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A novel application of a surface
ElectroMyoGraphy-based control
strategy for a hand exoskeleton system:
A single-case study
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Abstract
Robotics is increasingly involving many aspects of daily life and robotic-based assistance to physically impaired people is
considered one of the most promising application of this largely investigated technology. However, the World Health
Organization reports that, so far, only 10% of people in need can get access to the so-called assistive technology also due
to its high costs. This work aims to tackle the aforementioned point presenting an innovative control strategy for a low-
cost hand exoskeleton system based on surface electromyography signals. Most of the activities of daily living are, in fact,
carried out thanks to the hands while the exploitation of surface electromyography signals represents a non-invasive
technique in straightforwardly controlling wearable devices. Although such approach results deeply studied in literature, it
has not been deeply tested on real patients yet. The main contribution of this article is hence not only to describe a novel
control strategy but also to provide a detailed explanation of its implementation into a real device, ready to be used.
Finally, the authors have evaluated and preliminary tested the proposed technique enrolling a patient in a single-case study.
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Introduction

During the last decades, robots have been becoming

increasingly more pervasive in many aspects of the human

life: industry, goods handling, and transportation mostly.

Lately, as other sectors, also the health care system has

been consolidating the use of robotic devices as part of the

so-called assistive technology. The World Health Organi-

zation (WHO) identifies assistive technology as the set of

all the products that “enables people to live healthy, pro-

ductive, independent, and dignified lives” whatever their

condition. Examples of standard assistive technology are

hearing aids, wheelchairs, communication aids,

spectacles, prostheses, pill organizers, memory aids, and

so on. According to the last WHO action plan on disabil-

ity,1 people who need at least one assistive device are

more than 1 billion all over the world. However, only the
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10% of the ones in need have access to these products due

to, among the other causes, “high costs and nonexistent or

inadequate funding mechanisms.” The work behind this

article was born with the intention of intervening in this

subject, making the assistive technology more accessible

and affordable by developing low-cost robotic assistive

devices. Many are the ways in which robotic exoskeletons

can help, in this specific case, the focus is on hand exos-

keleton systems (HES) to help and assist people with

hand(s) impairments.

The hand is one of the most important providers of

independence in carrying out the activities of daily living

(ADLs). From the engineering point of view, it also repre-

sents a major challenge both for the mechanical design and

the control strategy because of its complex anatomy, the

high dexterity tasks it can accomplish and the wide set of

movements it can carry out. The attempt to integrate

robotics aspects with assistive products represents, nowa-

days, one of the trickiest aspect of the human–robot inter-

action field. As a matter of fact, they have to be designed to

share the environment and to physically interact with

human users affected by disabilities for long periods of

time and, for these reasons, they have to meet strict

requirements in terms of wearability, safety, and comfort.

In this complex scenario, the exploitation of topology

optimization methods for the mechanical design and the

use of rapid prototyping technologies for the manufactur-

ing phase have proved to be valid tools for the develop-

ment of a well-performing prototype of HES (described in

section “Hand exoskeleton system overview”) even in a

low-cost perspective.

Unlike passive orthosis,2 which, as the name suggests,

do not present active elements (e.g. motors), assistive

robotic devices generally incorporate power supply cir-

cuits, electronics (e.g. sensors, micro-processors), and

actuators and, thus, need to be carefully controlled to pro-

vide an intuitive and safe utilization. Recent literature sug-

gests, as one of the most promising emerging control

strategies, the exploitation of electromyographic (EMG)

signals. These signals, scientifically characterized starting

from the end of the 70s3 and placed at the heart of a big

project by the European Community in late 90s,4 are pro-

duced by the motor units (the set of motor neurons and the

skeletal muscle fibers energized by those motor neurons)

and manifest themselves as a potential difference that can

be measured both with intramuscular and epidermal (sur-

face) sensors. When a muscle contracts, fibers’ membranes

are interested by continuous phenomena of depolarization

and repolaritazion that induce an electromagnetic field in

their proximity that can be recorded by means of an elec-

trode. EMG signals present amplitudes that vary in a range

from microvolts to millivolts, a frequency range from few

to, roughly, 500 Hz, and a stochastic behavior; in addition,

their collection is affected by several noise issues (e.g.

noise coming from the electronics equipment itself, ambi-

ent noise, motion artifacts, electrocardiographic artifacts,

and cross talk).5,6 During the past years, to successfully use

such signals for controlling robotic devices, many and dif-

ferent techniques have been investigated for classifying

users’ intentions starting from the different patterns of

EMG.5–16 At the same time, other research works have

focused on attenuating the impact of the aforementioned

possible measurement disturbances.17–20 The common base

idea, among all the just cited control strategies, is to collect

surface electromyographic (sEMG) signals, as it is a less

invasive technique with respect to the intramuscular mea-

surement, segmenting them into time windows of an appro-

priate length21 and, for each segment, applying a filtering

action and extracting time domain or frequency domain

features, or a combination of both types. These features are

used to feed specifically designed classifiers (e.g. neural

networks, support vector machines, hidden Markov mod-

els, and so on) that run pattern recognition algorithms. The

existence of a biunique relation between the EMG patterns

and the corresponding gestures is reasonably assumed as

true. Classifiers output is the prediction of the user’s inten-

tion which is used as a control command for the HES to

reproduce the correlative movement.

Although literature presents many studies about EMG

classifiers with encouraging results for what concern their

accuracy, few are instead the ones regarding the implemen-

tation of such decision-making algorithms on HES. The

aim of this article is to present the application of an

EMG-based control strategy specifically thought for a

low-cost HES internally developed (see section “Hand

exoskeleton system overview”) to provide a fully wearable

assistive device to assist hand-impaired people in their

ADLs. At the end of the article, it will be also reported and

discussed the qualitative results (no statistical analysis has

been carried out) of two grasping tests conducted during a

single-case study. These tests have been performed with the

aim of preliminary evaluating the usability of the system

and paving the way for future statistical analysis on a big-

ger test sample.

The article is organized as follows. The remainder of

this section will outline the main related works and will

discuss the main contributions of this article. Section

“Hand exoskeleton system overview” gives a description

of the mechanical system and the electronics of the test-

bench exoskeleton. Section “Control architecture” presents

the proposed control strategy. Section “Experimental tests”

explains the experimental protocol used for the tests ses-

sion and shows the achieved results. Section “Conclusions

and future developments” discusses the results and explains

further developments.

Related works

There are not many research works available in literature

regarding an actual implementation of an EMG-based con-

trol strategy to a HES. This might be ascribed to the obvi-

ous need of having a safe robotic device ready to be worn
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and used by patients and to the observation that the changes

in EMG patterns that the use of an exoskeleton entails are

not negligible. In addition, the HES mechanical architec-

ture itself represents an implicit limit to the complexity of

the classification strategy. The number of degrees of free-

dom (DOFs) allowed by the mechanism, the number of

motors, which in turn determines the number of indepen-

dent fingers, and the requirements of wearability and real-

time classification are indeed limits both for the number of

reproducible users’ intentions and for the computational

power available to run the classifier. This is why the refined

EMG-based classification strategies suggested by literature

give way to simpler techniques when it comes to the appli-

cation to a real device.

Main related works available in literature will now be

described on the basis of four main points: number and

positioning of the EMG sensors (intended not only as the

place where the sensors are located but also as the position-

ing act itself), classification phase (characterized by the

number of classifiable gestures, the nature of the extracted

features, and the classification criterion), actuation meth-

ods (separating between control systems that wait for a

triggering action and those which require a continuous

effort), and wearability of the system (intended as the pos-

sibility to be totally worn). Type of EMG sensors and the

field of application (i.e. assistive or rehabilitative) will not

instead be taken into account as discriminating parameters

since the focus will be on the classification and the control

strategy rather than on the characterization of the signals

and of the collecting method.

Ochoa et al.22 presents a control strategy that uses

sEMG signals collected from the extensor digitorum and

from the flexor digitorum. Sensors, whose number is not

specified, are placed in their particular position by an exter-

nal supervisor. The control algorithm is meant to recognize

two gestures, opening and closing of the entire hand, com-

paring the magnitude of the signals with their correspond-

ing fixed voltage thresholds, which is somehow set

depending on the user. The actuation is carried out in per-

centile steps of 10% of the maximum range of motion

(ROM). The classification code runs on a custom printed

circuit board (PCB).

The strategy proposed by Ho et al.23 collects sEMG

from the extensor digitorum that is again in charge of

detecting opening gestures, and it delegates the manage-

ment of the closure to the abductor pollicis brevis signal.

Similar to the previous work, two sensors are located

through an external intervention on the specific muscles,

and the classification is achieved by means of two thresh-

olds (20% of the relative maximum voluntary contraction).

The opening and closing gestures, which involve all the

fingers, are entirely executed once the triggering action has

been detected. The exoskeleton control box is fully wear-

able and can be connected to a remote control used by

therapist to switch between different training modalities.

One of the last applications of an EMG-based control

system to a HES is presented by Meeker et al.24 They use a

commercially available elastic EMG armband, composed

of eight bipolar surface sensors. Unlike the two previous

works, the use of the armband allows for a simpler wear-

ing that does not require the intervention of an expert

external person (since the armband does not have to be

positioned in a precise way). For the classification phase,

a random forest algorithm has been used. They feed the

classifier with the eight raw EMG signals coming from the

armband and it outputs a probability that the user’s inten-

tion is to open or close the hand (acting on all the five

fingers at once). Finally, they filter the classifier’s outputs

with a median filter, characterized by a time constant of

0.5 s, and they compare these new outputs with two

thresholds to determine whether the hand has to be opened

or closed. No clear references are made to the hardware

that runs the classification algorithm nor to the actuation

method.

Finally, a different approach is followed by Leonardis

et al.25 Although it is quite far from the other works and

from the objectives of the work behind this article, this

study anyway deserves attention as it can be used as a basis

for future developments. They propose a system for bilat-

eral rehabilitation that uses signals coming from the non-

paretic hand to reproduce the same movements and forces

on the paretic one by means of a HES. The sensors are,

once again, placed in position by an external person but,

this time, not on the limb influenced by the exoskeleton.

The authors have then exploited a light neural network,

implemented on a desktop PC, as classifier. Input of the

neural network are full-wave rectified sEMG signals whose

muscles of origin are the extensor digitorum, the flexor

digitorum, and the abductor pollicis brevis.

Discussion

All the related works, except for the last one which does

not specify this point, describe the application of a classi-

fier which can distinguish among three hand states, open,

close, and rest (or relax state) starting from sEMG signals

measurements. The first two present two similar very sim-

ple classifiers running on an embedded control system; the

third and the fourth describe two more sophisticated tech-

niques of machine learning running on external equip-

ment. Aside for Meeker’s work, they need a trained

external person to place in position the EMG sensors. The

number of total sensors varies in a range from two to eight.

Only Ochoa’s study explicitly shows a non-triggering

actuation method.

The main contribution of the strategy proposed in this

article is to offer an approach that goes beyond some of the

limits of the aforementioned related works by representing

a convenient trade-off among the previously exploited stra-

tegies. This work focuses, in fact, on the development of a

novel technique that involves the use of two sEMG sensors

Secciani et al. 3



placed in specific positions and of a fully wearable

embedded system, the classification among three hand

states (hand open, close and rest), and a non-triggering

actuation method. At the same time though, it takes advan-

tage from a more advanced classification criterion with

respect to those exploited by the fully embedded systems

available in literature.

HES overview

Mechanical structure

In a previous work, Conti et al.26,27 describe the base HES

on which the proposed control strategy has been implemen-

ted. The overall structure and kinematics have been then

modified by means of an optimization-based design strat-

egy, presented by Bianchi et al.,28 to produce the system

visible in Figure 1. This exoskeleton has been designed to

help people with deficiency in opening the hand whether

the problem was of chronic or traumatological origin. It is

supposed that the user can exert, voluntarily or not, a cer-

tain amount of force when closing the hand while the open-

ing is impeded by an unnatural tendons’ retraction and/or to

a dysfunction of the extensor muscles.

The system is composed of four planar finger mechan-

isms, which act on the four long fingers, and a control box

that contains the actuator and the control system (board and

auxiliary electronics). It has a total of eight independent

DOFs, two per finger. As shown in Figure 2, each mechan-

ism presents one active and controlled and one passive

DOF, which allow respectively for the flexion/extension

and the abduction/adduction movements of the metacarpo-

phalangeal (MCP) joint. As well as improving the device

comfort, the passive DOF is required to align the plane of

action of the mechanism with the flexion/extension plane

of each finger.

An automatic scaling procedure customizes the kine-

matics of each finger mechanism to adapt the hand exos-

keletons to different patients’ hand biomechanics and

results in a straightforward adaptability to several users.

In addition, the high customization of the 1-DOF kinematic

chain leads to a good trade-off between accuracy and func-

tionality in reproducing the patient’s finger trajectories.

The average ROM (among different hand sizes) for the

MCP rotation is about 80�. Each finger mechanism inter-

faces with the related finger only on the intermediate pha-

lanx and is positioned on top of it not to be bothering during

objects handling.

The whole system is actuated by a single servomotor

that is in charge of opening all the four long fingers at once

by simultaneously pulling each finger in extension by

means of a cable connected to the finger mechanism. The

actuator manages, instead, the hand closure by releasing the

cable and allowing for a controlled but unactuated fingers’

Figure 1. The figure shows the HES initially developed by Conti et al.26,27 and modified according to the optimization strategy
presented by Bianchi et al.28,29 HES: hand exoskeleton systems.

Figure 2. The figure shows the lateral (a) and top (b) view of the
finger mechanism. The 1-DOF kinematic chain acts on the flexion/
extension plane (a) of each finger, while the entire mechanism is
let free to rotate around the abduction/adduction axis to follow
the finger movements (b). The actuated and the unactuated DOF
are highlighted in red. DOF: degree of freedom.

4 International Journal of Advanced Robotic Systems



flexion. This means that no flexion forces are applied to the

fingers by the HES during closure. Since the length of the

required cable is different between the finger and finger, a

specific cable-driven transmission has been designed to

achieve a common angular velocity. Both the transmission

and the actuation system are placed on the hand backside.

The exoskeleton is designed to exert about 15 N applied

to the contact point of each finger, at the same time. This

value has been identified as a suitable force output for the

manipulation of common objects during normal activities.

In fact, considering a weight target up to 1.5 kg and a

coefficient of friction of 0.255 (mean value), a force of

14.7 N per finger has been considered as appropriate to

manipulate several objects.30 Merging together the afore-

mentioned requirements in terms of mechanical

characteristics with the ones of lightness and cheapness,

the 3-D-printing of all the mechanical parts in Acryloni-

trile–Butadiene–Styrene (ABS) has proved to be a

remarkably convenient solution. The system, made of the

3-D-printed mechanical parts and the metallic parts

(screws, bolts, and pins) required for the assembly, has a

total weight of about 120 g and a total cost of about €300.

Electronics

According to the guidelines of low cost on which this pro-

totype was born, but also to the stringent constraints that this

scenario imposes in terms of encumbrance and lightness, the

electronics of the system has been reduced to the minimum

necessary. The selected components are listed below.

MyoWare Muscle Sensors from Advancer Technologies

(United States)31 have been chosen for collecting EMG

signals. Small (20.8� 52.3 mm2) and low-powered devices

(up to 6.3 V and to 14 mA), they measure the electrical

activity of a muscle, outputting either raw or already fil-

tered EMG signal. Their datasheet specifies that the filter-

ing action they perform consists of an amplification, a

rectification, and an integration phase to obtain an envelope

of the signal. They can be powered directly from a 5-V pin

of a whatsoever micro-controlled board and their output

can be read through any I/O pins.

HS-5495BH High-Torque Servo from Hitec (United

States)32 has been selected to be the only actuator of the

system. With a size of 39.8 � 19.8 � 38.0 mm3 and weight

of about 44 g, can output a maximum torque of 0.735 Nm and

a maximum angular speed of 6.67 rad/s if powered with 7.4 V.

Before the use, the actuator has been modified to allow for its

continuous rotation: the mechanical stop has been removed

and its internal driver has been replaced with the Supermodi-

fied V3.0 for RC-servos from 01 Mechatronics (Greece),33

which consists of a direct current (DC) motor controller and a

15-bit magnetic encoder. This modification has also allowed

to actively control the actuator’s speed and for communicat-

ing with the motor through the I2C protocol.

One MagEnc V3.0 Low Rev from 01 Mechatronics,34 a

15-bit magnetic encoder, has been place in correspondence

of the MCP joint for collecting the angular position and

velocity of the index finger. The available lateral space

makes the index mechanism the perfect candidate for the

housing of the sensor. Since all the four long fingers are

moved together by the exoskeleton, the measurements

coming from the index finger are assumed consistent also

for the others. Its standard configuration involves the use of

the SPI protocol to communicate with it, but it has also

been modified to communicate through the I2C protocol.

The Arduino (United States) Nano board from Ardu-

ino35 has been chosen to be the embedded microcontroller

of the system. This small board (18 � 45 mm2), based on

the ATmega328 from Atmel (United States) (16 MHz-

clock processor, 8-bit AVR architecture, 32 kB of flash

memory, 2 kB of SRAM memory and 1 kB of EEPROM

memory), offers the possibility to easily connect and com-

municate to a wide variety of electronics devices included,

of course, all the aforementioned ones.

All the presented components, except for the MyoWare

Muscle Sensors, have been integrated together and housed

in a box on the back of the user’s hand attached to a custom

PCB, as shown in Figure 3.

Figure 3. The figure shows the electronics schematics that
connects the sensors and the motor to the custom PCB (a) and
the actual integration and realization of the circuit (b). PCB:
printed circuit board.
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The total weight and the cost of the selected electronics

are about, respectively, 80 g and €250.

Control architecture

Before going into the details of the control strategy, a brief

outline of the common requirements for such kind of appli-

cation is given.

As stated at the beginning of this article, assistive prod-

ucts have to be continuously used for long periods of time.

Wearability, lightness, and freedom of movement therefore

remain important requirements to be met also for the con-

trol system. This is translated into the necessity of having a

fully embedded hardware even if, compared to desktop

PCs, workstations, or industrial controllers, embedded sys-

tems offer less resources and computational power.

Intuitiveness and the responsiveness of the resulting

control are also two important points. The former is

achieved by exploiting the same signals that normally

(i.e. by healthy subjects) would be generated to control the

hand motion, the latter is instead the result of a control

system that allows for a maximum delay of about 300

ms36 between muscle activation and HES response. In addi-

tion, the problem of the high costs of such devices had to be

tackled with a reasoned choice of materials and equipment.

As a result of the just mentioned reasons, a trade-off

between high performance and computational lightness has

to be achieved.

Control strategy

The device under examination, as described in section

“Hand exoskeleton system overview,” is already mechani-

cally optimized to track fingers’ trajectories and to follow

the hand kinematics. The control system therefore has to

focus mainly on determining user’s intentions and manag-

ing command actions. The proposed control strategy (see

Figure 4) can be split in two main parts, a “classification

loop” and an “actuation loop,” which are sequentially exe-

cuted every 20 ms (i.e. at a frequency of 50 Hz). The first

loop, which is the main focus of this work, takes care of

classifying the user’s intentions relying on the measure-

ments of the forearm muscular activity captured by the

EMG sensors. Once the current user’s intention has been

classified, the corresponding signal is passed to the second

loop that translates it into appropriate control commands

for the actuation system. In other words, 50 times per sec-

ond, the muscular activation of the user is evaluated and

translated into a command for the actuation system, trying

to follow the user’s intentions. To achieve this, the HES

wearer has to undergo a first training phase in which the

classifier algorithm is taught to recognize different muscu-

lar signals issued by the user’s muscles during different

hand movements. The user will then control the exoskele-

ton behavior by reproducing as close as possible the signals

which have been used to train the classifier (this is usually a

process that takes time to be mastered and that needs train-

ing also for the user).

Classification loop. The human hand can perform lots of dif-

ferent movements and most of them require high dexterity.

These movements are allowed by muscles located in a

small place within the forearm, very close to each other.

The use of high computational power machines becomes,

therefore, mandatory to achieve an accurate classification

of every possible user’s intentions starting from sEMG

signals. On the other side, linking an assistive device to

such machines, which are usually heavy and fixed in place

Figure 4. The figure shows the block diagram of the overall
control strategy. The two main loops, the classification loop and
actuation loop, are enclosed in the dashed rectangles. The word
“passed” after the “ROM check” block means that the exoske-
leton has not reached the limit of the ROM and, thus, the motor
can keep running; the word “passed” after the “grasp check”
block means, instead, that an object has been grasped and,
therefore, the motor must be stopped. ROM: range of motion;
EMG: electromyography.
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(e.g. workstations), is definitely far away from representing

a wearable and a low-cost solution (since the machine itself

will be account as part of the system).

In this complex scenario, a help comes from a recent

study. Montagnani et al.37 demonstrate what some of the

previous works assumed as a simplification, that is the

independent movement of the long fingers is not essential

for most of the ADLs. An HES can therefore allow only for

full hand opening and closing and still be an useful device

capable of deeply improving the quality of life of hand-

impaired people. This assumption not only validates the use

of a single actuator, as described in the previous section,

but also gives the scientific basis for the desired trade-off

between the number of different movements to be classi-

fied and the limited computational power available on

embedded low-cost hardware. Only hand opening, hand

closing, and hand resting have then been considered as

classifiable user’s intentions. The rest state represents the

safe mode of the system because it does not imply any

motion and it has been thought to enclose every EMG

pattern different from hand opening and hand closing,

including the ones coming from unwanted movements or

external disturbances. The EMG envelope, which works

well with microcontrollers’ analog-to-digital converters

and which gives a qualitative idea of the level of activation

of the muscle, has been selected as a representative feature

to discriminate between the three gestures.

It has been chosen to use two EMG sensors placed on the

antagonist muscle bands responsible for fingers’ extension

and flexion, respectively, extensor digitorum superficialis

and flexor digitorum superficialis. Figure 5 shows an exam-

ple of the positioning of the EMG sensors attached to a

healthy subject’s forearm. The use of two sensors is the

result of the convergence of two different arguments:

firstly, in a low-cost perspective and aiming at high wear-

ability, a low number of sensors is preferable; secondly,

two is the minimum number to consistently discriminate

between the three possible classifiable intentions.

Previous works, that focused on the classification of the

user’s intentions during the use of a HES (as reported

within the “Related works” subsection), exploit a tech-

nique that compares the signal coming from a single muscle

to a lower threshold, which corresponds to a minimum

level of muscle activation. Once the threshold has been

exceeded, the corresponding input signal is sent to the

actuation control. This makes the decision process 1-D.

Although this method results to be very computationally

lightweight and produces a decent control experience, it

carries some intrinsic problems. Unwanted movements, lit-

tle impacts with objects in proximity of the sensors, and/or

sliding between skin and sensors might, in fact, produce the

“so-called movement artifacts.” Since these artifacts are

read, even though they are not, as remarkable muscle acti-

vation and since the triggering thresholds cannot be fixed to

too much high values (which would entail a too tiring man-

agement of the system), these disturbances usually cause

errors in the classification phase. Moreover, different hand

or wrist movements might produce muscular activation that

overcomes the same threshold (e.g. wrist flexion produces

almost the same sEMG signal from flexor digitorum super-

ficialis of fingers flexion because of cross-talk effect. It is

instead less likely that the same thing happens considering

a combination of two or more signals at the same time.

To reduce the incidence of such errors, the proposed

control strategy aims at classifying the current user’s inten-

tion based on a combination of the signals coming from the

two sensors. This way, the classification process becomes

2-D and a disturbance acting on a single muscle has less

chances to lead to a misclassification. Instead of indepen-

dently comparing the two signals to their corresponding

lower thresholds, every sample interval a point, whose

coordinate are the envelopes of both the sEMG signals, is

plotted on a proper 2-D Cartesian plane, and it is tested

against the belonging to a specific area.

A custom Qt Graphical User Interface (GUI), see

Figure 6, has been designed to provide a user-friendly tool

to be used to collect data, specify classification parameters,

and to easily upload the tuned classifier to the microcon-

troller board from the PC where the tuning phase took

place. In particular, it allows to collect sEMG data point

concerning different gestures, to display them on a 2-D

Cartesian plane on whose axis are reported the signals from

the EMG sensors, and straightforwardly to draw the poly-

gons which delimit the clouds of points belonging to the

same gesture. The number of vertices, the shape, and the

size of these polygons represent the main parameters to

tune the classifier. Properly assigning these parameters on

patient’s needs can improve classification accuracy and

disturbances rejection. Tuning is hence meant to be done

manually by a professional who has followed the patient

Figure 5. The figure shows the position of the sEMG sensors on a
healthy subject forearm. An additional electrode is placed on the
wrist bone and serves as reference. sEMG: surface
electromyography.
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during previous supervised physiotherapy sessions. It will

also likely be performed at the hospital/rehabilitation cen-

ter before the patient gets discharged.

Going into details of the classification phase, a point-in-

polygon algorithm, see Algorithm 1, has been chosen as the

classifier. What this light code does is a ray-casting to the

right. That is, it takes as inputs the number and the coordi-

nates of the polygon vertices and the coordinates of a test

point, and it verifies if the test point belongs to the area

described by the vertices.

The number and the coordinates of the vertices come

from the GUI and are stored in the EEPROM memory of

the Arduino Nano board. The coordinates of the test point

are instead the readings coming from the sEMG sensors

and they are acquired every sample time. During each itera-

tion of the code loop, the line drawn rightwards from the

test point is checked against the polygon perimeter and the

number of time this line crosses the edge is counted. Once

the loop has ended, if the number of crosses is odd, then the

point is inside, if an even number, the point is outside. The

output of the classifier is computed and translated into

actuation command once every loop. The HES control thus

requires a continuous effort by the user. This choice has

been made not to limit the actuation to preestablished

movements but to let the user free to move the device to

every intermediate position between the complete opening

and the complete closing.

Actuation loop. The actuation is in charge of translating the

classified user’s intention to a valid sequence of commands

to be executed by the motor. If the detected user’s intention

is to open the hand, the motor will start rotating clockwise,

pulling the cables connected to every finger mechanism

and resulting in the extension movement of the long fin-

gers. If the classifier output is, instead, a closing intention

the motor will rotate counterclockwise and will drive the

closure of all the long fingers by releasing the same cables.

Finally, when the classifier detects a rest intention, the

motor is told to stop whatever it was doing before. To be

noticed that, as stated at the end of the previous subsec-

tion, this command translation is performed 50 times per

second. Therefore, to perform a smooth and natural move-

ment, the user has to issue the same muscular activity for

the whole time the desired motion lasts. Although it is a

more tiring actuation technique with respect of those

which just actuate the motion in response to a trigger

command, it allows for a more complete control over the

hand motion which, in the end, results in a more intuitive

experience. Customized Arduino libraries have been used

to interface with the HS-5495BH servo and the Supermo-

dified motion control modules.

Figure 6. The figure shows, on the left, an overview of the GUI while collecting data of different gestures and, on the right, a detail of
the GUI during the drawing phase of the polygons. On the axes of the Cartesian graph are shown the envelopes of the signals coming
from the two sensors. The buttons, visible on the left side of the overview, allow for the execution of various functions, including
starting a new session, loading data from previous one, recording data, saving the current session, and uploading the parameters of the
classifier to the Arduino. The GUI allows also for collecting an arbitrary number of different movements even if only two different
polygons can be used so far during the classification phase. GUI: graphical user interface.

Algorithm 1. Point-in-polygon algorithm.
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However, the motor commands are not generated only

by the classifier. An outer loop is in charge to continu-

ously check that, during functioning, the system does not

overcome a fixed ROM. Real-time feedback on the angu-

lar position and velocity of the fingers is collected by

means of the magnetic encoder mounted on the exoske-

leton in correspondence of the MCP joint of the index

finger. During a preliminary phase of tuning, the exoske-

leton is donned by the patient, the actuator is left idle,

and a physiotherapist moves the hand of the patient from

the maximum opening to the maximum closure for sev-

eral times. The average of the measurements identifies

the anatomical limits of the user’s hand, in terms of

rotation around the MCP joint of the fingers. Values

corresponding to the complete opening state are used as

reference. If these bounds are reached, the system stops

and waits for the command that will move it back within

the ROM (e.g. if closure bounds are reached, the system

waits for an open command and rejects every other close

commands).

An inner control loop, which is only active during hand

closing, is meant to check instead whether a rigid or semi

rigid object is grasped. This is done evaluating closing

velocity of the index finger: when it drops below a fixed

threshold while the motor is still releasing cable, it is rea-

sonable to think that the hand has encountered an object or

an obstacle. The control system intervenes stopping the

motor, making it hold position and preventing the cable

to be released more than necessary.

The necessity of actively controlling the grasping of an

object has come into play during the first tests on healthy

subjects. The authors have experienced that, if not properly

monitored, objects handling with this cable-driven system,

actuated through a sEMG-based control, might result very

hard to achieve without repercussions. The mechanism, in

fact, exploits and manages the user’s residual closing force

without any force feedback about the interaction of the

user’s hand with the environment. It is the user himself

who decides when to stop the closing motion in correspon-

dence of a good grasping. This is done by relaxing the

muscles and letting the HES entering the rest state. To

be noticed that the rest state of the exoskeleton does not

correspond to rest state of the hand since it is assumed

that, for the specific patients this system is designed for, a

residual closing force is applied to the hand by tendons

retraction. This means that even if the hand is relaxed, a

force is anyway exerted on the object. Nevertheless, the

transition from the close to the rest state has proved to be

very difficult when interfacing with an object and it often

made the motor run after the grasping, releasing cable

when not requested. Although the inconvenience lasted

just for a short period of time, it has been observed that

also a small amount of cable released in excess usually

introduced remarkable delays in further controlling

actions and led to issues of interweaving.

Implementation issues and solutions

During the first laboratory tests, it turned out that executing

a command action at 50 Hz results in stressful operative

conditions both for the motor and for the user himself.

In fact, the control system forced the motor to execute

every command coming from the classification loop even if

it was the same as the previous one. This caused a quick

overheating of the motor and consequently a loss of per-

formance of the whole system. To reduce this stress factor,

it has been hence decided not to overwrite the previous

command if the status (i.e. the classified user’s intention)

did not changed.

The user’s stress was instead related to the possibility of

driving the exoskeleton actions with muscular signals

mapped very close to the perimeter borders of the gestures

areas. In these conditions, the point corresponding to the

user’s intention can, in fact, easily jump from inside to

outside the polygon and vice versa, as visible in Figure 7,

under the effect of noise or little modifications in muscle

activation, even if the actual intention does not change.

Since the motor is continuously told to move (when the

point is inside the polygon) and stop (when the point is

outside the polygon), a glitchy actuation is the undesired

result if no filtering actions are implemented. To mitigate

this problem, the control action has been modified adding a

sort of memory of the past command and of the last classi-

fied intentions. The classification phase has not been mod-

ified and the classification loop keeps outputting the

estimated current user’s intention. However, the classifier

Figure 7. The figure shows a zoomed portion of the Cartesian
plane of the GUI. The green ellipse highlights the area where
points belonging to the same gesture jump in and out the polygon
producing the glitchy control issue. Enlarging the polygon in order
to include every point is not always a good solution to this
problem, since it reduces disturbances rejection and it might lead
to more misclassifications. GUI: graphical user interface.
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output is no longer translated directly into a motor com-

mand, but it is instead added to a vector containing the last

four classified user’s intentions and the present one. Each

time a new element is added to the vector, the oldest one is

removed. The vector size, for a corresponding time window

of 5� 20¼ 100 ms (the action in execution does not fit into

this calculation), has been chosen not to introduce too much

latency, providing a still responsive control experience for

a real-time application. The currently executed intention is

stored in a separate variable. A customized filtering action

is applied to this variable and to the intentions vector to

determine which command action has to be executed by the

motor. First of all, each classifiable intention has been

assigned to an integer number, such as the rest state is the

number in between the other two

open ¼ 1; rest ¼ 2; close ¼ 3 ð1Þ

Then, a fixed weight of 0.4 is assigned to the current

executed intention, while other five weights, heuristically

gathered from a unitary parabola (y ¼ x2) for a total sum

of 0.6, are assigned to the oldest intentions up to the

present one

ce ! we ¼ 0:4 ð2Þ

it�4 ! wt�4 ¼ 0:011 ð3Þ

it�3 ! wt�3 ¼ 0:044 ð4Þ

it�2 ! wt�2 ¼ 0:098 ð5Þ

it�1 ! wt�1 ¼ 0:174 ð6Þ

it ! wt ¼ 0:273 ð7Þ

where ce and we are the current executed intention and its

respective weight, it�4; :::; it the classified intentions at dif-

ferent time step t, and wt�4; :::;wt the corresponding

weights that are chosen to be evenly spaced on the x-axis

of the parabola. Finally, a weight average is calculated and

rounded to the closest integer corresponding to an inten-

tion. The result of these calculations is then assumed as the

new intention (ne) to be executed by the exoskeleton

ne ¼ wece þ
X4

k¼0

wt�kint�k ð8Þ

where int�k are the values assigned to the corresponding

intentions it�k , according to equation (1).

This has been done to achieve the effect of a windowed

smoothing filter (window length ¼ 100 ms, overlap ¼
20 ms) which strongly rejects single jumps from one inten-

tion to another, which gives much more importance to the

latest classified intentions with respect to the oldest ones

and which has a remarkable but not excessive inertia to

changes: 40% of the output command depends in fact to

the currently executed intentions. The selected weights are

the results of laboratory tests which highlighted how the

modified control experience turn out to be much smoother,

less power consuming, and less fatiguing for the user.

Experimental tests

A single-case study has been carried out, in a rehabilitation

center, to preliminary assess the impact level of the control

strategy on the usability of the device when worn by a real

patient. Given the de facto exploratory nature of these tests,

the minute size of the test sample, and focusing more on

demonstrating the possible application of the proposed

approach than evaluating its actual performance, no statis-

tical analysis has been performed so far.

One subject (male, aged 54, 1 þ Modified Ashworth

Scale38) has been enrolled for the study. The patient suffers

since birth from spinal muscular atrophy (SMA) type II,

which is a neuro-degenerative disease with several possible

different outcomes. In this specific case, SMA produced a

selective damage to muscular extensors of both hands caus-

ing a clenched fist deformity and resulting in hand opening

impairment due to tendons’ retroactions. The subject was

provided with a written informed consent form and an

information sheet. To provide a comfortable and high cus-

tomized locking system on the patient’s hand, the ergo-

nomics of the device has been improved by fixing the

system on a splint directly manufactured on the user’s anat-

omy. Such a tailor-made interface solution, as visible in

Figure 8, assures a stable kinematic coupling between the

exoskeleton and the hand.

Two EMG sensors have been placed, exploiting silver-

chloride (Ag/AgCl) electrodes, on the extensor digitorum

superficialis and on the flexor digitorum superficialis.

However, since the selected subject was not able to provide

strong signals concerning finger extension without feeling

annoyance, it has been decided to use instead the remark-

able cross-talk components from muscular activity coming

from wrist motions. This decision has been made not to step

away from the procedure previously tested on healthy sub-

ject during laboratory tests.

Single-case experimental design39 methodology was

chosen for the study: 10 objects of different sizes and

shapes from those of daily use (i.e. an apple, a tangerine,

Figure 8. The figure shows the thermoformed plastic support,
also known as “splint”, which has been used as a basis for the
coupling between the patient’s hand and the HES. HES: hand
exoskeleton systems.
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a tennis ball, a mug, a 0.5-l bottle of water, a door handle, a

spray can, a pot, a felt-it pen, and a smartphone) were

selected for chronometric functional tasks tests.

Experimental protocol

In the following, the proposed protocol to evaluate the

control strategy is described. The subject seated in front

of a table on which the aforementioned objects have been

previously placed within a fixed area. The subject, wear-

ing the exoskeleton, has been asked to grasp each object

and move it on a standard shoe box (12.5 � 28.5 �
10 cm3) placed 10 cm away from the initial position. For

each object, a total of five trials have been conducted and

the average grasping time was calculated. These test ses-

sions have been accomplished twice in a week. Figure 9

shows the hand exoskeleton worn by the user during the

testing sessions. A user-training approach has been fol-

lowed to teach the patient to consistently produce EMG

pattern corresponding to clear commands for the exoske-

leton. The subject hence performed 1 h of training a day

in between, wearing the exoskeleton, without being

recorded.

Results

Results of the two conducted test sessions are reported in

Figure 10. The histogram reports on the x-axis the objects

involved in the tests and on the y-axis the corresponding

average grasping time. Tests results show that, in general,

grasping time is longer as the shape get more complicated,

for example, grasping an apple is quicker than grasping a felt-

it pen. This can be attributed to the fact that, actuating four

1-DOF mechanisms at once, grasping an object with an irre-

gular shape might require more time to let the exoskeleton

adapt to the uneven form. It is also worth noticing that lateral

grasping arose to be more difficult than the vertical one. This

difference can be seen comparing bottle of water grasping

with the tangerine/tennis ball one: the latter required, in fact,

less time despite a similar diameter of the grip. This can be

attributed to many difficulties encountered by the patient to

activate the correct muscles in the different positions (the

exoskeleton weight itself is differently compensated).

Although the average grasping times result to be quite

high compared to reasonable standards for able-bodies, it

can be noticed that they have overall become lower in only

1 week of training. The merit can be ascribed both to the

practice, which has led the patient to the generation of

better and more selective muscular signals, and to the major

confidence in managing the system acquired by the user.

Conclusions and future developments

This article not only presents a sEMG-based strategy to control

a lightweight (’ 200 g) and low cost (’ €550) fully wearable

assistive HES but also describes its implementation on an

embedded system that has been then tested on a physically

impaired user during simulated ADLs. The classification phase

of the user’s intentions and the integration of the strategy on a

real device are the focal points on which the article is focused.

Figure 9. The figure shows a free grasp (a), a spherical grasp (b),
and a cylindrical grasp (c) performed by the patient using the
exoskeleton. Although the overall geometry of the device has
been changed to adapt to the splint, the kinematics and the
functioning of the system have remained unchanged.

Figure 10. The figure shows the result of the chronometric
tasks. The blue column refers to the first session, the gray one to
the second session and the light blue one represents the differ-
ence between the two previous grasping times.

Secciani et al. 11



The novelty of this work lies in the fact that, comparing it

with the related works available in literature, the studied

solution shows a peculiar aspect which raise the bar of the

current wearable assistive technology. Unlike other studies,

in fact, the complexity of the classifier has been brought

from a 1-D to a 2-D level. This way, it becomes more robust

to external disturbances and more flexible to different inten-

tions to be classified, as reported in the section “Control

architecture.” The lightweight decision-making algorithm

and procedure adopted make it still suitable for embedded

applications which is another key point of the work.

Enhancing the classification capabilities and still

achieving the possibility of integrating the code on a fully

wearable system are encouraging signs for further

developments.

Tests have been performed on a real patient to validate

the discussed approach and qualitatively evaluate the capa-

bility of the user in exploiting the proposed control strategy

during objects handling. A straightforward learning in man-

aging the system has been suggested by the overall reduc-

tion of the grasping times between the two test sessions.

The authors are now working on overcoming the limits

of the proposed solution.

First of all, since the conducted preliminary tests have

assessed the goodness of proposed idea, a new testing

campaign, on a larger test sample, will be scheduled and

statistical data both for training and grasping time will be

collected.

Secondly, a new actuation strategy will be investigated. To

accelerate the grasping process and also to provide a more

natural control of the hand motion, commanding the motor to

move with a velocity proportional to something representing

the overall level of activation of the muscles involved in the

movement can be ascribed as a possible solution.

Thirdly, the classification phase will be further

enhanced. The difficulties come out during later grasping

might be got over by introducing inertial sensors capable of

identifying the arm pose. This way, a later grasping can be

detected and the control system will accordingly switch

classification methodology taking into account gravity

compensation. In addition, a new solution, based on a new

microcontroller board, capable of executing more complex

algorithms, has started to be designed. Some microcontrol-

lers manufacturers have, in fact, planned to release in the

next future tools capable of translating trained artificial

neural networks directly to their embedded system. These

tools are supposed to work with popular artificial intelli-

gence frameworks (e.g. Caffe, CNTK, Keras, Lasagne,

TensorFlow, theano) and their exploiting might push even

further the level of “intelligence” in assistive products.

The new microcontroller board will be based on an ARM

Cortex-M3 processor from STMicroelectronics (Switzer-

land) that will be totally dedicated to the classifier algorithm.

The board will also house a LSM9DS1 inertial sensor from

STMicroelectronics and an eight-channel EMG front end

from Texas Instruments, which will manage the collection

of the EMG raw signal from eight bipolar dry electrodes. To

move toward an easier wearability procedure, while trying

to increase the number of worn sensors, these electrodes will

be encapsulated, as well as the microcontroller board, within

an elastic band that will wrap up the forearm circumference.

Something similar to current commercially available arm

bands, together with a compliant dock stations, will be

investigated and designed to allow the user for an indepen-

dent donning of the sensitized system.
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