1

2

)
+D

∑Ω
j ∆ijxj −D

∑Ω
j ∆ijyj

) (3.16)

3.4.1 Stability

We first want to determine a closed analytical expression for the critical value

of the coupling constant D that sets the limit of stability of the homogeneous
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fixed point. To do so, we start by inserting xi = xf + δxi and yi = yf + δyi

in the above equations and linearize them by retaining the terms of the

first order only in the imposed perturbation (δxi, δyi). A straightforward

calculation leads to

˙δxi = −δxi +
(
−rδyi +D

∑Ω
j ∆ijδxj −D

∑Ω
j ∆ijδyj

)
f ′(zf )

˙δyi = −δyi +
(
rδxi +D

∑Ω
j ∆ijδxj −D

∑Ω
j ∆ijδyj

)
f ′(zf )

(3.17)

where f ′ denotes the derivative of the sigmoid function f and zf the homoge-

nous fixed point vector. It is immediate to realize that f ′(zf ) = f(zf )(1 −
f(zf )) = 1/4. We then set to expand the perturbations (δxi, δyi) on the

basis of the eigenvectors of the Laplacian ∆. To this end, we denote by Γ(α)

(with α = 1 . . .Ω) the eigenvalues of the Laplacian and by φ
(α)
i the associated

eigenvectors, namely ∑
j

∆ijφ
(α)
j = Γ(α)φi(α) (3.18)

In formulae, we require:

δxi =
∑Ω

α cαexp(λα)Φ
(α)
i

δyi =
∑Ω

α bαexp(λα)Φ
(α)
i

(3.19)

Inserting in the equations for the perturbation, carrying out the calculation

and projecting on each independent eigendirection, one eventually ends up

with  −1 + DΓ(α)

4
− λα −1

4
(r +DΓ(α))

1
4
(r +DΓ(α)) −1− DΓ(α)

4
− λα

  cα

bα

 = 0 (3.20)
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The above homogeneous system admits a non trivial solution provided the

matrix in square brackets has zero determinant. This latter condition yields

a second order equation for λα as function of Γ(α) and D. Consider then

λ+
α , the largest of the two roots. If the real part of λ+

α is positive, then

the perturbation grows exponentially and the homogeneous fixed point is

unstable. In our analysis we considered symmetric networks: in this case the

eigenvalues Γ(α) are real and semi-negative defined. After a straightforward

manipulation it is immediate to conclude that (λ+
α )Re < 0 provided D is

smaller than the critical value:

Dc =
16
r

+ r

2 max
α
|Γ(α)| (3.21)

This latter expression has been successfully validated against numerical in-

spection. For D < Dc the homogeneous fixed point is stable.

3.4.2 Intertangled stochastic motifs

Turning on the stochasticity of our system, we will show that intertangled

stochastic patterns will take place. As a first example we consider a linear

ring made of Ω = 4 nodes and calculate the 2Ω× 2Ω elements of the PSDM.

In left panel of Figure 3.6 we show |C1,2i+1|, with i = 1, 2, 3 (plotted on the

horizontal axis), for a choice D < Dc, and against ω (plotted on the ver-

tical axis). The phase lag, as predicted by the theory, is also displayed in

the Figure 3.6 the values reported exactly apply inside the boxes delimited

by the (white) dashed lines. A sequential alternation of phase and anti-

phase synchronization is hence expected for the stochastic excitatory signals,
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registered across the ring. Similar conclusions are drawn when considering

|C1,2i|, for i = 1, 2, 3, i.e. the degree of synchronization between excitators

and inhibitors on different nodes. Patterns of activation instigated by the

noise assisted drive towards self-organization are hence expected to emerge.

Stochastic simulations, as reported on the left panel of figure 3.7, confirm

the correctness of this conclusion: nodes are termporarily active or inactive,

depending on their position along the chain. The emerging pattern is dy-

namical and the system switches continuously one given configuration and

its negative analogue, as time progresses.

Figure 3.6: Left panel: |C1,2i+1| vs. ω (vertical axis) is plotted, for i = 1, 2, 3
(horizontal axis). The system is made up of 4 nodes organized in a closed
linear ring. The synchronization occurs for roughly two values of ω, the
modulus of the complex coherence function being more significant at low
frequencies. The phase lag predicted by the theory is also displayed in the
Figure. The values reported apply inside the regions delimi ted by the (white)
dashed lines Right panel: same for |C1,2i|

Excitators (upper circle, continuous arrow) and inhibitors (lower circle,

dashed arrow) are in anti-phase on the node they happen to share: arrows

point upward (resp. downward) if the measured activity is more (resp. less)
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Figure 3.7: Snapshot of the stochastic dynamics for two networks topologies:
the stochastic density of the excitators is plotted. Left panel: a chain of four
nodes is considered - in each node the density displayed by excitators (upper
circles) and inhibitors (lower circles) is depicted. Right panel: a snapshot of
the stochastic pattern of activation of the excitators is shown.

pronounced as compared to the mean field uniform equilibrium. The archi-

tecture of the network plays indeed a crucial role. Robust patterns which

exploit the phase/anti-phase dichotomy on a closed ring, necessarily require

accommodating for an even number of nodes. When nodes are odd, frustra-

tion may occur. Recall that the formalism here developed apply to generic

networks, not just to regular lattices. For demonstrative purposes, we show

in the right panel of Figure 3.4 a snapshot of the (excitatory) activation pat-

tern obtained when the system is placed on a tree with branching ratio equal

to 4.

3.5 Conclusion

In a first place, we have shown that endogenous fluctuations can seed the

emergence of regular oscillations when parameters are set so to drive deter-
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ministic convergence towards a trivial equilibrium. Under the linear noise ap-

proximation (LNA), we were able to perform a Fourier analysis of our system

first constitued by a single node. This allowed us to derive the power spectra

associated to the stochastic signals for excitatory and inhibitory species and

also to quantify their coherence and their phase shift by means of the Com-

plex Coherence Function (CCF). We then considered a very simple network

made of two identical nodes coupled diffusively. Adapting the tools we first

employed on a single node, we found out that for intermediate parameter

settings, the stochastic oscillators are forged by the simultaneous presence

of two leading frequency, whose relative importance can be controlled by

modulating the coupling. More interesting, stochastic trajectories of simi-

lar species from adjacent nodes are predicted to be in anti-phase on short

frequencies and perfectly synchronized at large frequencies. Finally, we gen-

eralized our analysis to a complex network: proving that endogenous noise

can promote a coordinated pattern, in a minimalistic model of excitatory and

inhibitory interactions. This latter result encompasses, for its inherent sim-

plicity, a large gallery of life science applications, ranging from neuroscience

to the study of genetic circuits. Noise sustained intertangled motifs could

indeed convey important tips on how living systems handle computational

tasks and information processing.

This work led to the following publication: Intertangled stochastic motifs

in networks of excitatory-inhibitory units, Zankoc C., Fanelli D., Ginelli F.,

and Livi R., Phys. Rev. E 96, 022308 (2017)
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Chapter 4

Noise driven neuromorphic

tuned amplifier

In this chapter, the same reduced WC model is evolved on a directed lat-

tice. We will show that such system behaves as a fully tunable amplifier: the

endogenous component of noise, stemming from finite size effects, seeds a

coherent (exponential) amplification without distorsion across the chain gen-

erating giant oscillations with tunable frequencies, a process that the brain

could exploit to enhance, and eventually encode, different signals. On a wider

perspective, the characterized amplification process could provide a reliable

pacemaking mechanism for biological systems. We conclude this chapter by

investigating the thermodynamics of our system, finding that the system ex-

tracts energy from the an external thermal bath and operates as an out of

equilibrium thermal machine, under stationary conditions.
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Figure 4.1: Schematic layout of the neuromorphic circuit.

4.1 The model

We continue working with the reduced WC model, with the only difference

that now the patches are organized in a one dimensional lattice, as depicted in

Figure 4.1, with unidirectional coupling. Consequently the synaptic currents

read

sxi = r
(
yi− 1

2

)
+D (xi−1−xi)−D (yi−1−yi)

syi = r
(
xi− 1

2

)
+D (xi−1−xi)−D (yi−1−yi)

(4.1)

To provide additional degrees of freedom we assign to the patches a spe-

cific volume Vi. The governing Langevin equations take therefore the form

d
dτ
xi = 1

γi

[
f(sxi)− xi

]
+ 1

γi
√
V1

√
xi + f(sxi)λ

(1)
i

d
dτ
yi = 1

γi

[
f(syi)− yi

]
+ 1

γi
√
V1

√
yi + f(syi)λ

(2)
i

(4.2)

where λ=(λ
(1)
1 , λ

(2)
1 , . . . , λ

(1)
Ω , λ

(2)
Ω ) is a Gaussian stochastic variable with zero

mean and correlator 〈λ(l)
i λ

(m)
j 〉 = δijδlmδ(τ − τ ′). Here γi stands for the ra-

tio between the volume Vi of node i and the volume V1 of node 1, γi = Vi
V1

,

whereas, in the second chapter, γ was standing for the ratio between the total

number of inhibitory neurons M and the total number N of excitatory neu-

rons within the same node. As usual, we start by studying the system in its
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thermodynamic limit V1 →∞ to assess its stability. The inherent simplicity

of our model which comes from the unidirectionality of the coupling makes

very simple the computation of the eigenvalues of the Jacobian. Indeed, the

Jacobian of the system evaluated at its homogenous fixed point, xif = yif = 1
2

for all 1 ≤ i ≤ Ω, is a block tridiagonal matrix

J =



E1 0 0 0 0

S2 E2 0 0 0

0 S3 E3 0 0

0 0
. . . . . . 0

0 0 0 SΩ EΩ


(4.3)

where

E1 =

−1 − r
4

r
4
−1

,Ei =

−1+D/4
γi

− r−D
4γi

r−D
4γi

−1−D/4
γi

,Si =
D

4
√
γiγi−1

1 −1

1 −1


(4.4)

The characteristic polynomial of J writes

0 = det(J − λI) = det(E1 − λI)
Ω∏
i=2

det(Ei − λI) (4.5)

The first term in the preceding expression gives a quadratic equation for λ,

(λ+ 1)2 +
r2

16
= 0 (4.6)

This latter yields λ1,2 = −1± i r
4
≡ −1± iω0. The remaining eigenvalues are

60



CHAPTER 4. NOISE DRIVEN NEUROMORPHIC TUNED
AMPLIFIER

obtained by solving the following Ω equations:

(
1 +D/4

γi
+ λ

)(
1−D/4

γi
+ λ

)
+

(r −D)2

16γ2
i

= 0 (4.7)

allowing one to immediately obtain:

(λi)3,4 =
1

γi

[
−1±

√
−r

8

(r
2
−D

)]
(4.8)

We begin by assuming nodes of identical capacity Vi = V , which entails

γi = 1. The spectrum of J is hence degenerate with eigenvalues λ1,2 with

mulitiplicity 1 and (λi)3,4 with mulitiplicity Ω−1. As expected, λ3,4 converge

to λ1,2, when D → 0. Based on equation 4.8, we can immediately conclude

that the homogeneous fixed point is linearly stable provided D < Dc ≡ r
2

+ 8
r
.

Importantly, the eigenvalues are complex for D < r/2 < Dc, an observation

that plays a crucial role because, in the finite volume limit, this will give

birth to the so-called quasi-cycles we presented in the previous chapter.

The technique employed in the previous chapter to assess the stability of

the homogeneous fixed point, based on the expansion of the perturbations

into the eigenbasis of the Laplacian, achieves the same result for Dc. We

decided to opt for this method for one main reason. If we had used equa-

tion (3.21), we would have not obtained any information on the imaginary

part of the Jacobian eigenvalues. However, it is of paramount importance

to know about the imaginary part, since it gives the frequency of the mod-

ulation and allows to derive the condition for the emergence of quasi-cycles

D < r/2.
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4.2 Amplification and modulation mechanism

We now specialize on the stochastic, finite size dynamics, and hence assume

V1 to be finite. When D = 0 the stochastic trajectories on each node are for-

mally disentangled. Excitators (reps. inhibitors) execute quasi-cycles. The

amplitude of the oscillations scales as 1/
√
V1 and the associated frequency

approximately reads ω0 = r/4, the imaginary part of the Jacobian eigen-

values in the uncoupled, D = 0, setting. A remarkably different scenario is

faced when turning the coupling active. We will in particular operate for

D < r/2, the homogeneous fixed point being therefore stable. The degen-

erate component of the Jacobian spectrum returns an additional frequency

ω1 =
√

r
8

(
r
2
−D

)
which can be continuously modulated, in the range [0, ω0],

as function of D. This observation is central to understand the emerging

stochastic dynamics: the internal noise seeds in fact giant quasi-cycles, with

tunable frequency and growing amplitude across the lattice. The system

spontaneously behaves as an effective, stochastic driven pacemaker.

4.2.1 Spectral analysis

The first thing we should do to investigate this problem is to compute the

power spectrum P ii(ω) = 〈ζ̃i(ω)ζ̃∗i (ω)〉 of fluctuations on node i. In Fig-

ure 4.2 the (normalized) power spectrum of excitators fluctuations on differ-

ent nodes is plotted. Symbols refer to the numerical integration of equations

(4.2) [42], while the solid lines follows the theoretical estimate (3.14). The

power spectrum on the first node (circles, black online) is centered in ω0

(rightmost vertical dashed line). The power spectrum on the second node
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(squares, red online) displays a bimodal profile. A second peak emerges in

correspondence of ω1, leftmost vertical dashed line. Moving along the chain

(pluses and diamonds), the bump in ω0 fades away, while the peak in ω1 be-

comes higher and gets progressively more localized. Individual trajectories

as obtained on different nodes are superposed in Figure 4.3: the amplifica-

tion can be clearly appreciated by eye inspection. Under the linear noise

approximation, the maximum of the power spectrum diverges exponentially

(not shown) along the chain. At the same time the width of the bell in ω1

becomes narrower and the profile converges asymptotically to a delta like

distribution. Beatings and other spurious modulations are therefore progres-

sively filtered, as moving along the chain and building on the idealized linear

approach: the system is hence predicted to eventually behave as a veritable

pacemaker. However, non-linear terms do matter and eventually balance the

growth, as predicted within linear scenario. Indeed, the process of amplifi-

cation is expected to come to an halt when the oscillations get large enough

so as to feel the boundary at xi ' 0 (resp. yi ' 0).

4.2.2 Characterization of the amplification mechanism

In this section, we denote by ζ the fluctuations around the fixed point. To

shed light on to this mechanism and quantify the amplification grade under

the linear noise approximation, we consider the distribution of fluctuations

Π(ζ, t) around the deterministic equilibrium. As it is shown in Appendix C,

Π(ζ, t) obeys to a Fokker-Planck equation which can be derived via LNA.

The solution of the Fokker-Planck equation is a multivariate Gaussian that

we can univocally characterize in terms of the associated first and second
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Figure 4.2: The theoretical power spectrum Pi(ω) for excitators (X), for
i = 1, .., 4 is plotted with a solid line. Symbols refer to the power spectra
computed from averaging independent realizations of the stochastic dynam-
ics. The rightmost vertical dashed line is traced at ω0, the leftmost at ω1.
Here r = 50, D = 10 and V = 106.

moments. It is immediate to show that the first moments are equal to zero.

We focus instead on the the 2Ω × 2Ω family of second moments, defined as

〈ζlζm〉 =
∫
ζlζmΠdζ. A straightforward calculation (see Appendix C) yields:

d
dτ
〈ζ2
l 〉 = 2 〈ζl(Jζ)l〉+ Bll

d
dτ
〈ζlζm〉 = 〈ζl(Jζ)m〉+ 〈ζm(Jζ)l〉

(4.9)

for respectively the diagonal and off-diagonal (l 6= m) moments. Here B
stands for the diffusion matrix of the Fokker-Planck equation for the per-

turbations ζ, it is diagonal and constant, its entries being equal to 1
V

. The
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Figure 4.3: Stochastic trajectories on different nodes. Noisy self-sustained
oscillation of modest amplitude are displayed on the first node of the lattice
(black line). The amplitude of the oscillations grows steadily across the chain
(red line on node 2 and blue line on node 8) and become progressively more
regular.

stationary values of the moments can be analytically computed by setting to

zero the time derivatives on the left hand side of equations (4.9) and solving

the linear system that is consequently obtained. We are in particular inter-

ested in accessing σi =
√
〈ζ2
i 〉, the standard deviation of the fluctuations

around the deterministic equilibrium, on node i. The value of σi, normalized

to σ1 and expressed in decibel [dB], is plotted against the node index along

the lattice in Figure 4.4. The data refer to the excitatory species. The solid

line stands for the analytical estimate, that implements the above strategy.

We notice that the standard deviation of the fluctuations grows exponentially
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along the chain. As we will explain later this was expected since our system

is prone to convective instability (see Section 4.2.4). Symbols refer instead

to direct integration of equations (4.2), for different choices of the volume V1.

The agreement with the theory prediction based on the linear ansatz is ex-

cellent over a finite portion of the chain. When σi ' 1/2 (horizontal dashed

line) the system senses the boundary, non-linearities come into play and in-

duce the observed saturation. By increasing V1, one reduces the amplitude

of the endogenous fluctuations: the signal has therefore to travel through a

larger set of contiguous nodes before the amplitude of the oscillation can hit

the extinction edge. As a consequence, the linear approximation holds over

a larger portion of the scrutinized chain.

The rate of exponential growth (relative to the excitators species), as

predicted from the computation of the standard deviation σi, is plotted with

an appropriate color code, in the reference parameters plane (r,D), see Fig-

ure 4.5. The amplification takes place within a bounded region in (r,D), as

delimited by the two solid (white) lines. The straight line that sets the right-

most frontier of the amplification domain is obtained as r = D/2, namely

the condition of existence of a complex imaginary part in the degenerate

eigenvalues λ3,4 (which in turn select the frequency ω1 to be amplified). The

boundary that delimits the region of interest on the left follows a closed an-

alytical estimate that can be obtained by truncating long range correlations

in the estimate of the multivariate moments to nearest neighbors (see Ap-

pendix E). The dashed (white) line refers to Dc vs. r and it is depicted for

the sake of completeness. Similar results (not shown) apply to the inhibitors.
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Figure 4.4: σi/σ1 (in decibel [dB] logarithmic scale) is plotted against the
index which identified the ordering of the nodes along the lattice. Data
refer to the exicitatory species. The solid line stands for the analytical esti-
mate obtained under linear noise approximation. The amplification process
is clearly exponential. Symbols refer to direct integration of equations (4.2),
for different choices of the volume V1 (106, circles; 1012, squares; 1018, dia-
monds). The horizontal dashed lines show where the linear estimate predicts
σi ' 1/2, namely when saturation is theoretically expected to occur. Here
D = 10, r = 50.

4.2.3 Non-Normality

Now that we have entirely characterized the amplification process we still

have to answer the following question; where does this amplification come

from? This is all due to the specific structure of our Jacobian which is said

to be non-normal. Indeed, the fact that non-normality amplifies transient

dynamics was already well known, it has been observed in many different
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Figure 4.5: The rate of exponential amplifications (for the excitators) is
depicted in the plane (r,D). The domain where the amplification is expected
to take place are delimited by the two solid curves. The dashed line refers to
Dc vs. r.

fields from fluid mechanics [61] to ecological systems [62].

A matrix A is said to be non-normal if it does not commute with its

conjugate, that is

AA∗ 6= A∗A (4.10)

This also means that its eigenvectors do not necessarily form an orthogonal

basis of Cn with n the dimension of the matrix. A possible measurement to

quantify the non-normality of a matrix is the numerical abscissa. For a given

68



CHAPTER 4. NOISE DRIVEN NEUROMORPHIC TUNED
AMPLIFIER

matrix A it is defined by

κ(A) = sup σ

(
A+A∗

2

)
(4.11)

where σ(A) denotes the spectrum of the matrix A and A∗ its conjugate

transpose. Now let’s assume that the matrix A is the Jacobian of a stable

dynamical system, in other words, sup Reσ(A) < 0. If the numerical ab-

scissa κ(A) is negative, then the orbits will exponentially converge to the

fixed point. On the other hand, if κ(A) is positive, a transient growth of

size proportional to κ(A) will occur. 1 Let’s take our system, where have

set D = 10, r = 50 and γi = 1, to exemplify what we just described. First,

we consider a single node which Jacobian J1 is the matrix E1 given in (4.4),

we find that κ(J1) = −1 meaning that no transient will occur and that the

oscillations will exponentially approach the fixed point. If we now focus on

respectively 2 and 3 nodes chain, we find that the degree of non-normality

of the Jacobian becomes positive and grows with the chain length. We have

respectively κ(J2) = 2.5355 and κ(J3) = 3.3301 for the 2-nodes and the 3-

nodes chain. On Figure 4.6 are displayed the signals of the perturbation on

node i, xi(t), for the linearized system and their respective envelopes (thicker

lines). It shows that the perturbation on node 1 (red line) undergoes no tran-

sient and exponentially approach the fixed point contrary to nodes 2 (blue

line) and 3 (green line). Accordingly to what we expect from their numerical

abscissa, the perturbation on node 3 goes through a more amplifying tran-

sient as compared to the perturbation on node 2. If each node is getting

more amplified than its precursor, this is obviously because of the unidirec-

1It is immediate that in cases in which matrix A is symmetric (and stable) κ(A) < 0.
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tionality of our network. Adding a node to our system, and therefore a block

to its Jacobian, will enhance the degree of non-normality and consequently

reinforce the amplification.
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Figure 4.6: Time evolution for the pertubations xi(t). Each color stands for
a specific node. In red is depicted the trajectory of the pertubation on node
1, in blue the trajectory on node 2 and in green the trajectory on node 3.
The parameters here are D = 10, r = 50 and γi = 1.

The situation is even more intriguing for stochastic systems. Indeed, noise

constantly injects dynamics into the system making the transient regime per-

petual. This notably explains the persistence of the amplification observed

in our present model. A roughly similar situation will be discussed in the
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next chapter: we will in particular show that, once again, the combination of

quasi-cycles and non-normality results in a class of (convective) instabilities.

4.2.4 Convective instability

Previously, we have mentioned that the exponential nature of the amplifica-

tion was not a surprise but merely the manifestation of convective instability.

In the first place, let’s distinguish 3 possible situations:

• Absolute stability: a system is absolutely stable when any perturbation

will be damped, and this in any frame of reference.

• Absolute instability: a system is absolutely unstable when the edges of

the perturbations move in opposite direction, propagating and amplify-

ing the instabilities at any stationary point of the system. We’ll never

face such a situation since we focus our study in a region of parameter

where our system is absolutely stable (D < Dc).

• Convective instability: contrary to absolute instability, in this case, the

edges of the perturbation move in the same direction and consequently

the perturbation will grow exponentially in a moving frame of reference.

In Figure 4.7 are depicted the 3 different situations that we have described

above. In blue is drawn a system which is absolutely unstable, the edges of

the perturbations, centered in x0 at t = 0, move in opposite directions. It

will, therefore, propagate over all the x-axis. In red is depicted an absolutely

stable system, over time the perturbation decreases until the system is back to

its state before the perturbation. In the lower panel is shown a convectively
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Figure 4.7: Illustration of the 3 possible situations that we may encounter
for our system [63].

unstable system. The edges of the perturbations are moving in same the

direction along the x-axis which is the frame of reference here. It exists a

set of velocities v such that, at time t, the perturbations in x = vt+ x0 will

have increased exponentially compared to what it was initially. However,
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if we fix our attention on one particular point of space, say x0, we will see

the perturbation decreasing exponentially in time as for the absolutely stable

case.

In order to show that convective instability occurs in our system, let us

introduce at t = 0 a tiny pertubation on the first node and then observe

at different time the spatial composition along the chain. The results are

shown on Figure 4.8. The perturbation inserted on the first node at t = 0

has been propagating and amplifying with node index. This confirms that our

system undergoes convective unstability. Most of the time, the prediction of
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Figure 4.8: Illustration of the manifestation convective instability in our
system. A perturbation inserted on the first node at time t = 0 propagates
and amplify along the chain.

convective instability might not be carried out by means of a standard linear

analysis. However, more sophisticated techniques based on the chronotypic
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Lyapunov analysis [64, 65, 66] have been developed to tackle such problems.

4.3 Other configurations and possible appli-

cations

The noise assisted amplification process that we have here characterized is

very flexible and can be configured in different schemes. We are about to

present two possible configurations, one to amplify a frequency harmonic of

ω0, and a second to amplify on a frequency comb.

4.3.1 Amplifying the harmonics of ω0.

To amplify the harmonics of ω0 for any given D, within the domain deputed

to the amplification, we can modulate the volumes of the nodes, following

the strategy discussed below. Label V1 the volume of the first node. Recall

that ω1 =
√

r
8

(
r
2
−D

)
identifies the frequency that gets amplified when

the volumes are identical, or, equivalently, when γi = 1 ∀i. To force the

emergence of a second peak in ω0/2, on the second node of the lattice, one

needs to impose the condition

ω1

γ2

≡ ω0

2
(4.12)

which readily translates in

V2 = 2V1
ω1

ω0

(4.13)
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To enforce the amplification of a train of successive harmonics one can expand

on the above recipe and eventually obtain the following condition for the

relative modulation of the volumes:

Vi = 2i−1ω1

ω0

V1 i ≥ 2 (4.14)

In practice, to allow for the amplification to produce significant intensities of

the signal at each frequency, one could keep the volumes constant over a few

consecutive nodes, before increasing the size of the volumes of the successive

set of nodes, as prescribed by formula (4.14). In Figure 4.9 we assumed a

sequence of nodes with volumes (V1, V2, V2, V3, V3, V3). The power spectra

depicted in Figure 4.9 refer to the first, third and sixth nodes of the chain,

respectively.

4.3.2 Amplifying on a frequency “comb”

We shall here demonstrate that the amplification can take place on a fre-

quency comb. We shall in particular amplify a set of frequencies ωk =

ω0 − k∆ω with k = 0, 1, 2, ..; ∆ω is positive and represents the relative

distance between two consecutive frequency peaks. Reasoning as in the pre-

ceding section, we want to assign the volume of the second node so as to

meet the condition
ω1

γ2

− ω0 ≡ −∆ω (4.15)

which translates into:

V2 = V̂
1

ω0/∆ω − 1
(4.16)
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Figure 4.9: Amplifying the harmonics of ω0, following the scheme that yields
to equation (4.14). The power spectra of fluctuations on different nodes (see
text) are displayed. Symbols refer to direct simulations and the solid lines
to the theory prediction.

where V̂ = ω1

∆ω
V1. Based on the same reasoning, we get for the other nodes

the following recursive relation:

Vi =
Vi−1

1− Vi−1

V̂

(4.17)

As discussed in the preceding section, one can keep the volumes unchanged

over a few consecutive nodes, before modulating their size as prescribed by

formulae (4.16) and (4.17), so to enhance the amplification power of the

device. In Figure 4.10 we exposed a chain that implements the sequence of
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volumes (V1, V2, V2, V3, V3, V3). The power spectra displayed in Figure 4.10

refer to the first, third and sixth nodes, respectively. In both cases, the

ω

6 8 10 12 14 16

P
i(ω

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

∆ ω ∆ ω

Figure 4.10: Amplifying a frequency comb. Here, ωk = ω0 − k∆ω with
k = 0, 1, 2, ... The positive quantity ∆ω denotes the separation between two
consecutive frequencies. The size of the volumes of the nodes are set as
prescribed by equations (4.16) and (4.17). The power spectra of fluctuations
on different nodes (see text) are displayed. Symbols refer to direct simulations
and the solid lines to the theory prediction.

self-sustained amplification is fueled by the inherent component of noise,

stemming from finite size corrections. At variance, one could imagine to

assemble a device that operates in the deterministic Vi →∞ limit. IfD < Dc,

the system is frozen in its homogeneous equilibrium, the concentration of

both xi and yi being identical to 1/2 on each node. Assume now that a

perturbation, limited in time and modest in amplitude, hit on the first node.

77



CHAPTER 4. NOISE DRIVEN NEUROMORPHIC TUNED
AMPLIFIER

The disturbance propagates along the chain and gets magnified, following

the scheme that we outlined above, exciting on site oscillations at a given

frequency ω1, that could be freely tuned by acting e.g. on D. Such an

apparatus could efficaciously act as a signal detector. Even more interesting,

one could foresee the possibility of assembling a detector that exploits parallel

lines of detection. On each line a different value of the coupling D could be

enforced. In doing so, from the trace of the amplified signal at the end of the

chain (processed with a standard frequency analyzer), it could be possible

to identify the node (hence the chain) where the perturbation hit. This

observation opens up the perspective to define a novel class of detectors that

could spatially resolve low intensity alerts. This is exemplified in Figure 4.11.

4.4 A thermodynamical interpretation

Finally, we will derive a consistent thermodynamic interpretation of the pro-

cess that underlies the spontaneous generation of giant quasi-oscillations.

Our analysis follows the approach pioneered by [67, 68, 69, 70] to study

the thermodynamics of far-from-equilibrium systems, which are microscopi-

cally amenable to stochastic continuous time Markovian processes. Given the

probability density P (v, τ) that satisfies a Fokker-Planck equation equivalent

to the Langevin equations (4.2), we define the entropy

S(τ) = −
∫
P (v, τ) lnP (v, τ)dv (4.18)
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Figure 4.11: Here is depicted a schematic view of a signal detector. Each
branch differs from the successive by its coupling value D. Doing so, the
output main frequency will be different for every branch, this would allow us
to detect and spatially locate arbitrary small signals.

A straightforward manipulation yields dS/dt = ΠS − ΦS, where

(i) ΠS is positive defined and represents the rate of entropy production

due to the non-conservative forces at play

(ii) ΦS stands for the entropy flux, which is positive if the entropy flows

from the system to the environment.

Their explicit expressions read (more details on their derivation are given in

Appendix E)

ΠS =
∑
i

2

Bii

∫
I2
i (v, τ)

P (v, τ)
dv (4.19)
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ΦS =
∑
i

2

Bii

∫
Ai(v)Ii(v, τ)dv (4.20)

where

Ii = AiP −
1

2
Bii

∂

∂vi
P (4.21)

is the probability density current associated to the same Fokker-Planck equa-

tion as for equation (4.18). A stationary balance is attained when ΦS = ΠS,

a condition that proves equivalent to imposing

∑ ∂

∂vi
Ii = 0 (4.22)

The condition of solenoidal current, ∇ ·I = 0 is indeed met when the Fokker-

Planck equation attains its non trivial dynamical equilibrium (Ii 6= 0). In

other words, the observed amplification stems from a genuine noise driven

out-of-equilibrium process, the neuromorphic device working under station-

ary operating conditions. The rate of entropy production as computed an-

alytically under a linear prescription grows exponentially, see Appendix E.

A cross-over towards a non exponential regime is eventually observed when

non-linearities become prominent, in complete agreement with the insight

gained under a purely dynamical angle.

4.5 Conclusion

In conclusion, we have shown how a minimal model of neuronal population

dynamics can be assembled to behave as a fully tunable amplifier. We have

performed a complete characterization of the amplification mechanism, in the
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first place by means of its spectral study. In the second place, we derived the

equations for the moments of the probability distribution of the perturbations

around the deterministic equilibrium. While the first moment converged to

zero, it is the standard deviation that grows exponentially along the chain.

We also briefly discussed the origin of this amplification which arises from

the non-normality of the Jacobian. We took advantage from the flexibility

of this system to design two possible schemes which bear some general inter-

est. First we showed how to amplify the harmonics of a specific frequency

and then we considered a frequency comb amplification. Such amplification

feature could be employed in a vast gallery of concrete application such as a

spatially distributed detector of low-intensity noisy signals. To conclude, we

demonstrated that our system extracts energy from a finite size bath oper-

ating as an out-of-equilibrium thermal machine under stationary conditions.

It is worth noting that this amplification process could also provide a reliable

pacemaking mechanism for biological systems.

This work led to the following publication: Noise driven neuromorphic

tuned amplifier, Fanelli D., Ginelli F., Livi R., and Zankoc C., Phys. Rev. E

96, 062313 (2018)
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Chapter 5

Desynchronization and pattern

formation in a noisy

feedforward oscillator network

In this chapter, we consider a one-dimensional directional array of diffusively

coupled oscillators. They are perturbed by the injection of small additive

external noise, typically orders of magnitude smaller than the oscillation am-

plitude, and the system is studied in a region of the parameters that would

yield deterministic synchronization. Non-normal directed couplings seed a

coherent amplification of the perturbation: this latter manifests as a modu-

lation, transversal to the limit cycle, which gains in potency node after node.

If the lattice extends long enough, the initial synchrony gets eventually lost,

and the system moves toward a non-trivial attractor, which can be character-

ized as an asymptotic splay state. The noise assisted instability, ultimately

carried and amplified by the non-normal nature of the imposed couplings,
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eventually destabilizes also this second attractor. This phenomenon yields

spatiotemporal patterns, which cannot be anticipated by a conventional lin-

ear stability analysis.

5.1 Deterministic Ginzburg-Landau oscillators:

synchronized and splay states

Our model consists of Ω diffusively and unidirectionally coupled Ginzburg-

Landau oscillators. Each oscillator is described by the complex variable Wj

(1 ≤ j ≤ Ω). The oscillators in this directionally coupled chain (see Fig. 5.1)

obey the following ordinary differential equations

dW1

dt
= W1 − (1 + ic2)|W1|2W1 (5.1a)

and, for j > 1

dWj

dt
=Wj−(1+ ic2)|Wj|2Wj + (1 + ic1)K(Wj−1−Wj) (5.1b)

K K K K

Figure 5.1: Schematic representation of our system. Each node carries an
oscillator and is unidirectionally coupled to its successive neighbour. Param-
eter K modulates the coupling.
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where c1, c2 are real parameters and K denotes the coupling strength. It

is obvious that changing the sign of K and at the same time inverting the

boundary conditions is equivalent to reversing the information flow along the

chain: therefore in the rest of this paper K is assumed to be positive. The

system is also symmetric under the following transformation: Wj → W ∗
j ,

(c1, c2)→ −(c1, c2) which allows us to restrict our focus on half of the (c1, c2)

parameter plane. Two types of solution are of interest, the synchronized and

the splay ones. The synchronized state (usually denoted as homogeneous

state, in the vast literature of spatially coupled oscillators) corresponds to

the solution

Wj = exp(−ic2t) , j = 1, · · · ,Ω. (5.2)

By direct inspection of Eq. (5.1a) and (5.1b) one can check that any depen-

dence on the spatial coupling K and on the parameter c1 disappears, and

that this solution exists for any value of c2.

The splay states are a family of uniformly rotating solutions with finite

constant-in-time phase differences between consecutive nodes. These states

can be characterized making use of the general polar representation Wj =

ρj exp(iθj) and first imposing the stationarity condition ρ̇j = 0 for j > 1.

Moreover, by introducing the constant-in-time phase differences φj = θj −
θj−1, the stationary conditions applied to Eq. (5.1b) yield the recurrence

equations

ρj =

√(
1 +K

[
ρj−1

ρj
f(φj)− 1

])
(5.3a)

0 = c2(1− ρ2
j) +K

[
ρj−1

ρj
g(φj)− c1

]
(5.3b)
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where

f(φj) = cosφj + c1 sinφj (5.4a)

g(φj) = c1 cosφj − sinφj. (5.4b)

The initial condition for this recurrence equations stems from Eq. (5.1a),

i.e. ρ1 = 1 and θ1 = −c2t. Notice that the stationary solution on the

first node coincides with the synchronized state. We avoid reporting explicit

calculations, but it can be easily shown that for the set of parameters consid-

ered in this paper (e.g., see the caption of Fig. 5.2) the recurrence equations

equipped with this initial condition admit a unique stable nonhomogeneous

solution, which spatially converges to the splay state

ρ∞ =
√

1 +K (f(φ∞)− 1) (5.5a)

φ∞ = 2 tan−1

[
1 + c1c2

c2 − c1

]
(5.5b)

The special case φ∞ = ±π occurs in the limit c2 → c1. In practice, one

finds that the spatially asymptotic splay state is rapidly approached along

the chain (see Fig. 5.2)

The rate of convergence depends on the parameters K, c1 and c2, however,

for the sake of space, we do not report any detailed investigation on this point.

It is important to point out that the existence condition for the splay state

is that ρ∞ is real, i.e. that the argument of the square root in Eq. (5.5a) is
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Figure 5.2: Splay state representation The radius of the limit cycles
over the chain ρj is depicted by the red solid line (circles), while the blue line
(squares) stands for the phase difference (mod 2π) between two successive
nodes. As expected, they converge to the asymptotic values ρ∞, φ∞ (dashed
black lines). The parameters here are c1 = −5, c2 = 4 and K = 4.

non-negative. As an example, in Fig. 5.3 we show the region in the (c1, c2)-

plane where the splay state exists for K = 4: the colour code corresponds

to different positive values of ρ∞, while the black region indicates where the

splay state does not exist.

As a final remark, we want to point out that there exists an entire family

of solutions asymptotically approaching along the chain the splay state (see

Eq. (5.3)). In these solutions the synchronous state extends to an arbitrary
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Figure 5.3: Splay state existence: the color represents the value of ρ∞
(see Eq.(5.5a)), while the black zone refers to the region where the splay
state does not exist. The solid lines correspond to the isocurves of ρ∞. Here
K = 4.

large initial portion of the chain, namely ρj = 1 and φj = 0 for j = 2, · · · , j̄.
For j > j̄ constant-in-time phase differences become finite and the solution

converges to the asymptotic splay state (5) for large j. As we shall discuss

later, the existence of this entire family of splay states impacts on the way

noise destabilizes the homogeneous synchronized state determining a typical

spatio-temporal pattern organization for the stochastic system.
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5.1.1 Stability of synchronized and splay states

In order to investigate the stability of the synchronous and of the splay states

we can perform a standard linear stability analysis. We first introduce small

perturbations δρj, δθj of the limit cycles, Wj = (ρj + δρj) exp(i(θj + δθj)) for

1 ≤ j ≤ Ω. Linearizing and retaining the first order in the pertubations leads

to an equation that can be put in the general matrix form δv̇ = J(ρ, θ)δv

(we adopt the shorthand notation (ρ, φ) = (ρ1, φ1, ρ2, φ2, · · · , ρΩ, φΩ)), where

δv = δ(ρ, φ) is the vector of perturbations and J is the Jacobian matrix

associated to dynamics (5.1). Due to the unidirectional nature of the cou-

pling K, J exhibits a lower tridiagonal block structure. Hence, to assess the

stability of any state it is enough to compute the eigenvalues λρj and λθj for

1 ≤ j ≤ Ω of the diagonal 2× 2 blocks constituting J

A1 =


−2 0

−2c2 0

 (5.6a)

and

Aj=


(1− 3ρ2

j −K) Kρj−1g(φj)

−
(

2c2ρj +K
ρj−1

ρj
g(φj)

)
−K ρj−1

ρj
f(φj)

 (5.6b)

for 2 ≤ j ≤ Ω.

The eigenvalues of the first block A1 are λρ1=−2 and λθ1=0, the latter

reflecting marginal stability towards global phase rotations. A given limit

cycle solution is stable only if the complex eigenvalues of all the other blocks

have a negative real part, i.e. <(λρj) < 0 and <(λθj) < 0 for 2 ≤ j ≤ Ω.
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The synchronized state, where ρj = 1, φj = 0 ∀j > 1, is stable inde-

pendently of K for 1 + c1c2 ≥ 0, while for 1 + c1c2 < 0 only if the following

condition holds:

K > KH
min = −2(1 + c1c2)

1 + c2
1

. (5.7)

Therefore, for each couple (c1, c2) we can find a minimum coupling value

KH
min such that the synchronized state is stable. The resulting stability map

is shown in Fig. 5.4. Notice that the condition 1+c1c2 < 0 is sufficient for the

onset of the instability, when the CGLE is defined on a continuous spatial

support [71]. In fact, this is known as the condition of the Benjamin-Feir

instability for the CGLE [72, 71].

Stability analysis is more complicated for the splay state. Making use of

the recurrence relations (5.3) we can first compute ρj and θj to evaluate the

Jacobian blocks Aj (see Eq. (5.6b)). Then we can assess the stability of the

splay state in the plane (c1, c2) by computing the Jacobian matrix eigenvalues.

An example of the outcome of this procedure is shown in Fig. 5.5, where the

parameters have been set to the values c1 = −5, c2 = 4 and K = 4. Here

all eigenvalues for j > 1 have a negative real part so that the splay state

is linearly stable. Notice the fast convergence of the eigenvalues to their

asymptotic state values.

The analysis of the synchronized and splay states of the directed chain

of coupled CGL oscillators is summarized in Fig. 5.6 for the case K = 4.

The different regions of this diagram are described in the caption; the red

cross locates the point in the diagram which defines our working condition as

selected in the forthcoming sections when investigating the stochastic version
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Figure 5.4: Synchronized state stability: On this panel we display the
value of KH

min (see Eq. (5.7)) beyond which the synchronized state is stable.
In the black region 1 + c1c2 ≥ 0 and the synchronized state is always stable.
The solid lines correspond to the isocurves of the heat map.

of the directed chain of coupled CGL oscillators. More details on linear

stability analysis are given in Appendix F.

5.2 Effects of noise

5.2.1 Linear amplification mechanism

The stochastic version of the deterministic model (5.1) reads

dWj

dt
=Wj − (1 + ic2)|Wj|2Wj + (1 + ic1)K(Wj−1−Wj) + σηj(t) (5.8)
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Figure 5.5: Splay state linear stability analysis The green curve
(triangles) represents the real part of the largest eigenvalue for each node
j while the yellow line (diamonds) the corresponding imaginary part. The
parameters here are c1 = −5, c2 = 4 and K = 4. In this example, the splay
state is characterized by j̄ = 1.

where σ is the noise amplitude, ηj = <(ηj)+i=(ηj) is a complex additive noise

with zero mean and correlators 〈<(ηj)(t)<(ηl)(t
′)〉 = 〈=(ηj)(t)=(ηl)(t

′)〉 =

δjlδ(t− t′). In what follows the numerical investigations of the stochastic

dynamics (5.8) has been performed for the parameter values (c1, c2, K) =

(−5, 4, 4) (see the red cross in Fig. (5.6) ), where both the synchronized and

the splay state of the deterministic dynamics are linearly stable. We want to

investigate the effects of a small additive noise on the deterministic evolution

(5.1) [12, 73, 74, 75]. In practice, we have always taken σ = 10−5, a value

which is five orders of magnitude smaller than the oscillations amplitude
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Figure 5.6: Diagram of the existence and stability of the synchronized and
of the splay states for K = 4: in region A, whose boudaries are fixed by the
condition ρ∞ = 0, only the synchronized state exists and is stable; in region
B both states exist, but only the synchronized one is stable; in region C both
states are stable, while in region D the splay state only is stable.

of the synchronized state. As shown in Appendix G, Equation (5.8) can

be rewritten for the polar components of the complex variable Wj, while

the corresponding noise components remain delta-correlated and – at least

near the limit cycle solutions – additive. In practice, we have studied the

effects of the noise–induced fluctuations around these states. We know from

the previous section that both deterministic states are indeed stable limit
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cycles with a complex eigenvalues Jacobian. This guarantees the presence

of stochastic oscillations, also called quasi-cycles [13, 14], on the top of the

deterministic stable states. Then, we can proceed to the Fourier analysis of

our system linearized around each limit cycle. We denote by δṽ and ξ̃ the

Fourier transforms of the perturbations vector δv and of the polar white noise

ξ ≡ (ξρ, ξθ), respectively. We can readily obtain δṽj=
∑2Ω

l=1 Φ−1
jl (ω)ξ̃l, where

Φjl =−J jl − iωδjl. To pursue the analysis of the oscillations we compute

the power spectrum density matrix of the fluctuations in the vicinity of the

attractor [60]

〈δṽl(ω)δṽj(ω)〉=P lj(ω)=
2Ω∑
k=1

Φ−1
lk (ω)

(
Φ†kj

)−1
(ω). (5.9)

Its diagonal entries are the power spectrum of transversal (j odd) and lon-

gitudinal (j even) oscillations around both solutions. We first focus on the

transversal, radial, fluctuations around the synchronized state. In Fig. 5.7(a)

we depict the power spectrum of several nodes. The solid line stands for

the analytical power spectrum computed from equation (5.9) while symbols

correspond to direct numerical simulations of equation (5.8), using the Euler-

Maruyama algorithm (dt = 0.001). The power spectrum of the first node,

peaked at zero frequency (circle, black line) is the one of white noise. As we

proceed along the chain, the peak of the power spectrum progrssively shifts

towards higher frequencies. The profiles around the peak become narrower

(thus singling out a well defined oscillation frequency), while fluctuations are

amplified along the chain. This amplification can be well appreciated by di-

rect inspection of Fig. 5.7(b). Such amplification and modulation proceeds
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along the chain as long as the linear approximations holds. Out of this ap-

proximation, non-linear effects should take over and stop the amplification

process. In fact the situation we are facing right now is equivalent to the

one discussed in the previous chapter, the only difference being that we are

now considering a collection of oscillators displaying splay state or synchrony

and not a homogenous fixed point. Since the structure of the Jacobian re-

mains essentially the same for the splay state, here we face a qualitatively

identical situation. A similar amplification mechanism takes place for lon-

gitudinal fluctuations around both stable states, as exemplified in the inset

of Fig. 5.7(a). However, longitudinal oscillations are typically characterized

by a broader spectrum, possibly due to the softer nature of the phase di-

rection with respect to the radial one for Ginzburg-Landau potentials. To

summarize our findings, noisy fluctuations around both attractors are am-

plified and modulated as one proceeds along the chain to yield sharper and

stronger oscillations. While non-linear effects would eventually arrest this

amplification process, the linear mechanism is typically enough to overcome

the attractor linear stability itself. As we already know from the previous

chapter, these features are mainly due to the unidirectional structure of the

Jacobian, which is highly non-normal. Non-normality amplifies transient dy-

namics [61, 62, 76] and may lead to convective instability [63]. Here the

presence of noise makes this amplification perpetual [77].
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Figure 5.7: (a) Normalized power spectra of different nodes along the chain:
the solid lines stands for the theoretical calculation while the symbols cor-
respond to numerically computed power spectra using the Euler-Maruyama
algorithm. The displayed agreement confirms the validity of the analytic
calculations. In the inset: normalized power spectra for longitudinal fluctu-
ations. (b) Trajectories of ρj. The amplification phenomenon can be clearly
appreciated. (c) Phase portrait of (Xj(t), Yj(t)) where Xj and Yj respec-
tively stand for the real and the imaginary part of the complex variable Wj.
Oscillations extend along the radial direction, and progressively alter the
unperturbed limit cycle profile. The parameters here are c1 = −5, c2 = 4,
σ = 10−5 and K = 4. Each color designs a specfic node: 1 black, 2 blue, 3
green, 8 red, 9 violet.

5.2.2 Pattern formation

Why is this so important? Let’s immagine the following scenario where both

solutions exist and are stable. We then seed the following initial conditions

ρj(t = 0) = 1, φj(t = 0) = 0 all over the chain. What we expect from a
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naive linear stability analysis is that, for small noise amplitudes, the system

will remain in the vicinity of the synchronized state, with fluctuations of

the order the noise amplitude σ. On the contrary, our analysis reveals that

the amplification mechanism here discussed will drive the system to progres-

sively explore larger portions of the available phase space, until it eventually

reaches the splay state. This is illustrated in Fig. 5.8, where we show the

radial time series of successive nodes. The time series of the first nodes are

plotted in red: they remain settled on the synchronized state, the amplifi-

cation on these first nodes not being strong enough to escape from its basin

of attraction. After the 10th node (blue line) fluctuations are now strong

enough to escape, and reach the second attractor, settling on the splay state

radius ρj̄+1. Nodes to the right converge to successive radii ρj with j > j̄.

The attractor values ρj, each represented by a dashed line, is found thanks

to the recurence relations (5.3). They are in good agreement with the time

series simulations performed by an Euler-Maruyama algorithm. Obviously,

this could not be expected from a traditional linear stability analysis.

By direct inspection of Fig. 5.8 one can realize that the transition for the

splay to the synchronized state takes place as a sort of zipping mechanism

backward in time. The rightmost nodes display larger oscillations and are the

first to escape the synchronized state (e.g, violet line in Fig. 5.8). Moreover, it

is worth stressing that this process, forward in time, can be viewed as a series

of synchronous jumps to consecutive values of ρj (e.g., see the green and blue

lines in Fig. 5.8). This zipping process continues backward in time up to node

j̄. A direct consequence of this mechanism is the formation of spatiotemporal
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Figure 5.8: Time evolution for selected amplitude ρj(t). Each solid line
refers to the time series of ρj(t). Each color defines a specific group, in red
are depicted all the nodes that remain on the synchronized attractor (from
the first to the 9th node). The 10th node (blue line) is the first able to escape
from the homogenous attractor. The successive nodes (11th green and 12th

violet) converge progessively to the asymptotic value ρ∞ of the splay state.
The parameters here are c1 = −5, c2 = 4, σ = 10−5 and K = 4.

patterns [74, 30, 78, 79, 80] as shown in Fig. 5.9. Our system is initially

prepared on the synchronized state and exposed to a noise of amplitude σ =

10−5. After some time we see that the rightmost nodes easily reach the second

attractor. However, as we already discussed, the same amplification and

modulation mechanism holds on the splay state. The fluctuations therefore

keep on being amplified along the chain allowing the rightmost nodes of our

system to travel erratically in phase space. This is exemplified by the blurred
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part of Fig. 5.9. Here the mechanism of desynchronization is quite obvious,

being the combination of two ingredients: noise and non-normality. While

noise is needed to inject some dynamics in the otherwise stable limit cycle,

the non-normality is essential to amplify these fluctuations. This is what

makes the system deviate from the synchronized to the splay state and then

enter an erratic dynamics.

5.3 Conclusion

Noise is often unavoidable and, as such, it should be accommodated for in

realistic models of complex natural phenomena. A particularly interesting

setting is faced when the stochastic perturbation, being it of endogenous or

exogenous origin, resonates with the degree of inherent non-normality. This

situation, as displayed by the examined system, yields a self-consistent am-

plification of the noise component at short times. The resulting growth of the

perturbation can in fact drive a symmetry breaking instability, for a choice of

the parameters that would instead result in a stable deterministic evolution.

In order to dig into this question, we have here examined a directed chain

of diffusively coupled, Ginzburg-Landau oscillators. Oscillators are shaked

by an external fluctuating drive, of arbitrarily small strength. The system

is initiated in a region of parameters where the synchronous solution proves

stable, under the deterministic scenario. Working in this setting, we pro-

vided analytical and numerical evidence for a noise induced instability which

follows the self-consistent amplification of the imposed disturbance across
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Figure 5.9: Typical spatiotemporal pattern of our system, the ’space’ (nodes)
is the y−axis while time is in abscissa. One can easily recognize the transient
in which all the nodes are int the synchronized state. The orange plateau
stands for the splay sta e (node 10 → 30) and precedes the blurred region,
where system erratically jumps from one state to another. The parameters
here are c1 = −5, c2 = 4, σ = 10−5 and K = 4.

the chain. The limit cycles get modulated along the transversal direction:

almost regular, radial oscillations are displayed, which gain in potency node

after node. When the transversal modulation gets large enough, oscillators

escape the basin of attraction of the synchronized solution, visiting a non

trivial attractor, that we have characterized. The interaction between the

two attractors yield complex emerging patterns reminiscent of the determin-
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istic Benjamin-Feir instability. The combination of noise and asymmetric

couplings can radically alter the limit cycle dynamics: bistability and asso-

ciated patterns rise, as the noisy signal is dynamically processed, along the

unidirectionally coupled chain. It is worth mentioning that an analogous be-

havior, due to the forward amplification mechanism, is also expected when

the (arbitrarely small) noise is only injected in the leftmost node and not

on all degrees of freedom as in our current setup. Indeed the exponential

nature of the amplification phenomenon ensures that the leftmost source of

perturbation becomes largely predominant. Shifting to the right the leftmost

injection point along the chain only changes the pattern layout, thus extend-

ing the synchronized region at the expense of the splay state. Throughout

this chapter, our system was only subject to unbounded perturbations (Gaus-

sian white noise). However, there is every reason to believe that we would

face a significantly similar scenario if we were in the presence of bounded

noise. As a matter of fact, the bounded nature of the noise should very

quickly fade before the exponential amplification that takes place. Tradi-

tional (deterministic) linear stability analysis is unable to grasp the essence

of the phenomenon, an observation which we find particularly relevant given

the recent reports on the ubiquity of non-normality in real systems, from

communication networks to foodwebs [81]. More refined approaches, such

as convective Lyapunov exponents [82, 64, 65, 66] should however be able to

predict a convective instability at the purely deterministic level. Resilience to

synchronization might prove a valuable asset, exploited to oppose the onset

of pathological states, as e.g. epileptic seizures in brain dynamics. Future in-

vestigations are planned to shed light onto these families of noise–instigated
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instabilities, assisted by the non-normal topology of the underlying support,

beyond the simplistic case study here considered.

At the conclusion of this work, a draft of an article was recently submitted:

Desynchronization and pattern formation in a noisy feedforward oscillators

network, Zankoc C., Ginelli F., Fanelli D., and Livi R., arXiv:1810.01933
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Conclusion

I would first like to recall what motivated it. First and foremost, noise is

ubiquitous. Most of physical systems are subject to fluctuations stemming

either from interactions with the outside world or being intrinsic to the sys-

tem itself. These fluctuations can play very different roles depending on the

system under study. In many situations they are key ingredient if we want

to understand properly the dynamics. Throughout this thesis, I provided

new examples for the role of noise. I systematically started my studies by

determining the dynamics of systems in absence of noise. This enabled me to

compare with the situation where noise is present. Subsequently, I used all

the tools at my disposal to get a better understanding of the noise’s modus

operandi. In parallel to rigorous analytical calculations, I relied on numeri-

cal simulations to verify my results. The main findings of this work are the

following.

In the second chapter, I used the Wilson-Cowan model, which describes
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the minimal dynamics of two interacting populations of excitatory and in-

hibitory neurons. I put it in a region where it displays bistability because this

is a regime of particular interest for neurophysicists since it has been experi-

mentally observed that cerebral cortex displays similar behavior during deep

sleep, seemingly alternating between high and low level of neural activity.

Fluctuations are mandatory to generate such alternation in the WC model.

If absent the system would lock itself in one of the basins of attraction.

My first objective was to derive a mesoscopic representation of the dynam-

ics to expound the contribution of endogenous fluctuations. This yielded two

coupled non-linear Langevin equations with mulitplicative noise. Regions of

low and high activity could be determined by computation of the stationary

probability distributions of the species at stake. While this can always be

achieved by numerical simulations via the well-known Gillespie algorithm, it

is more challenging to obtain analytical solutions due to the non-potential

nature of the system. I developed a new procedure which starts from a

master-slave approximation, where the action of the excitatory population

over the inhibitory one is neglected. This limits the bistable behavior to only

a single species and therefore allows for an analytical access to the stationary

probability distribution. Using a recursive pertubative scheme, I could pro-

gressively restore the retroaction of inhibitors over excitators without ceasing

to keep track of the statistics of the system. In parallel to this technical re-

sult, I observed that this endogeneous noise can shift the bifurcation point

beyond which the system exhibits stability. This induces an extension of

the bistable behavior region as compared to the purely thermodynamic limit

dynamics [83].
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Synchronization has been a topic of growing interest. Synchronization

is the backbone of most of collective dynamics phenomena which are om-

nipresent in nature. Coupled phase oscillators models can be employed to

investigate on such feature, and, although they can be perturbed by the

injection of noise.

I introduced a reduced version of the Wilson-Cowan exhibiting quasi-

cycles. When two of these oscillators are diffusively and symmetrically cou-

pled two of these oscillators one can study the coherence of their signals with

the help of the power spectral distribution matrix. Interestingly, I found

that they organized themselves: their low frequency oscillations coordinated

in anti-phase, while the high frequency ones were in-phase. I repeated the

same analysis on larger and more complex structures. More, I observed the

formation of time-varying patterns sustained by noise. These patterns re-

spect the anti-phase locking for contiguous node that we observed previously:

This leads to frustration problems when the symmetries and the topology of

the network come into conflict with this prerequisite. These noise sustained

patterns illustrate very well the very intringuing interplay between noise and

the network topology [84].

I kept on examining how the mix between noise and topology may lead to

unexpected effects. To this end, I devised a set-up where the same stochastic

oscillators were set on an feedforward network. Numerical and analytical

analysis showed that the signal got modulated and amplified along the chain,

becoming quickly more and more similar to limit cycle oscillations as the node

number increased. As expected from its convective nature, the amplification

is exponential. Any perturbation appeared able to drive the system out of its
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fixed point dynamics in the deterministic limit to macroscopic oscillations.

The network acted as a pacemaker and could be employed for a large gallery

of applications [85].

An analogous investigation took place in the fifth chapter where the

stochastic oscillators were replaced by Ginzburg-Landau oscillators perturbed

with external noise. I found the same phenomenon of amplification and mod-

ulation for the perturbations normal to the limit cycle, leading to desynchro-

nization and pattern formation. Again, noise inserted in the system leads to

dramatic and unexpected effects of macroscopic magnitude irrespective of its

amplitude.

Taken together, these studies demonstrated an important underlying idea,

namely that endogeneous noise can have a qualitative effect on the macro-

scopic dynamics of systems composed by a large but finite number of ele-

ments. In fact, many of my results also apply to the effect of a (arbitrarily

small) exogeneous noise.

The qualitative effects that I demonstrated show that the deterministic

dynamics of typical mean-field level descriptions may be qualitatively differ-

ent from the “real” behavior of the system when the (unavoidable) effects of

noise are considered.

These observations may indeed prove to be crucial in many different con-

texts, mainly (but not exclusively) of biological relevance, ranging from neu-

roscences to population dynamics and system biology.
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Gillespie algorithm

Chemical kinetics has traditionally been analyzed using a mathematical for-

malism in which continuous variables evolve deterministically. For systems

of test-tube size or larger, this seems reasonable. But, as we already know, if

some reactants of the system have a population which is not too many order

of magnitude larger than one, which is often the case for biological systems,

discreteness and stochasticity can play a crucial role. The Gillespie algorithm,

which belongs to the Monte-Carlo algorithm class aims at taking into account

these features. It has been designed by the mathematician J.L. Doob [86]

but popularized by D. Gillespie in 1977 in an article [11] where he used it

to simulate chemical systems. It is indeed a very effective tool to generate

a statistically correct trajectory of a stochastic system formulated in terms

of rate equations. Imagine we have N chemical species denoted S1, . . . , SN

interacting through M distinct reaction channels R1, . . . , RM . We want to

estimate the state vector X(t) = (X1(t), . . . , XN(t)) where each Xi stands

for the number of molecules for the species Si. Each chemical Rj channel is
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characterized by two quantities :

• the state change vector νj = (ν1j, . . . , νNj) where νij denotes the change

in the Si population when reaction Rj occur, Si → Si + νij.

• its propensity function aj(x) where aj(x)dt is the probability, given

X(t) = x, that reaction Rj will occur in the next infinetesimal time

[t; t+ dt].

We know that such systems obey a Master equation

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x, t)P (x, t|x0, t0)]

(A.1)

where P (x, t|x0, t0) is a conditional probability of finding our system in state

x at time t given X(t0) = x0. The main idea behind the Gillespie algorithm

is to rather consider the reaction probability function p(τ, j|x, t) such that;

p(τ, j|x, t)dτ is the probability, given X(t) = x, that the next reaction in the

system will occur in the infinitesimal time interval [t+ τ ; t+ τ + dτ ] and will

be a Rj reaction. This is equal to

p(τ, j|x, t) = P0(τ)aj(x)dτ (A.2)

where P0(τ) is the probability that no reaction will occur in the time interval

[t; t+ τ ] and aj(x) the probability that the reaction Rj will occur in the time

interval [t + τ ; t + τ + dτ ]. P0 can be easily computed using the propensity
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functions aj(x) since

P0(τ ′ + dτ ′) = P0(τ ′)

[
1−

M∑
j=1

aj(x)dτ ′

]
(A.3)

we can conclude that

P0(τ) = exp

[
−

M∑
j=1

aj(x)τ

]
(A.4)

and therefore

p(τ, j|x, t) =

 aj(x) exp(−a0(x)τ) 0 ≤ τ <∞
0 otherwise

(A.5)

where : a0(x) =
∑N

j=1 aj(x). We now need to generate a random pair (τ, j)

from the set of random pairs whose probability density function is p(τ, j).

 r1

r2

 →

 τ

j


where r1, r2 ∈ [0; 1] are random number. This can be achieved this way :

• first generating the time τ = 1
a0

ln
(

1
r1

)
• selecting an integer j such that

j−1∑
k=1

ak < r2a0 ≤
j∑

k=1

ak
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The first equation generates a time τ according to the probability distribution

P1(τ) = a0 exp(−a0τ), the second generates j which obeys to P2(j) = aj/a0.

We can now compute p(τ, j) since

p(τ, j) = P1(τ)P2(j) (A.6)

The implementation of the algorithm is rather simple:

0 - Initialize the time t = 0 and the system’s state X(0) = x0

1 - We evalute all the propensity functions aj(x) and their sum a0(x)

2 - We generate τ and j using previous equations

3 - Effect the next reaction by setting t→ t+ τ and by updating the state

vector X → X + ν

4 - Return to step 1 or end the simulation.

As an example, for the CW model obeying the chemical rate equations (3.1)

we would have

R1 : ∅ f [sx]−→ X a1 = f [sX ]

R2 : X
1−→ ∅ a2 = x

R3 : ∅ f [sy ]−→ Y a3 = f [sY ]

R4 : Y
1−→ ∅ a4 = y

We can then access to single realizations of our stochastic process {X(t)},
compute the average quantities by repeating the algorithm for different ran-

dom number chains, etc. . . Contrary to many other algorithms made to simu-

late stochastic systems which approximate the time increment τ , the Gillespie
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algorithm does not. Therefore, it provides an exact solution of the problem.

Nevertheless, it suffers from its slowness especially when the number of re-

actants start being important.
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Itô and Stratonovich

prescriptions

This appendix is here to present a proper treatment of stochastic differential

equations. Let’s imagine we have the following non-linear Langevin equation

dx

dt
= f(x) + g(x)η(t) (B.1)

where η(t) is a Gaussian white noise with zero mean and correlator 〈η(t)η(t′)〉 =

δ(t− t′), f and g two given functions. The first problem arising is that η(t)

is ill-defined [87], it is a singular object just as much as the δ-distribution

which enters in its definition. To circumvent this first obstacle we often

rewrite equation (B.1)

dx = f(x)dt+ g(x)dW (t) (B.2)
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where W (t) is called a Wiener process and read W (t) =
∫ t

0
η(t′)dt′. With

W we now deal with a new stochastic process continuous in time (but not

differentiable). But the main issue remains, when the function g depends on

x, then equation (B.2) together with an initial condition x(0) = x0 does not

define a unique stochastic process. Indeed, if we decide to integrate (B.2), we

still need to chose a definition for the integration of
∫ t

0
g(x)dW (t′) because

it is not uniquely defined when averaged over the stochastic process. The

easiest way to do this is through a Taylor expansion. In the simplest non

trivial case where f(x) = 0 and g(x) 6= 0, we have

x(t)− x0 =

∫ t

0

g(x(t′))dW (t′) ≈
∫ t

0

dW (t′) [g(x0) + g′(x0)(x(t′)− x0)]

(B.3)

The lowest order reads x(t)−x(0) = g(x(t0))W (t) while, if g′(x) 6= 0 an inte-

gral of the form
∫
WdW appears at the next order. We can use a Riemanian

approach to estimate the average (over stochastic process) of this integral, it

leads to

〈
∫ t

0

WdW 〉 = 〈 lim
n→∞

n∑
i=1

W (ti∗) [W (ti+1)−W (ti)]〉 (B.4)

where the support of t has been subdivided into an ordered sequence t0 =

0 < ti < tN = t and where ti∗ = ti + α(ti+1 − ti) with α ∈ [0 : 1] so that

ti < ti∗ < ti+1. Knowing that 〈W (s)W (u)〉 = min(t, u), we easily end up

with

〈 lim
n→∞

n∑
i=1

W (ti∗) [W (ti+1)−W (ti)]〉 = αt (B.5)

Although the choice of α is completely arbitrary (as long as α ∈ [0 :1]), only

two values are commonly found: α = 0 for the Itô prescription, and α = 1
2
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for the Stratonovich prescription.

More important, we can convert the Langevin equation (B.1) into a

Fokker-Planck equation of the form

∂P (x, t)

∂t
=

∂

∂x

[
−f(x)− αg′(x)g(x) +

1

2

∂

∂x
g2(x)

]
P (x, t) (B.6)

which depends explicitly on α, meaning that if the noise is multiplicative,

g′(x) 6= 0, Itô and Stratonovich prescriptions lead to different probability

distribution for x and therefore describe different stochastic process. But

since everything here is a matter of definition, it would be grotesque to argue

about their being right or wrong [88]. The Kramers-Moyal expansion that

we have employed in first chapter, illustrates perfectly this point because it

drives to a Fokker-Planck equation for the fluctuations where this controversy

never enters. This also raises a very intriguing question about Langevin

interpretation in which we assume that the drift function f would be a sort

of macroscopic force independent of system’s internal fluctuations even when

there is no good reason to assume that [35, 89].

From a technical point of view, both interpretations have their advan-

tages. For example, one of the merit of Itô prescription is that it simplifies

considerably the computation of average quantities since 〈
∫ t

0
g(x)dW (t′)〉 =

0. We then say that the function g is non-anticipative because it depends

on nothing that occurs after time t [90]. However, the inconvenient of the

Itô prescription is that, if we wish to apply non-linear transformation to our

Langevin equation, we’ll need to respect rules of calculus that differ from

the traditional ones. On the contrary, with the Stratonovich prescription

the traditional rules of calculus remain valid. They are not employed in the
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same context. If we are dealing with a system where white noise is used

to approximate a continuously fluctuating noise with finite memory (much

shorter than dynamical timescales) then the appropriate representation is the

Stratonovich one. At the contrary, if the white noise plays the role of a set of

discrete pulses with finite separation to which system responds, or if we try to

employ a continuous representation for a discrete system by means of SDEs,

then the Itó representation is more suitable. The Stratonovitch prescription

is mostly used in physics to describe physical processes continuous in time

while the Itô convention is more suitable for discrete time processes (finance,

economics, . . . ). Therefore, the Itó prescription goes hand in hand with the

Gillespie algorithm which is a discrete time algorithm. This constitutes the

main reason behind our utilization of this convention throughout this thesis.

We conclude by saying that expression (B.1) is the pre-equation that

needs intepretation rule to be turned into a real equation. After having

chosed which prescription we wish to employ, we need to respect its spe-

cific rules of calculus and intepretate our final equation according to this

interpretation.
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Computing the moments of the

Gaussian multivariate

distribution Π

Once again we are going to employ the linear noise approximation in order to

study the dynamics of the probability distribution Π(ζ, τ) of fluctuations. It

can be easily showen that Π(ζ, τ) obeys the following Fokker-Planck equation

∂

∂τ
Π = −

2Ω∑
i=1

∂

∂ζi

[
(Jζ)iΠ

]
+

1

2

2Ω∑
i,j=1

∂2

∂ζi∂ζj
BijΠ (C.1)

where J stands for the Jacobian of the system and B for its diffusion matrix.

We shall here derive the dynamical equations that control the evolution of the

moments of the distribution Π. Focus on the first moment, by multiplying

equation (C.1) by ζk and integrating over ζ. The left hand side of equation
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yields:

∫
dζζk

∂

∂τ
Π =

∫
dζ

∂

∂τ
Πζk =

d

dτ

∫
dζζkΠ =

d

dτ
< ζk > (C.2)

The right hand side can be split into two parts. Under mild assumptions for

Π, the drift term returns:

−
2Ω∑
i=1

∫
dζζk

∂

∂ζi

[
(Jζ)iΠ

]
(C.3)

The contribution i = k amounts to:

∫
dζζk

∂
∂ζk

[
(Jζ)kΠ

]
=

∫ ∏
j 6=k dζj

∫
dζkζk

∂
∂ζk

[
(Jζ)kΠ

]
= −

∫ ∏
j 6=k dζj

∫
dζk
[
(Jζ)kΠ

]
= −

∫
dζ
[
(Jζ)kΠ

]
= −〈(Jζ)k〉

(C.4)

while the terms with i 6= k give no contributions. In fact:

∫ ∏
j 6=k,i

dζj

∫
dζkζk

∫
dζi

∂

∂ζi

[
(Jζ)iΠ

]
= 0 (C.5)

It is then straightforward to conclude that the diffusion terms returns no

contributions, because Π decays fast enough at the boundaries. Summing

up, we therefore obtain the linear equations:

d

dτ
〈ζk >=< (Jζ)k〉 =

2Ω∑
j=1

Jkj 〈ζj〉 (C.6)

The unique stationary (stable) solution is therefore 〈ζk〉 = 0 ∀k.
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MULTIVARIATE DISTRIBUTION Π

An identical procedure can be followed to evaluate the second moments

of the distribution, namely < ζlζm >. To this end we multiply equation (C.1)

by ζlζm and integrate over ζ. In analogy with the above, the left hand side

of the equation returns:

∫
dζζlζm

∂

∂τ
Π =

d

dτ
〈ζlζm〉 (C.7)

When it comes to the drift term, we shall focus first on the diagonal, l = m,

contributions:

−
2Ω∑
i=1

∫
dζζ2

l

∂

∂ζi

[
(Jζ)iΠ

]
(C.8)

For i = l, we get:

∫
dζζ2

l
∂
∂ζl

[
(Jζ)lΠ

]
=

∫ ∏
j 6=l dζj

∫
dζlζ

2
l
∂
∂ζl

[
(Jζ)lΠ

]
= −2

∫ ∏
j 6=l dζj

∫
dζlζl(Jζ)lΠ

= −2 〈ζl(Jζ)l〉
(C.9)

while for i 6= l one finds:

∫
dζζ2

l
∂
∂ζi

[
(Jζ)iΠ

]
=

∫ ∏
j 6=l,i dζj

∫
dζlζ

2
l

∫
dζi

∂
∂ζi

[
(Jζ)iΠ

]
= 0

(C.10)

Consider now the contribution of the drift to the off diagonal elements (l 6=
m), namely:

−
2Ω∑
i=1

∫
dζζlζm

∂

∂ζi

[
(Jζ)iΠ

]
(C.11)
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For i = l, one gets:∫ ∏
j 6=l,m

dζj

∫
dζmζm

∫
dζlζl

∂

∂ζl

[
(Jζ)lΠ

]
= −

∫ ∏
j 6=l,m

dζj

∫
dζmζm

∫
dζl
[
(Jζ)lΠ

]
= −〈ζm(Jζ)l〉

(C.12)

The other case of interest, i = m, is easy to treat, as it amounts to swapping

l and m. Finally, for i 6= l,m the drift term returns a null contribution:

∫ ∏
j 6=m,l,i

dζj

∫
dζmζm

∫
dζlζl

∫
dζi

∂

∂ζi

[
(Jζ)iΠ

]
= 0 (C.13)

Let us now turn to considering the contribution of the diffusion terms in

the Fokker-Planck equation. Since B is diagonal, a non trivial contribution

is solely found for l = m:

1

2

2Ω∑
i=1

∫
dζζ2

l

∂2

∂ζ2
i

BiiΠ (C.14)

For i = l, we have:

1
2

∫ ∏
j 6=l dζj

∫
dζlζ

2
l
∂2

∂ζ2
l
BllΠ = −21

2

∫ ∏
j 6=l dζj

∫
dζlζl

∂
∂ζl
BllΠ

=
∫ ∏

j 6=l dζj
∫
dζlBllΠ

= Bll

(C.15)

where use has been made of the condition of normalization for the distribution
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Π. The case i 6= l yields no contribution as:

1

2

∫ ∏
j 6=l,i

dζj

∫
dζlζ

2
l

∫
dζi

∂2

∂ζ2
i

BiiΠ = 0 (C.16)

Collecting all terms together we end up with the equations for the second

moments reported in the main body of the thesis.
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Appendix D

Analytical estimate for the

leftmost boundary of the

amplification domain

Computing the moments of the multivariate Gaussian that characterizes the

stationary distribution of fluctuations under the linear noise approximation,

imply solving a 2Ω×2Ω problem. To gain analytical insight into the problem

(with reference to the setting γi = 1), one can operate a drastic simplification

by solely accounting for nearest neighbors correlations. In doing so, one

obtains a 7× 7 linear system, which we do not write here explicitly because

it involves lengthy expressions. Due to the structure of the problem, the 7×7

system rigorously reduces to an effective map, from a given node to the next

one, for the reference quantities wi = (< ξ2
i >,< η2

i >,< ξiηi >). More
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concretely, one can recast the problem in the form:

wi+1 = Awi + r (D.1)

where A (not given here explicitly) is non diagonalizable, it has rank 2 and

eigenvalues 0, λ, with:

λ =
−2D3 r3 +D2 r4 + 80D2 r2

128D2 r2 − 128D r3 − 2048D r + 32 r4 + 1024 r2 + 8192
(D.2)

To solve the problem one can reduce A to a Jordan normal form A. It can

be in fact shown that a matrix P exists such that A = P−1AP

By operating the change of variables qi = P−1wi and definingR = P−1r

one gets:

qi+1 = Aqi +R (D.3)

that it can be shown to yield:
q

(1)
i+1 = q

(2)
i +R(1)

q
(2)
i+1 = R(2)

q
(3)
i+1 = λq

(3)
i +R(3)

(D.4)

where qi ≡ (q
(1)
i , q

(2)
i , q

(3)
i ) and R ≡ (R(1), R(2), R(3)). Solving the above
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BOUNDARY OF THE AMPLIFICATION DOMAIN

system and going back to the original variables, one eventually gets:

〈ξ2
i 〉 = P13

(
q3(0) + R(3)

λ−1

)
λi+

P11(R(1) +R(2)) + P12R
(2) − P13

R(3)

λ−1

〈η2
i 〉 = P23

(
q3(0) + R(3)

λ−1

)
λi+

+P21(R(1) +R(2)) + P22R
(2) − P23

R(3)

λ−1

〈ηnξi〉 = P33

(
q3(0) + R(3)

λ−1

)
λi+

P31(R(1) +R(2)) + P32R
(2) − P33

R(3)

λ−1

(D.5)

The amplification is hence lost if |λ| ≤ 1. The leftmost solid (white) line

in Figure 4.5 in the main body of the thesis corresponds to the limiting

condition λ = 1. The boundary of the domain where the amplification takes

place is adequately reproduced, an observation that supports a posteriori the

validity of the approximations involved in the analysis.
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Appendix E

A consistent thermodynamic

interpretation.

Given the probability density P (v, τ) that obeys to the Fokker-Planck equa-

tion associated to Langevin equations (4.2) we define the entropy S(τ) as

S(τ) = −
∫
P (v, τ) lnP (v, τ)dv (E.1)

By deriving with respect to time τ the previous equation, one gets:

dS

dτ
= −

∫
∂P

∂τ

(
lnP + 1

)
dv =

∫ ∑
i

∂Ii
∂vi

(
lnP + 1

)
dv (E.2)

and, integrating by parts:

dS

dτ
= −

∑
i

∫
Ii
∂

∂vi
lnPdv (E.3)
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By making use of the definition of the current I, see main body of the paper,

we write:
∂

∂vi
lnP =

2

Bii

Ai −
2

Bii

Ii
P

(E.4)

and finally:
dS

dτ
= ΠS − ΦS (E.5)

where

ΠS =
∑

i
2
Bii

∫ I2
i (v,τ)

P (v,τ)

ΦS =
∑

i
2
Bii

∫
Ai(v)Ii(v, τ)dv

(E.6)

ΠS is positive definite and can be interpreted as the production rate of en-

tropy due to the non-conservative forces Ai. ΦS can take in principle any

sign. When ΦS > 0, the entropy flows from the system to the environment.

At equilibrium Ii = 0, which implies ΠS = ΦS = 0. A non trivial stationary

solution exists which corresponds to setting ΠS = ΦS 6= 0. This is equiv-

alent to imposing
∑

∂
∂vi
Ii = 0, the condition of Fokker-Planck stationarity.

The solution of the Fokker-Planck equation is hence interpreted as a dynam-

ical balance between two opposing entropy fluxes. To quantify the entropy

production ΠS, we can therefore estimate the antagonist contribution ΦS.

By making use of the definition of the current, an performing an integra-

tion by parts, one gets:

ΦS =
∑
i

2

Bii

∫
AiIidv =

∑
i

2

Bii

∫ (
A2
iP −

Bii

2
Ai

∂

∂vi
P )

=
∑
i

2

Bii

∫ (
A2
iP +

Bii

2
P
∂

∂vi
Ai)

=
∑
i

( 2

Bii

< A2
i > + <

∂

∂vi
Ai >

)
(E.7)
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INTERPRETATION.

The above formula con be employed to determine the (non-linear) entropy

production rate ΠS (= ΦS), displayed by the system in stationary conditions.

To gain analytical insight we can proceed with a direct estimate of ΠS (and

hence ΦS) that builds on the linear noise approximation. In this case we can

write:

ΦS =
∑
i

( 2

Bii
< f 2

i > + <
∂

∂ζi
fi >

)
(E.8)

where the non conservative force is now fi = (Jζ)i. Recalling that:

∑
i

<
∂

∂ζi
fi >=

∑
i

<
∑
j

Jij
∂ζj
∂ζi

>=
∑
i

< Jii >= Tr(J) (E.9)

we can write:

ΦS =
∑
i,j,k

2

Bii
JijJik < ζjζk > +Tr(J) (E.10)

Define then the correlation matrix Cij =< ζiζj > and write

ΦS = 2
∑
i,j,k

1

Bii
JijJikCjk + Tr(J) =

= 2
∑
i

1

Bii
(JCJ t)ii + Tr(J)

(E.11)

In Figure 3.7 the entropy production rate ΠS (= ΦS, as given by formula

(E.11)) is plotted (solid line) versus the lattice node, an indirect measure of

the lattice length. As expected, ΠS grows exponentially. Symbols refer in-

stead to the a direct numerical characterization of ΠS, based on relation (E.7).

Non-linear effects induce a cross-over towards a non exponential growth for

the measured entropy production rate. A cross-over towards a non exponen-

tial regime is eventually observed when non-linearities become prominent, in
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node i [lattice length]
5 10 15

Π
S

10
5

10
10

Figure E.1: ΠS is plotted (solid line) versus the lattice node. The solid
line refers to the analytical estimate based on linear noise approximation,
see equation (E.11)). Symbols refer instead to the numerical estimate based
on the fully non-linear relation (E.7).

complete agreement with the insight gained under a purely dynamical angle.
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Appendix F

Linear stability analysis

In this appendix we provide details on the stability analysis for synchronous

and splay states carried out in Chapter 5.Consider small perturbations δρj(t)�
1 and δθj(t) � 1 of the limit cycle solutions, Wj = (ρj + δρj)e

i(θj+δθj). Lin-

earizing we obtain to first order in the perturbations

δρ̇1 = −2δρ1 (F.1)

δθ̇1 = −2c2δρ1 (F.2)

and for j > 1
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δρ̇j = δρj
[
1− 3ρ2

j −K
]

+ δρj−1Kf(φj)

+ (δθj − δθj−1)Kρj−1g(φj) (F.3)

δθ̇j = δρj

[
−2c2ρj +K

ρj−1

ρj
g(φj)

]
+ δρj−1

K

ρj
g(φj)

− (δθj − δθj−1)K
ρj−1

ρj
f(φj) (F.4)

where the ρj and φj need to be evaluated on either the synchronized or the

splay state attractor. Obviously zeroth order terms stemming from the lin-

earization procedure vanish by construction when evaluated on these two

attractors.

Rewriting the linearized equations in a matrix form highlights their sim-

ple block structure, due to the unidirectional input from one node to the next.

We introduce the 2Ω dimensional perturbation vector δv ≡ (δρ1, δθ1, δρ2, δθ2, . . . , δρΩ, δθΩ)T

and write

δv̇ = J δv (F.5)

where the Jacobian J is a 2Ω× 2Ω lower tridiagonal block matrix, composed

of 2 × 2 blocks that describe the in-node linearized dynamics (A matrices

in the following) or the (linearized) interaction with the previous node (B

matrices).

For instance, in the case of the synchronized state one has
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JH =



A1 0 0 0 . . .

B2 A2 0 0 . . .

0 BH AH 0 . . .

0 0 BH AH . . .
...

...
...

...
. . .


(F.6)

where

A1 =


−2 0

−2c2 0

 (F.7)

describes the stability of the first uncoupled Landau-Stuart node, while

AH =


−(2 +K) Kc1

−(2c2 +Kc1) −K

 , BH =


K −Kc1

Kc1 K

 (F.8)

originate from the other nodes (j > 1).

Using simple block matrices results one can show that

det (JH − λI2Ω) = det (A1 − λI2) [det (AH − λI2)]Ω−1 (F.9)

(where Ih is the h×h identity matrix) so that the eigenvalues of JH are given

by the ones of A1 and the ones of AH (with multiplicity Ω− 1).

We easily verifiy that A1 has eigenvalues λρ = −2 and λθ = 0 and conse-

quently is stable. We are therefore interested in the eigenvalues λH of AH
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that give

λ±H = −1−K ±
√

1− 2Kc1c2 −K2c2
1 (F.10)

The real part of the largest eigenvalue λ+
H has two zeros for K = 0 and

K = KH
min with

KH
min = −2(1 + c2c1)

1 + c2
1

(F.11)

We can determine the stability condition R
[
λ+
H

]
< 0 by the sign of KH

min

and of the small K expansion of equation (F.10),

λ+
H ≈ −K(1 + c1c2) < 0 (F.12)

, which gives the sign of the K derivative of R
[
λ+
H

]
near K = 0. Note

that they are both controlled by the sign of 1 + c1c2, so that one immediatly

obtains the homogeneous state stability condition given in the main text.

The splay states give rise to a slightly more complicated Jacobian matrices

J
(j̄)
S . The first j̄ rows are identical to the ones of JH , while the following ones

are obtained evaluating the linearized equation along the splay state part of

the attractor. For instance, for j̄ = 2 we have

J
(2)
S =



A1 0 0 0 . . .

BH AH 0 0 . . .

0 B3 A3 0 . . .

0 0 B4 A4 . . .
...

...
...

...
. . .


(F.13)
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with

Aj =


(1− 3ρ2

j −K) Kρj−1g(φj)

−
(

2c2ρj +K
ρj−1

ρj
g(φj)

)
−K ρj−1

ρj
f(φj)

 (F.14)

and

Bj =


Kf(φj) −Kρjg(φj)

K
ρj
g(φj) K

ρj−1

ρj
f(φj)

 (F.15)

where functions g and f are defined in the main text in equations (5.4).

Obviusly, for j � j̄ we have

Aj ≈ A∞ =


(1− 3ρ2

∞ −K) Kρ∞g(φ∞)

− (2c2ρ∞ +Kg(φ∞)) −Kf(φ∞)

 (F.16)

and

Bj ≈ B∞ =


Kf(φ∞) −Kρ∞g(φ∞)

K
ρ∞
g(φ∞) Kf(φ∞)

 (F.17)

Once again we have

det
(
J

(j̄)
S − λI2Ω

)
= det (A1 − λI2) [det (AH − λI2)]j̄−1

N∏
j=j̄+1

[det (Aj − λI2)] (F.18)
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so that to estimate the eigenvalues of J
(j̄)
S we also need to compute the eigen-

values of the matrices Aj, evaluated on the splay attractor values ρj and φj

obtained from the recurrence equations (5.3).
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Nature of the noise

This appendix covers the nature of the stochastic correction for the system

investigated in chapter 5. We shall demonstrate that the additive stochastic

corrections we introduced in our system (see equation (5.8)) remains of the

same kind in polar form. We first write the ordinary differential equations

for the real and imaginary part of Wj = Xj + iYj. After few lines of algebra

we end up with

dXj

dt
= Xj +

(
X2
j + Y 2

j

)
(−Xj + c2Yj)

+K (Xj−1 −Xj + c1 (Yj − Yj−1))

+σηXj (G.1)

dYj
dt

= Yj +
(
X2
j + Y 2

j

)
(−c2Xj − Yj)

+K (Yj−1 − Yj + c1 (Xj−1 −Xj))

+σηYj (G.2)
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Writing in polar form Wj=ρj exp(iθj) implies that ρj=
√
X2
j + Y 2

j and θj=

Atan
(
Yj
Xj

)
. In terms of O.D.E.s it means that

ρj
dρj
dt

= Xj
dXj

dt
+ Yj

dYj
dt

(G.3a)

ρ2
j

dθj
dt

= Xj
dYj
dt
− Yj

dXj

dt
(G.3b)

We now want to obtain the Langevin equation for ρj and θj, this leads to

ρj
dρj
dt

= ρ2
j − ρ4

j +K
(
−ρ2

j + ρjρj−1f(φj)
)

+σ
(
Xjη

X
j + Yjη

Y
j

)
(G.4)

ρ2
j

dθj
dt

= −c2ρ
4
j +K

(
−c1ρ

2
j + ρjρj−1g(φj)

)
+σ
(
Xjη

Y
j − YjηXj

)
(G.5)

where the auxiliary functions f and g have been introduced in equations (5.4).

The sum of two Gaussian variable is itself a Gaussian variable, whose average

value is the sum of the two previous average value while its variance is the

quadratic sum of the variances. Therefore we can introduce two new Gaussian

delta correlated and zero mean white noise variables ξρj and ξθj such that their

standard deviations are

Σρ,θ =
√
X2
j + Y 2

j = ρj (G.6)
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This leads to the final Langevin equations in polar form

dρj
dt

= ρj − ρ3
j +K (−ρj + ρj−1f(φj)) + σξρj (G.7)

dθj
dt

= −c2ρ
2
j +K

(
−c1 +

ρj−1

ρj
g(φj)

)
+
σ

ρj
ξθj (G.8)

which display a multiplicative but delta correlated zero-average noisy term.

In our power spectrum analysis, conducted expanding near the limit cycle

solutions, this multiplicative component can be safely approximated by its

limit cycle value, making the dominant noise component additive.
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[70] T. Tomé and M. J. de Oliveira. Entropy production in irreversible
systems described by a fokker-planck equation. Phys. Rev. E, 82:
021120, Aug 2010. doi: 10.1103/PhysRevE.82.021120. URL https:

//link.aps.org/doi/10.1103/PhysRevE.82.021120.

[71] Di Patti, F., Fanelli, D., and Carletti, T. Drift-induced benjamin-feir
instabilities. EPL, 114(6):68003, 2016. doi: 10.1209/0295-5075/114/
68003. URL https://doi.org/10.1209/0295-5075/114/68003.

145

https://doi.org/10.1007/BF01044729
https://doi.org/10.1007/BF02183390
https://doi.org/10.1007/BF02508463
https://doi.org/10.1007/BF02508463
http://stacks.iop.org/1751-8121/46/i=25/a=254013
https://link.aps.org/doi/10.1103/RevModPhys.48.571
https://link.aps.org/doi/10.1103/RevModPhys.48.571
https://doi.org/10.1023/A:1004589714161
https://dx.doi.org/10.1590/S0103-97332006000700029
https://dx.doi.org/10.1590/S0103-97332006000700029
https://link.aps.org/doi/10.1103/PhysRevE.82.021120
https://link.aps.org/doi/10.1103/PhysRevE.82.021120
https://doi.org/10.1209/0295-5075/114/68003


REFERENCES

[72] T. Brooke Benjamin and J. E. Feir. The disintegration of wave trains
on deep water. Journal of Fluid Mechanics, 27(3):417430, 1967. doi:
10.1017/S002211206700045X.

[73] M. Asllani, T. Biancalani, D. Fanelli, and A. J. McKane. The lin-
ear noise approximation for reaction-diffusion systems on networks.
The European Physical Journal B, 86(11):476, Nov 2013. doi: 10.
1140/epjb/e2013-40570-8. URL https://doi.org/10.1140/epjb/

e2013-40570-8.

[74] A. J. McKane, T. Biancalani, and T. Rogers. Stochastic pattern for-
mation and spontaneous polarisation: The linear noise approxima-
tion and beyond. Bulletin of Mathematical Biology, 76(4):895–921,
Apr 2014. ISSN 1522-9602. doi: 10.1007/s11538-013-9827-4. URL
https://doi.org/10.1007/s11538-013-9827-4.

[75] J. D. Challenger, R. Burioni, and D. Fanelli. Turing-like instabili-
ties from a limit cycle. Phys. Rev. E, 92:022818, Aug 2015. doi:
10.1103/PhysRevE.92.022818. URL https://link.aps.org/doi/10.

1103/PhysRevE.92.022818.

[76] M. G. Neubert and H. Caswell. Allternatives to resilience for measuring
the responses of ecological systems to perturbations. Ecology, 78(3):653–
665. doi: 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2. URL
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.

1890/0012-9658%281997%29078%5B0653%3AATRFMT%5D2.0.CO%3B2.

[77] S. Nicoletti, N. Zagli, D. Fanelli, R. Livi, T. Carletti, and G. Innocenti.
Non-normal amplification of stochastic quasicycles. Phys. Rev. E, 98:
032214, Sep 2018. doi: 10.1103/PhysRevE.98.032214. URL https:

//link.aps.org/doi/10.1103/PhysRevE.98.032214.

[78] T. Biancalani, F. Jafarpour, and N. Goldenfeld. Giant amplification of
noise in fluctuation-induced pattern formation. Phys. Rev. Lett., 118:
018101, Jan 2017. doi: 10.1103/PhysRevLett.118.018101. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.118.018101.

[79] Hans G. Othmer. SIAM Review, 24(4):483–485, 1982. ISSN 00361445.
URL http://www.jstor.org/stable/2029552.

146

https://doi.org/10.1140/epjb/e2013-40570-8
https://doi.org/10.1140/epjb/e2013-40570-8
https://doi.org/10.1007/s11538-013-9827-4
https://link.aps.org/doi/10.1103/PhysRevE.92.022818
https://link.aps.org/doi/10.1103/PhysRevE.92.022818
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/0012-9658%281997%29078%5B0653%3AATRFMT%5D2.0.CO%3B2
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/0012-9658%281997%29078%5B0653%3AATRFMT%5D2.0.CO%3B2
https://link.aps.org/doi/10.1103/PhysRevE.98.032214
https://link.aps.org/doi/10.1103/PhysRevE.98.032214
https://link.aps.org/doi/10.1103/PhysRevLett.118.018101
https://link.aps.org/doi/10.1103/PhysRevLett.118.018101
http://www.jstor.org/stable/2029552


REFERENCES

[80] M. C. Cross and P. C. Hohenberg. Pattern formation outside
of equilibrium. Rev. Mod. Phys., 65:851–1112, Jul 1993. doi:
10.1103/RevModPhys.65.851. URL https://link.aps.org/doi/10.

1103/RevModPhys.65.851.

[81] M. Asllani, R. Lambiotte, and T. Carletti. Structure and dynamical
behaviour of non-normal networks. ArXiv e-prints, March 2018.

[82] K. Kaneko. Spatiotemporal chaos in one- and two-dimensional cou-
pled map lattices. Physica D: Nonlinear Phenomena, 37(1):60 – 82,
1989. ISSN 0167-2789. doi: https://doi.org/10.1016/0167-2789(89)
90117-6. URL http://www.sciencedirect.com/science/article/

pii/0167278989901176.

[83] C. Zankoc, T. Biancalani, D. Fanelli, and R. Livi. Diffusion approxima-
tion of the stochastic wilsoncowan model. Chaos, Solitons & Fractals,
103:504 – 512, 2017. ISSN 0960-0779. doi: https://doi.org/10.1016/
j.chaos.2017.07.010. URL http://www.sciencedirect.com/science/

article/pii/S0960077917302886.

[84] C. Zankoc, D. Fanelli, F. Ginelli, and R. Livi. Intertangled stochastic
motifs in networks of excitatory-inhibitory units. Phys. Rev. E, 96:
022308, Aug 2017. doi: 10.1103/PhysRevE.96.022308. URL https:

//link.aps.org/doi/10.1103/PhysRevE.96.022308.

[85] D. Fanelli, F. Ginelli, R. Livi, N. Zagli, and C. Zankoc. Noise-driven
neuromorphic tuned amplifier. Phys. Rev. E, 96:062313, Dec 2017. doi:
10.1103/PhysRevE.96.062313. URL https://link.aps.org/doi/10.

1103/PhysRevE.96.062313.

[86] J. L. Doob. Markoff chains–denumerable case. Transactions of the
American Mathematical Society, 58(3):455–473, 1945. ISSN 00029947.
URL http://www.jstor.org/stable/1990339.

[87] R. Livi and P. Politi. Nonequilibrium Statistical Physics: A Mod-
ern Perspective. Cambridge University Press, 2017. doi: 10.1017/
9781107278974.

[88] R. Mannella and P. V. E. McClintock. Itô versus stratonovitch: 30
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