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Abstract

The thesis concerns the development of algorithms for smooth MultiObjec-

tive Optimization (MOO), where two or more objectives have to be simulta-

neously minimized. MOO plays a crucial role in several real-life applications

like, for instance, portfolio selection problems, vehicle routing problems, traf-

fic equilibrium problems. The main purpose of the work is to develop (in a

rigorous way from a mathematical programming point of view) effective and

efficient algorithms for smooth MOO problems based on a sound convergence

theory. The first part of the thesis regards the design of algorithms for un-

constrained MOO problems. Since the classical steepest descent algorithm

generates a single Pareto-stationary point, a framework for the approxima-

tion of the Pareto front, using the steepest descent direction, is proposed.

Convergence properties of the proposed algorithm are stated. The results of

computational experiments performed on unconstrained MOO test problems

have been reported.

In the second part of the thesis, sparse MOO problems are considered, i.e.

problems where one of the objectives is the so-called zero-norm. The pro-

posed approach is that of approximating the zero-norm by a smooth concave

function. Equivalence properties between the original and the approximated

problem have been stated and an algorithm based on the steepest descent

framework has been designed, implemented and tested on sparse portfolio

selection problems.

Finally, in the third part of the work, derivative-free MOO problems

with box constraints have been considered. A method, that is a nontrivial

extension of the well-known Implicit Filtering algorithm to the MOO case, is

proposed. Global convergence results are stated under smooth assumptions

on the objective functions. Numerical results on a set of test problems show

the effectiveness of the MOO Implicit Filtering algorithm both when used

to find a single Pareto solution of the problem and when used to reconstruct

the whole Pareto front.
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Chapter 1

Introduction

Many real-world applications do not fit well in the classic optimization frame-

work in which only a single-objective function has to be minimized. In fact,

we have to deal with two or more conflicting objectives to be simultane-

ously minimized. Such problems are known, in literature, as MultiObjective

Optimization (MOO) problems [41].

The MOO framework has been widely used in literature for portfolio

selection [4, 10, 16], vehicle routing [34, 44, 47], supply chain management

problems [2, 49,51] and design problems [26,35,43,50].

A MOO problem can be expressed, in its general form, as follows:

min
x∈F⊆Rn

(f1(x), . . . , fm(x)) (1.1)

where fi : F → R, ∀ i ∈ {1, . . . ,m}.
Given a problem of the form (1.1), since multiple mathematically equiv-

alent global minima called Pareto optima can be retrieved, the interaction

between the algorithm/solver and the decision maker (who chooses the best

solution according to some preferences) plays a fundamental role.

For this reason, a list of multiobjective strategies depending on the re-

lationship between the solver and the decision maker, is provided according

to [41]:

• Without preferences: no preferences are set by the decision maker,

hence each Pareto optimum is acceptable.

• A priori: the decision maker sets its preferences in advance, in order

to let the solver retrieve the best possible solution.

1



2 Introduction

• A posteriori: the whole Pareto optimal set has to be generated, since

the decision maker will choose the best solution after a subsequent

evaluation. The richer the set of final solutions presented to the deci-

sion maker, the more freedom the decision maker has when selecting

its preferred solution.

• Interactive: Preferences are progressively provided during the algo-

rithm execution, in order to address it to the best solution.

Regardless of the relationship between the solver and the decision maker,

one of the most common approaches for MOO problems is the scalarization

method in which one or more single-objective problems have to be separately

solved. The most common scalarization method consists in a minimization

of a weighted sum of the objectives [19,33,42].

MOO methods which do not scalarize the objectives are considered in

this work.

Multiobjective steepest descent [20, 22], Newton [21] and Quasi-Newton

[45] methods are without preferences extensions of their well-known single-

objective versions, while other multiobjective algorithms are extensions of

evolutionary and genetic algorithms for global optimization [14,15,28,53].

Under the assumption of continuous differentiability of the objective func-

tions, the multiobjective steepest descent algorithm computes, for each itera-

tion k, the multiobjective steepest descent direction by solving the following

quadratic programming problem:

min
v∈Rn

max
i∈{1,...,m}

∇fi(xk)>v +
1

2
||v||2. (1.2)

Then, if the solution v(xk) of problem (1.2) is non-zero, a sufficient de-

crease for all the objectives can be obtained through suitable line search

techniques along v(xk).

The first part of the work aims to propose an a posteriori extension of

the steepest descent algorithm in which a sequence of sets {Lk}, composed

of non dominated solutions, is generated.

In order to improve this list, for each iteration k, every point xc ∈ Lk
is considered. Steepest descent directions v(xc) are computed by solving

problems like 1.2. Then, two Armijo-type line search techniques able to

exploit the directions v(xc) for generating new non-dominated solutions are

proposed. Moreover, under some assumptions, global convergence properties

of the algorithm in terms of sequence of sets are stated.
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Numerical results on unconstrained multiobjective problems are reported

in order to show the effectiveness of the proposed framework.

The second part of this work aims to obtain sparse solutions of problem

(1.1), i.e. solutions with the highest number of components equal to zero.

For instance, in [31] simultaneous minimization of both the reconstruction

error of a deep neural network and the sparsity of the vector of parameters

that describe the network itself is considered. In the context of signal pro-

cessing and reconstruction, [37] considers the multiobjective problem defined

by the minimization of the measurement error along with a sparsity-inducing

term. In [10], sparsity of an investor’s portfolio is considered as a further

objective in the classical mean-variance Markowitz approach to portfolio

optimization. We thus consider multiobjective problems where one of the

objective functions counts the number of non-zero components of the solu-

tion vector x, i.e. the following multiobjective sparse optimization problem:

min
x∈F⊂Rn

(f1(x), . . . , fm−1(x), ||x||0) (1.3)

where the function || · ||0 is the `0-norm which is equal to the number of non-

zero component of x, and F is a compact convex set. Since sparse multiobjec-

tive optimization problems are combinatorial problems, we approximate the

`0-norm with some smooth concave functions as in [46]. Equivalence prop-

erties in terms of Pareto optima between the problem (1.3) and its concave

approximation are stated. Moreover, an a posteriori algorithm for problem

(1.3), based on the steepest descent framework is proposed. Numerical re-

sults are obtained comparing the proposed framework with state-of-the-art

multiobjective methods on real portfolio selection problems.

In the third part of this work, we consider problems like (1.1) with box

constraints i.e.:

min
`≤x≤u

(f1(x), . . . , fm(x)) (1.4)

Moreover, all the objectives are black-box type, i.e. first (and higher)

order derivatives cannot be directly computed nor approximated in any way.

We remark that this situation is common in many applications, see e.g. [39].

In [12, 39], deterministic algorithms, which export derivative-free tech-

niques for single-objective problems to the multiobjective context, have been

proposed. Also the Implicit Filtering algorithm, originally proposed in [29],

was widely applied to single-objective derivative-free optimal design prob-
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lems [8, 11, 13, 18, 24, 25, 30]. Basically, the Implicit Filtering algorithm is a

finite-difference gradient-based method in that it makes use of gradient ap-

proximations obtained by finite differences. On the one hand, even though

the Implicit Filtering algorithm cannot be directly used to solve problem

(1.4), we approach the problem with the multiobjective steepest descent

method, but by approximating objective gradients as in the Implicit Filter-

ing strategy. Hence, we define a new without preferences method for the

solution of problem (1.4). The method exports the derivative-free skills of

the Implicit Filtering approach [30, 36] within the multiobjective steepest

descent framework. For this method, we also prove convergence to a Pareto-

stationary point of problem (1.4). On the other hand, an a posteriori version

of the algorithm is proposed. We also show how our multiobjective implicit

filtering algorithm can be used within Direct-Multisearch algorithm [12] to

improve its ability to generate the Pareto front of the problem (1.4).

1.1 Notation

With reference to problem (1.1), we denote by F : F ⊆ Rn → Rm the

vector-valued function defined by

F (x)
4
= (f1(x), . . . , fm(x))>,

If F is a continuously differentiable map, we denote by J : F ⊆ Rn → Rm×n

its Jacobian matrix function,

J(x) = (∇f1(x), . . . ,∇fm(x))>.

Given a point x ∈ F , we define the set of feasible directions in x, namely

D(x):

D(x) := {d ∈ Rn : ∃t̄ > 0,∀t ∈ (0, t̄] x+ td ∈ F} (1.5)

If F is a convex set, then we can express the set D(x) as follows:

D(x) := {(y − x) : y ∈ F} (1.6)

Given any two vectors u, v ∈ Rp,

u < v ⇔ ui < vi, for all i = 1, . . . , p

u 5 v ⇔ ui ≤ vi, for all i = 1, . . . , p

u ≤ v ⇔ u 5 v and u 6= v.
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Finally, let us denote by ei ∈ Rn, i = 1, . . . , n, the vectors that form the

canonical basis in Rn, and by 1 the vector, of appropriate dimension, of all

ones, e.g., in Rn, 1 =
∑n
i=1 ei.

1.2 Preliminary results

As in the single-objective optimization context, in the multiobjective case

we should give a way to compare two points x, y with respect to their vector-

valued functions F (x), F (y).

Definition 1 (Pareto Dominance). Given x, y ∈ F , we say that x strictly

Pareto-dominates y when

F (x) ≤ F (y) (1.7)

Then, with reference to the problem (1.1), an ideal solution would be a

point x∗ which dominates any other point i.e.:

F (x∗) 5 F (x), ∀x ∈ F (1.8)

Unfortunately, that solution does not exist in general. So a new optimal-

ity definition has to be provided.

Definition 2 (Weak Pareto optimality). Given x∗ ∈ F , we say that x∗ is a

Weak-Pareto-optimum for problem (1.1) when

F (x) 6< F (x∗), ∀x ∈ F (1.9)

Definition 3 (Pareto optimality). Given x∗ ∈ F , we say that x∗ is a Pareto-

optimum for problem (1.1) when

F (x) 6≤ F (x∗), ∀x ∈ F (1.10)

By means of these two definitions, we are able to identify a set of non-

dominated points (the so-called Pareto front or frontier) which is constituted

by the optimal solutions of the multiobjective problem (1.1). Just as in

the single-objective case, to define solution algorithms and analyze their

convergence properties, we report from [27] the notion of Pareto-stationarity.

Definition 4 (Pareto-stationarity). Let the objective functions be continu-

ously differentiable. Given x∗ ∈ F , we say that x∗ is Pareto-stationary for

problem (1.1) when, ∀d in D(x∗), there exists an index j ∈ {1, . . . ,m} such

that:

∇fj(x∗)>d ≥ 0, (1.11)
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It can be easily shown that, if x∗ is Pareto-optimum, then x∗ is Pareto-

stationary (the inverse implication can only be shown when F is a strictly

convex continuously differentiable map, as in the single-objective case).

1.2.1 Steepest descent for unconstrained multiobjective

optimization

Let us consider the following unconstrained multiobjective optimization prob-

lem:

min
x∈Rn

(f1(x), . . . , fm(x)) (1.12)

where all the objective functions are continuously differentiable.

Thanks to Definition 4, if x∗ ∈ Rn is not a Pareto-stationary point,

then there exists a descent direction v for all the objective functions fi,

i ∈ {1, . . . ,m}, at x∗.

In the unconstrained case, i.e. D(x) = Rn, for any given x ∈ Rn, we

define the function gx : Rn → R by

gx(v) = max
i∈{1,...,m}

∇fi(x)>v. (1.13)

Note that gx is continuous, piecewise linear, and convex.

Let us consider the following optimization problem:

min
v∈Rn

gx(v) +
1

2
||v||2. (1.14)

Note that the additional quadratic term 1
2 ||v||

2 makes the problem well-

defined. Hence, since the objective function is proper, closed and strongly

convex, as reported in [27], problem (1.14) has always a (unique) optimal

solution v(x), which we call the steepest descent direction.

Definition 5 (Unconstrained steepest descent direction). Given any point

x ∈ Rn, the steepest descent direction for F at x is

v(x) ∈ arg min
v∈Rn

gx(v) +
1

2
||v||2. (1.15)

Let us consider the following function θ : Rn → R, which is the optimal

value of (1.14):

θ(x) = min
v∈Rn

gx(v) +
1

2
||v||2. (1.16)

Furthermore, from [22], we report the following proposition.
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Proposition 1. Given problem (1.12), let v : Rn → Rn and θ : Rn → R be

defined as in (1.15) and (1.16) respectively. Then the following statements

hold:

• θ(x) ≤ 0, ∀x ∈ Rn

• x∗ ∈ Rn is Pareto-stationary for problem (1.12) iff θ(x∗) = 0

• The mappings x→ v(x) and x→ θ(x) are continuous mappings.

1.2.2 Steepest descent for multiobjective optimization

on convex sets

Let us consider the following multiobjective optimization problem:

min
x∈F

(f1(x), . . . , fm(x)) (1.17)

where all the objectives are continuously differentiable and F is a compact

convex set. Since F is convex, then for each x ∈ F we can express the

set D(x) as in (1.6). In this case the function gx, defined in (1.13), can be

expressed as:

gx(y) = max
i∈{1,...,m}

∇fi(x)>(y − x).

Due to the compactness of F , there is no need to add any quadratic term as

in the unconstrained case.

As in the unconstrained case, we can define the functions y and θ as

follows:

y(x) = arg min
y∈F

gx(y) (1.18)

and

θ(x) = min
y∈F

gx(y) (1.19)

Since 1.18 is a min max problem, it may be conveniently transformed as

follows:

min
τ∈R,y∈F

τ

∇fi(x)>(y − x)− τ ≤ 0, ∀i ∈ {1, . . . ,m}
(1.20)

As in the unconstrained case, from [22], we report the following proposi-

tion.
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Proposition 2. Given problem (1.17), let y : F → F and θ : F → R be

defined as in (1.18) and (1.19) respectively. Then the following statements

hold:

• θ(x) ≤ 0, ∀x ∈ F

• x∗ ∈ F is Pareto-stationary for Problem (1.17) iff θ(x∗) = 0

• The mappings x→ y(x) and x→ θ(x) are continuous mappings.

We introduce the steepest descent direction for the vector valued mapping

F at x.

Definition 6 (Steepest descent direction on convex sets). Given any point

x ∈ F , the steepest descent direction for F at x is

v(x) = y(x)− x (1.21)

where y(x) is given by (1.18).

1.2.3 The steepest descent algorithm for multiobjective

optimization

On the basis of Definitions (5) and (6), from reference [22], we recall the

following steepest descent algorithm for the solution of Problems (1.12) and

(1.17) (we recall from the introduction that J(x) denotes the Jacobian of the

vector of objective functions).

At each iteration k, the steepest descent direction v(xk) is computed. If

a sufficient condition of Pareto-stationarity is met, then the algorithm stops,

otherwise an Armijo-type line search along v(xk) is done. As in the single-

objective case, the line search stops when a sufficient decrease condition with

respect to all the objectives is reached.

Some convergence properties of Algorithm 1 in the unconstrained case

will be recalled in the next subsection, but we refer the reader to [22] for

further details.
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Algorithm 1: steepest descent algorithm

1 input: x0 ∈ F ⊆ Rn, γ ∈ (0, 1)

2 output: a Pareto-stationary point x∗

3 for k = 0, 1, . . . , do

4 Compute θ(xk) and v(xk)

5 if θ(xk) = 0 then

6 x∗ ← xk
7 return // x∗ is Pareto-stationary

8 end

9 Compute αk = 2−βk with βk the smallest non-negative integer s.t.

F (xk + αkv(xk)) ≤ F (xk) + γαkJ(xk)v(xk).

10 xk+1 ← xk + αkv(xk)

11 end
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1.2.4 Convergence properties of multiobjective steepest

descent algorithm

Let us refer to the unconstrained multiobjective optimization problem (1.12)

where fi : Rn → R are continuously differentiable.

The steepest descent algorithm, defined in the previous subsection (see

Algorithm 1), updates the current point when a condition of sufficient de-

crease with respect to all the objective functions is reached. So, it generates

a sequence of points with Pareto-stationarity convergence properties.

Global convergence properties of the steepest descent algorithm (see [22,

27] for further details) are reported below.

Proposition 3 (Convergence of the multiobjective steepest descent algo-

rithm: the general case). Let {xk} be the sequence generated by Algorithm

1. Then every limit point, if any, is a Pareto-stationary point.

Since Algorithm 1 produces a globally convergent sequence of points {xk},
in Chapter 2 we will define a globally convergent a posteriori extension able

to generate a sequence of sets of non-dominated points.

1.2.5 Metrics for Pareto front evaluation

Although it is easy to evaluate the performance of without preferences solvers,

for example counting how many times a solvers retrieve a better point in the

sense of Definition 1, when two or more a posteriori solvers have to be com-

pared, a set of metrics able to evaluate the capability of a given solver to

obtain a good Pareto front in terms of both optimality and diversification is

needed.

Three metrics were proposed in [12]: Purity, Spread Γ and Spread ∆.

From now on, let P be the set of multiobjective optimization problems and

S be the set of the considered solvers. Since the true Pareto front is not

always provided for each p ∈ P, its best possible approximation F truep is

computed by firstly merging all the retrieved Pareto fronts i.e.:

F̃ truep :=
⋃
s∈S

Fp,s (1.22)

where Fp,s is the approximation of the Pareto front computed by solver s

with respect to the objective space and after by removing from F̃ truep every
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dominated solution that is

F truep = {x ∈ F̃ truep : @y ∈ F̃ truep s.t. F (y) ≤ F (x) }. (1.23)

On the basis of F truep , we can define in a rigorous way the proposed metrics.

Purity

Purity metric, first introduced in [9], is able to establish the accuracy of a

given solver in terms of Pareto optimality.

Given a problem p ∈ P, remembering that Fp,s is the approximation of

the Pareto front computed by solver s and F truep is its best possible approx-

imation, Purity metric is defined as follows:

Pp,s :=
|Fp,s ∩ F truep |
|Fp,s|

. (1.24)

As we can see from (1.24), this metric represents the “precision” of a

solver to retrieve Pareto-optimal points. The higher Purity coefficient, the

higher probability of retrieving Pareto-optimal points is.

Spread metrics

The most relevant drawback concerning the Purity metric is that the size of

the retrieved Pareto front does not have an impact. In fact, if two solvers

compute two Pareto fronts composed of 100 and 1 non-dominated solutions

respectively, they have the same Purity value. Hence, we need some metrics

able to take into account the diversification of a Pareto front.

Spread metrics were introduced in [12] in order to deal with this problem.

Given a problem p ∈ P, remembering that F truep is the best possible

approximation of its Pareto front, for each objective j ∈ {1, . . . ,m}, we first

compute the “extreme points” as follows:

f0
j := min

fj∈F true
p

fj (1.25)

fN+1
j := max

fj∈F true
p

fj . (1.26)

Such points will be the same for the application of the metrics on any of

the obtained fronts.
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Then, given a solver s and its Pareto front approximation Fp,s, let us

suppose to sort ascending the list of N retrieved points f i,s, with respect to

each objective j. Then Spread Γ metric can be defined as follows:

Γp,s := max
j∈{1,...,m}

max
i∈{0,...,N}

f i+1,s
j − f i,sj︸ ︷︷ ︸

δi,sj

(1.27)

where f0,s
j = f0

j and fN+1,s
j = fN+1

j ,∀s ∈ S.

In other words, given a Pareto front approximation, Spread Γ metric

measures its maximum “hole” size in the objective space. Please note that

Γp,s ≥ 0, since the retrieved points were previously sorted ascending with

respect to the objective j. Note that with m = 2, this metric is simply the

maximum distance in the infinity norm between consecutive points in the

approximated Pareto front.

Another spread metric was proposed in [12] in order to assess how well

the points are distributed in the Pareto front approximation.

On the basis of the definition of δi,sj in the (1.27), Spread ∆ metric can

be defined as follows:

∆p,s := max
j∈{1,...,m}

δ0,s
j + δN,sj +

∑N−1
i=1 |δ

i,s
j − δ̄sj |

δ0,s
j + δN,sj + (N − 1)δ̄sj

(1.28)

where δ̄sj is the mean “hole” size in the Pareto front retrieved by solver

s, with respect to the objective j, i.e.:

δ̄sj :=
1

N − 1

N−1∑
i=1

δi,sj (1.29)

As we can see from (1.28), Spread ∆ is quite similar to the standard

deviation of the “hole” sizes, so it evaluates the uniformity of a Pareto front

approximation.



Chapter 2

A globally convergent a

posteriori algorithm based on

the steepest descent framework

The multiobjective steepest descent method [20, 22] is a natural extension

of its single-objective formulation, with properties of global convergence to

Pareto-stationary points. In this part of the work, an a posteriori general-

ization of the steepest descent method is proposed. Since a sequence of sets

of non-dominated points is generated, at every iteration, each point of the

current set is exploited in order to compute the steepest descent direction

by solving problems like (1.2). Two different Armijo-type line search tech-

niques, proven to generate new non-dominated solutions, are proposed. For

each type of line search, convergence properties of the algorithm in terms

of the list of points are stated. Numerical results, obtained on a test set

composed of unconstrained multiobjective optimization problems, show the

effectiveness of the proposed framework.

2.1 The algorithm

In this section, we are interested in the definition of an algorithm that pro-

duces a set of non-dominated points, i.e. an approximation of the Pareto

front for a multiobjective problem like (1.12) where all the objective func-

tions are continuously differentiable. To this aim, the proposed algorithm
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(see Algorithm 2) produces a sequence of sets of points (rather than a se-

quence of points as usual in the single-objective case) namely {Lk}. More in

particular, for each iteration k, a finite set of non-dominated points Lk can

be defined as:

Lk = {xj ∈ Rn, j = 1, . . . , rk} (2.1)

where rk = |Lk|. At each iteration k, each point xc ∈ Lk is considered

for improving the current list. Then, the steepest descent direction in xc is

computed by solving the following problem:

min
v∈Rn

max
i∈{1,...,m}

∇fi(xc)>v +
1

2
||v||2. (2.2)

Let v(xc) be the solution of problem (2.2), then the value of θ(xc) can

be computed as follows:

θ(xc) = max
i∈{1,...,m}

∇fi(xc)>v(xc) +
1

2
||v(xc)||2. (2.3)

Since the traditional Armijo-type line search does not fit well our aim (see

Algorithm 1 line 9), we propose a modification of the standard line search

algorithm (see Algorithm 3) in order to find a point which is sufficiently

non-dominated by the current list L̃k.

We now prove that Algorithm 3 is able to add a new non-dominated

solution thanks to the following proposition.

Proposition 4. Let xc ∈ L̃k be such that θ(xc) < 0, i.e. v(xc) exists such

that

∇fs(xc)>v(xc) +
1

2
||v(xc)||2 < 0

∀s ∈ {1, . . . ,m}. Then ∃α > 0, sufficiently small, such that

F (xj) + 1γαθ(xc) 6< F (xc + αv(xc)), ∀xj ∈ L̃k,

i.e. the while loop of Algorithm 3 terminates in a finite number of iterations.

Proof. First, let us recall that L̃k is a finite set of non-dominated points.

Then, since xc ∈ L̃k, there cannot exist any xj ∈ L̃k such that

F (xj) ≤ F (xc), (2.4)

that is to say that xj dominates xc. Now, we proceed by contradiction, and

assume that, for all h = 1, 2, . . . , a point xjh ∈ L̃k exists such that

F (xjh) + 1γδh∆θ(xc) < F (xc + δh∆v(xc)).
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Algorithm 2: front steepest descent algorithm

1 input: an initial set of non-dominated points L0.

2 output: a final list of non-dominated points L∗.

3 k ← 0

4 while stopping criterion not satisfied do

5 L̃k ← Lk
6 for c = 1, . . . , rk do

7 if xc ∈ L̃k then

8 Compute v(xc) and θ(xc)

9 if θ(xc) < 0 then

10 α← armijo type line search(xc, v(xc), θ(xc), L̃k)

11 xnew ← xc + αv(xc)

12 L̃k ← {xj ∈ L̃k | F (xnew) 6≤ F (xj)} ∪ {xnew}
13 end

14 end

15 end

16 Lk+1 ← L̃k
17 k ← k + 1

18 end

19 L∗ ← Lk
20 return L∗
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Algorithm 3: armijo type line search

1 input: xc ∈ L̃k, v(xc), θ(xc), L̃k, ∆ > 0, δ ∈ (0, 1), γ ∈ (0, 1)

2 output: an optimal stepsize α

3 α← ∆

4 while ∃ xj ∈ L̃k s.t. F (xj) + 1γαθ(xc) < F (xc + αv(xc)) do

5 α← δα

6 end

7 return α

Since |L̃k| is finite, it is possible to consider a subsequence H ⊆ {1, 2, . . . }
such that jh = ̄, for all h ∈ H. Hence, for all h ∈ H, we would have

F (x̄) + 1γδh∆θ(xc) < F (xc + δh∆v(xc)). (2.5)

On the other hand, since v(xc) is a descent direction for all fs with s ∈
{1, . . . ,m}, we know that, for h ∈ H and sufficiently large, it must result

fs(xc + δh∆v(xc)) < fs(xc) + γδh∆θ(xc), ∀s ∈ {1, . . . ,m}. (2.6)

Then, by (2.5) and (2.6), we could write

fs(x̄) + γδh∆θ(xc) < fs(xc + δh∆v(xc))

< fs(xc) + γδh∆θ(xc), ∀s ∈ {1, . . . ,m},

that is

fs(x̄) < fs(xc), ∀s ∈ I. (2.7)

Now, by taking the limit for h→∞, h ∈ H in (2.5), we would obtain

F (x̄) 5 F (xc),

which, recalling (2.4), would imply F (x̄) = F (xc), thus contradicting rela-

tion (2.7) and concluding the proof.

2.2 Convergence analysis

In order to establish the convergence properties of the algorithm, a definition

of linked sequences is reported from [39].
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Definition 7. Let {Lk} be the sequence of sets of non-dominated points

produced by Algorithm 2. We define a linked sequence as a sequence {xjk}
such that, for any k = 1, 2, . . . , xjk ∈ Lk is generated at iteration k − 1 of

Algorithm 2-3 by the point xjk−1
∈ Lk−1.

Hence, xjk = xjk−1
+ αjkv(xjk−1

) and it results

F (x`j ) + 1γαjkθ(xjk−1
) ≮ F (xjk)

for all x`j ∈ Lk−1.

Then we introduce the following assumption needed to prove the convergence

results of Algorithm 2.

Assumption 1. There exists a point x0 ∈ L0 such that the set

L0 =

m⋃
i=1

{
x ∈ Rn : fi(x) ≤ fi(x0)

}
is compact.

Proposition 5. Let us assume that Assumption 1 holds.

Let {Lk} be the sequence of sets of non-dominated points produced by the

Algorithm 2. Let {xjk} be a linked sequence. Then it admits limit points and

every limit point is Pareto-stationary for problem (1.12).

Proof. First of all, let xj0 ∈ L0 be the point for which Assumption 1 holds.

We first show that the every linked sequence {xjk} admits a limit point x̄.

The steps of Algorithm 2 guarantee that

F (x0) 6< F (xjk), ∀k

and that ∀k there exists an index ijk such that

xjk ∈
{
x ∈ Rn : fijk (x) ≤ fijk (x0)

}
.

Therefore we can conclude that

xjk ∈ L0, ∀k.
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Then Assumption 1 ensures that the linked sequence {xjk} is bounded.

Now, in order to state the main result we first prove that, for every linked

sequence {xjk}, we have:

lim
k→∞

αjkθ(xjk−1
) = 0. (2.8)

In fact, let us assume, by contradiction, that there exists a set K such that:

−αjkθ(xjk−1
) ≥ δ > 0 ∀k ∈ K. (2.9)

Since {xjk} is a linked sequence, for all x`j ∈ Lk−1 and k ∈ K, it results

F (x`j ) + 1γαjkθ(xjk−1
) 6< F (xjk). (2.10)

By using (2.9) we obtain that, for all x`j ∈ Lk−1 and k ∈ K,

F (x`j )− 1γδ 6< F (xjk). (2.11)

This implies that the infinite points F (xjk) ∈ Z, with k ∈ K, have a

distance not smaller than γδ from each other and that, hence, the set

Z = {z ∈ Rm : z = F (x), ∀x ∈ L0}

is not compact. This last point contradicts Assumption 1 and the continuity

assumptions of the functions fi, i = 1, . . . ,m. Therefore we obtain that (2.8)

holds.

Now we recall that x̄ is Pareto-stationary for problem (1.12) if and only is

θ(x̄) = 0 (see Proposition 1). Assume, by contradiction, that a limit point

x̄ of a linked sequence {xjk} is not Pareto-stationary. This is equivalent to

say that there exist a scalar ε > 0 and a set K such that

θ(xjk) ≤ −ε < 0, ∀k ∈ K (2.12)

which, by using (2.8), yields that

lim
k→∞,k∈K

αjk = 0. (2.13)

Therefore, for sufficiently large values of k, we have that αjk < ∆. Then

the steps of Algorithm 3 and the definition of Lk−1 imply that there exists

xhjk
∈ Lk−1 and k ∈ K, such that

F (xh`j
) + 1γ

αjk
δ
θ(xjk−1

) < F (xjk−1
+
αjk
δ
v(xjk−1

)) (2.14)

F (xh`j
) 6< F (xjk−1

) (2.15)
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Now (2.14) and (2.15) yield that an index sk ∈ {1, . . . ,m} exists such that

fsk(xjk−1
) + γ

αjk
δ
θ(xjk−1

) < fsk(xjk−1
+
αjk
δ
v(xjk−1

))

namely

fsk(xjk−1
+
αjk
δ
v(xjk−1

))− fsk(xjk−1
) > γ

αjk
δ
θ(xjk−1

)

Now, since sk ∈ {1, . . . ,m} we can consider a subset K̃ ⊆ K̄ such that, for

all k ∈ K̃, sk = s̄, so that

fs̄(xjk−1
+
αjk
δ
v(xjk−1

))− fs̄(xjk−1
) > γ

αjk
δ
θ(xjk−1

)

By the Mean-value Theorem, we have that

fs̄(xjk−1
+
αjk
δ
v(xjk−1

))− fs̄(xjk−1
) =

αjk
δ
∇fs̄(ξjk−1

)>v(xjk−1
)

with

ξjk−1
= xjk−1

+ tjk−1

αjk
δ
v(xjk−1

), tjk−1
∈ (0, 1).

Then, we can write

∇fs̄(ξjk−1
)>v(xjk−1

) ≥ γθ(xjk−1
).

The definition of function θ gives

θ(xjk−1
) + (∇fs̄(ξjk−1

)−∇fs̄(xjk−1
))>v(xjk−1

) ≥ γθ(xjk−1
).

Then we have

(1− γ)θ(xjk−1
) + (∇fs̄(ξjk−1

)−∇fs̄(xjk−1
))>v(xjk−1

) ≥ 0

By taking the limit for k → ∞ and k ∈ K̃, by recall that αjk → 0 and by

considering the boundedness of v(xjk−1
) and the continuity of θ, we obtain

the contradiction

(1− γ)θ(x̄) ≥ 0

which concludes the proof.
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2.3 The Armijo-type extrapolation technique

In order to improve the capability of the Algorithm 2 of spanning the

space, we introduce a new Armijo-type line search technique (see Algorithm

4). This new line search differs from Algorithm 3 by the following points:

• the initial stepsize can vary at every iteration;

• if the initial point satisfies the acceptability criterion, the algorithm

performs an extrapolation along the considered direction;

• the algorithm can produce more than one point.

The following proposition states that Algorithm 4 is well defined.

Proposition 6. Let xc ∈ L̃k be such that θ(xc) < 0, i.e. v(xc) exists such

that

∇fs(xc)>v(xc) +
1

2
||v(xc))||2 < 0, ∀s ∈ {1, . . . ,m}. (2.16)

Then Algorithm 4 is well defined, namely it cannot infinitely cycle, and re-

turns a not empty list of steps α∗.

Proof. In case of the first if-instruction of the algorithm being satisfied, a

similar reasoning to the one used in in the proof of Proposition 4 proves that

the first while loop of Algorithm 4 cannot infinitely cycle, so the list α∗ is

updated once.

Therefore, by contradiction, we assume that the second while-loop of the al-

gorithm infinitely cycles, i.e., a monotonically increasing sequence of positive

numbers {αh} exists such that:

F (xj) + 1γ
αh

δ
θ(xc) 6< F (xc +

αh

δ
v(xc)), ∀xj ∈ L̃k ∪ Ltmp,

and, in particular if xj = xc,

F (xc) + 1γ
αh

δ
θ(xc) 6< F (xc +

αh

δ
v(xc)). (2.17)

The previous (2.17) implies that an index sk ∈ {1, . . . ,m} exists such that

fsk(xc) + γ
αh

δ
θ(xc) ≥ fsk(xc +

αh

δ
v(xc)).
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Algorithm 4: armijo type line search with extrapolation

1 input: xc ∈ L̃k, v(xc), θ(xc), L̃k, ∆k > 0, δ ∈ (0, 1) , γ ∈ (0, 1)

2 output: a sequence of steps α∗

3 α← ∆k

4 if ∃ xj ∈ L̃k s.t F (xj) + 1γαθ(xc) < F (xc + αv(xc)) then

5 while ∃ xj ∈ L̃k s.t F (xj) + 1γαθ(xc) < F (xc + αv(xc)) do

6 α← δα

7 end

8 α∗ ← {α}
9 else

10 Ltmp ← ∅
11 while F (xj) + 1γ αδ θ(xc) 6< F (xc + α

δ v(xc)), ∀ xj ∈ L̃k ∪ Ltmp do

12 if F (xc + αv(xc)) + 1γ 1−δ
δ αθ(xc) 6> F (xc + α

δ v(xc)) then

13 α∗ ← α∗ ∪ {α}
14 Ltmp ← Ltmp ∪ {xc + αv(xc)}
15 end

16 α← α
δ

17 end

18 if α = ∆k then

19 α∗ ← α∗ ∪ {α}
20 end

21 end

22 return α∗

Recalling, again, that sk ∈ {1, . . . ,m}, we can consider a subset K, such

that, for all k ∈ K, it results sk = s̄, so that

fs̄(xc) + γ
αh

δ
θ(xc) ≥ fs̄(xc +

αh

δ
v(xc)).

This relation and the fact that αh →∞ contradict Assumption 1.

Now we prove that, during the second while-loop, the lists Ltmp and α∗ are

updated at least once.

Since the second while loop terminates in a finite number of steps an index

h̄ and a point x̃j ∈ L̃k ∪ Ltmp exist such that

F (x̃j) + 1γ
αk

δh̄
θ(xc) < F (xc +

αk

δh̄
v(xc)). (2.18)
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Namely, the test of the while loop is not satisfied. Instead, at the previous

step, the test is verified:

F (xj) + 1γ
αk

δh̄−1
θ(xc) 6< F (xc +

αk

δh̄−1
v(xc)), ∀xj ∈ L̃k ∪ Ltmp.

This means that for x̃j ∈ L̃k an index sj ∈ {1, . . . ,m} exists such that:

fsj (x̃j) + γ
αk

δh̄−1
θ(xc) ≥ fsj (xc +

αk

δh̄−1
v(xc)). (2.19)

On the other hand (2.18) yields:

fsj (x̃j) + γ
αk

δh̄
θ(xc) < fsj (xc +

αk

δh̄
v(xc)). (2.20)

By combining (2.19) and (2.20) it is possible to obtain:

fsj (xc +
αk

δh̄−1
v(xc)) + γ(1− δ)αk

δh̄
θ(xc) < fsj (xc +

αk

δh̄
v(xc)).

This inequality shows that the if-condition in the second while loop is satis-

fied (by setting α = αk

δh̄−1 ) and hence the lists Ltmp and α∗ are updated.

If the while-condition is never satisfied, i.e. a point x̃j ∈ L̃k exists such

that

F (x̃j) + 1γ
∆k

δ
θ(xc) < F (xc +

∆k

δ
v(xc)), (2.21)

then, the list α∗ is updated due to the if-condition below the while loop.
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Since Algorithm 4 generates a sequence of steps along direction v(xc), in

order to correctly update the list L̃k, the line 10 of Algorithm 2 has to be

changed as follows:

1 for αi ∈ α do

2 L̃k ← {xj ∈ L̃k | F (xc + αiv(xc)) 6≤ F (xj)} ∪ {xc + αiv(xc)}
3 end

Finally we prove the global convergence properties of Algorithm 2-4.

Proposition 7. Let us assume that Assumption 1 holds.

Let {Lk} be the sequence of sets of non-dominated points produced by the

Algorithm 2-4. Let {xjk} be a linked sequence. Then it admits limit points

and every limit point is Pareto-stationary for problem (1.12).

Proof. First of all, let xj0 ∈ L0 be the point for which Assumption 1 holds.

The steps of Algorithm 4 ensure that the points of every linked sequence

{xjk} of Algorithm 2-4 satisfy the property that, for all x`j ∈ Lk−1

F (x`j ) + 1γαjkθ(xjk−1
) 6< F (xjk). (2.22)

By using Assumption 1, the definition of Lk, property (2.22) and by repeating

the same reasoning of the first part of the proof of Proposition 5, it is possible

to prove that the sequence {Lk} is bounded and

lim
k→∞

αjkθ(xjk−1
) = 0. (2.23)

Now we assume, by contradiction, that a limit point x̄ of a linked sequence

{xjk} is not Pareto-stationary and that, hence, there exist a scalar ε > 0

and a set K such that such that

θ(xjk−1
) ≤ −ε, ∀k ∈ K, (2.24)

which, by using (2.23), yields that

lim
k→∞,k∈K

αjk = 0. (2.25)

Now the if-test in the second while-loop implies that for all k ∈ K

F (xjk +
1− δ
δ

αjkv(xjk−1
)) 6< F (xjk) + 1γ

1− δ
δ

αjkθ(xjk−1
)
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which yields that an index sk ∈ {1, . . . ,m} exists such that

fsk(xjk +
1− δ
δ

αjkv(xjk−1
)) ≥ fsk(xjk) + γ

1− δ
δ

αjkθ(xjk−1
)1

namely

fsk(xjk +
1− δ
δ

αjkv(xjk−1
))− fsk(xjk) ≥ γ 1− δ

δ
αjkθ(xjk−1

).

Recalling that sk ∈ {1, . . . ,m}, we can consider a subset K̃ ⊆ K̄ such that,

for all k ∈ K̃, sk = s̄, so that

fs̄(xjk +
1− δ
δ

αjkv(xjk−1
))− fs̄(xjk) ≥ γ 1− δ

δ
αjkθ(xjk−1

)

By the Mean-value Theorem, we have that

fs̄(xjk +
1− δ
δ

αjkv(xjk−1
))− fs̄(xjk) =

1− δ
δ

αjk∇fs̄(ξjk)>v(xjk−1
)

with

ξjk = xjk + tjk
1− δ
δ

αjkv(xjk−1
), tjk ∈ (0, 1).

Then, we can write

∇fs̄(ξjk)>v(xjk−1
) ≥ γθ(xjk−1

).

The definition of function θ gives

θ(xjk−1
) + (∇fs̄(ξjk)−∇fs̄(xjk−1

))>vĪ(xjk−1
) ≥ γθ(xjk−1

).

Then we have

(1− γ)θ(xjk−1
) + (∇fs̄(ξjk)−∇fs̄(xjk−1

))>v(xjk−1
) ≥ 0

By taking the limit for k →∞ and k ∈ K̃, by recalling that αjk → 0 and by

considering the boundedness of v(xjk−1
) and the continuity of θ, we obtain

the contradiction

(1− γ)θ(x̄) ≥ 0

which concludes the proof.
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2.4 Preliminary numerical results

In this section, we report some preliminary numerical results in order to

assess the effectiveness of the proposed framework.

The aim is to show how the proposed framework performs (FRONT-SD)

with respect to a multistart version of the without preferences steepest de-

scent algorithm (MULTISTART-SD), which iteratively calls the Algorithm 1

starting from different randomly sampled points.

Test problems: we considered the set of 10 different unconstrained multi-

objective problems used for the Cec2009 competition [52] whose dimension n

is equal to 30 and with a number m of objectives belonging to the set {2, 3}.
In order to increase the dataset size, we vary the number of variables from

5 to 50 with step 5, obtaining a set of 100 problems.

Implementation details: we implemented Algorithm 2 in Python 3.6 us-

ing Tensorflow 1.5 [1] for computing derivatives and Gurobi [32] for solving

quadratic programming problems like (2.2). Armijo extrapolation technique

(see Algorithm 4) is used as a line search step with the following additional

parameters:

∆k = 1, δ = 0.5

γ = 10−5.

The algorithm stops when one of the two following stopping conditions

is reached:

• maximum number of function evaluations (a Jacobian matrix evalua-

tion costs n).

• all points xc ∈ Lk have been explored.

For our experiments, the maximum number of function evaluations is set

to 20,000.

Since a box-constrained version for each problem is given in [52], then

the centroid of the hyperbox [`, u] is chosen as starting point i.e. L0 = {x0}
with x0 such that:

(x0)i =
`i + ui

2
∀i ∈ {1, . . . , n}. (2.26)

Since some test problems contain objective functions that are not defined

everywhere, infinite values are assigned to the singularities, while points of

non-differentiability are not considered for space exploration.
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Purity, Spread Γ and Spread ∆ metrics defined in section 1.2.5, have

been used with the performance profiles benchmarking technique [17] for

comparing the performance.

We recall that the Purity metric measures the quality of the generated

front, i.e. how good the non-dominated points computed by a solver are

with respect to those computed by any other solver. On the other hand,

the Spread metrics are essential to measure the uniformity of the generated

front in the objectives space.

Note that, for each problem p, the “reference” Pareto front F truep is cal-

culated by first computing

F̃ truep = Fp,FRONT-SD ∪ Fp,MULTISTART-SD,

where Fp,s denotes the set of non-dominated solutions found by solver s, and

then removing from this set any dominated solution as in (1.23).
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Figure 2.1: Performance profiles of Purity and Spread metrics for FRONT-SD

and MULTISTART-SD.

Figure 2.1 shows the effectiveness of our framework, namely FRONT-SD,

with respect to the MULTISTART-SD. In particular, FRONT-SD highly outper-

forms MULTISTART-SD with respect to Spread metrics. This is an expected

behaviour, since MULTISTART-SD does not build iteratively a list of non-

dominated solutions, but it executes several independent runs starting from

different points resulting in a non uniform Pareto front.



Chapter 3

Multiobjective methods with a

cardinality constraint through

concave approximation

On top of the difficulty of dealing with multiple objectives, in many appli-

cations one is also particularly interested in obtaining “sparse” solutions of

(1.1), i.e. solutions with the highest number of components equal to zero.

We thus consider Problem (1.17) where one of the objective functions

counts the number of non-zero components of the solution vector x, i.e. the

following multiobjective sparse optimization problem

min
x∈F⊂Rn

(f1(x), f2(x), . . . , fm−1(x), ||x||0) (SMOP)

where m ≥ 2, F ⊂ Rn is a compact convex set, and ‖x‖0 is the `0-norm of

x, namely,

‖x‖0 =
∣∣∣{i ∈ {1, . . . , n} : |xi| > 0

}∣∣∣.
Problem (SMOP) is effectively a combinatorial problem and it is thus

considerably more difficult [3] than (1.17). In order to make the problem

more tractable, and following the approach of [46], in this paper we propose

to address the `0-norm objective by means of smooth concave approximating

functions. In this way, we are able to convert (SMOP) into a smooth prob-

lem. Further, we prove that such an approximating problem enjoys a nice

equivalence property with respect to the original combinatorial one. Then,

27
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we define an algorithm based on the steepest descent framework for smooth

multiobjective optimization.

3.1 Concave approximation approaches

As stated in the introduction section, (SMOP) is a difficult combinatorial

problem. This section is devoted to the description and analysis of conve-

nient ways to approximate the (discontinuous) zero-norm function in Prob-

lem (SMOP). In particular, we consider smooth concave approximating

functions to convert (SMOP) into a smooth problem. This approach is mo-

tivated by the fact that

‖x‖0 =

n∑
i=1

s(|xi|),

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and

s(t) = 0 for t ≤ 0. The idea is then to replace the discontinuous step

function with a continuously differentiable concave function.

To this purpose, and drawing inspiration from [46], we first rewrite Prob-

lem (SMOP) as follows:

min
x∈F⊂Rn,y∈Rn

(f1(x), f2(x), . . . , fm−1(x), ||y||0)

− y ≤ x ≤ y,
(3.1)

where inequality −y ≤ x ≤ y is intended componentwise, i.e. −yi ≤ xi ≤ yi,
i = 1, . . . , n.

In the following, we study the equivalence between problem (3.1) and a

problem of the form

min
x∈F,y∈Rn

F (x, y) =

(
f1(x), . . . , fm−1(x),

n∑
i=1

fu(yi)

)
− y ≤ x ≤ y

(3.2)

where fu : R+ → R is a smooth function depending on a parameter u ∈ U ⊆
R.

To this aim, we introduce the following assumption on the parameterized

function fu.

Assumption 2. There exists ū ∈ U such that, for any infinite sequence

{uk} → ū we have that:
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(i) for each yi ≥ 0, lim
k→∞

fuk(yi) is well defined;

(ii) for each yi > 0, it follows fuk(0) < fuk(yi) and

lim
k→∞

fuk(0) < lim
k→∞

fuk(yi) <∞;

(iii) for any ȳi > 0, and for any sequence {yki } → ȳi, we have

lim
k→∞

fuk(yki ) = lim
k→∞

fuk(ȳi);

(iv) for each yi ≥ 0, one of the following conditions holds: either

lim
k→∞

fuk(yi) =

{
1 if yi > 0,

0 if yi = 0,
(3.3)

or

lim
k→∞

fuk(0) = −∞. (3.4)

It can be shown that, when U = R+, Assumption 2 is satisfied, for

instance:

- by fu(yi) = 1− e−uyi , with ū = +∞, which satisfies condition (3.3);

- by fu(yi) = log(u+ yi), with ū = 0, which satisfies condition (3.4).

In particular, we note that, whenever condition (3.3) holds, it results

lim
k→∞

n∑
i=1

fuk(yi) = ‖y‖0. (3.5)

Now, concerning the connections between Problem (3.2) and Problem

(SMOP), the following proposition holds.

Proposition 8. Let {uk} be a sequence such that lim
k→∞

uk = ū and let

{(xk, yk)} be a sequence such that, (xk, yk) is weakly Pareto optimal for

Problem (3.2) with u = uk, and yk = |xk|. Then, {(xk, yk)} has limit points

and every limit point (x̄, ȳ) is such that x̄ is weakly Pareto optimal for Prob-

lem (SMOP).
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Proof. By the assumptions, for all k it results xk ∈ F and yk = |xk|. Hence,

as F is compact, the sequence {(xk, yk)} admits limit points. We proceed by

contradiction and assume that there exists an infinite subset K ⊆ {1, 2, . . .}
such that

lim
k∈K,k→∞

(xk, yk) = (x̄, ȳ),

and x̄ is not weakly Pareto optimal for Problem (SMOP). Then, there must

exist a point v ∈ X such that

F (v) < F (x̄). (3.6)

Recalling the continuity of functions f1, . . . , fm−1, we get that, for k ∈ K
sufficiently large, the following inequalities hold:

fi(v) < fi(x
k) i = 1, . . . ,m− 1. (3.7)

Moreover, from (3.6), recalling that ȳ = |x̄|, it follows that

||v||0 < ||x̄||0 = ||ȳ||0. (3.8)

Let yv be such that yv = |v|. Then, (v, yv) is feasible for problem (3.2).

Therefore, recalling that (xk, yk) is weakly Pareto-optimal for Problem (3.2)

and taking (3.7) into account, for k ∈ K sufficiently large we must have that

n∑
i=1

fuk(yki ) ≤
n∑
i=1

fuk(yvi ) =

n∑
i=1

fuk(|vi|). (3.9)

Consider any i ∈ {1, . . . , n} such that ȳi > 0. From assumption (iii), it

follows that

lim
k→∞

fuk(ȳi) = lim
k→∞

fuk(yki ) = li. (3.10)

Then, given any positive ε such that nε < 1, two positive integers k1(ε) and

k2(ε) exist such that

fuk(ȳi) ≤ li +
ε

2
, for all k ≥ k1(ε),

fuk(yki ) ≥ li −
ε

2
, for all k ≥ k2(ε).

Thus, for k sufficiently large, we obtain

fuk(ȳi) ≤ fuk(yki ) + ε. (3.11)
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Now, let us consider any index i ∈ {1, . . . , n} such that ȳi = 0. Using

assumption (ii), we have, for all k,

fuk(ȳi) ≤ fuk(yki ). (3.12)

From (3.11) and (3.12), we get that for k sufficiently large, we can write

n∑
i=1

fuk(ȳi) ≤
n∑
i=1

fuk(yki ) + nε. (3.13)

Condition (3.9) implies that

n∑
i=1

fuk(ȳi) ≤
n∑
i=1

fuk(yvi ) + nε =

n∑
i=1

fuk(|vi|) + nε. (3.14)

Let us now distinguish two cases.

Case I: Suppose that condition (3.3) holds. Using (3.5), we have

lim
k→∞

n∑
i=1

fuk(ȳi) = ‖ȳ‖0 = ‖x̄‖0,

lim
k→∞

n∑
i=1

fuk(yvi ) = ‖yv‖0 = ‖v‖0.

Hence, taking limits for k →∞ in (3.14), we obtain

‖ȳ‖0 ≤ ‖v‖0 + nε.

From the above relation and (3.8), it follows

‖v‖0 + 1 ≤ ‖ȳ‖0 ≤ ‖v‖0 + nε,

which contradicts the fact that nε < 1.

Case II: Suppose that condition (3.4) holds. First, we rewrite relation

(3.14) as follows:∑
ȳi>0

fuk(ȳi)+(n−‖ȳ‖0)fuk(0) ≤
∑
yvi>0

fuk(yvi )+(n−‖yv‖0)fuk(0)+nε,

from which we obtain

(‖yv‖0 − ‖ȳ‖0)fuk(0) ≤
∑
yvi>0

fuk(yvi )−
∑
ȳi>0

fuk(ȳi) + nε.
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Taking limits for k → ∞, using (3.8), the fact that ‖yv‖0 = ‖v‖0 and

condition (3.4), we get that the left member of the above relation tends to

+∞, while the right member tends to a finite value (see assumption (ii)), a

contradiction.

Remark 1. In general, it turns out that weak Pareto optimality is the best

we can aim for, even if we consider a sequence {(xk, yk)} of Pareto points

for the approximated problem, instead of the weak Pareto optimality used in

Proposition (8). To have a better understanding of this point, we provide the

following example.

Example 1. Consider the following multiobjective optimization problem:

min
x∈R

(−x, ‖x‖0)

− 1 ≤ x ≤ 1.

It is easy to see that the only Pareto optimal points are x = 0 and x = 1,

whose objective vectors are (0, 0) and (−1, 1), respectively.

Consider now the sequence of smooth approximating problems

min
x,y∈R

(−x, fuk(y))

− 1 ≤ x ≤ 1,

− y ≤ x ≤ y,

(Puk
)

indexed by the sequence {uk}. Consider, for example, the function fuk(y) =

1 − e−uky. It is easy to see that, for any chosen value of uk > 0, the point

( 1
2 ,

1
2 ) is Pareto optimal for Problem (Puk

). Then, consider the sequence

{(xk, yk)} such that xk = 1
2 and yk = 1

2 for every k. Taking limits for

k → ∞, xk → x̄ = 1
2 , which is not Pareto optimal for the original problem,

since its objective vector is F (x) = (− 1
2 , 1). However, x̄ is a weak Pareto

optimal point for the original problem.

The same reasoning still holds if we consider the function fuk(y) =

log(uk + y).

3.2 The algorithm

Inspired by the work in [23], in this section we propose an algorithm to

approximate the Pareto front of Problem (SMOP). The idea, which is the

same of Chapter 2, is to iteratively improve a list of non-dominated points.
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First, let us denote

fm(y) =

n∑
i=1

fu(yi),

so that Problem (3.2) can be rewritten as

min F (x, y) = (f1(x), . . . , fm−1(x), fm(y))

x ∈ F
− y ≤ x ≤ y.

(3.15)

From now on, we consider z = (x, y)
>

as the set of optimization variables.

Our algorithm is composed of three fundamental phases: an initialization

phase, a search phase and a refining phase.

Initialization: the list has to be initialized with a set of non-dominated

solutions. For simplicity, we consider the case in which the list is initialized

with a singleton. Hence, given a feasible point z0 and a stepsize α0 > 0, we

initialize the list Z0 = {(z0, α0)}.
Search phase: we try to improve the set of non-dominated points, it-

erating over the list Zk. At every iteration, we select a pair (z, α) and we

generate the following set of points:

S(z, α) = {(z + αdi, α0) | ∇fi(z)T di < 0, i ∈ 1 . . . ,m} (3.16)

where each direction di is a feasible descent direction in z for the correspond-

ing objective function fi. Then, the list Zk+1 is updated only considering

non-dominated solutions of the set Zk ∪ S(z, α). If Zk+1 = Zk, i.e. no new

points are added to the list, then the iteration is considered unsuccessful

and the stepsize related to the point z is decreased by a factor δ < 1. The

rationale is that of spreading a set of initial points by separately considering

the single objective functions. The strategy may be considered as a sort of

“guided” multistart.

Refining phase: in order to drive the obtained non-dominated points

towards the Pareto front, the multiobjective steepest descent strategy is

applied for each point of the list Zk.

A few comments are in order:

• The search phase stops when one of the following criteria is satisfied:

all the stepsizes related to the list Zk are lower than a positive tolerance

or a maximum number of function evaluations is reached1.
1A computation of the vector F (x) counts as a single function evaluation. A compu-

tation of the gradient vector ∇F (x) counts as n function evaluations.
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• For the generation of the set S(z, α), we actually consider two different

feasible descent directions per objective, computed with the Projected

Gradient and Frank-Wolfe method respectively. Moreover, we also

include the common steepest descent direction, which, as described in

equation 1.20, can be computed by retrieving the solution (τ∗, x∗, y∗)

of the problem

min
τ,x,y

τ

∇fi(x̄)>(x− x̄)− τ ≤ 0, i = 1, . . . ,m− 1,

∇fm(ȳ)>(y − ȳ)− τ ≤ 0,

x ∈ F ,
− y ≤ x ≤ y,

(3.17)

and setting dz = (dx, dy) = (x∗ − x̄, y∗ − ȳ).

• The notion of Pareto-dominance is referred to the original objective

vector (f1(x), f2(x), . . . , fm−1(x), ||x||0)>.
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Algorithm 5: MultiObjective Sparse Optimization (MOSO)

1 input: a nonempty, finite set of pairs Z0 = {(z0, α0)}, where every z0

is a non-dominated point, α0 > 0, δ < 1 and γ < 1.

2 ouput: a Pareto front approximation Zf .

3 Set k ← 0.

// Start Search phase

4 while stopping criterion not satisfied do

5 Select a pair (z, α) ∈ Zk.

6 Compute the set of points S(z, α) as in (3.16).

7 Set iter success ← false.

8 if S(z, α) 6= ∅ then

9 Set L← Zk ∪ S(z, α).

10 Set Ltmp ← {(w,αw) ∈ L | @z̄ ∈ L s.t. F (z̄) ≤ F (w)}.
11 if Ltmp 6= Zk then

12 Set Zk+1 ← Ltmp.

13 iter success ← true.

14 end

15 else

16 Ltmp ← Zk.

17 end

18 if not iter success then

19 Set Zk+1 ← Ltmp \ {(z, α)} ∪ {(z, δ · α)}.
20 end

21 Set k ← k + 1.

22 end

// End Search phase

23 Set Zf ← ∅.
// Start Refining phase

24 for each z ∈ Zk do

25 z∗ ← steepest descent algorithm(z, γ).

26 Zf ← Zf ∪ {z∗}.
27 end

// End Refining phase
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3.3 Computational experiments on sparse port-

folio problems

To assess the effectiveness of our approach, we consider the following portfolio

selection problem:

min
x∈Rn

(
− µ>x

x>Qx
, ‖x‖0

)
1>x = 1

0 ≤ x ≤ u

(3.18)

where µ ∈ Rn and Q ∈ Rn×n are the vector of expected returns and

covariance matrix, respectively, and u is a resource constraint. This problem

is obtained from the standard Markowitz model

min
x∈Rn

x>Qx

1>x = 1,

µ>x ≥ R,
0 ≤ x ≤ u

(3.19)

replacing the objective function x>Qx with the so called “Sharpe ratio”

(which takes into account both the variance x>Qx and the expected return

µ>x), and by adding ‖x‖0 as a further objective. In our experiments, we set

u = 1.

Test problems: the data used in the following experiments consists of

daily data for securities from the FTSE 100 index, from 01/2003 to 12/2007.

Such data is public and available from the website http://www.bolsapt.com.

The three data sets are referred to as DTS1, DTS2, and DTS3, and are

formed by 12, 24, and 48 securities, respectively. The assets we considered

for the generation of the datasets are those used in [10].

Implementation details: an approximation of the zero-norm with loga-

rithmic functions was used. In particular

||x||0 ≈
n∑
i=1

log(ε+ xi) (3.20)

Parameters of algorithm MOSO have been set as follows:



3.3 Computational experiments on sparse portfolio problems 37

ε = 10−5, δ = 0.5

α0 = 1, αmin = 10−7

γ = 10−6

where αmin represents the tolerance on the stepsizes for the search phase.

We compare the performance of MOSO with the Direct-Multisearch (DMS)

algorithm [12] with its setup defined in [10]. Moreover we set the maximum

number of function evaluations to 2, 000, 00 and we consider the variables

with absolute value lower than 10−8 as zero.

As a final note, we stress the fact that the scope of this section is the com-

parison between the “non-smooth” derivative-free approach, on which DMS

is based, with the steepest descent approach founded on a smooth reformu-

lation that our algorithm exploits. Note, however, that the results we report

in the following sections are with respect to the original vector of objectives

of problem (SMOP), i.e., considering the actual ‖x‖0 objective. The smooth

reformulation only serves as a means to obtain a set of points on which we

compute the original objective vector F , constructing an approximation of

the Pareto front of problem (SMOP).

3.3.1 Single point comparison

Here, we show a comparison on the “single point” scenario, i.e., when only

one Pareto point has to be retrieved. Since the goal is to obtain a single

Pareto point, the list Zk is always composed of a single solution. Moreover,

we modify the search phase in MOSO as follows: we update the current solution

only if the algorithm is able to find a point that strictly dominates it in the

set L. More formally, lines 9-14 of Algorithm 5 are replaced by the the

following:

1 L← S(z, α)

2 for each ẑ ∈ L do

3 if ẑ strictly dominates Zk then

4 Zk ← ẑ

5 iter success ← true

6 end

7 end
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MOSO-Wins DMS-Wins

DTS1 36 3

DTS2 95 1

DTS3 70 6

FF10 92 7

FF17 94 6

FF48 90 10

Table 3.1: Single point comparison.

In Table 3.1, we report the results obtained on the DTS1, DTS2, DTS3,

FF10, FF17 and FF48 datasets. We run both MOSO and DMS starting from

100 different initial points (each time, we use the same initial point for both

algorithms). The list Linit of initial points is the following:

Linit = {e1, . . . , en, xn+1, . . . , x100},

where ei ∈ Rn is the i-th unit vector2 defined in section 1.2, and xi ∈ Rn
are random dense feasible points. For each dataset, we report:

• the number of times the point obtained by MOSO strictly dominates the

one obtained by DMS (column MOSO-Wins);

• the number of times the point obtained by DMS strictly dominates the

one obtained by MOSO (column DMS-Wins).

The results show the effectiveness of MOSO. In fact, MOSO is able to outper-

form DMS on every dataset, dominating the DMS solution considerably often.

3.3.2 Pareto front comparison

In order to compare the two solvers, we compute the Purity and Spread

metrics defined in section 1.2.5 for each problem. We recall that the Purity

metric measures the quality of the generated front, i.e. how good the non-

dominated points computed by a solver are with respect to those computed

by any other solver. On the other hand, the Spread metrics are essential to

measure the uniformity of the generated front in the objectives space. Note

2For the DTS1, DTS2 and DTS3, n is equal to 12, 24, 48, respectively. For the FF

datasets, n is equal to 10, 17 and 48, respectively.
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Purity

Prob/Alg MOSO DMS

DTS1 1 0.17

DTS2 1 1

DTS3 0.94 0.22

FF10 1 0.5

FF17 1 0.5

FF48 1 1

Spread Γ

Prob/Alg MOSO DMS

DTS1 2.65 2.11

DTS2 3.29 12

DTS3 3.29 9

FF10 1 1

FF17 1 1

FF48 1 5

Spread ∆

Prob/Alg MOSO DMS

DTS1 0.77 0.62

DTS2 0.70 ∞
DTS3 0.85 0.78

FF10 0.89 0.52

FF17 0.68 0.5

FF48 0.93 ∞

Table 3.2: Purity and Spread tables for DTS and FF problems starting with

a singleton.

that, for each problem p, the “reference” Pareto front F truep is calculated by

first computing

F̃ truep = Fp,DMS ∪ Fp,MOSO,

where Fp,s denotes the set of non-dominated solutions found by solver s, and

then removing from this set any dominated solution as in (1.23).

The solvers were initialized with the singleton {x0} such that:

x0 =
[
0 . . . 0 1

]>
. (3.21)

In table 3.2, Purity and Spread metrics are reported for the three considered

problems.

The obtained results show the effectiveness of our solver with respect

to the Purity metric. In fact, due to the search directions computed with

the Jacobian matrix, MOSO is able to generate better points until the list is

composed only by Pareto-stationary points. With respect to the Spread Γ
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metric, it is easy to see that when MOSO outperforms DMS the performance

ratio is very high (see tables 3.2(b), DTS2 and DTS3 datasets), while when

it is outperformed, the performance ratio is low.

With respect to the Spread ∆ metric, a degenerate case happens for both

the DTS2 and FF48 datasets. In fact, DMS is not able to extend the Pareto

front. Because of the computation of Spread delta requires the mean distance

between consecutive points in the front, it can be set to ∞ because only one

point is retrieved. In the other problems, DMS outperforms MOSO.

In order to obtain a more robust comparison, we tested the two solvers

starting from a list of 5 random points for each feasible cardinality (e.g., with

n = 12 variables the starting list contains 12 · 5 = 60 points). We executed

the algorithms with 5 different random seeds obtaining 30 total instances.

We compute the performance profiles [17] of the two solvers considering

all the 30 instances of the problems.

As we can see in figure 3.2, no degenerate cases happen with random

initializations. The profiles confirmed the results obtained with the singleton

initialization. In fact, our solver outperforms DMS in terms of Purity and

Spread Γ as in the singleton case. For the Spread ∆ metric, once avoided

degenerate cases, DMS algorithm outperforms MOSO.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Pareto fronts for datasets DTS1 (a), DTS2 (b), DTS3 (c), FF10

(d), FF17 (e) and FF48 (f) starting from a singleton.
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Figure 3.2: Performance profiles computed overall the 30 instances starting

from a random list of points.



Chapter 4

An implicit filtering algorithm

for derivative-free

multiobjective optimization

In this chapter, a MOO problem with black-box type functions is considered.

Since first and higher order information cannot be computed, a multiob-

jective adaptation of the derivative-free Implicit Filtering algorithm [36] is

proposed. Convergence properties to Pareto-stationary points for the algo-

rithm are stated. Then, in order to compute a Pareto front approximation,

also an a posteriori version of the algorithm is proposed. Numerical re-

sults obtained comparing our framework with state-of-the-art derivative-free

solvers show the effectiveness of the proposed approach.

4.1 State-of-the-art methods for derivative-free

multiobjective optimization

In this section, a list of the most important algorithms for derivative-free

multiobjective optimization is reported in order to highlight their relevant

features.

BIMADS [6]: it is a bi-objective version of Mesh-Adaptive-Direct-

Search algorithm, namely MADS [5], for non-smooth multiobjective optimiza-

tion under general constraints. Basically, MADS algorithm for single-objective

optimization is an iterative method which tries to improve the current solu-

43
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tion evaluating trial points on a mesh. When an iteration fails to improve

the current solution, then the next iteration will evaluate points on a finer

mesh.

For what concerns BIMADS, each iteration is organized into three phases:

in the first phase, each objective is separately minimized using MADS algo-

rithm, generating an initial set of non-dominated solutions. In the second

phase, this set is sorted ascending with respect to one of the two objectives

(this results in a descending sort with respect to the other objective), for

selecting a “reference point” with the largest gap in the objective space.

Then a single-objective optimization problem, which aims to find new non-

dominated solutions near the reference point, is solved using MADS. Then, in

the last phase, dominated solutions are removed from the current list.

MULTIMADS [7]: a more general version, namely MULTIMADS, is pro-

posed in order to deal with problems with more than two objectives. As in

BIMADS, each iteration of MULTIMADS algorithm is organized in three phases,

but the most relevant difference between them is about the selection of the

reference point in the second phase. In MULTIMADS, an alternate formulation

for selecting reference points in Rm, m > 2, is proposed.

DMS [12]: Direct-Multisearch algorithm (DMS) is addressed to multiob-

jective optimization problems with nonlinear constraints which are handled

by an extreme barrier function approach. It is an iterative algorithm which

generates a sequence of lists of non-dominated solutions.

Each iteration of the algorithm is organized in four different phases. In

the first phase a point is selected from the current list according to some rules

(e.g. the point which maximizes a Spread metric in the objective space).

Then a search-step is performed around the current point through a neigh-

bourhood evaluation. Then the poll-step exploits a positive spanning set

(defined by a step size) of a set of directions. In both search-step and poll-

step the current list could be enriched with new non-dominated solutions. In

the fourth phase, if the current list was never updated during the previous

phases, the step size related to the selected point decreases.

DFMO [39]: the Derivative-Free-Multiobjective-Optimization (DFMO)

algorithm, as DMS, generates a sequence of sets of non-dominated solutions.

For each iteration, each point of the current list is exploited in order to

improve the list. A line search technique able to deal with multiple objectives

is proposed with a penalty function for handling nonlinear constraints.
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4.2 Implicit Filtering algorithm for

unconstrained single-objective optimization

In this section we briefly recall the main concepts of the Implicit Filtering al-

gorithm for derivative-free optimization (see [36], and the references therein,

for a more thorough description of the algorithm). To this aim and limited

to this section, let us consider the following optimization problem:

min
x∈Rn

f(x) (4.1)

where f : Rn → R is continuously differentiable.

In order to introduce the Implicit Filtering algorithm for the solution of

Problem (4.1), which is basically an improvement of the well-known coordi-

nate search algorithm, we need to recall some definitions.

Definition 8 (Stencil). Given a point x ∈ Rn and a stepsize h > 0 a stencil

is a set of points defined as:

S(x, h) := {x+ he1, . . . , x+ hen, x− he1, . . . , x− hen} (4.2)

With respect to the coordinate direction ei, x + hei and x − hei can be

used to approximate the partial derivative ∂f(x)
∂xi

. Hence, the S(x, h) can be

used to compute an approximation of the gradient ∇f(x).

Definition 9 (Approximated gradient). Given a point x and a stepsize h >

0, the approximated gradient ∇hf(x) is defined as follows:

∇hf(x) =


∂hf(x)
∂x1

...
∂hf(x)
∂xn

 (4.3)

where:
∂hf(x)

∂xi
=
f(x+ hei)− f(x− hei)

2h
(4.4)

It is worth noting that, since f is continuously differentiable, ∇hf(x) is

continuous for every h > 0. Once the notion of approximated gradient is

stated, the following notion of h-stationarity is given.

Definition 10 (h-stationarity). Let x ∈ Rn and let ∇hf(x) its approximated

gradient. Then x is a h-stationary point if

||∇hf(x)|| = 0. (4.5)
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Then, let us recall the definition of a stencil failure.

Definition 11 (Stencil failure). Given a point x ∈ Rn and a stepsize h > 0

a stencil failure occurs when:

f(x) ≤ f(y), ∀y ∈ S(x, h) (4.6)

i.e. each point belonging to the stencil cannot improve the objective function

with respect to f(x).

Now, we are ready to introduce the sketch of a particular instance of the

well-known Implicit Filtering algorithm (see [36] for more general algorithms)

for single-objective optimization, which basically consists of two nested loops.

The external loop (see Algorithm 6) produces a sequence of stepsizes {hk},
such that hk → 0 for k → ∞, and a sequence of iterates {xk}; each xk is

obtained by performing a single Implicit Filtering step, imstep, with fixed

stepsize hk. The inner loop (see Algorithm 7) performs a minimization of

the objective function f starting from the current iterate xk = z0. At every

iteration, first a stencil is built around zj . If a stencil failure is not detected,

i.e. at least one of the stencil points y ∈ S(zj , hk) strictly decreases the

objective function, the approximated gradient is computed. Then, a line

search is carried out to obtain a new iterate zj+1, provided that the current

point is not hk-stationary. We note that, in Algorithm 7, when the line

search is performed, the “approximated” steepest descent direction is used.

In case of failure of the line search, zj+1 is set equal to y. The algorithm

keeps iterating through the inner cycle until either a stencil failure occurs,

or the current point zj is deemed hk-stationary.

For a thorough convergence analysis of Algorithm 6, as well as for less

basic versions of the Implicit Filtering method, we refer the interested reader

to [36].

4.3 Implicit Filtering algorithm for

multiobjective optimization

Let us suppose to have the following multiobjective optimization problem

with box constraints:

min
x∈Rn

(f1(x), . . . , fm(x))

`i ≤ xi ≤ ui, ∀i ∈ {1, . . . , n}
(4.7)



4.3 Implicit Filtering algorithm for
multiobjective optimization 47

Algorithm 6: Implicit Filtering

1 input: x0 ∈ Rn, h0 > 0, γ, δ, τ ∈ (0, 1).

2 ouput: a stationary point x∗.

3 for k = 0, 1, . . . , do

4 xk+1 ← imstep(xk, hk, τ ,γ)

5 hk+1 ← δhk

6 end

7 x∗ ← xk
8 return x∗

Let us define the feasible set F of problem (4.7) as:

F := {x ∈ Rn : `i ≤ xi ≤ ui, i = 1, . . . , n} (4.8)

Our main goal is to define an Implicit Filtering-type method to solve

the multiobjective optimization problem (4.7). Indeed, we are able to prove

that the proposed method converges to Pareto-stationary points of (4.7). In

order to export the Implicit Filtering algorithm to a multiobjective context,

at least four critical aspects must be carefully considered which are:

• a new definition of stencil failure

• handling a quasi -Pareto-stationarity

• approximation of the multiobjective steepest descent direction

• a multiobjective line search

Moreover, bound constraints on the variables must be taken into account in

the definition of stencil and approximated gradients

Definition 12 (Constrained approximated gradient). Given x ∈ F , h > 0,

the stencil S(x, h), and an index i ∈ {1, . . . ,m}, the approximated gradient

with box constraints ∇hfi of fi at x is defined by

∇hfi(x)
4
=

(
∂hfi(x)

∂x1
, . . . ,

∂hfi(x)

∂xn

)>
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Algorithm 7: imstep

1 input: z0 ∈ Rn, h > 0,τ > 0 γ ∈ (0, 1).

2 ouput: a stationary point z∗.

3 for j = 0, 1, . . . do

4 Build S(zj , h) and define S = {y ∈ S(zj , h) : f(y) < f(zj)}
5 if S 6= ∅ then

6 Choose y ∈ S
7 else

8 return zj // stencil failure: reduce the stepsize

9 end

10 Compute ∇hf(zj)

11 if ||∇hf(zj)|| ≤ τh then

12 return zj // h-stationarity: reduce the stepsize

13 end

14 if α > 0 exists s.t. f(zj − α∇hf(zj)) ≤ f(zj)− γα||∇hf(zj)||2
then

15 zj+1 ← zj − α∇hf(zj)

16 else

17 Set zj+1 ← y

18 end

19 end

where, for all j = 1, . . . , n,

∂hfi(x)

∂xj
=



fi(x+hej)−fi(x−hej)
2h , x+ hej ∈ F , x− hej ∈ F ;

fi(x+hej)−fi(x)
h , x+ hej ∈ F , x− hej /∈ F ;

fi(x)−fi(x−hej)
h , x+ hej /∈ F , x− hej ∈ F ;

∞ , x+ hej /∈ F , x− hej /∈ F .

(4.9)

Note that, ∂hfi(x)
∂xj

= ∞ whenever x + hej /∈ F , x − hej /∈ F , but this

never occurs for sufficiently small values of h; we clarify this point in Lemma

4 below.

Now, we introduce the definition of a stencil failure in the multiobjective

case and of Pareto h-stationarity.
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Definition 13 (Multiobjective stencil failure). Given x ∈ F and a stepsize

h > 0, a stencil failure at x occurs when there is no y ∈ S(x, h) ∩ F that

dominates x, i.e.

@y ∈ S(x, h) ∩ F : F (y) ≤ F (x).

Definition 14 (Pareto h-stationarity). Given a stepsize h > 0, a point

x∗ ∈ F is Pareto h-stationary if, for all y ∈ F , an index j ∈ {1, . . . ,m}
exists, possibly depending on y, such that

∇hfj(x∗)T (y − x∗) ≥ 0.

Reasoning as in Section 1.2, Pareto h-stationarity can be characterized

by extending definitions (1.18)-(1.19) for y(x) and θ(x) to the case of ap-

proximated gradients, as follows:

θ(x, h) = min
y∈F

max
i=1,...,m

∇hfi(x)>(y − x) (4.10)

y(x, h) = arg min
y∈F

max
i=1,...,m

∇hfi(x)>(y − x). (4.11)

Further, we approximate the steepest descent direction v(x) by

v(x, h) = y(x, h)− x.

For what concerns the above definitions, we remark that problem (4.11)

is a finite min max problem with linear component functions. It can thus be

trivially restated as the following linear programming (LP) problem

min
y,β

β

∇hfi(x)>(y − x) ≤ β, i = 1, . . . ,m,

y ∈ F

(4.12)

It can be easily seen (see point (i) of Proposition 10 in the Appendix)

that θ(x, h) ≤ 0 for all x ∈ F and h > 0, so that x∗ is Pareto h-stationary

if and only if θ(x∗, h) = 0. Furthermore, (see point (ii) of Proposition 10 in

the Appendix) for any given x ∈ F , it results

lim
h→0+

θ(x, h) = θ(x).

Now, we develop a first version of an Implicit Filtering algorithm which

converges asymptotically to a single Pareto-stationary point. As in the Im-

plicit Filtering framework, our algorithm consists of two nested loops. The
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Algorithm 8: MultiObjectiveImplicitFiltering (MOIF)

1 input: x0 ∈ F , h0 > 0, γ, δ, τ ∈ (0, 1)

2 output: an optimal point x∗

3 for k = 0, 1, 2, . . . do

4 xk+1 ← imstepMulti(xk, hk, τ, γ)

5 hk+1 ← δhk

6 end

7 x∗ ← xk
8 return x∗

outermost loop, which is reported in Algorithm 8, is very similar to the outer

loop of Algorithm 6 for single-objective optimization reported in Section 4.2.

The innermost loop is the most important one and is reported in the

following algorithm imstepMulti.
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Algorithm 9: imstepMulti

1 input: z̃0 ∈ F , h > 0, τ > 0, γ ∈ (0, 1)

2 output: a sub-optimal point z∗

3 for j = 0, 1, . . . do

4 stencilFailure ← FALSE

5 w ← z̃j
6 while not stencilFailure do

7 Build S(w, h)

8 if S(w, h) ∩ F = ∅ then

9 return w // stencil infeasible: reduce the

stepsize

10 else

11 S ← {y ∈ S(w, h) ∩ F : F (y) ≤ F (w)− 1γh}
12 end

13 if S 6= ∅ then

14 Choose y ∈ S and set w = y

15 else

16 stencilFailure ← TRUE

17 end

18 end

19 zj ← w

20 if ∃i ∈ {1, . . . , n} s.t. zj + hei, zj − hei /∈ F then

21 return zj // approximated gradient undetermined:

reduce the stepsize

22 end

23 θj ← θ(zj , h)

24 yj = y(zj , h)

25 vj = yj − zj
26 if θj ≥ −τh then

27 return zj // Pareto h-stationarity: reduce the

stepsize

28 end

29 αj ← Goldstein(zj , vj , h, θj , γ)

30 if αj |θj | ≤ τh then

31 return zj // line search-failure: reduce the

stepsize

32 end

33 z̃j+1 ← zj + αjvj

34 end

35 z∗ ← zj
36 return z∗
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As we can see, the internal loop is somewhat different from Algorithm 7

and is composed by two parts:

• direct search along the coordinate axis;

• (possible) line search along the approximated steepest descent direction

(obtained by solving an LP).

The main difference between Algorithms 7 and 9 resides in the behavior of

the algorithms in case of a stencil failure. When a stencil failure is detected

by Algorithm 7, the inner loop is abandoned so that the step size is reduced.

On the contrary, in Algorithm 9, when a stencil failure is detected, the inner

loop tries to execute a line search along the approximated steepest descent

direction.

We decided to modify the basic Implicit Filtering behavior by drawing

inspiration from the recently proposed algorithm DMS (see Remark 5 below).

We move along coordinate axis by a fixed step h. At iteration j of Algorithm

imstepMulti, we have a stencil failure when no feasible stencil point y ∈
S(w, h) ∩ F exists such that

F (y) ≤ F (w)− 1γh.

When a stencil failure finally occurs, we proceed trying to find a descent

direction using ∇hF (zj). In particular, θj and vj = yj − zj are computed by

solving a linear programming subproblem of type (4.12) with exact gradients

replaced by approximated ones. In this respect, we note that this calculation

does not increase the number of objective function evaluations, because the

approximated gradient is computed through stencil points already computed.

If we find a sufficiently good feasible direction vj , i.e. such that θ(zj , h) <

−τh, we perform a line search along the computed direction vj . We recall

that direction vj is such that the unitary stepsize is feasible, i.e. zj + vj ∈ F
and vj is a feasible direction.

Remark 2. If θ(zj , h) ≥ −τh, the current point zj is deemed h-stationary

and the current stepsize h is reduced by the algorithm. This could also mean

that the current gradient approximation is not suitable. Further, even if

θ(zj , h) < −τh < 0, there is no guarantee that direction vj is a descent

direction for the objective functions.

Remark 3. Direction vj is computed by using approximations of the objec-

tive functions gradients. Hence, for a fixed stepsize h, it might well not be a

descent direction at the current iterate zj.
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The above two observations suggested us to use a Goldstein line search (in

place of an Armijo one) with initial stepsize αj equal to h, i.e. the stepsize

used in the algorithm to build the stencil and compute the approximated

objective functions gradients. In this way, we are able to immediately verify

the quality of the direction, thus avoiding a potentially large number of

function evaluations.

Algorithm 10: Goldstein

1 input: x ∈ Rn, v ∈ Rn, h > 0, θ < 0, γ ∈ (0, 1)

2 output: a stepsize α ≥ 0

3 if F (x+ hv) ≤ F (x) + 1γ(hθ) and x+ hv ∈ F then

4 β ← 0

5 while x+ 2β+1hv ∈ F and F (x+ 2β+1hv) ≤ F (x) + 1γ(2β+1hθ)

do

6 β ← β + 1

7 end

8 α← 2βh

9 else

10 α← 0

11 end

12 return α

Remark 4. We observe that, whenever the test αj |θj | ≤ τh holds, as |θj | >
τh, we have that the produced αj is “sufficiently small”, so that, the current

point can be considered an approximation of a Pareto h-stationary point and,

as a consequence, the finite-difference stepsize h is reduced.

Remark 5. As we said before, the direct search along the coordinate direc-

tions draws inspiration from DMS, which is an algorithmic framework that

extends the class of direct search methods for single optimization to nons-

mooth, multiobjective optimization. In the general setting of DMS, the ob-

jective functions are sampled along suitable sets of search directions, the

acceptance criterion is based on the Pareto dominance, and a list of feasible

non-dominated points is updated. The simplest strategy of the framework is

that of considering lists formed by a single point and to use the set of coordi-

nate directions as search directions. This strategy is similar to that defined in

the direct search block of our algorithm. However, in our framework the Im-
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plicit Filtering phase generates an approximated “steepest descent direction”

for all objective functions, by solving the min max problem (see (4.11)), and

this is the key ingredient, coupled with the line search, to ensure convergence

properties.

4.4 Convergence analysis

First of all we prove that Algorithm imstepMulti is well defined. To this

aim, in the following lemma we show that for every j ≥ 0 and z̃j a point zj
is produced, i.e. stencilFailure is eventually set to TRUE.

Lemma 1. With reference to Algorithm imstepMulti, for every j ≥ 0, after

a finite number of iterations of the while-loop, either stencil infeasibility is

detected or stencil failure is obtained, i.e. stencilFailure is eventually set

to TRUE.

Proof. Let us assume by contradiction that for a given iteration j the

while-loop never terminates, i.e. the stencil is always feasible and stencil-

Failure is never set to TRUE. In this case, let us denote by wt the stencil

center point at the generic t-th iteration of the while loop, and by wt+1 the

point of the next stencil. Of course, for every t it results

i) wt ∈ F ;

ii) F (wt+1) ≤ F (wt)− 1γh.

Recalling that w0 = z̃j and point ii) above, we can write

F (wt+1) ≤ F (wt)− 1γh ≤ F (wt−1)− 1(2γh) ≤ · · · ≤ F (z̃j)− 1(t+ 1)γh.

Taking the limit for t→∞ in the above relation we would obtain

lim
t→∞

fi(wt) = −∞, i = 1, . . . ,m,

which is a contradiction with the continuity of F , compactness of F , and

{wt} ⊂ F . 2

By virtue of Lemma 1,

- either zj = z̃j and F (zj) = F (z̃j)

- or zj is such that F (zj) ≤ F (z̃j)− 1γh.
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Then, we prove that the Goldstein procedure is well-defined, namely that

the while-loop in the Goldstein procedure cannot infinitely cycle.

Lemma 2. For every x ∈ F , h > 0, θ < 0, and v ∈ Rn, the Goldstein

procedure always returns a value α ≥ 0.

Proof. If F (x + hv) 6≤ F (x) + 1γ(hθ) or x + hv 6∈ F , the procedure

immediately returns α = 0.

Hence, we have only to analyze the case when F (x+hv) ≤ F (x)+1γ(hθ)

and x + hv ∈ F , and show that the while-loop cannot infinitely cycle. Let

us proceed by contradiction and assume that the while-loop infinitely cycle.

This means that, for every β = 0, 1, 2, . . . , we have

x+ 2β+1hv ∈ F and F (x+ 2β+1hv) ≤ F (x) + 1γ(2β+1hθ).

For β sufficiently large, this is a contradiction with the compactness of F
and continuity of F , and concludes the proof. 2

Now, concerning the convergence of Algorithm MOIF (the Multi Objec-

tive Implicit Filtering procedure described in Algorithm 8), the first

thing we need to prove is that the stepsize hk converges to zero. Thus, we

state the following lemma.

Lemma 3. Algorithm MOIF generates infinite sequences {xk} ⊂ F and

{hk} ⊂ R+, such that

lim
k→∞

hk = 0. (4.13)

Proof. We assume by contradiction that for an index k̄ Algorithm im-

stepMulti does not terminate, thus producing infinite sequences {z̃j}, {zj},
{αj}, {θj}, {vj}, and {fi(zj)}, for i = 1, . . . ,m. Let h̄ = hk̄. Furthermore,

for all j = 0, 1, . . . ,

i) θj = θ(zj , h̄) < −τ h̄ < 0, and

ii) zj + αjvj ∈ F and αj |θj | > τh̄.

Hence, for all i ∈ {1, . . . ,m} and j ≥ 0, we have

fi(zj+1) ≤ fi(z̃j+1) = fi(zj + αjvj) ≤ fi(zj) + γαjθj ,

that is

fi(zj)− fi(zj+1) ≥ −γαjθj . (4.14)
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Since {fi(zj)}, for i = 1, . . . ,m, are non-increasing sequences, and zj ∈ F
for all j, then the continuity of fi ensures that

lim
j→∞

fi(zj)− fi(zj+1) = 0, ∀i = 1, . . . ,m.

Above limits and relation (4.14) imply that

lim
j→∞

αj |θj | = 0.

Thus, for j sufficiently large we will have αj |θj | ≤ τ h̄. In other words, the

test after the Goldstein procedure will be satisfied, and hence Algorithm

imstepMulti will terminate, within a finite number of inner iterations, in

contradiction with our initial assumption. Then (4.13) is easily proved, as

{hk} is an infinite sequence such that hk+1 = δhk with δ ∈ (0, 1). 2

Before stating the main theorem, we prove the following result.

Lemma 4. Let {xk}k∈K be a subsequence produced by Algorithm MOIF and

assume that xk → x̄ for k ∈ K and k → ∞. Then, for k ∈ K and k

sufficiently large we have that for j = 1, . . . , n at least one of the following

conditions holds

xk + hkej ∈ F

xk − hkej ∈ F .

Proof. The points of the subsequence {xk}k∈K belong to the closed set

F , so that, x̄ ∈ F . Since F is defined by box constraints, for j = 1, . . . n

we have that at least one of the vectors ej or −ej is a feasible direction at

x̄. Let dj ∈ {ej ,−ej} be a feasible direction at x̄, and let D(x̄) be the set of

feasible directions at x̄. Again, since F is defined by linear constraints, from

known results (see, e.g., Proposition 4 in [40] and Proposition A1 in [38]) it

follows:

(i) D(x̄) ⊆ D(xk) for k ∈ K and k sufficiently large;

(ii) given d ∈ D(x̄), there exists t̄ > 0 such that, for all t ∈ (0, t̄], we have

xk + td ∈ F , for k ∈ K and k sufficiently large.

Then for any j = 1, . . . , n, being dj ∈ {ej ,−ej} a feasible direction at x̄ and

recalling that hk → 0 for k ∈ K and k →∞, it follows from (ii) that

xk + hkdj ∈ F
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for k ∈ K and k sufficiently large, and the thesis is proved. 2

Finally, we can state the main theorem concerning the convergence of Algo-

rithm MOIF.

Theorem 1. Let {xk} be a sequence produced by Algorithm MOIF. Then {xk}
admits limit points, and each one of them is Pareto-stationary for Problem

(4.7).

Proof. By construction, {xk} ⊂ F . Hence, by compactness of F and

using Lemma 3, there exists a limit point x̄ ∈ F of {xk} and an infinite

subset of iteration indices K ⊂ {0, 1, 2 . . . } such that

lim
k∈K,k→∞

xk = x̄

and

lim
k∈K,k→∞

hk = 0. (4.15)

From Lemma 4 it follows that, for k ∈ K and sufficiently large, procedure

imstepMulti(xk, hk, τ, γ) can never return because S(xk, hk) ∩ F = ∅ or

because xk +hkei /∈ F and xk−hkei /∈ F , for all i = 1, . . . , n, i.e. the stencil

is feasible and all the components of the approximated gradient at xk are

finite as defined by (4.9).

Then, after relabelling (if necessary) the index set K, we can split K into

two subsets, K1 and K2, defined as

K1 = {k ∈ K : −τhk ≤ θ(xk, hk) ≤ 0} and

K2 = {k ∈ K \K1 : αk|θ(xk, hk)| ≤ τhk}.

Note that, since K is infinite, K1 and K2 cannot be both finite.

First, let us suppose that K1 is infinite. From the definition of K1, using

assertion (ii) of Proposition 10 in the Appendix and (4.15), we obtain that

lim
k→∞,k∈K1

θ(xk, hk) = θ(x̄) = 0,

which completes the proof in this case.

Let us now suppose that K2 is infinite. We proceed by contradiction and

assume that x̄ is not Pareto-stationary, i.e.

θ(x̄) < 0. (4.16)
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Then, from the definition of K2 and considering (4.15), we get

lim
k∈K2,k→∞

αk|θ(xk, hk)| = 0,

which, recalling (ii) of Proposition 10 in the Appendix, (4.15) and (4.16),

yields

lim
k∈K2,k→∞

αk = 0. (4.17)

Furthermore, it must exist an infinite subset K̄2 ⊂ K2 such that one of the

following two cases can occur:

i) either αk = 0 for k ∈ K̄2

ii) or αk = 2βkhk > 0 for k ∈ K̄2.

Point i). In this case, recalling that v(xk, hk) = y(xk, hk) − xk so that

xk + v(xk, hk) = y(xk, hk) ∈ F by definition, that for k sufficiently large

hk < 1, and that F is a convex set, we have that xk + hkvk ∈ F for k

sufficiently large and, by definition of the Goldstein procedure,

F (xk + hkvk) 6≤ F (xk) + 1γhkθk, (4.18)

where we introduced the notations vk = v(xk, hk) and θk = θ(xk, hk). If

(4.18) holds, we can write, for at least an index ` ∈ {1, . . . ,m} (which can

depend on k),

f`(xk)− f`(xk + hkvk)

hk
< −γθk ≤ −γ∇hk

f`(xk)>vk.

Then, by the Mean Value Theorem, an h̃k ∈ (0, hk) exists such that

−∇f`(xk + h̃kvk)>vk < −γθk ≤ −γ∇hk
f`(xk)>vk. (4.19)

Moreover,

−γ∇hk
f`(xk)>vk = γ(∇f`(xk)−∇hk

f`(xk))>vk − γ∇f`(xk)>vk

≤ γ‖∇f`(xk)−∇hk
f`(xk)‖‖vk‖ − γ∇f`(xk)>vk.

Now, using (4.19) and the above relation, and recalling that the sequence

of search directions {vk} is bounded, a fixed ¯̀ ∈ {1, . . . ,m}, a direction

v̄ ∈ Rn, and an infinite subset K3 ⊆ K̄2 exist such that ∀k ∈ K3

−∇f¯̀(xk + h̃kvk)>vk <

−γθk ≤ γ‖∇f¯̀(xk)−∇hk
f¯̀(xk)‖‖vk‖ − γ∇f¯̀(xk)>vk

(4.20)
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and

lim
k∈K3,k→∞

vk = v̄.

Taking the limit in (4.20) and recalling Proposition 9 and Proposition 10

in Appendix, we then obtain

−∇f¯̀(x̄)>v̄ ≤ −γθ(x̄) ≤ −γ∇f¯̀(x̄)>v̄,

from which (1− γ)∇f¯̀(x̄)>v̄ ≥ 0 and θ(x̄) ≥ ∇f¯̀(x̄)>v̄ follow. Together

with γ ∈ (0, 1) these yield 0 > θ(x̄) ≥ ∇f¯̀(x̄)>v̄ ≥ 0, i.e. a contradiction.

Point ii). In this case, αk = 2βkhk > 0. From (4.17), recalling that vk is

computed in such a way that xk + vk ∈ F , see e.g. (4.11), for k ∈ K̄2 and k

sufficiently large we have xk + 2αkvk ∈ F . Hence, the Goldstein procedure

returns αk such that, recalling (4.17) and the convexity of F ,

xk + 2αkvk ∈ F and F (xk + 2αkvk) 6≤ F (xk) + 1γ(2αkθk). (4.21)

Then, reasoning as above, we can again conclude that x̄ is Pareto-stationary

for Problem (4.7), thus raising yet a contradiction and concluding the proof.

2

4.5 Computational experiments

In this section we report the numerical results of experiments performed in

order to assess the effectiveness and the efficiency of the proposed algorithm,

both when it is used to generate a single non-dominated point (i.e. when

preferences of the decision maker are disregarded), and to generate a set

of non-dominated solutions (i.e. when preferences of the decision maker

are taken into account a posteriori). In both situations, our strategy is

compared with the Direct Multisearch algorithm (DMS) proposed in [12].

We acknowledge that algorithm DFMO proposed in [39] is also suitable for

the solution of Problem (4.7) when derivatives are not available. However,

considering the results reported in [39] and in particular Figure 2 therein,

DMS appears to be better than DFMO, at least when the coordinate directions

are used as search directions in both algorithms.

Test problems. We considered the set of 100 multiobjective problems

used in [12], whose dimension n is in the range [1, 30] and with a number m

of objectives belonging to the set {2, 3, 4}.



60
An implicit filtering algorithm for derivative-free multiobjective

optimization

Implementation details. We have implemented Algorithm 8 in MATLAB©

and we tested it on an Intel 1.2 GHz quad-core multithread with 8GB RAM.

Parameters of algorithm MOIF have been set as follows

h0 = 1, τ = 10−2

δ = 0.5, γ = 10−5.

The computation of θ(x, h) and y(x, h), as defined in (4.10) and (4.11),

respectively, in Algorithm MOIF is carried out by using the linprog function

of MATLAB©.

In the experiments, MOIF is stopped whenever either hk ≤ 10−3 or the

number of function evaluations exceeds 20,000. Furthermore, as concerns the

implementation of algorithm imstepMulti, i.e. Algorithm 9, the instruction

“Choose y ∈ S” is realized so that y is the first point in S not dominated by

any other point in S.

As for DMS, all of its parameters (except for Pareto front) have been set

to their default values. In particular, we have

stop alfa = 1 tol stop = 10−3

stop feval = 1 max fevals = 20, 000

so that the stopping criteria of DMS are the same as those used in MOIF. Both

solvers start from the centroid of the feasible region F , i.e.

(x0)i =
ui + `i

2
, ∀ i = 1, . . . , n.

4.5.1 Computation of a single non-dominated solution

We compare the performance of our algorithm MOIF (i.e. Algorithm 8) with

the one of DMS when it is used to generate a single non-dominated solution,

i.e. when the calling parameter Pareto front is set to 0.

The first thing that we observe is that, in 54 out of 100 problems, the

Goldstein line search is never performed since the Pareto h−stationarity

condition

θj ≥ −τh

is always satisfied. When this happens, the two algorithms MOIF and DMS

show the same behaviour and produce the same non-dominated point.

In the remaining 46 problems, at least one line search is performed with

success by algorithm MOIF during the optimization process. In 20 out of these
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46 problems, MOIF determines a point that dominates the point computed by

DMS, while the point provided by DMS never happens to dominate the point

determined by MOIF. Hence, we can conclude that these results show the

good performance of MOIF in terms of quality of the computed solution.

In the 26 problems where the two solvers computed solutions that do not

dominate each other, we have the following situation in terms of objective

function evaluations. In 5 out of 26 test problems MOIF required a lower

number of function evaluations than that required by DMS. However, this

situation is not surprising since, as we may expect, the line search procedure

of MOIF requires additional function evaluations with respect to the plain

coordinate search performed by both solvers.

On the whole, we may conclude that algorithm MOIF, which combines a

coordinate search phase with an Implicit Filtering strategy, shows a good

ability to produce non-dominated solutions, confirming the viability of the

proposed approach. It can also be noted that, due to the additional burden

of the Goldstein line search, MOIF might be somewhat more expensive than

DMS.

4.5.2 Computation of a set of non-dominated solutions

When an approximation of the Pareto front is required, like e.g. in a pos-

teriori methods, drawing inspiration from DMS, we have defined a version of

algorithm MOIF aimed at approximating the whole Pareto front which we call

MOIFfront (see Algorithm 11). In the following, we discuss the main aspects

that distinguish MOIFfront from MOIF (i.e. the proposed algorithm aimed at

computing a single non-dominated solution) and DMS.

The main difference between MOIF and MOIFfront is that every iteration

of MOIFfront is characterized by a set, say Lk, of point-stepsize pairs rather

than the single pair (xk, hk), as in MOIF and as it is common in algorithms

for single-objective optimization.

Management of the sequence of sets {Lk} is performed drawing inspira-

tion both from DMS [12] and DFMO [39]. Since this aspect and, in particular,

the generation of Lk+1 starting from Lk is not trivial, we describe it with

some detail.

For each k, let Lk be the following finite set

Lk = {(xi, hi), xi ∈ F , hi > 0, i = 1, . . . , rk},

where rk = |Lk| and hi is the (tentative) stepsize associated with point xi.
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At each iteration k, a current pair (xki , h
k
i ) ∈ Lk is selected (according to a

certain criterion). Then, let

L′k =
(

(S(xki , h
k
i ) ∩ F)× {hki }

)
∪ Lk

and

L̃k = {(xi, hi) ∈ L′k : @(xj , hj) ∈ L′k s.t. F (xj) ≤ F (xi)} . (4.22)

Then, the new set Lk+1 is defined as:

Lk+1 = L̃k when L̃k 6= Lk, (4.23a)

Lk+1 =
{

(xi, hi) ∈ Lk ∪ {(wk, αk)} :

@(xj , hj) ∈ Lk s.t. F (xj) ≤
F (xi)

}
when L̃k = Lk,

θk < −τhki ,
αk|θk| > τhki

(4.23b)

Lk+1 = Lk \ {(xki , hki )} ∪ {(xki , δhki )} otherwise (4.23c)

where

• θk = θ(xki , h
k
i )

• vk = v(xki , h
k
i )

• wk = xki + αkvk

• αk = Goldstein(xki , vk, h
k
i , θk, γ)

Note that when the algorithm is not able to find any new non-dominated

point, that is, when both the coordinate search does not produce any new

non-dominated point ( i.e. L̃k = Lk), and the Goldstein line search either

is not performed (because either the approximated gradient is undetermined

or θk ≥ −τhki ) or produces an unsuitable stepsize (i.e. αk|θk| ≤ τhki ), Lk+1

is obtained from Lk by replacing the selected pair (xki , h
k
i ) by (xki , δh

k
i ). The

same is done in case of infeasible stencil, that is when Lk = L′k = L̃k because

S(xki , h
k
i ) ∩ F = ∅.

As we already pointed out in Remark 5, theoretical convergence proper-

ties of Algorithm MOIFfront (at least under smoothness assumptions) would

derive from the Goldstein line search procedure.

However, carrying out such a theoretical convergence analysis for algo-

rithm MOIFfront would considerably burden the thesis. Indeed, before pro-

ceeding with the theoretical analysis it would be necessary to formally state
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Algorithm 11: MOIFfront

1 input : γ, δ, τ ∈ (0, 1), L0 = {(xi, hi), xi ∈ F , hi > 0, i = 1, . . . , r0}
initial set of non-dominated points

2 ouput: an approximation of Pareto front L∗

3 for k = 0, 1, . . . do

4 Select (xki , h
k
i ) ∈ Lk and compute L̃k as in (4.22)

5 if L̃k 6= Lk then

6 Lk+1 ← L̃k
7 else

8 Compute θk = θ(xki , h
k
i ), yk = y(xki , h

k
i ), vk = yk − xki

9 if θk ≥ −τhki then

10 Lk+1 ← Lk \ {(xki , hki )} ∪ {(xki , δhki )}
11 else

12 Compute αk = Goldstein(xki , vk, h
k
i , θk, γ)

13 if αk|θk| ≤ τhki then

14 Lk+1 ← Lk \ {(xki , hki )} ∪ {(xki , δhki )}
15 else

16 Set Lk+1 as in (4.23b)

17 end

18 end

19 end

20 end

21 L∗ ← Lk
22 return L∗

what a sequence of points is supposed to be in an algorithmic framework

that generates sequences of sets of points. Most probably, it could be nec-

essary to proceed as in [39] and as in Chapter 2 using “linked sequences of

points”. Then, stationarity results could be given with reference to (some)

linked sequences.

Numerical results. Comparison of MOIFfront and DMS in this context is

carried out by means of the Purity and Spread (both Γ and ∆) metrics used

in [12], and by using performance profiles [17].

We recall that the Purity metric measures the quality of the generated

front, i.e. how good the non-dominated points computed by a solver are with
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respect to those computed by any other solver. Note that, for each problem

p, the “reference” Pareto front F truep is calculated by first computing

F̃ truep = Fp,DMS ∪ Fp,MOIF,

where Fp,s denotes the set of non-dominated solutions found by solver s for

problem p, and then removing from this set any dominated solution as in

(1.23).

On the other hand, the Spread metrics are essential to measure the uni-

formity of the generated front in the objectives space.

In the experiments MOIFfront is stopped at iteration k, when the num-

ber of function evaluations exceeds 20,000, or when the following stepsize

criterion holds:

max
(xi,hi)∈Lk

hi ≤ 10−3. (4.24)

As concerns the choice of xk ∈ Lk, we select the point with the highest Γ

value as in [12].

In figure 4.1, comparison between MOIFfront and DMS is reported in terms

of the above mentioned metrics.
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Figure 4.1: Comparison between MOIFfront and DMS when both solvers start

from the centroid of the feasible region F

As we can see, MOIFfront outperforms DMS in terms of Purity, while it can

be considered equivalent in terms of Spread Γ. However, DMS outperforms

MOIFfront in terms of Spread ∆.
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As we may expect, the line search phase is very effective when the quality

of the generated points is regarded. This is confirmed by the results in

terms of Purity. We observe that many points of the current list Lk may be

dominated by the points generated by the line search along “good” descent

directions. Hence, the cardinality of the list of non-dominated points may

tend to quickly reduce with respect to a strategy based on the pure coordinate

search as in DMS. This may lead to a generated front with a lower degree of

uniformity compared with that generated by DMS.

In order to take into account the effect of the line search in terms of the

Spread metrics, we defined a version of the algorithm that uses a suitable

condition to decide whether or not to perform the line search at a given

iteration. More specifically, let cp ∈ [0, 1] be a parameter which we call

Purity coefficient. Then, in Algorithm MOIFfront, given the current pair

(xki , h
k
i ) ∈ Lk and θk, the Goldstein line search is performed only if

θk < −τ̄hki where τ̄ =

{
τ if hki ≤ cp max(x,h)∈Lk

{h},
∞ otherwise.

Note that, setting τ̄ =∞ will make the test before the Goldstein line search

in Algorithm MOIFfront surely satisfied so that the Goldstein line search is

not executed. Furthermore, it is worth noting that, when cp = 1, then the

Goldstein line search is performed just as in the original version of MOIFfront,

while if cp = 0 then, as in DMS, no line search is ever executed.

The idea underlying the use of the above condition is that of managing

the uniformity of the generated front by controlling the uniformity of the

sampling step sizes related to the points of the list. As we can see from the

performance profiles reported in figures 4.2 and 4.3, when we reduce cp our

algorithm became closer to DMS solver.

Finally, we observe that, when cp = 0, Algorithm MOIFfront becomes

equal to a specific instance of DMS, namely the one using the set of directions

{e1, . . . , en,−e1, . . . ,−en}.

4.5.3 Comparison using a set of initial points

In this subsection, we compare MOIFfront and DMS choosing a set of initial

solutions rather than a single point. In particular, rather than starting the

solvers from the single point x0 as we did in subsections 4.5.1 and 4.5.2, we

let them start from a list of n points equally spaced on the line segment
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Figure 4.2: Comparison between MOIFfront, with cp = 0.5, and DMS
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Figure 4.3: Comparison between MOIFfront, with cp = 0.2, and DMS
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joining the upper and lower bounds on the variables. Specifically, we let

L̃0 = {(x1
0, h0), . . . , (xn0 , h0)}

with

(xj0)i = li +
ui − li
n− 1

(j − 1), for i, j = 1, . . . , n.

Then,

L0 = {(xi, hi) ∈ L̃0 : @ (xj , hj) ∈ L̃0 s.t. F (xj) ≤ F (xi)},

i.e. the set obtained from L̃0 by removing dominated solutions. Note that,

for DMS, this is version DMS(n,line), as defined in [12].

The performance profiles are reported in figure 4.4. As in the previous

case, we can still say that MOIFfront outperforms DMS in terms of Purity.

As for the Spread metrics, the two solvers are almost equivalent in terms of

Spread Γ, while MOIFfront is outperformed by DMS in terms of Spread ∆.
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Figure 4.4: Comparison between MOIFfront, with cp = 1, and DMS when both

solvers start from set L0

However, it is worth noting that the superiority of MOIFfront over DMS in

terms of Purity is considerably reduced with respect to the single starting

point case (see figure 4.1).

This situation brings us to argue that the use of the initial set L0 seems

to help DMS to generate better estimates of the Pareto front. This is indeed
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the case with DMS starting from set L0 beating DMS starting from the centroid

in terms of Purity but at the expense of the Spread metrics, for which the

version of DMS starting from the centroid seems the best one. On the contrary,

MOIFfront seems not to be able to produce better estimates when it starts

from the set L0 rather than from the single point x0. This can in turn

be explained by recalling the 20,000 function evaluations limit. Indeed, at

least for problems where the Implicit Filtering stepsize hk is bigger than the

tolerance 10−3 when the above limit is hit, the final estimate of the Pareto

front could still be far away from the “real” one. This is to say that the

line search techniques employed by MOIF have the effect to consume more

function evaluations with respect to the “simpler” pattern search strategy of

DMS.
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Figure 4.5: Comparison between MOIFfront with cp = 1, starting from the

centroid of F and from set L0

Finally, we have considered the comparison between the best version of

MOIFfront, i.e. the one with cp = 1 and starting from the centroid of the

feasible region (as evidenced in Figure 4.5) and the default version of DMS,

i.e. the one starting from set L0. Performance profiles for the Purity and

Spread metrics relative to this further comparison are reported in Figure 4.6.

From the figure, it is apparent the superiority of MOIFfront (starting from

the centroid) over DMS (starting from set L0) both in terms of Purity and

Spread Γ. As concerns the Spread ∆, it emerges quite a new situation with
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Figure 4.6: Comparison between MOIFfront, with cp = 1 and starting from

the centroid of F , and DMS starting from set L0

respect to the already seen comparisons. In fact, Spread ∆ profiles reported

in Figure 4.6 show that DMS is clearly less robust than MOIFfront even though

the former method is more efficient than the latter one.

4.5.4 Numerical results with noisy functions

In this section we report the numerical results obtained by MOIFfront in the

case of noisy functions.

In our experiments we consider additive noise sampled from a normal

distribution. For every feasible point x, we evaluate a noisy version F̃ :

Rn → Rm of F such that

F̃ (x) := F (x) +N (0, εσ̄2), (4.25)

where ε ∈ R+ is a smoothing parameter which controls the noise level,

σ̄2 ∈ Rm is such that

σ̄2 :=

 |f
max
1 |
...

|fmaxm |

 , (4.26)

and, for each problem p, fmaxi is the maximum value of the i−th objective

in the reference Pareto front F truep defined in (1.23).
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In order to give a good estimation of the gap between the Pareto front

found in the noisy case and the reference Pareto front, we consider the Gen-

erational Distance (GD) metric introduced in [48]:

GD =

(∑P
i=1 d

2
i

)1/2

P
, (4.27)

where P is the number of points found by a solver, x1, x2, . . . , xP , and di
is the euclidean distance of the corresponding noise-free value F (xi) from the

real Pareto front. GD is a recommended metric in test problems for which

a set of Pareto optimal solutions is known. Although in our test problems

the real Pareto front is generally unknown, we use it in order to show the

extent of convergence of MOIFfront and DMS with respect to their noise-free

versions. Therefore we adopted in (4.27) the following definition of di:

di =

0 if xi is non-dominated by F truep

min
x∈F true

p

{||F (x)− F (xi)||2} otherwise.
(4.28)

We remark that the contribution of di to the GD metric is zero not only

if xi belongs to the reference Pareto front, but also if it is better (this may

happen because F truep is an approximation of the real Pareto Front). We

also remark that GD, as the Purity metric, does not consider the quantity

of generated points, but only the quality.

We tested both MOIFfront and DMS, starting from the centroid of the

feasible region F using the stopping criteria defined in section 4.5.2 and

ε ∈ {0.0001, 0.05, 0.1, 0.2}. For each value of ε, 10 independent runs were

executed for each test problem.

We did not observe significant differences in the performance of the two

algorithms for ε ∈ {0.05, 0.1, 0.2}. Therefore, we report the results only for

ε = 0.0001. Figure 4.7 shows the good performance of MOIFfront in terms of

GD metric compared with those of DMS. For the same value of ε = 0.0001 we

have also compared MOIFfront and DMS in terms of Purity and Spread metrics

over the 1000 instances. The results of the comparison are reported in figure

4.8. We may observe that the results of the comparison are similar to those

obtained without noise and reported in figure 4.1, that is, MOIFfront outper-

forms DMS in terms of the Purity metric, while DMS outperforms MOIFfront in

terms of Spread metrics. On the whole, MOIFfront and DMS show a similar

robustness in presence of moderate noise.
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Figure 4.7: Generational Distance comparison between MOIFfront and DMS,

starting from the centroid, with ε = 0.0001
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Figure 4.8: Purity and Spread metrics comparison between MOIFfront and

DMS, starting from the centroid, with ε = 0.0001
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Chapter 5

Concluding remarks

Let us conclude our work, analyzing, for each considered topic, some possible

future aspects to be evaluated. In Chapter 2, an a posteriori algorithm,

based on the steepest descent framework, was proposed. Particularly, the

steepest descent direction, computed by solving problem (2.2), is used for

improving the current list with new non-dominated solutions. At this regard,

two different Armijo-type line search techniques (see Algorithms 3 4) proven

to generate new non-dominated solutions, are proposed.

Under some assumptions, global convergence properties to Pareto-stationary

points of the algorithm were stated.

The proposed framework was compared with a multistart adaptation of

the classical multiobjective steepest descent algorithm. Numerical results,

obtained on a dataset of unconstrained multiobjective problems, showed the

effectiveness of the proposed framework.

From a theoretical point of view, two possible generalizations of problem

(2.2) may be defined. Firstly, since we are interested in enriching the list

of new non-dominated solutions, one can iteratively compute the steepest

descent direction using subsets of objectives.

Moreover, a further generalization can be done by abstracting the quadratic

term in (2.2). At this regard, Multiobjective Newton and Quasi-Newton

methods may be derived from this generalization. Sufficient descent condi-

tions may be stated in order to define a without preferences globally conver-

gent framework in terms of Pareto-stationarity.

In Chapter 3, problem (SMOP), which considers the `0-norm as an ob-

jective function, was taken into account. Continuously differentiable concave

73
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functions were used to approximate the `0-norm. Equivalence properties, in

terms of Pareto points, between the original problem and its concave ap-

proximation were stated.

Then, an a posteriori algorithm, namely MOSO, based on the steepest

descent framework, was proposed. Numerical results, obtained on a dataset

composed of portfolio selection problems, showed that MOSO has acceptable

performance if compared to state-of-art multiobjective methods.

Problems like (SMOP) could be also used for modelling a Machine Learn-

ing feature selection problem in which the empirical risk and the number of

active features have to be minimized. Datasets composed of feature selection

problems could be used in order to validate the effectiveness of our algorithm.

Chapter 4 aimed to define a globally convergent extension of the Im-

plicit Filtering algorithm for derivative-free MOO, namely MOIF. Under some

assumptions on the objective functions, convergence properties to Pareto-

stationary points were stated.

We tested MOIF on a dataset composed of 100 multiobjective problems

with box constraints. Thanks to the line search phase, for all the considered

problems MOIF generates always non-dominated points if compared to the

ones found by state-of-art algorithms for derivative-free MOO.

Then, an a posteriori version, namely MOIFfront, is proposed. We tested

MOIFfront with on the same dataset using Purity and Spread metrics which

are widely used in Pareto front evaluations. Noisy problems were considered

in the analysis too.

Two different starting conditions were also tested. Very good results were

obtained for what concerns the three considered metrics.

For what concerns future developments, the definition of linked sequences

could be used in order to define global convergent properties of MOIFfront.

A further generalization of problem (1.4) could be defined adding some

other general constraints to be treated as soft constraints i.e. through ob-

jective penalty functions.



Chapter 6

Appendix

6.1 Appendix: technical results

In the appendix we prove two technical results that are used for the conver-

gence analysis.

Proposition 9. Let f : Rn → R be continuously differentiable and let x ∈ F .

Let {zk} ⊂ F and {hk} ⊂ R+ be sequences such that

lim
k→∞

zk = x lim
k→∞

hk = 0. (6.1)

Assume that, for i = 1, . . . , n, at least one of the following condition holds

zk + hkei ∈ F ,

zk − hkei ∈ F .

Then we have

lim
k→∞

∇hk
f(zk) = ∇f(x).

Proof. Let i ∈ {1, . . . , n} and define the following subsets

K1 = {k : zk + hkei ∈ F , zk − hkei /∈ F} ,
K2 = {k : zk ± hkei ∈ F} ,
K3 = {k : zk − hkei ∈ F , zk + hkei /∈ F} .
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By definition of approximated gradient we have

∂hf(zk)

∂xi
=


f(zk+hkei)−f(zk)

hk
k ∈ K1

f(zk+hkei)−f(zk−hkei)
2hk

k ∈ K2
f(zk)−f(zk−hkei)

hk
k ∈ K3

Suppose that K1 is an infinite subset. For all k ∈ K1, by the Mean Value

Theorem, we can write
∂hf(zk)

∂xi
=
∂f(ξk)

∂xi
,

where ξk = zk + θkhkei, with θk ∈ (0, 1). Taking the limits for k ∈ K1 and

k →∞, recalling (6.1) and the continuity of the gradient, we obtain

lim
k∈K1,k→∞

∂hf(zk)

∂xi
=
∂f(x)

∂xi
.

By repeating the same reasonings using the sets K2 and K3, we have

lim
k→∞

∂hf(zk)

∂xi
=
∂f(x)

∂xi
,

and the thesis is proved. 2

Proposition 10. Consider Problem (4.7), let F : Rn → Rm be continuously

differentiable, x ∈ F , and let θ : F ×R+ → R be defined as in (4.10). Then:

(i) θ(x, h) ≤ 0 for all x ∈ F and h > 0;

(ii) let {zk} ⊂ F and {hk} ⊂ R+ be sequences satisfying the assumptions

of Proposition 9; we have

lim
k→∞

θ(zk, hk) = θ(x).

Proof. (i) Given x, y ∈ F and h > 0, we consider the function g defined

as follows:

g(y, h, x) = max
i=1,...,m

∇hfi(x)>(y − x),

and note that

θ(x, h) = min
y∈F

g(y, h, x).

Then θ(x, h) ≤ 0 follows easily from g(x, h, x) = 0.
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(ii) We preliminary observe that

|max
i
ai −max

i
bi| ≤ ‖a− b‖ , for any a, b ∈ Rm. (6.2)

Let us define

y(x) ∈ arg min
y∈F

max
i=1,...,m

∇fi(x)>(y − x),

yk ∈ arg min
y∈F

max
i=1,...,m

∇hk
fi(zk)>(y − zk),

so that

max
i=1,...,m

∇fi(x)>(y(x)− x) ≤ max
i=1,...,m

∇fi(x)>(yk − x)

max
i=1,...,m

∇hk
fi(zk)>(yk − zk) ≤ max

i=1,...,m
∇hk

fi(zk)>(y(x)− zk).

Denote by Jhk
(zk) the approximated Jacobian

Jhk
(zk) = [∇hk

f1(zk), . . . ,∇hk
fm(zk)]>.

We can write

θ(zk, hk)− θ(x) = max
i
∇hk

fi(zk)>(yk − zk)−max
i
∇fi(x)>(y(x)− x)

≤ max
i
∇hk

fi(zk)>(y(x)− zk)−max
i
∇fi(x)>(y(x)− x)

≤ ‖Jhk
(zk)>(y(x)− zk)− J(x)>(y(x)− x)‖

≤ ‖(Jhk
(zk)− J(x))>y(x)‖ +

+ ‖J(x)>x− Jhk
(zk)>zk + J(x)>zk − J(x)>zk‖

≤ ‖(Jhk
(zk)− J(x))>y(x)‖+

+ ‖J(x)>(zk − x)‖+ ‖(Jhk
(zk)− J(x))>zk‖.

A quite similar bound, with yk in place of y(x), can be obtained for θ(x)−
θ(zk, hk). Then, as zk and yk belong to the compact set F , by Proposition

9, |θ(zk, hk)− θ(x)| → 0 for k →∞. 2
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Chapter 7

Publications

This research activity has led to one publication in an international journals

and three communications in conferences. These are summarized below.

International Journals

1. G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone, “An implicit filter-

ing algorithm for derivative-free multiobjective optimization with box con-

straints”, Computational Optimization and Applications, vol. 69, no. 2, pp.

267-296, 2018. Availale Online https://doi.org/10.1007/s10589-017-9953-2.

National Conferences

1. G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone, “An Implicit Filter-

ing based algorithm for derivative free Multiobjective optimization”, So-

cietà Italiana di Matematica Applicata e Industriale (SIMAI), Milan (Italy),

September 13-16, 2016.

2. G. Cocchi, T. Levato, G. Liuzzi and M. Sciandrone, “A multiobjective ap-

proach for sparse mean-variance portfolios through a concave approxima-

tion”, Optimization and Decision Science (ODS), Sorrento (Italy), Septem-

ber 4-7, 2017.

3. G. Cocchi, G. Liuzzi, S. Lucidi and M. Sciandrone, “On the convergence

of steepest descent methods for multiobjective optimization”, Optimization

and Decision Science (ODS), Taormina (Italy), September 10-13, 2018.
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