
ARTICLE

Received 2 Apr 2014 | Accepted 24 Jul 2014 | Published 10 Sep 2014

Ecological succession of a Jurassic shallow-water
ichthyosaur fall
Silvia Danise1, Richard J. Twitchett2 & Katie Matts1

After the discovery of whale fall communities in modern oceans, it has been hypothesized

that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting

long-lived and specialized animal communities. Here, we report a fully documented

ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological

succession of its micro- and macrofauna. The early ‘mobile-scavenger’ and ‘enrichment-

opportunist’ stages were not succeeded by a ‘sulphophilic stage’ characterized by

chemosynthetic molluscs, but instead the bones were colonized by microbial mats that

attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension

feeders indicate a well-developed ‘reef stage’ with prolonged exposure and colonization of the

bones prior to final burial, unlike in modern whale falls where organisms such as the

ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur

falls thus fulfilled similar ecological roles to shallow whale falls, and did not support

specialized chemosynthetic communities.
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W
hale carcasses create long-lived, ecologically significant
habitats that support diverse and highly specialized
‘whale fall’ communities, and which may have been

critical in the dispersal and evolution of chemosymbiotic
communities during the Cenozoic1,2. Following their discovery,
it was hypothesized that during the Mesozoic the carcasses of
marine reptiles may have fulfilled similar roles and hosted
analogous communities3–5. Despite its importance in under-
standing the early evolution of modern marine ecosystems, this
hypothesis has yet to be rigorously tested. Few examples of
marine reptile fall communities have been documented or studied
in detail3,6 and the only known chemosymbiotic community
comprises micro-grazing provannid gastropods and ataphrid-like
vetigastropods associated with two upper Cretaceous plesiosaurs
from outer shelf and slope settings7.

Community succession in modern whale falls has been first
described in the deep sea (4200 m depth), where it has been
divided into discrete ecological stages8,9. Following an initial
‘mobile scavenger stage’, when sharks and other organisms
remove the flesh and soft tissues, an ‘enrichment opportunist’
stage develops with polychaetes, crustaceans and other small-
sized opportunists thriving on the remaining whale organic
matter. Next, a ‘sulphophilic stage’ in which the oxidation of
inorganic compounds, such as sulphide or methane, derived from
microbial degradation of the bone lipids supports a
chemosynthetic community, including chemosymbiotic bivalves
and free-living bacteria (for example, Beggiatoa). Finally, a ‘reef
stage’ has been hypothesized, in which the remaining skeleton is
colonized by suspension feeders exploiting hard substrata and
flow enhancement8. Recent time-series analyses have shown,
however, that whale fall community succession is not always as
linear as this simple model suggests: stages are not always discrete
but may overlap each other, and many factors can influence their
development, such as sedimentation, temperature and water
depth10.

Whale fall communities in shallow water are somewhat
different from their deep-water counterparts because they
experience more complex biostratinomic processes and support
communities with lower endemicity11,12. It was thought that
shallow whale falls did not develop a significant ‘sulphophilic

stage’, but recent experiments have shown that it is possible for
the chemosynthetic community to develop on outer shelf whale
falls within 5 years11. Available data suggest that at whale falls, as
in other localized habitats fuelled by reducing compounds such as
hydrothermal vents and hydrocarbon seeps, there is a progressive
increase in the importance of organic carbon derived from
chemosynthesis moving from coastal to open marine settings,
with heterotrophic communities dominating in shallow waters
and autotrophic communities dominating at deep-sea sites13.

In this paper, we report the first detailed study of ecological
succession of a shallow-water ichthyosaur fall community from
the Late Jurassic to test whether the carcass supported a similar
community to that of fossil and recent whale falls. The
Ichthyosauria were a diverse, cosmopolitan group of Mesozoic
marine reptiles that ranged from the late Early Triassic
(Olenekian) to the Late Cretaceous (Turonian)14, and some
species reached lengths of 21 m15. Like many cetaceans, they were
active predators fully adapted to aquatic life, capable of rapid
sustained swimming and able to dive to depths of 500 m or
more16. Ichthyosaur bones have a cancellous microstructure very
similar to that of whales and dolphins17 and likely also contained
lipids within the marrow spaces18. In this study, we undertake a
detailed palaeoecological analysis of an ichthyosaur fall
community associated with a Late Jurassic Ophthalmosaurus
skeleton, focusing on the fossil macroinvertebrates and fossil
evidence of microbially mediated processes to reconstruct the
successional stages that preceded final burial of the carcass. We
show that this shallow-water ichthyosaur fall supported a very
similar community succession to that of modern and fossil
shallow-water whale falls.

Results
Geological context and recovery. The studied specimen
comprises the associated, disarticulated fossil remains of a single,
ca. 3 m long, individual of the genus Ophthalmosaurus, found
partly enclosed in large concretionary blocks (Fig. 1). It comes
from the upper part of the Ringstead Clay Member (Sandsfoot
Formation, Upper Oxfordian), which consists of pale-to-dark
grey, variably calcareous mudstones and was deposited in a
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Figure 1 | Plan of the excavation, locality of recovery of the Ophthalmosaurus and stratigraphy. (a) Plan view of the Ophthalmosaurus remains

at the recovery site. Bones are highly disarticulated. (b) Map showing the locality of recovery, Dorset, UK. (c) Stratigraphy. The specimen comes from the

upper part of the Ringstead Clay Member of the Sandsfoot Formation, Upper Oxfordian in age. Figure modified with permission from the publisher

ref. 20. Scale bars, (a) 50 cm.
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shallow, low-energy, offshore shelf setting, characterized by low
sedimentation rates19. All skeletal elements were disarticulated
before final burial (Fig. 1a), possibly by both scavenging and
current (storm?) activity, although most paddle elements were
associated in broad clusters on either side of the concretionary
blocks and a few vertebrae were found in loose association with
their neural arches. Soon after excavation the specimen was
partially prepared to preserve as much taphonomic information
as possible20.

Evidence of mobile scavengers and grazers. Trace fossils pre-
served in concave epirelief on the surfaces of some of the bones
are evidence of both scavenging and grazing (Fig. 2). Scavenging
is inferred by the presence of short (o1 cm), sharp, narrow
grooves, with a U- or V-shaped cross-section, that are found
individually or in subparallel clusters on the ribs (Fig. 2a). They
resemble marks left by smooth-edged teeth of fish (cf., ref. 21:
Fig. 3e), and their small size excludes the possibility that they
were left by active predation on the live animal.

The most common macroscopic trace fossils on the bone
surfaces, found especially on ribs (n¼ 18), comprise repeating,
overlapping sets of five grooves radiating out from a single point,
each set with an average diameter of 4 mm (Fig. 2b,c; ref. 20).
These are assigned to the ichnospecies Gnathichnus pentax, which
is attributed to the grazing activities of regular echinoids22. Extant
echinoids graze hard substrates to consume endolithic or surficial
organisms such as annelids, sponges, bacteria and algae23. In
modern whale falls and hydrocarbon seeps, echinoids are
frequently observed grazing on bacterial mats10,24,25. Thus, the
presence of G. pentax on these Ophthalmosaurus bones is
interpreted as the first record of the activities of mat-grazing
echinoids in a marine reptile fall community.

Microbially mediated products and processes. The carbonate
concretion enclosing the bones contains grains of quartz, feldspar
and biotite mica, and abundant bioclasts (bivalves, ostracods and
echinoid spines) in a microsparitic carbonate matrix (Fig. 3a). A
200–600-mm-thick dense crust of clotted micrite and loosely
spaced micritic peloids covers the outer surfaces of the bones
(Fig. 3a–c). The peloids have irregular, blurred rims (Fig. 3b) and
an average diameter of 100mm. They are interpreted as microbial
bioproducts precipitated on the surface of bacterial clumps26, or
may alternatively represent faecal pellets of mat-grazing
polychaetes or gastropods (cf. ref. 27). Elongated, 20-mm-thick,
micrite laminae, subparallel to the bone surface (Fig. 3c) are
interpreted as calcified biofilms28. The crust, as a whole,
represents a calcified algal or microbial mat that was probably
made by variety of microbes that includes filamentous
phototrophic and heterotrophic bacteria, and algae, whose
activity determine mat calcification and preservation28. Its
autochthonous formation by in situ calcification is indicated by
the purity of the micrite, rarity of intraclasts and its protrusive
outer margins27.

The Ophthalmosaurus bone surface is intensively bioeroded by
microborings with an average diameter of 3.7 mm and a
maximum measured length of 81.8 mm (Supplementary Fig. 1).
They comprise non-bifurcating, straight or slightly curved
microtunnels, which are empty or filled by pyrite framboids
and preferentially orientated perpendicular to the external bone
surface (Fig. 3d–g). The mean thickness of the bioeroded zone is
460mm. Externally, where the density of microborings is the
highest, the original bone structure has been replaced by a
microcrystalline (micrite) rim containing microtunnel outlines
(Fig. 3d,e).

These are the first such microborings recorded from ichthyo-
saur bones, although similar examples have been described from
modern and fossil whale, sirenian and plesiosaur bones and
attributed to cyanobacteria, actinobacteria, algae or fungi29–33,
which are the most common and widespread borers of calcium
apatite34. Attributing microborings to specific shallow water,
endolithic borers is difficult based on morphology alone, because
of convergent evolution of boring and reproductive behaviour
among unrelated organisms that exploit similar environments35.
While we cannot exclude the action of actinobacteria, able to
degrade bone collagen33, we attribute these examples to the
activities of cyanobacteria for two key reasons. First, penetration
depth is very shallow, as with photosynthetic microborers where
penetration of the dark substratum is strongly limited by the
depth of light penetration36. Second, the presence of a micrite rim
on the outer surfaces of the microbored Ophthalmosaurus bones
(Fig. 3d,e) is consistent with the boring activities of endolithic
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Figure 2 | Trace fossils on the Ophthalmosaurus bones. (a) Rib showing

sharp, narrow grooves (white arrows) probably left by the scavenging

action of small fishes. (b) G. pentax ichnospecies on a fragmented proximal

rib. (c) Detail of figure a; note the star shape of the trace fossil.

Scale bars, (a) 0.5 cm; (b) 1 cm; (c) 0.2 cm.
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cyanobacteria, during which Ca2þ ions are transported along the
tricomes to the outer surface of the substrate where they are
excreted to form a pure, micritic, poorly crystalline layer37.

Internally, the cancellous ichthyosaur bones are filled with three
carbonate phases: (a) microcrystalline calcite (micrite), (b) patchily
distributed microsparite and (c) a sparry, secondary calcite filling
the fractures (Fig. 3h). The microcrystalline calcite has a clotted
fabric (Fig. 3h), and locally comprises rounded to sub-rounded
peloids, 50–120mm in diameter (Fig. 3i). Clotted textures and
peloids are interpreted as being microbial in origin, and are similar
to those described from a variety of different geological settings27,
as well as fossil whale falls31,33,38 and upper Cretaceous plesiosaur
falls7. Thus, we infer that microbial decay of the Ophthalmosaurus
bone marrow lipids induced the precipitation of calcium
carbonate, which in turn induced the calcification of bacterial
aggregates forming the clotted fabric and peloids. Increased
availability of reactive organic matter promotes the formation of
hydrogen sulphide through anoxic bacterial reduction of seawater
sulphate39, and a by-product is elevated alkalinity and the
precipitation of carbonate minerals. The microsparite cement
filling the remaining marrow cavities may then have crystallized
around these bacterial aggregates (cf. ref. 33).

Pyrite framboids, or iron oxides that retain a framboidal shape
(Supplementary Figs 2 and 3), are abundant within the cancellous
bones (Fig. 3i,j). Their average diameter is 1.91mm, with most
(73.5%) ranging between 0.50 and 3.00 mm (Supplementary
Fig. 1). Pyrite framboids are most common towards the outer
edge of the bones and decrease in abundance towards the bone
centre (Fig. 3j). Bone lacunae are also frequently filled with pyrite
(Fig. 3d). The high concentration of pyrite found in the bone
trabeculae is interpreted as being the result of anaerobic microbial
decomposition of the bone organic compounds (for example,
lipids) and sulphate reduction, which led to the local release of
sulphide, as observed in modern and fossil whale falls38,40,41. The
rarity of pyrite in the surrounding concretion (Fig. 3j) suggests
that sulphides formed when the bones were just below the
sediment surface (see ref. 39), and not during burial diagenesis.

Associated invertebrate macrofaunal community. In the con-
cretionary blocks, various fossil macroinvertebrates are closely
associated with the bones (Figs 4 and 5). Epifaunal suspension
feeders dominate the assemblage (61% of the total number of
individuals), and the most abundant (n¼ 55) are shells of the
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Figure 3 | Microscale analysis of the Ophthalmosaurus bones. (a) Bone covered by a peloidal crust (arrows). The bones are enclosed in a siliciclastic

matrix cemented by microsparite. In the right side of the photo, articulated bivalve filled with secondary sparry calcite and microsparite. (b) Detail of the

peloidal crust, made by clotted micrite and loosely spaced micritic peloids (arrows). (c) Detail of the peloidal crust. Clotted micrite and pyrite in the upper

part; elongated mats representing calcified biofilms in the lower part. (d) Fossil bone extensively bioeroded (white arrows point to microborings), showing a

thick micrite rim on the outer side. Bone lacunae are filled with pyrite (black arrow). (e) Close-up of the bioeroded area where microborings are

perpendicular to the external bone surface. (f) Empty, elongated microboring. (g) Microboring filled with a pyrite framboid. (h) Cancellous bones filled with

clotted micrite, microsparite and sparry calcite. (i) Clotted micrite, pyrite and microbial peloids (arrows) filling the voids of cancellous bones. (j) Pyrite

filling cancellous bones decreases in abundance towards the bone centre, and is rare in the surrounding concretion. All transmitted light photomicrographs

in plane-polarized light except (j) in reflected light; (f) SEM (scanning electron microscope) image in secondary electron mode, (g) SEM in backscattered

electron mode. ib, ichthyosaur bone; sc, sparry calcite; ms, microsparite; ec, enclosing concretion; cm, clotted micrite; py, pyrite. Scale bars, (a) 500mm;

(b,h,j) 200 mm; (c,d,i) 100mm; (e) 20mm; (f) 10mm; (g) 2 mm.
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cemented Ostraeidae Deltoideum delta (Fig. 5a). Other epifaunal
suspension feeders include the cemented serpulid Serpula sulcata
(n¼ 2) and byssate forms, such as the pectinid Camptonectes
auritus (n¼ 11; Fig. 5b), and the Anomiidae cf. Placunopsis radiata
(n¼ 1). Shallow infaunal suspension feeders (27%) are represented
by the common Corbulomima suprajurensis (n¼ 28; Fig. 5d),
found mostly with articulated valves, and the rare cf. Isocyprina sp.
(n¼ 3; Fig. 5c); semi-infaunal bivalves are represented by Modiolus
bipartitus (n¼ 3). Also infaunal deposit feeder gastropods of the
species Dicroloma trifida (n¼ 2) were found. Spines of the regular
echinoid Rhabdocidaris sp. (n¼ 8; Fig. 5e) were found close to the
bones, and it is likely that the grazing activities of this taxon
produced the trace fossil G. pentax.

The overall fossil assemblage is similar to the Nanogyra
nana–D. delta association of the overlying lower Kimmeridge
Clay42, but C. suprajurensis is much more abundant in the
ichthyosaur fall assemblage (comprising 24% of the individuals).
Similarly, abundant corbulids have been recorded in a Pliocene
outer shelf whale fall community43. Corbulids are small, infaunal,
suspension-feeding r-strategists, thriving in muddy bottoms
enriched in organic matter and temporarily depleted in
oxygen44,45. The pectinid C. auritus is also more common
around the bones than in the background community. Pectinids
are frequently found in modern and fossil shallow-water whale
falls12,46, and are among the most tolerant bivalves to low-oxygen
conditions (for example, ref. 47). Thus, the relatively high
abundances of Corbulomima and Camptonectes may indicate
local hypoxia and elevated organic matter flux during microbial
decay of the ichthyosaur remains.

Encrusting, suspension-feeding epibionts are cemented to
some of the bones (Figs 4 and 5). S. sulcata is the most abundant
identifiable taxon (n¼ 105; Figs 4 and 5f), followed by N. nana
(n¼ 19; Figs 4 and 5g), D. delta (n¼ 7) and the plicatulid Atreta
sp. (n¼ 3). They occur on both pristine bones and on bones with
echinoid-grazing traces. Ribs and vertebrae were preferentially
colonized (20–25% are encrusted) with respect to other bones,
such as paddle elements and neural spines (o10%). These
encrusting epibionts were probably exploiting flow enhancement,
and similar associations have been recorded in fossil ichthyosaur
and whale fall assemblages6,12.

Discussion
The late Oxfordian ichthyosaur fall studied herein supported a
wide range of micro- and macro-organisms during the time it was
exposed on the seafloor prior to final burial. Comparison with
modern whale falls primarily relies on an ecological approach,
because evolutionary history has resulted in significant taxonomic
differences between modern and Late Jurassic invertebrate marine
communities. A critical assumption is that the ichthyosaur bones
contained sufficient lipid content to potentially support develop-
ment of long-lived chemosynthetic communities during a
‘sulphophilic stage’, as in modern and fossil whale falls. Their
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Figure 5 | Macroinvertebrates associated with the Ophthalmosaurus bones. (a) D. delta. (b) C. auritus. (c) cf. Isocyprina sp. (d) C. suprajurensis.

(e) Rhabdocidaris sp. spine. (f) Rib encrusted by S. sulcata. (g) Rib encrusted by N. nana. Fossil bones outlined by a white, dashed line. Sale bars, (a–c,e–g)

1 cm; (d) 0.3 cm.
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streamlined morphology and large eyes, especially in the genus
Ophthalmosaurus, indicate that ichthyosaurs were able to cruise
fast and dive deep16. Their cancellous and spongy bones are
similar only to those of cetaceans and some large marine turtles
that also frequent the deeper portion of the water column17.
Histological studies of modern marine mammals indicate that
reduced bone density is linked to an increase in lipid storage that
enables reduced gas retention in the body, resulting in more
energy-efficient dives18, and it is likely that ichthyosaurs
developed the same adaptation. Thus, ichthyosaur carcasses
could potentially have supported chemosymbiotic communities
similar to those of modern and fossil whale falls.

As in whale fall communities, succession was initiated by
‘mobile scavengers’, as evidenced by the tooth marks left on the
bones by small fishes. The defleshed, exposed bones were
subsequently colonized by a diverse microbial community. Some,
such as heterotrophic microbes, would have directly exploited the
remaining ichthyosaur organic matter, including lipids from
within the bones themselves and the bone collagen, releasing
hydrogen sulphide into the local environment. Others colonized
the freshly exposed bone surfaces where microbial succession led
to the development of a complex and diverse mat community of
heterotrophic and photoautotrophic bacteria that spanned the
bone–water interface, which in turn attracted invertebrate grazers
such as sea urchins and peloid-producing organisms such as
polychaetes or gastropods, as in modern whale falls10 (‘microbial
mat and grazer stage’).

The abundant encrusting suspension feeders recorded in this
study indicate a well-developed ‘reef stage’. This contrasts to the
situation in modern10 and fossil12 whale falls, where epibiont
colonization is patchy. The size of the encrusters indicates
that some bones were exposed for at least several years. In
modern whale falls, a fully developed ‘reef stage’ has not been
recorded due, in part, to the destructive activities of the
highly specialized, bone-eating worm Osedax that colonize
vertebrate bones from coastal to abyssal depths48. Dense
Osedax populations are able to consume an entire whale
skeleton within a few years25, even if in areas of low levels of
oxygen their action might be hindered, resulting in skeletons
exposed on the seafloor for many decades (for example, ref. 9).
No trace fossils attributed to Osedax were recorded in this study,
which is consistent with phylogenetic analyses that indicate at
most a late Cretaceous origin of the Osedax clade48 and with an
early Oligocene age for the oldest known Osedax trace fossil49.
In the absence of Osedax, bone destruction in Jurassic seas
would have been slower than in modern sea, and only burial
by sediment would have curtailed development of a ‘reef stage’ in
ichthyosaur fall communities.

Elucidating the nature of the ecological succession in the
sediments surrounding the bones is more difficult owing to low
sedimentation rates and the effects of time averaging within the
taphonomically active zone. The shallow-water, muddy sediments
at the study site probably already supported a benthic macro-
invertebrate community prior to the arrival of the dead
ichthyosaur. During its decay, environmental conditions close
to the carcass may have changed substantially, which would have
in turn affected the composition of the local benthic community.
The high abundance of corbulids and pectinids probably reflect
these changes, indicating elevated organic matter flux and local,
transient hypoxia during microbial decay of the ichthyosaur
remains. Their presence might thus indicate the development of
an ‘enrichment-opportunist stage’ that in modern whale falls is
mainly represented by soft-bodied organisms.

The absence of any chemosymbiotic macroinvertebrates on or
near the bones indicates that anaerobic microbial decay of the
bone lipids, testified by the abundant pyrite deposition in the

cancellous bones, did not result in a well-developed ‘sulphophilic
stage’. While obligate whale-fall chemosynthetic bivalves origi-
nated in the Paleogene, others, including the families Lucinidae
and Nucinellidae, have an evolutionary history that dates back to
the Jurassic and older50 and therefore potentially could have been
associated with the Ophthalmosaurus. Lucinids have been
described from offshore, Upper Jurassic seep carbonates from
Southern France51 and the Antarctic52, and in the latter example
other taxa considered obligate to chemosynthetic habitats have
been also found, including hokkaidoconchid gastropods, an
extinct family related to the modern whale fall, seep- and vent-
dwelling Provannidae52. The absence of chemosynthetic taxa
associated with the Ophthalmosaurus thus, might be due to the
relatively small size of the specimen (estimated at ca. 3 m) and
insufficient biomass to sustain a chemosynthetic ecosystem, as in
juvenile whale falls9. It may also be due to the shelf setting,
however, as in shallow-water whale falls the ‘sulphophilic stage’ is
rare10–13 and the benthic taxa depend principally for their
nutrition on carbon fixed by photosynthesis, as in other shallow-
water-reducing environments such as hydrothermal vents and
cold seeps53.

The emerging picture is that in the Jurassic, hydrocarbon seeps
hosted symbiont-bearing invertebrates51,52, whereas organic
falls, only known from shelf settings so far, did not. Similar to
our case study, a shallow-water Ophthalmosaurus from the
Callovian Lower Oxford Clay (United Kingdom) supported
an encrusting ‘reef stage’ of serpulids and oysters, and was
associated with deposit-feeding nuculanoid bivalves and micro-
carnivorous scaphopods, but no chemosynthetic taxa6. Likewise,
Bathonian outer shelf wood fall associations described from
Poland were mostly colonized by encrusting oysters and
serpulids, with non-obligate gastropods and bivalves and no
chemosynthetic fauna54. Taphonomic studies of the largest
known ichthyosaurs, from the Late Triassic of the western
USA, similarly report no associated chemosynthetic taxa55. To
date, the only examples of chemosynthetic-based communities at
organic falls in the Mesozoic are thus restricted to the Upper
Cretaceous, with provannid gastropods and vetigastropods
associated with plesiosaurs carcasses7 and chemosymbiotic
xylophagian bivalves associated with sunken wood56 described
from outer shelf and slope sediments of Japan. It appears that
the interval between the Late Jurassic and Late Cretaceous was
critical for the evolution of chemosynthetic organic fall
communities. It is probably no coincidence that molecular phylo-
genies of important chemosynthetic taxa suggest a Cretaceous
origin for the crown group57.

Our study demonstrates that prior to final burial, Late Jurassic
shallow-water ichthyosaur falls fulfilled similar ecological roles to
shallow-water whale falls. Ecological succession included a
‘mobile scavenger stage’, a possible ‘enrichment-opportunist
stage’, a ‘microbial mat and grazer stage’ and a prolonged ‘reef
stage’, with the latter stages likely overlapping. Some sulphate
reduction occurred within the bones, possibly due to decay of
bone lipids, but a lengthy ‘sulphophilic stage’ did not develop and
the ichthyosaur fall supported no chemosynthetic taxa. All known
pre-Cretaceous shallow-water organic falls appear to have
supported non-endemic faunas, with food webs based mainly
on photosynthetic, rather than chemosynthetic, carbon.

Methods
Studied specimen. The studied specimen was excavated in 1991 in Dorset, UK,
during construction of the A303 Zeals-Bourton bypass58. Approximately 55% of
the ribs were recovered (n¼ 70), along with vertebrae (n¼ 40), vertebral processes
(n¼ 11), paddle elements (n¼ 38), other limb bones (n¼ 2) and skull elements
(n¼ 7). It is now curated in the Bristol City Museum and Art Gallery (BRSMG
Ce16719).
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Palaeoecological analysis. All of the associated macroinvertebrates and trace
fossils that were (a) preserved on the bone surfaces and (b) preserved on the surface
of the concretionary blocks, within 10 cm distance from the bones, were counted
and identified. All fossils were identified at the finest taxonomic level possible,
following59–61, and their life habits and diet were assigned according to Wignall42.

Petrographic microfacies analysis. Bone fragments partially enclosed in the
carbonate concretion were selected for petrographic microfacies analyses. Ten
uncovered, polished petrographic thin sections (30 mm thick) were analysed via an
optical light microscope in transmitted and reflected light, using a Nikon eclipse
LV100POL microscope equipped with a Nikon DSFil digital camera with NIS-
Elements BR imaging software. Selected portions of the thin sections were etched in
an aqueous solution of 1% HCl between 10 and 30 s, air dried and C-coated for
scanning electron microscope observations and element analysis (scanning electron
microscopy-energy-dispersive X-ray spectroscopy). The analyses were carried out
with a JEOL JSM-6610 LV scanning electron microscope equipped with a AzTEC
EDS for element identification. The operating conditions of the scanning electron
microscopes were 5–20 keV accelerating voltage for imaging, and 15–20 keV for
elemental analyses.
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