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INTRODUCTION 

 

1. PARKINSON’S DISEASE 

Parkinson’s disease (PD), is a progressive neurological disorder characterised by early prominent 

death of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). The resulting 

dopamine deficiency within the basal ganglia leads to the appearance of motor symptoms such as 

bradykinesia, resting tremor, rigidity, postural instability, as well as non-motor symptoms such as 

sleep disturbances, depression, and cognitive deficits (Rodriguez-Oroz et al. 2009). The prevalence 

of PD is approximately 1.5 to 2% of the population over the age of 55; in fact, PD is the second 

most common neurodegenerative disorder after Alzheimer’s disease. The exact etiology of PD still 

remains elusive and the precise mechanisms that cause this disease remain to be identified (Obeso 

et al. 2010). The first detailed description of PD was made two centuries ago when the physician 

James Parkinson in 1817 described the first clear medical description in “The Shaking Palsy” 

where he described the daily lives and symptoms of six patients affected by problems such as 

constant shaking, rigidity and slowness of movement. Later, Jean-Martin Charcot was particularly 

influential in refining and expanding this early description and in disseminating information 

internationally about Parkinson's disease. Although PD was once considered a single disease entity, 

it is now recognised that many disease states can produce parkinsonism. Administration of the 

dopamine precursor levodopa (L-3,4-dihydroxyphenylaline) effectively, yet transiently, reverts 

motor deficit but does not stop disease progression and leads, in the long run, to the development of 

L-DOPA-induced dyskinesia, a condition characterized by the appearance of uncontrolled 

movements, perceived by patients nearly as disabling as Parkinson’s symptoms. Disease-modifying 

treatments that reduce the rate of neurodegeneration or stop the disease process remain unavailable 

as yet, and are at present the greatest unmet therapeutic need in PD.  

 

1.1. Clinical characteristics of PD 

Parkinson’s disease is primarily a disorder of voluntary movement. There are four cardinal features 

of PD that can be grouped under the acronym TRAP: Tremor at rest, Rigidity, Akinesia (or 

bradykinesia) and Postural instability. In addition, flexed posture and freezing (motor blocks) have 

been included among classic features of parkinsonism (Jankovic 2002). 

Bradykinesia 

Bradykinesia means literally slowness of movement. Given that bradykinesia is one of the most 

easily recognisable symptoms of PD, it may become apparent before any formal neurological 
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examination. Bradykinesia is a hallmark of basal ganglia disorders, and it encompasses difficulties 

with planning, initiating and executing movement and with performing sequential and simultaneous 

tasks (Berardelli et al. 2001). This is supported by the observation of decreased neuronal density in 

the SNpc in elderly patients with parkinsonism regardless of PD diagnosis (Ross et al. 2004).It is 

hypothesised that bradykinesia is the result of a disruption in normal motor cortex activity caused 

by reduced dopaminergic function. 

Tremor 

Rest tremor is the most common easily recognised symptom of PD. Tremors are unilateral, occur at 

a frequency between 4-6 Hz, and almost always are prominent in the distal part of an extremity. 

Hand tremors are described as supination–pronation (“pill-rolling”) tremors that spread from one 

hand to the other. Rest tremor in patients with PD can also involve the lips, chin, jaw and legs but, 

unlike essential tremor, rarely involves the neck/head or voice. Characteristically, rest tremor 

disappears during action execution and during sleep. Some patients with PD have a history of 

postural tremor, phenomenologically identical to essential tremor, for many years or decades before 

the onset of parkinsonian tremor or other PD related features. In addition to rest tremor, many 

patients with PD also have postural tremor that is more prominent and disabling than rest tremor 

and may be the first manifestation of the disease (Jankovic, Schwartz and Ondo 1999, Jankovic 

2002). Parkinson’s related postural tremor (“re-emergent tremor”) is differentiated from essential 

tremor in that the appearance of tremor is often delayed after the patient assumes an outstretched 

horizontal position. Because re-emergent tremor occurs at the same frequency as classical rest 

tremor and is responsive to dopaminergic therapy, it is likely that it represents a variant of the more 

typical rest tremor. The occurrence of rest tremor is variable among patients and during the course 

of the disease. Clinical–pathological studies have demonstrated that patients with PD and 

prominent tremor have degeneration of a subgroup of midbrain (A9) neurons, whereas this area is 

spared in PD patients without tremor.  

Rigidity 

Rigidity is a motor sign characterised by increased resistance to passive movement of a patient's 

limbs. It may occur proximally (eg, neck, shoulders, hips) or distally (eg, wrists, ankles). Rigidity 

may be associated with pain, and painful shoulder is one of the most frequent initial manifestations 

of PD although it is commonly misdiagnosed as arthritis, bursitis or rotator cuff injury (Riley et al. 

1989). In addition, rigidity of the neck and trunk (axial rigidity) may occur, resulting in abnormal 

axial postures (eg, anterocollis, scoliosis).  

Postural instability 

Postural instability due to loss of postural reflexes is generally a manifestation of the late stages of 

PD and usually occurs after the onset of other clinical features. Postural instability (along with 
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freezing of gait) is the most common cause of falls and contributes significantly to the risk of hip 

fractures (Williams, Watt and Lees 2006). 

Freezing 

Freezing, also referred to as motor blocks, is a form of akinesia (loss of movement) and is one of 

the most disabling symptoms of PD (Giladi et al. 2001). Although freezing is a characteristic 

feature of PD, it does not occur universally. Freezing most commonly affects the legs during 

walking, but the arms and eyelids can also be involved (Boghen 1997). It typically manifests as a 

sudden and transient (usually <10 s) inability to move. It is transient, lasting for seconds or 

minutes, and suddenly abates. Freezing is associated with substantial social and clinical 

consequences for patients. In particular, it is a common cause of falls (Bloem et al. 2004). Risk 

factors for the development of freezing include the presence of rigidity, bradykinesia, postural 

instability and longer disease duration. Replenishment of striatal DA through the oral 

administration of the DA precursor levodopa alleviates most of the symptoms. Nonetheless, after 

several years of treatment with levodopa most patients develop involuntary movements, termed 

dyskinesia, which are difficult to control and impair the quality of life. 

Non-motor features 

Although PD is primarily a motor disorder, it is often complicated by cognitive and 

neuropsychiatric problems and careful examination often reveals abnormalities in other parts of the 

nervous system, including the visual, olfactory, somatosensory and autonomic systems. Failure to 

appreciate these non-motor problems is often the cause of distress to patients. For most patients 

with PD, the cognitive deficits are generally mild and subtle. However, up to 25 per cent of patients 

with parkinsonism will develop dementia over four years. Dementia occurs more commonly in 

patients with atypical parkinsonian syndromes, such as progressive supranuclear palsy (PSP) or 

corticobasal ganglionic degeneration (CBGD) (Zesiewicz, Sullivan and Hauser 2006). In addition 

to cognitive and affective disorders, many patients with PD exhibit features of obsessive–

compulsive behaviour, sensory and sleep abnormalities. 

1.2. Neurochemical and neuropathological features of PD 

The pathologic hallmark of the disease is the progressive loss of nigral DA neurons and the 

presence of intracytoplasmic inclusions termed “Lewy bodies” (LBs). These are intracytoplasmic 

bodies consisting of an amorphous core surrounded by a less dense ‘halo’(Gibb, Esiri and Lees 

1987).They contain a number of elements including ubiquitin, α-synuclein and proteases (Lennox 

and Lowe 1997, Spillantini et al. 1998). Their function is thought a consequence of a defect in the 

systems to involve of disposal of abnormal or damaged proteins (Jellinger 2010), through the 

ubiquitin-protease system. LBs are commonly observed in the brain region showing the most 

neuron loss in PD, including substancia nigra, locus coeruleus, the dorsal motor nucleus of the 
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vagus and the nucleus basalis of Meynert, but they are also observed in neocortex, diencephalon, 

spinal cord, and even peripheral autonomic ganglia. The role of LBs is controversial and moreover, 

they are not specific for PD, they are also found in Alzheimer disease, in a condition called 

“dementia with LBs disease”. The cell bodies of nigrostriatal neurons are located in the SNpc, and 

they project primarily to the putamen. The loss of these neurons, which normally contain 

conspicuous amounts of neuro-melanin (Marsden 1983), produces the classic gross 

neuropathological finding of SNpc depigmentation. The pattern of SNpc cell loss appears to 

parallel the level of expression of the DA transporter (DAT) mRNA (Uhl et al. 1994) and is 

consistent with the finding that depletion of DA is most pronounced in the dorsolateral putamen 

(Bernheimer et al. 1973), the main site of projection for these neurons. At the onset of symptoms, 

putamen DA is depleted 80%, and 60% of SNpc DA neurons have already been lost. The 

mesolimbic DA neurons, the cell bodies of which reside adjacent to the SNpc in the ventral 

tegmental area (VTA), are much less affected (Uhl, Hedreen and Price 1985). Although some DA 

neurons are spared in PD, neurodegeneration is also found in noradrenergic (locus coeruleus), 

serotoninergic (raphe), and cholinergic (nucleus basalis of Meynert, dorsal motor nucleus of vagus) 

systems, as well as in the cerebral cortex (especially cingulate and entorhinal cortices), olfactory 

bulb, and anatomic nervous system (Hornykiewicz and Kish 1987) thus, while the involvement of 

these areas occurs in the most serious or late diseases, the temporal manifestation of the damage to 

specific neurochemical systems is not well established. For example, some patients develop 

depression months or years prior to the onset of PD motor symptoms, which could be due to early 

involvement of non-DA pathways. (Dauer and Przedborski 2003) 

 

1.3. Anatomy and physiology of the basal ganglia 

Basal ganglia are a complex network of nuclei in the forebrain strongly connected with the cerebral 

cortex, thalamus and other little brain areas. The basal ganglia and related nuclei consist of a 

variety of subcortical cell groups engaged primarily in motor control, together with a wider variety 

of roles such as motor learning, executive functions and behavior, and emotions. The term basal 

ganglia in the strictest sense refers to nuclei embedded deep in the brain hemispheres (striatum or 

caudate-putamen and globus pallidus), whereas related nuclei consist of structures located in the 

diencephalon (subthalamic nucleus), mesencephalon (substantia nigra), and pons 

(pedunculopontine nucleus) (Lanciego, Luquin and Obeso 2012). Several models of the functional 

anatomy of the basal ganglia have been proposed. The most popular model was introduced in the 

1980’s (Alexander, Crutcher and DeLong 1990). This model is based on the existence of separate 

parallel loops, mediating motor, cognitive and emotional functions, and running through the basal 

ganglia in a more or less uniform fashion. Two important properties of basal ganglia function 

included in this classical model are convergence and segregation. Convergence refers to the fact 
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that along the circuits the number of neurons decreases by each step, thus converging information 

following each relay. Segregation not only implies separation of the individual circuits along their 

path through the basal ganglia, but also the separation of information flow for motor functions of 

individual parts of the body (Santens et al. 2003). The basal ganglia and related nuclei can be 

broadly categorized as (1) input nuclei, (2) output nuclei, and (3) intrinsic nuclei. Input nuclei are 

those structures receiving incoming information from different sources, mainly cortical, thalamic, 

and nigral in origin. The caudate nucleus (CN), the putamen (Put), and the accumbens nucleus 

(NAc) are all considered input nuclei. The output nuclei are those structures that send basal ganglia 

information to the thalamus and consist of the internal segment of the globus pallidus (GPi) and the 

substantia nigra pars reticulata (SNr). Finally, intrinsic nuclei such as the external segment of the 

globus pallidus (GPe), the STN and SNpc are located between the input and output nuclei in the 

relay of information. Cortical and thalamic efferent information enters the striatum (CN, Put, and 

Acb) to be processed further within the basal ganglia system. The output nuclei (GPi and SNr) 

project mainly to the thalamus (ventral nuclei), which, in turn, project back to the cerebral cortex 

(mainly frontal lobe). The appropriate functioning of the basal ganglia system requires dopamine to 

be released at the input nuclei. DA cells are present in the SNpc and contain neuromelanin, a dark 

pigment derived from oxidized and polymerized DA, but also in the VTA, a medial extension of 

SNpc. DA neurons in the VTA primarily project to the ventral striatum (nucleus accumbens and 

olfactory tubercle) as part of the so-called Mesolimbic pathway, and to the prefrontal cortex (the 

mesolimbic pathway).The striatum is the major recipient of inputs to the basal ganglia. It contains 

two different types of neurons: projection neurons and interneurons (90% and 10% of striatal 

neurons, respectively). Projection or striatofugal neurons are also called medium-sized spiny 

neurons (MSNs) because these multipolar neurons have small to medium cellular somata (20 µm in 

diameter), and their dendritic processes are covered by postsynaptic specializations called dendritic 

spines. All striatal MSNs are inhibitory neurons that use GABA as the neurotransmitter. 

Striatofugal MSNs can be divided further, according to their projection targets, into those 

innervating the GPe nucleus and those projecting to the output nuclei GPi and SNr. Striatal MSNs 

innervating the GPe nucleus express the dopamine receptor subtype 2 (D2R), which inhibits 

intracellular adenyl-cyclase trough G-protein signaling, and give rise to the indirect pathway 

(striato-GPe-STN-GPi/SNr). On the other hand, striatal MSNs projecting directly to GPi and SNr 

contain dopamine receptor subtype 1 (D1R), which activate adenyl-cyclase signaling (D1-

containing neurons), and give rise to the direct striatopallidal pathway. Furthermore, striatal MSNs 

projecting through the indirect pathway are known to contain the neuropeptide enkephalin, whereas 

the neuropeptides substance P and dynorphin are expressed in those MSNs projecting directly to 

the GPi and SNr. When DA binds to the D1R, it facilitates the release of GABA on output nuclei, 

thus resulting in less tonic inhibition of thalamus which leads to the transient activation of cortical 

nuclei via glutamate. On the other hand, when DA binds to the D2R, the release of inhibitory 
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GABA from the MSNs is reduced, thereby increasing GPe’s output of GABA which results in 

decreased STN output of excitatory glutamate and in a subsequence reduction in GABA release 

from the output nuclei. This eventually leads to a reduction in the inhibition of thalamo-cortical 

glutamatergic neurons. 

1.4. The Consequences of Dopaminergic Deficit in PD 

According to the classic pathophysiologic model of basal ganglia dysfunction in PD dopaminergic 

depletion reduces the facilitation of MSNs in the direct pathway and increases the activation of 

indirect circuit neurons, which leads to increased activity of the STN, which, in turn, over activates 

inhibitory output neurons in the GPi/SNr. Similarly, the reduction of GABAergic inhibition of 

direct MSNs combined with an increased glutamatergic driving force from the disinhibited STN 

increases activity in the GPi/SNr , this effectively reduces the likelihood of phasic inhibitory 

activity in these output neurons, thus impeding movement initiation and execution. Interestingly, 

two recent in vivo optogenetics studies have provided strong support for the classical model. 

Kravitz et al. showed that selective stimulation of MSNs expressing D2R (indirect circuit) provoked 

movement arrest, whereas activation of MSNs expressing D1R led to movement activation. This 

essentially confirmed the notion that the indirect and direct circuits are in functional equilibrium, 

inhibiting and facilitating movement, respectively. Bateup et colleagues. found that the loss of 

DARPP-32 in the “direct” striatonigral projection abolished levodopa-induced dyskinesias, 

whereas in striatopallidal neurons produced a robust increase in locomotor activity and reduced 

cataleptic response to haloperidol. These two elegant studies, based on selective activation or 

inhibition of the direct and indirect striatopallidal circuits in vivo, corroborated the hypothesis of 

the existence of a functional balance between these projection systems (Lanciego et al. 2012). 

 

 

Figure 1: Basal ganglia circuitry in normal conditions and in Parkinson’s’ disease.  Model of excitatory 

(red arrows) and inhibitory (blue arrows) influences within the basal ganglia circuitry under physiological 

conditions. (B) Changes within the basal ganglia circuitry in the Parkinsonian brain (bold arrows, increase in 

excitation/inhibition; dotted arrows, decrease in excitation/inhibition). (Adapted from J.Watson et al., 2017)  

https://www.sciencedirect.com/science/article/pii/B9780128050941000137?via%3Dihub#!
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2. ETIOLOGY OF PD 

PD is now widely accepted as a complex, multifactorial disease. Despite an intense research effort 

over many years, the exact causes aren’t fully understood. Researchers have identified 

characteristics that increase a person’s risk of developing Parkinson’s, including gender, age, race, 

and genetic factors. Age is the largest risk factor for the development and progression of PD. 

Ageing affects many cellular processes that predispose to neurodegeneration, and age-related 

changes in cellular function predispose to the pathogenesis of PD. PD reflects a failure of the 

normal cellular compensatory mechanisms in vulnerable brain regions, and this vulnerability is 

increased by a genetic susceptibility acted upon by other genetic and environmental factors (Hindle 

2010). In fact, the contributions of environmental toxins and genetic factors regarding the cause of 

PD have been hotly debated. The environmental toxin hypothesis was dominant for much of the 

20th century, especially because of the example of post encephalitic PD (as described in the Oliver 

Sacks' book Awakenings) and the discovery of MPTP-induced parkinsonism. However, the 

discovery of PD-causing genes has renewed interest in hereditary susceptibility factors. Both 

probably play a role. The environmental hypothesis posits that PD-related neurodegeneration 

results from exposure to a dopaminergic neurotoxin. Theoretically, the progressive 

neurodegeneration of PD could be produced by chronic neurotoxin exposure or by limited exposure 

initiating a self-perpetuating cascade of deleterious events. The finding that people intoxicated with 

MPTP develop a syndrome nearly identical to PD (Langston et al. 1983) is a prototypic example of 

how brief exposure to an exogenous toxin can mimic the clinical and pathological features of PD. 

Paraquat is structurally similar to 1-methyl-4-phenylpyridinium (MPP
+
), the active metabolite of 

MPTP, and has been used as a herbicide. Like MPP
+
, rotenone is also a mitochondrial poison 

present in the environment, due to its use as an insecticide and to kill unwanted lake fish. Human 

epidemiological studies have implicated residence in a rural environment and related exposure to 

herbicides and pesticides with an elevated risk of PD (Tanner 1992). Yet, there are convincing data 

to implicate any specific toxin as a cause of sporadic PD, and chronic environmental exposure to 

MPP
+
 or rotenone is likely to cause PD. Still, cigarette smoking and coffee drinking are inversely 

associated with the risk for development of PD (Hernán et al. 2002) reinforcing the concept that 

some environmental factors do modify PD susceptibility or affect disease progression. Another 

possibility, which does not fit neatly into a genetic or environmental category, is that an 

endogenous toxin may be responsible for PD neurodegeneration. Distortions of normal metabolism 

might create toxic substances because of environmental exposures or inherited differences in 

metabolic pathways. One source of endogenous toxins may be the normal metabolism of DA, 

which generates harmful reactive oxygen species (ROS) (Cohen 1984). Consistent with the 

endogenous toxin hypothesis is the report that patients harboring specific polymorphisms in the 

gene encoding the xenobiotic detoxifying enzyme cytochrome P450 may be at greater risk of 

developing young-onset PD (Sandy et al., 1996). Further, isoquinoline derivatives toxic to DA 
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neurons have been recovered from PD brains (Nagatsu 1997). However, the discovery of inherited 

form of PD shifted the emphasis back to genetic factors. Among the different genetic forms of PD, 

mutations in the gene encoding for α-synuclein have received most attention. Furthermore, Alpha-

synuclein is one of the major components of Lewy bodies and Lewy neurites in sporadic PD 

(Spillantini et al. 1998), and two missense mutations in the alpha-synuclein gene (A53T and A30P) 

have been identified in several families with autosomal dominant parkinsonism (Polymeropoulos et 

al. 1997, Krüger et al. 1998). 

2.1. Pathogenesis of PD 

Whatever insult initially provokes neurodegeneration, studies of toxic PD models and the functions 

of genes implicated in inherited forms of PD suggest two major hypotheses regarding the 

pathogenesis of the disease. One hypothesis posits that misfolding and aggregation of proteins are 

instrumental in the death of SNpc DA neurons, while the other proposes that the culprit is 

mitochondrial dysfunction and the consequent oxidative stress, including toxic oxidized DA 

species. The pathogenic factors cited above are not mutually exclusive, and one of the key aims of 

current PD research is to elucidate the sequence in which they act and whether points of interaction 

between these pathways are key to the demise of SNpc DA neurons. 

2.1.1. Misfolding and aggregation of proteins 

The abnormal deposition of protein in brain tissue is a feature of several age-related 

neurodegenerative diseases, including PD. Although the composition and location (i.e., intra- or 

extracellular) of protein aggregates differ from disease to disease, this common feature suggests 

that protein deposition per se, or some related event, is toxic to neurons. Aggregated or soluble 

misfolded proteins could be neurotoxic through a variety of mechanisms. Protein aggregates could 

directly cause damage, perhaps by deforming the cell or interfering with intracellular trafficking in 

neurons. Protein inclusions might also sequester proteins that are important for cell survival. If so, 

there should be a direct correlation between inclusion formation and neurodegeneration. However, 

a growing body of evidence, particularly from studies of Huntington disease (HD) and other 

polyglutamine diseases (Saudou et al. 1998, Cummings et al. 1999), suggests that there is no 

correlation between inclusion formation and cell death. Cytoplasmic protein inclusions may not 

result simply from precipitated misfolded proteins but rather from an active process meant to 

sequester soluble misfolded proteins from the cellular milieu (Kopito 2000). Accordingly, while 

possibly indicative of a cell under attack, inclusion formation may be a defensive measure aimed at 

removing toxic soluble misfolded proteins (Warrick et al. 1999, Cummings et al. 1999, Cummings 

et al. 2001) the ability of chaperones such as Hsp-70 to protect against neurodegeneration provoked 

by disease-related proteins (including a-synuclein-mediated DA neuron loss) is consistent with the 

view that soluble misfolded proteins are neurotoxic (Muchowski 2002). In patients with inherited 
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PD, pathogenic mutations are thought to cause disease directly by inducing abnormal and possibly 

toxic protein conformations (e.g.,(Bussell and Eliezer 2001) or indirectly by interfering with the 

processes that normally recognize or process misfolded proteins. In sporadic PD, there is a similar 

focus both on direct protein-damaging modifications and on dysfunction of chaperones or the 

proteasome that may indirectly contribute to the accumulation of misfolded proteins. The triggers 

for dysfunctional protein metabolism in sporadic PD are only just beginning to be elucidated. One 

trigger may be oxidative stress, long thought to play a key role in the pathogenesis of PD through 

damage caused by ROS (Przedborski et al. 2000). The tissue content of abnormally oxidized 

proteins (which may misfolded) increases with age reviewed by (Beckman and Ames 1998), and 

neurons may be particularly susceptible because they are postmitotic. In PD, LBs contain 

oxidatively modified a-synuclein, which in vitro exhibits a greater propensity to aggregate than 

unmodified a-synuclein (Giasson et al. 2000). Several herbicides and pesticides induce misfolding 

or aggregation of a-synuclein (Uversky, Li and Fink 2001, Manning-Bog et al. 2002). There also 

appears to be an age-related decline in the ability of cells to handle misfolded proteins (Sherman 

and Goldberg 2001). Cells respond to misfolded proteins by inducing chaperones, but if not 

properly refolded they are targeted for proteasomal degradation by polyubiquitination. With aging, 

the ability of cells to induce a variety of chaperones is impaired as is the activity of the proteasome. 

Proteasomal dysfunction and the consequent accumulation of misfolded proteins may provoke a 

vicious cycle, with excess misfolded proteins further inhibiting an already compromised 

proteasome (Dauer and Przedborski 2003) . 

2.1.2. Role of oxidative stress and deficits in energy metabolism in PD 

In both idiopathic and genetic cases of PD, oxidative stress is thought to be the common underlying 

mechanism that leads to cellular dysfunction and demise. Oxidative stress occurs when an 

imbalance is formed between production of ROS and cellular antioxidant activity (Blesa et al. 

2012). Oxidants and superoxide radicals are produced as products of oxidative phosphorylation, 

making mitochondria the main site of ROS generation within the cell. Because of the presence of 

ROS-generating enzymes such as tyrosine hydroxylase and monoamine oxidase, the DA neurons 

are particularly prone to oxidative stress. In addition, the nigral DA neurons contain iron, which 

catalyses the Fenton reaction, in which superoxide radicals and hydrogen peroxide can contribute 

to further oxidative stress (Halliwell 1992). Mitochondria-related energy failure may disrupt 

vesicular storage of DA, causing the free cytosolic concentration of DA to rise and allowing 

harmful DA-mediated reactions to damage cellular macromolecules. Thus, DA may be pivotal in 

rendering SNpc DA neurons particularly susceptible to oxidative attack. Because of this intrinsic 

sensitivity to reactive species, a moderate oxidative stress can trigger a cascade of events that lead 

to cell demise. The major sources of such oxidative stress generated for the nigral DA neurons are 
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thought to be the ROS produced during DA metabolism, neuroinflammation and mitochondrial 

dysfunction. 

DA metabolism 

Selective degeneration of the DA neurons of the SNpc suggests that DA itself may be a source of 

oxidative stress (Segura-Aguilar et al. 2014). DA is synthesized from tyrosine by tyrosine 

hydroxylase (TH) and aromatic amino acid decarboxylase. Following this, DA is stored in synaptic 

vesicles after uptake by the vesicular monoamine transporter 2 (VMAT2). However, when there is 

an excess amount of cytosolic DA outside of the synaptic vesicle in damaged neurons, i.e., after L-

DOPA treatment, DA is easily metabolized via monoamine oxidase (MAO) or by auto-oxidation to 

cytotoxic ROS (Zucca et al. 2014). For example, mishandling of DA in mice with reduced VMAT2 

expression was sufficient to cause DA-mediated toxicity and progressive loss of DA neurons 

(Caudle et al. 2007). This oxidative process alters mitochondrial respiration and induces a change 

in the permeability transition pores in brain mitochondria (Berman and Hastings 1999). Also, the 

auto-oxidation of DA produces electron-deficient DA quinones or DA semiquinones (Sulzer and 

Zecca 2000). Some studies have demonstrated a regulatory role for quinone formation in DA 

neurons in the L-DOPA-treated PD model induced by neurotoxins and in methamphetamine 

neurotoxicity (Asanuma, Miyazaki and Ogawa 2003, Ares-Santos et al. 2014) DA quinones can 

modify a number of PD-related proteins, such as α-synuclein , parkin, DJ-1, Superoxide dismutase-

2 (SOD2), and UCH-L1 (Belluzzi et al. 2012, Girotto et al. 2012, da Silva et al. 2013, Hauser et al. 

2013) and have been shown to cause inactivation of the DA transporter (DAT) and the TH enzyme 

(Kuhn et al. 1999), as well as mitochondrial dysfunction (Lee et al. 2003), alterations of brain 

mitochondria (Gluck and Zeevalk 2004) and dysfunction in Complex I activity (Jana et al. 2011, 

Van Laar et al. 2009). Additionally, DA quinones can be oxidized to amino chrome, whose redox-

cycling leads to the generation of the superoxide radical and the depletion of cellular nicotinamide 

adenine dinucleotide phosphate-oxidase (NADPH), which ultimately forms the neuromelanin 

(Sulzer et al. 2000) known to be accumulated in the SNpc of the human brain (Plum et al. 

2013).Significant increases in cysteinyl adducts of L-DOPA, DA, and DOPAC have been found in 

substantia nigra of PD patients, suggesting the cytotoxic nature of DA oxidation (Spencer et al. 

1998). Also, DA terminals actively degenerated proportionally to increased levels of DA oxidation 

following a single injection of DA into the striatum (Rabinovic, Lewis and Hastings 2000). 

Recently, it has been shown that increased uptake of DA through the DAT in mice results in 

oxidative damage, neuronal loss and motor deficits (Masoud et al. 2015). 

Neuroinflammation 

Neuronal loss in PD is associated with chronic neuroinflammation, which is controlled primarily by 

microglia, the major resident immune cells in the brain (Barcia et al. 2003) and, to a lesser extent, 
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by (Perry 2012). Microglial activation has been found with a greater density in the SNpc (Lawson 

et al. 1990) and in the olfactory bulb of both sporadic and familial PD patients (McGeer et al. 

1988). When activated, they release free radicals such as nitric oxide and superoxide, which can in 

turn contribute to oxidative stress in the microenvironment. This is thought to be exacerbated by 

inflammatory signals generated by molecules released from damaged neurons, leading to induction 

of reactive microgliosis. The oxidized or ROS-induced molecules that are released from damaged 

nigral DA neurons and trigger microglial activation include neuromelanin, α-synuclein. 

Neuromelanin confers the dark pigmentation that is produced from DA oxidation and is so 

characteristic of the SNpc appearance. High levels of catecholamine metabolism in the midbrain 

are associated with increased levels of neuromelanin in the same region and, it is neuromelanin that 

is thought to be one of the molecules responsible for inducing chronic neuroinflammation in PD. 

Neuromelanin released from dying DA neurons in the SNpc activate microglia, increasing the 

sensitivity of DA neurons to oxidative stress-mediated cell death (Halliday et al. 2005, Zhang et al. 

2011). Neuromelanin appears to remain for a very long time in the extracellular space (Langston et 

al. 1999) and thus thought to be one of the molecules responsible for inducing chronic 

neuroinflammation in PD. 

2.2. Mitochondrial Dysfunction 

As neurons have a considerable energy need and are also highly equipped with mitochondria they 

are extremely sensitive to mitochondrial dysfunction. Several neurological disorders are associated 

with mitochondrial dysfunction and demonstrate enhanced production of free-radical species 

(Finsterer 2006, Lin and Beal 2006). The first line of evidence for a link between mitochondrial 

dysfunction and PD came from the description of Complex I (CI) deficiency in the postmortem 

SNpc of PD patients and has been suggested to be one of the fundamental causes of PD (Schapira 

et al. 1990, Mizuno et al. 1989). This CI deficiency was also seen in the frontal cortex in PD 

(Parker, Parks and Swerdlow 2008), and in peripheral tissues such as platelets (Haas et al. 1995) 

and skeletal muscle (Haas et al. 1995) suggesting that there is a global reduction in mitochondrial 

CI activity in PD. This inhibition of CI can lead to the degeneration of affected neurons by a 

number of mechanisms such as increased oxidative stress and excitotoxicity (Sherer et al. 2002b). 

A link between impairment of mitochondrial CIII assembly, an increase in free radical-production, 

and PD has also been identified (Rana et al. 2000). Complex I or III inhibition causes an increase in 

the release of electrons from the transport chain into the mitochondrial matrix which then react 

with oxygen to form ROS such as,·O2−, hydroxyl radicals (·OH) and nitric oxide (NO·). This 

increase in the normal electron leakage occurs by blockage of electron movement along the chain 

to the next acceptor molecule. The ROS formed can act as signaling molecules by causing lipid 

peroxidation or promote excitotoxicity, all leading to modification of proteins and eventual cell 

death. The main areas in which ROS cause damage in the cell include oxidative DNA damage, 
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lipid peroxidation, and protein oxidation and nitration. One target of these reactive species may be 

the electron transport chain itself (Cohen 2000), leading to mitochondrial damage and further 

promotion of ROS. Several Complex I inhibitors such as MPTP or rotenone show some of the key 

motor features of PD and are used in PD neurotoxic models. Interestingly, rotenone toxicity is 

involved in oxidative damage to proteins and Lewy body-like inclusions (Betarbet et al. 2000). 

Other evidence for mitochondrial dysfunction related to oxidative stress and DA cell damage 

comes from findings that mutations in genes of proteins like α-synuclein, parkin, DJ-1, or PINK are 

linked to familial forms of PD. The convergence of all of these proteins on mitochondrial dynamics 

uncovers a common function in the mitochondrial stress response that might provide a potential 

physiological basis for the pathology of PD (Norris et al. 2015, van der Merwe et al. 2015). 

Overall, these observations show that mutations in these genes affect mitochondrial function and 

integrity and, are associated with increases in oxidative stress (Zuo and Motherwell 2013). ROS 

influence proteasomal, lysosomal, and mitochondrial function, which, in turn, regulate the cellular 

response to oxidative damage (Cook, Stetler and Petrucelli 2012). The correct elimination of 

damaged proteins by effective proteolysis and the synthesis of new and protective proteins are vital 

in the preservation of brain homeostasis during periods of increased levels of ROS. Consequently, 

this can lead to protein misfolding (i.e., α-synuclein), preventing the ability of some of these 

proteins to be unfolded and degraded by the systems that regulate protein clearance, like the 

ubiquitin proteasome system or autophagy. Indeed, protein misfolding, together with the 

dysfunction of these protein degradation systems, may play a key role in the appearance of 

deleterious events implicated in the neurodegenerative process of PD (Schapira et al. 2014). 

2.2.1. Involvement of Ca
2+ 

in Mitochondrial Dysfunction 

The cellular damage caused by electron transfer chain inhibition may contribute to neuronal 

excitotoxicity exacerbating neurotoxicity in PD. Several mechanisms for excitotoxicity in 

neurodegenerative conditions have been proposed (Albin and Greenamyre 1992). Excitotoxicity 

occurs when depolarisation of the neuronal cell membrane from −90 mV to between −60 and 

−30 mV leads to a decrease in the magnesium blockade of N-methyl-D-aspartate (NMDA) 

receptors. This, in turn, leads to NMDA receptor activation by latent levels of glutamate and causes 

an intracellular Ca
2+

accumulation. This increase in Ca
2+

 is then thought to cause neurotoxicity by 

two main mechanisms. Firstly, Ca
2+

 causes an increase in intracellular via activation of nitric oxide 

synthase (NOS). The excess of in the cell can react with to form peroxynitrite (Dawson and 

Dawson 1996), which can cause cell death by mechanisms similar to those caused by ROS and 

mentioned above. Besides, the peroxynitrite, itself can lead to cell damage via nitrosylation of 

various proteins. 

A second mechanism driven by intracellular Ca
2+

 increase causes toxicity in DA neurons by acting 

on mitochondria themselves. The Ca
2+

 influx is extensively accumulated in the mitochondria and 
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leads to effects on mitochondrial membrane potential and ATP synthesis as well as generation of 

ROS (Nicholls and Budd 1998) contributing to the oxidative damage discussed above. This also all 

feeds back causing further malfunction of the cell’s Ca
2+ 

homeostasis and additional cellular 

damage. 

Mitochondrial dysfunction can lead to excitotoxicity and cause a reduction in cellular ATP levels, 

an increase in cellular Ca
2+

, or a combination of both (Sherer, Betarbet and Greenamyre 2002a). 

Inhibition of Complex I, and consequently ATP generation, lowers intracellular ATP, leading to 

partial neuronal depolarisation, due to a reduction in the activity of Na
+
/K

+
-ATPase. The Na

+
/K

+
-

ATPase acts to maintain the resting membrane potential of the cell. A reduction in ATP levels will 

compromise this function leading to depolarisation and, therefore, excitotoxicity via over activation 

of NMDA receptors. Intracellular Ca
2+

 can be increased by two methods, that is, either directly by 

mitochondrial impairment or by over activity of NMDA receptors. Mitochondria can take up Ca
2+

 

from the cytosol via an uniporter transporter or a transient “rapid mode”, both of which rely on the 

mitochondrial membrane potential, reviewed by (Gunter et al. 2000). The ROS generated by 

mitochondrial respiratory chain dysfunction can damage the mitochondrial membranes and disrupt 

this mechanism of Ca
2+

 uptake and storage, thereby raising intracellular Ca
2+

 levels and 

exacerbating the excitotoxicity. Sherer et al. showed that this could be a viable mechanism for cell 

death in PD by inhibiting Complex I in SH-SY5Y cells and showing a disruption in the 

mitochondrial membrane potential leading to an increased susceptibility to calcium overload 

(Sherer et al. 2003). It has also been shown that there is an increase in glutamate activity linked to 

excitotoxicity in the SNpc of mice treated with the Parkinsonian toxin MPTP, which may be linked 

to apoptosis and autophagy (Meredith et al. 2009). This evidence suggests that mitochondrially 

derived or driven excitotoxicity could be a major contributory factor in PD. 

Further to being integrally involved in mitochondrially generated excitotoxic cell death in PD, Ca
2+

 

has been implicated in other mechanisms of cell death in the disease that may involve compromise 

of the role of mitochondria as one of the major intracellular Ca
2+ 

stores. Sheehan et al. reported that 

mitochondria from PD patients showed lower sequestration of calcium than age-matched controls 

suggesting a role for Ca
2+

homeostasis dysfunction in PD (Sheehan et al. 1997). This would lead to 

higher intracellular Ca
2+

 levels, which has been shown to amplify free-radical production (Dykens 

1994) and, therefore, an increase in ROS. An increase in cytosolic Ca
2+

due to mitochondrial 

dysfunction has also been suggested to activate calpains and so raise levels of toxic α-synuclein 

proposing another link with PD (Esteves et al. 2010), a discovery supported by the protective effect 

of calpain inhibition in an MPTP model of PD (Crocker et al. 2003). 

A role for Ca
2+

 and mitochondria has also been suggested in a mechanism of increased 

susceptibility to cell death specific to SNpc DA neurons and, therefore, relevant for PD. SNpc DA 

neurons are atypical in the brain in that they have self-generated pacemaker activity (Grace and 

Bunney 1983) mediated by Cav1.3, a rare L-type Ca
2+

 channel (Striessnig et al. 2006). This activity 
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means that the Cav1.3 channels are open for a higher proportion of time than Ca
2+

 channels in other 

neurons leading to an increased ATP usage in the cells to pump Ca
2+

 across the membrane up steep 

concentration gradients (Surmeier, Guzman and Sanchez-Padilla 2010). This elevated need for 

ATP would lead to an increase in the activity of the electron transport chain, therefore increasing 

ROS production so exacerbating any mitochondrial dysfunction and making SNpc DA neurons 

more prone to cell death. 

 

 

 

 

 

Figure 2: Common pathogenic mechanism in PD. (A) Mitochondrial dysfunction, (B) Neuroinflammation, 

(C) Increased mitochondrial fission and fragmentation,. (D) Autophagy, (E) Generation of ROS, (F) Impair 

ubiquitin proteasomal system function, (G) DNA damage, (H) Nuclear DNA encodes mitochondrial proteins, 

(I) Increased cellular Ca
2+

 and excitotoxicity. Adapted from (Helley et al. 2017) 
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3. MITOCHONDRIAL DYSFUNCTION IN PD 

PD is now widely accepted as a complex, multifactorial disease that can have diverse genetic, 

biological and environmental influences (Polito, Greco and Seripa 2016). Sporadic PD patients, 

who lack evidential family history and a definitive genetic basis, account for > 90% of disease 

cases. However, the familial forms of PD involve mutations in a number of genes that allowed to 

infer cellular pathways central to PD pathophysiology (Singleton, Farrer and Bonifati 2013). Many 

lines of evidence implicate that oxidative stress, neuroinflammation and environmental factors are 

increasingly appreciated as key determinants of DA neuronal susceptibility in PD, and are a feature 

of both familial and sporadic forms of the disease (Ryan et al. 2015). In both cases, mitochondrial 

dysfunction is thought to be the common underlying mechanism that leads to cellular dysfunction 

and, eventual neuronal death. 

 

Figure 3: Central role of mitochondrial dysfunction in etiology of PD. Recent evidence suggests that 

environmental and genetic risk factors induces oxidative stress, excitotoxicity and mitochondrial dysfunction 

determine the degeneration of midbrain DA system, resulting in PD. Adapted from (Barreto, Iarkov and 

Moran 2014) 

 

3.1 Mitochondrial Dysfunction in Sporadic PD 

Sporadic PD occurs as a seemingly random occurrence due to undetermined genetic or 

environmental bases in the absence of an obvious family history.  

Mitochondrial dysfunction plays a major role in the pathogenesis of PD, and in particular, defects 

of mitochondrial complex-I of the respiratory chain may be the most appropriate cause 

degeneration of neurons in PD by reducing the synthesis of ATP. Several epidemiological studies 

have shown that pesticides and other toxins from the environment that inhibits complex-I is 

involved in the pathogenesis of sporadic PD. 
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Rotenone, MPTP, paraquat, nitric oxide, the dopamine metabolite aminochrome are endogenous 

and exogenous inhibitors of mitochondrial function with an increase generation of ROS. In 

particular, rotenone is a widely used pesticide. Chronic systemic exposure to rotenone in rats 

causes many features of PD, and also including nigrostriatal DA degeneration. In fact, it is highly 

lipophilic and readily enter in all neuronal cells and intracellular organelles, such as mitochondria, 

without the aid of transporters. Once inside them, it binds and inhibits mitochondrial complex I, 

causing formation of ROS and inhibiting proteasome activity. Rotenone administration has been 

shown to oxidatively modify DJ-1 and cause α-synuclein aggregation, which are effects linked to 

PD and localised to the DA neurons of the SNpc (Betarbet et al. 2006). Paraquat has very similar 

structure to MPTP and MPP
+
, suggesting a similar toxic mechanism. However, unlike rotenone and 

MPP
+
, paraquat does not inhibit Complex I and is not taken up by DAT, suggesting an alternative 

mechanism of cell death (Richardson et al. 2005). Whichever complex or enzyme is involved, the 

paraquat radical can react with oxygen to form and cause oxidative stress and mitochondrial 

dysfunction (Cochemé and Murphy 2008). Furthermore, systemic administration of paraquat to 

mice leads to SNpc DA neuron degeneration accompanied by a-synuclein containing inclusions, 

although DA cell loss is moderate. Consistently with these evidences, a significantly younger onset 

of sporadic PD has been linked to chronic occupational exposure to pesticides and heavy metals 

(Ratner et al. 2014). 

MPTP 

The first toxin that linked mitochondrial Complex I inhibition and PD was MPTP. MPTP is a by-

product of the synthesis of a meperidine analogue with heroin-like properties (LEE and ZIERING 

1947). In 1982, MPTP was accidentally discovered because young drug addicts developed an 

idiopathic parkinsonian syndrome after intravenous injection of this compound. After investigating 

the etiology of their condition, in humans and monkeys, it was found that MPTP produces an 

irreversible and severe parkinsonian syndrome characterized by all of the features of PD, including 

tremor, rigidity, slowness of movement, postural instability, and freezing. As in PD, monkeys 

treated with low-dose MPTP exhibit preferential degeneration of putamenal versus caudate 

dopaminergic nerve terminals (Moratalla et al. 1992).Similarly, MPTP damages the DA pathways 

in a pattern similar to that seen in PD, including relatively greater cell loss in the SNpc than the 

VTA and a preferential loss of neurons in the ventral and lateral segments of the SNpc (Varastet et 

al. 1994) this regional pattern is also found in MPTP-treated mice (Seniuk, Tatton and Greenwood 

1990, Muthane et al. 1994). 

In MPTP-intoxicated humans and nonhuman primates, the beneficial response to levodopa and 

development of long-term motor complications to medical therapy are virtually identical to that 

seen in PD patients. Also similar to PD, the susceptibility to MPTP increases with age in both 

monkeys and mice (Irwin, DeLanney and Langston 1993, Ovadia, Zhang and Gash 1995, Rose et 



17 
 

al. 1993). For all these reasons, today it represents the most important and most frequently used 

parkinsonian toxin applied in animal models. 

 

Mechanism of action 

MPTP, which is highly lipophilic, crosses the blood-brain barrier within minutes (Markey et al., 

1984). Once in the brain, the pro-toxin MPTP is oxidized to 1-methyl-4-phenyl-2,3-

dihydropyridinium (MPDP1) by monoamine oxidase B (MAO-B) in glia and serotonergic neurons, 

the only cells that contain this enzyme. It is then converted to MPP
+
 (probably by spontaneous 

oxidation), the active toxic molecule, released from the astrocytes into the extracellular space via 

the OCT-3 transporter. Once released, MPP
+
 is taken up into the neuron by DAT. Inside neurons, 

MPP1 can follow at least three routes: (1) it can bind to the vesicular monoamine transporter-2 

(VMAT2), which translocates MPP1 into synaptosomal vesicles (Liu, Roghani and Edwards 1992); 

(2) it can be concentrated within the mitochondria by a mechanism that relies on the mitochondrial 

transmembrane potential (Ramsay and Singer 1986); and (3) it can remain in the cytosol to interact 

with cytosolic enzymes, especially those carrying negative charges (Klaidman et al. 1993). 

Vesicular sequestration of MPP1 appears to protect cells from MPTP-induced neurodegeneration 

by sequestering the toxin and preventing it from accessing mitochondria, its likely site of action. 

The importance of vesicular sequestration has been established by a number of experiments, 

including those showing that cells transfected to express greater density of VMAT2 are converted 

from MPP1-sensitive to MPP1-resistant cells (Liu et al. 1992) and that heterozygous VMAT2 null 

mice display enhanced sensitivity to MPTP-induced neurodegeneration (Takahashi et al. 1997). It 

appears that the ratio of DAT to VMAT2 expression predicts the likelihood of neuronal 

degeneration both in PD and the MPTP model. For instance, the putamenal dopaminergic 

terminals, which are most severely affected by both MPTP and PD, have a higher DAT/VMAT2 

ratio than those in the caudate, which are less affected (Miller et al. 1999). Consequently, mice 

lacking the DAT are protected from MPTP toxicity (Meredith and Rademacher 2011). 

Once inside the mitochondria MPP
+
 is taken up into via passive transport due to the large 

mitochondrial transmembrane gradient , where MPP
+
 is able to inhibits mitochondrial Complex I 

(Nicklas et al. 1987). This inhibition of Complex I leads to cell death via energy deficits 

(Przedborski et al. 2000), free radical and ROS generation, and possibly excitotoxicity (Zhang et al. 

2011). Alterations in energy metabolism and generation of ROS peak within hours of MPTP 

administration, days before overt neuronal death has occurred (Jackson-Lewis et al. 1995). 

Therefore, these initial events are not likely to directly kill most cells but rather set into play 

downstream cellular events that ultimately kill most DA neurons (Mandir et al. 1999, Saporito et al. 

1999, Vila et al. 2001). Prolonged administration of low to moderate doses of MPTP to mice leads 

to morphologically defined apoptosis of SNpc DA neurons (Tatton and Kish 1997). Under this 

regimen of MPTP intoxication, it has been observed an upregulation of Bax, a potent agonist of 
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programmed cell death (PCD), that trigger the release of cytochrome c and activation of caspases 9 

and 3. At the same time, PCD antagonists such as Bcl-2 are downregulated in the SNpc (Vila et al. 

2001). Consistent with these observations, Bax null and Bcl-2 transgenic mice are both resistant to 

MPTP neurotoxicity (Yang et al. 1998, Vila et al. 2001). How MPTP provokes these changes in 

Bcl-2 family members remains to be elucidated. MPTP causes oxidative damage to DNA 

(Mandavilli, Ali and Van Houten 2000, Mandir et al. 1999), which may be important in inducing 

Bax via p53 activation. The tumor suppressor protein p53 is one of the few molecules known to 

regulate Bax expression and is activated by DNA damage. Furthermore, pharmacological inhibition 

of p53 attenuates MPTP-induced Bax upregulation and the subsequent SNpc DA neuron death 

(Duan et al. 2002), and p53 null mice are resistant to MPTP-induced neurodegeneration (Trimmer 

et al. 1996). 

 

 

Figure 4: MPTP Neurotoxicity. Mechanism of action of MPTP/MPP+ in DA neurons. Adapted from 

Livia Pasquali et al., 2014. 

 

3.2. Mitochondrial Dysfunction in Familial PD 

Recent advances in PD genetics have shown the evidence for a vital role of mitochondrial 

dysfunction in the pathogenesis of the disease. The identification of genes associated with 

parkinsonism has had a major advance on PD research, showing that most of them can affect or 

regulate different functional or physiological aspects of mitochondria. Familial PD is caused by 
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mutations in genes identified by linkage analyses that are inherited in an autosomal recessive or 

dominant manner. Many of the pathogenic mutations in these genes were directly linked to 

mitochondrial dysfunction (i.e. autosomal dominant SNCA and LRRK2 mutations and autosomal 

recessive parkin, PINK1, DJ-1 and ATP13A2 mutations) (Lill 2016). More recently, new roles in 

the regulation of mitochondrial biology have been determined for these genes, and new PD genes 

associated with mitochondrial (dys)function, such as VPS35 and CHCHD2, have been identified, 

further under-pinning the essential role of mitochondrial function to the aetiology of PD. What we 

know so far about the function and dysfunction of PD genes confirms the relevance of the 

biochemical alterations found in sporadic PD, i.e., mitochondrial dysfunction, oxidative stress and 

a dysbalance in protein homeostasis characterized by an increase in protein misfolding and 

aggregation accompanied by an impaired removal of misfolded proteins. Thus, insight into the 

function of PD genes can promote our understanding of the molecular causes of PD and help to 

focus research on key biochemical pathways. The case of α-synuclein provides the first 

demonstration of a genetic defect leading to PD, and thus has historical and conceptual value. It is a 

soluble protein that is highly enriched in the presynaptic terminals of neurons. Accumulation of α-

synuclein as intracellular filamentous aggregates is a pathological feature of both sporadic and 

familial PD (Goedert et al. 2013). This evidence was supported by the discovery that aggregates of 

α-synuclein are the major components of LBs (Spillantini et al. 1998). Although there are many 

theories on the mechanism by which mutant α-synuclein causes neuronal cell death in PD, it has 

recently been reported that there is an association between α-synuclein and mitochondrial 

dysfunction (Hao, Giasson and Bonini 2010, Irrcher et al. 2010). Mutant α-synuclein is targeted to 

and accumulates in the inner mitochondrial membrane (IMM) and can cause Complex I 

impairment and an increase in ROS, possibly leading to cell death (Devi et al. 2008). Furthermore, 

oxidative stress promotes uptake, accumulation, and oligomerization of extracellular α-synuclein in 

oligodendrocytes (Pukass and Richter-Landsberg 2014) and induces posttranslational modifications 

of α-synuclein which can increase DA toxicity (Xiang et al. 2013). It has been suggested that the 

NADPH oxidases, which are responsible for ROS generation, could be major players in 

synucleinopathies (Cristóvão et al. 2012). Furthermore, mutations in Leucine Rich Repeat Kinase 2 

(LRRK2) have been identified as the most common cause of familial PD (Lill 2016). The complex 

physiological roles of LRRK2 are not fully understood; however, it is associated with many 

cellular functions, particularly those involving membrane dynamics, including autophagy, 

cytoskeletal dynamics, vesicle dynamics and mitochondrial function. Attempts to better understand 

how LRRK2 mutations contribute toward PD pathology have been restricted partly due to the 

difficulty in creating a LRRK2 transgenic model that recapitulates important features of PD. 

Several proteins are known to interact with LRRK2 and mediate pathological effects on 

mitochondria. LRRK2 has been shown to impair mitochondrial dynamics by physically interacting 

with the mitochondrial fission protein, dynamin-related protein 1 (DRP1) and promoting 
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mitochondrial fragmentation associated with enhanced mitochondrial fission, increased ROS 

generation and impaired autophagy (Wang et al. 2012). Mitochondrial dysfunction induced by 

LRRK2 also provides a strong link to the impaired autophagy pathway in multiple models. For 

example, an accumulation in autophagic and lysosomal structures occur both in vitro and in vivo 

caused by overexpression of PD-associated mutations (MacLeod et al. 2006, Plowey et al. 2008, 

Gómez-Suaga et al. 2012). Parkin and PINK1 are localized in the mitochondria and their functions 

are tightly connected to the normal functioning of the mitochondria itself (Scarffe et al. 2014). 

PINK1 accumulates on the outer membrane of damaged mitochondria and recruits parkin to the 

dysfunctional mitochondrion (Pickrell and Youle 2015). In humans with parkin mutations, 

mitochondrial complex I activity is impaired (Müftüoglu et al. 2004). Overexpression of parkin in 

mice reduced DA neuronal cell loss induced by MPTP through the protection of mitochondria and 

the reduction of α-synuclein (Bian et al. 2012). On the other hand, parkin knock-out (KO) mice 

showed decreased amounts of several proteins that are involved in mitochondrial function and 

oxidative stress as well as increases in protein oxidation and lipid peroxidation (Palacino et al. 

2004). PINK1-KO mouse and human DA neurons have abnormalities in mitochondrial 

morphology, reduced membrane potential, increased ROS generation and high sensitivity to 

apoptosis. Mutations in the PINK1 genes result in enlarged or swollen mitochondria. The decrease 

in mitochondrial membrane potential is not due to a proton leak, but to respiratory chain defects 

like complex I and complex III deficiency (Amo et al. 2014). These defects can be ameliorated and 

rescued by the enhanced expression of parkin (Exner et al. 2007, Yang et al. 2006). This last 

scenario seems to involve PINK1 and parkin in a common pathway that regulates mitochondrial 

physiology and cell survival in which PINK1 seems to be functioning upstream of parkin, at least 

as observed in Drosophila disease models (Clark et al. 2006). Furthermore, DJ-1 gene encodes a 

widely expressed protein found in neurons and glia in all central nervous system (CNS) regions 

(Bader et al. 2005). It's first identified an association between DJ-1 and autosomal recessive early-

onset PD (Oakley et al. 2007, Morgan et al. 2006), with numerous further familial mutations in DJ-

1 being identified (van Duijn et al. 2001). Among its functions, DJ-1 is involved in regulating 

mitochondrial activity (Junn et al. 2009) and protecting against oxidative stress (Taira et al. 2004). 

DJ-1 can interact with mitochondrial complex I subunits and is translocated to the mitochondria 

under stress conditions (Hayashi et al. 2009). DJ-1 and its mutant forms could associate with the 

chaperone protein Hsp70, a link that was further increased under oxidative stress conditions. DJ-1 

deficient mice are more susceptible to MPTP (Kim et al. 2005) and DJ-1 knockdown in a 

neuroblastoma cell line renders the cells vulnerable to oxidative stress (Taira et al. 2004). In fact, 

loss of DJ-1 leads to mitochondrial impairment and dysfunctional autophagy (Irrcher et al. 2010, 

Krebiehl et al. 2010) and overexpression of PINK1 and Parkin is protective (Irrcher et al. 2010). 

These results are consistent with the proposal that DJ-1 may be aiding PINK1/Parkin in the 

clearance of misfolded proteins and damaged mitochondria (Xiong et al. 2009). In conclusion, DJ-1 
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protein has been observed to have pleiotropic functions, with an antioxidative role to be the most 

consistent finding. This may provide a link to PD whereby a loss of function mutation of DJ-1 

causes an increase in mitochondrial dysfunction and oxidative damage leading to nigral neuron cell 

death. At last, mutations in ATP13A2 cause Kufor-Rakeb syndrome (KRS), a rare form of 

autosomal recessive juvenile-onset PD (Park et al. 2015). ATP13A2 encodes a lysosomal type 5 P-

type ATPase. Several studies employing ATP13A2-deficient cell models have comprehensively 

shown underlying mitochondrial dysfunction, including reduced ATP production, increased 

mitochondrial fragmentation and increased ROS production (Ramonet et al. 2012, Park et al. 

2014). In addition, loss of ATP13A2 was also found to impair glycolysis, which aggravated 

mitochondrial dysfunction, suggesting a broader impact of ATP13A2 deficiency on cellular 

bioenergetics (Park et al. 2016). However, it has been observed that functional ATP13A2 can 

protect against α-synuclein overexpression induced toxicity and that knockdown of ATP13A2, 

enhances α-synuclein misfolding in neuronal models of PD (Gitler et al. 2009). With α-synuclein 

shown to be toxic to Complex I (Devi et al. 2008), loss of function mutations in ATP13A2, and 

therefore impaired α-synuclein clearance, could be a link to mitochondrial dysfunction in PD. 

 

 

 

Figure 5: Mitochondrial Dysfunction in Familial PD. Interactions between gene products linked to PD. 

Adapted from (Helley et al. 2017) 
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4. PHYSIOLOGICAL BASIS OF NEURONAL VULNERABILITY IN PD 

The selective death of distinct neuronal cell populations is the key feature of many disorders of the 

central nervous system. Not only do neurons secreting particular neurotransmitters appear to 

exhibit increased vulnerability to specific neurodegenerative diseases but, perhaps more strikingly, 

even within groups of neurons secreting a single neurotransmitter some groups are vulnerable 

while others are resistant to neurotoxic stimuli. Importantly, differential vulnerability of neurons is 

a feature of both sporadic and inherited forms of neurodegeneration, and is also observed in animal 

models of these diseases. Examples of diseases that are characterized by the selective degeneration 

of neurons in the CNS include Alzheimer’s disease, Amyotrophic Lateral Sclerosis (ALS) 

autosomal recessive proximal Spinal Muscular Atrophy and PD. It is largely unknown why 

different groups of neurons are highly vulnerable to degeneration in different diseases. In early 

Alzheimer’s disease, distinct subgroups of neurons in layer II of the entorhinal cortex, the 

subiculum, and the CA1 region of the hippocampus are particularly vulnerable to degeneration, 

while many other cortical and hippocampal regions do not show pathological signs at this disease 

stage (Morrison and Hof 2002, Stranahan and Mattson 2010). Amyotrophic Lateral Sclerosis 

affects both upper and lower motor neurons (Boillée et al. 2006). However, cortical, spinal and 

lower cranial nerve motor neurons undergo degeneration early in the disease, while the motor 

neurons of Onuf’s nucleus, as well as the oculomotor, trochlear and abducens nerves remain largely 

unaffected from cell loss even at late disease stages (Alexianu et al. 1994, von Lewinski and Keller 

2005). Autosomal recessive proximal spinal muscular atrophy is characterized by the progressive 

selective loss in particular of the lower motor neurons in the anterior horns of the spinal cord, while 

upper motor neurons are spared (Talbot and Davies 2001). In PD, whether sporadic or inherited, 

the motor manifestations are primarily linked to the selective loss of DA neurons in the SNpc 

(Brichta, Greengard and Flajolet 2013). In contrast, the very similar DA neurons in the VTA 

demonstrate a higher degree of resistance to degeneration (Dauer and Przedborski 2003). This 

pattern is conserved in toxic (6-OHDA, MPTP, rotenone, proteasome inhibition) and genetic 

(MitoPark) animal models of PD. Even in Drosophila, in which PD is modelled by over expressing 

wild-type or mutant α-synuclein, one DA neuron group selectively degenerates. It is unclear why, 

some neurons die and others survive when exposed to the same toxic stimulus. Understanding why, 

in a particular condition, some neurons are extremely prone to degeneration while others, very 

similar neurons are spared over the years, would greatly enhance our comprehension of disease 

pathogenesis and thereby foster the development of more specific therapeutic strategies. For 

example, one could envisage pharmacologic manipulations targeted to correcting a particular 

"vulnerability factor" in a susceptible neuronal population. Characterization of these cell types 

might also allow for more refined stem cell/regenerative approaches in which transplanted cells 

more closely reflect lost neuronal subtype or in which cells are engineered to be more resistant to 

toxicity. 
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4.1. Identifying DA neurons in the midbrain 

DA neurons are distributed in three partially overlapping nuclei: the retrorubral area (RRA, A8), 

substantia nigra (SN, A9), and ventral tegmental area (VTA, A10), located in very close proximity 

to each other. SNpc and VTA DA neurons represent two of the nine major DA neuron groups in 

the mammalian brain as identified by staining for tyrosine hydroxylase (TH), the enzyme that 

catalyzes the rate-limiting step in the synthesis of dopamine (Björklund and Dunnett 2007). In mice 

and rats there are a considerably comparable numbers of DA neurons SNpc and VTA, while SNpc 

DA neurons outnumber VTA DA neurons in monkeys and humans. SNpc DA neurons are heavily 

involved in the control of movement, whereas VTA DA neurons are responsible for the regulation 

of reward, emotional behavior and addiction. Both groups of neurons are characterized by distinct 

but overlapping projection patterns. A combination of electrophysiological and basic molecular 

studies and retrograde tracing in mice demonstrated that distinct subgroups of VTA and SNpc DA 

neurons in confined midbrain territories project to specific striatal, cortical and limbic target 

regions, and these neurons can be distinguished by their expression levels of dopamine transporter 

(DAT), their electrophysiological properties and their capacities for dopamine D2 autoreceptor 

signaling (Lammel et al. 2008). The majority of projections that originate from SNpc DA neurons 

innervate the dorsal striatum, and only some nigral fibers project to the ventral striatum and the 

cortex. In contrast, VTA DA neurons mainly project to the ventral striatum as well as cortical 

areas, while significantly fewer projections innervate the dorsal striatum. Both SNpc and VTA DA 

neurons send minor projections to additional brain regions including the globus pallidus, the 

subthalamic nucleus, and the habenula. Moreover, a minority of DA projections originating in the 

VTA projects to the amygdala. DA neurons located in the midbrain also sparsely innervate distinct 

hippocampal regions. The density of the DA innervation of a distinct brain region often varies 

significantly between different species. Interestingly, anatomic differences in the DA projection 

sites correlate with several dissimilarities observed in DA neuron function. In the 1980s, functional 

analysis of individual DA midbrain neurons was boosted by the now classical studies of Grace and 

Bunney. They were the first to record electrical activity of neurochemically defined DA midbrain 

neurons intracellularly in vivo (Grace and Bunney 1980, Grace et al. 2007). A robust set of 

relatively homogeneous features emerged from their observations. In fact, they defined a still valid 

functional fingerprint of DA midbrain neurons: a distinct action-potential waveform associated 

with two different discharge patterns that spontaneously occurred in vivo in the anesthetized rodent 

brain either discharge in an irregular single spike mode with a very narrow frequency band 

(between 1 and 8 Hz) or alternatively short bursts of action potentials at higher frequencies (Grace 

and Bunney 1984). Given the nature of their experimental settings, the behavioral significance of 

these distinct patterns of DA activity had to remain unclear including broad action potential 

waveforms, inhibition by DA D2 auto-receptor stimulation, and two modes of in vivo discharge 

pattern, either low-frequency (1-8 Hz) single action potential discharge or transient high-frequency 
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bursting (15 Hz). This stereotypical “functional finger-print” of DA neurons in rodents was 

confirmed and extended in the studies in awake behaving primates by Schultz and co-workers, 

which has allowed them in a string of landmark studies to define the behavioral significance of the 

distinct discharge patterns of DA midbrain neurons in an unprecedented fashion (Schultz 2007). It 

is mainly due to their research efforts over the last 20 years that we now possess a sophisticated and 

quantitative theory of the behavioral roles of the distinct DA discharge patterns, which prominently 

appear to signal reward prediction errors in context of temporal-difference learning paradigms 

(Schultz 2007). In parallel, the development of reduced brain preparations and patch-clamp 

techniques enabled the study of biophysical mechanisms and ion channels that generate and control 

electrical activity in DA neurons (Puopolo, Raviola and Bean 2007). More recently, the combined 

analysis of function and gene-expression at the level of individual DA midbrain neurons enabled 

their distinct molecular definition (Liss and Roeper 2004). In addition to dopaminergic diversity 

according to their distinct anatomical or functional identities under physiological control 

conditions, other functional differences might only become apparent during disease-related 

challenges thereby revealing distinct “pathophysiological identities” among DA midbrain neurons 

(Liss et al. 2005). Indeed, the phenomenon of differential vulnerability of DA neurons in PD is well 

documented and reflects the fact that some of the DA cell groups in the midbrain are particularly 

affected by the neurodegenerative process while others are relatively spared (Damier et al. 1999). 

4.1.1. Distinct identities of DA midbrain neurons 

DA midbrain neurons have been defined as those nerve cells positioned in the mesencephalon, 

which possess the ability for synthesis, packaging, release, and reuptake of the neurotransmitter 

dopamine. These key features are easily captured by qualitatively probing for the expression of a 

number of marker genes like TH, AADC (aromatic amino acid decarboxylase) or the vesicular 

monoamine transporter (VMAT2) (Björklund and Dunnett 2007). The absence of other 

catecholamine-containing neurons in the midbrain allows using TH expression as a consistent and 

sufficient marker for demonstrating DA identity. Despite the fact that SNpc and VTA DA neurons 

generate, store and release the same neurotransmitter, that their cell bodies in the midbrain are 

localized in close proximity to each other, and that significant overlap exists in the brain areas that 

are innervated by the projections of these neurons, SNpc and VTA DA neurons exhibit a different 

susceptibility to degeneration. 

This differential vulnerability of the DA system is found in drug abuse (Belin et al. 2013, Lüscher 

and Malenka 2011, Volman et al. 2013) in schizophrenia (Modinos et al. 2015), and has recently 

been highlighted in depression models affecting distinct DA neuron subpopulations (Chaudhury et 

al. 2013, Friedman et al. 2014, Krishnan et al. 2007, Russo et al. 2012). However, this phenomenon 

is most prominent in PD.  

The DA neurons in the SNpc are highly vulnerable to the fatal molecular mechanisms associated 

with the disease. Along with the formation of Lewy Bodies in various brain regions (Spillantini et 
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al. 1997, Braak et al. 2003), the progressive loss of pigmented SNpc DA neurons is a pathological 

hallmark of PD (Brichta et al. 2013). Calculations of the number of DA neurons (as identified by 

the expression of TH) in post-mortem tissue from patients with advanced idiopathic (non-genetic) 

PD and control subjects revealed that, on average, almost 80% of all SNpc DA neurons undergo 

degeneration in PD (Damier et al. 1999). DA cell loss is most severe in the ventrolateral part of the 

SNpc (Damier et al. 1999, Braak et al. 2003). This was also unequivocally demonstrated in a more 

current study that investigated a large set of post-mortem brain samples obtained from patients with 

PD (Kordower et al. 2013). These data show that DA cell loss in the SNpc follows a specific 

pattern and suggest that subtle molecular differences exist among subgroups of SNpc DA neurons. 

In contrast to SNpc DA neurons, the very similar DA neurons in the VTA are more resistant to 

degeneration. In their studies, Damier and Hirsch analyzed the number of both SNpc and VTA DA 

neurons, providing cell counts that can be directly compared with each other due to the 

investigation of the same midbrain tissue samples and the application of the same statistical 

methods. The average loss of VTA DA neurons observed in patients with advanced idiopathic PD 

as compared to unaffected controls was estimated to be only about 50% which is a much lower 

percentage of DA neuron loss than in the SNpc (Damier et al. 1999). These data strongly suggest 

that specific modifiers partially protect VTA DA neurons from degeneration as compared to SNpc 

DA neurons, and/or that specific modifiers increase the vulnerability of SNpc DA neurons to PD-

associated cell loss as compared to VTA DA neurons. 

 

4.2. Patterns of electrical activity of midbrain DA neurons 

The general problem of defining neuronal subtypes, might also be discussed in the light of 

homeostatic neuronal plasticity present in DA midbrain neurons (Davis 2006). Studies suggest that 

neurons, when perturbed, possess an astonishing flexibility to regain their cell-specific functional 

properties even in the absence of key components of their biophysical machinery. This homeostatic 

plasticity might argue for a conceptional preference of “functional identity” rather than the use of a 

rigid set of molecular markers defining a “molecular identity”, when aiming to define neuronal 

subtypes (Schulz, Goaillard and Marder 2006). A cardinal feature of neurons that separates them 

from nearly all other cell types is excitability. 

Thus, one alternative approach for functional and molecular definition of DA subtypes is to focus 

on their intrinsic excitability in addition to the expression of basic marker-gene-sets (phenotype–

genotype correlation). Intrinsic excitability defines the input–output relations of specific neurons 

within synaptic networks thus endowing it with a specific functional identity (Schulz et al. 2006). 

However, this functional identity is not simply fixed by the co-expression of a certain set of marker 

genes and ion channels but it actively adapts (functionally as well as molecularly) during 

perturbations to defend a specific type of intrinsic excitability that gives rise to their typical cell-

specific neuronal activity. 
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So, electrical activity and calcium-dependent homeostatic mechanisms (Salthun-Lassalle et al. 

2005, Toulorge et al. 2011) are reasonable candidates to be involved in stabilizing DA neuron 

subtype identities.  

Adult SNpc DA neurons are autonomous pacemakers exhibiting slow broad spikes and lacking 

significant intrinsic Ca
2+

 -buffering capacity. In these neurons, sustained pacemaking must come 

with a significant metabolic price tag. The ionic gradients underlying excitability are under 

constant assault. Although most neurons rely exclusively on channels permeable to Na to drive 

pacemaking, the slow pacemakers with broad action potentials use Ca
2+

 channels to help push the 

plasma membrane toward spike threshold.  

However, the differences in electrical activity and its related ion fluxes have also been proposed to 

contribute to differential vulnerability between vulnerable SNpc DA and resistant VTA DA 

neurons.  

In this view, two different classes of ion channels have emerged to be particularly relevant for SN 

DA neuron activity, related calcium and metabolic homeostasis, as well as for PD-

pathophysiology: voltage-gated calcium channels (VGCCs), and metabolically gated ATP-sensitive 

potassium (K-ATP) channels. 

Surmeier and colleagues have shown the important role of voltage-gated L-type calcium channels 

for creating the basic subthreshold membrane potential oscillations that underlie pacemaker activity 

(Puopolo et al. 2007). However, the calcium dependence of the spontaneous pacemaker is not a 

homogenous property of all DA midbrain neurons (Puopolo et al. 2007, Chan et al. 2007). 

In particular, they have shown that in vitro pacemaker activity is associated with dendritic calcium 

oscillations mediated by L-type calcium channels in SNpc DA but not VTA DA neurons (Chan et 

al. 2007, Guzman et al. 2009, Sulzer and Surmeier 2013)  

Another study points to a key role of L-type calcium channel Cav1.3, which is activated at more 

negative potentials compared to other members of the L-type calcium channel family, also 

expressed in DA midbrain neurons (Chan et al. 2007).  

SNpc DA neurons engage L-type channels with a Cav1.3 pore-forming subunit, leading to elevated 

intracellular concentrations Ca
2+

 must be pumped across the plasma membrane against a very steep 

potential gradient. In adult SNpc DA neurons, the currents that flow through these channels are of 

sufficient magnitude to sustain a membrane potential oscillation when voltage-dependent Na 

channels are blocked with tetrodotoxin (TTX) VTA DA neurons, which also are slow pacemakers, 

diverge from SNpc DA neurons in two potentially important respects. First, the Cav1.3 Ca
2+

 

channel density is dramatically lower than in SNpc DA neurons (Guzman et al. 2010, Chan et al. 

2007). Second, the expression of the Ca
2+

-buffering protein calbindin is much higher in VTA DA 

neurons than it is in SNpc DA neurons (German et al. 1992). 
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This calcium component is far more dominant in SN DA neurons compared to those of other 

pacemaker neurons in the brain, which mainly rely on interspike sodium influx by TTX-sensitive 

sodium channels or HCN channels (Bean 2007). 

Mitochondrial dysfunction, might lead to tonic activation of K-ATP channels and consequently to 

chronic membrane hyperpolarization (Liss, Bruns and Roeper 1999a). These channels, composed 

of discrete pore-forming (Kir6.1/Kir6.2) and regulatory subunits (SUR1/ SUR2), are called 

‘metabolic sensors’, as their open probability depends on the metabolic state of a cell (Seino and 

Miki 2004, Ashcroft and Rorsman 2004). 

K-ATP channels in DA neurons have been shown to open in response to partial complex I 

inhibition as well as in response to ATP depletion and increased oxidative stress (Liss, Neu and 

Roeper 1999b, Avshalumov et al. 2005). Thus, cell type specific K-ATP channel activation would 

provide a convergent downstream target that could integrate energy depletion and oxidative stress, 

offering a candidate mechanism for the differential vulnerability of DA neurons in PD. 

Liss and collaborators suggest that differential degrees of uncoupling of the mitochondrial 

respiratory chain are critical for the control of K-ATP channel activity in DA midbrain neurons. 

Although extensive uncoupling in vitro activates K-ATP channels in all DA neurons, they have 

found that mild uncoupling has opposite effects on K-ATP channel activity in response to complex 

I inhibition: it causes decreased K-ATP conductances in SNpc DA neurons but increased K-ATP 

channel conductances in VTA DA neurons. 

K-ATP channels are selectively activated in response to complex I inhibition in SNpc DA neurons 

but not in VTA DA neurons; this is unexpected, as adult VTA DA neurons have functional K-ATP 

channels with the same molecular make-up (Duda, Pötschke and Liss 2016).  

 

 

 

Figure 6: Spontaneous activity patterns and related ion channels expressed in DA midbrain neurons. 

(A) Schematic illustration of distinct ion channels expressed in DA midbrain neurons, modulating their 

spontaneous activity (pacemaker, burst as well as metabolic and dopamine control) (B) Examples of activity 
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patterns of three individual DA midbrain neurons from adult mouse: In vitro (upper, current-clamp, 

perforated-patch recording) and in vivo (middle, extracellular recording, sampling rate 12.5 kHz) pacemaker 

activity, as well as in vivo burst activity (lower panel). Scale bars: upper 0.5 s, 25 mV, middle/lower 1 s, 0.5 

mV. Adapeted from (Liss and Roeper 2008) 

 

 

Considering the preferential degeneration of SNpc DA neurons in PD, acute and chronic K-ATP 

channel activity has also bidirectional protective but also detrimental effects on SNpc DA survival. 

Chronic K-ATP channel activity in SN DA neurons in vivo in response to metabolic stress 

situations is not beneficial anymore, but seems to trigger degeneration in this neurons of K-ATP 

channel-deficient mice [Kir6.2KO] (Minami et al. 2004) displaying a significantly higher 

vulnerability in two different PD mouse models (Liss et al. 2005) in the chronic neurotoxic 

MPTP/probenecid PD-model (Jackson-Lewis and Przedborski 2007, Meredith and Rademacher 

2011), as well as the homozygous weaver GIRK2 mutant mouse, a chronic genetic model of PD 

(Slesinger et al. 1997, Navarro et al. 1996). In the latter, a missense mutation (G953A) in the Girk2 

gene (KCNJ6), which codes for a subunit of a G-protein-activated inwardly rectifiying K 1 

channel, has been identified (Patil et al. 1995) causing degeneration of DA neurons in the SNpc. 

So, there is clear evidence that physiological LTCC (in particular of the Cav1.3 type) as well as K-

ATP channel (made up by Kir6.2/SUR1 subunits) function contribute to metabolic stress and the 

selective high vulnerability of SNpc DA neurons to degeneration in PD and its animal models.  

Nevertheless, these channels in SNpc DA but not in VTA DA neurons seem to be crucial for their 

distinct electrical activity patterns, their physiological signaling (e.g. calcium-dependent enzyme 

activation and regulation of gene expression), and their related complex functions within the basal 

ganglia network (e.g. novelty-related behavior). 

Another example of genetic PD model in which mitochondrial dysfunction leads to differential DA 

vulnerability is the MitoPark mouse. In this model, a transgenically induced defeact in the 

respiratory chain in midbrain DA neurons leads to the progressive development of key PD features: 

adult onset of neurodegeneration; slowly progressive clinical course; formation of intraneuronal 

inclusions; earlier onset of cell death and more extensive cell death in SNpc than in VTA, and 

responsiveness to L-DOPA therapy with a differential response depending on disease stage 

(Ekstrand et al. 2007). The MitoPark mice provides another instance of selective SNpc vs VTA 

differential degeneration , which is hardly explained by the main hypotheses on PD pathogenesis. 

For this reason in spite of the general consensus over the relevance of mitochondrial function in 

nigrostriatal degeneration underlying PD, it is reasonable to hypothesize that additional, yet 

unversed mechanism underlie differential DA vulnerability in PD. 
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4.3. Alteration of neuronal electrophysiological properties caused by mitochondrial 

dysfunction in animal models 

The elucidation of the molecular determinants that increase the susceptibility of SNpc DA neurons 

or decrease the susceptibility of VTA DA neurons to degeneration in PD is a very exciting but 

challenging research area that holds great potential for the development of novel therapeutic 

strategies for PD (Brichta and Greengard 2014). Despite the evidence suggesting an important role 

for mitochondrial dysfunction among loss of different midbrain DA populations, considerable 

uncertainty remains about the mechanism involved and alternative targets could explain the 

selectivity of toxic action. Generic complex I inhibitors, such as MPTP or rotenone, can induce 

parkinsonian syndromes in humans and animal models, however, it is not clear whether their mode 

of action is restricted to complex I inhibition. The role of complex I inhibition in PD has been 

challenged by a study using mice that lack functional Ndufs4, a gene encoding a subunit implicated 

in assembly and function of complex I. (Exner et al. 2012) In fact, it was demonstrated that in 

primary mesencefalic cultures obtained from mice Ndfufs4
-/-

, basal death of DA neurons was 

unaffected (Choi et al. 2008). Moreover, such cells still retained vulnerability to paraquat and 

MPP
+
 toxic action. Surpresingly, these DA neurons were more sensitive to rotenone, whereas an 

already compromised complex I would make these cell resistent accordingly to its toxic mechanism 

of action. In this respect, given the importance of the topic, my research group focused the attention 

on acute effects carried by the parkinsonian toxin MPP
+
 by analyzing neurophysiological properties 

of SNpc DA neurons in acute midbrain slices. To this aim, they challenged rat SNpc DA neurons 

with relevant concentrations of MPP
+ 

and performed whole-cell/cell-attached recordings. They 

found that MPP
+
, at concentrations approaching those used to induce nigrostriatal degeneration in 

mice (Jackson-Lewis and Przedborski 2007) and rats (Lin et al. 2012), induce a rapid 

hyperpolarization along with a reduction of spontaneous firing activity of SNpc DA neurons. These 

effect were already seen in perforated patch in the same region (Liss et al., 2005) and linked to the 

opening of K-ATP channels due to a decrease of cellular ATP levels after mithocondrial failure. 

But in our case, this effect occurs under blockade of K-ATP channels and in the presence of ATP 

(in whole-cell solution). And it solely dependent on the hyperpolarization-activated inward current 

(Ih) inhibition. Pharmacological experiments indicate that cAMP pathway are not involved (Masi 

et al. 2013). Furthermore, the acute inhibition of Ih by MPP
+ 

leads to hyperpolarization, reduction 

of spontaneous firing activity and increased temporal summation of excitatory inputs in SNpc DA 

neurons. Firing activity of these neurons is very regular in vitro, whereas it shows a bursting pattern 

in vivo or in organotypic cultures (Rohrbacher, Ichinohe and Kitai 2000). Given this marked 

difference, one cannot assume that Ih inhibition by MPP
+
 reduces discharge frequency of SNpc DA 

neurons in vivo. Moreover, a reduction in excitability can hardly be considered noxious in general. 

On the other hand, the finding that MPP
+
 enhances synaptic summation of excitatory inputs in 

SNpc DA neurons may have high-potential pathogenic relevance. As reported by studies in many 
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neuronal cells, excessive depolarization due to massive glutamate release (as during ischemia or 

seizure) results in somatic calcium overload, a major death signal triggering a host of apoptotic 

pathways (Szydlowska and Tymianski 2010). In PD, the involvement of glutamate NMDA receptor 

is controversial, with some studies showing that NMDA antagonist do not protect from MPTP 

toxicity (Sonsalla et al. 1992), and others reporting that impairment of glutamate homeostasis plays 

a role in this model (Meredith et al. 2009). Regardless of NMDA glutamate receptor involvement, 

temporal summation leads to greater and more sustained depolarization epochs at the soma and, 

likely, in dendrites. This may, in turn, result in increased calcium entry through voltage-gated 

calcium channels. In keeping with this, Surmeir and co-workers have shown that isradipine, a Cav 

1.3 blocker, is able to stop dendritic calcium oscillations and accumulation and to protect from 

MPTP-induced degeneration in vitro and in vivo (Chan et al. 2007, Meredith et al. 2008). 

Interestingly, it has been reported that Ih is more abundant in calbindin-negative SNpc DA neurons 

and that this subpopulation is more vulnerable in weaver and MPTP-lesioned mice (German et al. 

1996, Neuhoff et al. 2002). Clearly, none of the current hypotheses can sufficiently explain the 

selective vulnerability of SNpc DA neurons, rather, a combination of the phenomena described 

above as well as some yet unknown factors are responsible for the preferential susceptibility of this 

neuronal population. In agreement with this findings, early electrophysiological alterations, 

including Ih loss of function (LOF), where observed in SNpc DA neurons in acute midbrain slices 

from MitoPark mice (Branch et al. 2016). 
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5. THE HYPERPOLARIZATION-ACTIVATED CURRENT AND HCN CHANNELS 

The hyperpolarization-activated current (Ih), was first described in sino-atrial node tissue in 1976 

and later identified in rod photoreceptors and hippocampal pyramidal neurons (Halliwell and 

Adams 1982, Noma and Irisawa 1976). Due to its unique properties, particularly the activation 

upon hyperpolarization of the membrane potential, Ih has been also termed If (f for funny) or Iq (q 

for queer). The ion channels underlying Ih were identified in the late 1990s and with reference to 

their complex dual gating mode (Altomare et al. 2001, Craven and Zagotta 2006, DiFrancesco 

1999), these proteins were termed hyperpolarization-activated cyclic nucleotide-gated (HCN) 

channels. In mammals, the HCN channel family comprises four distinct members (HCN1-4), with 

different physiological properties. Many physiological roles have been attributed to Ih, including 

the setting of resting membrane potential (RMP), generation of neuronal oscillation, and regulation 

of dendritic integration and synaptic transmission. Ih is implicated in major higher order brain 

functions such as sleep and arousal, learning and memory, sensation and perception. In the nervous 

system, the functional properties and expression of HCN channels are diversified to adapt to the 

corresponding physiological roles. The regulation of HCN channels involves short-term regulation 

through cellular metabolites that directly interact with these channels or protein kinases that induce 

phosphorylation of channel proteins, and long-term regulation via the regulation of channel 

expression, heteromerization or subcellular redistribution. 

 

5.1. Biophysical Properties of Ih 

Native Ih as well as currents induced by heterologously expressed HCN channels are characterized 

by some hallmark properties. Ih is a mixed cationic current carried by permeation of Na
+
 and K

+ 
in 

ranges from 1:3 to 1:5, but recent evidence supports the presence of a small but significant Ca
2+

 

permeability (Michels et al. 2008). Since its reversal potential is around -20 mV at physiological 

ionic conditions (DiFrancesco 1993), Ih is inwardly directed at rest and, hence, depolarizes the 

membrane potential. However, unlike the vast majority of cellular conductance, that are activated 

upon membrane depolarization, Ih is activated by hyperpolarizing voltage steps to potentials 

negative to -55 mV, and does not display voltage-dependent inactivation. In addition, activation of 

Ih is controlled through dually interdependent membrane potentials and cAMP binding (Kusch et 

al. 2010, Wu et al. 2012). Furthermore, Ih has a distinctive pharmacological profile which includes 

sensitivity to external Cs concurred and relative insensitivity to Ba
2+

. Typically, two kinetic 

components can be distinguished upon activation of Ih: a minor instantaneous current (IINS) 

(Proenza et al. 2002, Macri and Accili 2004),which is fully activated within a few milliseconds, 

and a major slowly developing component (ISS) that reaches its steady-state level within a range of 

tens of milliseconds to several seconds under fully activating conditions. While there is no doubt 

that ISS is generated by cations passing the well-characterized pore of HCN channels, the ionic 

nature of IINS is a matter of current dispute. IINS is not consistently observed in all measurements 
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of Ih and, if so its amplitude is usually small. Generally, IINS is considered as a leak conductance 

or an experimental artefact (Macri and Accili 2004) .Depending on the cell type, the activation of 

ISS can be empirically described by either a single (Erickson, Ronnekleiv and Kelly 1993, 

Kamondi and Reiner 1991, McCormick and Pape 1990, Mercuri et al. 1995, Santoro, Wainger and 

Siegelbaum 2004) or double exponential function (Attwell and Wilson 1980, Edman, Gestrelius 

and Grampp 1987, van Ginneken and Giles 1991). The kinetics of ISS are quite variable 

(DiFrancesco 1991). While most HCN channels activate quite slowly with time constants (tact) 

ranging between hundreds of milliseconds and seconds, there are also currents with profoundly 

faster activation (Halliwell and Adams 1982, Maccaferri et al. 1993), for example, in hippocampal 

CA1 neurons, where tact values in the range of 30 –50 ms have been found (Pape 1996, Robinson 

and Siegelbaum 2003) The diversity of tact probably results from an interplay of several factors. 

First of all, the differences reflect the diverse intrinsic activation properties of distinct HCN 

channel isoforms underlying the Ih in a given cell type. Second, there is growing evidence that the 

cellular microenvironment that fine tunes HCN channel activity (e.g., auxiliary subunits, 

concentration of cellular factors, etc.) can profoundly vary from cell type to cell type. Third, Ih 

measurements are highly sensitive to experimental conditions (e.g., pH, temperature, patch con-

figuration, expression system, ionic composition of solutions, etc.). Since Ih activates at around 

resting membrane potential. The voltage dependence of activation shows a typical S-shaped 

dependence that can be fit using a Boltzmann function (Bader and Bertrand 1984, Travagli and 

Gillis 1994). Such fits reveal half-maximal activation (“midpoint”) potentials (V0.5) of around 70 

to 100 mV in most cell types. Another key feature of Ih is its regulation by cyclic nucleotides. 

Hormones and neurotransmitters that elevate cAMP levels facilitate activation of Ih and by 

accelerating the opening kinetics (Banks, Pearce and Smith 1993, Tokimasa and Akasu 1990). It 

has been shown that the acceleration of the opening kinetics with cAMP can be attributed to the 

shift in voltage dependence of activation (Wainger et al. 2001). Thus, in the presence of high 

cAMP concentrations, Ih channel opening is faster and more complete than at low cAMP levels. 

Conversely, neurotransmitters that downregulate cAMP inhibit Ih activation by shifting its 

activation curve to more hyperpolarized voltages (DiFrancesco and Tromba 1988). The range of 

V0.5 shift induced by saturating cAMP concentrations is quite large (0 –20 mV), depending on the 

cell type (Erickson et al. 1993, Tokimasa and Akasu 1990) and the expressed Ih channel isoform 

(Ishii et al. 1999, Ludwig et al. 1998, Santoro et al. 1998). Most notably, the cAMP-mediated 

modulation of Ih channel activity is considered to play a major role in the up- or downregulation of 

the heart rate during sympathetic stimulation and muscarinic regulation of heart rate at low vagal 

tone (Brown, DiFrancesco and Noble 1979). There is also good evidence that cAMP-dependent 

modulation of Ih is of crucial significance in some neuronal circuits, e.g., in sleep-related 

thalamocortical circuits (Lüthi and McCormick 1999). There are a few studies showing that Ih can 

also be regulated by nitric oxide (NO)-mediated increase of cGMP levels in brain (Pape and Mager 
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1992) and heart (Musialek et al. 1997). However, so far the physiological role of this modulation 

remains unclear. The principal mechanism by which cyclic nucleotides regulate Ih channel gating 

was uncovered by DiFrancesco and Tortora in the early 1990s using current recordings in excised 

patches of sinoatrial node cells. It came as a big surprise that in contrast to many other ion channels 

that are regulated by cAMP via protein kinase A (PKA)-mediated serine or threonine 

phosphorylation (Park et al. 2008, Schulz et al. 2008, Yao, Kwan and Huang 2005), Ih channels are 

activated by cAMP through direct interaction with a cyclic nucleotide-binding domain (CNBD), 

located at the COOH terminus of the channel and not through phosphorylation by PKA 

(DiFrancesco and Tortora 1991). 

 

5.1.1. Pharmacological Profile 

One of the most remarkable features of Ih and HCN channels is their pharmacological properties. 

HCN channels distinguish themselves from other K
+
 currents for the sensitivity to low millimolar 

concentrations of external Cs
+
 ions. Unlike most K

+
 conductances, Ih is insensitive to millimolar 

concentrations of external Ba2 and tetraethylammonium (TEA) (Ludwig et al. 1998). Ih is also 

insensitive to 4-aminopyridine, a blocker of voltage-gated K channels (Ludwig et al. 1998). A 

number of organic blockers have been developed to inhibit HCN channels. Among them, the most 

widely used is a bradycardic one termed ZD7288. ZD7288 blocks Ih at concentrations between 10 

to 100 µM (Gasparini and DiFrancesco 1997) and exhibits slow kinetics (5-10 minutes). In addition 

ZD7288 block is poorly reversible and not use dependent in moderate voltage ranges. These 

properties suggest that the localization of ZD7288 binding site near the intracellular portion of the 

HCN channels pore, as confirmed by a specific analysis carried on HCN1-expressing HEK293 

cells, where it was demonstrated that, to exert its action, ZD7288 requires to enter through the pore 

and become trapped in the closed state (Shin, Rothberg and Yellen 2001). In addition, Ih block by 

ZD7288 is significantly relieved by hyperpolarization, therefore the reduced affinity of the binding 

site for the blocker can be the result of a conformational change that occurs during membrane 

hyperpolarization (Harris and Constanti 1995). Ivabradine is the only Ih blocker used in therapy to 

manage chronic stable angina pectoris. It reduces heart rate via inhibition of HCN4 channels, 

whose role in regulating pacemaker activity in the sinoatrial node cells is crucial. Ivabradine blocks 

HCN channels in a use-dependent manner by occupying a cavity below the channel pore and shows 

an IC50 between 2 and 3 µM (Bucchi et al. 2013). Finally, QX-314, the quaternary derivative of 

lidocaine normally employed to abolish voltage-activeted Na channels, completely blocks Ih in 

CA1 pyramidal cells (Perkins and Wong 1995). 

 

5.2. The HCN Channel Family 

HCN channels together with cyclic nucleotide-gated (CNG) channels and the Eag-like K channels 

belong to the superfamily of voltage–gated pore loop channels (Craven and Zagotta 2006, Yu et al. 



34 
 

2005, Kaupp and Seifert 2002). HCN channels have been cloned from both Vertebrates and 

Invertebrates, but have not been found in C. elegans and yeast nor in a prokaryotic genome. In 

mammals, four isoforms (HCN 1-4) have been identified (Robinson and Siegelbaum 2003). These 

isoforms differ by patterns of gene expression and tissue distribution (Ludwig et al. 1998, Santoro 

et al. 1998). 

 

5.2.1. Structure of HCN channels 

Each HCN channel subunit consists of three principal structural modules: the transmembrane core 

and the cytosolic NH2-terminal and COOH-terminal domain. Each subunit has six transmembrane 

helices (S1–S6), forming the trasmembrane channel core. The region forming the ion-conducting 

pore loop is between S5 and S6, while the ion selectivity filter is constituted by the pore region 

carrying the GYG motif between S5 and S6. The positively charged voltage sensor (S4) , carries 

nine arginine or lysine regularly spaced at every third position (Chen et al. 2005), its resulting 

positive charge confers to this domain the voltage sensitivity. All the voltage-dependent members 

of the pore-loop cation channel superfamily present positively charged S4 segment (Yu and 

Catterall 2004), but while inward movement of S4 charges leads to the closure of depolarization-

activated channels, in HCN channel it triggers their opening. Following S6 is the 80-residue C-

linker comprising six a-helices (A0–F0) and the cyclic nucleotide-binding domain (CNBD). The 

transmembrane core harbours the gating machinery and the ion-conducting pore while the proximal 

part of the cytosolic COOH-terminal domain consisting of the CNBD and the peptide that connects 

the CNBD with the transmembrane core (the “C-linker”) permits modulation by cyclic nucleotides. 

Together, the C-linker and CBND can be referred to as the ‘cAMP-sensing domain’ (CSD) because 

they are of functional importance for the cAMP-induced positive shift of the voltage-dependent 

activation of HCN channels. The transmembrane core and the proximal COOH terminus 

allosterically interact with each other during channel gating and reveal a high degree of sequence 

homology within the HCN channel family (sequence identity of 80 –90% between HCN1-4) 

(Kaupp and Seifert 2001). In contrast, cytosolic NH2 termini and the sequence downstream of the 

CNBD vary considerably in their length and share only modest to low homology between various 

HCN channels (Baruscotti, Bucchi and Difrancesco 2005). HCN channels commonly exist in 

homomeric tetramer configurations in vivo and form four subtypes of homotetramers. The 

assembly of heteromeric complexes increases the diversity of HCN channels, facilitating the 

adaptation of HCN channels to multiple functions in the nervous system. The four subtypes of 

HCN channels exhibit distinct cAMP-sensitivity with strong HCN2 and HCN4 regulation and weak 

HCN1 and HCN3 regulation. The HCN channel subtypes also have different activation kinetics. 

The activation of HCN1 is the fastest, while the activation of HCN4 is the slowest. The activation 

time constants of HCN2 and HCN3 are intermediate. 
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Figure 7: Generic structure of HCN channels. One subunit is composed of six transmembrane segments 

(S1–S6), with the positive charged voltage sensor (S4) and the pore region carrying the GYG motif between 

S5 and S6. The C-terminal of HCN channels is composed of the C-linker and the cyclic nucleotide-binding 

domain (CNBD) which mediates their responses to cAMP. Ih current flows through the HCN channel. 

Adapted from (Benarroch 2013) 

 

 

 

 

 

5.2.2. Distributions of HCN channels 

The expression pattern of HCN channels has been studied in several species, both at the tissue and 

single-cell level. HCN subunits are strongly expressed in the Central and Peripheral Nervous 

System (CNS, PNS), with subunit-specific pattern (Doan et al. 2004, Santoro et al. 2000). In the 

CNS, HCN1 is highly expressed in the neocortex, hyppocampus, cerebellar cortex, brainstem and 

spinal cord. HCN2 is nearly ubiquitous across the CNS but especially abundant in thalamic and 

brainstem nuclei. Conversely, HCN4 is expressed strongly but in a limited number of areas such as 

the olfactory bulb and the thalamus, with a distribution pattern that appears complementary to that 

of HCN1. The expression of HCN3 is scattered throughout the brain and modest. All isoforms, 

except HCN3, are present in the retina (Fyk-Kolodziej and Pourcho 2007). In the PNS, all HCN 

subunits are expressed. HCN1 is the most abundant in dorsal root ganglia (Chaplan et al. 2003) 

although a prominent function of HCN2 in the transmission of painful stimuli has also been 

reported (Emery, Young and McNaughton 2012). The expression of HCN channels has been found 

also in enteric neurons (Galligan et al. 1990), and in the spiral (Chen 1997) and trigeminal ganglion 

neurons (Janigro, Martenson and Baumann 1997) with HCN1 exhibiting the highest expression 

(Chaplan et al. 2003, Kouranova et al. 2008, Mayer and Westbrook 1983, Moosmang et al. 2001, 

Scroggs et al. 1994), and the majority of trigeminal ganglion neurons were immune-positive for 

HCN1, HCN2 and HCN3 (Wells, Rowland and Proctor 2007). 

https://en.wikipedia.org/wiki/HCN_channel
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5.3. Physiological role of Ih  in neuronal function 

 

In the nervous system, Ih displays a set of unique biophysical features that is essential to control 

excitability and electrical responsiveness of cells. Ih are involved in the regulation of resting 

membrane potential and membrane input resistance, normalization of synaptic inputs and selective 

filtering for coincident inputs. Moreover, these functions are classified into three groups: 

excitatory, inhibitory and modulatory functions. 

 

5.3.1. Regulation of resting membrane potential and intrinsic excitability 

The influence exerted by Ih current on the intrinsic excitability of the neuron has a complex nature. 

At -65 mV, a fraction of HCN channels are tonically open (Kase and Imoto 2012). This results in 

persistent sodium inflow, which depolarizes the membrane and counteracts hyperpolarizing inputs. 

However, depolarization causes channel deactivation, and the resulting pause in the inward cationic 

current has a hyperpolarizing effect. Therefore, by opposing negative and positive perturbations, Ih 

current stabilizes the membrane potential in the subthreshold range. Although inactivation of Ih 

current hyperpolarizes the neuron and reduces its intrinsic excitability, the resulting increase in 

input resistance at subthreshold potentials makes the neuron becomes more responsive toward 

depolarizing synaptic inputs. This dual action exerted by Ih current on overall neuronal excitability 

has been clearly established in many neurons and brain areas, including the thalamus, the 

hippocampus and the cerebellum, and has important repercussions on higher-order brain functions 

such as learning and memory, control of circadian rhythm and sleep/wakefulness state (McCormick 

and Pape 1990, Maccaferri et al. 1993, Gasparini and DiFrancesco 1997).  

In the axon initial segment of medial superior olive principal neurons, HCN1-mediated current 

reduces spike probability by elevating the firing threshold. 5-HT1A receptor signaling shifts HCN 

channel activation curve in the hyperpolarizing direction thereby relieving the brake on spike 

probability (Ko et al. 2016). Serotonin-dependent modulation of Ih current is also involved in the 

control of respiratory rhythm in the retrotrapezoid nucleus (RTN). Activation of the 5-HT7 receptor 

causes a cAMP-dependent depolarizing shift in the activation curve of HCN current, increasing the 

firing rate of RTN neurons in vitro and respiratory rhythm in vivo (Hawkins et al. 2015) 

 

5.3.2. Rhythmogenesis 

In a functional interplay with other membrane ionic mechanisms, the activation-deactivation cycle 

of HCN channels helps setting the pace of subthreshold membrane oscillations, which eventually 

determines AP discharge rate and neuronal output. Ih current cooperates with a persistent, 

subthreshold Na
+
 current in setting a 4 to 10 Hz (theta-like) rhythm pyramidal and stellate cells of 

the entorhinal cortex (EC) layer II (Alonso and Llinás 1989). Both cell types in this area are 
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critically involved in a special spatial navigation task and thus named “grid cells”. Entorhinal grid 

cells show periodic, hexagon-shaped firing locations that scale up progressively along the dorsal-

ventral axis of medial entorhinal cortex (Moser, Rowland and Moser 2015). Relative HCN1/HCN2 

expression ratio, and oscillation frequency, goes down in this structure following a dorsal-ventral 

gradient (Notomi and Shigemoto 2004). Such dorsal-ventral frequency gradient correlates with the 

distinct time constants of HCN1 and HCN2 isoforms. In HCN1 KO mice, the dorsal-ventral 

gradient of the grid pattern is preserved, but the size and spacing of the grid fields, as well as the 

period of the accompanying theta modulation, is expanded (Giocomo and Hasselmo 2009, 

Giocomo et al. 2011). 

In thalamocortical neurons, Ih current is mainly sustained by HCN2 isoform. Adrenergic and 

serotonergic stimulation causes a cAMP-mediated modulation of Ih current, which in turn govern 

the firing pattern of thalamocortical neurons. During wakefulness and REM sleep, thalamocortical 

neurons fire in a single-spike, or “transmission”, mode. In this state, information is effectively 

transmitted to the cortex. During non-REM sleep and absence seizures, thalamocortical neurons 

fire in “burst” mode, and transfer of signals to the cortex is believed not to be as effective 

(McCormick and Pape 1990). In agreement, global HCN2 deletion causes absence epilepsy with 

typical “spike-and-wave” discharges in EEG recordings (Ludwig et al. 2003).  

A similar role for HCN3 has been described in the intergeniculate leaflet neurons, a retino-recipient 

thalamic structure implicated in orchestrating circadian rhythm. Here, HCN3-mediated current 

drives low-threshold burst firing and spontaneous oscillations and is bi-directionally modulated by 

PI(4,5)P2. Depletion of PI(4,5)P2 or pharmacologic block of HCN current results in a profound 

inhibition of excitability (Ying et al. 2011).  

 

5.3.3. Role of Ih in synaptic excitability and plasticity  

By the properties described previously, Ih current shapes the temporal dynamics of synaptic 

potentials. This deeply affects the integrative properties of the somatodendritic compartment and 

the ability of the neuron to express different forms of plasticity. 

Functional HCN channels are strongly expressed along the dendritic arborisation of neocortical and 

hippocampal neurons with a soma-to-dendrites expression gradient (Bender et al. 2001, Lörincz et 

al. 2002, Harnett, Magee and Williams 2015). Here, Ih current constitutes a shunt conductance 

accelerating the decay of Excitatory Post-Synaptic Potentials (EPSPs). As a result, temporal 

summation during EPSP sequences is minimal and the ability of the neuron to resolve individual 

inputs at somatic level is maximal. This function, first discovered and characterized in pyramidal 

neurons of the hippocampal CA1 region and somatosensory cortex (Magee 1998, Magee 1999, 

Williams and Stuart 2000, Berger, Senn and Lüscher 2003), has then been described in subcortical 

structures (Ying et al. 2007, Engel and Seutin 2015). In the dendritic compartment of CA1 

pyramidal neurons, the shunting effect exerted by Ih current limits the activation of voltage-
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dependent calcium entry, with important consequences on synaptic excitability (Tsay, Dudman and 

Siegelbaum 2007). The non-uniform distribution of Ih current is also responsible for a phenomenon 

termed “site independence” of synaptic potentials, whereby the decay time of distally-generated 

EPSPs is similar to that of proximally-generated EPSPs (Williams and Stuart 2000).  

Ih current accelerates the decay time of both forward- and backward-propagating depolarization 

waves, thus increasing the precision with which the dendrite detects the concurrence of salient 

electrical events. These include temporal coincidence of EPSPs and APs, an event leading to 

neuronal plasticity (Pavlov et al. 2011). In several brain areas, HCN function constrains long-term 

potentiation (LTP) and associated cognitive functions in basal conditions. Indeed, HCN1 KO mice 

show improved hippocampal dependent learning and memory performance. In these mice, 

proximal CA3-CA1 synapses function normally, whereas distal EC Layer III-CA1 contacts are 

potentiated, as predicted by stronger expression of HCN channels in this compartment (Nolan et al. 

2004).  

It has been suggested that Ih current affects cortical functions such as cognition, movement 

planning and execution by setting the strength of connectivity within local cortical microcircuits. Ih 

current is abundantly expressed in dorsal-lateral Prefrontal Cortex (PFC) layer III neurons, a 

population crucially involved in spatial working memory. Here, HCN channels are modulated by 

the opposite action of α2-adrenergic (α2-AR) and type-1 dopaminergic (D1) receptor stimulation 

on cAMP signalling. When α2-AR stimulation inhibits cAMP-HCN channel signalling, neurons are 

more tightly connected to recurring microcircuit activity and performance is optimal. In contrast, 

exposure to stress causes a D1 receptor-mediated enhancement of cAMP-HCN activity leading to a 

functional disconnection from the local network and impairment of spatial working memory (Wang 

et al. 2007, Arnsten and Jin 2014).  

In the mouse primary motor cortex, HCN expression is specifically elevated in corticospinal 

neurons of the layer V. Ih current confers these neurons a 4 Hz-resonance preference and gates 

synaptic inputs from layer II/III pyramidal neurons, determining the efficacy of signal transmission 

between the two layers. In this context as well, α2-AR stimulation modulates HCN function 

(Sheets et al. 2011). 

 

5.4. Resonance properties  

Dendritic Ih current confers the neuron specific “resonance” properties, i.e., the ability to respond 

preferentially to inputs at a certain frequency, and thus determines to what extent the neuron 

responds to synchronous network activity. Due to its slow gating kinetics, Ih current has high-pass 

filtering properties which, combined to the low-pass filtering action exerted by membrane time 

constant (Bédard, Kröger and Destexhe 2006), results in a resonance frequency of 1-10 Hz 

(Hutcheon, Miura and Puil 1996). The power of theta oscillation and the strength of Perforant Path-

CA1 pyramidal neuron synapses, which are both under the influence of HCN1 function, have been 
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proposed as the physiological background of hippocampal-dependent learning and memory storage 

(Nolan et al. 2004). The ability to resonate in an Ih-dependent manner has been reported for other 

areas (Ulrich 2002, Wang et al. 2006, Xue et al. 2012, Borel et al. 2013). Although the role of Ih 

current in oscillating activity and resonance have been clearly established at single cell or local 

network level, the significance on higher-order functions remains undetermined. 

 

5.5. Neurotransmitter release 

Ih current at synaptic terminals has been reported to control the efficacy of vesicle release. HCN1 

and HCN2 isoforms are present at GABAergic terminals of pallidal axon collaterals (Boyes et al., 

2007) as well as glutamatergic terminals making contacts onto Entorhinal Cortex (EC) layer III 

pyramidal neurons (Huang et al. 2011). In both cases, pharmacological or genetic knock out of 

HCN function leads to elevation of spontaneous synaptic release. Huang et al. (2011) have 

suggested that Ih current exerts this inhibitory action by setting the potential to values where N-

type Cav3.2 channels are in a partially inactivated state. HCN- KO hyperpolarizes the terminal and 

removes calcium channel inactivation. Thus, when an AP invades the terminal, more calcium flows 

in through calcium channels. A follow-up study from the same authors shows that HCN1 channels 

restrict the rate of exocytosis from a subset of cortical synaptic terminals within the EC and 

constrain spontaneous as well as evoked release (Huang et al. 2017). 

Despite a large mass of information on the cellular effects of HCN channels, our knowledge of 

their role in more integrate CNS functions and behaviour is rather indirect and derived from 

pathophysiological studies as described below. An interesting insight comes from recent evidence 

in Aplysia californica, whose neuroanatomy and physiology are by far less complex than the 

mammalian brain (Yang et al. 2015). Aplysia c. motor neurons possess only one HCN isoform, 

acHCN; Ih current appears to be involved in classical conditioning upon stimulation by nitric 

oxide/cGMP signalling and subsequent enhancement of a NMDA-like current pathway, similarly to 

the mammalian hippocampal neurons (Neitz et al. 2014). 
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6. AIM OF THE THESIS 

The aim of this PhD project was to investigate the contribution of Ih LOF to the selective 

degeneration of SNpc DA neurons in PD. To achieve this goal, in vitro (1) and in vivo (2) 

experiments were pursued. 

(1) The impact of Ih inhibition at the cellular and molecular level was initially studied, focusing on 

the electrical properties discriminating among differentially vulnerable subsets of midbrain DA 

neurons in TH-GFP mice. Then, the participation of VGCC-dependent calcium entry during 

evoked synaptic activity was investigated by combined electrophysiological and calcium 

fluorometry experiments in the SNpc and VTA DA neuron in wild-type rats. 

(2) Evaluation the effect of Ih suppression on DA cell viability in vivo. To this aim, we performed 

stereotaxic, intracerebral injections of Ih specific blockers (ZD7288 and Ivabradine) followed by 

behavioral motor tests and immunodetection of tyrosine hydroxylase (TH) in striatal cryosections 

midbrain. 

(2b) Assessment of the neuroprotective efficacy of Ih LOF rescue in vivo To this aim, 

pharmacological reactivation of Ih was be attempted in presymptomatic MitoPark mice, by 

injection of Lamotrigine (LTG), an anticonvulsant drug, recently reported to increase the functional 

regulation of Ih in DA neurons (Friedman et al. 2014). Functional rescue of Ih in MitoPark mice 

was evaluated for neuroprotective efficacy by behavioral motor tests. 
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7. METHODS 

7.1. Animals 

All procedures required for ex vivo experiments were conducted in compliance with the Council 

Directive of the European Community (2010/63/EU), Decreto Legislativo Italiano 26 (13/03/2014) 

and approved by the Animal Care Committee of the Department of Neurofarba, University of 

Florence. B6.Cg-Tg (TH-GFP) mice (Matsushita et al. 2002) were obtained from Riken 

BioResource Center, Japan. In these mice, green-fluorescent protein (GFP) expression is driven by 

TH promoter. Wistar rats were purchased from Charles River Italia (Lecco, Italy) and were used of 

either sex at postnatal day 20–30 in this study. MitoPark mice (Ekstrand et al. 2007) were obtained 

from Dr. Nils-Göran Larsson (Karolinska Institutet, Stockholm, Sweden Laboratories) now at Max 

Planck Institute for Biology of Aging, Cologne, Germany, and were used of either sex from 6 to 18 

weeks old. 

7.2. Midbrain slice preparation  

Animals were anaesthetized with isoflurane and decapitated. Brains were removed and mounted in 

the slicing chamber of a vibroslicer (Leica VT 1000S, Leica Microsystem, Wetzlar, Germany). 

Midbrain horizontal slices (250 µm) were cut in chilled artificial cerebral spinal fluid (a CSF), 

composed of (in mM) 130 NaCl, 3.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, 2 CaCl2 and 1 

MgSO4; and saturated with a 95% O2 + 5% CO2 gas mixture. Slices were allowed to recover in the 

same solution maintained at 34°C with constant oxygenation for 1h prior to experiments. 

7.3. The patch-clamp technique 

The patch-clamp technique, invented by Erwin Neher and Bert Sakmann in 1976, consists of 

sealing the tip of a pipette filled with a physiological solution to the membrane of a cell, 

maintaining it at a specific voltage to measure currents flowing through ion channels. Alternatively 

the experimenter can control the current injected into the cell through the recording electrode, 

measuring its potential. There are five different configurations of patch-clamping: “whole-cell”, 

“cell-attached”, “inside-out”, “outside-out” and “perforated”. Amoung them the less invasive is the 

cell-attached configuration, where the patch electrode is sealed to the membrane (reaching an 

electrical resistance in the order of a GΩ), leaving the cell intact and allowing the recording of 

currents through single ion channels. The whole-cell configuration is obtained with the rupture of 

the seal, allowing the pipette to become continuous with the membrane. If alter the formation of 

gigaseal the pipette is quickly withdrawn from the cell, the piece of membrane inside of it will be 

exposed to the extracellular media (inside-out configuration). Pulling the membrane from both 

sides of a whole-cell configured patch in order to let the external faces being in contact with the 

external solution will result in the outside-out configuration. During whole-cell recordings an 
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irreversible washout of diffusible intracellular constitutes (e.g. ATP, phosphorylating moleculs ect) 

into the relatively larger volume of the pipette through dialysis can occur. As a consequence, 

properties and functions of ion channels can be impaired, leading to a decrease of ionic currents 

over time. The permeabilized-patch whole cell configuration overcomes this problem by accessing 

the intracellular space not by seal rupture but buy forming pores thanks to a pipette solution 

containing antibiotics. In this way the dialysis is much slower and the intracellular environment is 

preserved for a long recordings. 

7.4. Electrophysiology 

Patch pipettes were made from thin-walled borosilicate capillaries (Harvard Apparatus, London, 

UK) with a vertical puller (Narishige PP830, Narishire International Ltd, London, UK) and back-

filled with an intracellular solution containing solution (in mM): K
+ 

Methanesulfonate (120), KCl 

(15), HEPES (10), EGTA (0.1), MgCl2, (2), Na2PhosphoCreatine (5), Na2GTP (0.3), MgATP (2), 

resulting in a bath resistance of 2–3 MΩ in the bath. This solution was used for both cell-attached 

and whole-cell recordings. Access resistance was monitored during voltage-clamp recordings 

throughout experiments with 100-ms, –10-mV steps. Recordings were performed at 34 °C. 

Membrane potential values were corrected offline for measured junction potential (8 mV). 

Recordings undergoing a drift in access resistance ≥ 10% were discarded. No whole-cell 

compensation was used. Signals were sampled at 10 kHz and low-pass filtered at 3 kHz with an 

Axon Multiclamp 700B (Molecular Devices, Sunnyvale, CA, USA). For coupled recordings of 

electrical and optical signals, 0.1 mM of Fluo 4 pentapotassium salt was added. SNpc and VTA DA 

neurons were identified with infrared or fluorescence microscopy based on GFP expression and 

position relative to the medial terminal nucleus of the accessory optic tract (MT; (Neuhoff et al. 

2002, Margolis et al. 2006) in slices at dv –4.2 to dv –4.8 (Paxinos & Franklin, 2007). In current 

clamp, Ih-mediated VS was elicited with 500-ms, –100-pA current steps and measured as the 

difference between the voltage at the bottom of the sag and that at the end of the pulse. Ih was 

blocked with the specific organic blocker ZD7288 (Tocris Bioscience, Bristol, UK,10 µM) applied 

by bath perfusion or included in whole-cell pipette solution. Single or multiple EPSPs were elicited 

with single or multiple (five) pulses (frequency, 20 Hz; amplitude, 5–15 mV) and in the second part 

of experiments the single or multiple EPSPs were elicited every 15 s (10 pulses at 10 Hz or 40 

pulses at 20 Hz; 5–15 V amplitude), delivered with a bipolar tungsten electrode (FHC, Bowdoin, 

ME, USA) placed at ~200 µm from the soma of recorded neuron or in the SNr for recordings of 

evoked GABA-mediated Inhibitory. During current-clamp recordings, neurons were moderately 

hyperpolarized (~ -2 / -3 mV) in order to minimize membrane oscillations and hamper the 

generation of spontaneous or synaptically-induced action potentials. Ih block was monitored with 

500 ms, –100-pA pulses at the end of each sweep. Paired-pulse ratio (PPR) was determined 

measuring the amplitude of two consecutive (50 ms apart) evoked EPSCs. Spontaneous excitatory 
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activity was stimulated with the voltage-dependent potassium channel blocker 4-aminopyridine (4-

AP; Sigma-Aldrich, Saint-Louis, MO, USA 50µM). Excitatory synaptic activity during recordings 

of spontaneous EPSCs (sEPSCs) was isolated by using the GABAA receptor blocker gabazine 

(Tocris Bioscience, Bristol, UK 10µM). Post-Synaptic Potentials (IPSPs). During EPSP recordings, 

neurons were moderately hyperpolarized (~ -2/ -3 mV) in order to stabilize the membrane potential 

and hamper the generation of spontaneous or synaptic-driven action potentials (APs). To monitor 

pharmacological block, Ih-mediated sag potential was elicited by imposing short current pulses (-

100 pA, 500 ms) at the end of the sweep. MultiEPSP summation was expressed as the ratio of 

10th/1st EPSP amplitude and multiEPSP area was reported as mV x ms. In voltage clamp 

recordings, access resistance was monitored for the entire duration of the experiment with brief test 

pulses (-10 mV, 500 ms). Recordings undergoing a drift in access resistance ≥ 10% were discarded. 

No whole-cell compensation was used. Ih activation curves were obtained by measuring the 

amplitude of tail currents at -115 mV following a sequence of 4 s-long test pulses from -45 mV to -

125 mV. Electrophysiological and optical traces shown in figures are obtained by averaging five 

consecutive traces and represent typical observations. 

7.5. Microfluorometric determination of calcium responses 

Fluorescence signal was collected from a square-shaped window comprising the cell body of the 

neuron under investigation loaded with 100 µM of the high-affinity, non-ratiometric calcium dye 

Fluo4 pentapotassium salt (Molecular Probes). Two to three minutes were usually sufficient for 

complete loading. No differences in major electrophysiological parameters were observed between 

dye-filled and control neurons. Fluorescence was elicited with a 488 nm LED and collected with a 

photomultiplier tube (PMT; Cairns Research) with a 10 kHz sampling rate. LED excitation was 

triggered with the electrophysiological protocol and the PMT signal was acquired and processed as 

described for voltage signal. SCRs are reported as ΔF/F0, where F0 signal was the baseline emission 

of the loaded neuron at rest, and ΔF was defined as Fpeak- F0. Background fluorescence was 

obtained by measuring the emission of a Fluo 4-free area of the slice and subtracting the obtained 

value from F0. Off-line analysis was performed with Clampfit 10 (Molecular Devices) and Origin 

9.1. For the analysis of SCRs kinetics, rise and decay time are intended as the time required to 

reach 50% of peak. Recordings showing F0 decay exceeding 0.5%/s within a single trial, or 

undergoing irreversible F0 rise during consecutive trials were discarded. 

7.6. Single-cell labeling and TH immunostaining 

For the post hoc identification of recorded neurons, Alexa 350 hydrazide (Life Technologies, 

Carlsbad, CA, USA) was added to whole-cell pipette solution (5 mM). Cell loading was facilitated 

by passing negative current ( -50 pA) and membrane reseal was allowed by gentle removal of the 

patch pipette at the end of the experiment. Slices were fixed with 4% paraformaldehyde, incubated 
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overnight with a monoclonal anti-TH (1 : 500; Boster, Pleasanton, CA, USA) and labeled with a 

Cy3-conjugated anti-mouse IgG (1 : 500). Images were acquired with an Olympus BX63 

microscope equipped with CellSense Dimension Software (Olympus, MI, Italy). 

7.7. In Vivo Procedures 

All in vivo procedures were conducted in compliance with the Council Directive of the European 

Community (2010/63/EU), Decreto Legislativo Italiano 26 (13/03/2014) and approved by the 

Animal Care Committee of the University of Florence. Male Wistar rats (200–220 g) were 

purchased from Charles River Laboratories Italia (Lecco, Italy). Animals were housed in humidity- 

and temperature-controlled room (22–24 ºC), allowed free access to food (4RF21; Mucedola s.r.l., 

Milan, Italy) and water, and kept on a 12-h light/dark cycle (lights start at 7:00 AM). Procedures 

were performed according to a previous report (Provensi et al. 2017), with modifications due to the 

different brain areas involved. One week after arrival, animals were anesthetized with an 

intraperitoneal (i.p.) injection of 80 mg/kg zoletil plus 15 mg/kg xylazine and placed on a 

stereotaxic frame (Stellar, Stoelting Co., Wood Dale, IL, USA). A stainless steel cannula (22 

gauge) was implanted bilaterally above the SNpc-VTA boundary (anterior, -5.3 mm; lateral, ± 2 

mm; ventral, -6.6 mm from Bregma) and fixed to the skull by using dental cement. Correct cannula 

placement was verified postmortem. Animals were allowed 3 days to recover from surgery before 

microinjection procedure. For microinfusions, animals were gently restrained by hand, and an 

injection needle (30 gauge) was inserted tightly into the guide to 1 mm beyond the end of the guide 

cannulas. The injection needle was connected to a 1 mL Hamilton microsyringe, and the infusions 

were performed at a rate of 1 µl/60 s. The injection needle was left in place for an additional 60 s to 

minimize backflow. It was then withdrawn and placed on the other side, where the procedure was 

repeated. The drugs used were ZD7288 (5 µg/µl) and Ivabradine (5 µg/µl) dissolved in saline. The 

volume of the drugs infused was 2 µl per side for four consecutive days. Control groups received 

equal volumes of sterile saline (0.9%). Correct cannula placement was verified by infusing a 4% 

(weight/volume) methylene blue solution over 30 s (2 µl). Brains were fixed by transcardiac 

perfusion 24 h after the last injection with cold physiological saline followed by 4% 

(volume/volume) paraformaldehyde in 0.1 M phosphate buffer (PB; pH 7.4). Brains were postfixed 

in the same solution overnight (4º C) and cryoprotected in 30% (weight/volume) sucrose in PB. 

Cannula placements were considered correct when the spread was 1 mm
3
 or less from the intended 

infusion sites. Only data from animals confirmed for correct cannula placement were analyzed. 

7.8. Behavioral Tests 

Twenty-four hours after the last injection, animals were tested for general motor activity with a 

standard open field test (OFT). Animals were positioned in a corner of an open-field arena (w = 60 

cm; h = 30 cm; d = 70 cm) and the general motor activity was assessed in 10-min sessions. 
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Animals were monitored with a camera and the covered distance (in cm) measured using a Smart 

2.5 software. Animals were then tested for the expression of motor symptoms associated to 

monolateral DA degeneration, by measuring the number of apomorphine-induced rotations. 

Briefly, animals received an i.p. injection of apomorphine (0.5 mg/kg), then placed in a transparent 

Perspex cylinder. Animals were video recorded for 30 min. An operator unaware of 

pharmacological treatments counted the number of rotations. The Rotarod test were used to test 

MitoPark mice. Mice were tested by being placed on a rotating rod that starts at 5 revolutions per 

minute (rpm) and then accelerates to 20 rpm in 10 seconds and remains at that velocity for 180 

seconds (constant velocity testing) with evaluation of numbers of falls. 

7.9. Histological Evaluation of DA Degeneration 

After paraformaldehyde fixation, brains were cut with a cryostate (Leica Microsystems, Buffalo 

Grove, IL, USA) to obtain 50-µm thick coronal sections of the mesencephalon (~15 sections/brain). 

Sections were then probed with a mouse monoclonal anti-Tyrosine Hydroxylase (anti-TH) 

antibody (1:500; Boster Bio, CA, USA) and revealed with an Alexa 488-conjugated secondary 

antibody (1:500; Abcam, Cambridge, UK). Images were taken with the 10x objective of an 

epifluorescence microscope (Olympus BX63, Milan, Italy), then digitally reconstructed with the 

CellSens Dimension software. Quantitative analysis was performed on images of to the ventral half 

of whole sections according to a previously published method (Gerace et al. 2014). In brief, mean 

pixel intensity was measured in same-size square regions of interest from the drug-injected and the 

saline-injected area of each brain. This value was then normalized to the total intensity of the entire 

TH positive area of the drug-injected side and compared to corresponding value of the controlateral 

saline-injected side (x5 sections; each brain). 

7.10. Reagents 

Unless otherwise specified, reagents were purchased from Sigma-Aldrich (Saint-Louis, MO, USA). 

AMPA, NMDA and type 1 metabotropic glutamate receptors (mGluRs) were blocked with, 

respectively, NBQX, D-APV and CPCOOEt (10 µM, 50 µM, 1 µM; Tocris bioscience, Bristol, 

UK). GABAA–B receptors were blocked with SR95531 and CGP55845, (10 µM, 1 µM; Tocris). T-

type and L-type Voltage-Gated calcium channels (VGCCs) were blocked with mibefradil and 

isradipine (5 µM each; Tocris). Pharmacological suppression of Ih was obtained with ZD7288 (10 

µM; Tocris). Fluo 4 was purchased from Thermo Fisher Scientific (Waltham, MA, USA). GABAB 

agonist baclofen was used at 1 µM. The K-ATP channel blocker glybenclamide was used at 10 

µM. Ih enhancer Lamotrigine was used 15 mg/kg ip. 
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7.11. Data analysis and statistics 

Pooled data are presented as mean standard error (SEM) of ‘‘n’’ neurons/animals unless otherwise 

specified, statistical significance was assessed with Student’s t-test for paired samples (Microcal 

Origin 9.1; Northampton, MA, USA). Graphs and representative traces were generated with 

Microcal Origin 9.1.Significance at the p < 0.05, 0.01, 0.001 and 0.0001 level is indicated, when 

achieved, with *, ** and ****, respectively, in figures .Example traces represent typical 

observations. EPSP decay time is defined as the time required for peak amplitude to decrease by 

30%. Temporal summation is expressed as EPSP5/EPSP1 ratio. Representative current-clamp 

recordings of single or multiple EPSPs before and after ZD7288 application were baseline-adjusted 

to allow comparison. The mean frequency and amplitude of sEPSCs was calculated on the basis of 

1-min bins before and at the end of ZD7288 bath application with Clampfit 10.3 (Molecular 

Devices, Sunnyvale, CA, USA).In the second part examples of electrical and optical recordings are 

averages of five traces for each condition and intend to represent typical observations. Temporal 

summation is expressed as 10th EPSP/1st EPSP ratio. Ih activation curves, normalized I/V plot, 

fitting and determination of V1/2 were generated with Origin 9.1 as described previously. 
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7.12. Genetic model of PD 

The Mitopark mouse: breeding and genotyping  

 

The MitoPark mouse model of PD was designed to directly test the hypothesis that mitochondrial 

dysfunction in DA neurons can cause a progressive parkinsonian phenotype. The model is based on 

the specific inactivation of mitochondrial transcription factor A, (Tfam), a protein essential for 

mitochondrial DNA (mtDNA) expression and maintenance. In the absence of Tfam a progressive 

deficiency in mitochondrial respiratory chain is observed followed by cell death. 

To generate the MitoPark mouse model, knock-in mice, expressing Cre recombinase under the 

control of the dopaminergic transporter (DAT) were crossed with mice in the the loxP 

recombination sites flank the Tfam gene. In this way Tfam deletion is directed only in cells 

expressing DAT. MitoPark mouse breeding pairs were obtained from Dr. Nils-Göran Larsson 

(Karolinska Institutet, Stockholm, Sweden; now at Max Planck Institute for Biology of Aging, 

Cologne, Germany). 

To generate experimental MitoPark mice and littermate controls, the DAT
cre

and Tfam
loxP

 mouse 

strains were first backcrossed to C57BL/6 J mice (The Jackson Laboratory, Bar Harbor, ME), and 

offspring were selectively mated to generate double heterozygous males (DAT
+/cre

; Tfam
+/loxP

) and 

homozygous floxed Tfam females (DAT
+/+

; Tfam
loxP/loxP

). The double heterozygous males were 

then crossed to homozygous Tfam
loxP/loxP

 females, resulting in an ~25% yield of MitoPark mice 

(DAT
+/cre

; Tfam
loxP/loxP

), and littermate controls (DAT
+/+

; Tfam
loxP/loxP

). Mice were group-housed in 

same-sex, standard shoebox cages with ad libitum access to food and water. The room was 

maintained at 22 °C on a 12 hours light/12 hours dark light cycle. 

DNA was prepared from mouse tail and used for PCR according to the extraction kit 

manufacturer’s instructions (MyTaq Extract-PCR Kit, Bioline Reagents Ltd, UK). To identify the 

DAT
+/cre

 genotype, a multiplex PCR setting with two primer pairs was used. Forward primer 

sequence was 5′-CATGGAATTTCAGGTGCTTGG, and the reverse primer sequences were 5′-

CATGAGGGTGGAGTTGGTCAG and 5′-CGCGAACATCTTCAGGTTCT, which enabled 

identification of heterozygous mice. For the Tfam
loxp/loxp 

genotype, two primer pairs were also used. 

The forward primer sequence was 5′-CTGCCTTCCTCTAGCCCGGG, and the two reverse primer 

sequences were 5′-GTAACAGCAGACAACTTGTG and 5′-CTCTGAAGCACATGGTCAAT, 

which distinguished between heterozygous and homozygous mice. Thirty-eight cycles were run at 

95°C for 30 seconds, 58°C for 30 seconds and 72°C for 45 seconds. The PCR products were 

separated using electrophoresis on 2% agarose gels and were visualized with UV after ethidium 

bromide staining. 

Two bands at 310 and 470 base pairs for DAT
+/cre

 and one band at 437 base pairs for Tfam
loxp/loxp 

should be detected from MitoPark mice. One band at 310 base pairs for DAT
+/+ 

(wildtype) and one 

band at 437 base pairs for Tfam
+/loxp orloxp/loxp 

should be detected from control littermates. 
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MitoPark mice colony has recently been established in the animal facility in our Department. 

MitoPark mice recapitulate several features of PD in humans such as adult-onset of 

neurodegeneration; progressive clinical course; earlier onset and more severe and extensive cell 

death in SNpc than in VTA; responsiveness to L-DOPA administration with a differential response 

depending on disease stage. 
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8. RESULTS 

8.1. Ventral to dorsal gradient of Ih-mediated VS magnitude in midbrain DA neurons 

Electrophysiological investigation was restricted to GFP-positive putative DA neurons in SNpc or 

VTA in horizontal midbrain slices from TH-GFP mice (Matsushita et al. 2002). A total of 110 

neurons were recorded. We found that Ih-dependent VS varies in magnitude within midbrain DA 

neurons according to a ventral-to-dorsal gradient (Fig. 8, see also Fig. 10 for a quantitative 

analysis). DA neurons in dorsal midbrain (Fig. 8A; -4.25 mm) show the highest percentage of Ih-

positivity (SNpc = 35/38, 92.10%; Fig. 8A (1) and C1; VTA = 41/46, 89.1%; Fig. 8A (2) and C2). 

Within this group, SNpc DA neurons have, on average, larger VS than do VTA DA neurons. 

Strikingly, the great majority of GFP-positive neurons in ventral slices (Fig. 8B; -4.75 mm) have 

signatures characterized by the absence of VS and by higher firing frequency in response to 

depolarization (24/26, 92.3%; Fig. 8B (3) and C3). This is consistent with the previously reported 

existence of DA neurons with ‘unconventional’ electrical properties in the VTA (Lammel, Lim and 

Malenka 2014). The percentage of Ih-negative, GFP-positive neurons we recorded from largely 

outnumbers the reported ratio of GFP-positive, TH-negative neurons for these mice (VTA, 8.3%; 

SNpc, 7.5%; (Matsushita et al. 2002), suggesting the existence of a large number of Ih-negative 

DA neurons in this district. Recently, however, substantial ectopic GFP expression has been 

reported in VTA neurons of this transgenic animal (Lammel et al. 2015). To analyze the specificity 

of GFP labeling in our TH-GFP mice, Ih-negative, GFP-positive neurons from the ventral VTA 

were labeled with Alexa 350 hydrazide via patch pipette-mediated diffusion (n = 16). Subsequent 

immunostaining confirmed TH expression in 13 of 16 neurons recorded, indicating a specificity of 

~ 80% (Fig. 8D). In conclusion, our results are in agreement with previous studies reporting diverse 

Ih current densities among subpopulations of midbrain DA neurons (Neuhoff et al. 2002). In 

addition, we report a very high percentage of neurochemically identified DA neurons, mainly 

located in ventral portions of the VTA, with Ih-negative signatures. 
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Figure 8: Ventral‐to‐dorsal gradient of Ih‐mediated VS magnitude in midbrain DA neurons. Top, 

overlay of fluorescence and infrared images of (A) dorsal (−4.25 mm) and (B) ventral (−75 mm) acute 

horizontal midbrain slices from TH‐GFP mice. (C) Typical current‐clamp signatures obtained from 

GFP‐positive neurons in (1) the SNpc and (2) dorsal and (3) ventral VTA (corresponding recording sites are 

indicated in A and B; protocol, −200/+200 pA, 500 ms). Note the absence of Ih‐dependent VS in C3. (D) TH 

immunoreactivity in a GFP‐positive, Ih‐negative neuron recorded in the ventral VTA and labeled with Alexa 

350 hydrazide. On the bottom, lower magnification image of the same field to show positive TH 

immunoreactivity in GFP‐expressing cells surrounding the recorded neuron (box). Scale bars, 250 μm (A and 

B), 70 ms, 40 mV (C), 20 μm (D top), 40 μm (D, bottom). 

 

8.1.1. Ih limits EPSP amplitude and decay time 

Pharmacological suppression of Ih with. ZD7288 10μM was induced while recording locally 

evoked EPSPs from DA neurons in SNpc or VTA. Block of GABAergic transmission was 

deliberately omitted in these experiments in order to assess the overall contribution of Ih on 

synaptic excitability of midbrain DA neurons. Moreover, block of GABAergic transmission did not 

affect EPSP kinetics in control conditions or after Ih suppression in rat SNpc DA neuron (Masi et 

al. 2013). As shown in Fig. 9A, ZD7288 10 μM modified single EPSP kinetics. VS was also nearly 

abolished on the same time scale (~ 10 min). Quantitatively, peak amplitude was modestly raised in 

both areas by ZD7288 (SNpc – 4.88 ± 0.49 mV vs 6.49 ± 0.66 mV, n = 20, p = 0.009; VTA – 7.37 

±0.69 mV vs 8.61 ±0.77 mV, n = 20, p= 0.02) whereas decay time increased in both SNpc and 

VTA by 214 and 169%, respectively (SNpc – 18.37 ± 3.01 ms vs 38.43 ± 5.19 ms, n = 20, p = 

1.74E-6; VTA – 24.56 ±3.11 ms vs 38.49 ± 3.70 ms, n = 20, p= 0.00021), indicating reduced 

repolarizing capability in the occurrence of an EPSP (Fig. 9B).  
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Figure 9: Ih limits EPSP amplitude and decay time. (A) Representative EPSP recorded before (black) and 

after (gray) pharmacological suppression of Ih with ZD7288 10μM. The action of ZD7288 on VS elicited 

with a negative current pulse (−100 pA) is also shown (middle, right). Bottom, time course of the effect of Ih 

blockade on EPSP decay and VS in SNpc DA neurons (n = 7). (B) Cumulative analysis of ZD7288‐induced 

changes in EPSP amplitude (top), and decay time (bottom) in SNpc and VTA DA neurons  

(*, **, **** = p < 0.05, 0.01, 0.0001, respectively). Scale bars, 250ms, 2 mV (A, left), 100 ms, 10 mV (A, 

right). 

 

 

8.1.2. Ih suppression affects EPSP kinetics based on VS amplitude, thus differentially in 

SNpc and VTA DA neurons 

A quantitative comparison of the effects of Ih suppression on EPSP decay in SNpc vs. VTA DA 

neurons is presented in Fig. 10A. Baseline VS is significantly larger in SNpc DA neurons (28.15 ± 

1.06 mV vs 15.79 ± 2.57 mV, n = 19–21, p = 0.0015, Mann–Whitney). Consistently, ZD7288-

induced increase in EPSP decay time was significantly greater in SNpc DA neurons (SNpc – 214 ± 

0.15%; VTA – 169± 0.12%, n = 19–21, p = 0.048, Mann–Whitney). This effect is linearly 

correlated with baseline VS (y = a + bx; a = 1.38; b = 0.02; Pearson’s r-value = 0.41, p= 0.004; Fig. 

10B). Furthermore, the graph highlights the different properties of the two populations, with VTA 

DA neurons showing higher degree of heterogeneity. As mentioned, VS is absent in a large fraction 

of VTA DA neurons in ventral slices. Consistently, application of ZD7288 did not change EPSP 

peak amplitude (9.62 ± 1.59 mV vs 9.37 ± 2.86 mV, n = 4, p= 0.91) or decay (42.97± 4.41 ms vs 

41.17 ± 3.76 ms, n = 4, p= 0.77) in these neurons (Fig. 10C). In conclusion, the action of Ih on 
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EPSP kinetics was qualitatively similar in the two populations. Quantitatively, SNpc DA neurons 

were significantly more sensitive to Ih block due to higher mean current availability at EPSP-

relevant potentials. 

 

 

 

 

 

Figure 10: Ih suppression affects EPSP kinetics based on VS amplitude, thus differentially in SNpc and 

VTA DA neurons. (A) Baseline VS amplitude and ZD7288‐induced EPSP changes in SNpc and VTA DA 

neurons comparatively. (B) ZD7288‐induced increase in decay time correlates linearly with baseline VS 

amplitude and reveals a differential distribution of the two populations. (C) ZD7288 does not affect EPSP 

properties in VS‐negative VTA DA neurons (*, ** = p < 0.05, 0.01, respectively). Scale bars, 100 ms, 3 mV 

(upper); 200 ms, 10 mV (lower). 

 

 

8.1.3. Ih limits temporal summation of excitatory synaptic inputs 

We evoked multiple EPSPs in identified SNpc and VTA DA neurons and measured the increase in 

EPSP5/EPSP1 ratio brought about by 10-min bath application of ZD7288 10μM. This experiment 

was performed on neurons with a VS ≥ 15 mV, in which ZD7288 leads to a ≥ 50% mean increase 

in EPSP decay time. As shown in Fig.11, temporal summation was increased in SNpc and VTA 

DA neurons by 223 and 142% (SNpc – 0.94 ± 0.11 mV vs 1.95 ± 0.17 mV, n = 10, p = 0.00065; 

VTA – 1.64 ± 0.19 mV vs 2.32 ± 0.28 mV, n = 10, p= 0.00583). ZD7288-induced increase in 

summation ratio was significantly more evident in SNpc DA neurons (SNpc – 223 ± 0.41%; VTA 

– 142± 0.06%; n = 10; p= 0.01, Mann–Whitney). These results indicate that ZD7288-induced 
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alteration of EPSP kinetics causes reduced capability to resolve individual EPSPs during sustained 

synaptic stimulation, thus promoting temporal summation. This effect is quantitatively more 

pronounced in SNpc DA neurons. 

 

 

 

 

 

Figure 11: Ih limits temporal summation of excitatory synaptic inputs. (Top) Example traces of multiple 

EPSPs in CTRL (black) and after ZD7288 (gray). (Bottom) ZD7288 significantly increases EPSP5/EPSP1 in 

SNpc (left) and VTA (center) DA neurons. Comparatively, the effect is significantly more evident in SNpc 

DA neurons (right) (*, **, *** = p < 0.05, 0.01, 0.001, respectively). Scale bars, 150 ms, 4 mV. 

 

 

 

8.1.4. The contribution of Ih in the integration of excitatory synaptic activity depends on 

postsynaptic HCN channels 

Changes in EPSP kinetics are normally indicative of modifications in postsynaptic ionic 

mechanisms. However, a role for Ih in release probability at presynaptic terminals has been 

reported (Huang and Trussell 2014, Klar, Surges and Feuerstein 2003). We investigated this 

possibility in our experimental model by testing the effect of intracellular Ih block on single EPSP 

kinetics. As shown in the time course in Fig. 12A, membrane rupture with a pipette containing 10 
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μM ZD7288 (t = 0 min), triggers a progressive increase in EPSP decay time which fully occludes 

the action of subsequent bath application of the drug. As no difference between SNpc and VTA DA 

neurons were found, datasets from the two fields were pooled (19.46 ± 2.14 ms vs 18.45 ± 2.17 ms, 

n = 8, p = 0.51, SNpc + VTA). We then tested whether Ih suppression might determine presynaptic 

short term changes in release probability, by studying the effect of ZD7288 on PPR (Fig. 12B). 

Although this experiment was performed in voltage-clamp configuration (Vhold = -55 mV), 

ZD7288 was included in the whole-cell pipette solution to eliminate the possible contribution of 

postsynaptic Ih. ZD7288 10 μM did not change PPR in either area (1.01 ± 0.05 vs 1.04 ± 0.05, n = 

14, p= 0.28, SNpc + VTA). Finally, we determined whether Ih suppression could alter local 

excitatory synaptic activity with a presynaptic mechanism (Fig. 12C). In voltage clamp, 

spontaneous excitatory synaptic activity was stimulated with the potassium channel blocker 4-AP 

(100 μM) and isolated with gabazine (10 μM). The administration of ZD7288, in agreement with 

previous data on PPR, did not change the amplitude (-87.69 ± 21.19 pA vs -100.9 ± 18.19 pA, n = 

12, p= 0.24; SNpc + VTA) or frequency (9.88 ±3.54 Hz vs 9.38 ± 5.56 Hz, n = 12, p= 0.11; SNpc + 

VTA) of sEPSCs. Overall, these results indicate that the effects induced by ZD7288 are mediated 

by postsynaptic HCN channels, whereas HCN channels at presynaptic terminals do not exert a 

significant control over synaptic activity in this experimental setting. 
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Figure 12: The contribution of Ih in the integration of excitatory synaptic activity depends on 

postsynaptic HCN channels. (A, left) Time course of the increase in EPSP decay time triggered by 

intracellular ZD7288 (10 μM). The effect of subsequent application of external ZD7288 is fully occluded 

(right). (B, left) Paired evoked EPSCs recorded in CTRL (black) and after ZD7288 (gray). PPR is not 

affected by Ih block (right). (C, left) sEPCS recorded in the presence of 100 μM 4‐AP and 10 μM gabazine. 

ZD7288 does not affect the frequency or amplitude of 4‐AP‐stimulated sEPSCs (center, right). Scale bars, 

200 ms, 200 pA (B), 1.5 s, 150 pA (C).  
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8.2. Properties of spontaneous SCRs in DA neurons in vitro 

In this first part, we showed that pharmacological suppression of Ih increases the amplitude and 

decay time of excitatory postsynaptic potentials, leading to temporal summation of multiple 

excitatory potentials at somatic level. Importantly, these effects are quantitatively more evident in 

SNpc DA neurons. In this regard, we present the hypothesis that Ih LOF may be linked to PD 

trigger mechanisms, such as mitochondrial failure and ATP depletion, and act in concert with 

SNpc-specific synaptic connectivity to promote selective vulnerability. In the second part, we 

searched for more subtle elusive elements of diversity. We combined the electrophysiological 

investigation with the involvement of specific ion channels in PD-related failure of mitochondrial 

or calcium homeostasis. This study was restricted to neurons of the SNpc or VTA with typical DA 

morphology and electrical properties: a large, polygonal and fusiform cell body, with Ih ≥ 200 pA. 

In DA neurons, calcium elevations may arise from the opening of membrane conductances as well 

as the mobilization of intracellular calcium pools following activation of inositol 1-4-5 

trisphosphate (IP3)-coupled receptors. mGluRs are major mobilizers of calcium from internal 

stores in DA neurons (Cui et al. 2007, Lüscher and Huber 2010). In addition, external calcium may 

flow in through calcium-permeable glutamate receptors (Morikawa and Paladini 2011) or L- and 

T-type VGCCs (Dufour, Woodhouse and Goaillard 2014, Philippart et al. 2016) Initial calcium 

elevation may, in turn, trigger Calcium-Induced Calcium Release from specific intracellular 

reservoirs (Morikawa et al. 2000). We tested the sensitivity of our experimental setting by 

measuring AP-dependent or subthreshold SCRs (Fig 13). During spontaneous discharge of APs 

(Fig 13B, black trace), SCRs appeared as AP-locked positive spikes (green trace, 2.967 ± 0.59%), 

with distinct rise and decay kinetics (rise, 97.99 ± 8.64 ms; decay, 153.88 ± 11.08 ms, n= 7). 

During spontaneous subthreshold oscillations (Fig 13C), SCRs had comparable amplitude (2.78 ± 

0.13%), but slower kinetics (rise, 333.29 ± 19.37 ms; decay, 438.52 ± 16.43 ms, n = 5) compared 

to the previous. In response to pipette-stimulated AP bursts, fluorescence signal showed sustained 

elevation, due to transient SCR summation. In contrast, somatic hyperpolarization elicited a 

modest downward deflection of calcium signal followed by a positive rebound at the end of 

negative current step (Fig 13D). 
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Figure 13: Properties of somatic calcium responses (SCRs) in whole-cell patch clamped DA 

neurons in acute midbrain slices. (A) SNpc DA neuron loaded with 100 µM Fluo 4 pentapotassium 

salt with a whole-cell pipette (right-hand side) 5 min after patch rupture. Green box indicates the area 

selected for optical signal collection. (B) Typical regular spiking (top) is associated with stereotyped, 

phase-locked SCRs (bottom). (C) Subthreshold oscillatory activity and corresponding slow SCRs. The 

single action potential (AP)-driven SCR (arrow) in the example trace has faster kinetics but similar 

amplitude. (D) SCRs elicited by somatic square current injection (˗100/+100 pA). 

 

8.2.1. Voltage-Dependent component of evoked EPSP-induced SCRs 

Simultaneous recordings of evoked synaptic activity and SCRs were obtained in DA neurons of the 

SNpc or the VTA in acute horizontal slices prepared from P20 to P30 Wistar rats (Fig 14). The 

study was restricted to neurons with typical DA morphology and physiological properties (large, 

polygonal or fusiform cell body, broad AP, Ih ≥ 200 pA). Morphological and electrophysiological 

properties are good predictors of DA phenotype in the SNpc. In the VTA, DA neurons were 

selected on the basis of the specified electrophysiological phenotype and their position relative to 

the medial terminal nucleus of the accessory optic tract (MT; (Neuhoff et al. 2002, Margolis et al. 

2006). In addition, because in the VTA standard DA markers are less specific (Margolis et al. 

2010), a separate group of DA-like VTA neurons were challenged with the GABAB agonist 

baclofen (1 µM). The activation of an outward potassium current following baclofen administration 

is a good predictor of DA phenotype (Margolis et al. 2012). Eight out of nine neurons showing a 
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presumed DA phenotype (morphology, Ih ≥ 200 pA) responded to baclofen (Fig 14B) thus 

confirming the reliability of the selection criteria described above. It has been demonstrated that 

HCN channels reduce synaptic excitability in many neuronal types by dampening the amplitude 

and duration of EPSPs (He et al. 2014). Consistently, Ih inactivation enhances dendritic calcium 

spikes in CA1 pyramidal neurons due to increased EPSP temporal summation and T-/N-Type 

VGCC recruitment (Tsay et al. 2007). However, it has not been tested whether this phenomenon 

occurs in midbrain DA neurons, or whether it has any significance in DA pathologies. To address 

this question, we optimized a stimulation paradigm producing subthreshold EPSPs and 

simultaneously measured the changes in emission intensity of the high-sensitive, non-ratiometric 

dye Fluo 4. Stimulation conditions such as frequency, amplitude and duration of stimuli, and 

baseline potential were adjusted as not to determine plasticity of synaptic responses or irreversible 

calcium accumulation (Jones and Bonci 2005, Kauer and Malenka 2007, Harnett et al. 2009). 

Preliminary studies of EPSP-driven calcium signal properties were carried out in SNpc DA 

neurons. (Fig 14A) shows representative single and multiple EPSPs and associated calcium signals 

elicited with protocols of increasing duration and frequency, designed to assess the input-output 

properties of our synaptic stimulation protocol. Single EPSPs (peak amplitude: 4.43 ± 0.53 mV, 

baseline potential: -62.75 ± 1.06 mV, n = 9) failed to elicit measurable SCRs in all neurons tested 

(Fig 14A left). Ten stimuli at 10 Hz (10 Hz/1 s) produced multiple subthreshold EPSPs (area, 7836 

± 996 mV x ms, n = 23) and corresponding SCRs (2.33 ± 0.53%, n = 23; (Fig 14A middle). This 

response was largely below maximal level, as a train with twice the stimulation intensity (20 Hz/2 

s) was still able to produce non-saturating SCRs (6.53 ± 1.43%, n = 5; (Fig 14A right), although 

this protocol occasionally caused progressive F0 rise, likely due to irreversible calcium 

accumulation. Therefore, the 10 Hz/1 s stimulation protocol was used for all experiments and 

referred to as ‘‘multiEPSP’’ henceforth throughout text and legends. In SNpc DA neurons, synaptic 

activation of type-1 metabotropic glutamate receptors (mGlu1) leads to the release of calcium from 

intracellular stores with an IP3-mediated, Ryanodine-sensitive mechanism (Fiorillo and Williams 

2000, Fiorillo and Williams 1998, Morikawa, Khodakhah and Williams 2003). We 

pharmacologically eliminated this major voltage-independent calcium response by using the mGlu1 

selective antagonist CPCOOEt (10 µM). GABAA–B receptor transmission was also blocked with 

SR95531 (10 µM) and CGP55845 (1 µM) in order to isolate the AMPA/NMDA receptor-mediated 

component of the multiEPSP and the corresponding SCR. (Fig 13B shows the effect of GABAA–B 

and mGlu1 receptor blockers (‘‘control solution’’ henceforth) on multiEPSP and SCR Note that 

abrogation of the slow mGlu1 receptor-dependent hyperpolarization (Fiorillo and Williams 2000) 

results in the elevation of multiEPSP area and SCR peak as shown in an example recording (Fig 

14B, middle). AMPA/NMDA receptor blockers fully abolished both multiEPSP and SCR, 

suggesting that calcium transients are sustained by activation of NMDA receptors and VGCCs in 

these experimental conditions (Fig 14B, right). We verified that the 10 Hz/1 s protocol did not elicit 
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forms of synaptic plasticity by monitoring the amplitude of the first EPSP while stimulating 

multiEPSP for 10 min in the control solution (Fig 14C). Fig 14D shows the response to baclofen of 

8/9 Ih-positive VTA neurons (black traces). Blue traces refer to an Ih-negative VTA neuron which 

did not respond to baclofen. 

 

 

Figure 14: Voltage-dependent component of evoked excitatory post-synaptic potential (EPSP)-

induced SCRs. (A) Single or multiple evoked EPSPs (black), in absence of pharmacological isolation, 

and relative Fluo 4 traces (green). Traces are baseline-adjusted to facilitate comparison. Single EPSPs are 

not able to elicit detectable SCRs (left). A short EPSP train (10 Hz/1 s) is able to elicit a measurable SCR 

(middle). Twenty hertz/two seconds stimulation protocols elicit prolonged, slow-decaying, but not 

saturating, SCRs (right). (B) multiEPSP and relative SCRs recorded before (left) and after superfusion 

with GABAA, GABAB and metabotropic glutamate receptors 1 (mGlu1) receptor antagonists (SR95531, 

10 µM; CGP55485, 1 µM and CPCCOEt, 1 µM; middle). Subsequent administration of AMPA and 

NMDA receptor antagonists (NBQX, 10 µM; D-APV, 50 µM) fully abolishes the SCR (right). Note that 

voltage and optical traces have different time scales. (C) The amplitude of first EPSP does not change 

during 10 min of synaptic stimulation with the 10 Hz/1 s protocol in presence of GABAA–B and mGlu1 

antagonists. (D) Characterization of Ih-positive, putative DA neurons in the VTA based on the 

electrophysiological response to bath application of the GABAB agonist baclofen (1 µM). The inset 

shows the whole-cell current in response to a -˗95 mV step. Eight/nine neurons showing Ih ≥ 200 pA 

responded to baclofen. Ih-negative, presumed non-DA neurons do not respond to baclofen (blue traces). 
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8.2.2. MultiEPSP-Dependent SCRs in SNpc DA neurons are mainly mediated by L-Type 

calcium channels 

We sought to characterize the nature of the calcium rise triggered by multiEPSP in SNpc DA 

neurons with a pharmacological approach (Fig 15). We did not systematically test the contribution 

of NMDA receptor activation on SCR because NMDA receptor antagonism negatively affects 

EPSP kinetics (not shown) and because it was reported that NMDA receptor-mediated calcium 

transients are modest in the somatodendritic compartment of SNpc DA neurons (Jang et al. 2011). 

In these neurons, members of the CaV 1 and 2 families have previously been identified as the 

VGCC pore-forming subunits with activation windows in the subthreshold domain (Chan et al. 

2007, Dufour et al. 2014, Poetschke et al. 2015, Philippart et al. 2016),  thus most likely involved 

in calcium inflow associated to subthreshold depolarization episodes such as those triggered by our 

stimulation protocol. We tested the involvement of T- and L-type VGCCs in multiEPSP-triggered 

SCRs in SNpc DA neurons by using, respectively, mibefradil (5 µM) and isradipine (5 µM). 

Mibefradil reduced SCR, but the effect did not reach statistical significance (CTRL, 3.54 ± 1.17%; 

mibefradil, 2.39 ± 0.75%, n = 7, p = 0.177). Isradipine, in contrast, caused a near 50%, significant 

reduction of SCR (CTRL, 2.36 ± 0.48%; isradipine, 1.20 ± 0.24%; n = 8, p = 0.014). Of note, no 

alteration of the amplitude or kinetics of the multiEPSP was observed with either blocker (black 

traces), suggesting a post-synaptic location of drug targets. These results are consistent with the 

previously mentioned evidence demonstrating the expression of CaV 1.2 and 1.3 L-type calcium 

channels in the somatodendritic compartment of SNpc DA  neurons, and their role at subthreshold 

potentials. 
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Figure 15 MultiEPSP-dependent SCRs in SNpc DA neurons are mainly mediated by L-type 

calcium channels. SCRs were tested with the T- and L-type calcium channels’ antagonists mibefradil 

and isradipine (5 µM, each). Both drugs are able to reduce SCRs, but only in the case of isradipine the 

effect achieved statistical significance. No effect of T- and L-type calcium channels block was seen 

on multiEPSP (left, black traces). 

 

8.2.3. Ih Block potentiates MultiEPSP and MultiEPSP-dependent SCRs in SNpc DA 

neurons 

The ability of Ih to affect multiEPSP and multiEPSP-driven SCRs was tested using the specific 

blocker ZD7288 (10 μM, 10 min) in bath application (Fig 15). Prior to drug application, multiEPSP 

and corresponding SCRs were recorded for 5 min in the control solution to achieve a stable 

baseline. In SNpc DA neurons (Fig 16A), perfusion with ZD7288 significantly hyperpolarized the 

neuron (-5.117 ± 0.777 mV; n = 23, p = 1.75 10
-5

) while increasing multiEPSP temporal 

summation (CTRL, 2.165 ± 0.374; ZD7288, 3.221 ± 0.688; n = 23, p = 0.0128) and multiEPSP 

area (CTRL, 7836 ± 996; ZD7288, 14,087 ± 1473; n = 23, p = 1.63 10
-4

). Of note, multiEPSP-

driven SCR increased twofold following HCN block (CTRL, 2.33 ± 0.53%; ZD7288, 4.68 ± 

1.32%; n = 23, p = 0.044). In contrast, ZD7288 application did not alter membrane potential (-

0.854 ± 1.069 mV, n = 12, p = 0.445), multiEPSP summation (CTRL, 2.819 ± 0.419; ZD7288, 

3.648 ± 0.762; n = 12; p = 0.316), and area (CTRL, 7317 ± 675; ZD7288, 8683 ± 1180; n = 12; p = 

0.122), or SCR (CTRL, 3.81± 0.85%; ZD7288, 2.94 ± 0.37%, n = 12, p = 0.184) in the VTA. 

Comparatively, there was no significant difference in mean multiEPSP summation, multiEPSP area 
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or SCR amplitude between SNpc and VTA DA neurons in control conditions (p = 0.256, p = 0.69 

and p = 0.16, respectively; n = 23 and 12, two sample t Test). In presence of ZD7288, the two 

populations diverged significantly in terms of magnitude of multiEPSP area (SNpc, +110.65 ± 

25.68%; VTA, +12.36 ± 13.47%, n = 23 and 12, p = 0.0026, two sample t Test) and SCR (SNpc, 

+128.25 ± 34.73; VTA,- 3.87± 9.62%, n = 23 and 12, p = 0.0035, two sample t Test), but not of 

multiEPSP summation (SNpc, 3.222 ± 0.688; VTA, 3.647 ± 0.763, n = 23 and 12, p = 0.682, two 

sample t Test). Globally, SCR increase was related to multiEPSP area increase by a linear function 

(y = a + bx; a = 0.307; b = 0.835; r = 0.641, p = 2.35×10
-4

), indicating the strong voltage-dependent 

nature of SCRs. Overall, these results indicate that Ih inhibition potentiates synaptic excitability 

and depolarization-dependent somatic calcium entry. Quantitatively, effect magnitude reaches 

statistical significance only in the SNpc, consistent with the previously reported stronger influence 

of Ih over synaptic excitability in this subset  

 

 

 

Figure 16: block potentiates multiEPSP and multiEPSP-dependent SCR in SNpc DA neurons. (A) 

Effect of Ih block in SNpc DA neurons. Example of multiEPSP in presence of GABAA–B and mGluR1 

antagonists (“CTRL”) and after application of the specific Ih blocker ZD7288 (10 µM, 10 min). The 

expected membrane hyperpolarization (-5.11 ± 0.77 mV) and multiEPSP area increase (top) is 

accompanied by potentiation of the SCR (bottom). Voltage traces are baseline-adjusted to facilitate 

comparison. (B) No hyperpolarization (-0.85 ± 1.07 mV), change in multiEPSP area or SCR peak 

following Ih blockade in VTA DA neurons. (C) Group data and statistical analysis relative to ZD7288-
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induced changes in multiEPSP and SCR in the two areas. (D) SCR and multiEPSP variations caused by 

ZD7288 have a positive linear correlation. 

 

8.2.4. Ih suppression depresses GABAA responses in SNpc DA neurons 

It has been shown that Ih antagonism reduces the amplitude of GABAA-mediated IPSPs in CA1 

pyramidal neurons by hyperpolarizing the membrane potential and thus reducing GABAA receptor 

driving force (Pavlov et al. 2011). We tested whether this was also the case in SNpc DA neurons by 

electrically stimulating GABAergic neurons in the SNr and recording single evoked IPSPs from 

SNpc DA neurons in presence of glutamatergic synaptic blockers (Fig 17). We found that IPSP 

amplitude was significantly reduced following bath application of ZD7288 (CTRL,-3.622 ± 0.83; 

ZD7288,-2.62 ± 0.76, n = 7, p = 0.005). The effect of Ih block on IPSP amplitude depends on the 

negative shift in membrane potential, as indicated by the recovery of IPSP amplitude obtained by 

offsetting the ZD7288-induced hyperpolarization. These results indicate that Ih block increases 

synaptic excitability with a dual mechanism, that is by increasing the response to excitatory inputs 

and by reducing that to inhibitory inputs. 

 

 

Figure 17: Ih suppression depresses GABAA responses in SNpc DA neurons. Example of a single, 

pharmacologically isolated IPSP obtained with extracellular stimulation of the SNr and recorded from a 

SNpc DA neuron (top). ZD7288 causes membrane hyperpolarization accompanied by a significant 

reduction of peak amplitude (middle). IPSP amplitude recovers control amplitude when cell membrane is 

manually held at original potential (right). Bottom, group data and statistical analysis relative to ZD7288-

induced change in IPSP amplitude. 

 



64 
 

8.2.5. Low intracellular ATP causes a negative shift in Ih activation curve 

Disruption of mitochondrial homeostasis is increasingly seen as a fundamental pathogenic process 

involved in both familial and sporadic forms of PD (Schapira and Gegg 2011). Animal models 

generated by intoxication with mitochondrial poisons, such as MPP
+
, or by introduction of DA-

targeted mitochondrial defect, as in the case of the MitoPark model, are characterized SNpc-

specific DA degeneration (Ekstrand and Galter 2009, Blesa and Przedborski 2014). Both models 

have been associated to Ih LOF, therefore we asked whether HCN channels in SNpc DA neurons, 

in vitro, respond to block of mitochondrial ATP synthesis and low ATP levels. To this aim, we 

recorded Ih activation curves using a whole-cell pipette solution containing 0 mM ATP and 10 mM 

oligomycin, a selective blocker of mitochondrial F0-F1 ATP synthase (Fig. 18). Olygomicin causes 

the block of mitochondrial, but not glycolytic, ATP synthesis, leaving the transmembrane 

mitochondrial potential unaffected (Nicholls and Budd 2000, Schuchmann et al. 2000). As a 

control, we used a standard K methanesulfonate-based solution containing 2 mM ATP. Ih 

activation curves were recorded immediately after patch rupture and 30 min later. Fig 18 shows 

example traces (left) and activation curves (right) obtained with control (top) and 0 

ATP/oligomycin (bottom) pipette solution. No changes in Ih activation curve was observed with 

control pipette solution (V1/2 t0 = -82.25 ± 0.47 mV; V1/2 t30 = -82.39 ± 0.73 mV; n = 5, p = 0.269). 

In contrast, low ATP caused a highly-significant, negative shift in Ih activation curve (t0, V1/2 = -

82.85 ± 0.56 mV; t30, V1/2 = - 91.48 ± 0.70 mV; n = 7, p = 0.000589). Importantly, the effect 

occurred in the absence of detectable changes in holding current and membrane resistance. In one 

case, low ATP solution caused the appearance of an outward current, which was fully reverted by 

application of 10 µM glybenclamide, a selective K-ATP channel blocker (not shown). The 

magnitude of the shift in voltage dependence was consistent with the effect exerted by changes in 

cAMP levels on HCN2 and HCN4 (Biel et al. 2009), the two main Ih pore-forming subunits in 

SNpc DA neurons (Franz et al. 2000, Dufour et al. 2014), suggesting that impaired cAMP synthesis 

is the mechanism of action involved here. 
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Figure 18: Low intracellular ATP causes a negative shift in Ih activation curve. Top, example of voltage 

clamp recordings at 1 min (black) and 30 min (red) after patch rupture with control pipette solution. 

Respective Ih activation curves show perfect overlap (right). Bottom, same experiment, but using a pipette 

solution with 0 mM ATP and 10 µM oligomycin. Ih activation curve at 30 min is left-shifted by ~9 mV 

(right). Arrows indicate current traces obtained at the -85 mV test potential to highlight the shift in voltage 

dependence. 

 

8.2.6. Local Pharmacological Ih suppression causes preferential SNpc DA degeneration 

and Hemiparkinsonism 

We tested the hypothesis that Ih suppression participates in the pathogenic cascade eventually 

leading to preferential degeneration of nigrostriatal DA neurons. To this aim, we performed 

intracerebral injections of two distinct Ih blockers following stereotaxic coordinates in adult rats. 

Injection site was 1 mm above the SNpc-VTA boundary. ZD7288 and Ivabradine (5 µg/µl, 2 µl 

each) were injected once a day for four consecutive days on one hemisphere, while the 

contralateral hemisphere was injected with an equal volume of saline. On the fifth day, animals 

were first tested for spontaneous motility then for the expression of apomorphine-induced rotation 

behavior, a typical sign of monolateral nigrostriatal degeneration (Hudson et al. 1994). As shown in 

Fig 19A, ZD7288- or Ivabradine-treated animals did not show changes in spontaneous locomotion 

compared to controls (ZD7288, 2511 ± 328 cm, n = 8; Ivabradine 2982 ± 303 cm, n = 5; saline 

2345± 216 cm, n = 8; one way ANOVA + Newman-Keuls post hoc test, F. .(2,20) =1.098, p = 0.354, 
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for differences among treatments). In contrast, both treatments significantly increased the number 

of apomorphine-induced rotations (ZD7288, 49 ± 9 turns in 30 min, n = 8, Ivabradine, 39 ± 15, n = 

4, saline, 8 ± 2, n = 8, p = 0.004, one way ANOVA + Newman-Keuls post hoc test, F. .(2,19) = 7.671, 

p < 0.004 for differences among treatments; Fig 19B). Afterwards, DA degeneration was assessed 

by performing TH immunostaining in coronal sections from the mesencephalon of treated and 

control animals. As clearly shown by the representative microphotographs (Fig. 19C), the intensity 

of TH staining is significantly decreased in the SNpc of the drug-injected side compared to saline-

injected side (ZD7288, 75.86 ± 4%, n = 8, p = 0.001 vs. control; Ivabradine, 69.51 ± 8.9%, n = 6, p 

= 0.001 vs. control; Fig. 19D). In contrast, the effect of ZD7288 was much smaller in the VTA, 

while Ivabradine failed to achieve statistical significance (ZD7288, 86.91±  4%, n = 8, p = 0.01 vs. 

control; Ivabradine, 94.78 ± 7.9%, n = 6, p = 0.7 vs. control; Fig 19E). Overall, these results 

suggest that Ih suppression is sufficient to cause degeneration of DA neurons. Furthermore, 

degeneration is not homogeneous, as SNpc DA neurons are strikingly more sensitive to the effects 

of Ih suppression compared to VTA DA neurons. 
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Figure 19 : Local pharmacological Ih suppression causes preferential SNpc DA degeneration and 

hemiparkinsonism. Spontaneous locomotion (A) and apomorphine-induced rotations (B) in rats after 

repeated monolateral infusions of ZD7288 and Ivabradine (1/day ×4 days). (C) Representative 

microphotographs showing TH immunofluorescent labeling on midbrain coronal sections. Circles indicate 

histologically-confirmed injection sites (scale bar = 1 mm). (D,E) Densitometric analysis of ZD7288- and 

Ivabradine-induced DA degeneration in the SNpc and VTA. 

 

8.3. The anticonvulsant and Ih enhancer Lamotrigine attenuates motor decay in MitoPark 

mice  

In order to investigate the last aim, we tested the hypothesis that pharmacological rescue of HCN 

LOF may be neuroprotective in PD. To this aim we used The MitoPark mouse, a genetic PD model 

based on a mitochondrial mutation expressed in DA neurons and featuring HCN LOF at an early 

disease stage (Ekstrand et al. 2007). Electrophysiological recordings in slices from Mitopark mice 

at presymptomatic stage (6 weeks) have shown an aberrant activity pattern of SNpc DA neurons, 

with a concomitant inactivation of the Ih (Good et al. 2011, Branch et al. 2016). We attempted a 

pharmacological rescue of HCN channels using the anitconvulsant and Ih enhancer LTG (Poolos, 

Migliore and Johnston 2002) in presymptomatic MitoPark mice (6 weeks). Mitopark mice received 

daily intraperitoneal injections of LTG (15 mg/kg), or saline, from 6 weeks (presymptomatic stage) 

to 18 weeks (symptomatic stage) of age. At the end of the treatment, we evaluated locomotion 

activity using two standar motor tests (Fig 20). The Rotarod test is one of the most widely used 

tests in mouse models of neurodegeneration as it is very sensitive to motor impairment. The test 

measures the animal’s ability to maintain itself on a rod that spins at growing speed.(Rozas, Guerra 

and Labandeira-García 1997). The OFT provides a quick assessment of total activity (performance 

to movement and the distance travelled) and some indication of emotional reactivity to a novel and 

open environment. The Mitopark mice treated with LTG showed a decrease in the numbers of falls 

in 3 minutes, that is the index of motor capability for this test (MitoPark saline 51 falls; MitoPark 

LTG 27 falls; CTRL 7 falls) (Fig 20B). Furthermore we observed reduced decay of locomotor 

activity in MitoPark mice treated with LTG compared to control littermates, (MitoPark saline 

3111.22 cm; MitoPark LTG 3975.64 cm; CTRL 5445.21cm) (Fig 20A).Data were subjected to 

one-way ANOVA followed by Bonferroni's post hoc test to examine the effect of genotype and 

LTG treatment. Analysis indicates a significant lower immobility time exposed to OFT and 

improve the motor capability effects in MitoPark mice treated. 
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Figure 20: Analysis of spontaneous activity and motor function in 18-week-old MitoPark after 

treatment with LTG. LTG reduces the decay in locomotor activity of Mitopark mice in terms of distance 

travelled (fig 20A) during the 10 min time period of the test. Rotarod test demonstrates a significantly lower 

numbers of falls in the Mitopark treated in comparison to the age-matched littermate during the 3 min time 

period of the test (fig 20B). Representative movement tracks of mice are shown (Fig 20C). Data represented 

as the mean ± sem. using one-way ANOVA with Bonferroni post-test comparison and n = 3-7 mice per 

group (** p <0.001). 
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9. DISCUSSION 

Non-homogeneous degeneration within midbrain DA neurons is a histopathological hallmark of 

PD. Typically, DA neurons in the SNpc are markedly more vulnerable than in the adjacent VTA 

(Schapira and Gegg 2011, Brichta and Greengard 2014). Marked differential vulnerability among 

midbrain DA neurons remains an elusive feature in both of human PD and relative animal models. 

Experimental and clinical studies suggest that heterogeneous disease-causing factors converge, 

early on disease progression, in determining a relatively homogeneous pathogenic picture, which 

includes mitochondrial deficit, increased oxidative stress and impaired protein turnover (Schapira 

and Gegg 2011). Among the cellular alterations implicated in PD pathogenesis, mitochondrial 

dysfunction is receiving increasing attention (Schapira and Gegg 2011). Indeed, many PARK loci 

contain genetic information for proteins involved in the correct mitochondrial maintenance and 

function. Furthermore, a number of mitochondrial poisons cause experimental parkinsonism in 

both primates and rodents. MPTP, a blocker of complex I, is extensively used to create animal 

models of the disease and has provided the initial evidence for the causal link between 

mitochondrial dysfunction and nigrostriatal degeneration in PD (Blesa and Przedborski 2014). 

Other molecules capable of antagonizing the mitochondrial complex I were discovered and studied 

after MPTP (Kotake and Ohta 2003). Many of them are pesticides, and chronic exposure to these 

molecules dramatically increases the risk of developing PD (Heusinkveld, van den Berg and 

Westerink 2014). Several transgenic mice have been generated that reproduce human mutations in 

mitochondria-related PARK loci. Unfortunately, these animals display little or no DA cell loss 

(Dawson, Ko and Dawson 2010). More recently, a transgenic model was developed which is based 

on a DA neuron-targeted mutation leading to progressive mitochondrial deficit and cellular 

degeneration (Ekstrand et al. 2007). This transgenic model, named MitoPark, outperforms all other 

genetic models in recapitulating the severity and progression of DA loss (Harvey, Wang and Hoffer 

2008). This evidence confirms that DA neurons show differential susceptibility, regardless of the 

nature of the insult  (Blesa and Przedborski 2014), implicating that the bases of differential 

SNpc/VTA vulnerability lie in cell-specific susceptibility factors. Comparative gene expression 

studies between the two populations have revealed extensive overlap in gene expression signatures, 

with less than 1-3% of transcripts being differentially represented (Grimm et al. 2004, Greene, 

Dingledine and Greenamyre 2005). Overall, it is reasonable to suspect that quantitative variations 

in the expression and/or function of a limited number of cellular factors predispose specific DA 

neuronal subsets to degeneration (Brichta and Greengard 2014). In this view, some investigators 

have studied the electrophysiological profile of different DA subsets in search for determinants of 

differential vulnerability (Neuhoff et al. 2002, Khaliq and Bean 2010). Interestingly, many of the 

targets implicated in these studies are ion channels with a direct or indirect link to mitochondrial 

function and ATP production. More specifically, it has been proposed that ATP-gated inward 

rectifying potassium channels underlie selective SNpc DA degeneration in the MPTP and weaver 
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mouse models (Liss et al. 2005, Liss et al. 1999a). Likewise, Surmeier and co-workers have shown 

that CaV 1.3 L-type voltage-gated calcium channels (VGCCs), involved in the generation of SNpc 

DA autonomous activity, promote chronic metabolic stress and selective nigrostriatal degeneration 

(Guzman et al. 2009, Surmeier et al. 2010, Ilijic, Guzman and Surmeier 2011). In summary, many 

reports converge in indicating that intrinsic electrophysiological properties contribute to differential 

DA vulnerability In this respect, my colleagues have previously demonstrated that MPP
+
, the active 

metabolite of the parkinsonizing toxin MPTP, inhibits Ih at physiological potentials, thus 

promoting temporal summation of evoked EPSPs in SNpc DA neurons in vitro (Masi et al. 2013). 

Ih is expressed at different magnitudes among subsets of midbrain DA neurons, thus determining 

differential subthreshold membrane properties and pacemaking control (Franz et al. 2000, Neuhoff 

et al. 2002). In the present work, we provide evidence that differential Ih expression between 

identified DA neurons of the SNpc and VTA underlies differential integrative properties in 

response to evoked synaptic activity in physiological conditions. Pharmacological suppression of Ih 

increases EPSP decay time and leads to temporal summation of multiple EPSPs at the somatic 

level, suggesting that normal Ih function in this context is to promote membrane repolarization 

after the occurrence of an EPSP, thus enabling the postsynaptic neuron to resolve individual events 

and limit somatic summation of depolarizing inputs. This phenomenon is quantitatively more 

evident in SNpc DA neurons, where Ih is expressed by a higher percentage of neurons and at 

higher levels, than in VTA. Importantly, as both excitatory and inhibitory components of synaptic 

activity were present during recordings, our findings suggest that the major overall contribution of 

Ih in the context of synaptic activity is to restrain responsiveness to excitatory inputs. This is 

consistent with a tonic activation of Ih in these neurons which is able to maintain the membrane 

potential at relatively depolarized values, thereby limiting the driving force for EPSPs and 

promoting that for IPSPs. This role of Ih in controlling the balance between excitatory and 

inhibitory synaptic inputs in midbrain DA neurons is in agreement with previous work in CA1 

pyramidal neurons showing that Ih suppression, by hyperpolarizing the cell and increasing the 

input resistance, elevates the amplitude and duration of EPSPs and reduces the driving force for 

GABAA-dependent IPSPs (Pavlov et al. 2011). We hypothesize that this discrepancy may represent 

a physiological background for differential fate in the progression of PD. In the second part of the 

present work, combining whole-cell patch clamp electrophysiology and microfluorometric calcium 

measurements in rat brain slices. We demonstrate that Ih not only determines synaptic excitability 

in DA neurons as we previously showed but also indirectly regulates synaptic-driven, voltage-

dependent calcium entry. This function is area-specific, as Ih pharmacological blockade causes 

significant enhancement of multiEPSP and associated SCR in the SNpc, while neither parameter is 

significantly affected in the VTA. This is consistent with the differential control exerted by Ih over 

synaptic excitability between the two areas in TH-GFP mice Of note, functional Ih diversity 

between SNpc and VTA was quantitative in TH-GFP mice, while it appears to be qualitative in 
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rats, a discrepancy which presumably results from the species difference. We pharmacologically 

characterized the source of calcium recruited by multiEPSP in SNpc DA neurons with the L- and 

T-type VGCCs blockers isradipine and mibefradil. Only isradipine was effective in causing a 

significant reduction of SCRs. This finding does not allow discrimination between CaV 1.2 and 

1.3, as the two pore-forming subunits show comparable affinity for the drug (Zamponi et al. 2015), 

while the non-significant effect produced by mibefradil indicates a limited contribution of T-type 

calcium channels to SCRs, in agreement with the relatively hyperpolarized activation window of 

these channels. The contribution of an NMDA receptor-dependent calcium component to SCRs, 

although possible in our experiments, was not tested because NDMA receptor blockers alter EPSP 

kinetics, thus confounding the effect of Ih blockade on dendritic integration. Moreover, it has been 

shown that NMDA receptor-dependent calcium inflow is relatively modest at proximal dendritic 

locations, while VGCC-dependent calcium inflow is relatively large, suggesting a limited 

contribution of the first to SCRs, at least in quantitative terms (Jang et al. 2011). In agreement, 

another study has reported strong expression of CaV 1.2, 1.3 and CaV 3.1, 3.2, 3.3 pore-forming 

subunits in the somatodendritic compartment of SNpc DA neurons in rats (Dufour et al. 2014). Our 

results imply that one physiological function of Ih is to limit synaptic-dependent calcium entry. Ih 

suppression enhances AMPA/NMDA receptor-mediated response and blunts GABAA receptor-

mediated response, thus increasing synaptic excitability in a dual manner. Moreover, we also show 

that Ih is functionally regulated by intracellular ATP concentration. Low intracellular ATP, 

obtained by using a pipette solution containing 0 mM ATP and 10 µM of the F0-F1 ATP synthase 

blocker oligomycin, causes a ~10 mV negative shift in Ih activation curve. This is compatible with 

the reported cAMP sensitivity of HCN2 and HCN4 (Biel et al. 2009), the two isoforms sustaining 

Ih in SNpc DA neurons (Franz et al. 2000, Dufour et al. 2014). As there is no evidence for a direct 

modulation of HCN channels by ATP, the observed shift in the voltage dependence is likely due to 

reduced cAMP synthesis. Importantly, this experiment suggests a mechanistic link between ATP 

levels, Ih-dependent synaptic excitability and calcium dynamics. Moreover, we show that local 

administration of Ih blockers leads to DA degeneration in adult rats. Like in many established PD 

models, DA degeneration is most severe in the SNpc, while the VTA appears substantially spared. 

In view of PD pathogenesis, Ih loss of function may possibly be regarded as an acquired alteration, 

caused by disruption of mitochondrial metabolism, affecting specifically, or to a larger extent, DA 

neurons in the SNpc, where Ih is critical in the regulation of synaptic excitability. SNpc DA 

neurons receive a tonic excitatory input from the STN, which is disinhibited during PD progression 

as a consequence of striatal dopamine loss. Experimental ablation of this input protects SNpc DA 

neurons from MPTP and 6-OHDA-induced degeneration (Piallat, Benazzouz and Benabid 1996, 

Wallace et al. 2007), suggesting the involvement of an excitotoxic pathogenic mechanism in these 

models. Therefore, it is conceivable that STN disinhibition may add to the excitation/inhibition 

unbalance caused by Ih loss of function and eventually determine a SNpc-specific pathogenic 
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pathway involving L-type VGCCs activation. CaV 1.3-mediated dendritic calcium oscillations, 

characterizing rhythmic activity of SNpc DA neurons, have previously been suggested to determine 

the vulnerable phenotype of these neurons (Guzman et al. 2009, Ilijic et al. 2011, Surmeier and 

Schumacker 2013). In agreement, clinical studies and meta-analyses indicate that users of brain-

permeable L-type VGCC blockers have a 30% reduced risk of developing PD (Ritz et al. 2010, 

Lang, Gong and Fan 2015). Our results indicate that L-type calcium channels are activated by 

normal subthreshold synaptic activity and become hyperactivated in SNpc DA neurons following 

pharmacological Ih suppression. In vivo, Ih loss of function may result from mitochondrial 

dysfunction, a key disease mechanism at the basis of extensively studied PD animal models, which 

is gaining increasing attention in the human pathology too. In this regard, there is increasing 

evidence linking mitochondrial damage to Ih function. Ih is suppressed by the mitochondrial toxin 

MPP+ in vitro (Masi et al. 2013) and LTG, a commercial anticonvulsant agent reported to activate 

Ih (Poolos et al. 2002, Friedman et al. 2014), it is neuroprotective in MPTP-induced DA 

degeneration models (Archer and Fredriksson 2000, Lagrue et al. 2007). Furthermore, Ih current 

density is diminished in SNpc DA neurons of MitoPark mice at 6 weeks of age, well before the 

appearance of neurodegeneration (Good et al. 2011). This evidence supports the proposition that Ih 

LOF, which may result from mitochondrial failure during PD progression, leads to SNpc-specific 

DA degeneration through toxic calcium overload. Based on these premises, we tested the 

hypothesis that Ih LOF is a necessary pathogenic step in relevant PD animal models, and that 

reversion of this defect is neuroprotective. To test our hypothesis, we used The MitoPark mouse, a 

model based on a mitochondrial mutation expressed in DA neurons and featuring HCN LOF at an 

early disease stage (Ekstrand et al. 2007). This model shows late-onset, slow-progressing DA 

degeneration with differential vulnerability between SNpc and VTA. furthermore, 

electrophysiological recordings in slices from mice at presymptomatic stage (6 weeks) have shown 

an aberrant activity pattern of SNc DA neurons, with a concomitant inactivation of the Ih (Branch 

et al. 2016). In this regard, we performed a pharmacological rescue of HCN channels using LTG in 

presymptomatic Mitopark mice (6 weeks). LTG, a voltage-gated sodium and calcium channel 

blocker, used in clinic as a anticonvulsivant, was reported to potentiate Ih (Poolos et al. 2002). LTG 

has already been used to functionally upregulate HCN function in DA neurons in vivo (Friedman et 

al. 2014). Based on the above hypothesis, we attempted a pharmacological rescue of Ih function by 

administering chronic LTG. LTG was administered daily starting from 6 weeks (presymptomatic 

stage), when Ih LOF has been described, until 18 weeks (the beginning of the symptomatic stage). 

What we observed is a dramatic reduction of motor decay compared to MitoPark mice treated with 

vehicle. Pharmacological manipulation of Ih function in vivo suggests a possible link to DA 

vulnerability during disease progression. MitoPark mice has better face and construct validity 

compared with major toxin-induced models, the rat 6-OHDA model and the mouse MPTP-model 

(Terzioglu and Galter 2008). Indeed, MitoPark mice display a very slow progression of the 
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symptoms, more similarly reflecting the disease progression in PD patients vs. the acute ablation of 

the DA system manifested in most lesion models. In addition, the slow progression of symptoms in 

MitoPark mice offers the opportunity to study the effects of chronic treatments for prolonged 

periods of time (i.e. several months) under conditions of a slow and gradual aggravation of 

symptoms in line with the situation in PD patients (Galter et al. 2010). Our findings indicate that: 

1) HCN loss of function, when pharmacologically induced in healthy animals, is able to drive 

SNpc-specific DA neurodegeneration; 

2) Pharmacological HCN rescue protects from motor decay in a slow-progressing PD model.  

This mechanism may be exploited to design a neuroprotective, disease-modifying strategy for the 

treatment of early-stage PD patients. Unfortunately, no specific pharmacological HCN enhancers 

are available at present. Furthermore, HCN channels are widely expressed in the central and 

peripheral nervous system, as well as in the heart, therefore, they are far from being optimal 

disease-specific targets. However, lack of tissue and disease-specificity could be, in principle, 

overcome by using a viral delivery approach. This would imply performing bilateral stereotaxic 

injections of recombinant HCN-carrying viral particles in the substantia nigra of patients with an 

early diagnosis of PD, when a substantial proportion of nigrostriatal DA neurons are still viable. 

Brain surgery is already used, as a last resort, for the implantation of electrodes for deep brain 

stimulation in those patients who have developed levodopa-induced diskynesia, and viral particles 

are already safely used to achieve gene therapy in certain diseases, such as inherited retinal disease 

now treated with an adeno-associated viral vector carrying a wild type allele of the mutated gene 

voretigene neparvovec-rzyl (LUXTURNA) Considering the total lack of neuroprotective 

medications in PD therapy, and in consideration of the serious side effects associated with long-

term levodopa therapy, even an invasive therapeutic approach such as brain surgery could be 

considered a valid option by a patient otherwise facing the invalidating motor decay resulting from 

the side effects and the lack of neuroprotective efficacy of existing medications. 
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10. LIST OF ABBREVIATIONS 

 

ALS   Amyotrophic Lateral Sclerosis  

4-AP   4-Aminopyridine 

ATP   Adenosine-5’-triphospate 

BBB   Blood-brain barrier 

cAMP   Cyclic adenosine monophosphate 

CN    caudate nucleus  

CNBD    Cyclic nucleotide binding domain 

CNS    Central nervous system 

CSD    cAMP-sensing domanin 

D1R    dopamine 1-type receptor 

D2R    dopamine 2-type receptor 

DA    dopamine 

DAT    dopamine transporter 

EC    Enthorhinal cortex 

EPSC    Excitatory postsynaptic current 

EPSCs    Excitatory postsynaptic potentials 

GABA    γ-aminobutyric acid 

GFP    Green fluorescent protein 

GP    Globus pallidus 

GPe    Globus pallidus externus 

GPi    Globus pallidus internus 

HCN    Hyperpolarization-activated cyclic nucleotide-gated channel 

HD    Huntington disease  

IMM    inner mitochondrial membrane 

IPSCs    Inhibitory postsynaptic currents 

LBs    Lewi’s bodies 

LTG    Lamotrigine 
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MAO-A   Monoamine oxidase A 

MAO-B   Monoamine oxidase B 

MPDP
+
   1-methyl-4-phenyl-2,3-dihydropyridinium 

MPP
+    

1-methyl-4-phenylpyridinium 

MPTP    n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MSNs    Medium spiny neurons 

NAc    accumbens nucleus  

NMDA   N-methyl-D-aspartate 

NOS    nitric oxide synthase  

OCT3   organic cation transporter 3 

OFT   open field test  

PD    Parkinson’s disease 

PPR    Paired pulse ratio 

RMP    Resting membrane potential 

ROS    Reactive oxygen species 

SCR    Somatic calcium responses  

SN    Substancia nigra 

SNpc    Substancia nigra pars compacta 

SNr    Substancia nigra pars reticulate  

SOD2   Superoxide dismutase-2  

STN    Subthalamic nucleus 

TH    Tyrosine hydroxalse 

VGCCs   voltage-gated calcium channels 

VMAT    Vescicular monoamine transporter  

VMAT1   Vescicular monoamine transporter 1 

VMAT2   Vescicular monoamine transporter 2 

VTA    Ventral tegmantal area 

K-ATP    ATP-sensitive potassium channel 
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