Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA
CURRICULUM IN MATEMATICA
CICLO XXXI

Sede amministrativa Università degli Studi di Firenze Coordinatore Prof. Graziano Gentili

Holomorphic curvature of Kähler Einstein metrics on generalised flag manifolds

Settore Scientifico Disciplinare MAT/03

Dottorando:
Simon Peter Lohove

Tutore
Prof. Luigi Verdiani

Coordinatore
Prof. Graziano Gentili

Contents

Introduction 7
1 Preliminaries 11
1.1 Reduction to the algebraic setting 11
1.2 Complex Structure and Metric 12
1.3 Painting Dynkin diagrams 16
1.4 Riemannian Curvature Tensor 17
1.4.1 Chevalley Basis 17
1.4.2 Curvature formulae. 17
1.5 The holomorphic curvature tensor 21
1.6 Modifying the holomorphic curvature tensor 21
1.7 Relevant invariant forms 22
1.8 Algebraic structure of the classical groups 24
1.8.1 Family $A_{n}: S U(n+1)$ 24
1.8.2 Family $B_{n}: S O(2 n+1)$ 25
1.8.3 Family $C_{n}: S p(n)$ 27
1.8.4 Family $D_{n}: S O(2 n)$ 28
2 Approach Itoh's and Three Modules 31
3 Holomorphic sectional curvature 37
3.1 Structure of a \mathbb{T} invariant symmetric tensor 37
3.2 Kähler Einstein metric 42
3.3 Independence of complex structure 45
4 Example of $\left(G_{2}, \mathbb{T}^{2}\right)$ 47
5 From \mathbb{T} to K 55
6 The conjecture $H(k)$ 59
7 Curvature Matrices 67
$7.1 \quad S U(n+1)$ 68
$7.2 \quad S O(2 n+1)$ 70
$7.3 \quad S p(n) \mid$ 77
$7.4 \quad S O(2 n)$ 83
8 The case of $H(4)$ 89
8.1 The case of $S U(5)$ 89
8.2 The case of $S O(9)$ 93
8.3 The case of $S p(4)$ 100
8.4 The case of $S O(8)$ 108
9 Appendix 113

Acknowledgements

I would like to thank my supervisor, Prof. Luigi Verdiani, for his guidance, encouragement and the fruitful discussions that led to the completion of my research. I am also grateful to Prof. Wolfgang Ziller for his hospitality at the University of Pennsylvania where I came into contact with the subject of this thesis.

I am indebted to Francesco Pediconi for his willingness to discuss even the smallest details and his helpful comments. I would also like to thank my colleagues at the University of Florence for their friendship and aid.

I extend my deepest gratitude to the members of my family, without whom I would not have succeeded. In particular, I thank my parents, Frank and Ulla, for continuous support through all the ups and downs that research brings with it and my brothers, Lukas and Max, for both good advice and diversion whenever necessary.

Introduction

One of the most challenging problems in Riemannian geometry is to develop a good understanding of the concept of curvature of a geometric object. That means how to quantify the deviation of a curved object from a flat Euclidean space. The mathematical answer to this question was given by Bernhard Riemann in his habilitation in 1854 and is now known as the Riemannian curvature tensor

$$
R: T M \times T M \times T M \times T M \rightarrow \mathbb{R}
$$

for the curved object of a Riemannian manifold (M, g). The amount of information of M encoded in R is very rich and until today we are far from having a complete understanding of R due to its complexity.

However, the symmetries satisfied by R imply that, at the point $p \in M$, it is completely determined by its values on tuples (X, Y, X, Y) for X, Y being orthonormal in $\left(T_{p} M, g_{p}\right)$. This results in the definition of the sectional curvature of a tangent plane $\sigma=\langle X, Y\rangle_{\mathbb{R}}$

$$
\sec (\sigma)=R(X, Y, X, Y)
$$

which corresponds to the Gauss curvature of the totally geodesic surface generated by σ.
Since sec still decodes the full complexity of R, mathematicians considered various reductions, such as the Ricci tensor and the scalar curvature, obtaining tractability at the expense of losing information about M. In the analysis of each of these curvature terms, the following fundamental questions arose. What characterises a Riemannian manifold (M, g) that has positive curvature? Is positive curvature a strong restriction? These questions are difficult to answer and we are therefore interested in finding examples in order to develop some intuition.

There are many famous partial results addressing these questions in the literature. We want to point out that these questions are very hard, even in the comparatively easy case of metrics with transitive isometry group. In fact, for example the the classification of homogeneous spaces with sec >0 is the result of a long series of papers by Berger, Wallach, Aloff, Bérard Bergery, Wilking, Xu, Wolf (Ber61 Wal72 AW75 BB76, Wil99 XW15) and has only recently been completed by Wilking and Ziller in WZ18 closing the last remaining gap. For more details on the contributions of the various authors we refer the interested reader to the exposition on WZ18.

If the Riemannian manifold had the additional structure of being Kähler, i.e. having a compatible parallel complex structure J, one can define another reduction of the curvature tensor. The so-called holomorphic sectional curvature is given by

$$
H: S M \rightarrow \mathbb{R} \quad X \mapsto \sec (X \wedge J X)
$$

being the sectional curvature of complex planes in the complex vector space $\left(T_{p} M, J\right)$. As with the other curvatures, we ask the following questions. How strong is the condition that H is positive? What examples are known?

Similar to the Bonnet-Myers theorem for Ricci curvature, Tsukamoto proved in Tsu57, that if the holomorphic curvature is bounded from below by a positive constant then the manifold is compact, simply connected and there is a upper bound for the diameter. Furthermore, as Klingenberg showed in Kli61 the equality case is only satisfied if M has constant holomorphic curvature and biholomorphically isometric to complex projective space with its standard Kähler structure. Therefore one is left with the impression that the property of having positive holomorphic curvature seems similarly strong as having positive Ricci curvature.

The purpose of this thesis is to present evidence to support the impression that positive holomorphic curvature is not too strong by constructing new examples leading to an interesting conjecture. Following the idea of the Grove symmetry program, we treat the question of positive holomorphic curvature in the setting of a large isometry group, i.e. homogeneous Kähler manifolds. If we have positive holomorphic curvature on a homogeneous Kähler manifold, this immediately implies that H is bounded from below by a positive constant and hence we may restrict our attention to simply connected compact homogeneous Kähler manifolds.

These spaces are called Kähler C spaces or generalised flag manifolds. Their real representation turns out to be $M=G / K$ where G is a semisimple compact Lie group and the isotropy group K is the centraliser of a torus in G. This implies that K shares a maximal torus with G and, since it is a compact group, it factors up to covering into the product of its center and a semisimple factor $K_{s s}$. Via the isotropy action, K decomposes $T_{K}(G / K)$ into irreducible modules and roughly speaking we get the correlation that the larger $K_{s s}$ is, the fewer irreducible modules there are. Resulting in the following rule of thumb:

The smaller the dimension of the center of K the nicer the description of invariant geometric objects on G / K.

Examples of these objects are of course the metric, the Riemannian curvature tensor and the holomorphic sectional curvature.

The only results known to the author pertaining to the positivity of the holomorphic sectional curvature of these spaces were obtained by Itoh in [Ito78. His examples require that the tangent space decomposes into at most two irreducible modules with respect to the isotropy representation. This forces $b_{2}(M)=\operatorname{dim}(\mathfrak{z}(K))$ to be 1 and therefore these examples are on the easier side of the spectrum of C spaces. While his theorem covers already all cases where $b_{2}(M)=1$ for G being a classical simple group and yields therefore a large family of examples. Nothing seems to be known about the cases of $b_{2}(M)>1$.

The first result of the thesis is a generalisation of Itoh's theorem yielding the first C spaces with $b_{2}(M)>1$:
Theorem 22, Let (G, K, J) be a C space, such that $T_{K}(G / K)$ decomposes into at most three irreducible modules. Then the holomorphic sectional curvature of any Kähler metric is positive.

This includes infinitely many new examples with $\operatorname{dim}(\mathfrak{z}(K))=2$, i.e.

$$
S U(n+1) / S\left(U\left(k_{1}\right) U\left(k_{2}\right) U\left(k_{3}\right)\right), S O(2 n) / S U_{i}(n-1) \mathbb{T}^{2}, E_{6} / S O(8) \mathbb{T}^{2}
$$

where $k_{1}+k_{2}+k_{3}=n+1$ and $S U_{i}(n-1) \hookrightarrow S O(2 n)$ for $i=1,2$ denotes two non equivalent embeddings. Furthermore, we get eight new examples with $\operatorname{dim}(\mathfrak{z}(K))=1$, which are all quotients of exceptional groups. However, this result applies also only to easier C spaces, i.e. those with small b_{2}.

At the opposite end of the spectrum, we have the case of K being the maximal torus of G, i.e. $b_{2}(M)=r k(G)$, whose decomposition into irreducible modules is the most complicated. In particular, the amount of Kähler metrics for a given complex structure is fairly
large. However, it is known that there exists, up to scaling, a unique Kähler Einstein metric $g_{K E}^{J}$ for each C space (G, K, J) to which we will restrict our attention. The first result is that the holomorphic curvature of the Kähler Einstein metric is independent of the complex structure in the following sense:

Corollary 39, For any two invariant complex structures J, J^{\prime} on G / \mathbb{T} there exists a biholomorphic isometry

$$
\left(G, \mathbb{T}, J, g_{K E}^{J}\right) \rightarrow\left(G, \mathbb{T}, J^{\prime}, g_{K E}^{J^{\prime}}\right)
$$

Hence the holomorphic curvature of the corresponding Kähler Einstein metric is independent of the chosen complex structure.

Therefore, we may fix a preferred complex structure $J_{s t d}$. In the case of larger isotropy groups the above does not hold any more. However, each classical C space is biholomorphically isometric to one with complex structure induced by $J_{s t d}$ via the submersion $G / \mathbb{T} \rightarrow G / K$, which allows the further restriction to the spaces $\left(G, K, J_{s t d}, g_{K E}\right)$.

In this context, we formulate the following conjecture $H(k)$ depending on $k \in \mathbb{N}$:
Conjecture 51, Let $\left(G_{k}, K, J_{s t d}, g_{K E}\right)$ be a simple Kähler Einstein C space with G being a classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

Since $H(k)$ being true implies having examples with $b_{2}(M)=k$, we see that we are leaving the "easier" end of the spectrum of C spaces. The naturally arising questions, we seek to answer are the following:
$i)$ Is there a $k \in \mathbb{N}$ such that $H(k)$ is true?
ii) Is there a relation between $H\left(k_{1}\right)$ and $H\left(k_{2}\right)$ for $k_{1}<k_{2}$?

Assuming that the answer to (i) is yes and the independence of the complex structure, the following question arises naturally:

Does every classical Kähler Einstein C space have positive holomorphic sectional curvature, i.e. is $H(k)$ true for all k ? If not, what characterises the smallest k for which $H(k)$ is wrong?

The main results of this thesis are the following answers to questions i) and $i i$):

Theorem 52, Theorem 54 .

i) $H(4)$ is true.
ii) If $H(n)$ is true so is $H(k)$ for $k \leq n$.

Itoh's approach, which we also used to prove theorem 22, becomes very complicated and unfeasible in cases of larger $b_{2}(M)$. Hence, we choose a different strategyby describing the holomorphic sectional curvature H as a restriction of the quadratic form of the so-called holomorphic curvature tensor. This step allows us to use techniques developed in Tho71] and GZ81 to prove positivity for the $H(4)$ cases. This results in a variety of new examples with $1<b_{2}(M) \leq 4$. As an exemplary application of the techniques we also prove

Theorem 47, Every Kähler Einstein C space $\left(G_{2}, K, J, g_{K E}\right)$ has positive holomorphic sectional curvature.

Sadly, even in these cases it is hard to prove positivity and there does not seem to exist an easily generalisable pattern to prove $H(k)$ for an arbitrary k. However, we did not detect any kind of obstruction, which leads us to believe that $H(k)$ might actually be true for all $k \in \mathbb{N}$.

As the last results of this thesis, we analysed the implications of the assumption of $H(k)$ being true for all $k \in \mathbb{N}$. It is clear that $H(k)$ being true implies that $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature. This alone leads to

Theorem 59. If $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature for all k, then all classical Kähler C spaces have nonnegative holomorphic curvature.

Hence, finding a negatively curved complex plane in a classical Kähler C space with any complex structure and any compatible Kähler metric would imply that there is also a negatively curved plane for the Kähler Einstein metric of a C space with toric isotropy and hence disproves $H(k)$ for all k larger than a certain k^{*}. In fact if one relaxes the requirement from positive to nonnegative holomorphic curvature one even obtains an equivalence

Corollary 60. The spaces $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g_{K E}\right)$ have nonnegative holomorphic curvature for all $k \in \mathbb{N}$ if and only if all classical Kähler C spaces have nonnegative holomorphic curvature.

The thesis is structured in the following way. In order to be as self-contained as possible we present in chapter 1 all necessary requirements we will use throughout the thesis, including an introduction to the structure of Kähler C spaces, their Riemannian curvature tensor and the holomorphic curvature tensor. Furthermore, we introduce the general techniques of Tho71] to prove positive curvature. We end the chapter with a description of the algebraic setting for the classical compact simple Lie groups including the definition of their standard complex structures.

Chapter 2 is dedicated to the proof of theorem 22 generalising Itoh's result. This chapter also describes explicitly all spaces to which we can apply the theorem, which are therefore new examples of Kähler C spaces with positive holomorphic curvature.

In chapter 3, we analyse in detail the structure of the holomorphic curvature tensor and how we can apply Thorpe's methods. Furthermore, we present the Kähler Einstein metrics on C spaces in general and in particular for the classical compact simple groups. In the end of the chapter we investigate the question of how strongly the choice of complex structure influences the problems at hand, resulting in the proof of corollary 39 .

Chapter 4 serves two purposes. First, it gives a complete answer to the question of positive holomorphic curvature for Kähler Einstein C spaces with G being the exceptional group G_{2}, i.e. theorem 47. Second, it provides the reader with a small-dimensional example of how we use Thorpe's methods.

In chapter 5 we present a relationship between the holomorphic curvature tensor of the C spaces $\left(G, \mathbb{T}, J_{s t d}\right)$ and $\left(G, K, J_{s t d}\right)$. This will turn out useful in calculations in later chapters. However, as we point out, it is not enough to establish some kind of monotonicity of curvature in the sense of O'Neill's formula for Riemannian submersions.

Chapter 6 is dedicated to the formulation of $H(k)$, its monotonicity in k and the discussion of its consequences including proofs of theorem 59 and corollary 60 .

Chapters 7 and 8 present the holomorphic curvature tensors in the case of classical compact simple groups and the discussion of the case of rank 4, i.e. the proof of $H(4)$.

Chapter 1

Preliminaries

We begin by giving an accurate description of the spaces considered and present how the symmetry translates all geometric objects involved into purely algebraic ones. To do so throughout this section we follow closely the introductory lines of Arv92.

1.1 Reduction to the algebraic setting

Definition 1. A Kähler C space M is a compact simply connected complex homogeneous space that carries a homogeneous Kähler metric.

Then by Wan54 and [BFR86, we know that there is a biholomorphism

$$
M=(G / K, J)
$$

where G is a real semisimple compact Lie group, K is the centralizer of a torus in G and J is a G invariant complex structure. In particular, this implies that G and K share a common maximal torus \mathbb{T} which will allow us to exploit the Lie structure coming from the semisimplicity of G.

Definition 2. The triple (G, K, J) without the choice of a fixed Kähler metric is called a C space.

Remark: We call a Kähler C space simple or classical if the group G is simple or classical. If the Kähler metric is Einstein, we call the space a Kähler Einstein C space.
Let $p=e K \in M=G / K$. Then the following is useful to describe the geometric structures at hand using the homogeneity.

Proposition 3. The restriction to $T_{p} M$ induces one to one correspondences as follows
i) Every homogeneous almost complex structure is uniquely determined by an element $J \in \operatorname{Aut}\left(T_{p} M\right)^{K}$ with $J^{2}=-i d$.
ii) Every homogeneous metric is uniquely determined by a K invariant inner product on $T_{p} M$.
where the superscript K means invariance under the isotropy action of K.
We will use the same notation whether referring to the structure on G / K or its restriction to the tangent space.
Now we observe that by homogeneity of g, J and the Nijenhuis tensor

$$
N_{J}(-,-)=[-,-]+J[J-,-]+J[-, J-]-[J-, J-]
$$

the properties of J being an isometry with respect to g and integrable, i.e. $N_{J}=0$, are true as long as they are true on $T_{p} M$. Hence it is natural to describe the tangent space at p in
more detail. To that end, let $\mathfrak{t} \subset \mathfrak{k} \subset \mathfrak{g}$ be the Lie algebras of $\mathbb{T} \subset K \subset G$. Let B denote the Killing form of G and also its complexification to $\mathfrak{g}^{\mathbb{C}}$ and define $\mathfrak{m}=\mathfrak{k}^{\perp}$ with respect to B. Then it is well known, e. g. from [CE75], that the following map

$$
\begin{aligned}
\pi_{K}: \mathfrak{m} & \rightarrow T_{K}(G / K) \\
X & \mapsto X_{K}^{*}=\left.\frac{d}{d t}\right|_{t=0} \exp (t X) K
\end{aligned}
$$

defines a K equivariant linear isomorphism with respect to the Adjoint action on \mathfrak{m} and the isotropy action on $T_{K}(G / K)$. Therefore, we can describe the metric and complex structure as well as the compatibility and integrability conditions in terms of \mathfrak{m}. After complexification, we have that $\mathfrak{t}^{\mathbb{C}}=\mathfrak{h}$ is a Jordan algebra for $\mathfrak{g}^{\mathbb{C}}$ and we obtain a root space decomposition, where $\Delta_{\mathfrak{g}}$ denotes the root system of G :

$$
\mathfrak{g}^{\mathbb{C}}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta_{\mathfrak{g}}} \mathfrak{g}_{\alpha}
$$

and by regularity of K, we get the further decomposition:

$$
\mathfrak{g}^{\mathbb{C}}=\mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta_{\mathfrak{k}}} \mathfrak{g}_{\alpha} \oplus \bigoplus_{\alpha \in \Delta_{\mathfrak{m}}} \mathfrak{g}_{\alpha}
$$

where $\Delta_{\mathfrak{k}} \subset \Delta_{\mathfrak{g}}$ is the root system of the semisimple part of K and $\Delta_{\mathfrak{m}}=\Delta_{\mathfrak{g}} \backslash \Delta_{\mathfrak{k}}$ is the set of K complementary roots.

1.2 Complex Structure and Metric

By proposition 3 and the isomorphism π_{K} the almost complex structure corresponds to an $A d_{K}$ equivariant map

$$
J: \mathfrak{m} \rightarrow \mathfrak{m}
$$

satisfying $J^{2}=-\mathrm{id}$ and the integrability is equivalent to

$$
N_{J}=0 .
$$

In our particular case, there are significantly more explicit descriptions for the conditions on J and g. To that end, we consider the complexification of \mathfrak{g} as in the previous section and consider the complexified version of J.

Then we get that J is diagonalizable with eigenvalues $\pm i$ and we define $\mathfrak{m}_{ \pm}=E i g_{ \pm i}(J)$. The $A d(\mathbb{T})$ equivariance implies that the eigenspaces are sums of root spaces, i. e. we obtain a decomposition

$$
\Delta_{\mathfrak{m}}=\Delta_{\mathfrak{m}}^{+} \cup \Delta_{\mathfrak{m}}^{-}
$$

where $\Delta_{\mathfrak{m}}^{ \pm}=\left\{\alpha \in \Delta_{\mathfrak{m}} \mid \mathfrak{g}_{\alpha} \subset \mathfrak{m}_{ \pm}\right\}$. Now we analyse what properties for $\Delta_{\mathfrak{m}}^{+}$we can derive from K equivariance and the integrability condition.
First of all, we note that since J is the complexification of a real map it commutes with complex conjugation, which in turn implies

$$
\mathfrak{m}_{-}=\overline{\mathfrak{m}_{+}}
$$

In addition, the fact that the roots take imaginary values on \mathfrak{t} yields $\overline{\mathfrak{g}_{\alpha}}=\mathfrak{g}_{-\alpha}$ and therefore

$$
\Delta_{\mathfrak{m}}^{-}=-\Delta_{\mathfrak{m}}^{+}
$$

The property corresponding to the equivariance of J is obtained from the following. From differentiation, we get that J commutes with $a d_{k}$ for $k \in \mathfrak{g}_{\gamma} \subset \mathfrak{k}^{\mathbb{C}}$. Then we have for $X \in \mathfrak{g}_{\alpha} \subset \mathfrak{m}^{+}$

$$
\begin{aligned}
J([k, X])= & J\left(a d_{k}(X)\right)=a d_{k}(J(X)) \\
& =a d_{k}(i X)=i\left(a d_{k}(X)\right) \\
& =i[k, X] .
\end{aligned}
$$

Since $[k, X]$ is a generator of $\mathfrak{g}_{\alpha+\gamma}$, we obtain the following property for $\Delta_{\mathfrak{m}}^{+}$. Let $\alpha \in \Delta_{\mathfrak{m}}^{+}$ and $\gamma \in \Delta_{\mathfrak{k}}$ with $\alpha+\gamma \in \Delta_{\mathfrak{g}}$ that

$$
\alpha+\gamma \in \Delta_{\mathfrak{m}}^{+}
$$

By the Newlander-Nirenberg theorem, $N_{J}=0$ is equivalent to $\left[\mathfrak{m}_{+}, \mathfrak{m}_{+}\right]_{\mathfrak{m}} \subset \mathfrak{m}_{+}$and hence we derive the property: Let $\alpha, \beta \in \Delta_{\mathfrak{m}}^{+}$with $\alpha+\beta \in \Delta_{\mathfrak{g}}$ then

$$
\alpha+\beta \in \Delta_{\mathfrak{m}}^{+}
$$

In fact we have the following by Arv92, Proposition 2]:
Proposition 4. There is a one to one correspondence between complex structures on G / K and decompositions $\Delta_{\mathfrak{m}}=\Delta_{\mathfrak{m}}^{+} \cup \Delta_{\mathfrak{m}}^{-}$satisfying
i) $\Delta_{\mathfrak{m}}^{-}=-\Delta_{\mathfrak{m}}^{+}$
ii) For $\alpha \in \Delta_{\mathfrak{m}}^{+}$and $\gamma \in \Delta_{\mathfrak{k}}$ with $\alpha+\gamma \in \Delta_{\mathfrak{g}}$, we have

$$
\alpha+\gamma \in \Delta_{\mathfrak{m}}^{+}
$$

iii) For $\alpha, \beta \in \Delta_{\mathfrak{m}}^{+}$with $\alpha+\beta \in \Delta_{\mathfrak{g}}$, we have

$$
\alpha+\beta \in \Delta_{\mathfrak{m}}^{+}
$$

given by $\left.J\right|_{\mathfrak{g}_{\alpha}}=i$ Id $\left.\right|_{\mathfrak{g}_{\alpha}}$ if and only if $\alpha \in \Delta_{\mathfrak{m}}^{+}$.
Now we want to determine similar properties for the K invariant inner product

$$
g: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathbb{R}
$$

defining the metric. Since the killing form B of G is negative definite and biinvariant on \mathfrak{g}, we can write

$$
g(X, Y)=-B(P X, Y)
$$

for all $X, Y \in \mathfrak{m}$ where $P: \mathfrak{m} \rightarrow \mathfrak{m}$ is a positive K equivariant isomorphism. Since we know that \mathfrak{m} decomposes into inequivalent irreducible $A d(\mathbb{T})$ modules $\mathfrak{m}_{\alpha}=\mathfrak{m} \cap\left(\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right)$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}, P$ decomposes into the sum of endomorphisms of the form

$$
P_{\alpha}: \mathfrak{m}_{\alpha} \rightarrow \mathfrak{m}_{\alpha}
$$

with $P_{\alpha}=g_{\alpha} I d_{\mathfrak{m}_{\alpha}}$ by Schur's lemma with $g_{\alpha}>0$. Note that this already ensures that J is an isometry of g, i.e. commutes with P. In particular, this implies that J is an isometry for the killing form. Furthermore, the K equivariance of P implies with $k \in \mathfrak{g}_{\gamma} \subset \mathfrak{k}$ and $X \in \mathfrak{g}_{\alpha} \subset \mathfrak{m}^{+}$

$$
\begin{aligned}
g_{\alpha+\gamma}[k, X] & =P([k, X])=P\left(a d_{k}(X)\right) \\
& =a d_{k}(P(X))=a d_{k}\left(g_{\alpha} X\right)=g_{\alpha}\left(a d_{k}(X)\right) \\
& =g_{\alpha}[k, X] .
\end{aligned}
$$

So we get $g_{\alpha+\gamma}=g_{\alpha}$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}, \gamma \in \Delta_{\mathfrak{k}}$ with $\alpha+\gamma \in \Delta_{\mathfrak{m}}^{+}$. In fact this is also a sufficient condition due to Bor54:

Proposition 5. Every K invariant inner product g on \mathfrak{m} is given by

$$
g=\left.\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} g_{\alpha}(-B)\right|_{\mathfrak{m}_{\alpha} \times \mathfrak{m}_{\alpha}}
$$

for positive constants g_{α} satisfying

$$
g_{\alpha+\gamma}=g_{\alpha}
$$

for $\alpha \in \Delta_{\mathfrak{m}}^{+}, \gamma \in \Delta_{\mathfrak{k}}$ with $\alpha+\gamma \in \Delta_{\mathfrak{m}}^{+}$.

Now we want to consider the additional conditions g has to satisfy in order to induce a Kähler metric on G / K. By definition a hermitian metric g with a complex structure J is Kähler if and only if the induced 2 form is closed, i.e.

$$
d \omega=0
$$

for $\omega(-,-)=g(J-,-)$ being the characteristic two form. In our particular case we see that this implies the following. Let $X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{\beta}$ and $Z \in \mathfrak{g}_{-\alpha-\beta}$ with $\alpha, \beta, \alpha+\beta \in \Delta_{\mathfrak{m}}^{+}$. Then

$$
\begin{aligned}
0 & =d \omega(X, Y, Z) \\
& =\omega([X, Y], Z)+\omega([Z, X], Y)+\omega([Y, Z], X) \\
& =g(J[X, Y], Z)+g(J[Z, X], Y)+g(J[Y, Z], X) \\
& =i g_{\alpha+\beta}(-B)([X, Y], Z)-i g_{\beta}(-B)([Z, X], Y)-i g_{\alpha}(-B)([Y, Z], X) \\
& =i\left(g_{\alpha+\beta}-g_{\alpha}-g_{\beta}\right)(-B)([X, Y], Z)
\end{aligned}
$$

By semisimplicity of G, that implies

$$
g_{\alpha+\beta}=g_{\alpha}+g_{\beta}
$$

Hence we get
Proposition 6 ([WG68]). A inner product on \mathfrak{m} induces a homogeneous Kähler metric on (G, K) with the complex structure J if and only if it is of the form

$$
g=\left.\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} g_{\alpha}(-B)\right|_{\mathfrak{m}_{\alpha} \times \mathfrak{m}_{\alpha}}
$$

for positive constants g_{α} satisfying
i) $g_{\alpha+\gamma}=g_{\alpha}$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}, \gamma \in \Delta_{\mathfrak{k}}$, and $\alpha+\gamma \in \Delta_{m}^{+}$
ii) $g_{\alpha+\beta}=g_{\alpha}+g_{\beta}$ for $\alpha, \beta, \alpha+\beta \in \Delta_{\mathfrak{m}}^{+}$

We see that the second property implies a certain type of additivity. Together with the notion of bases of root systems this can be used to simplify further the construction of Kähler metrics. Since the set $\Delta_{\mathfrak{m}}$ is not a root system in the classical sense, we need to consider in some detail how $\Delta_{\mathfrak{g}}, \Delta_{\mathfrak{k}}$ and $\Delta_{\mathfrak{m}}$ interact. We do so via the following
Proposition 7. Let (G, K, J, g) be a Kähler C space. Then for any choice of positive roots of $\Delta_{\mathfrak{E}}$ there is a unique choice of positive roots $\Delta_{\mathfrak{g}}^{+}$of G such that the following holds
i) $\Delta_{\mathfrak{m}}^{+}$determined by J is exactly $\Delta_{\mathfrak{m}} \cap \Delta_{\mathfrak{g}}^{+}$
ii) $\Delta_{\mathfrak{k}}^{+}=\Delta_{\mathfrak{g}}^{+} \cap \Delta_{\mathfrak{k}}$

In particular, any base of $\Delta_{\mathfrak{k}}$ can be extended to a base of $\Delta_{\mathfrak{g}}$.
Proof. From set theoretic considerations it is clear that the two properties determine $\Delta_{\mathfrak{g}}^{+}$ uniquely. It remains to show, that it is in fact a set of positive roots. As mentioned before, the existence of a Kähler metric forces K to be the centralizer of a torus. In fact, [BFR86] proved that there has to be an $h_{1} \in \mathfrak{z}(\mathfrak{k})$ such that

$$
\omega(X, Y)=B\left(a d_{h_{1}}(X), Y\right)
$$

i.e. $-P \circ J=a d_{h_{1}}$. If we apply this to an $X \in \mathfrak{g}_{\alpha}$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}$we get

$$
\begin{aligned}
\alpha\left(i h_{1}\right) X & =a d_{i h_{1}}(X)=i a d_{h_{1}}(X) \\
& =-i P \circ J(X)=P(X)=g_{\alpha} X
\end{aligned}
$$

Hence $\alpha\left(i h_{1}\right)>0$ for all $\alpha \in \Delta_{\mathfrak{m}}^{+}$and $\gamma\left(i h_{1}\right)=0$ for all $\gamma \in \Delta_{\mathfrak{k}}$ since h_{1} lies in the center of \mathfrak{k}. On the other hand, any choice of positive roots $\Delta_{\mathfrak{k}}^{+}$of $\Delta_{\mathfrak{k}}$ corresponds to an element
$h_{2} \in \mathfrak{h}$ with the property that $\gamma\left(h_{2}\right)>0$ for all positive roots of \mathfrak{k}. This is just the choice of a Weyl Chamber for \mathfrak{k}. Then there has to be a $t>0$ such that with $h_{3}=t i h_{1}+h_{2}$ we have

$$
\alpha\left(h_{3}\right)>0
$$

for all $\alpha \in \Delta_{\mathfrak{m}}^{+} \cup \Delta_{\mathfrak{k}}^{+}$. This proves i) and $i i$). In order to conclude that we can extend bases, we recall that there is a canonical way to obtain a base of a given set of positive roots, i.e. the set of indecomposable roots. The last step is to see that an indecomposable element in $\Delta_{\mathfrak{k}}^{+}$stays indecomposable in $\Delta_{\mathfrak{g}}^{+}$. In fact, let γ be a indecomposable element in $\Delta_{\mathfrak{k}}^{+}$and assume $\gamma=\alpha+\beta$ with $\alpha, \beta \in \Delta_{\mathfrak{g}}^{+} \backslash \Delta_{\mathfrak{k}}=\Delta_{\mathfrak{m}}^{+}$then we have by property $i i$) of proposition 4

$$
-\beta=\alpha-\gamma \in \Delta_{\mathfrak{m}}^{+}
$$

which yields a contradiction.
By the above we can fix a base $\Phi=\Phi_{\mathfrak{k}} \cup \Phi_{\mathfrak{m}}$ of $\Delta_{\mathfrak{g}}^{+}$such that $\Phi_{\mathfrak{k}}$ is a base of $\Delta_{\mathfrak{k}}^{+}$. Let $r=\left|\Phi_{\mathfrak{m}}\right|$. Then we define the following projection:

$$
\begin{align*}
\rho: \Delta_{\mathfrak{g}} & \rightarrow \mathbb{Z}^{r} \tag{1.1}\\
\sum_{\alpha \in \Phi} a_{\alpha} \alpha & \mapsto\left(a_{\alpha}\right)_{\alpha \in \Phi_{\mathfrak{m}}}
\end{align*}
$$

By the properties of the base of a root system, we know $\rho\left(\Delta_{\mathfrak{m}}^{+}\right) \subset \mathbb{N}^{r} \backslash\{0\}$. Furthermore, we know that for any positive root α there is a string of simple roots $\alpha_{1}, \ldots, \alpha_{l}$ whose partial sum $\beta_{s}=\sum_{i=1}^{s} \alpha_{i}$ is a positive root and $\beta_{l}=\alpha$, see [Bou68, p. 159]. These known facts for root systems imply together with proposition 6 the following for the coefficients of a Kähler metric

$$
\begin{equation*}
g_{\alpha}=\sum_{\beta \in \Phi_{\mathfrak{m}}} \rho(\alpha)_{\beta} g_{\beta} . \tag{1.2}
\end{equation*}
$$

This implies that a Kähler metric is completely determined by

$$
r=\left|\Phi_{\mathfrak{m}}\right|=r k(G)-r k\left(K_{s s}\right)=\operatorname{dim}(\mathfrak{z}(\mathfrak{k}))
$$

positive constants where $K_{s s}$ is the semisimple factor of K. We want to remark here that the image of ρ corresponds to the so called \mathfrak{t} roots. For a structured presentation of those we refer the reader to Arv92, Chapter 2]. We reformulate with our notation the following result concerning the decomposition of \mathfrak{m} into irreducible K modules, which will be significant for our first result:

Proposition 8 (Arv92, Theorem 2]). The image of ρ from (1.1) indexes the decomposition of \mathfrak{m} into irreducible $A d_{K}$ modules, i.e.

$$
\mathfrak{m}=\bigoplus_{x \in \rho\left(\Delta_{\mathfrak{m}}^{+}\right)} \mathfrak{m}_{x}
$$

where $\mathfrak{m}_{x}=\oplus_{\alpha \in \rho^{-1}(x)} \mathfrak{m}_{\alpha}$ is irreducible.
In the light of proposition 7 we shift the point of view slightly. Instead of starting with a pair (G, K) and constructing J, i.e. extending a $\Phi_{\mathfrak{k}}$ to Φ, we consider a pair (G, J) where G is a compact semisimple Lie group and J is a complex structure on G / \mathbb{T} and we want to determine the groups $K \subset G$ such that J descends to a complex structure on G / K, i.e. given a Φ we consider the groups K with semisimple part induced by a set $\Phi_{\mathfrak{e}} \subset \Phi$. These observations lead to the following construction of K :
i) Fix a complex structure on G / \mathbb{T}, i.e. a choice of positive roots of G.
ii) Fix a base Φ of simple roots for this choice of positive roots.
iii) Choose an arbitrary subset $\Phi_{\mathfrak{k}} \subset \Phi$ and define $\Delta_{k}=\Delta_{\mathfrak{g}} \cap\left\langle\Phi_{\mathfrak{k}}\right\rangle_{\mathbb{R}}$.
$i v)$ Let K be the connected Lie subgroup of G with Lie algebra

$$
\mathfrak{k}=\mathfrak{g} \cap\left(\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta_{\mathfrak{t}}} \mathfrak{g}_{\alpha}\right)
$$

In fact, the following shows that we obtain all isotropy groups this way.
Proposition 9. Let K be constructed as above, then $\Delta_{\mathfrak{m}}^{+}=\Delta_{\mathfrak{g}}^{+} \backslash \Delta_{\mathfrak{k}}$ satisfies the requirements of proposition 4 and induces a complex structure \bar{J} on G / K. This is the unique complex structure such that the projection

$$
\pi:(G / \mathbb{T}, J) \rightarrow(G / K, \bar{J})
$$

is holomorphic. Equivalently, J is K equivariant. Furthermore, every K leaving J invariant is obtained this way.

Proof. First, we show that $\Delta_{\mathfrak{m}}^{+}$satisfies the requirements of proposition 4 i.e. for $\alpha \in \Delta_{\mathfrak{m}}^{+}$ and $\beta \in \Delta_{\mathfrak{k}} \cup \Delta_{\mathfrak{m}}^{+}$with $\alpha+\beta \in \Delta_{\mathfrak{g}}$ we have $\alpha+\beta \in \Delta_{\mathfrak{m}}^{+}$. Since every root is a linear combination of the simple roots Φ with either all positive or all negative coefficient it is sufficient to show that there are positive coefficients in the expression of $\alpha+\beta$ in terms of Φ. This follows easily from the simple fact that $\rho(\alpha+\beta)=\rho(\alpha)+\rho(\beta)$ lies in $\mathbb{N}^{r} \backslash\{0\}$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}$and $\beta \in \Delta_{\mathfrak{m}}^{+} \cup \Delta_{\mathfrak{k}}$. The fact that the projection is holomorphic is immediate since J and \bar{J} coincide when pulled back to \mathfrak{m}.

That any K arises this way is just proposition 7 and the trivial observation that an indecomposable element in $\Delta_{\mathfrak{g}}^{+}$is also indecomposable in $\Delta_{\mathfrak{k}}^{+}$.

1.3 Painting Dynkin diagrams

Uniting propositions 7 and 9 we obtain the following
Theorem 10. Consider (G, \mathbb{T}, J), where G is a compact semisimple Lie group, \mathbb{T} its maximal torus and J a complex structure on G / \mathbb{T}. Let $D=(V, E)$ be the Dynkin diagram corresponding to the base Φ of positive roots determined by J. Then every subgroup $K \subset G$ leaving J invariant corresponds to the choice of a set $V_{K} \subset V$. In particular, $K=\mathbb{T} K_{\text {ss }}$ where the semisimple part $K_{\text {ss }}$ has the Dynkin diagram

$$
D_{K}=\left(V_{K}, E_{K}\right)
$$

where $E_{K}=\left\{(v, w) \in E \mid v, w \in V_{K}\right\}$.

Remark:

1) This can be visualized by painting the sub Dynkin diagram $D_{K} \subset D$ black. This will be used frequently throughout the following chapters.
2) Remember that the vertices of the Dynkin diagram are exactly the simple roots, i.e. V_{K} corresponds to $\Phi_{\mathfrak{k}}$.

As an example we present the painted Dynkin diagram representing the Kähler C space

$$
S O(9) / \mathbb{T}^{2} S O(5)
$$

for $S O(5)$ being the lower 5×5 block in $S O(9)$ together with the complex structure $J_{s t d}$ which will be defined later:

1.4 Riemannian Curvature Tensor

1.4.1 Chevalley Basis

We begin this chapter with the choice of a special basis, which will be useful for explicit calculations of the curvature tensor.
By non degeneracy of B on \mathfrak{h} there is a unique element $H_{\alpha} \in \mathfrak{h}$ satisfying

$$
\begin{equation*}
B\left(H_{\alpha}, H\right)=\alpha(H) \tag{1.3}
\end{equation*}
$$

for all $H \in \mathfrak{h}$. It is known, that $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right.$] is one dimensional and spanned by H_{α}. Hence the interesting properties of the following are actually the later two. Then we can get the following basis:

Proposition 11 ([Hel01]). There exists a basis $\mathcal{B}=\left\{E_{\alpha} \in \mathfrak{g}_{\alpha} \mid \alpha \in \Delta_{\mathfrak{g}}\right\}$ of $\bigoplus_{\alpha \in \Delta_{\mathfrak{g}}} \mathfrak{g}_{\alpha}$ satisfying the following conditions:
i) $\left[E_{\alpha}, E_{-\alpha}\right]=z_{\alpha} H_{\alpha}$ for $\alpha \in \Delta_{\mathfrak{g}}$ and $z_{\alpha} \in \mathbb{C}$.
ii) $\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha, \beta} E_{\alpha+\beta}$ for $\alpha \neq \beta$
iii) $\overline{E_{\alpha}}=-E_{-\alpha}$.

The $N_{\alpha, \beta}$ satisfy the following relations:
a) $N_{\alpha, \beta}=0$ if $\alpha+\beta \notin \Delta_{\mathfrak{g}}$
b) $N_{-\alpha,-\beta}=-N_{\alpha, \beta}$

Remark: Furthermore, it is possible to require the z_{α} to be 1 for all α. We refrain from requiring it, since the above is strong enough to make actual calculations and it is easier to find a basis with arbitrary z_{α}. In addition, we observe that it is easy to determine $z_{\alpha}=B\left(E_{\alpha}, E_{-\alpha}\right)$ since

$$
\alpha(H) B\left(E_{\alpha}, E_{-\alpha}\right)=B\left(H,\left[E_{\alpha}, E_{-\alpha}\right]\right)=z_{\alpha} \alpha(H)
$$

holds for all H. This implies the z_{α} to be real and $z_{-\alpha}=z_{\alpha}$.

1.4.2 Curvature formulae

Now we turn over to the Riemannian curvature tensor. To that end, let $U: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ be the symmetric tensor defined by

$$
2 g(U(X, Y), Z)=g\left(a d_{Z} X, Y\right)+g\left(X, a d_{Z} Y\right)
$$

This enables us to define

$$
\begin{aligned}
\Lambda: \mathfrak{m} \times \mathfrak{m} & \rightarrow \mathfrak{m} \\
(X, Y) & \mapsto \frac{1}{2}[X, Y]_{\mathfrak{m}}+U(X, Y)
\end{aligned}
$$

where the index \mathfrak{m} denotes the projection. Due to Nom54 with this notation the curvature tensor is given by

$$
\begin{gathered}
R(X, Y): \mathfrak{m} \rightarrow \mathfrak{m} \\
Z \mapsto-[\Lambda(X), \Lambda(Y)] Z+\Lambda\left([X, Y]_{\mathfrak{m}}\right) Z+\left[[X, Y]_{\mathfrak{k}}, Z\right]
\end{gathered}
$$

As before we will denote the complexifications with the same symbol. Furthermore, we want to remark here that with this sign convention the sectional curvature is given by

$$
\sec (X \wedge Y)=\frac{g(R(X, Y) X, Y)}{\|X \wedge Y\|^{2}}
$$

In the case of C spaces with the root space decomposition of \mathfrak{m} there are nice descriptions for U and Λ. The following results are due to [Ito78, Chapter 2]. However, he did not seem to have stated all cases we need in proposition 16. which is why we present the results here together with their proofs. Note that in general, for the complexification of a real bilinear form q, we have

$$
q(\bar{x}, \bar{y})=\overline{q(x, y)}
$$

and therefore the following determines U and Λ completely:
Proposition 12. Let $X_{\alpha} \in \mathfrak{g}_{\alpha}, X_{\beta} \in \mathfrak{g}_{\beta}$. Then we have
i) $U\left(X_{\alpha}, X_{\beta}\right)=\frac{g_{\beta}-g_{\alpha}}{2 g_{\alpha+\beta}}\left[X_{\alpha}, X_{\beta}\right]_{\mathfrak{m}}{ }^{\mathbb{C}}$
ii) $U\left(X_{\alpha}, \overline{X_{\beta}}\right)=\left\{\begin{array}{cl}\frac{1}{2}\left[X_{\alpha}, \overline{X_{\beta}}\right]_{\mathfrak{m}} \mathrm{C} & \alpha-\beta \in \Delta_{\mathfrak{m}}^{-} \\ -\frac{1}{2}\left[X_{\alpha}, \overline{X_{\beta}}\right]_{\mathfrak{m} \mathfrak{c}} & \alpha-\beta \in \Delta_{\mathfrak{m}}^{+} \\ 0 & \text { otherwise }\end{array}\right.$

This implies for Λ
i) $\Lambda\left(X_{\alpha}\right)\left(X_{\beta}\right)=\frac{g_{\beta}}{g_{\alpha+\beta}}\left[X_{\alpha}, X_{\beta}\right]_{\mathfrak{m}^{+}}$
ii) $\Lambda\left(X_{\alpha}\right)\left(\overline{X_{\beta}}\right)=\left[X_{\alpha}, \overline{X_{\beta}}\right]_{\mathfrak{m}-}$

Proof. This follows straightforward from the expression of the metric. For brevity we write only here $X_{-\beta}=\overline{X_{\beta}}$, note that this is not a Chevalley basis. In fact, we get

$$
\begin{aligned}
2 g\left(U\left(X_{\alpha}, X_{ \pm \beta}\right), Z\right) & =g_{\beta}(-B)\left(\left[Z, X_{\alpha}\right], X_{ \pm \beta}\right)+g_{\alpha}(-B)\left(X_{\alpha},\left[Z, X_{ \pm \beta}\right]\right) \\
& =\left(g_{\beta}-g_{\alpha}\right)(-B)\left(\left[X_{\alpha}, X_{ \pm \beta}\right], Z\right) \\
& =\frac{\left(g_{\beta}-g_{\alpha}\right)}{g_{\gamma}} g\left(\left[X_{\alpha}, X_{ \pm \beta}\right], Z\right)
\end{aligned}
$$

if $\left[X_{\alpha}, X_{ \pm \beta}\right] \in \mathfrak{g}_{\gamma}$. Going through the different possibilities for γ one obtains the claimed equalities. The equations for Λ are immediate consequences.

A interesting fact is the following
Proposition 13. For $X, Y \in \mathfrak{m}^{+}$and $Z \in \mathfrak{m}^{\mathbb{C}}$ we have

$$
R(X, Y) Z=0=R(\bar{X}, \bar{Y}) Z
$$

Proof. Notice, that from proposition 12 we get that $\Lambda(Z): \mathfrak{m}^{ \pm} \rightarrow \mathfrak{m}^{ \pm}$and therefore also $R(Z, V): \mathfrak{m}^{ \pm} \rightarrow \mathfrak{m}^{ \pm}$for any $Z, V \in \mathfrak{m}^{\text {C }}$. If we restrict now to X, Y being both either in \mathfrak{m}^{+} or \mathfrak{m}^{-}we obtain for $Z, V \in \mathfrak{m}^{\mathbb{C}}$

$$
\begin{aligned}
g(R(X, Y) Z, V) & =g(R(Z, V) X, Y) \\
& =g(J(R(Z, V) X), J Y) \\
& =-g(R(Z, V) X, Y) \\
& =-g(R(X, Y) Z, V)
\end{aligned}
$$

which concludes the proof by non degeneracy of g.
The above proposition has two crucial consequences, the first being that the only non vanishing curvatures are in

$$
\mathfrak{m}^{+} \times \mathfrak{m}^{-} \times \mathfrak{m}^{+} \times \mathfrak{m}^{-}
$$

and its complex conjugate. The second consequence being being the following
Lemma 14. Let $X, Y, V, W \in \mathfrak{m}^{+}$then the following symmetry holds

$$
R(X, \bar{Y}, V, \bar{W})=R(X, \bar{W}, V, \bar{Y})
$$

Proof. By the first Bianchi identity, we have

$$
R(X, \bar{Y}, V, \bar{W})+R(\bar{Y}, V, X, \bar{W})+g(R(V, X) \bar{Y}, \bar{W})=0
$$

The last term is zero by proposition 13 and the second term equals $-R(X, \bar{W}, V, \bar{Y})$ by the standard symmetries of the curvature tensor.

Now, we calculate the curvatures in terms of the Chevalley basis defined in proposition 11. In order to keep the calculations and the notation simple, we assume an ordering on the positive roots with the following properties
i) If $\alpha<\beta$ then $\alpha-\beta \notin \Delta_{\mathfrak{m}}^{+}$.
ii) If $\alpha<\beta$ and $\gamma \leq \delta$ then $\alpha+\gamma<\beta+\delta$.

It is easy to construct such an ordering in terms of simple roots as we can see in the following.
Proposition 15. Let $\varepsilon_{1}, . ., \varepsilon_{n}$ be the set of simple roots of $\Delta_{\mathfrak{g}}^{+}$. The ordering $"<"$ on $\Delta_{\mathfrak{g}}^{+}$ given by

$$
\alpha=\sum_{i=1}^{r} n_{i} \varepsilon_{i}<\beta=\sum_{i=1}^{r} m_{i} \varepsilon_{i}
$$

if and only if $n_{i^{*}}<m_{i^{*}}$ with $i^{*}=\min \left\{i \mid m_{i} \neq n_{i}\right\}$ satisfies properties $\left.i\right)$ and ii) and its restriction to $\Delta_{\mathfrak{m}}^{+}$is a ordering as desired.
Proof. For the first part we notice that every positive root is a linear combination of simple roots with nonnegative coefficients. Hence if $\alpha<\beta$ then the first non vanishing coefficient of $\alpha-\beta$ is negative and therefore $\alpha-\beta$ can not be a positive root. The second property is a straightforward calculation.

Now we turn to the curvature formulas. To that end we fix a Chevalley basis as in proposition 11. Then let

$$
R_{\alpha \beta \gamma \delta}=g\left(R\left(E_{\alpha}, E_{-\beta}\right) E_{\gamma}, E_{-\delta}\right)
$$

for $\alpha, \beta, \gamma, \delta \in \Delta_{\mathfrak{m}}^{+}$.
Proposition 16 ([Ito78]). Then we have that

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=0 \text { unless } \alpha+\gamma=\beta+\delta \tag{1.4}
\end{equation*}
$$

completely determined by $R_{\alpha \beta \gamma \delta}$ with $\alpha \leq \beta, \delta \leq \gamma$ and $\alpha-\beta=\delta-\gamma$. In that case we have

Case	$(\alpha, \beta, \gamma, \delta)$		$R_{\alpha \beta \gamma \delta}$
$I a$	$\alpha-\beta=0$	$\gamma-\beta \in \Delta_{\mathfrak{m}}^{+}$	$-g_{\alpha}\left(z_{\alpha} z_{\gamma}(\alpha, \gamma)+z_{\alpha+\gamma} \frac{g_{\alpha}}{g_{\alpha+\gamma}} N_{\alpha, \gamma}^{2}\right)$
$I b$		otherwise	$-g_{\gamma}\left(z_{\alpha} z_{\gamma}(\alpha, \gamma)+z_{\alpha+\gamma} \frac{g_{\gamma}}{g_{\alpha+\gamma}} N_{\alpha, \gamma}^{2}\right)$
$I I a$	$\alpha-\beta \neq 0$	$\gamma-\beta \in \Delta_{\mathfrak{m}}^{+}$	$-g_{\alpha} z_{\alpha-\beta} N_{\alpha,-\beta} N_{\gamma,-\delta}-z_{\alpha+\gamma} \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\gamma}} N_{\alpha, \gamma} N_{\beta, \delta}$
$I I b$		otherwise	$-g_{\delta} z_{\alpha-\beta} N_{\alpha,-\beta} N_{\gamma,-\delta}-z_{\alpha+\gamma} \frac{g_{\gamma} g_{\delta}}{g_{\alpha+\gamma}} N_{\alpha, \gamma} N_{\beta, \delta}$

Here, we denote $(\alpha, \beta)=B\left(H_{\alpha}, H_{\beta}\right)$.
Proof. Let us consider $R\left(E_{\alpha}, E_{-\beta}\right) E_{\gamma}$ first.

$$
\begin{align*}
R\left(E_{\alpha}, E_{-\beta}\right) E_{\gamma}= & -\left[\Lambda\left(E_{\alpha}\right), \Lambda\left(E_{-\beta}\right)\right] E_{\gamma}+\Lambda\left(\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{\mathbb{c}}}\right) E_{\gamma}+\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{k}^{\mathfrak{c}}}, E_{\gamma}\right] \\
= & -\Lambda\left(E_{\alpha}\right)\left(\Lambda\left(E_{-\beta}\right)\left(E_{\gamma}\right)\right) \\
& +\Lambda\left(E_{-\beta}\right)\left(\Lambda\left(E_{\alpha}\right)\left(E_{\gamma}\right)\right) \\
& +\Lambda\left(\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{\mathbb{C}}}\right) E_{\gamma} \\
& +\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{k}^{\mathfrak{c}}}, E_{\gamma}\right] \tag{1.5}
\end{align*}
$$

Using the equations from proposition 12, we see that the above equals

$$
\begin{align*}
\boxed{1.5}= & -\frac{g_{\gamma-\beta}}{g_{\alpha+\gamma-\beta}}\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}} \tag{1.6}\\
& +\frac{g_{\gamma}}{g_{\alpha+\gamma}}\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}} \tag{1.7}\\
& +\frac{g_{\gamma}}{g_{\gamma+\alpha-\beta}}\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}} \tag{1.8}\\
& +\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{-}}, E_{\gamma}\right]_{\mathfrak{m}^{+}} \tag{1.9}\\
& +\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{k}}, E_{\gamma}\right]_{\mathfrak{m}^{+}} \tag{1.10}
\end{align*}
$$

Analysing these expressions we get that they either vanish or lie in $\mathfrak{g}_{\alpha+\gamma-\beta}$ if $\alpha+\gamma-\beta \in$ $\Delta_{\mathfrak{m}}^{+}$. Therefore, we get

$$
R_{\alpha \beta \gamma \delta}=0 \text { unless } \delta=\alpha+\gamma-\beta \in \Delta_{\mathfrak{m}}^{+}
$$

which proves the first claim. For the second claim, note that the symmetries of the curvature tensor, that it commutes with complex conjugation and the result of lemma 14 imply the following symmetries

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=\overline{R_{\beta \alpha \delta \gamma}}=R_{\alpha \delta \gamma \beta}=R_{\gamma \delta \alpha \beta} . \tag{1.11}
\end{equation*}
$$

Notice that all of these operations maintain $\alpha-\beta=\delta-\gamma$ and that they allow us to assume that α is a smallest root within $\{\alpha, \beta, \gamma, \delta\}$ with respect to the ordering on $\Delta_{\mathfrak{m}}^{+}$. That leads to the following case distinction:
I If $\alpha=\beta$, then we have automatically $\gamma=\delta$ and the curvature entry in question is $R_{\alpha \alpha \gamma \gamma}$.

II If $\alpha<\beta$ then $\delta<\gamma$. In fact, if $\gamma \leq \delta$ then $\alpha+\gamma<\delta+\beta$ which is a contradiction to $\alpha-\beta=\delta-\gamma$. Therefore, the entry in question is $R_{\alpha \beta \gamma \delta}$ with $\alpha<\beta$ and $\delta<\gamma$.

Now we continue the calculation of (1.5) with the restriction that $\alpha-\beta=\delta-\gamma, \alpha \leq \beta$ and $\delta \leq \gamma$. From the first property of our ordering, we get that $\alpha-\beta \notin \Delta_{\mathfrak{m}}^{+}$and therefore $1.8=0$ and 1.9$)+1.10)=\left[\left[E_{\alpha}, E_{-\beta}\right], E_{\gamma}\right]_{\mathfrak{m}^{+}}$. Pairing this with $g\left(-, E_{-\delta}\right)=g_{\delta}(-B)\left((-)_{\mathfrak{g}_{\delta}}, E_{-\delta}\right)$ yields

$$
\begin{aligned}
(1.5)= & \begin{cases}-g_{\gamma-\beta} B\left(\left[E_{-\beta}, E_{\gamma}\right],\left[E_{\alpha}, E_{-\delta}\right]\right) & \gamma-\beta \in \Delta_{\mathfrak{m}}^{+} \\
0 & \text { otherwise }\end{cases} \\
& +\frac{g_{\gamma} g_{\delta}}{g_{\alpha+\gamma}} B\left(\left[E_{\alpha}, E_{\gamma}\right],\left[E_{-\beta}, E_{-\delta}\right]\right) \\
& -g_{\delta} B\left(\left[E_{\alpha}, E_{-\beta}\right],\left[E_{\gamma}, E_{-\delta}\right]\right)
\end{aligned}
$$

Now we consider the two cases of the first term. To that end assume $\gamma-\beta \in \Delta_{\mathfrak{m}}^{+}$. Using the biinvariance of B and the Jacobi identity, i.e.

$$
\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]\right]=\left[\left[E_{\alpha}, E_{-\beta}\right], E_{\gamma}\right]+\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]\right] .
$$

We obtain

$$
\begin{aligned}
&-g_{\gamma-\beta} B\left(\left[E_{-\beta}, E_{\gamma}\right],\left[E_{\alpha}, E_{-\delta}\right]\right)=-g_{\gamma-\beta} B\left(\left[E_{\alpha}, E_{\gamma}\right],\left[E_{-\beta}, E_{-\delta}\right]\right) \\
& g_{\gamma-\beta} B\left(\left[E_{\alpha}, E_{-\beta}\right],\left[E_{\gamma}, E_{-\delta}\right]\right),
\end{aligned}
$$

which leaves us with

$$
\begin{aligned}
1.5]= & \left(\frac{g_{\gamma} g_{\delta}}{g_{\alpha+\gamma}}-g_{\gamma-\beta}\right) B\left(\left[E_{\alpha}, E_{\gamma}\right],\left[E_{-\beta}, E_{-\delta}\right]\right) \\
& \left(g_{\gamma-\beta}-g_{\delta}\right) B\left(\left[E_{\alpha}, E_{-\beta}\right],\left[E_{\gamma}, E_{-\delta}\right]\right) \\
= & \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\gamma}} B\left(\left[E_{\alpha}, E_{\gamma}\right],\left[E_{-\beta}, E_{-\delta}\right]\right) \\
& -g_{\alpha} B\left(\left[E_{\alpha}, E_{-\beta}\right],\left[E_{\gamma}, E_{-\delta}\right]\right)
\end{aligned}
$$

On the other hand, if $\gamma-\beta \notin \Delta_{\mathfrak{m}}^{+}$then

$$
\begin{aligned}
1.5)= & \frac{g_{\gamma} g_{\delta}}{g_{\alpha+\gamma}} B\left(\left[E_{\alpha}, E_{\gamma}\right],\left[E_{-\beta}, E_{-\delta}\right]\right) \\
& -g_{\delta} B\left(\left[E_{\alpha}, E_{-\beta}\right],\left[E_{\gamma}, E_{-\delta}\right]\right)
\end{aligned}
$$

Using now the z_{α} and $N_{\alpha, \beta}$ from proposition 11 the entries of the table follow in a straightforward fashion. Furthermore, we see that $R_{\alpha \beta \gamma \delta}$ is a real number and hence in 1.11) we can actually drop the complex conjugation.

1.5 The holomorphic curvature tensor

We are interested in the holomorphic sectional curvature of a Kähler C space (G, K, J, g), i.e.

$$
H(X)=\sec (X \wedge J X)
$$

for a non zero vector $X \in \mathfrak{m}$. In particular, we want to show that H is positive. As we will see in theorem 22 the actual function H becomes fairly complicated if \mathfrak{m} decomposes in a large number of K modules, hence we present the alternative approach using the curvature tensor and its modifications. This technique is due to Tho71 and explicitly for the holomorphic curvature tensor to [GZ81. The curvature tensor is defined as the symmetric tensor,

$$
\begin{aligned}
R: \Lambda^{2}(T M) \times \Lambda^{2}(T M) & \rightarrow \mathbb{R} \\
(X \wedge Y, V \wedge W) & \mapsto R(X, Y, V, W)
\end{aligned}
$$

Using the identification via π_{K}, we have

$$
\Lambda^{2}(T M)=\Lambda^{2}(\mathfrak{m})
$$

and the map $J: \mathfrak{m} \rightarrow \mathfrak{m}$ induces a map, also denoted as J, on the two forms with the property $J^{2}=i d_{\Lambda^{2}(\mathfrak{m})}$. By an easy calculation all complex planes $X \wedge J X$ are in the eigenspace of J of the eigenvalue one. Therefore, we are interested in the restriction of the curvature tensor to this eigenspace.

Definition 17. We call the restriction of R to $\operatorname{Fix}(J) \subset \Lambda^{2}(\mathfrak{m})$ the holomorphic curvature tensor and denote it by H.

Remark: If the holomorphic curvature tensor is positive definite, then the holomorphic sectional curvature is positive In fact we have for a unit vector $X \in \mathfrak{m}$

$$
0<H(X \wedge J X, X \wedge J X)=R(X, J X, X, J X)=\sec (X \wedge J X)=H(X)
$$

Unfortunately, it is possible to have positive holomporphic sectional curvature without the tensor actually being positive, therefore it is of great interest how one may modify the tensor without changing the holomorphic sectional curvature. The first approach is the idea due to Thorpe to add a symmetric tensor ω to H with the property that $\omega(X \wedge J X, X \wedge J X)=0$. In that case one would have that

$$
\begin{equation*}
(H+\omega)(X \wedge J X, X \wedge J X)=H(X) \tag{1.12}
\end{equation*}
$$

but $H+\omega$ is a different tensor, that might be positive definite. Therefore, one way to prove positive holomorphic sectional curvature would be to determine a ω as above such that $H+\omega$ is a positive tensor.

1.6 Modifying the holomorphic curvature tensor

This section is dedicated to the detailed discussion of how one can modify the curvature tensor by adding suitable symmetric tensors on $\Lambda^{2}(\mathfrak{m})$ introduced by Tho71. It turns out
the suitable tensors are induced by four forms on \mathfrak{m}. We want to determine how adding one of these forms changes the curvature tensor. To that purpose, let us revisit how a four-form may be added to a symmetric form on $\Lambda^{2}(\mathfrak{m})$. Since we fixed a Kähler C space (G, K, J, g) we simplify notation slightly denoting the metric as

$$
g(-,-)=\langle-,-\rangle .
$$

This induces an inner product on $\Lambda^{l}(\mathfrak{m})$ via

$$
\left\langle x_{1} \wedge \ldots \wedge x_{l}, y_{1} \wedge \ldots \wedge y_{l}\right\rangle_{\Lambda^{l} \mathfrak{m}}=\operatorname{det}\left(\left\langle x_{i}, y_{j}\right\rangle\right)
$$

If we extend the action of K as usual via

$$
\begin{aligned}
& A d_{k}: \Lambda^{l}(\mathfrak{m}) \\
& x_{1} \wedge \ldots \wedge \Lambda^{l}(\mathfrak{m}) \\
& x_{l} \mapsto A d_{k}\left(x_{1}\right) \wedge \ldots \wedge A d_{k}\left(x_{l}\right),
\end{aligned}
$$

K acts via isometries on $\Lambda^{l}(\mathfrak{m})$. Then we see that a four form ω induces a symmetric bilinear form on $\Lambda^{2}(\mathfrak{m})$ via

$$
\omega \mapsto \omega^{\prime}=\langle\omega,-\wedge-\rangle_{\Lambda^{4} \mathfrak{m}} .
$$

As mentioned before, adding such an ω^{\prime} changes the holomorphic curvature tensor but since

$$
\omega^{\prime}(X \wedge Y, X \wedge Y)=\langle\omega, X \wedge Y \wedge X \wedge Y\rangle_{\Lambda^{4}(\mathfrak{m})}=0
$$

holds the quadratic form induced by $H+\omega^{\prime}$ is the same as the holomorphic sectional curvature. Therefore this is a viable technique to prove positivity.

However, it is a hard problem to determine a suitable ω^{\prime} or proof its non existence. Bearing that in mind there still are some observations simplifying the search for ω^{\prime}.

We remark that any arbitrary choice of ω^{\prime} is allowed to be added even though it might not be K invariant and hence $H+\omega^{\prime}$ would not be well defined on all of G / K. In fact the positivity of $H+\omega^{\prime}$ implies the positivity of the holomorphic sectional curvature at this point, which is now invariant under K and therefore positive everywhere. On the other hand, the following lemma is still useful since it allows us to decrease the dimension of the space of allowed forms, which makes the search easier.

Lemma 18. Let $\omega \in \Lambda^{4}(\mathfrak{m})$ such that $H+\omega^{\prime}$ is positive definite then

$$
H+\frac{1}{\operatorname{vol}(K)} \int_{K} A d_{k}^{*} \omega^{\prime} d K
$$

is positive definite where $d K$ is a biinvariant volume form on K.
Proof. The proof is an easy averaging calculation.

1.7 Relevant invariant forms

Since the holomorphic curvature tensor is the restriction to $\operatorname{Fix}(J)$ also for the four forms we are only interested in their inner products with $\operatorname{Fix}(J) \wedge \operatorname{Fix}(J)$. Hence the four forms in $(\operatorname{Fix}(J) \wedge \operatorname{Fix}(J))^{\perp}$ do not change the holomorphic curvature tensor at all. Therefore, we may restrict our attention to forms in $\operatorname{Fix}(J) \wedge \operatorname{Fix}(J)$. Considering that, if at all possible, positivity can be achieved via adding a invariant four form by lemma 18 and the isotropy subgroup of a C space contains always a maximal torus, we can restrict our attention to the \mathbb{T} invariant four forms in $\operatorname{Fix}(J) \wedge \operatorname{Fix}(J)$. We call those relevant forms. In the following we show what characterizes relevant forms. To that end we define with the basis from proposition 11 the following

$$
E_{(\alpha, \beta, \gamma, \delta)}=E_{\alpha} \wedge E_{\beta} \wedge E_{\gamma} \wedge E_{\delta}
$$

Proposition 19. Let ω be a four form. Then we have that \mathbb{T} invariance is characterized by
i) ω is \mathbb{T} invariant iff $\left.\frac{d}{d t}\right|_{t=0} A d_{\exp (t H)} \omega=0$ for all $H \in \mathfrak{h}=\mathfrak{t}^{\mathbb{C}}$.
ii) $\left.\frac{d}{d t}\right|_{t=0} A d_{\exp (t H)} E_{(\alpha, \beta, \gamma, \delta)}=(\alpha+\beta+\gamma+\delta)(H) E_{(\alpha, \beta, \gamma, \delta)}$
and J invariance means
iii) $J\left(E_{(\alpha, \beta, \gamma, \delta)}\right)=E_{(\alpha, \beta, \gamma, \delta)}$ iff $\left|\{\alpha, \beta, \gamma, \delta\} \cap \Delta_{\mathfrak{m}}^{+}\right| \in\{0,2,4\}$

Proof. Part i) follows from the fact that $A d$ is a group homomorphism and $i i$) is a straight forward calculation using the fact that the E_{α} are root vectors. Similarly, iii) follows by the definition of $\Delta_{\mathfrak{m}}^{ \pm}$, i.e. $J\left(E_{ \pm \alpha}\right)= \pm i E_{ \pm \alpha}$ for $\alpha \in \Delta_{\mathfrak{m}}^{+}$.

This leads us easily to
Proposition 20. The real vectorspace of relevant forms is spanned by

$$
E_{\alpha,-\beta, \gamma,-\delta}+\overline{E_{\alpha,-\beta, \gamma,-\delta}} \quad \text { and } \quad i\left(E_{\alpha,-\beta, \gamma,-\delta}-\overline{E_{\alpha,-\beta, \gamma,-\delta}}\right)
$$

with $\alpha+\gamma=\beta+\delta$ and $\alpha, \beta, \gamma, \delta \in \Delta_{\mathfrak{m}}^{+}$.
Remark: Note, that $\overline{E_{\alpha,-\beta, \gamma,-\delta}}=E_{\beta,-\alpha, \delta,-\gamma}$ holds.
Proof. Let $\omega \in \Lambda^{4}(\mathfrak{m})^{\mathbb{C}}$ be \mathbb{T} and J invariant with $\omega=\bar{\omega}$. Then we can write

$$
\omega=\sum_{I=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)} \lambda_{I} E_{I}
$$

with $\lambda_{I} \in \mathbb{C}$ for linear independent E_{I}. By Proposition 19 ii) and $i i i$) we have that $\left|I \cap \Delta_{\mathfrak{m}}^{+}\right|=2$. After possible reordering inside of I we have $E_{I}=E_{\alpha,-\beta, \gamma,-\delta}$ and $\alpha+\gamma=\beta+\delta$. Furthermore we obtain from $\omega=\bar{\omega}$ that $\lambda_{-I}=\overline{\lambda_{I}}=a_{I}-i b_{I}$ and therefore

$$
\begin{aligned}
\omega & =\frac{1}{2} \sum \lambda_{I} E_{I}+\overline{\lambda_{I} E_{I}} \\
& =\frac{1}{2} \sum a_{I}\left(E_{I}+\overline{E_{I}}\right)+b_{I} i\left(E_{I}-\overline{E_{I}}\right)
\end{aligned}
$$

We observe here that since

$$
\left\langle E_{\alpha}, E_{\beta}\right\rangle=g_{\alpha}(-B)\left(E_{\alpha}, E_{\beta}\right)= \begin{cases}-z_{\alpha} g_{\alpha} & \beta=-\alpha \\ 0 & \beta \neq-\alpha\end{cases}
$$

the value of $\left\langle E_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)}, E_{\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)}\right\rangle$ is a real number and vanishes unless there is a bijection $\sigma \in S_{4}$ such that $\beta_{i}=-\alpha_{\sigma(i)}$ and in that case we have

$$
\begin{equation*}
\left\langle E_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)}, E_{\left(-\alpha_{\sigma(1)},-\alpha_{\sigma(2)},-\alpha_{\sigma(3)},-\alpha_{\sigma(4)}\right)}\right\rangle_{\Lambda^{4}(\mathfrak{m})}=\operatorname{sign}(\sigma) \prod_{i=1}^{4} z_{\alpha_{i}} g_{\alpha_{i}} . \tag{1.13}
\end{equation*}
$$

1.8 Algebraic structure of the classical groups

Since every Kaehler C space comes from a semisimple compact group G and the centralizer K of a torus in G, we get that the decomposition of $G=G_{1} \times \ldots \times G_{l}$ into simple factors induces a decomposition of $K=K_{1} \times \ldots \times K_{l}$ with $K_{i} \subset G_{i}$. By representation theory, every K invariant complex structure J and a corresponding Kähler metric g decompose into complex structures and Kähler metrics on G_{i} / K_{i}, i.e. we have

$$
(G / K, J, g)=\left(\prod_{i=1}^{l} G_{i} / K_{i}, \oplus_{i=1}^{l} J_{i}, \oplus_{i=1}^{l} g_{i}\right)=\prod_{i=1}^{l}\left(G_{i} / K_{i}, J_{i}, g_{i}\right) .
$$

A straightforward calculation using the standard properties of the connections of Riemannian product manifolds yields that for two hermitian manifolds (M_{i}, J_{i}, g_{i}) with $i=1,2$ we have that the holomorphic sectional curvature of a tangent vector $V=X_{1}+X_{2}$ on the product manifold ($M_{1} \times M_{2}, J_{1} \oplus J_{2}, g_{1} \oplus g_{2}$) is given by

$$
H\left(X_{1}+X_{2}\right)=\frac{\left\|X_{1}\right\|^{4}}{\left\|X_{1}+X_{2}\right\|^{4}} H_{1}\left(X_{1}\right)+\frac{\left\|X_{2}\right\|^{4}}{\left\|X_{1}+X_{2}\right\|^{4}} H_{2}\left(X_{2}\right)
$$

Consequently, it is sufficient to show positivity separately for every factor.
Hence we restrict to the Kähler C spaces with simple compact isometry group. These are classified by connected Dynkin diagrams, i.e. the classical groups corresponding to the families $A_{n}, B_{n}, C_{n}, D_{n}$ for $n \in \mathbb{N}$ and the exceptional ones corresponding to $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$. In the following, we present the algebraic structure of the simple classical compact groups. The choice of basis used are motivated by [Hel01, Chapter 8]. To that end let $E_{k l} \in \mathfrak{g l}_{m}(\mathbb{K})$ for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ be the matrix with

$$
\left(E_{k l}\right)_{i j}=\delta_{k i} \delta_{l j}
$$

where δ denotes the Kronecker delta. Furthermore, let $F_{k l}=E_{l k}-E_{k l}$ be the skew symmetric matrix with -1 at the entry (k, l).

1.8.1 Family $A_{n}: S U(n+1)$

In this section we describe the algebraic setting of the Lie group $S U(n+1)$, including a Chevalley basis and the structure constants. We choose the maximal torus to be the standard diagonal torus in $S U(n+1)$, i.e.

$$
\mathbb{T}=\left\{\operatorname{Diag}\left(z_{1}, . ., z_{n+1}\right) \mid\left\|z_{j}\right\|=1, \prod z_{j}=1\right\}
$$

Then we have

$$
\mathfrak{g}=\left\{A \in \mathfrak{g l}_{n+1}(\mathbb{C}) \mid A^{H}=-A, \operatorname{tr}_{\mathbb{C}}(A)=0\right\}
$$

and

$$
\mathfrak{t}=\left\{\operatorname{Diag}\left(i a_{1}, . ., i a_{n+1}\right) \mid a_{j} \in \mathbb{R}, \sum_{j=1}^{n+1} a_{j}=0\right\}
$$

Complexification yields $\mathfrak{g}^{\mathbb{C}}=\left\{A \in \mathfrak{g l}_{n+1}(\mathbb{C}) \mid \operatorname{tr}_{\mathbb{C}}(A)=0\right\}$ and

$$
\mathfrak{h}=\mathfrak{t}^{\mathbb{C}}=\left\{\operatorname{Diag}\left(z_{1}, . ., z_{n}\right) \mid z_{j} \in \mathbb{C}, \sum_{j=1}^{n+1} z_{j}=0\right\} .
$$

Obviously, the $H_{k}=E_{k k}$ form a complex basis of the space of complex diagonal matrices and we denote the dual basis by ε_{k}. It is easy to see that for $H \in \mathfrak{h}$ we have

$$
\left[H, E_{k l}\right]=\alpha_{k l}(H) E_{k l}
$$

for $\alpha_{k l}=\varepsilon_{k}-\varepsilon_{l} \in \mathfrak{h}^{*}$. In fact it is known that

$$
\Delta_{\mathfrak{g}}=\Delta_{\mathfrak{s u}(n+1)}=\left\{\alpha_{k l} \mid 1 \leq k \neq l \leq n+1\right\}
$$

and the root spaces are given by $\mathfrak{g}_{\alpha_{k l}}=\left\langle E_{k l}\right\rangle_{\mathbb{C}}$. As we will see in theorem 38 it makes sense to fix a preferred "standard" complex structure $J_{s t d}$, i.e a fixed choice of of $\Delta_{\mathfrak{m}}^{+}$. Furthermore, we fix a normalization of the killing form. In fact, let
a) $\Delta_{\mathfrak{m}}^{+}=\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{k l} \mid 1 \leq k<l \leq n+1\right\}$
b) and scale the complexified killing form such that

$$
B(X, Y)=\operatorname{tr}_{\mathbb{C}}(X Y)
$$

where $\operatorname{tr}_{\mathbb{C}}: \mathfrak{g l}_{n+1}(\mathbb{C}) \rightarrow \mathbb{C}$ is the usual trace of complex valued matrices.
Then we get with the notation of the proposition 11 that

$$
E_{\alpha_{k l}}=E_{k l} \text { and } H_{\alpha_{k l}}=H_{k}-H_{l}
$$

In particular this implies $z_{\alpha}=1$ for all $\alpha \in \Delta_{\mathfrak{g}}$ and

$$
N_{\alpha_{k l}, \alpha_{s t}}= \begin{cases}1 & s=l, t \neq k \\ -1 & t=k, s \neq l \\ 0 & \text { otherwise }\end{cases}
$$

1.8.2 Family $B_{n}: S O(2 n+1)$

In this section we describe the algebraic setting of the Lie group $S O(2 n+1)$, including a Chevalley basis and the structure constants. We choose the maximal torus to be the standard diagonal torus in $S O(2 n+1)$, i.e.

$$
\mathbb{T}=\left\{\operatorname{Diag}\left(R\left(\theta_{1}\right), . ., R\left(\theta_{n}\right), 1\right) \mid \theta_{i} \in \mathbb{R}\right\}
$$

where

$$
R(\theta)=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) .
$$

Then we have

$$
\mathfrak{g}=\left\{A \in \mathfrak{g l}_{2 n+1}(\mathbb{R}) \mid A^{T}=-A\right\}
$$

and

$$
\mathfrak{t}=\left\langle H_{k} \mid k=1, . ., n\right\rangle_{\mathbb{R}}
$$

where $\left(H_{k}\right)=F_{2 k-1,2 k}$. Complexification yields

$$
\mathfrak{g}^{\mathbb{C}}=\left\{A \in \mathfrak{g l}_{2 n+1}(\mathbb{C}) \mid A^{T}=-A\right\}
$$

and

$$
\mathfrak{h}=\mathfrak{t}^{\mathbb{C}}=\left\langle H_{k} \mid k=1, . ., n\right\rangle_{\mathbb{C}} .
$$

Obviously, the $i H_{k}$ form a complex basis of the space of complex diagonal matrices and we denote the dual basis by ε_{k}. Define for $k<l$ the matrices $E_{\varepsilon_{k}}, E_{\alpha_{k l}}, E_{\beta_{k l}} \in \mathfrak{g}^{\mathbb{C}}$ as

$$
\begin{aligned}
E_{\varepsilon_{k}} & =F_{2 k-1,2 n+1}+i F_{2 k, 2 n+1} \\
E_{\alpha_{k l}} & =F_{2 k-1,2 l-1}+F_{2 k, 2 l}-i\left(F_{2 k-1,2 l}-F_{2 k, 2 l-1}\right) \\
E_{\beta_{k l}} & =F_{2 k-1,2 l-1}-F_{2 k, 2 l}+i\left(F_{2 k-1,2 l}+F_{2 k, 2 l-1}\right) .
\end{aligned}
$$

Notice that the complex conjugation coming from $\mathfrak{g} \subset \mathfrak{g}^{\mathbb{C}}$ is the same as the complex conjugation on $\mathfrak{g l}_{2 n+1}(\mathbb{C})$. Hence we define for $\alpha \in\left\{\varepsilon_{k}, \alpha_{k l}, \beta_{k l} \mid 1 \leq k<l \leq n\right\}$

$$
E_{-\alpha}=-\overline{E_{\alpha}} .
$$

These will turn out to be root vectors, but before we prove that we consider the following examples in the case $n=2$.

Now let $H=\sum_{k=1}^{n} h_{k} H_{k}=\sum_{k=1}^{n}-i h_{k} i H_{k} \in \mathfrak{h}$ then it is easy to see

$$
\begin{aligned}
{\left[H, E_{\varepsilon_{k}}\right] } & =\left(-i h_{k}\right) E_{\varepsilon_{k}}=\varepsilon_{k}(H) E_{\varepsilon_{k}} \\
{\left[H, E_{\alpha_{k l}}\right] } & =\left(-i h_{k}+i h_{l}\right) E_{\alpha_{k l}}=\alpha_{k l}(H) E_{\alpha_{k l}} \\
{\left[H, E_{\beta_{k l}}\right] } & =\left(-i h_{k}-i h_{l}\right) E_{\beta_{k l}}=\beta_{k l}(H) E_{\beta_{k l}}
\end{aligned}
$$

for $\alpha_{k l}=\varepsilon_{k}-\varepsilon_{l}$ and $\beta_{k l}=\varepsilon_{k}+\varepsilon_{l}$. In fact, we have that

$$
\Delta_{\mathfrak{g}}=\Delta_{\mathfrak{s o}(2 n+1)}=\left\{ \pm \varepsilon_{k}, \pm \alpha_{k l}, \pm \beta_{k l} \mid k<l\right\}
$$

and the root spaces are given by $\mathfrak{g}_{\varepsilon_{k}}=\left\langle E_{\varepsilon_{k}}\right\rangle_{\mathbb{C}}, \mathfrak{g}_{\alpha_{k l}}=\left\langle E_{\alpha_{k l}}\right\rangle_{\mathbb{C}}$ and $\mathfrak{g}_{\beta_{k l}}=\left\langle E_{\beta_{k l}}\right\rangle_{\mathbb{C}}$. As we will see in theorem 38 it makes sense to fix a preferred "standard" complex structure $J_{\text {std }}$, i.e a fixed choice of of $\Delta_{\mathfrak{m}}^{+}$. Furthermore, we fix a normalization of the killing form. In fact, let
a) $\Delta_{\mathfrak{m}}^{+}=\Delta_{\mathfrak{g}}^{+}=\left\{\varepsilon_{k}, \alpha_{k l}, \beta_{k l} \mid k<l\right\}$
b) and scale the complexified killing form such that

$$
B(X, Y)=\frac{1}{8} \operatorname{tr}_{\mathbb{C}}(X Y)
$$

where $\operatorname{tr}_{\mathbb{C}}: \mathfrak{g l}_{2 n+1}(\mathbb{C}) \rightarrow \mathbb{C}$ is the usual trace of complex valued matrices.
Let us determine the structure constants from proposition 11. First of all with this choice of biinvariant form we have

$$
z_{\alpha}=B\left(E_{\alpha}, E_{-\alpha}\right)= \begin{cases}\frac{1}{2} & \alpha=\varepsilon_{k} \\ 1 & \alpha=\alpha_{k l} \\ 1 & \alpha=\beta_{k l}\end{cases}
$$

and the $N_{\alpha \beta}$ are given by the following list together with the properties $N_{-\alpha-\beta}=-N_{\alpha \beta}$ and $N_{\alpha \beta}=-N_{\beta \alpha}$.

(α, β)	$N_{\alpha, \beta}$
$\left(\varepsilon_{k}, \varepsilon_{l}\right)$	1
$\left(\varepsilon_{k},-\varepsilon_{l}\right)$	-1
$\left(\varepsilon_{l}, \alpha_{k l}\right)$	2
$\left(\varepsilon_{k},-\alpha_{k l}\right)$	2
$\left(\varepsilon_{k},-\beta_{k l}\right)$	-2
$\left(\varepsilon_{l},-\beta_{k l}\right)$	2
$\left(\alpha_{k l}, \alpha_{l j}\right)$	-2
$\left(\alpha_{k l},-\alpha_{s l}\right)$	-2
$\left(\alpha_{k l},-\alpha_{k j}\right)$	2

(α, β)	$N_{\alpha, \beta}$
$\left(\alpha_{k l}, \beta_{l j}\right)$	-2
$\left(\alpha_{k l}, \beta_{s l}\right)$	$\left\{\begin{array}{rr\|}2 & k<s \\ -2 & s<k\end{array}\right.$
$\left(\alpha_{k l},-\beta_{k j}\right)$	$\left\{\begin{array}{rr}2 & l<j \\ -2 & j<l\end{array}\right.$
$\left(\alpha_{k l},-\beta_{s k}\right)$	2
$\left(\beta_{k l},-\beta_{l j}\right)$	2
$\left(\beta_{k l},-\beta_{k j}\right)$	-2
$\left(\beta_{k l},-\beta_{s l}\right)$	-2

where we assume $k<l$.

1.8.3 Family $C_{n}: S p(n)$

In this section we describe the algebraic setting of the Lie group $S p(n)$, including a Chevalley basis and the structure constants. We choose the maximal torus to be the standard diagonal torus in $S p(n)$, i.e.

$$
\mathbb{T}=\left\{\operatorname{Diag}\left(z_{1}, . ., z_{n}\right) \mid\left\|z_{j}\right\|=1\right\}
$$

In order to have a nice description of the complexification it is useful to consider it embedded via

$$
\begin{gathered}
S p(n) \hookrightarrow S U(2 n) \\
A+B j \mapsto\left(\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right) .
\end{gathered}
$$

Then we have

$$
\mathfrak{g}=\left\{\left.\left(\begin{array}{cc}
X & Y \\
-\bar{Y} & \bar{X}
\end{array}\right) \in \mathfrak{g l}_{2 n}(\mathbb{C}) \right\rvert\, X^{H}=-X, Y^{T}=Y\right\}
$$

and

$$
\mathfrak{t}=\left\{\operatorname{Diag}\left(i a_{1}, . ., i a_{n},-i a_{1}, . .,-i a_{n}\right) \mid a_{i} \in \mathbb{R}\right\}
$$

Complexification yields

$$
\mathfrak{g}^{\mathbb{C}}=\left\{\left.\left(\begin{array}{cc}
X & Y_{1} \\
Y_{2}-X^{T}
\end{array}\right) \in \mathfrak{g l}_{2 n}(\mathbb{C}) \right\rvert\, Y_{l} \in \operatorname{Sym}(\mathbb{C})\right\}
$$

and

$$
\mathfrak{h}=\mathfrak{t}^{\mathbb{C}}=\left\{\operatorname{Diag}\left(z_{1}, . ., z_{n},-z_{1}, . .,-z_{n}\right) \mid z_{i} \in \mathbb{C}\right\} .
$$

Obviously, the elements $H_{k}=E_{k, k}-E_{n+k, n+k}$ for $k=1 \ldots n$ form a complex basis of \mathfrak{h} and we denote the dual basis by ε_{k}. Define for $k<l$ the matrices $E_{\gamma_{k}}, E_{\alpha_{k l}}, E_{\beta_{k l}} \in \mathfrak{g}^{\mathbb{C}}$ as

$$
\begin{aligned}
E_{\gamma_{k}} & =E_{k, n+k} \\
E_{\alpha_{k l}} & =E_{k, l}-E_{n+l, n+k} \\
E_{\beta_{k l}} & =E_{k, n+l}+E_{l, n+k} .
\end{aligned}
$$

Notice that the complex conjugation coming from $\mathfrak{g} \subset \mathfrak{g}^{\mathbb{C}}$ is the same as the restriction of the map $M \mapsto-M^{H}$ on $\mathfrak{g l}_{2 n}(\mathbb{C})$. Hence we define for $\alpha \in\left\{\varepsilon_{k}, \alpha_{k l}, \beta_{k l} \mid 1 \leq k<l \leq n\right\}$

$$
E_{-\alpha}=-\overline{E_{\alpha}}=E_{\alpha}^{H} .
$$

These will turn out to be root vectors, but before we prove that we consider the following examples in the case $n=2$.

$$
E_{\gamma_{1}}=\left(\begin{array}{l|ll}
1 & 0 \\
& 0 & 0 \\
\hline & &
\end{array}\right) E_{\alpha_{12}}=\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0 \\
& 0 \\
& & -1
\end{array}\right) \quad E_{\beta_{12}}=\left(\begin{array}{ll}
& \\
& 1 \\
& 0 \\
\hline & \\
\hline
\end{array}\right)
$$

Now let $H=\operatorname{Diag}\left(h_{1}, . ., h_{n},-h_{1}, . .,-h_{n}\right)$ then it is easy to see that

$$
\begin{aligned}
{\left[H, E_{\gamma_{k}}\right] } & =\left(2 h_{k}\right) E_{\gamma_{k}}=\gamma_{k}(H) E_{\gamma_{k}} \\
{\left[H, E_{\alpha_{k l}}\right] } & =\left(h_{k}-h_{l}\right) E_{\alpha_{k l}}=\alpha_{k l}(H) E_{\alpha_{k l}} \\
{\left[H, E_{\beta_{k l}}\right] } & =\left(h_{k}+h_{l}\right) E_{\beta_{k l}}=\beta_{k l}(H) E_{\beta_{k l}}
\end{aligned}
$$

for $\gamma_{k}=2 \varepsilon_{k}, \alpha_{k l}=\varepsilon_{k}-\varepsilon_{l}$ and $\beta_{k l}=\varepsilon_{k}+\varepsilon_{l}$. In fact, we have that

$$
\Delta_{\mathfrak{g}}=\Delta_{\mathfrak{s p}(n)}=\left\{ \pm \gamma_{k}, \pm \alpha_{k l}, \pm \beta_{k l} \mid 1 \leq k<l \leq n\right\}
$$

and the root spaces are given by $\mathfrak{g}_{\gamma_{k}}=\left\langle E_{\gamma_{k}}\right\rangle_{\mathbb{C}}, \mathfrak{g}_{\alpha_{k l}}=\left\langle E_{\alpha_{k l}}\right\rangle_{\mathbb{C}}$ and $\mathfrak{g}_{\beta_{k l}}=\left\langle E_{\beta_{k l}}\right\rangle_{\mathbb{C}}$. As we will see in theorem 38 it makes sense to fix a preferred "standard" complex structure $J_{s t d}$, i.e a fixed choice of of $\Delta_{\mathfrak{m}}^{+}$. Furthermore, we fix a normalization of the killing form. In fact, let
a) $\Delta_{\mathfrak{m}}^{+}=\Delta_{\mathfrak{g}}^{+}=\left\{\gamma_{k}, \alpha_{k l}, \beta_{k l} \mid 1 \leq k<l \leq n\right\}$
b) and scale the complexified killing form such that

$$
B(X, Y)=\frac{1}{2} \operatorname{tr}_{\mathbb{C}}(X Y)
$$

where $\operatorname{tr}_{\mathbb{C}}: \mathfrak{g l}_{2 n}(\mathbb{C}) \rightarrow \mathbb{C}$ is the usual trace of complex valued matrices.
Let us determine the structure constants from proposition 11. First of all with this choice of biinvariant form we have

$$
z_{\alpha}=B\left(E_{\alpha}, E_{-\alpha}\right)= \begin{cases}\frac{1}{2} & \alpha=\gamma_{k} \\ 1 & \alpha=\alpha_{k l} \\ 1 & \alpha=\beta_{k l}\end{cases}
$$

and the $N_{\alpha \beta}$ are given by the following list together with the properties $N_{-\alpha-\beta}=-N_{\alpha \beta}$ and $N_{\alpha \beta}=-N_{\beta \alpha}$.

(α, β)	$N_{\alpha, \beta}$	(α, β)	$N_{\alpha, \beta}$
$\left(\alpha_{i s}, \alpha_{s t}\right)$	1	$\left(\alpha_{s j},-\beta_{s t}\right)$	$\left\{\begin{array}{c\|c}-1 & j \neq t \\ -2 & j=t\end{array}\right.$
$\left(\alpha_{s j},-\alpha_{s t}\right)$	-1	$\left(\alpha_{i s}, \gamma_{s}\right)$	1
$\left(\alpha_{i t},-\alpha_{s t}\right)$	1	$\left(\alpha_{s j},-\gamma_{s}\right)$	-1
$\left(\alpha_{i s}, \beta_{s t}\right)$	1	$\left(\beta_{i j},-\beta_{s t}\right)$	1 if $\|\{i, j\} \cap\{s, t\}\|=1$
$\left(\alpha_{i t}, \beta_{s t}\right)$	$\left\{\begin{array}{cr}1 & i \neq s \\ 2 & i=s\end{array}\right.$	$\left(\beta_{i s},-\gamma_{s}\right)$	1
$\left(\alpha_{t j},-\beta_{s t}\right)$	-1	$\left(\beta_{s j},-\gamma_{s}\right)$	1

1.8.4 Family $D_{n}: S O(2 n)$

In this section we describe the algebraic setting of the Lie group $S O(2 n)$, including a Chevalley basis and the structure constants. It is very similar to the B_{n} series. We choose the maximal torus to be the standard diagonal torus in $S O(2 n)$, i.e.

$$
\mathbb{T}=\left\{\operatorname{Diag}\left(R\left(\theta_{1}\right), . ., R\left(\theta_{n}\right)\right) \mid \theta_{i} \in \mathbb{R}\right\}
$$

where $R(\theta)$ is defined as in the section of $S O(2 n+1)$. Then we have

$$
\mathfrak{g}=\left\{A \in \mathfrak{g l}_{2 n}(\mathbb{R}) \mid A^{T}=-A\right\}
$$

and for $\left(H_{k}\right)=F_{2 k-1,2 k}$ as before

$$
\mathfrak{t}=\left\langle H_{k} \mid k=1, . ., n\right\rangle_{\mathbb{R}}
$$

Complexification yields

$$
\mathfrak{g}^{\mathbb{C}}=\left\{A \in \mathfrak{g l}_{2 n}(\mathbb{C}) \mid A^{T}=-A\right\}
$$

and

$$
\mathfrak{h}=\mathfrak{t}^{\mathbb{C}}=\left\langle H_{k} \mid k=1, . ., n\right\rangle_{\mathbb{C}}
$$

Obviously, the $i H_{k}$ form a complex basis of \mathfrak{h} and we denote the dual basis by ε_{k}. Define for $k<l$ the matrices $E_{\alpha_{k l}}, E_{\beta_{k l}} \in \mathfrak{g}^{\mathbb{C}}$ as

$$
\begin{aligned}
E_{\alpha_{k l}} & =F_{2 k-1,2 l-1}+F_{2 k, 2 l}-i\left(F_{2 k-1,2 l}-F_{2 k, 2 l-1}\right) \\
E_{\beta_{k l}} & =F_{2 k-1,2 l-1}-F_{2 k, 2 l}+i\left(F_{2 k-1,2 l}+F_{2 k, 2 l-1}\right) .
\end{aligned}
$$

Notice that the complex conjugation coming from $\mathfrak{g} \subset \mathfrak{g}^{\mathbb{C}}$ is the same as the complex conjugation on $\mathfrak{g l}_{2 n+1}(\mathbb{C})$. Hence we define for $\alpha \in\left\{\alpha_{k l}, \beta_{k l} \mid 1 \leq k<l \leq n\right\}$

$$
E_{-\alpha}=-\overline{E_{\alpha}} .
$$

These will turn out to be root vectors. Now let $H=\sum_{k=1}^{n} h_{k} H_{k}=\sum_{k=1}^{n}-i h_{k} i H_{k} \in \mathfrak{h}$ then it is easy to see

$$
\begin{aligned}
{\left[H, E_{\alpha_{k l}}\right] } & =\left(-i h_{k}+i h_{l}\right) E_{\alpha_{k l}}=\alpha_{k l}(H) E_{\alpha_{k l}} \\
{\left[H, E_{\beta_{k l}}\right] } & =\left(-i h_{k}-i h_{l}\right) E_{\beta_{k l}}=\beta_{k l}(H) E_{\beta_{k l}}
\end{aligned}
$$

for $\alpha_{k l}=\varepsilon_{k}-\varepsilon_{l}$ and $\beta_{k l}=\varepsilon_{k}+\varepsilon_{l}$. In fact, we have that

$$
\Delta_{\mathfrak{g}}=\Delta_{\mathfrak{s o}(2 n)}=\left\{ \pm \alpha_{k l}, \pm \beta_{k l} \mid 1 \leq k<l \leq n\right\}
$$

and the root spaces are given by $\mathfrak{g}_{\alpha_{k l}}=\left\langle E_{\alpha_{k l}}\right\rangle_{\mathbb{C}}$ and $\mathfrak{g}_{\beta_{k l}}=\left\langle E_{\beta_{k l}}\right\rangle_{\mathbb{C}}$. As we will see in theorem 38 it makes sense to fix a preferred "standard" complex structure $J_{s t d}$, i.e a fixed choice of of $\Delta_{\mathfrak{m}}^{+}$. Furthermore, we fix a normalization of the killing form. In fact, let
a) $\Delta_{\mathfrak{m}}^{+}=\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{k l}, \beta_{k l} \mid 1 \leq k<l \leq n\right\}$
b) and scale the complexified killing form such that

$$
B(X, Y)=\frac{1}{8} \operatorname{tr}_{\mathbb{C}}(X Y)
$$

where $\operatorname{tr}_{\mathbb{C}}: \mathfrak{g l}_{2 n}(\mathbb{C}) \rightarrow \mathbb{C}$ is the usual trace of complex valued matrices.
Let us determine the structure constants from proposition 11. First of all with this choice of biinvariant form we have

$$
z_{\alpha}=B\left(E_{\alpha}, E_{-\alpha}\right)= \begin{cases}1 & \alpha=\alpha_{k l} \\ 1 & \alpha=\beta_{k l}\end{cases}
$$

and the $N_{\alpha \beta}$ are given by the following list together with the properties $N_{-\alpha-\beta}=-N_{\alpha \beta}$ and $N_{\alpha \beta}=-N_{\beta \alpha}$.

(α, β)	$N_{\alpha, \beta}$
$\left(\alpha_{k l}, \alpha_{l j}\right)$	-2
$\left(\alpha_{k l},-\alpha_{s l}\right)$	-2
$\left(\alpha_{k l},-\alpha_{k j}\right)$	2
$\left(\alpha_{k l}, \beta_{l j}\right)$	-2
$\left(\alpha_{k l}, \beta_{s l}\right)$	$\left\{\begin{array}{cc}2 & k<s \\ -2 & s<k\end{array}\right.$

(α, β)	$N_{\alpha, \beta}$
$\left(\alpha_{k l},-\beta_{k j}\right)$	$\left\{\begin{array}{cc\|}2 & l<j \\ -2 & j<l\end{array}\right.$
$\left(\alpha_{k l},-\beta_{s k}\right)$	2
$\left(\beta_{k l},-\beta_{l j}\right)$	2
$\left(\beta_{k l},-\beta_{k j}\right)$	-2
$\left(\beta_{k l},-\beta_{s l}\right)$	-2

where we assume $k<l$.

Chapter 2

Approach Itoh's and Three Modules

The approach to treat holomorphic curvature on Kähler C spaces so far was to consider the decomposition of \mathfrak{m}^{+}in irreducible K modules. In this chapter we follow that approach extending a result of Itoh. However, in the proof it will become clear that it is hard and complicated to extend the results even further without changing the method used.

By proposition 8 the irreducible modules are indexed by the positive \mathfrak{t} roots, i.e the image of ρ from (1.1):

$$
\mathfrak{m}^{+}=\bigoplus_{x \in \rho\left(\Delta_{\mathfrak{m}}^{+}\right)} \mathfrak{m}_{x}^{+}
$$

where $\mathfrak{m}_{x}^{+}=\oplus_{\alpha \in \rho^{-1}(x)} \mathfrak{g}_{\alpha}$. Then one notes that for a unit vector $X \in \mathfrak{m}$ and the vector $Z=\frac{1}{\sqrt{2}}(X-i J X) \in \mathfrak{m}^{+}$, we have

$$
H(X)=R(X, J X, X, J X)=-R(Z, \bar{Z}, Z, \bar{Z})
$$

Using the above decomposition, we can write $Z=\sum_{x \in \rho\left(\Delta_{\mathrm{m})}^{+}\right)} Z_{x}$ and use the obvious bracket relations

$$
\left[\mathfrak{m}_{x}^{+}, \mathfrak{m}_{y}^{+}\right] \subset \mathfrak{m}_{x+y}^{+}
$$

and their counterparts via complex conjugation to get explicit expressions for the curvature. Notice that we have $x \in \mathbb{N}^{r}$ with

$$
r=\operatorname{dim}(\mathfrak{z}(\mathfrak{k}))=b_{1}(K)=b_{2}(G / K)
$$

where $\mathfrak{z}(\mathfrak{k})$ denotes the center of \mathfrak{k}. This is due to Borel and Hirzebruch BH58.
This was done by Itoh with the following result:
Theorem 21 (Itoh). Let $M=(G, K, J, g)$ be a simple Kähler C space with $b_{2}(M)=1$ such that \mathfrak{m}^{+}decomposes into two irreducible modules. Then M has positive holomorphic curvature.

Remark:

1) This covers all classical simple groups G and all with J compatible groups K with $b_{1}(K)=$ 1 and some but not all of the exceptional ones.
2) In the case of $b_{2}(M)=1$ and irreducible \mathfrak{m}^{+}, we are in the case of hermitian symmetric spaces which carry a negative multiple of the killing form as Kähler metric and have positive holomorphic curvature as well. These are also the only cases when the killing form induces a Kähler metric.
We extend the result here with similar techniques as Itoh to the following
Theorem 22. Let $M=(G, K, J, g)$ be a simple Kähler C space such that \mathfrak{m}^{+}decomposes into three irreducible modules. Then M has positive holomorphic curvature.

Proof. First of all, we notice that in fact the decomposition into three modules is only possible if $b_{1}(K) \leq 2$. In fact, assume $b_{1}(K)>2$ then, with the decomposition of a base for $\Delta_{\mathfrak{g}}^{+}$as in 1.1 $\Phi=\Phi_{\mathfrak{m}} \cup \Phi_{\mathfrak{k}}$, this is equivalent to $\left|\Phi_{\mathfrak{m}}\right|>2$ and hence there are at least three simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \Delta_{\mathfrak{g}}^{+}$with pairwise different images under ρ. Furthermore, for the highest root $\lambda=\sum_{\alpha \in \Phi} n_{\alpha} \alpha$, we have $n_{\alpha}>0$ for all α. Hence

$$
\rho(\lambda)-\rho\left(\alpha_{i}\right)=\left(\left(n_{\alpha_{i}}-1\right) \rho\left(\alpha_{i}\right)+\sum_{\alpha \in \Phi \backslash\left\{\alpha_{i}\right\}} n_{\alpha} \alpha\right) \neq 0
$$

Therefore we have at least four irreducible modules corresponding to $\rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \rho\left(\alpha_{3}\right)$ and $\rho(\lambda)$ which is a contradiction.
Now we denote the decomposition by $\mathfrak{m}^{+}=\mathfrak{m}_{x_{1}}^{+} \oplus \mathfrak{m}_{x_{2}}^{+} \oplus \mathfrak{m}_{x_{3}}^{+}$and we make two case distinctions:
i) If $b_{2}(K)=1$ then up to permutation we have $x_{2}=2 x_{1}$ and $x_{3}=3 x_{1}$, where x_{1} is the image of ρ of the only simple root in $\Delta_{\mathfrak{m}}^{+}$. In particular, we have $x_{3}=x_{1}+x_{2}$.
ii) If $b_{2}(K)=2$ then up to permutation we have $x_{3}=x_{1}+x_{2}$ where x_{1} and x_{2} are the coordinate vectors of the only simple roots in $\Delta_{\mathfrak{m}}^{+}$.

In both cases we obtain the following table for the brackets where the superscript $*$ means that it is zero in case $i i)$. We abbreviate $\mathfrak{m}_{x_{i}}^{+}=\mathfrak{m}_{i}$.

$[-,-]$	\mathfrak{m}_{1}	\mathfrak{m}_{2}	\mathfrak{m}_{3}	$\overline{\mathfrak{m}_{1}}$	$\overline{\mathfrak{m}_{2}}$	$\overline{\mathfrak{m}_{3}}$
\mathfrak{m}_{1}	\mathfrak{m}_{2}^{*}	\mathfrak{m}_{3}	0	\mathfrak{k}	$\overline{\mathfrak{m}}_{1}{ }^{*}$	$\overline{\mathfrak{m}_{2}}$
\mathfrak{m}_{2}	\mathfrak{m}_{3}	0	0	\mathfrak{m}_{1}^{*}	\mathfrak{k}	$\overline{\mathfrak{m}_{1}}$
\mathfrak{m}_{3}	0	0	0	\mathfrak{m}_{2}	\mathfrak{m}_{1}	\mathfrak{k}

We continue with the proof for this table assuming that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{m}_{2}$ may possibly be non zero. The only difference is that we have to consider a few more terms in the expression for the holomorphic curvature. As mentioned above we consider a unit vector X and $Z=$ $\frac{1}{\sqrt{2}}(X-i J X)$. Then

$$
H(X)=-R(Z, \bar{Z}, Z, \bar{Z})=g(-R(Z, \bar{Z}) Z, \bar{Z})
$$

Since $Z \in \mathfrak{m}^{+}$we write it as $Z=Z_{1}+Z_{2}+Z_{3}$ with $Z_{i} \in \mathfrak{m}_{i}$. Let $\lambda_{i j}=\frac{g_{j}}{g_{i}+g_{j}}$ with $i, j=1,2$, then we get from the bracket table and section 1.4.2 that the \mathfrak{m}_{i} components of $-R(Z, \bar{Z}) Z$ are given by

$$
\begin{aligned}
(-R(Z, \bar{Z}) Z)_{1}= & -\left(\lambda_{12}-\lambda_{21}\right)\left[\bar{Z}_{2},\left[Z_{1}, Z_{2}\right]\right] \\
& -\left[\left[Z_{1}, \bar{Z}_{2}\right], Z_{2}\right]-\left[\left[Z_{1}, \bar{Z}_{3}\right], Z_{3}\right]-\left[\left[Z_{2}, \bar{Z}_{3}\right], Z_{2}\right] \\
& -\left[\left[Z_{1}, \bar{Z}_{1}\right]+\left[Z_{2}, \bar{Z}_{2}\right]+\left[Z_{3}, \bar{Z}_{3}\right], Z_{1}\right] \\
(-R(Z, \bar{Z}) Z)_{2}= & \lambda_{11}\left[Z_{1},\left[\bar{Z}_{1}, Z_{2}\right]\right]+\lambda_{11}\left[Z_{1},\left[\bar{Z}_{2}, Z_{3}\right]\right] \\
& -\lambda_{11}\left[\left[Z_{2}, \bar{Z}_{1}\right], Z_{1}\right]-\lambda_{11}\left[\left[Z_{3}, \bar{Z}_{2}\right], Z_{1}\right] \\
& -\left(\lambda_{12}-\lambda_{21}\right)\left[\bar{Z}_{1},\left[Z_{1}, Z_{2}\right]\right] \\
& -\left[\left[Z_{1}, \bar{Z}_{2}\right], Z_{3}\right]-\left[\left[Z_{2}, \bar{Z}_{3}\right], Z_{3}\right] \\
& -\left[\left[Z_{1}, \bar{Z}_{1}\right]+\left[Z_{2}, \bar{Z}_{2}\right]+\left[Z_{3}, \bar{Z}_{3}\right], Z_{2}\right] \\
(-R(Z, \bar{Z}) Z)_{3}= & \lambda_{12}\left[Z_{1},\left[\bar{Z}_{1}, Z_{3}\right]\right]+\lambda_{21}\left[Z_{2},\left[\bar{Z}_{1}, Z_{2}\right]\right]+\lambda_{21}\left[Z_{2},\left[\bar{Z}_{2}, Z_{3}\right]\right] \\
& -\lambda_{21}\left[\left[Z_{3}, \bar{Z}_{1}\right], Z_{1}\right]-\lambda_{12}\left[\left[Z_{2}, \bar{Z}_{1}\right], Z_{2}\right]-\lambda_{12}\left[\left[Z_{3}, \bar{Z}_{2}\right], Z_{2}\right] \\
& -\left[\left[Z_{1}, \bar{Z}_{1}\right]+\left[Z_{2}, \bar{Z}_{2}\right]+\left[Z_{3}, \bar{Z}_{3}\right], Z_{3}\right]
\end{aligned}
$$

Note that $R(Z, \bar{Z}) Z \in \mathfrak{m}^{+}$by proposition 12 .

Using the antisymmetry of the Lie bracket we see that the first two rows in the expression of $(-R(Z, \bar{Z}) Z)_{2}$ cancel and the first two rows of $(-R(Z, \bar{Z}) Z)_{3}$ match except for the coefficient. Furthermore we know that

$$
g\left((-R(Z, \bar{Z}) Z)_{i}, \bar{Z}\right)=g\left((-R(Z, \bar{Z}) Z)_{i}, \bar{Z}_{i}\right)=g_{i}(-B)\left((-R(Z, \bar{Z}) Z)_{i}, \bar{Z}_{i}\right)
$$

which allows us to use the skew symmetry of $a d_{X}$ with respect to B. If we denote the hermitian form $\langle X, Y\rangle=-B(X, \bar{Y})$ and $\|X\|^{2}=\langle X, X\rangle$ then with $g_{3}=g_{1}+g_{2}$ by the Kähler property, we get

$$
\begin{aligned}
H(X)= & -g_{1}\left(\lambda_{12}-\lambda_{21}\right)\left\|\left[Z_{1}, Z_{2}\right]\right\|^{2} \\
& +g_{1}\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}+g_{1}\left\|\left[Z_{1}, \bar{Z}_{3}\right]\right\|^{2}+g_{1}\left\|\left[Z_{1}, \bar{Z}_{1}\right]\right\|^{2} \\
& +g_{1}\left\langle\left[Z_{2}, \bar{Z}_{2}\right],\left[Z_{1}, \bar{Z}_{1}\right]\right\rangle+g_{1}\left\langle\left[Z_{3}, \bar{Z}_{3}\right],\left[Z_{1}, \bar{Z}_{1}\right]\right\rangle+g_{1}\left\langle\left[Z_{2}, \bar{Z}_{3}\right],\left[Z_{1}, \bar{Z}_{2}\right]\right\rangle \\
& +g_{2}\left(\lambda_{12}-\lambda_{21}\right)\left\|\left[Z_{1}, Z_{2}\right]\right\|^{2}+g_{2}\left\|\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2}+g_{2}\left\|\left[Z_{2}, \bar{Z}_{2}\right]\right\|^{2} \\
& +g_{2}\left\langle\left[Z_{1}, \bar{Z}_{1}\right],\left[Z_{2}, \bar{Z}_{2}\right]\right\rangle+g_{2}\left\langle\left[Z_{3}, \bar{Z}_{3}\right],\left[Z_{2}, \bar{Z}_{2}\right]\right\rangle+g_{2}\left\langle\left[Z_{1}, \bar{Z}_{2}\right],\left[Z_{2}, \bar{Z}_{3}\right]\right\rangle \\
& -\left(g_{1}+g_{2}\right)\left(\lambda_{12}-\lambda_{21}\right)\left\|\left[\bar{Z}_{1}, Z_{3}\right]\right\|^{2} \\
& +\left(g_{1}+g_{2}\right)\left(\lambda_{12}-\lambda_{21}\right)\left\|\left[\bar{Z}_{2}, Z_{3}\right]\right\|^{2} \\
& +\left(g_{1}+g_{2}\right)\left\|\left[Z_{3}, \bar{Z}_{3}\right]\right\|^{2} \\
& +\left(g_{1}+g_{2}\right)\left(\lambda_{12}-\lambda_{21}\right)\left\langle\left[\bar{Z}_{1}, Z_{2}\right],\left[\bar{Z}_{2}, Z_{3}\right]\right\rangle \\
& +\left(g_{1}+g_{2}\right)\left\langle\left[Z_{1}, \bar{Z}_{1}\right],\left[Z_{3}, \bar{Z}_{3}\right]\right\rangle+\left(g_{1}+g_{2}\right)\left\langle\left[Z_{2}, \bar{Z}_{2}\right],\left[Z_{3}, \bar{Z}_{3}\right]\right\rangle
\end{aligned}
$$

Before we continue matching and modifying these terms, we observe the following consequence of the skew symmetry of $a d$ with respect to the killing form:

$$
\begin{equation*}
\langle[A, \bar{A}],[B, \bar{B}]\rangle=\|[\bar{A}, B]\|^{2}-\|[A, B]\|^{2} \tag{2.1}
\end{equation*}
$$

This implies immediately that
i) The term $\left\langle\left[Z_{i}, \bar{Z}_{i}\right],\left[Z_{j}, \bar{Z}_{j}\right]\right\rangle$ is a real number and hence is symmetric with respect to i, j.
ii) For i, j with $i+j>3$ we have $\left\|\left[Z_{i}, Z_{j}\right]\right\|^{2}=0$ which implies $\left\langle\left[Z_{i}, \bar{Z}_{i}\right],\left[Z_{j}, \bar{Z}_{j}\right]\right\rangle=$ $\left\|\left[Z_{i}, \bar{Z}_{j}\right]\right\|^{2}$.

Using the above and $\left(\lambda_{12}-\lambda_{21}\right)=\frac{g_{2}-g_{1}}{g_{2}+g_{1}}$ we collect terms in the expression of $H(X)$ and obtain:

$$
\begin{aligned}
H(X)= & \left(2 g_{1}+g_{2}\right)\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}-4 \frac{g_{1} g_{2}}{g_{1}+g_{2}}\left\|\left[Z_{1}, Z_{2}\right]\right\|^{2} \\
& +4 g_{1}\left\|\left[Z_{1}, \bar{Z}_{3}\right]\right\|^{2}+4 g_{2}\left\|\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2} \\
& +g_{1}\left\|\left[Z_{1}, \bar{Z}_{1}\right]\right\|^{2}+g_{2}\left\|\left[Z_{2}, \bar{Z}_{2}\right]\right\|^{2}+\left(g_{2}+g_{1}\right)\left\|\left[Z_{3}, \bar{Z}_{3}\right]\right\|^{2} \\
& +g_{2}\left(\left\langle\left[Z_{1}, \bar{Z}_{2}\right],\left[Z_{2}, \bar{Z}_{3}\right]\right\rangle+\left\langle\left[\bar{Z}_{1}, Z_{2}\right],\left[\bar{Z}_{2}, Z_{3}\right]\right\rangle\right) .
\end{aligned}
$$

It is left to control the second term in the first row and the two terms of the last row. To that end we use the following equations coming from polarization

$$
\begin{aligned}
\left\langle\left[Z_{1}, \bar{Z}_{2}\right],\left[Z_{2}, \bar{Z}_{3}\right]\right\rangle+ & \left\langle\left[\bar{Z}_{1}, Z_{2}\right],\left[\bar{Z}_{2}, Z_{3}\right]\right\rangle \\
& =\left\|\frac{1}{2}\left[Z_{1}, \bar{Z}_{2}\right]+2\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2}-\frac{1}{4}\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}-4\left\|\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2}
\end{aligned}
$$

and this one coming from equation 2.1,

$$
-\left\|\left[Z_{1}, Z_{2}\right]\right\|^{2}=-\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}+\left\langle\left[Z_{1}, \bar{Z}_{1}\right],\left[Z_{2}, \bar{Z}_{2}\right]\right\rangle
$$

Hence

$$
\begin{aligned}
H(X)= & \left(2 g_{1}+\frac{3}{4} g_{2}-\frac{4 g_{1} g_{2}}{g_{1}+g_{2}}\right)\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}+4 g_{1}\left\|\left[Z_{1}, \bar{Z}_{3}\right]\right\|^{2} \\
& +g_{1}\left\|\left[Z_{1}, \bar{Z}_{1}\right]\right\|^{2}+\frac{4 g_{1} g_{2}}{g_{1}+g_{2}}\left\langle\left[Z_{1}, \bar{Z}_{1}\right],\left[Z_{2}, \bar{Z}_{2}\right]\right\rangle+g_{2}\left\|\left[Z_{2}, \bar{Z}_{2}\right]\right\|^{2} \\
& +\left(g_{2}+g_{1}\right)\left\|\left[Z_{3}, \bar{Z}_{3}\right]\right\|^{2}+g_{2}\left\|\frac{1}{2}\left[Z_{1}, \bar{Z}_{2}\right]+2\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2} \\
= & \frac{\left(16 g_{1}-5 g_{2}\right)^{2}+71 g_{2}^{2}}{128\left(g_{1}+g_{2}\right)}\left\|\left[Z_{1}, \bar{Z}_{2}\right]\right\|^{2}+4 g_{1}\left\|\left[Z_{1}, \bar{Z}_{3}\right]\right\|^{2} \\
& +\frac{1}{g_{1}+g_{2}}\left(\left\|g_{1}\left[Z_{1}, \bar{Z}_{1}\right]+g_{2}\left[Z_{2}, \bar{Z}_{2}\right]\right\|^{2}+g_{1} g_{2}\left\|\left[Z_{1}, \bar{Z}_{1}\right]+\left[Z_{2}, \bar{Z}_{2}\right]\right\|^{2}\right) \\
& +\left(g_{2}+g_{1}\right)\left\|\left[Z_{3}, \bar{Z}_{3}\right]\right\|^{2}+g_{2}\left\|\frac{1}{2}\left[Z_{1}, \bar{Z}_{2}\right]+2\left[Z_{2}, \bar{Z}_{3}\right]\right\|^{2}
\end{aligned}
$$

which is nonnegative. Furthermore, it is immediate that $H(X)=0$ implies $\left[Z_{3}, \bar{Z}_{3}\right]=0$ and $\left[Z_{2}, \bar{Z}_{2}\right]=-\left[Z_{1}, \bar{Z}_{1}\right]$. We will show now that this implies $Z_{3}=Z_{2}=Z_{1}=0$. First of all, we show that the second equation implies $\left[Z_{1}, \bar{Z}_{1}\right]=\left[Z_{2}, \bar{Z}_{2}\right]=0$. The key is to see that for $V \in \mathfrak{m}^{+}$,

$$
[V, \bar{V}]_{\mathfrak{h}}=-\sum_{\gamma \in \Phi} \mu_{\gamma} H_{\gamma}
$$

with $\mu_{\gamma} \geq 0$ and H_{γ} defined as in 1.3. In fact, we have for $V=\sum_{\alpha \in \Delta_{\mathrm{m}}^{+}} m_{\alpha} E_{\alpha}$ with a Chevalley basis such that $z_{\alpha}=1$ and $E_{\alpha}=-E_{-\alpha}$ that

$$
\begin{aligned}
{[V, \bar{V}]_{\mathfrak{h}} } & =\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} \sum_{\beta \in \Delta_{\mathfrak{m}}^{+}} m_{\alpha} \bar{m}_{\beta}\left[E_{\alpha}, \bar{E}_{\beta}\right]_{\mathfrak{h}}=-\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}}\left\|m_{\alpha}\right\|^{2} H_{\alpha} \\
& =-\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}}\left\|m_{\alpha}\right\|^{2} \sum_{\gamma \in \Phi} n(\alpha)_{\gamma} H_{\gamma}=-\sum_{\gamma \in \Phi}\left(\sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} n(\alpha)_{\gamma}\left\|m_{\alpha}\right\|^{2}\right) H_{\gamma} \\
& =-\sum_{\gamma \in \Phi} \mu_{\gamma} H_{\gamma}
\end{aligned}
$$

where we used $\alpha=\sum_{\gamma \in \Phi} n(\alpha)_{\gamma} \gamma$ with $n(\alpha)_{\gamma} \in \mathbb{N}$. Therefore $\left[Z_{2}, \bar{Z}_{2}\right]=-\left[Z_{1}, \bar{Z}_{1}\right]$ is only possible if $\left[Z_{2}, \bar{Z}_{2}\right]_{\mathfrak{h}}=\left[Z_{1}, \bar{Z}_{1}\right]_{\mathfrak{h}}=0$. By the calculation above it is clear that for $V \in\left\{Z_{1}, Z_{2}, Z_{3}\right\}$ the equation $[V, \bar{V}]_{\mathfrak{h}}=0$ implies that $\mu_{\gamma}=0$ for all $\gamma \in \Phi$ which in turn implies that $n(\alpha)_{\gamma}\left\|m_{\alpha}\right\|^{2}=0$ for all $\alpha \in \Delta_{\mathfrak{m}}^{+}$and $\gamma \in \Phi$. Since for each α there has to be at least one γ with $n(\alpha)_{\gamma}>0$ we get $m_{\alpha}=0$ for all $\alpha \in \Delta_{\mathfrak{m}}^{+}$and hence $V=0$.

The C spaces covered by the above can be read off of the following diagrams, where the number n_{α} at each simple root represents the coefficient of the highest weight in that basis. Those can be found in Bou68, p.250f]. Then the result above applies to the spaces obtained by the following two ways of painting the diagrams:
i) Paint all vertices black except for a single one with

$$
n_{\alpha} \begin{cases}\leq 2 & \text { Itoh } \\ =3 & \text { the above }\end{cases}
$$

ii) Paint all vertices black except for two with $n_{\alpha}=1$.
Family

In fact, the new examples of positive holomorphic curvature with $b_{2}(M)=2$ are

$$
S U(n+1) / S(U(a) U(b) U(c)), S O(2 n) / S U_{i}(n-1) \mathbb{T}^{2}, E_{6} / S O(8) \mathbb{T}^{2}
$$

with $a+b+c=n+1$ and for two nonequivalent embeddings of $S U_{i}(n-1) \hookrightarrow S O(2 n)$ for $i=1,2$. The seven new exceptional $b_{2}(M)=1$ examples are

$$
\begin{aligned}
& E_{6} / S U(3) \mathbb{S}^{1} S U(2) S U(3), E_{7} / S U(2) \mathbb{S}^{1} S U(6), E_{7} / S U(5) \mathbb{S}^{1} S U(3), \\
& \quad E_{8} / S U(8) \mathbb{S}^{1}, E_{8} / E_{6} \mathbb{S}^{1} S U(2), F_{4} / S U(2) \mathbb{S}^{1} S U(3), G_{2} / S U(2) \mathbb{S}^{1}
\end{aligned}
$$

We remark, that this closes the $b_{2}(M)=1$ case for the groups G_{2} and E_{6} and leaves only 6 open cases for the other exceptional groups.

Chapter 3

Holomorphic sectional curvature

In this chapter we describe the holomorphic curvature tensor from section 1.5 in the special case of a Kähler C space using the fact that the isotropy group contains a maximal torus \mathbb{T} of G. We do so via identifying the tensor with a symmetric endomorphism and use the \mathbb{T} equivariance of said endomorphism to split it into the sum of smaller endomorphisms. Afterwards, we describe the unique Kähler Einstein metric for a C space (G, K, J) and determine it explicitly for the classical groups with the chosen $J_{s t d}$. The last section of the chapter is dedicated to the argument, why it is sufficient to consider only our preferred complex structure.

3.1 Structure of a \mathbb{T} invariant symmetric tensor

In this section, we describe the structure of a symmetric \mathbb{T} invariant tensor F on $F i x(J)$, i.e. a symmetric bilinear form

$$
F: F i x(J) \times F i x(J) \rightarrow \mathbb{R},
$$

and will apply this to H and the four forms ω. First of all we identify the tensor with an endomorphism. We do so using the \mathbb{T} invariant inner product $\langle-,-\rangle_{\Lambda^{2}(\mathfrak{m})}$ from section 1.6 on $\Lambda^{2}(\mathfrak{m})$. By the invariance of F, we obtain a unique \mathbb{T} equivariant symmetric map

$$
\bar{F}: F i x(J) \rightarrow F i x(J)
$$

such that $F\left(\omega_{1}, \omega_{2}\right)=\left\langle\bar{F}\left(\omega_{1}\right), \omega_{2}\right\rangle_{\Lambda^{2} \mathfrak{m}}$. Complexification gives us the possibility to decompose $F i x(J)$ into weight spaces.

Proposition 23. The weight space decomposition of Fix $(J)^{\mathbb{C}}$ is given by

$$
\operatorname{Fix}(J)^{\mathbb{C}}=\bigoplus_{\alpha \in \Delta_{\mathfrak{m}}^{+}} \bigoplus_{\beta \in \Delta_{\mathfrak{m}}^{+}} \mathfrak{g}_{\alpha} \wedge \mathfrak{g}_{-\beta} .
$$

Let $\Delta_{H}=\left\{\alpha-\beta \mid \alpha, \beta \in \Delta_{\mathfrak{m}}^{+}\right\} / \mathbb{Z}_{2}$. Then we have the isotypical decomposition

$$
\operatorname{Fix}(J)^{\mathbb{C}}=\bigoplus_{\eta \in \Delta_{H}} \mathfrak{m}_{\eta}
$$

where $\mathfrak{m}_{\eta}=\bigoplus_{\alpha-\beta \in \eta} \mathfrak{g}_{\alpha} \wedge \mathfrak{g}_{-\beta}$.
Proof. For dimensional reasons it is sufficient to show the inclusion of the right hand side in the left hand side which follows immediately from

$$
J\left(X_{\alpha} \wedge Y_{-\beta}\right)=J\left(X_{\alpha}\right) \wedge J\left(Y_{-\beta}\right)=i(-i) X_{\alpha} \wedge Y_{-\beta}=X_{\alpha} \wedge Y_{-\beta}
$$

for $X_{\alpha} \in \mathfrak{g}_{\alpha}$ and $Y_{-\beta} \in \mathfrak{g}_{-\beta}$. In fact, it is easy to see that

$$
\operatorname{dim}_{\mathbb{C}}\left(\Lambda^{2}(\mathfrak{m})^{\mathbb{C}}\right)=\binom{\left|\Delta_{\mathfrak{m}}\right|}{2}=\left(2\left|\Delta_{\mathfrak{m}}^{+}\right|-1\right)\left|\Delta_{\mathfrak{m}}^{+}\right|
$$

and we see that the following vectors are linearly independent Eigenvectors of J with eigenvalue 1 for $E_{\alpha} \wedge E_{-\beta}$ for $\alpha, \beta \in \Delta_{\mathfrak{m}}^{+}$and eigenvalue -1 for $E_{\alpha} \wedge E_{\beta}, E_{-\alpha} \wedge E_{-\beta}$ for $\alpha<\beta \in \Delta_{\mathfrak{m}}^{+}$which give a basis of $\Lambda^{2}(\mathfrak{m})^{\mathbb{C}}$ by counting. It remains to show that the summands are weight spaces and that they are equivalent if and only if they induce the same element in Δ_{H}. Therefore we want to determine the weights of the action of $\mathbb{T} \subset K$. To that end, let $v \in \mathfrak{t}$ and $v(t)=\exp (t v)$ then we have,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} A d_{v(t)}\left(X_{\alpha} \wedge Y_{-\beta}\right) & =\left.\frac{d}{d t}\right|_{t=0} A d_{v(t)} X_{\alpha} \wedge A d_{v(t)} Y_{-\beta} \\
& =\left(\left.\frac{d}{d t}\right|_{t=0} A d_{v(t)} X_{\alpha}\right) \wedge Y_{-\beta}+X_{\alpha} \wedge\left(\left.\frac{d}{d t}\right|_{t=0} A d_{v(t)} Y_{-\beta}\right) \\
& =\left(a d_{v} X_{\alpha}\right) \wedge Y_{-\beta}+X_{\alpha} \wedge\left(a d_{v} Y_{-\beta}\right) \\
& =\alpha(v) X_{\alpha} \wedge Y_{-\beta}-\beta(v) X_{\alpha} \wedge Y_{-\beta} \\
& =(\alpha-\beta)(v) X_{\alpha} \wedge Y_{-\beta}
\end{aligned}
$$

The \mathfrak{t} equivariance of \bar{F} implies that the tensor satisfies $F\left(\mathfrak{m}_{\eta}, \mathfrak{m}_{\eta^{\prime}}\right)=0$ otherwise the projection of the restriction of \bar{F}, i.e. $\left.\quad p r_{\eta^{\prime}} \circ F\right|_{\mathfrak{m}_{\eta}}: \mathfrak{m}_{\eta} \rightarrow \mathfrak{m}_{\eta^{\prime}}$, would be a non zero equivariant map between non equivalent modules. Hence \bar{F} decomposes into the sum of maps $\bar{F}_{\eta}: \mathfrak{m}_{\eta} \rightarrow \mathfrak{m}_{\eta}$ for $\eta \in \Delta_{H}$. In order to describe the \bar{F}_{η} more carefully, we will go on to describe them with a useful basis. To that end we identify Δ_{H} with the set $\left\{\alpha-\beta \mid \alpha<\beta \in \Delta_{\mathfrak{m}}^{+}\right\} \cup\{0\}$ for a ordering $<$ as in proposition 15 on $\Delta_{\mathfrak{m}}^{+}$and make the following
Definition 24. We define
i) for $\alpha<\beta$ the module

$$
\mathfrak{m}_{\alpha \beta}=\mathfrak{g}_{\alpha} \wedge \mathfrak{g}_{-\beta} \oplus \mathfrak{g}_{\beta} \wedge \mathfrak{g}_{-\alpha}
$$

ii) for $\eta \in \Delta_{H} \backslash\{0\}$ the index set

$$
I(\eta)=\{(\alpha, \beta) \mid \alpha<\beta, \alpha-\beta=\eta\}
$$

and its cardinality to be $n_{\eta}=|I(\eta)|$.
Using this notation we have

$$
\mathfrak{m}_{\eta}=\bigoplus_{(\alpha, \beta) \in I(\eta)} \mathfrak{m}_{\alpha \beta} \quad \mathfrak{m}_{0}=\bigoplus_{\alpha \in \Delta_{\mathfrak{m}}^{+}} \mathfrak{g}_{\alpha} \wedge \mathfrak{g}_{-\alpha}
$$

and $\operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{\eta}\right)=2 n_{\eta}$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{0}\right)=\left|\Delta_{\mathfrak{m}}^{+}\right|$.
For a fixed pair $\alpha<\beta$, we choose the ordered basis $A_{\alpha \beta}=E_{\alpha} \wedge E_{-\beta}$ and $B_{\alpha \beta}=E_{\beta} \wedge E_{-\alpha}$ of $\mathfrak{m}_{\alpha \beta}$, where the E_{α} are the Chevalley basis from proposition 11. Obviously, this induces a basis of the real module

$$
\mathfrak{m}_{\alpha \beta}^{\mathbb{R}}=\mathfrak{m} \cap \mathfrak{m}_{\alpha \beta}=\left\langle\Phi_{\alpha \beta}, \Psi_{\alpha \beta}\right\rangle_{\mathbb{R}}
$$

where $\Phi_{\alpha \beta}=\frac{1}{\sqrt{2}}\left(A_{\alpha \beta}-B_{\alpha \beta}\right)$ and $\Psi_{\alpha \beta}=\frac{i}{\sqrt{2}}\left(A_{\alpha \beta}+B_{\alpha \beta}\right)$. In general, the projection of the restriction of \bar{F} to the submodules of \mathfrak{m}_{η}, i.e.

$$
\bar{F}_{\gamma \delta}^{\alpha \beta}=\left.p r_{\gamma \delta} \circ \bar{F}\right|_{\mathfrak{m}_{\alpha \beta}}: \mathfrak{m}_{\alpha \beta} \rightarrow \mathfrak{m}_{\gamma \delta}
$$

is a intertwining map of equivalent \mathbb{T} modules. However, since these are complex representations the space of intertwining maps is two dimensional and in fact it is fairly easy to see that in the basis A, B of the corresponding modules, we have the matrix representation

$$
\bar{F}_{\gamma \delta}^{\alpha \beta}=\frac{1}{\left\langle A_{\gamma \delta}, B_{\gamma \delta}\right\rangle_{\Lambda^{2}(\mathfrak{m})}}\binom{\lambda \mu}{\bar{\mu} \bar{\lambda}}
$$

where $\lambda=F\left(A_{\gamma \delta}, B_{\gamma \delta}\right)$ and $\mu=F\left(B_{\gamma \delta}, B_{\gamma \delta}\right)$. However, it will be useful to consider a more restrictive type of tensor F. In fact, we present the following

Proposition 25. Let $\eta \in \Delta_{H}$ be non zero. Let F be a symmetric tensor as before, that satisfies for all $(\alpha, \beta),(\gamma, \delta) \in I(\eta)$:

1) $F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)$ is zero and
2) $F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)$ is a real number.

Then we have that F is positive definite on \mathfrak{m}_{η} if and only if the matrix $M\left(F_{\eta}\right) \in \operatorname{Sym}_{n_{\eta}}(\mathbb{R})$ defined as

$$
\left(M\left(F_{\eta}\right)\right)_{(\alpha, \beta)(\gamma, \delta)}=-F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)
$$

with $(\alpha, \beta),(\gamma, \delta) \in I(\eta)$ is positive definite.
Proof. Consider the matrix X representing the bilinear form F on $\mathfrak{m}_{\alpha \beta}^{\mathbb{R}} \times \mathfrak{m}_{\gamma \delta}^{\mathbb{R}}$, i.e.

$$
X=\binom{F\left(\Phi_{\alpha \beta}, \Phi_{\gamma \delta}\right) F\left(\Phi_{\alpha \beta}, \Psi_{\gamma \delta}\right)}{F\left(\Psi_{\alpha \beta}, \Phi_{\gamma \delta}\right) F\left(\Psi_{\alpha \beta}, \Psi_{\gamma \delta}\right)}
$$

Then by expanding the expressions of Φ, Ψ in terms of A and B, and using the fact that from $\overline{A_{\alpha \beta}}=B_{\alpha \beta}$ follows $\overline{F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)}=F\left(\overline{A_{\alpha \beta}}, \overline{B_{\gamma \delta}}\right)=F\left(B_{\alpha \beta}, A_{\gamma \delta}\right)$ and similarly $\overline{F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)}=F\left(B_{\alpha \beta}, B_{\gamma \delta}\right)$ we get

$$
X=\left(\begin{array}{cc}
\operatorname{Re}\left(F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)-F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)\right) & -\operatorname{Im}\left(F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)+F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)\right) \\
-\operatorname{Im}\left(F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)-F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)\right) & -\operatorname{Re}\left(F\left(A_{\alpha \beta}, A_{\gamma \delta}\right)+F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)\right)
\end{array}\right)
$$

Now using properties 1) and 2) we obtain

$$
X=-F\left(A_{\alpha \beta}, B_{\gamma \delta}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Since this is true for all pairs of pairs $(\alpha, \beta),(\gamma, \delta) \in I(\eta)$ we get that the matrix representing F on $\mathfrak{m}_{\eta} \times \mathfrak{m}_{\eta}$ is

$$
M\left(F_{\eta}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

where \otimes denotes the Kronecker product of matrices. Now it is known that the eigenvalues of the Kronecker product of two diagonalizable matrices are exactly the products of their eigenvalues. Hence it follows that F is positive definite on \mathfrak{m}_{η} if and only if $M\left(F_{\eta}\right)$ is positive definite.

For the trivial module we choose the basis $C_{\alpha}=E_{\alpha} \wedge E_{-\alpha}$ and the real version is obviously $\Omega_{\alpha}=i C_{\alpha}$. Then the version of the above for the trivial module is given by

Proposition 26. The tensor F on \mathfrak{m}_{0} is positive definite if and only if the matrix $M\left(F_{0}\right) \in$ $\operatorname{Sym}_{\left|\Delta_{\mathrm{m}}^{+}\right|}(\mathbb{R})$ defined as

$$
\left(M\left(F_{0}\right)\right)_{(\alpha, \alpha),(\beta, \beta)}=-F\left(C_{\alpha}, C_{\beta}\right)
$$

is positive definite.
Proof. This is even simpler, since the matrix representing F on $\mathfrak{m}_{0}^{\mathbb{R}} \times \mathfrak{m}_{0}^{\mathbb{R}}$ is given by $X_{\alpha \beta}=$ $F\left(\Omega_{\alpha}, \Omega_{\beta}\right)=-F\left(C_{\alpha}, C_{\beta}\right)$.

Now we want to apply proposition 25 to the holomorphic curvature tensor and to the elementary relevant four forms from proposition 20. To that end, denote the elementary forms by

$$
\omega_{1}=E_{x,-y, v,-w}+\overline{E_{x,-y, v,-w}} \quad \text { and } \quad \omega_{2}=i\left(E_{x,-y, v,-w}-\overline{E_{x,-y, v,-w}}\right)
$$

with $x-y=w-v$ and $x<y, w<v \in \Delta_{\mathfrak{m}}^{+}$.

Proposition 27. The holomorphic curvature tensor H and the elementary four forms ω_{1} satisfy the requirements of proposition 25.

Remark: We want to remark that with the same proof also ω_{2} satisfies property 1) but not property 2) and hence the changes induced by ω_{2} on the curvature tensor can not be represented in the matrices $M\left(F_{\eta}\right)$. We will restrict ourself to the modifications realizable in the $M\left(F_{\eta}\right)$ since they will be sufficient for our proofs. However, it might be worthwhile to investigate further how ω_{2} modifies the curvature tensor.

Proof. First we consider the holomorphic curvature tensor H. The first property is true because $H\left(A_{\alpha \beta}, A_{\gamma \delta}\right)=R_{\alpha \beta \gamma \delta}=0$ by equation (1.4) since $\alpha-\beta=\eta=\gamma-\delta \neq \delta-\gamma$ and $H\left(A_{\alpha \beta}, B_{\gamma \delta}\right)=R_{\alpha \beta \delta \gamma}$ is a real number by the table of proposition 16 . Secondly, we consider ω_{1}. Then we have by \mathbb{T} invariance as in proposition 19 that

$$
\begin{aligned}
\omega_{1}^{\prime}\left(A_{\alpha \beta}, A_{\gamma \delta}\right) & =\left\langle\omega_{1}, E_{\alpha,-\beta, \gamma,-\delta}\right\rangle_{\Lambda^{4}(\mathfrak{m})} \\
& =\left\langle A d_{\exp (t v)}\left(\omega_{1}\right), E_{\alpha,-\beta, \gamma,-\delta}\right\rangle_{\Lambda^{4}(\mathfrak{m})} \\
& =\left\langle\omega_{1}, A d_{\exp (-t v)}\left(E_{\alpha,-\beta, \gamma,-\delta}\right)\right\rangle_{\Lambda^{4}(\mathfrak{m})}
\end{aligned}
$$

and differentiation in t yields $0=(\alpha-\beta+\gamma-\delta)(v)\left\langle\omega_{1}, E_{\alpha,-\beta, \gamma,-\delta}\right\rangle_{\Lambda^{4}(\mathfrak{m})}$ for $v \in \mathfrak{t}$. As above we have $\alpha-\beta+\gamma-\delta \neq 0$ and hence $\omega_{1}^{\prime}\left(A_{\alpha \beta}, A_{\gamma \delta}\right)=0$ as claimed. The second property follows from the fact that the expression 1.13) only yields real values.

All of the above allows us to reduce the transformation of the holomorphic curvature tensor into a positive definite tensor via forms of the type ω_{1} to the matrices $M\left(F_{\eta}\right)$ with $F \in\left\{H, \omega_{1}\right\}$. Before we determine those matrices in detail including the different possibilities of roots x, y, v, w in the choice of ω_{1}, we describe the strategy we will follow: Notice, that the requirements of proposition 25 are additive in F and hence we have for two symmetric \mathbb{T} invariant tensors F, P satisfying the requirements, that $F+P$ satisfies them as well and we have

$$
M\left((F+P)_{\eta}\right)=M\left(F_{\eta}\right)+M\left(P_{\eta}\right),
$$

in particular $M\left((H+\omega)_{\eta}\right)=M\left(H_{\eta}\right)+M\left(\omega_{\eta}\right)$ for ω being a four form in the span of all elementary relevant forms of type ω_{1}. Hence, once determined $M\left(H_{\eta}\right)$ the proof of positive holomorphic sectional curvature reduces to adding matrices coming from four forms until the resulting matrix is positive definite. By proposition 25 the symmetric tensor corresponding to that matrix is positive definite and by 1.12 the holomorphic sectional curvature is positive.

Now we determine the matrices for the mentioned tensors.
Proposition 28. The matrices representing the holomorphic curvature tensor are given by the following: For $\eta \in \Delta_{H}$ being a non zero weight

$$
M\left(H_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}=-R_{\alpha \beta \delta \gamma}
$$

with $(\alpha, \beta),(\gamma, \delta) \in I(\eta)$ and for the trivial module

$$
M\left(H_{0}\right)_{(\alpha, \alpha)(\beta, \beta)}=-R_{\alpha \alpha \beta \beta}
$$

for $\alpha, \beta \in \Delta_{\mathfrak{m}}^{+}$.
In the case of ω_{1} we distinguish two cases:
Proposition 29 (Case I). Assume $|\{x, y, v, w\}|=4$. Then we may assume $x<y, v, w$.In this case the only non vanishing entries of the matrices $M\left(\left(\omega_{1}\right)_{\eta}\right)$ are the following:

$$
M\left(\left(\omega_{1}\right)_{(x-y)}\right)_{(x, y)(w, v)}=-c \text { and } M\left(\left(\omega_{1}\right)_{(x-w)}\right)_{(x, w)(y, v)}=c
$$

and their symmetric counterparts, where $c=z_{\alpha} z_{\beta} z_{\gamma} z_{\delta} g_{\alpha} g_{\beta} g_{\gamma} g_{\delta}$.

Proof. First of all notice that $\omega_{1}(x, y, w, v)=E_{x,-y, v,-w}+E_{y,-x, w,-v}=\omega_{1}(w, v, x, y)$ which allows us to assume $x<y, v, w$. Then we have to check when

$$
M\left(\left(\omega_{1}\right)_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}=-\left\langle\omega_{1}, E_{(\alpha,-\beta, \delta,-\gamma)}\right\rangle_{\Lambda^{4}(\mathfrak{m})}
$$

with $\alpha \leq \beta, \gamma \leq \delta$ and $\alpha-\beta=\gamma-\delta=\eta$ is non zero. Note that the equality cases $\alpha=\beta$ and $\gamma=\delta$ are orthogonal to ω_{1} since all x, y, v, w are different. It is easy to see that the only non zero cases are

$$
\left\langle\omega_{1}, E_{(\alpha,-\beta, \delta,-\gamma)}\right\rangle_{\Lambda^{4}(\mathfrak{m})}= \begin{cases}c & (\alpha, \beta, \gamma, \delta)=(x, y, w, v) \\ c & (\alpha, \beta, \gamma, \delta)=(w, v, x, y) \\ -c & (\alpha, \beta, \gamma, \delta)=(x, w, y, v) \\ -c & (\alpha, \beta, \gamma, \delta)=(y, v, x, w)\end{cases}
$$

Here we see that the first two are the symmetric entries in $M\left(\left(\omega_{1}\right)_{(x-y)}\right)$ and the later two are the symmetric entries in $M\left(\left(\omega_{1}\right)_{(x-w)}\right)$ as claimed.
Proposition 30 (Case II). Assume $|\{x, y, v, w\}|=2$. Then $x=w$ and $y=v$ and the only non vanishing entries of the matrices $M\left(\left(\omega_{1}\right)_{\eta}\right)$ are the following

$$
M\left(\left(\omega_{1}\right)_{(x-y)}\right)_{(x, y)(x, y)}=2 c \text { and } M\left(\left(\omega_{1}\right)_{0}\right)_{(x, x)(y, y)}=-2 c
$$

and its symmetric counterpart. Here we have $c=z_{x}^{2} z_{y}^{2} g_{x}^{2} g_{y}^{2}$.
Proof. It is clear that $x=w$ and $y=v$. In that case we have $\omega_{1}(x, y, x, y)=2 E_{x,-y, y,-x}$ which is orthogonal to $E_{(\alpha,-\beta, \delta,-\beta)}$ unless

$$
(\alpha, \beta, \gamma, \delta) \in\{(x, x, y, y),(y, y, x, x),(x, y, x, y)\}
$$

and we have

$$
\left\langle 2 E_{x,-y, y,-x}, E_{(\alpha,-\beta, \delta,-\gamma)}\right\rangle_{\Lambda^{4}(\mathfrak{m})}= \begin{cases}-2 c & (\alpha, \beta, \gamma, \delta)=(y, y, x, x) \\ -2 c & (\alpha, \beta, \gamma, \delta)=(x, x, y, y) \\ 2 c & (\alpha, \beta, \gamma, \delta)=(x, y, x, y)\end{cases}
$$

Remark: The value of c is actually not important since we can scale ω_{1} arbitrarily. The important results of the above was to determine the non vanishing entries and the signs of the modification.

The summary of the above is the following recipe on how to prove positive holomorphic sectional curvature:
i) Determine the set Δ_{H} of weights.
ii) Determine the matrices $M\left(H_{\eta}\right)$ representing the holomorphic curvature tensor.
iii) Modify the matrices to turn them positive definite using an arbitrary amount of the following modifications:
$I:$ Adding the value $s \in \mathbb{R}$ on the diagonal of an $M\left(H_{\eta}\right)$ with $\eta \in \Delta_{H} \backslash\{0\}$ and subtracting s symmetrically off the entry of $M\left(H_{0}\right)$ as given in proposition 30 .
$I I:$ Adding the value s symmetrically to an off diagonal entry of $M\left(H_{\eta}\right)$ with $\eta \in \Delta_{H} \backslash$ $\{0\}$ and subtracting s symmetrically from the matrix $M\left(H_{\eta^{\prime}}\right)$ as given in proposition 29
A useful observation is that it is sufficient to have all $M\left(H_{\eta}\right)$ positive semidefinite and only $M\left(H_{0}\right)$ positive definite.

Proposition 31. If there are four forms such that the modified matrices $M\left(H_{\eta}\right)$ are positive semidefinite and $M\left(H_{0}\right)$ is positive definite, then there are also four forms such that all of them are positive definite.

Proof. If we take for $\varepsilon>0$ the four form ω that has the matrix expression

$$
M\left(\omega_{0}\right)_{(\alpha, \beta)}= \begin{cases}0 & \alpha=\beta \\ -\varepsilon & \alpha \neq \beta\end{cases}
$$

and

$$
M\left(\omega_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}= \begin{cases}0 & (\alpha, \beta) \neq(\gamma, \delta) \\ \varepsilon & (\alpha, \beta)=(\gamma, \delta)\end{cases}
$$

and denote by H^{\prime} the modified tensor as stated in the claim, then we have that for ε small enough but not zero $M\left(H_{0}^{\prime}\right)+M\left(\omega_{0}\right)$ is still positive definite since it is an open condition and at the same time $M\left(H_{\eta}^{\prime}\right)+M\left(\omega_{\eta}\right)$ is positive definite since it is the sum of a positive definite and a positive semidefinite matrix.

Notice that the symmetry coming from the Bianchi identity in lemma 14 and the symmetry coming from the four form, i.e. $\omega(A \wedge B, C \wedge D)=-\omega(A \wedge C, B \wedge D)$, imply

$$
\begin{equation*}
M\left(H_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}=M\left(H_{\eta+\beta-\gamma}\right)_{(\alpha, \gamma)(\beta, \delta)} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(\omega_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}=-M\left(\omega_{\eta+\beta-\gamma}\right)_{(\alpha, \gamma)(\beta, \delta)} . \tag{3.2}
\end{equation*}
$$

Hence, we can see here as stated by Tho71 that the four forms are exactly the tensors breaking the Bianchi identity.

3.2 Kähler Einstein metric

As mentioned in the introduction, we will restrict ourself to a particular kind of Kähler metric. It is well known due to Mat72, that for a fixed complex structure on a C space there is up to scaling exactly one homogeneous Kähler Einstein metric. For a detailed exposition we suggest [Arv92, p.36f]. In fact there is a simple and explicit formula for the coefficients g_{α} in the Kähler Einstein case considering that the complex structure is determined by a particular set $\Delta_{\mathfrak{m}}^{+}$of roots as given in proposition 4 ,

$$
g_{\alpha}=B\left(\alpha, \delta_{K}^{*}\right),
$$

where $\delta_{K}^{*}=\sum_{\beta \in \Delta_{m}^{+}} \beta$. Now assume that we have a complex structure on (G, \mathbb{T}) compatible with the one on (G, K), i.e a decomposition $\Delta_{\mathfrak{g}}^{+}=\Delta_{\mathfrak{m}}^{+} \cup \Delta_{\mathfrak{k}}^{+}$as in proposition 7 . Then it is useful to consider $\gamma_{K}^{*}=\sum_{\alpha \in \Delta_{\mathrm{e}}^{+}} \alpha$ to determine the Kähler Einstein metric of (G, K) from the one of (G, \mathbb{T}) in the following way:

$$
\begin{align*}
\left(g_{K E}^{K}\right)_{\alpha} & =B\left(\delta_{K}^{*}, \alpha\right)=B\left(\sum_{\beta \in \Delta_{\mathfrak{m}}^{+}} \beta, \alpha\right) \\
& =B\left(\sum_{\beta \in \Delta_{\mathfrak{g}}^{+}} \beta, \alpha\right)-B\left(\sum_{\beta \in \Delta_{\mathfrak{e}}^{+}} \beta, \alpha\right) \\
& =B\left(\delta_{\mathbb{T}}^{*}, \alpha\right)-B\left(\gamma_{K}^{*}, \alpha\right) \\
& =\left(g_{K E}^{\mathbb{T}}\right)_{\alpha}-B\left(\gamma_{K}^{*}, \alpha\right) . \tag{3.3}
\end{align*}
$$

In the following, we determine the Kähler Einstein metrics of $\left(G, \mathbb{T}, J_{s t d}\right)$ for the classical groups, their maximal tori and fixed complex structures whilst using the scaled killing form from section 1.8

Proposition 32 (Kähler Einstein metric of $S U(n+1)$). Up to scaling of the full metric the coefficients of the Kähler Einstein metric are given by

$$
\begin{equation*}
g_{\alpha_{i j}}^{K E}=j-i \tag{3.4}
\end{equation*}
$$

Proof. Notice that

$$
\delta^{*}=\sum_{i=1}^{n} \sum_{j=i+1}^{n+1} \alpha_{i j}=\sum_{i=1}^{n+1}(n+2-2 i) \varepsilon_{i}
$$

Hence since $B\left(\varepsilon_{i}, \varepsilon_{i}\right)=\frac{1}{2}$ we have

$$
B\left(\delta^{*}, \alpha_{k l}\right)=\frac{1}{2}((n+2-2 l)-(n+2-2 k))=(l-k) .
$$

Proposition 33 (Kähler Einstein metric of $S O(2 n+1)$). Up to scaling of the full metric the coefficients of the Kähler Einstein metric are given by

$$
g_{\alpha}^{K E}= \begin{cases}2(k-l) & \alpha=\alpha_{k l} \tag{3.5}\\ 2(2 n+1-(l+k)) & \alpha=\beta_{k l} \\ (2 n+1-2 k) & \alpha=\varepsilon_{k}\end{cases}
$$

Proof. Notice that

$$
\delta^{*}=\left(\sum_{i=1}^{n} \varepsilon_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\alpha_{i j}+\beta_{i j}\right)\right)=\sum_{i=1}^{n}(2 n-2 i+1) \varepsilon_{i}
$$

Hence since $B\left(\varepsilon_{i}, \varepsilon_{i}\right)=4$ we have

$$
\begin{aligned}
B\left(\delta^{*}, \alpha_{k l}\right) & =4((2 n-2 l+1)-(2 n-2 k+1))=8(l-k) \\
B\left(\delta^{*}, \beta_{k l}\right) & =4((2 n-2 l+1)+(2 n-2 k+1))=8(2 n+1-(l+k)) \\
B\left(\delta^{*}, \varepsilon_{k}\right) & =4(2 n-2 k+1)
\end{aligned}
$$

Proposition 34 (Kähler Einstein metric of $S p(n)$). Up to scaling of the full metric the coefficients of the Kähler Einstein metric are given by

$$
g_{\alpha}^{K E}= \begin{cases}l-k & \alpha=\alpha_{k l} \tag{3.6}\\ 2 n+2-(l+k) & \alpha=\beta_{k l} \\ 2 n+2-2 k & \alpha=\gamma_{k}\end{cases}
$$

Proof. Notice that

$$
\delta^{*}=\left(\sum_{i=1}^{n} 2 \varepsilon_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\alpha_{i j}+\beta_{i j}\right)\right)=2 \sum_{i=1}^{n}(n-i+1) \varepsilon_{i}
$$

Hence since $B\left(\varepsilon_{i}, \varepsilon_{i}\right)=1$ we have

$$
\begin{aligned}
B\left(\delta^{*}, \alpha_{k l}\right) & =2((n-l+1)-(n-k+1))=2(l-k) \\
B\left(\delta^{*}, \beta_{k l}\right) & =2((n-l+1)+(n-k+1))=2(2 n+2-(l+k)) \\
B\left(\delta^{*}, \gamma_{k}\right) & =B\left(\delta^{*}, 2 \varepsilon_{k}\right)=4(n-k+1)
\end{aligned}
$$

Proposition 35 (Kähler Einstein metric of $S O(2 n)$). Up to scaling of the full metric the coefficients of the Kähler Einstein metric are given by

$$
g_{\alpha}^{K E}= \begin{cases}(k-l) & \alpha=\alpha_{k l} \tag{3.7}\\ (2 n-(l+k)) & \alpha=\beta_{k l}\end{cases}
$$

Proof. Notice that

$$
\delta^{*}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\alpha_{i j}+\beta_{i j}\right)=2 \sum_{i=1}^{n}(n-i) \varepsilon_{i}
$$

Hence since $B\left(\varepsilon_{i}, \varepsilon_{i}\right)=4$ we have

$$
\begin{aligned}
& B\left(\delta^{*}, \alpha_{k l}\right)=8((n-l)-(n-k))=8(l-k) \\
& B\left(\delta^{*}, \beta_{k l}\right)=8((n-l)+(n-k))=8(2 n-(l+k))
\end{aligned}
$$

It is well known, e. g. from Bou68, that bases for the positive roots of the classical groups are given by

$$
\begin{aligned}
\Phi_{S U(n+1)} & =\left\{\alpha_{i, i+1} \mid i=1 \ldots n\right\} \\
\Phi_{S O(2 n+1)} & =\left\{\alpha_{i, i+1} \mid i=1 \ldots n-1\right\} \cup\left\{\varepsilon_{n}\right\} \\
\Phi_{S p(n)} & =\left\{\alpha_{i, i+1} \mid i=1 \ldots n-1\right\} \cup\left\{\gamma_{n}\right\} \\
\Phi_{S O(2 n)} & =\left\{\alpha_{i, i+1} \mid i=1 \ldots n-1\right\} \cup\left\{\beta_{n-1, n}\right\}
\end{aligned}
$$

This gives rise to the following Dynkin diagrams, where we write the pair $\left(\alpha,\left(g_{K E}\right)_{\alpha}\right)$ above each vertex, since the metric is determined by its values on the simple roots by equation (1.2).
$S U(n+1)$:

$S O(2 n+1):$

$S p(n):$

$S O(2 n)$:

We observe that the coefficients of the simple roots of the Kähler Einstein metric do not depend on the rank.

3.3 Independence of complex structure

Before we apply the discussion of the holomorphic curvature tensor to an example, we want to point out the following observations concerning the holomorphic curvature of the Kähler Einstein metric with respect to different complex structures.

By proposition 4 we know that a complex structure on G / \mathbb{T} corresponds to a choice of positive roots which in turn corresponds to a Weyl chamber and we know that the Weyl group acts transitively on those, hence it is a natural question how the Weyl group interacts with complex structures. In fact it is known, e.g. by [Arv92, p. 21 f], that thanks to the Weyl group all complex structures on G / \mathbb{T} are equivalent:

Lemma 36. Let J, J^{\prime} be two complex structures on G / \mathbb{T}. Then there is a biholomorphic equivariant diffeomorphism

$$
\varphi:(G / \mathbb{T}, J) \rightarrow\left(G / \mathbb{T}, J^{\prime}\right)
$$

induced by an automorphism ψ of G,i.e.

$$
\varphi\left(g \cdot g^{\prime} \mathbb{T}\right)=\psi(g) \cdot \varphi\left(g^{\prime} \mathbb{T}\right)
$$

Proof. The two complex structures induce sets of positive roots in $\Delta_{\mathfrak{g}}$. By classical results on semisimple Lie algebras two of these orderings are conjugate via the Weyl group and hence there exists a element $g \in N_{G}(\mathbb{T})$ in the normalizer of the maximal torus such that $\psi(x)=g x g^{-1}$ induces an automorphism of G / \mathbb{T} moving one complex structure into the other.

This is not true any more if we consider the case G / K. However, in the light of proposition 9 and lemma 36, it makes sense to restrict to a fixed "standard" $J_{s t d}$ on G / \mathbb{T} and only consider the complex structures induced by this complex structure.

Lemma 37. Let (G, K, J) a C space with an arbitrary complex structure J. Then there is a C space $\left(G, K^{\prime}, J^{\prime}\right)$ and a equivariant biholomorphism

$$
\varphi^{\prime}:(G / K, J) \rightarrow\left(G / K^{\prime}, J^{\prime}\right)
$$

with the property that the submersion

$$
\pi:\left(G / \mathbb{T}, J_{s t d}\right) \rightarrow\left(G / K^{\prime}, J^{\prime}\right)
$$

is holomorphic.
Remark: In other words, every C space (G, K, J) is equivariantly biholomorphic to a C space with complex structure induced by $J_{s t d}$.
Proof. By proposition 9 there is a complex structure \tilde{J} such that $(G / \mathbb{T}, \tilde{J}) \rightarrow(G / K, J)$ is a holomorphic submersion. By lemma 36, we get a automorphism $\psi: G \rightarrow G$ with $\psi(\mathbb{T})=\mathbb{T}$ that induces an biholomorphic diffeomorphism $\varphi:(G / \mathbb{T}, \tilde{J}) \rightarrow\left(G / \mathbb{T}, J_{\text {std }}\right)$. Now with $K^{\prime}=\varphi(K)$ it is easy to see that $J_{\text {std }}$ is K^{\prime} invariant and therefore let J^{\prime} be the complex structure on G / K^{\prime} induced by $J_{\text {std }}$. This implies already that the submersion is holomorphic. Furthermore, we have a biholomorphic diffeomorphism

$$
\varphi^{\prime}:(G / K, J) \rightarrow\left(G / K^{\prime}, J^{\prime}\right)
$$

by construction.
This uniqueness property of the Kähler Einstein metric can be used nicely to proof the following theorem.

Theorem 38. Let $\left(G, K, J, g_{K E}\right)$ be a Kähler Einstein C space. Then, up to scaling, the biholomorphism from lemma 37 is an isometry between the Kähler Einstein metrics.

Proof. Let $\varphi^{\prime}:(G / K, J) \rightarrow\left(G / K^{\prime}, J^{\prime}\right)$ be the equivariant biholomorphism from lemma 37 Now, it is only left to show that this is actually an isometry between the Kähler Einstein metrics. Let us denote $g^{\prime}=\varphi^{\prime-1 *} g_{K E}$. It certainly is an isometry between

$$
\varphi^{\prime}:\left(G / K, J, g_{K E}\right) \rightarrow\left(G / K^{\prime}, J^{\prime}, g^{\prime}\right)
$$

So it is only left to show that g^{\prime} is a homogeneous Kähler Einstein metric. Since the Kähler and Einstein properties are preserved under pullback it is sufficient to prove that g^{\prime} is G invariant, because of the uniqueness (up to scalar) of homogeneous Kähler Einstein metrics on C spaces. Therefore, we consider for $x \in G$

$$
\begin{aligned}
x^{*} g^{\prime} & =x^{*}\left(\varphi^{\prime-1 *} g_{K E}\right) \\
& =\left(\varphi^{\prime-1} \circ x\right)^{*} g_{K E} \\
& =\left(\psi^{-1}(x) \circ \varphi^{\prime-1}\right)^{*} g_{K E} \\
& =\varphi^{\prime-1 *}\left(\psi^{-1}(x)^{*} g_{K E}\right) \\
& =\varphi^{\prime-1 *} g_{K E} \\
& =g^{\prime} .
\end{aligned}
$$

Here we used the equivariance of φ with respect to ψ.
The proof allows us to deduce the following.
Corollary 39. For any two invariant complex structures J, J^{\prime} on G / \mathbb{T} there exists a biholomorphic isometry

$$
\left(G, \mathbb{T}, J, g_{K E}^{J}\right) \rightarrow\left(G, \mathbb{T}, J^{\prime}, g_{K E}^{J^{\prime}}\right)
$$

Hence the holomorphic curvature of the corresponding Kähler Einstein metric is independent of the chosen complex structure.

Corollary 40. If $\left(G, K, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature for all K leaving $J_{s t d}$ invariant, then the same is true for any complex structure.

The previous two corollaries allow us to restrict all our efforts to a particular fixed complex structure $J_{s t d}$. We will do so for the most part of the rest of the thesis. However, we will recall from time to time in relevant situations the independence of the complex structure.

Chapter 4

Example of $\left(G_{2}, \mathbb{T}^{2}\right)$

Since there is only one Kähler Einstein C space with simple group G_{2} that is not covered by Itoh and theorem 22 i.e. the case of $K=\mathbb{T}^{2}$, we will use this case as an detailed example of how the above description of the holomorphic curvature tensor can be used to proof positive holomorphic sectional curvature. First of all we summarize the well known algebraic setting of G_{2}, which is necessary to determine the curvatures, i.e. z_{α} and $N_{\alpha, \beta}$ from proposition 11 . The following can be found in [FH91, p.346f].

Proposition 41. The root system of G_{2} and its positive roots determining $J_{\text {std }}$ are generated by the two simple roots α, β in the following way

$$
\begin{aligned}
\Delta_{\mathfrak{g}}^{+} & =\{\alpha, \beta, \alpha+\beta, 2 \alpha+\beta, 3 \alpha+\beta, 3 \alpha+2 \beta\} \\
& =\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}
\end{aligned}
$$

with the Dynkin diagram

We know that the cartan matrix defining the killing form on \mathfrak{h} up to scalar is of the form

$$
2\left(\begin{array}{l}
\frac{(\alpha, \alpha)}{(\alpha, \alpha)} \\
\frac{(\alpha, \beta)}{(\alpha, \alpha)} \\
\frac{(\alpha, \beta)}{(\beta, \beta)}
\end{array}\right)=\left(\begin{array}{cc}
2 & -3 \\
(\beta, \beta)
\end{array}\right) .
$$

Furthermore, there is a basis H_{1}, H_{2}, E_{α} with $\alpha \in \Delta$ of $\mathfrak{g}_{2}^{\mathbb{C}}$ such that H_{1}, H_{2} span \mathfrak{h} and $E_{\alpha} \in \mathfrak{g}_{\alpha}$ and the Lie bracket is given by the following table.

$[X, Y]$	H_{1}	H_{2}	$E_{\alpha_{1}}$	$E_{-\alpha_{1}}$	$E_{\alpha_{2}}$	$E_{-\alpha_{2}}$	$E_{\alpha_{3}}$	$E_{-\alpha_{3}}$	$E_{\alpha_{4}}$	$E_{-\alpha_{4}}$	$E_{\alpha_{5}}$	$E_{-\alpha_{5}}$	$E_{\alpha_{6}}$	$E_{-\alpha_{6}}$
$\begin{aligned} & H_{1} \\ & H_{2} \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 E_{\alpha_{1}} \\ & -E_{\alpha_{1}} \end{aligned}$	$\begin{gathered} -2 E_{-\alpha_{1}} \\ E_{-\alpha_{1}} \end{gathered}$	$\begin{gathered} -3 E_{\alpha_{2}} \\ 2 E_{\alpha_{2}} \end{gathered}$	$\begin{gathered} 3 E_{-\alpha_{2}} \\ -2 E_{-\alpha_{2}} \end{gathered}$	$\begin{gathered} -E_{\alpha_{3}} \\ E_{\alpha_{3}} \end{gathered}$	$\begin{gathered} E_{-\alpha_{3}} \\ -E_{-\alpha_{3}} \end{gathered}$	$\begin{gathered} E_{\alpha_{4}} \\ 0 \end{gathered}$	$\begin{gathered} -E_{-\alpha_{4}} \\ 0 \end{gathered}$	$\begin{aligned} & 3 E_{\alpha_{5}} \\ & -E_{\alpha_{5}} \end{aligned}$	$-3 E_{-\alpha_{5}}$ $E_{-\alpha_{5}}$	0 $E_{\alpha_{6}}$	$\begin{gathered} 0 \\ -E_{-\alpha_{6}} \end{gathered}$
$\begin{gathered} E_{\alpha_{1}} \\ E_{-\alpha_{1}} \end{gathered}$			0	$\begin{gathered} H_{1} \\ 0 \end{gathered}$	$\begin{gathered} E_{\alpha_{3}} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -E_{-\alpha_{3}} \end{gathered}$	$\begin{aligned} & 2 E_{\alpha_{4}} \\ & 3 E_{\alpha_{2}} \end{aligned}$	$\begin{aligned} & -3 E_{-\alpha_{2}} \\ & -2 E_{-\alpha_{4}} \end{aligned}$	$\begin{gathered} -3 E_{\alpha_{5}} \\ 2 E_{\alpha_{3}} \end{gathered}$	$\begin{gathered} -2 E_{-\alpha_{3}} \\ 3 E_{\alpha_{5}} \end{gathered}$	$\begin{gathered} 0 \\ -E_{\alpha_{4}} \end{gathered}$	$\begin{gathered} E_{-\alpha_{4}} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$\begin{gathered} E_{\alpha_{2}} \\ E_{-\alpha_{2}} \\ \hline \end{gathered}$					0	$\begin{gathered} H_{2} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -E_{\alpha_{1}} \end{gathered}$	$E_{-\alpha_{1}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -E_{\alpha_{6}} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -E_{\alpha_{6}} \end{gathered}$	$\begin{gathered} 0 \\ -E_{\alpha_{5}} \end{gathered}$	$\begin{gathered} E_{-\alpha_{5}} \\ 0 \end{gathered}$
$\begin{gathered} E_{\alpha_{3}} \\ E_{-\alpha_{3}} \end{gathered}$								$\begin{gathered} H_{1}+3 H_{2} \\ 0 \end{gathered}$	$\begin{aligned} & -3 E_{\alpha_{6}} \\ & -2 E_{\alpha_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 E_{-\alpha_{1}} \\ & 3 E_{-\alpha_{6}} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ -E_{\alpha_{4}} \end{gathered}$	$\begin{gathered} E_{-\alpha_{4}} \\ 0 \end{gathered}$
$\begin{gathered} E_{\alpha_{4}} \\ E_{-\alpha_{4}} \end{gathered}$										$\begin{gathered} 2 H_{1}+3 H_{2} \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ E_{\alpha_{1}} \end{gathered}$	$\begin{gathered} -E_{-\alpha_{1}} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -E_{\alpha_{3}} \end{gathered}$	$\begin{gathered} E_{-\alpha_{3}} \\ 0 \end{gathered}$
$\begin{gathered} E_{\alpha_{5}} \\ E_{-\alpha_{5}} \end{gathered}$												$\begin{gathered} H_{1}+H_{2} \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ E_{\alpha_{2}} \\ \hline \end{gathered}$	$\begin{gathered} -E_{-\alpha_{2}} \\ 0 \end{gathered}$
$\begin{gathered} E_{\alpha_{6}} \\ E_{-\alpha_{6}} \end{gathered}$														$H_{1}+2 H_{2}$ 0

We will now extract all necessary information to calculate the holomorphic curvature tensor, i.e. the killing form, g_{γ} and the z_{γ}.

Lemma 42. Up to scaling, the Kähler Einstein metric and the z_{γ} are given by

γ	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
g_{γ}	1	3	4	5	6	9
z_{γ}	1	$\frac{1}{3}$	1	1	$\frac{1}{3}$	$\frac{1}{3}$

and the angles between the roots are given by

$$
\left(\alpha_{i}, \alpha_{j}\right)=\left(\begin{array}{ccccc}
2-3 & -1 & 1 & 3 & 0 \\
6 & 3 & 0 & -3 & 3 \\
& 2 & 1 & 0 & 3 \\
& & 2 & 3 & 3 \\
& & & 6 & 3 \\
& & & & 6
\end{array}\right)
$$

Proof. By the cartan matrix, we know $\frac{1}{3}(\beta, \beta)=(\alpha, \alpha)=-\frac{2}{3}(\alpha, \beta)$. If we normalize the killing form such that $(\alpha, \alpha)=2$ we get

$$
B=\binom{(\alpha, \alpha)(\alpha, \beta)}{(\beta, \alpha)}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 6
\end{array}\right)
$$

Using the expressions of the α_{i} in terms of $\alpha=\alpha_{1}$ and $\beta=\alpha_{2}$ we obtain the matrix representing the angles between the different roots. Since for the Kähler Einstein metric we have

$$
g_{\gamma}=\left(\delta^{*}, \gamma\right)
$$

with $\delta^{*}=\sum_{i=1}^{6} \alpha_{i}=10 \alpha+6 \beta$ the g_{γ} are easily obtained.
To determine the z_{γ}, we consider the following. Let $H_{i}=\left[E_{\alpha_{i}}, E_{-\alpha_{i}}\right]$. Then we see $\alpha_{i}\left(H_{i}\right)=2$ for all i and $H_{i}=c H_{\alpha_{i}}$. This implies in fact

$$
c\left(\alpha_{i}, \alpha_{i}\right)=B\left(H_{\alpha}, H_{i}\right)=\alpha\left(H_{i}\right)=2 .
$$

Now we have $z_{\alpha_{i}}=\frac{1}{c}=\frac{2}{\left(\alpha_{i}, \alpha_{i}\right)}$ which is determined by the previous calculations of the killing form.

Now we have all the data we need to move towards calculating the curvature tensor considering, that the $N_{\gamma, \delta}$ can be read from the bracket table.

To determine the holomorphic curvature tensor, the first step is to determine the set $\Delta_{H}=\left\{\gamma-\delta \mid \gamma<\delta \in \Delta_{\mathfrak{g}}^{+}\right\}$. To that end, we use the ordering induced by proposition 15 with $\varepsilon_{1}=\beta$ and $\varepsilon_{2}=\alpha$, i.e

$$
\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}<\alpha_{5}<\alpha_{6} .
$$

Proposition 43. For the C space $\left(G_{2}, \mathbb{T}^{2}\right)$ let η be a non zero weight of $F i x\left(J_{s t d}\right)$, i.e an element in Δ_{H}. Then η is in the following table together with the pairs $\gamma<\delta$ with $\gamma-\delta=\eta$:

\sharp	η	$I(\eta)$	n_{η}
1	$-\beta+\alpha$	$\left(\alpha_{1}, \alpha_{2}\right)$	1
2	$-\alpha$	$\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{4}, \alpha_{5}\right)$	3
3	-2α	$\left(\alpha_{2}, \alpha_{4}\right),\left(\alpha_{3}, \alpha_{5}\right)$	2
4	-3α	$\left(\alpha_{2}, \alpha_{5}\right)$	1
5	$-\beta$	$\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{5}, \alpha_{6}\right)$	2
6	$-\beta-\alpha$	$\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{4}, \alpha_{6}\right)$	2
7	$-\beta-2 \alpha$	$\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{3}, \alpha_{6}\right)$	2
8	$-\beta-3 \alpha$	$\left(\alpha_{2}, \alpha_{6}\right)$	1
9	$-2 \beta-2 \alpha$	$\left(\alpha_{1}, \alpha_{6}\right)$	1

Proof. The elements in the list are obviously weights and these are all of them for dimensional reasons. In fact, we know $\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Fix}(J)^{\mathbb{C}}\right)=\left|\Delta_{\mathfrak{g}}^{+}\right|^{2}$ from proposition 23 and on the other hand

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}\left(F i x(J)^{\mathbb{C}}\right) & =\operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{0}\right)+\sum_{\eta \in \Delta_{H}} \operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{\eta}\right) \\
& =\left|\Delta_{\mathfrak{g}}^{+}\right|+\sum_{\eta \in \Delta_{H}} \sum_{(\alpha, \beta) \in I(\eta)} \operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{\alpha \beta}\right) \\
& =\left|\Delta_{\mathfrak{g}}^{+}\right|+2 \sum_{\eta \in \Delta_{H}} n_{\eta}
\end{aligned}
$$

Hence we only have to verify that

$$
\begin{equation*}
\frac{\left|\Delta_{\mathfrak{g}}^{+}\right|\left(\left|\Delta_{\mathfrak{g}}^{+}\right|-1\right)}{2}=\sum_{\eta \in \Delta_{H}} n_{\eta} \tag{4.1}
\end{equation*}
$$

holds. Note that this equation holds for all semisimple groups. Since $\left|\Delta_{\mathfrak{g}}^{+}\right|=6$ and the right hand side is given by the sum of the entries in of the third column we see easily that both left and right hand side equal 15 and hence we found all weights.

Having determined Δ_{H} and for each η also the pairs whose difference equals η, the next step is to determine the matrices $M\left(H_{\eta}\right)$ representing the curvature tensor on \mathfrak{m}_{η}. We recall from proposition 25 that each entry of $M\left(H_{\eta}\right)$ is indexed by two pairs of positive roots with difference η, i.e. two pairs from the second column of the table above and we have

$$
M\left(H_{\eta}\right)_{(x, y)(v, w)}=-R_{x y w v}
$$

To obtain an actual matrix, we need to order these pairs. We choose to order them as given in the second column of the table read from left to right, but any order does the trick. The proofs are straightforward calculations plugging in the values of $N_{\alpha_{i} \alpha_{j}}, z_{\alpha_{i}}$ and (α_{i}, α_{j}) into the formulas from proposition 16 . For notational simplicity, we write all one dimensional matrices together in one larger diagonal matrix

Proposition 44. The holomorphic curvature tensor in these cases is represented by the matrix indexed via
i) the pairs $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{6}\right),\left(\alpha_{1}, \alpha_{6}\right)$ in the cases $\sharp 1, \sharp 4, \sharp 8, \sharp 9$:

$$
\left(\begin{array}{cccc}
-\frac{3}{4} & 0 & 0 & 0 \\
0 & -\frac{2}{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

ii) the pairs $\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{4}, \alpha_{5}\right)$ in case $\sharp 2$:

$$
\left(\begin{array}{ccc}
3 & -6 & -\frac{5}{3} \\
-6 & \frac{28}{3} & -8 \\
-\frac{5}{3} & -8 & 5
\end{array}\right)
$$

iii) the pairs $\left(\alpha_{2}, \alpha_{4}\right),\left(\alpha_{3}, \alpha_{5}\right)$ in case $\sharp 3$:

$$
\left(\begin{array}{cc}
0 & -\frac{5}{3} \\
-\frac{5}{3} & 0
\end{array}\right)
$$

iv) the pairs $\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{5}, \alpha_{6}\right)$ in case $\sharp 5$:

$$
\left(\begin{array}{cc}
-\frac{1}{5} & 1 \\
1 & 2
\end{array}\right)
$$

$v)$ the pairs $\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{4}, \alpha_{6}\right)$ in case $\sharp 6$:

$$
\left(\begin{array}{ll}
\frac{3}{2} & 2 \\
2 & 5
\end{array}\right)
$$

vi) the pairs $\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{3}, \alpha_{6}\right)$ in case $\sharp 7$:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)
$$

Proof. By the explanations above this reduces to calculating $R_{\alpha} \beta \gamma \delta$ and hence corresponds to evaluating the equations from proposition 16. We will do so exemplary for one case and will omit it throughout the rest of the thesis. We consider the entry $M\left(H_{-\alpha}\right)_{\left(\alpha_{2}, \alpha_{3}\right)\left(\alpha_{4}, \alpha_{5}\right)}$. Since $\alpha_{2}-\alpha_{3}=-\alpha_{1} \neq 0$ and $\alpha_{5}-\alpha_{3}=2 \alpha_{1} \notin \Delta_{\mathfrak{g}}^{+}$we are in the case IIb of proposition 16 . Note that $\alpha_{2}+\alpha_{5}=\alpha_{6}$ and hence we have

$$
\begin{aligned}
M\left(H_{-\alpha_{1}}\right)_{\left(\alpha_{2}, \alpha_{3}\right)\left(\alpha_{4}, \alpha_{5}\right)} & =-R_{\alpha_{2} \alpha_{3} \alpha_{5} \alpha_{4}} \\
& =g_{\alpha_{4}} z_{\alpha_{1}} N_{\alpha_{2},-\alpha_{3}} N_{\alpha_{5},-\alpha_{4}}+z_{\alpha_{6}} \frac{g_{\alpha_{5}} g_{\alpha_{4}}}{g_{\alpha_{6}}} N_{\alpha_{2}, \alpha_{5}} N_{\alpha_{3}, \alpha_{4}} \\
& =5 \cdot 1 \cdot 1 \cdot(-1)+\frac{1}{3} \cdot \frac{6 \cdot 5}{9} \cdot(-1) \cdot(-3) \\
& =-\frac{5}{3}
\end{aligned}
$$

We recall from proposition 26 that for the matrix of the trivial module, we have

$$
M\left(H_{0}\right)_{i j}=-R_{\alpha_{i} \alpha_{i} \alpha_{j} \alpha_{j}}
$$

and this results in
Proposition 45. The holomorphic curvature tensor on the trivial module is represented by

$$
M\left(H_{0}\right)=\left(\begin{array}{cccccc}
2 & -\frac{3}{4} & -\frac{1}{5} & \frac{3}{2} & 1 & 0 \\
-\frac{3}{4} & 2 & 3 & 0 & -\frac{2}{3} & 1 \\
-\frac{1}{5} & 3 & 8 & \frac{28}{3} & 0 & 4 \\
\frac{3}{2} & 0 & \frac{28}{3} & 10 & 5 & 5 \\
1 & -\frac{2}{3} & 0 & 5 & 4 & 2 \\
0 & 1 & 4 & 5 & 2 & 6
\end{array}\right)
$$

It is easy to see that these matrices are not positive definite and hence we do not have a positive holomorphic curvature tensor. However, using four forms we may be able to produce a positive modified holomorphic curvature tensor, which is still sufficient for positive holomorphic curvature. We present our general strategy to improve the tensor but want to remark that there are different ways to reach a positive modified tensor and it is not clear to us if there is a preferred one and which one that would be.

Modifications

In the light of proposition 31 we start with the matrices corresponding to $\eta \neq 0$ and want to turn them positive semidefinite. We start with the matrix of the cases $\sharp 1, \sharp 4, \sharp 8, \sharp 9$. Here there is no choice but to add something to the negative values on the diagonal. In detail that means we want to add the four form ω to our tensor such that the matrix N representing ω has the property

$$
M\left(\omega_{-\beta+\alpha}\right)_{\left(\alpha_{1}, \alpha_{2}\right)\left(\alpha_{1}, \alpha_{2}\right)}=\frac{3}{4} \quad M\left(\omega_{-3 \alpha}\right)_{\left(\alpha_{2}, \alpha_{5}\right)\left(\alpha_{2}, \alpha_{5}\right)}=\frac{2}{3}
$$

by proposition 30 these changes can be realized by a four form if we also have

$$
\begin{aligned}
& M\left(\omega_{0}\right)_{\left(\alpha_{1}, \alpha_{1}\right)\left(\alpha_{2}, \alpha_{2}\right)}=-\frac{3}{4}=M\left(\omega_{0}\right)_{\left(\alpha_{2}, \alpha_{2}\right)\left(\alpha_{1}, \alpha_{1}\right)} \\
& M\left(\omega_{0}\right)_{\left(\alpha_{2}, \alpha_{2}\right)\left(\alpha_{5}, \alpha_{5}\right)}=-\frac{2}{3}=M\left(\omega_{0}\right)_{\left(\alpha_{5}, \alpha_{5}\right)\left(\alpha_{2}, \alpha_{2}\right)}
\end{aligned}
$$

Hence we can erase the negative diagonals if we subtract $\frac{3}{4}$ from $M\left(H_{0}\right)_{12}$ and $M\left(H_{0}\right)_{21}$ and $\frac{2}{3}$ from $M\left(H_{0}\right)_{25}$ and $M\left(H_{0}\right)_{52}$. We write this compactly as follows

Value	Intended	Forced
$\frac{3}{4}$	$M\left(H_{-\beta+\alpha}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(1,2)}$
$\frac{2}{3}$	$M\left(H_{-3 \alpha}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(2,5)}$

Note, that we only mention one off diagonal entry in the second column even though the changes must of course be applied symmetrically. Now we have that the matrix for $\sharp 1, \sharp 4, \sharp 8, \sharp 9$ is positive semidefinite, but we have to keep track of the changes to M_{0}.
Here we did not have much of a choice in other cases there are different ways to achieve positive definiteness. To see this consider the matrix of case $\sharp 3$, here we have the choice to either add something positive (e.g. $\frac{5}{3}$) to the diagonals such that the matrix is positive semidefinite. As above that would have impact to the matrix of the trivial module. The other
option is adding $\frac{5}{3}$ symmetrical to the off diagonal entries resulting in the positive semidefinite 0 matrix. The four form to do that needs to have the property that its representing matrix N satisfies symmetrically

$$
M\left(\omega_{-2 \alpha}\right)_{\left(\alpha_{2}, \alpha_{4}\right)\left(\alpha_{3}, \alpha_{5}\right)}=\frac{5}{3}
$$

in order to realize that by a four form we need by proposition 29 (or more explicitly by equation (3.2) that

$$
M\left(\omega_{-\alpha}\right)_{\left(\alpha_{2}, \alpha_{3}\right)\left(\alpha_{4}, \alpha_{5}\right)}=-\frac{5}{3}
$$

holds also symmetrically. Again we denote this change compactly by

Value	Intended	Forced
$\frac{5}{3}$	$M\left(H_{-2 \alpha}\right)_{(1,2)}$	$M\left(H_{-\alpha}\right)_{(1,3)}$

Following this fashion, we do all the following changes, notice the first three are just the ones already discussed:

Value	Intended	Forced
$\frac{3}{4}$	$M\left(H_{-\beta+\alpha}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(1,2)}$
$\frac{2}{3}$	$M\left(H_{-3 \alpha}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(2,5)}$
$\frac{5}{3}$	$M\left(H_{-2 \alpha}\right)_{(1,2)}$	$M\left(H_{-\alpha}\right)_{(1,3)}$
3	$M\left(H_{-\alpha}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(2,3)}$
10	$M\left(H_{-\alpha}\right)_{(2,2)}$	$M\left(H_{0}\right)_{(3,4)}$
7	$M\left(H_{-\alpha}\right)_{(3,3)}$	$M\left(H_{0}\right)_{(4,5)}$
$\frac{1}{5}$	$M\left(H_{-\beta}\right)_{(1,1)}$	$M\left(H_{0}\right)_{(2,4)}$
-1	$M\left(H_{-\beta}\right)_{(1,2)}$	$M\left(H_{-\beta-2 \alpha}\right)_{(1,3)}$

Realizing all these changes, we obtain the following modified matrices:

$$
\begin{aligned}
& \operatorname{Diag}(0,0,1,0) \quad M\left(H_{-\alpha}\right)=\left(\begin{array}{ccc}
6 & -6 & -\frac{10}{3} \\
-6 & \frac{58}{3} & -8 \\
-\frac{10}{3} & -8 & 12
\end{array}\right) \\
& M\left(H_{-2 \alpha}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) \quad M\left(H_{-\beta}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right) \\
& M\left(H_{-\beta-\alpha}\right)=\left(\begin{array}{cc}
\frac{3}{2} & 2 \\
2 & 5
\end{array}\right) \quad M\left(H_{-\beta-2 \alpha}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
\end{aligned}
$$

which are all positive semidefinite. The modified matrix representing the tensor on the
trivial module is given by

$$
M\left(H_{0}\right)=\left(\begin{array}{cccccc}
2 & -\frac{3}{2} & -\frac{1}{5} & \frac{3}{2} & 1 & 0 \\
-\frac{3}{2} & 2 & 0 & -\frac{1}{5} & -\frac{4}{3} & 1 \\
-\frac{1}{5} & 0 & 8 & -\frac{2}{3} & 0 & 4 \\
\frac{3}{2} & -\frac{1}{5} & -\frac{2}{3} & 10 & -2 & 5 \\
1 & -\frac{4}{3} & 0 & -2 & 4 & 2 \\
0 & 1 & 4 & 5 & 2 & 6
\end{array}\right)
$$

which is sadly not positive definite. In fact for example for $v=(1,-1,-1,-1-1,1)$, we have $v M\left(H_{0}\right) v^{t}=-2$. Hence further changes to $M\left(H_{0}\right)$ are necessary. At this stage we want to point out that by the arguments as in the proof of proposition 31 and the fact that we are not interested in the actual matrices but that they are positive semidefinite, we may now add symmetrical arbitrary negative values to $M\left(H_{0}\right)$ since the forced changes to the other matrices correspond to increasing the values on the diagonals which maintains semipositivity. This allows us to "erase" rows and columns that have exclusively nonnegative entries without keeping track of the explicit changes on the $M\left(H_{\eta}\right)$. In this case, we see that the sixth row and column of $M\left(H_{0}\right)$ have no negative entries and hence can be erased using four forms. Resulting in the positive definite matrix

$$
M\left(H_{0}\right)=\left(\begin{array}{cccccc}
2 & -\frac{3}{2} & -\frac{1}{5} & \frac{3}{2} & 1 & 0 \\
-\frac{3}{2} & 2 & 0 & -\frac{1}{5} & -\frac{4}{3} & 0 \\
-\frac{1}{5} & 0 & 8 & -\frac{2}{3} & 0 & 0 \\
\frac{3}{2} & -\frac{1}{5} & -\frac{2}{3} & 10 & -2 & 0 \\
1 & -\frac{4}{3} & 0 & -2 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 6
\end{array}\right)
$$

By proposition 31 we proved that there is a family of four forms that modify the holomorphic curvature tensor into a positive tensor resulting in

Corollary 46. The Kähler Einstein C space $\left(G_{2}, \mathbb{T}^{2}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature.

Together with Itoh, theorem 22 and corollary 40 we obtain
Theorem 47. Every Kähler Einstein C space $\left(G_{2}, K, J, g_{K E}\right)$ has positive holomorphic sectional curvature.

Chapter 5

From \mathbb{T} to K

In the example of $\left(G_{2}, \mathbb{T}^{2}\right)$, we have seen how to determine and represent the holomorphic curvature tensor in a simple fashion and how to modify it using four forms. In later sections we are also interested in larger isotropy groups than the maximal torus, which makes it desirable to have a relation between the curvature tensors. Sadly, the description of Kähler metrics in proposition 6 makes it obvious that there is no equivariant Riemannian submersion between Kähler metrics

$$
\left(G / \mathbb{T}, J_{\mathbb{T}}, g_{\mathbb{T}}\right) \rightarrow\left(G / K, J_{K}, g_{K}\right)
$$

because $g_{\mathbb{T}}$ is not K invariant. Therefore an application of O'Neill's curvature formula for submersions is not possible (cf. [O'N66]). Unfortunately, we were not able to find a relation between the holomorphic sectional curvature functions but there is still a connection between the holomorphic curvature tensors simplifying the calculations in later sections.

By lemmata 36 and 37 we can assume to have the complex structure $J_{\text {std }}$ of our choice on G / \mathbb{T} such that the submersion to G / K is holomorphic. Then $J_{s t d}$ and its image $J_{s t d}^{K}$ on G / K are determined by a decomposition of a base of the positive roots of G by proposition 7

$$
\Phi=\Phi_{\mathfrak{k}} \cup \Phi_{\mathfrak{m}} .
$$

For notational reasons, assume that $\Phi=\left\{\alpha_{1}, . ., \alpha_{r}\right\}$ and $\Phi_{\mathfrak{E}}=\left\{\alpha_{1}, . ., \alpha_{s}\right\}$ with $s<r$. By equation (1.2) any Kähler metric on $\left(G / \mathbb{T}, J_{s t d}\right)$ is determined by its values $c_{\alpha_{i}}>0$ on the root spaces corresponding to simple roots, hence is given as an inner product

$$
g_{\mathbb{T}}\left(c_{\alpha_{1}}, . ., c_{\alpha_{r}}\right): \mathfrak{n} \times \mathfrak{n} \rightarrow \mathbb{R}
$$

and similarly any Kähler metric on $\left(G / K, J_{s t d}^{K}\right)$ is given by

$$
g_{K}\left(c_{\alpha_{s+1}}, . ., c_{\alpha_{r}}\right): \mathfrak{m} \times \mathfrak{m} \rightarrow \mathbb{R}
$$

Here we used the B orthogonal decomposition

$$
\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{p} \oplus \mathfrak{m}
$$

with $\mathfrak{n}=\mathfrak{p} \oplus \mathfrak{m}$ and $\mathfrak{k}=\mathfrak{t} \oplus \mathfrak{p}$.
Moving $\left(c_{\alpha_{1}}, \ldots, c_{\alpha_{s}}\right)$ to zero corresponds to shrinking the metric on \mathfrak{p} and therefore collapsing K whilst maintaining the Kähler property and ending up with the desired Kähler metric on G / K. So the natural question is if the holomorphic curvature tensors are related as well. In fact, they are. Before we present this in detail, we want to give a short comment on the fact that we collapse K, because apart from O'Neils curvature formula for Riemannian submersions there is another famous tool to improve curvature which is called Cheeger deformation. For details we suggest the exposition in [Zil07] and [Müt87] .

In words the underlying idea of this technique is that scaling the metric down in the direction of the orbits of a Lie group action of isometries does not decrease and often increases curvature.

However, our comment is that we can not apply Cheeger deformations in our case for two reasons: Firstly, K does not act via isometries in the Kähler metric of (G, \mathbb{T}) and secondly, even though we are scaling the metric on \mathfrak{p} to zero, the fact that we maintain the Kähler property implies that we change the metric also on \mathfrak{m}.

Now we want to formalize the actual relationship. To that end we fix a Kähler metric on G / K as $g^{K}=g_{K}\left(c_{\alpha_{s+1}}, . ., c_{\alpha_{r}}\right)$ and define the Kähler metric $g^{t}=g_{\mathbb{T}}\left(t, . ., t, c_{\alpha_{s+1}}, . ., c_{\alpha_{r}}\right)$ on G / \mathbb{T} for $t>0$. This induces a holomorphic curvature tensor

$$
H^{t}: \operatorname{Fix}\left(J_{s t d}\right) \times \operatorname{Fix}\left(J_{s t d}\right) \rightarrow \mathbb{R}
$$

whose restriction H_{K}^{t} to $\operatorname{Fix}\left(J_{s t d}^{K}\right)=F i x\left(J_{s t d}\right) \cap \Lambda^{2}(\mathfrak{m})$ satisfies
Proposition 48. As elements in $\operatorname{Sym}_{2}\left(F i x\left(J_{\text {std }}^{K}\right)\right)$, we have that

$$
\lim _{t \rightarrow 0} H_{K}^{t}=H_{K}
$$

where H_{K} is the curvature tensor of g^{K}.
Before we proof this we need a short fairly obvious
Lemma 49. Let $\alpha \in \Delta_{\mathfrak{m}}^{+}$and $\beta \in \Delta_{\mathfrak{k}}^{+}$then we have

$$
\lim _{t \rightarrow 0} g_{\alpha}^{t}=g_{\alpha}^{K} \text { and } \lim _{t \rightarrow 0} g_{\beta}^{t}=0
$$

Proof. By (1.2), we can write

$$
\begin{aligned}
g_{\alpha}^{t} & =\sum_{\gamma \in \Phi} \rho(\alpha)_{\gamma} g_{\gamma}^{t}=\sum_{\gamma \in \Phi_{\mathfrak{e}}} \rho(\alpha)_{\gamma} g_{\gamma}^{t}+\sum_{\gamma \in \Phi_{\mathfrak{m}}} \rho(\alpha)_{\gamma} g_{\gamma}^{t} \\
& =\sum_{\gamma \in \Phi_{\mathfrak{k}}} \rho(\alpha)_{\gamma} t+\sum_{\gamma \in \Phi_{\mathfrak{m}}} \rho(\alpha)_{\gamma} c_{\gamma} \\
& =t\left(\sum_{\gamma \in \Phi_{\mathfrak{k}}} \rho(\alpha)_{\gamma}\right)+\sum_{\gamma \in \Phi_{\mathfrak{m}}} \rho(\alpha)_{\gamma} c_{\gamma}
\end{aligned}
$$

Now it is obvious that for $\alpha \in \Delta_{\mathfrak{E}}$ the second term is zero and hence the claim follows. For $\alpha \in \Delta_{\mathfrak{m}}$ again by 1.2 the second term equals g_{α}^{K}, which concludes the proof.

Proof of proposition 48. The convergence is equivalent to the convergence of the entries of the matrix representing the tensors in a fixed basis. In our case that means the matrices $M\left(H_{\eta}\right)$. The entries of these matrices are $-R_{\alpha \beta \gamma \delta}^{t}$ where generally $\alpha, \beta, \gamma, \delta \in \Delta_{\mathfrak{g}}^{+}$. Since we consider the restriction to $\Lambda^{2}(\mathfrak{m})$, we are only interested in the case where $\alpha, \beta, \gamma, \delta \in \Delta_{\mathfrak{m}}^{+}$. Hence, the proof boils down to

$$
\lim _{t \rightarrow 0} R_{\alpha \beta \gamma \delta}^{t}=R_{K}\left(E_{\alpha}, E_{-\beta}, E_{\gamma}, E_{-\delta}\right)
$$

for those roots. As before, we know that that these terms are zero in both cases unless $\alpha+\gamma=\beta+\delta$ which we assume to be true from now on. Now note that from (1.5), we have

$$
\begin{aligned}
R_{\alpha \beta \gamma \delta}^{t}= & -\frac{g_{\gamma-\beta}^{t}}{g_{\alpha+\gamma-\beta}^{t}} g^{t}\left(\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{n}^{+}}\right]_{\mathfrak{n}^{+}}, E_{-\delta}\right) \\
& +\frac{g_{\gamma}^{t}}{g_{\alpha+\gamma}^{K}} g^{t}\left(\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{n}^{+}}\right]_{\mathfrak{n}^{+}}, E_{-\delta}\right) \\
& +\frac{g_{\gamma}^{t}}{g_{\gamma+\alpha-\beta}^{t}} g^{t}\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{n}^{+}}, E_{\gamma}\right]_{\mathfrak{n}^{+}}, E_{-\delta}\right) \\
& +g^{t}\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{n}^{-}}, E_{\gamma}\right]_{\mathfrak{n}^{+}}, E_{-\delta}\right) \\
& +g^{t}\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{t}^{+}}, E_{\gamma}\right]_{\mathfrak{n}^{+}}, E_{-\delta}\right)
\end{aligned}
$$

Since the projections satisfy $(-)_{\mathfrak{n}^{+}}=(-)_{\mathfrak{p}^{+}}+(-)_{\mathfrak{m}^{+}}$and $g^{t}\left(-, E_{-\delta}\right)=g_{\delta}^{t} B\left(-, E_{-\delta}\right)$ is zero on \mathfrak{p} because $\delta \in \Delta_{\mathfrak{m}}^{+}$, we obtain

$$
\begin{align*}
R_{\alpha \beta \gamma \delta}^{t}= & -\frac{g_{\gamma-\beta}^{t} g_{\delta}^{t}}{g_{\alpha+\gamma-\beta}^{t}} B\left(\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{n}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \tag{5.1}\\
& +\frac{g_{\gamma}^{t} g_{\delta}^{t}}{g_{\alpha+\gamma}^{t}} B\left(\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{n}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \tag{5.2}\\
& +\frac{g_{\gamma}^{t} g_{\delta}^{t}}{g_{\gamma+\alpha-\beta}^{t}} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{n}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \tag{5.3}\\
& +g_{\delta}^{t} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{n}^{-}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \tag{5.4}\\
& +g_{\delta}^{t} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{t}^{\mathfrak{c}}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \tag{5.5}
\end{align*}
$$

Now, we consider these terms separately

$$
\begin{aligned}
5.1 & =-g_{\gamma-\beta}^{t}\left(B\left(\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)+B\left(\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{p}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)\right) \\
5.2) & =\frac{g_{\gamma}^{t} g_{\delta}^{t}}{g_{\alpha+\gamma}^{t}}\left(B\left(\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)+B\left(\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{p}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)\right) \\
5.3) & =g_{\gamma}^{t}\left(B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)+B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{p}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)\right) \\
5.4 & =g_{\delta}^{t}\left(B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{-}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)+B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{p}^{-}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)\right) \\
5.5 & =g_{\delta}^{t} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{t}^{\mathfrak{c}}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)
\end{aligned}
$$

and observe:

- The second term of 5.1 is only non zero if $\gamma-\beta \in \Delta_{\mathfrak{k}}^{+}$, but in that case we have that

$$
\lim _{t \rightarrow 0} g_{\gamma-\beta}^{t}=0
$$

and therefore the second term vanishes for $t \rightarrow 0$.

- Since $\alpha, \gamma \in \Delta_{\mathfrak{m}}^{+}$we have that either $\alpha+\gamma$ is no root or $\alpha+\gamma \in \Delta_{\mathfrak{m}}^{+}$as well. Therefore the second term of 5.2 is constant 0 .
- The second terms of (5.3) and (5.4) together with 5.5 yield

$$
\left(g_{\gamma}^{t}-g_{\delta}^{t}\right) B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{p}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)+g_{\delta}^{t} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{k}^{\mathfrak{c}}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right)
$$

where we notice that the first term is either zero or $\alpha-\beta=\delta-\gamma \in \Delta_{\mathfrak{k}}^{+}$. In the later case we have from the Kähler property that

$$
\left(g_{\gamma}^{t}-g_{\delta}^{t}\right)=-g_{\delta-\gamma}^{t}
$$

which converges to 0 for $t \rightarrow 0$.

- Last but not least, we see that the remaining terms, i.e. the first terms of (5.1), (5.2), (5.3), (5.4) are either 0 because the bracket vanishes or the corresponding root x, i.e $\gamma-\beta, \alpha+\gamma, \gamma, \delta$, are in $\Delta_{\mathfrak{m}}^{+}$and for these we know

$$
\lim _{t \rightarrow 0} g_{x}^{t}=g_{x}^{K}
$$

Using all these observations, we see

$$
\begin{aligned}
\lim _{t \rightarrow 0} R_{\alpha \beta \gamma \delta}^{t}= & -\frac{g_{\gamma-\beta}^{K} g_{\delta}^{K}}{g_{\alpha+\gamma-\beta}^{K}} B\left(\left[E_{\alpha},\left[E_{-\beta}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \\
& +\frac{g_{\gamma}^{K} g_{\delta}^{K}}{g_{\alpha+\gamma}^{K}} B\left(\left[E_{-\beta},\left[E_{\alpha}, E_{\gamma}\right]_{\mathfrak{m}^{+}}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \\
& +\frac{g_{\gamma}^{K} g_{\delta}^{K}}{g_{\gamma+\alpha-\beta}^{K}} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{+}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \\
& +g_{\delta}^{K} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{m}^{-}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \\
& +g_{\delta}^{K} B\left(\left[\left[E_{\alpha}, E_{-\beta}\right]_{\mathfrak{k}^{\mathfrak{C}}}, E_{\gamma}\right]_{\mathfrak{m}^{+}}, E_{-\delta}\right) \\
& =R_{\alpha \beta \gamma \delta}^{K}
\end{aligned}
$$

Remark:

We want to remark that the way how we approach 0 on the coefficients g^{t} of the simple roots in \mathfrak{k} is not relevant. With slight changes the proof would also work for

$$
g^{\left(t_{1}, . ., t_{s}\right)}=g_{\mathbb{T}}\left(t_{1}, . ., t_{s}, c_{s+1}, . ., c_{r}\right)
$$

with $\left\|\left(t_{1}, . ., t_{s}\right)\right\| \rightarrow 0$ instead of g^{t}, only the notation would get worse.
The proof of the above allows us to derive the following technique to obtain the curvature matrices of G / K from those of G / \mathbb{T}.

Corollary 50. Let $\eta \in \Delta_{H}$ be a weight of $\left(G, K, J_{s t d}^{K}, g^{K}\right)$ and let $M\left(H_{\eta}\right)^{K}$ be the curvature matrix corresponding to η. Then for all t, we denote by $M\left(H_{\eta}\right)^{t}$ the curvature matrix of $\left(G, \mathbb{T}, J_{s t d}^{K}, g^{t}\right)$. Then we have

$$
M\left(H_{\eta}\right)^{K}=\left.\widetilde{M\left(H_{\eta}\right)^{t}}\right|_{t=0}
$$

where $\widetilde{M\left(H_{\eta}\right)^{t}}$ is the submatrix of $M\left(H_{\eta}\right)^{t}$ obtained via erasing all rows and columns whose index contains a root in $\Delta_{\mathfrak{k}}^{+}$.

Chapter 6

The conjecture $H(k)$

This chapter is dedicated to the formulation of our main theorem and its place in the larger context of positive holomorphic curvature for classical Kähler C spaces. Furthermore, we will point out the extraordinary position of the classical Kähler Einstein C space ($G, \mathbb{T}, J_{s t d}, g_{K E}$) and the consequences of positivity of its holomorphic sectional curvature for arbitrary classical Kähler C spaces even though the previous section showed the difficulties connected to this.

We begin with the definition of the conjecture $H(k)$ for $k \geq 1$ to be that the following statement is true:

Conjecture 51. Let $\left(G_{k}, K, J_{s t d}, g_{K E}\right)$ be a simple Kähler Einstein C space with G being a classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

A priori, it might not seem reasonable to define the conjecture in dependency the rank of the group, since there might be a classical group G of rank k with isotropy groups K_{1} and K_{2} such that G / K_{1} has positive holomorphic curvature but G / K_{2} does not. However, there is some monotonicity to it if one formulates it this way. In fact, the statement of the following theorem is basically the assertion:

$$
\text { If } H(n) \text { is true, then } H(k) \text { is true for all } k<n \text {. }
$$

The actual formulation is the following:
Theorem 52. Let $\left(G_{k}, K, J_{s t d}, g_{K E}\right)$ be a classical Kähler Einstein C space with $r k\left(G_{k}\right)=k$ then there is a holomorphic totally geodesic isometric embedding of

$$
\left(G_{k} / K, J_{s t d}, g_{K E}\right) \hookrightarrow\left(G_{n} / \tilde{K}, J_{s t d}^{n}, g_{K E}^{n}\right)
$$

where $\left(G_{n}, \tilde{K}\right)$ is a C space with G_{n} being the classical Lie group of rank n of the same family as G_{k}.

Proof. We define the embedding of G_{k} into G_{n} as

$$
\begin{aligned}
G_{k} & \hookrightarrow G_{n} \\
& A \mapsto\left(\begin{array}{cc}
\mathrm{id}_{l(n-k)} & 0 \\
0 & A
\end{array}\right)
\end{aligned}
$$

where l is two in the case of B_{k}, D_{k} and one otherwise. On the level of Dynkin diagrams this corresponds to

Now we define $\tilde{K}=U(n-k) \times K \subset G_{n}$ by the painted diagram:

In order to prove that $G_{k} / K \hookrightarrow G_{n} / \tilde{K}$ is totally geodesic, we write it as the fixed point set of a subtorus $T \subset \mathbb{T}^{n}$ of isometries using a technique from WZ18 which gives us

$$
\operatorname{Fix}(T)=C_{G_{n}}(T) /\left(C_{G_{n}}(T) \cap \tilde{K}\right)
$$

where $C_{G_{n}}(T)$ denotes the centralizer of T in G_{n}. Let $\mathfrak{t}=\mathfrak{t}_{k}^{\perp} \subset \mathfrak{t}_{n}$ be the Lie algebra of the torus T orthogonal to the maximal torus of G_{k}, i.e the maximal torus of $U(n-k)$. Since T, as the subset of the maximal torus of G_{n}, acts via isometries in $g_{K E}^{n}$ and commutes with $J_{s t d}^{n}, \operatorname{Fix}(T)$ is a complex totally geodesic submanifold. In fact, it is easy to see from the definition that $C_{G_{n}}(T)=T \times G_{k}$ and $\left(C_{G_{n}}(T) \cap \tilde{K}\right)=T \times K$ and therefore we have

$$
\operatorname{Fix}(T)=G_{k} / K
$$

It is left to show that the induced structures on G_{k} / K coming from G_{n} / \tilde{K} actually coincide with the intrinsic structures of G_{k} / K. By the choice of \tilde{K} and the embedding in terms of Dynkin diagrams, we see that all positive roots of G_{k} / K are also positive roots of G_{n} / \tilde{K}. Hence the complex structures coincide. By the Kähler property it is sufficient to check the metric on the simple roots in G_{k} / K. For such a root α we have that

$$
\begin{aligned}
\left(g_{K E}^{n}\right)_{\alpha} & =\left(g_{K E}^{\mathbb{T}^{n}}\right)_{\alpha}-\left(\gamma_{\tilde{K}}^{*}, \alpha\right)=g_{K E}^{\mathbb{T}^{n}}-\left(\gamma_{U(n-k)}^{*}, \alpha\right)-\left(\gamma_{K}^{*}, \alpha\right) \\
& =\left(g_{K E}^{\mathbb{T}^{k}}\right)_{\alpha}-\left(\gamma_{K}^{*}, \alpha\right)-\left(\gamma_{U(n-k)}^{*}, \alpha\right) \\
& =\left(g_{K E}\right)_{\alpha}-\left(\gamma_{U(n-k)}^{*}, \alpha\right) \\
& =\left(g_{K E}\right)_{\alpha}
\end{aligned}
$$

where we used equation (3.3) and the following facts:
i) $\gamma_{\tilde{K}}^{*}=\gamma_{K}^{*}+\gamma_{U(n-k)}^{*}$ since $\tilde{K}=U(n-k) \times K$.
ii) $\left(\gamma_{U(n-k)}^{*}, \alpha\right)=0$ since $U(n-k)$ and G_{k} commute.
iii) $\left(g_{K E}^{\mathbb{T}^{n}}\right)_{\alpha}=\left(g_{K E}^{\mathbb{T}^{k}}\right)_{\alpha}$ on the simple roots α in G_{k} by our discussion of the classical groups in the end of section 3.2.

Remark: Actually the important property in the definition of \tilde{K} is that the vertex α_{n-k} is not painted. An immediate consequence of the above and corollary 40 is the following:

Theorem 53. Let G be a simple compact classical Lie group with $\operatorname{rk}(G) \leq n$, then, if $H(n)$ is true, any Kähler Einstein C space $\left(G, K, J, g_{K E}\right)$ has positive holomorphic sectional curvature curvature.

Proof. By lemma 38, we know there is a biholomorphic G equivariant isometry

$$
\left(G, K, J, g_{K E}\right) \rightarrow\left(G, K^{\prime}, J_{s t d}, g_{K E}^{s t d}\right)
$$

By theorem 52 there is a totally geodesic holomorphic embedding

$$
\left(G, K^{\prime}, J_{s t d}, g_{K E}^{s t d}\right) \hookrightarrow\left(G_{n}, \tilde{K}, J_{s t d}, g_{K E}^{s t d}\right)
$$

where G_{n} is the simple compact classical group of rank n of the same family as G and by $H(n)$ we know that $\left(G_{n}, \tilde{K}, J_{s t d}, g_{K E}^{s t d}\right)$ has positive holomorphic curvature and therefore so does $\left(G, K, J, g_{K E}\right)$.

This leads to the following interesting

Questions:

1) Is there a k for which $H(k)$ holds?
2) Do all classical Kähler Einstein C spaces have positive holomorphic sectional curvature, i.e. is $H(k)$ true for all k ?
3) If not, what is the maximal k^{*} for which $H\left(k^{*}\right)$ is true and in that case what is the difference between k^{*} and $k^{*}+1$?

The next few sections are dedicated to proving our main theorem, that is a answer to 1):
Theorem 54. The conjecture $H(k)$ is true for $k \leq 4$.
Even though the technique to prove the statement is finding the right four forms in most cases separately and therefore might not be suitable to proof $H(k)$ for general k, it certainly gives the impression that there does not seem to be an obstruction identifiable in the holomorphic curvature tensor, which leads us to believe that the answer to 2) might actually be yes.

Before we turn to the proof of $H(4)$, we want to dedicate the rest of the section to the discussion of some consequences of $H(k)$ being true for all k, i.e. implications of 2). First of all we want to point out a nice property of the Kähler Einstein metric for the toric isotropy.
Theorem 55. Let $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g\left(c_{1}, . ., c_{k}\right)\right)$ be a classical Kähler C space of rank k with the metric notation from section 5 . Then there is a holomorphic totally geodesic embedding

$$
\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g\left(c_{1}, . ., c_{k}\right)\right) \rightarrow\left(G_{n}, \mathbb{T}^{n}, J_{s t d}, g_{K E}\right)
$$

for $n \gg k$ if the following condition, depending on the type of G_{k}, is true:
$A_{k}: c_{i} \in \mathbb{N}$ for $i=1 \ldots k$
$B_{k}: c_{i} \in 2 \mathbb{N}$ for $i=1 \ldots k-1$ and $c_{k} \in 2 \mathbb{N}+1$
$C_{k}: c_{i} \in \mathbb{N}$ for $i=1 \ldots k-1$ and $c_{k} \in 2 \mathbb{N}$
$D_{k}: c_{i} \in \mathbb{N}$ for $i=1 \ldots k-1$ and $c_{k}+c_{k-1} \in 2 \mathbb{N}$
Proof. The idea of the proof is similar to the one of theorem 52 in that we want to find the embedding as the fixed point set of isometries. We begin by identifying the tangent space of our totally geodesic subset having the right metric coefficients. Hence let the c_{i} satisfy the conditions of the claim. Then the following is a natural number

$$
n= \begin{cases}\sum_{i=1}^{k} c_{i} & A_{k} \\ \frac{1}{2}\left(\sum_{i=1}^{k} c_{i}+1\right) & B_{k} \\ \frac{1}{2} c_{k}+\sum_{i=1}^{k-1} c_{i} & C_{k} \\ \frac{1}{2}\left(c_{k}+c_{k-1}\right)+\sum_{i=1}^{k-2} c_{i}+1 & D_{k}\end{cases}
$$

and we define with $\lambda=\left\{\begin{array}{ll}\frac{1}{2} & B_{k} \\ 1 & \text { otherwise }\end{array}\right.$ the function

$$
\begin{align*}
f:\{1, . ., k+1\} & \rightarrow \mathbb{N} \tag{6.1}\\
s & \mapsto 1+\sum_{i=1}^{s-1} \lambda c_{i}
\end{align*}
$$

Now we define the subset R_{k} of roots of $\Delta_{\mathfrak{g}_{n}}$ indexed by f, i.e

$$
R_{k}=\left\{\begin{array}{ll}
\left\{\alpha_{i j} \mid i, j \in f(\{1, \ldots, k+1\})\right\} & A_{k} \\
\left\{\alpha_{i j}, \beta_{i j}, \varepsilon_{i}, \mid i, j \in f(\{1, \ldots, k\})\right\} & B_{k} \\
\left\{\alpha_{i j}, \beta_{i j}, \gamma_{i}, \mid i, j \in f(\{1, \ldots, k\})\right\} & C_{k} \\
\left\{\alpha_{i j}, \beta_{i j} \mid i, j \in f(\{1, \ldots, k\})\right\} & D_{k}
\end{array} .\right.
$$

It is fairly easy to see that R_{k} is isomorphic to $\Delta_{\mathfrak{g}_{k}}$ as root systems via $\eta_{I} \mapsto \eta_{f(I)}$ for a root $\eta \in \Delta_{\mathfrak{g}_{k}}$. We will see that later in more detail. For now we want to point out that the space $\bigoplus_{\alpha \in R_{k}} \mathfrak{g}_{\alpha}$ would carry the right metric coefficients if it were the tangent space of a homogeneous fixed point set of isometries. Therefore we calculate that on the images of the simple roots we have by the equations for the Kähler Einstein metric, i.e (3.4) (3.5) (3.6) (3.7), in all cases that

$$
\left(g_{K E}\right)_{\alpha_{f(i) f(i+1)}}=\frac{1}{\lambda}(f(i+1)-f(i))=\frac{1}{\lambda} \lambda c_{i}=c_{i}
$$

and additionally in the case of B_{n}

$$
\left(g_{K E}\right)_{\varepsilon_{f(k)}}=2 n+1-2 f(k)=\sum_{i=1}^{k} c_{i}+2-2 f(k)=c_{k},
$$

in the case of C_{n}

$$
\left(g_{K E}\right)_{\gamma_{f(k)}}=2 n+2-2 f(k)=c_{k}+\sum_{i=1}^{k-1} 2 c_{i}+2-2 f(k)=c_{k}
$$

and the case of D_{n}

$$
\begin{aligned}
\left(g_{K E}\right)_{\beta_{f(k-1) f(k)}} & =2 n-(f(k)+f(k-1)) \\
& =c_{k}+c_{k-1}+\sum_{i=1}^{k-2} 2 c_{i}+2-(f(k)+f(k-1)) \\
& =c_{k}
\end{aligned}
$$

With that at hand, it is sufficient to show that there is a set $F \subset \mathbb{T}^{n}$ of isometries of G_{n} / \mathbb{T}^{n} with the property that $\operatorname{Fix}(F)=G_{k} / \mathbb{T}^{k}$ and $T_{\mathbb{T}^{n}}(F i x(F))^{\mathbb{C}}=\bigoplus_{\alpha \in R_{k}} \mathfrak{g}_{\alpha}$. This would also prove the above mentioned isomorphism $R_{k}=\Delta_{\mathfrak{g}_{k}}$. The existence of such an F follows from the next propositions.

Proposition 56. Let $A \in G L_{l}(\mathbb{K})$ with $(l, \mathbb{K}) \in\{(n+1, \mathbb{C}),(2 n+1, \mathbb{R}),(2 n, \mathbb{C}),(2 n, \mathbb{R})\}$ depending on whether we consider A_{n}, B_{n}, C_{n} or D_{n} with the following properties
i) The conjugation map $C_{A}: G L_{l}(\mathbb{K}) \rightarrow G L_{l}(\mathbb{K})$ leaves the pair $\left(G_{n}, \mathbb{T}^{n}\right)$ invariant.
ii) For $G_{k} \subset G_{n}$ being the lower $k \times k$ block as in theorem 52 and its root system $\Delta_{\mathfrak{g}_{k}} \subset$ $\Delta_{\mathfrak{g}_{n}}$, we have

$$
R_{k}=\left\{\alpha \circ A d_{A}^{-1} \mid \alpha \in \Delta_{\mathfrak{g}_{k}}\right\} .
$$

Then there is a set of biholomorphic isometries F of $\left(G_{n}, \mathbb{T}^{n}, J_{\text {std }}, g_{K E}\right)$ such that $F i x(F)=$ G_{k} / \mathbb{T}^{k} and

$$
T_{\mathbb{T}^{n}}(F i x(F))^{\mathbb{C}}=\bigoplus_{\alpha \in R_{k}} \mathfrak{g}_{\alpha}
$$

Proof. As we have seen in theorem 52 there is a subset \tilde{F} of $\mathbb{T}^{n} \subset \operatorname{Isom}\left(G_{n}, \mathbb{T}^{n}, g_{K E}\right)$ with

$$
\operatorname{Fix}(\tilde{F})=C_{G_{n}}(\tilde{F}) / C_{G_{n}}(\tilde{F}) \cap \mathbb{T}^{n}=G_{k} \mathbb{T}^{n-k} / \mathbb{T}^{n}=G_{k} / \mathbb{T}^{k}
$$

where G_{k} is embedded as the lower block. We notice that by property $\left.i\right) C_{A}$ descends to a map which we denote also by $C_{A}: G_{n} / \mathbb{T}^{n} \rightarrow G_{n} / \mathbb{T}^{n}$. Now we define $F=C_{A}(\tilde{F}) \subset \mathbb{T}^{n}$ and see that $\operatorname{Fix}(F)=C_{A}(\operatorname{Fix}(\tilde{F}))=C_{A}\left(G_{k} \mathbb{T}^{n-k} / \mathbb{T}^{n}\right)$. Therefore $F i x(F) \cong G_{k} / \mathbb{T}^{k}$ and by the standard identifications with subspaces of \mathfrak{g}_{n} we have $T_{\mathbb{T}^{n}} F i x(\tilde{F})=\bigoplus_{\alpha \in \Delta_{\mathfrak{g}_{k}}} \mathfrak{g}_{\alpha}$ which leads us to

$$
\begin{aligned}
T_{\mathbb{T}^{n}}(F i x(F)) & =T_{\mathbb{T}^{n}}\left(C_{A}(F i x(\tilde{F}))\right)=C_{A *}\left(T_{\mathbb{T}^{n}} F i x(\tilde{F})\right) \\
& =A d_{A}\left(\bigoplus_{\alpha \in \Delta_{\mathfrak{g}_{k}}} \mathfrak{g}_{\alpha}\right)
\end{aligned}
$$

Since we know that $A d_{A}$ leaves \mathbb{T}^{n} invariant, we have that $A d_{A}$ respects the decomposition in root spaces. In fact we have for $h \in \mathfrak{h}=\left(\mathfrak{t}^{n}\right)^{\mathbb{C}}$ and $X \in \mathfrak{g}_{\alpha}$ that

$$
\begin{aligned}
a d_{h}\left(A d_{A}(X)\right) & =\left[h, A d_{A}(X)\right]=A d_{A}\left[A d_{A}^{-1} h, X\right]=A d_{A}\left(\alpha\left(A d_{A}^{-1}(h)\right) X\right) \\
& =\alpha\left(A d_{A}^{-1}(h)\right) A d_{A}(X)=\left(\alpha \circ A d_{A}^{-1}\right)(h) A d_{A}(X)
\end{aligned}
$$

Hence $A d_{A}\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\alpha \circ A d_{A}^{-1}}$, and therefore we have from property $i i$)

$$
T_{\mathbb{T}^{n}}(F i x(F))=\bigoplus_{\alpha \in \Delta_{\mathfrak{g}_{k}}} A d_{A} \mathfrak{g}_{\alpha}=\bigoplus_{\alpha \in \Delta_{\mathfrak{g}_{k}}} \mathfrak{g}_{\alpha \circ A d_{A}^{-1}}=\bigoplus_{\alpha \in R_{k}} \mathfrak{g}_{\alpha}
$$

In order to finish the proof of theorem 55, it remains to show that an A as in proposition 56 exists.

Proposition 57. There exists a permutation matrix $A \in G L_{l}(\mathbb{K})$ satisfying the requirements of theorem 56 .
Proof. First of all we want to define a suitable permutation. Let κ be 1 in the case of A_{n} and 0 otherwise. Then we consider the function

$$
\begin{aligned}
g:\{n-k+1, \ldots, n+\kappa\} & \rightarrow\{1, \ldots, n+\kappa\} \\
n-k+i & \mapsto f(i)
\end{aligned}
$$

where f is the function defined in 6.1). Now let g^{\prime} be the monotonous bijection of $\{1, \ldots, n-$ $k\} \rightarrow\{1, \ldots, n+\kappa\} \backslash \operatorname{Im}(g)$. Then we define the permutation $\sigma \in S_{n+\kappa}$ partially by g and g^{\prime}. Now we define the matrix $A \in G l_{l}(\mathbb{K})$ as follows

$$
A= \begin{cases}P_{\sigma}^{-1} & S U(n+1) \\ \operatorname{Diag}\left(P_{\sigma}^{-1} \otimes i d_{2}, 1\right) & S O(2 n+1) \\ i d_{2} \otimes P_{\sigma}^{-1} & S p(n) \subset S U(2 n) \\ P_{\sigma}^{-1} \otimes i d_{2} & S O(2 n)\end{cases}
$$

Here $P_{\sigma} \in O(n+\kappa)$ is the permutation matrix with respect to σ, i.e.

$$
\left(P_{\sigma}\right)_{i j}=\delta_{\sigma(i) j}
$$

with the Kronecker delta notation. Since A is lies in $U(l), O(l), S p(l)$ it is clear that the conjugation map preserves G_{n}. The maximal torus is also preserved since conjugation with A permutes the diagonal entries of diagonal matrices in the cases of $S U(l)$ and $S p(l)$. In the case of $S O(l)$, we permute the upper $n 2 \times 2$-blocks which correspond to the maximal torus. Hence it remains to show that, we have

$$
\begin{equation*}
R_{k}=\left\{\alpha \circ A d_{A}^{-1} \mid \alpha \in \Delta_{\mathfrak{g}_{k}}\right\} . \tag{6.2}
\end{equation*}
$$

Before we do this, we observe that A can be seen as the matrix representing the following permutations:
A_{n})

$$
\begin{aligned}
\sigma_{1}:\{1, \ldots, n+1\} & \rightarrow\{1, \ldots, n+1\} \\
& i \mapsto \sigma^{-1}(i)
\end{aligned}
$$

B_{n})

$$
\begin{aligned}
\sigma_{2}:\{1, \ldots, 2 n+1\} & \rightarrow\{1, \ldots, 2 n+1\} \\
2 i-1 & \mapsto 2 \sigma^{-1}(i)-1 \\
2 i & \mapsto 2 \sigma^{-1}(i) \\
2 n+1 & \mapsto 2 n+1
\end{aligned}
$$

C_{n})

$$
\begin{aligned}
\sigma_{3}:\{1, \ldots, 2 n\} & \rightarrow\{1, \ldots, 2 n\} \\
i & \mapsto \sigma^{-1}(i) \\
n+i & \mapsto n+\sigma^{-1}(i)
\end{aligned}
$$

$\left.D_{n}\right)$

$$
\begin{aligned}
\sigma_{4}:\{1, \ldots, 2 n\} & \rightarrow\{1, \ldots, 2 n\} \\
2 i-1 & \mapsto 2 \sigma^{-1}(i)-1 \\
2 i & \mapsto 2 \sigma^{-1}(i)
\end{aligned}
$$

where i ranges from 1 to n in the last three cases. It is easy to see that for the matrix $E_{k l}$ used to describe all root vectors for the different groups and a permutation matrix P_{τ} the following holds

$$
A d_{P_{\tau}}\left(E_{k l}\right)=P_{\tau} E_{k l} P_{\tau}^{-1}=E_{\tau^{-1}(k) \tau^{-1}(l)}
$$

Now we will show 6.2) separately for the families $A_{n}, B_{n}, C_{n}, D_{n}$.
$\left.A_{n}\right)$ It is sufficient to show that $A d_{A} E_{\alpha_{n-k+i, n-k+j}}=E_{\alpha_{f(i) f(j)}}$ and since $E_{\alpha_{k l}}=E_{k l}$ we have immediately

$$
\begin{aligned}
\left(A d_{A}\left(E_{\alpha_{n-k+i, n-k+j}}\right)\right) & =\left(P_{\sigma}^{-1} E_{\alpha_{n-k+i, n-k+j}} P_{\sigma}\right) \\
& =\left(E_{\alpha_{\sigma(n-k+i) \sigma(n-k+j)}}\right) \\
& =E_{\alpha_{f(i) f(j)}}
\end{aligned}
$$

which finishes the case of A_{n}.
$\left.B_{n}\right)$ Similarly, we want to show the above for $E_{\alpha_{n-k+i, n-k+j}}, E_{\beta_{n-k+i, n-k+j}}$ and $E_{\varepsilon_{n-k+i}}$, we only do the calculation for $E_{\alpha_{n-k+i, n-k+j}}$ since the others go analogously. By the description in section 1.8.2, we have the E_{α} given in terms of $F_{k l}=E_{l k}-E_{k l}$. It is immediate that $A d_{P_{\tau}}\left(F_{k l}\right)=F_{\tau^{-1}(k) \tau^{-1}(l)}$ holds. Hence with $s=n-k+i$ and $t=n-k+j$ we have

$$
\begin{aligned}
A d_{A}\left(E_{\alpha_{n-k+i, n-k+j}}\right)= & P_{\sigma_{2}} E_{\alpha_{n-k+i, n-k+j}} P_{\sigma_{2}}^{-1} \\
= & P_{\sigma_{2}}\left(F_{2 s-1,2 t-1}+F_{2 s, 2 t}\right. \\
& \left.-i\left(F_{2 s-1,2 t}-F_{2 s, 2 t-1}\right)\right) P_{\sigma_{2}}^{-1} \\
= & F_{2 \sigma(s)-1,2 \sigma(t)-1}+F_{2 \sigma(s), 2 \sigma(t)} \\
& -i\left(F_{2 \sigma(s)-1,2 \sigma(t)}-F_{2 \sigma(s), 2 \sigma(t)-1}\right) \\
= & E_{\alpha_{\sigma(s), \sigma(t)}} \\
= & E_{\alpha_{f(i) f(j)}}
\end{aligned}
$$

$\left.C_{n}\right)$ Similarly, we want to show the above for $E_{\alpha_{n-k+i, n-k+j}} E_{\beta_{n-k+i, n-k+j}}$ and $E_{\gamma_{n-k+i}}$, we only do the calculation for $E_{\alpha_{n-k+i, n-k+j}}$ since the others go analogously. By the description in section 1.8.3 we have $E_{\alpha_{s t}}=E_{s t}-E_{n+t, n+s}$. Hence with $s=n-k+i$ and $t=n-k+j$ we have

$$
\begin{aligned}
A d_{A}\left(E_{\alpha_{n-k+i, n-k+j}}\right) & =P_{\sigma_{3}} E_{\alpha_{n-k+i, n-k+j}} P_{\sigma_{3}}^{-1} \\
& =P_{\sigma_{3}}\left(E_{s, t}+E_{n+t, n+s}\right) P_{\sigma_{3}}^{-1} \\
& =E_{\sigma(s), \sigma(t)}+E_{n+\sigma(t), n+\sigma(s)} \\
& =E_{\alpha_{\sigma(s), \sigma(t)}} \\
& =E_{\alpha_{f(i) f(j)}}
\end{aligned}
$$

$\left.D_{n}\right)$ This works exactly as for B_{n}.

The consequences of the existence of these embeddings even though just for particular coefficients are fairly strong. In fact, let $I_{G_{k}} \subset \mathbb{N}^{k}$ be the set of coefficients satisfying the conditions of theorem 55 depending on the type of G_{k}. Then it is easy to see that by

$$
\mathbb{Q}_{+}^{k}=\mathbb{Q}_{+} \cdot I_{G_{k}}
$$

every Kähler metric with rational coefficients c_{α} has positive holomorphic curvature if this is true for $\left(G_{n}, \mathbb{T}^{n}, J_{s t d}, g_{K E}\right)$ and all $n \in \mathbb{N}$. In detail that results in the following

Corollary 58. If $\left(G_{n}, \mathbb{T}^{n}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature for all n, then we have for any $k \in \mathbb{N}$
i) $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g\left(c_{1}, . ., c_{k}\right)\right)$ has positive holomorphic curvature if $c_{i} \in \mathbb{Q}$
ii) $\left(G_{k}, \mathbb{T}^{k}, J_{s t d}, g\right)$ has nonnegative holomorphic curvature for any Kähler metric g

Proof. The first statement is clear. The second uses that the holomorphic curvature tensor depends continuously on the coefficients c_{i} and density of $\mathbb{Q}^{k} \subset \mathbb{R}^{k}$.

Combining the second statement with the description of the holomorphic curvature tensor of a Kähler C space with arbitrary isotropy group from section 5 as the limit of holomorphic curvature tensors on a Kähler C space with toric isotropy yields the following result

Theorem 59. If $\left(G_{n}, \mathbb{T}^{n}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature for all n then all classical Kähler C spaces have nonnegative holomorphic sectional curvature.

Proof. Let (G, K, J, g) be a classical Kähler C space. Then it is biholomorphically isometric to $\left(G, K^{\prime}, J_{\text {std }}, \tilde{g}\right)$ by lemma 37. Here \tilde{g} is the pullback of g via the biholomorphism

$$
\left(G, K^{\prime}, J_{s t d}\right) \rightarrow(G, K, J)
$$

Now let $k=\operatorname{rk}(G)$ and $s=\operatorname{dim}\left(\mathfrak{z}\left(\mathfrak{k}^{\prime}\right)\right.$. Then as in chapter 5 we have positive constants $c_{s+1}, . ., c_{k}$ such that $\tilde{g}=g\left(c_{s+1}, \ldots, c_{t}\right)$ and we define the Kähler metric on $\left(G, \mathbb{T}^{k}, J_{s t d}\right)$ by $\tilde{g}^{t}=g^{\mathbb{T}}\left(t, . . t, c_{s+1}, \ldots, c_{r}\right)$. Then by corollary 58 ii$)$, we have that for all $t>0$ the Kähler C space $\left(G, \mathbb{T}^{k}, J_{s t d}, g^{t}\right)$ has nonnegative holomorphic sectional curvature. With the decomposition from section 5

$$
\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{p} \oplus \mathfrak{m}
$$

where \mathfrak{m} is the tangent space of G / K^{\prime} and $\mathfrak{n}=\mathfrak{p} \oplus \mathfrak{m}$ is the tangent space of G / \mathbb{T}^{k}. Then for $X \in \mathfrak{m}$ we represent the plane $X \wedge J_{s t d}(X)$ as the coefficient vector v in terms of the basis $\Omega_{\alpha}, \Phi_{\alpha \beta}, P s i_{\alpha \beta}$ with $\alpha<\beta \in \Delta_{\mathfrak{m}}^{+}$from section 3.1. Then nonnegativity of the holomorphic sectional curvature implies $v^{T} H^{t} v \geq 0$ for the holomorphic curvature tensor H^{t} of \tilde{g}^{t} and all $t>0$. Then we have from proposition 48

$$
0 \leq \lim _{t \rightarrow 0} v^{T} H^{t} v=\lim _{t \rightarrow 0}\left(v^{T} H_{K^{\prime}}^{t} v\right)=v^{T}\left(\lim _{t \rightarrow 0} H_{K^{\prime}}^{t}\right) v=v^{t} H_{K^{\prime}} v=H_{K^{\prime}}(X)
$$

where $H_{K^{\prime}}^{t}$ is the restriction of H^{t} from \mathfrak{n} to \mathfrak{m} and $H_{K^{\prime}}$ denotes the holomorphic curvature tensor and then the holomorphic sectional curvature of \tilde{g}.

Remark:

1.) Note that there is no version of this theorem with bounded rank. As we see in the proof of theorem 55 the choice of the large n enabling the embedding and hence the curvature deduction does depend on the metric and not only on the rank k. Hence, also for fixed rank k the n can grow arbitrarily large depending on the choice of metric coefficients on $\left(G_{k}, \mathbb{T}^{k}\right)$. 2.) We want to point out that even though it is obvious that every C space carries a homogeneous hermitian metric with non negative holomorphic curvature (i.e. the submersion
metric of the killing form), this metric is only Kähler in the cases of Hermitian symmetric spaces, i.e. when the isotropy representation is irreducible.

A strong consequence of theorem 59 is that to disprove the conjecture $H(k)$ it is sufficient to find any classical Kähler C space admitting a negatively curved complex line. On the other hand, to prove the slightly weaker version of $H(k)$ with nonnegative instead of positive holomorphic curvature it is sufficient to restrict oneself to the toric isotropy and the Kähler Einstein metric, i.e

Corollary 60. The spaces $\left(G_{n}, \mathbb{T}^{n}, J_{\text {std }}, g_{K E}\right)$ have nonnegative holomorphic curvature for all $n \in \mathbb{N}$ if and only if all classical Kähler C spaces have nonnegative holomorphic curvature.

Chapter 7

Curvature Matrices

Before we restrict ourselves to the classical groups of rank 4 we use this chapter to determine the weights Δ_{H} and the corresponding matrices representing the holomorphic curvature tensor for the classical C spaces of arbitrary rank $\left(G_{n}, \mathbb{T}^{n}, J_{s t d}\right)$ with an arbitrary Kähler metric. As we will see the amount of different kind of modules seems overwhelming at first, but careful observations allow us to reduce the problem of positive holomorphic curvature in general to just two to four different kinds of modules depending on G instead of the in the following presented four to eighteen kinds. The remaining modules will be the trivial module and the modules with $\eta \in \Delta_{\mathfrak{m}}^{-}$. In the following we will not write the representing matrices of the four forms explicitly but rather their effect on the matrices representing the curvature tensor. Therefore, we simplify notation slightly writing

$$
M_{\eta}=M\left(H_{\eta}\right)
$$

for the matrices of the holomorphic curvature tensor.
The first observation will be that if $\eta \notin \Delta_{\mathfrak{m}}^{-}$then the matrices representing the curvature tensor on these modules cannot be positive definite because they either have negative values on the diagonal or zeros on the diagonal and non zero offdiagonal entries. Hence it is necessary to modify these matrices via four forms to keep the hope alive to be able to prove positive holomorphic curvature via the tensor. As indicated by the recipe in the end of section 1.7 , we will do the following:
I) If there is a negative value $-c<0$ on the diagonal of the matrix M_{η} at $(\alpha, \beta)(\alpha, \beta)$, we erase it, i.e add its absolute value c to that entry. To realize that via four forms we have to subtract the same absolute value from the corresponding entry of the matrix of the trivial module. That means in the notation of chapter 4 to

Value	Intended	Forced
c	$\left(M_{\eta}\right)_{(\alpha, \beta)(\alpha, \beta)}$	$\left(M_{0}\right)_{(\alpha, \alpha)(\beta, \beta)}$

By the Bianchi identity, the entry of the matrix of the trivial module has the same value as the diagonal entry of M_{η}, see (3.1). Therefore erasing all negative diagonals results in doubling all negative entries of the matrix of the trivial module.
$I I)$ After erasing all negative diagonal entries, we are consider all resulting matrices that have zeros on the diagonal and non zero off diagonal entries. We want to erase those off diagonal entries as well. Assume that we want to erase the off diagonal entry $\left(M_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}=c$ via four forms. By (3.2) we are forced to modify the entry $\left(M_{\eta+\beta-\gamma}\right)_{(\alpha, \gamma)(\beta, \delta)}$ in the opposite direction. In the notation of chapter 4 this means

Value	Intended	Forced
$-c$	$\left(M_{\eta}\right)_{(\alpha, \beta)(\gamma, \delta)}$	$\left(M_{\eta+\beta-\gamma}\right)_{(\alpha, \gamma)(\beta, \delta)}$

We will see that for every entry of a matrix M_{η} with zero diagonal the corresponding matrix $M_{\eta+\beta-\gamma}$ has positive diagonal entries. As in case I) the values of these two entries coincide and hence erasing the entry in M_{η} results in multiplying the entry in $M_{\eta+\beta-\gamma}$ by two.
We specify for each classical group separately in the section "General modifications" how these modifications affect the matrices. Exemplary, we will present the full details in the case of $S U(n+1)$.

7.1 $S U(n+1)$

We define the ordering on the positive roots as in proposition 15 with the slight modification that we use the ordered basis ε_{j} with $j=1, . ., n+1$ instead of the simple roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 61. For the C space $\left(S U(n+1), \mathbb{T}^{n}, J_{s t d}\right)$ let η be a non zero weight of Fix $\left(J_{s t d}\right)$, i.e an element in

$$
\Delta_{H}=\left\{\alpha-\beta \mid \alpha<\beta \in \Delta_{\mathfrak{g}}^{+}\right\} .
$$

Then η is in the following table together with the pairs $\alpha<\beta$ with $\alpha-\beta=\eta$:

\sharp	η	$I(\eta)$	n_{η}
1	$-\varepsilon_{a}+\varepsilon_{b}$	$\left(\alpha_{i a}, \alpha_{i b}\right), i=1 . . a-1$ $\left(\alpha_{b j}, \alpha_{a j}\right), j=b+1 . . n+1$	$n-b+a$
2	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \alpha_{a b}\right),\left(\alpha_{b d}, \alpha_{a c}\right)$	2
3	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$	$\left(\alpha_{b c}, \alpha_{a d}\right)$	1
4	$-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \alpha_{a b}\right)$	1

Proof. The elements in the list are obviously weights and these are all of them for dimensional reasons. In fact, from (4.1) we only have to verify that

$$
\frac{\left|\Delta_{\mathfrak{g}}^{+}\right|\left(\left|\Delta_{\mathfrak{g}}^{+}\right|-1\right)}{2}=\sum_{\eta \in \Delta_{H}} n_{\eta}
$$

holds. In fact, we know $\left|\Delta_{\mathfrak{g}}^{+}\right|=\frac{n(n+1)}{2}$ and the right hand side is given by

$$
\sum_{a=1}^{n} \sum_{b=a+1}^{n+1}(n-b+a)+\binom{n+1}{3}+3\binom{n+1}{4}
$$

Easy calculations yield that left and right hand side coincide and therefore we found all weights.

In the following, we determine the curvature matrices M_{η}. Since the indices of M_{η} are pairs of roots (α, β) with $\alpha<\beta$ and $\alpha-\beta=\eta$ it makes sense to choose an ordering of these pairs. We will do so in each M_{η} separately. The proofs reduce to plugging in the values of $g_{\alpha}, N_{\alpha, \beta}$ and z_{α} as determined for the classical groups in section 1.8 into the equations of proposition 16 and will therefore be omitted. An exemplary calculation was made in the proof of proposition 44

Proposition 62 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n+1$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \alpha_{i b}\right)$ with $i=1, . ., a-1$ and $y_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right)$ with $j=1, . ., n+1-b$. Then we have

$$
M_{\eta}=\left(\begin{array}{cc}
X & \langle X Y\rangle \\
\langle X Y\rangle^{T} & Y
\end{array}\right)
$$

with diagonal blocks

$$
\begin{array}{ll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=g_{\alpha_{s a}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{n+1-b}(\mathbb{R}) & Y_{i s}=g_{\alpha_{b, b+i}} \text { for } i \leq s
\end{array}
$$

and off diagonal block entries

$$
\langle X Y\rangle_{i s}=-\frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}}
$$

Proposition 63 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$ for $1 \leq a<b<c<d \leq n+1$. We order the pairs as follows $\left(\alpha_{c d}, \alpha_{a b}\right),\left(\alpha_{b d}, \alpha_{a c}\right)$. Then we have

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} \\
-\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 0
\end{array}\right)
$$

Proposition 64 (Case $\sharp 3$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$ for $1 \leq a<b<c<d \leq n+1$. We only have one entry corresponding to $\left(\alpha_{b c}, \alpha_{a d}\right),\left(\alpha_{b d}, \alpha_{a c}\right)$. Then we have

$$
M_{\eta}=0
$$

Proposition 65 (Case $\sharp 4$). Let $\eta=-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$ for $1 \leq a<b<c \leq n+1$. We only have one entry corresponding to $\left(\alpha_{b c}, \alpha_{a b}\right)$. Then we have

$$
M_{\eta}=-\frac{g_{\alpha_{a b}} g_{\alpha_{b c}}}{g_{\alpha_{a c}}}
$$

Proposition 66. The entries of the matrix of the trivial module are determined by the diagonals of the matrices above :

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=\left(M_{\alpha-\beta}\right)_{(\alpha \beta)(\alpha \beta)}
$$

except for the diagonals. For $\alpha=\alpha_{i j}$ the following holds

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}=2 g_{\alpha}
$$

General modifications of $S U(n+1)$

We present the modifications following step I) and $I I$) described in the beginning of the section for $S U(n+1)$ in detail. Roughly speaking we make the following modifications:
1.) We move the diagonals of $\sharp 4$ into the matrix of the trivial module.
2.) The off diagonals of $\sharp 2$ into the $\langle X Y\rangle$ block of $\sharp 1$.

In detail, the modifications of 1.) with the notation from chapter 4 correspond to the following changes for all $1 \leq a<b<c \leq n+1$

Value	Intended	Forced
$\frac{g_{\alpha_{a b}} g_{\alpha_{b c}}}{g_{\alpha_{a c}}}$	$\left(M_{-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}}\right)_{\left(\alpha_{b c}, \alpha_{a b}\right)\left(\alpha_{b c}, \alpha_{a b}\right)}$	$\left(M_{0}\right)_{\left(\alpha_{b c}, \alpha_{b c}\right)\left(\alpha_{a b}, \alpha_{a b}\right)}$

and 2.) for $1 \leq a<b<c<d \leq n+1$

Value	Intended	Forced
$\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}}$	$\left(M_{-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}}\right)_{\left(\alpha_{c d}, \alpha_{a b}\right)\left(\alpha_{b d}, \alpha_{a c}\right)}$	$\left(M_{-\varepsilon_{b}+\varepsilon_{c}}\right)_{\left(\alpha_{a b}, \alpha_{a c}\right)\left(\alpha_{c d}, \alpha_{b d}\right)}$

We want to remark here that even though one needs multiple small matrices of type $\sharp 2$ to cover the $\langle X, Y\rangle$ block of one matrix of type $\sharp 1$ in the end we cover all of them. In fact, it is easy to see that the map "Intended" to "Forced" is a bijection between off diagonal entries of all matrices of type $\sharp 2$ to entries of $\langle X, Y\rangle$ blocks of all matrices of type $\sharp 1$.

After these changes the now modified curvature tensor decomposes into the following matrices

Proposition 67 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n+1$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \alpha_{i b}\right)$ and $y_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right)$ with $i=1, . ., a-1$ and $j=1, . ., n+1-b$. Then we have the modified matrices

$$
M_{\eta}=\left(\begin{array}{cc}
X & \langle X Y\rangle \\
\langle X Y\rangle^{T} & Y
\end{array}\right)
$$

with diagonal blocks

$$
\begin{array}{ll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=g_{\alpha_{s a}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{n+1-b}(\mathbb{R}) & Y_{i s}=g_{\alpha_{b, b+i}} \text { for } i \leq s
\end{array}
$$

and off diagonal block entries

$$
\langle X Y\rangle_{i s}=-2 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}}
$$

Proposition 68. The entries of the matrix of the trivial module are given by:

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}= \begin{cases}2 g_{\alpha} & \alpha=\beta \\ g_{\alpha_{i a}} & (\alpha, \beta)=\left(\alpha_{i a}, \alpha_{i b}\right) \\ g_{\alpha_{b j}} & (\alpha, \beta)=\left(\alpha_{b j}, \alpha_{a j}\right) \\ -2 \frac{g_{\alpha_{a i}} g_{\alpha_{i b}}}{g_{\alpha_{a b}}} & (\alpha, \beta)=\left(\alpha_{a i}, \alpha_{i b}\right)\end{cases}
$$

for $\alpha \leq \beta$.

$7.2 S O(2 n+1)$

As for $S U(n+1)$ we define the ordering on the positive roots as in proposition 15 with the slight modification that we use the ordered basis ε_{j} with $j=1, . ., n$ instead of the simple roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 69. For the C space $\left(S O(2 n+1), \mathbb{T}^{n}, J_{s t d}\right)$ let η be a non zero weight of Fix $\left(J_{s t d}\right)$, i.e an element in

$$
\Delta_{H}=\left\{\alpha-\beta \mid \alpha<\beta \in \Delta_{\mathfrak{g}}^{+}\right\} .
$$

Then η is in the following table together with the pairs $\alpha<\beta$ with $\alpha-\beta=\eta$:

\sharp	η	$I(\eta)$	n_{η}
1	$-\varepsilon_{a}+\varepsilon_{b}$	$\left(\alpha_{i a}, \alpha_{i b}\right), i=1, . ., a-1$	$2 n-b+a-2$
		$\left(\alpha_{b j}, \alpha_{a j}\right), j=b+1, . ., n$	
$\left(\beta_{t b}, \beta_{a t}\right), t=a+1, . ., b-1$			
$\left(\beta_{s b}, \beta_{s a}\right), s=1, . ., a-1$			
$\left(\beta_{b r}, \beta_{a r}\right), r=b+1, . ., n$			
$\left(\varepsilon_{b}, \varepsilon_{a}\right)$			

\sharp	η	$I(\eta)$	n_{η}
4	$-2 \varepsilon_{a}$	$\left(\alpha_{s a}, \beta_{s a}\right), s=1, . ., a-1$	$a-1$
5	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \alpha_{a b}\right),\left(\alpha_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \beta_{a d}\right)$	3
6	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$	$\left(\alpha_{b c}, \alpha_{a d}\right),\left(\beta_{b d}, \beta_{a c}\right)$	2
7	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \beta_{a b}\right)$	1
8	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \alpha_{a b}\right),\left(\beta_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \alpha_{a d}\right)$	3
9	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{b c}, \beta_{a d}\right),\left(\alpha_{b d}, \beta_{a c}\right)$	2
10	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \beta_{a b}\right)$	1
11	$-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \alpha_{a b}\right)$	1
12	$-\varepsilon_{a}+2 \varepsilon_{b}+\varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a b}\right)$	1
13	$-\varepsilon_{a}+\varepsilon_{b}+2 \varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a c}\right)$	1
14	$-\varepsilon_{a}+\varepsilon_{b}-2 \varepsilon_{c}$	$\left(\alpha_{b c}, \beta_{a c}\right)$	1
15	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}$	$\left(\varepsilon_{c}, \alpha_{a b}\right),\left(\varepsilon_{b}, \alpha_{a c}\right),\left(\beta_{b c}, \varepsilon_{a}\right)$	3
16	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \varepsilon_{a}\right),\left(\varepsilon_{b}, \beta_{a c}\right)$	2
17	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}$	$\left(\varepsilon_{c}, \beta_{a b}\right)$	1
18	$-\varepsilon_{a}+2 \varepsilon_{b}$	$\left(\varepsilon_{b}, \alpha_{a b}\right)$	1

Proof. The elements in the list are obviously weights and these are all of them for dimensional reasons. In fact, from (4.1) we only have to verify that

$$
\frac{\left|\Delta_{\mathfrak{g}}^{+}\right|\left(\left|\Delta_{\mathfrak{g}}^{+}\right|-1\right)}{2}=\sum_{\eta \in \Delta_{H}} n_{\eta}
$$

holds. In fact, we know $\left|\Delta_{\mathfrak{g}}^{+}\right|=n^{2}$ and the right hand side is given by

$$
\begin{array}{r}
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n}(2 n+2 a-4)+\sum_{a=1}^{n}(n+2 a-3) \\
+10\binom{n}{3}+12\binom{n}{4}
\end{array}
$$

Easy calculations yield that left and right hand side coincide and therefore we found all weights.

In the following, we determine the curvature matrices M_{η}. Since the indices of M_{η} are pairs of roots (α, β) with $\alpha<\beta$ and $\alpha-\beta=\eta$ it makes sense to choose an ordering of these pairs. We will do so in each M_{η} separately. The proofs reduce to plugging in the values of $g_{\alpha}, N_{\alpha, \beta}$ and z_{α} as determined for the classical groups in section 1.8 into the equations of proposition 16 and will therefore be omitted. An exemplary calculation was made in the proof of proposition 44

Proposition 70 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right), w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right)$ and $D_{1}=\left(\varepsilon_{b}, \varepsilon_{a}\right)$ with $i=1, . ., a-1, t=1, . ., b-a-1$ and $j=1, . ., n-b$.

Then we have

$$
M_{\eta}=\left(\begin{array}{cccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle & \langle V D\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle & \langle W D\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle \\
\langle V D\rangle^{T} & \langle W D\rangle^{T} & \langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{ll}
V \in \operatorname{Sym}_{a-1}(\mathbb{R}) & V_{i s}=4 g_{\alpha_{s a}} \text { for } i \leq s \\
W \in \operatorname{Sym}_{n-b}(\mathbb{R}) & W_{i s}=4 g_{\alpha_{b, b+i}} \text { for } i \leq s \\
X \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & X_{i s}=4 g_{\beta_{a+s, b}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\beta_{s b}} \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=4 g_{\beta_{b, b+s}} \text { for } i \leq s \\
D \in \operatorname{Sym}_{1}(\mathbb{R}) & D_{11}=\frac{\left(g_{\varepsilon_{b}}\right)^{2}}{g_{\beta_{a b}}}
\end{array}
$$

and the off diagonals being given by the following where i and s vary in the ranges determined by the diagonals

$$
\begin{aligned}
& \langle V W\rangle_{i s}=-4 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} \quad\langle V X\rangle_{i s}=4 \frac{g_{\alpha_{i a}} g_{\beta_{a+s, b}}}{g_{\beta_{i, a+s}}} \quad\langle V Y\rangle_{i s}=\left\{\begin{array}{l}
-4 g_{\alpha_{i a}} \\
-4 \frac{g_{\alpha_{i a}} g_{\beta_{s b}}}{g_{\beta_{i s}}}
\end{array}\right. \\
& \langle V Z\rangle_{i s}=-4 \frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} \quad\langle V D\rangle_{i 1}=-2 \frac{g_{\alpha_{i a}} g_{\varepsilon_{b}}}{g_{\varepsilon_{i}}} \\
& \langle W Y\rangle_{i s}=4 g_{\alpha_{b, b+i}} \quad\langle W Z\rangle_{i s}=\left\{\begin{array}{l}
4 \frac{g_{\alpha_{b, b+i}} g_{\beta_{b, b+i}}}{g_{\beta_{a b}}} \\
4 g_{\alpha_{b, b+i}}
\end{array}\right. \\
& \langle W D\rangle_{i 1}=2 g_{\alpha_{b, b+i}} \\
& \langle X Y\rangle_{i s}=-4 g_{\beta_{a+i, b}} \\
& \langle X Z\rangle_{i s}=-4 g_{\beta_{b, b+s}} \\
& \langle X D\rangle_{i 1}=-2 g_{\varepsilon_{b}} \\
& \langle Y Z\rangle_{i s}=4 g_{\beta_{b, b+s}} \\
& \langle Y D\rangle_{i 1}=2 g_{\varepsilon_{b}} \\
& \langle Z D\rangle_{i s}=2 g_{\varepsilon_{b}}
\end{aligned}
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.
Proposition 71 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$ Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=4 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & Z_{i s}=4 g_{\alpha_{a+s, b}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-4 g_{\alpha_{s a}} & i=s \\
-4 \frac{g_{\alpha_{s}} g_{\alpha_{i a}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=4 \frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-4 g_{\alpha_{a+s, b}}\right.
$$

Proposition 72 (Case $\sharp 3$). Let $\eta=-\varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \varepsilon_{i}\right), y_{i}=\left(\varepsilon_{i}, \beta_{i a}\right), z_{j}=\left(\varepsilon_{a+j}, \beta_{a, a+j}\right)$ with $i=1, . ., a-1$ and $j=1, . ., n-a$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=2 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=2 g_{\varepsilon_{s}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-a}(\mathbb{R}) & Z_{i s}=2 g_{\varepsilon_{a+s}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-2 g_{\alpha_{i a}} & i=s \\
-2 \frac{g_{\alpha_{a}} g_{\varepsilon_{s}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=2 \frac{g_{\alpha_{i a}} g_{\varepsilon_{a+s}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-2 g_{\varepsilon_{a+s}}\right.
$$

Proposition 73 (Case $\sharp 4$). Let $\eta=-2 \varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i a}\right)$ for $i=1 \ldots a-1$. Then we have

$$
\left(M_{\eta}\right)_{i s}= \begin{cases}0 & i=s \\ 4 \frac{g_{\alpha_{s}} g_{\beta_{s a}}}{g_{\beta_{i s}}} & i<s\end{cases}
$$

Proposition 74 (Cases $\sharp 5-\sharp 10$). Let $1 \leq a<b<c<d \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 0 & -4 \frac{g_{\alpha_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -4 \frac{g_{\alpha_{b d}} g_{\alpha_{a c}}}{g_{\alpha_{a b}}} & 0
\end{array}\right) .
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -4 \frac{g_{\alpha_{b}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} \\
-4 \frac{g_{\alpha_{b c}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=0
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a d}}} & 4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a d}}} & 0 & -4 \frac{g_{\beta_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -4 \frac{g_{\beta_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}:$

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -4 \frac{g_{\alpha_{b c}} g_{\beta_{a d}}}{g_{\beta_{a b}}} \\
-4 \frac{g_{\alpha_{b c}} g_{\beta_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=0
$$

Since they are all one dimensional, we write the cases $\sharp 11-\sharp 14$ in one matrix
Proposition 75 (Cases $\sharp 11$ - $\sharp 14$). We consider for $1 \leq a<b<c \leq n$ the ordering $\left(\alpha_{b c}, \alpha_{a b}\right),\left(\beta_{b c}, \alpha_{a b}\right),\left(\beta_{b c}, \alpha_{a c}\right),\left(\alpha_{b c}, \beta_{a c}\right)$. The direct sum of the corresponding $M_{\eta}^{\prime} s$ is given by

$$
\left(\begin{array}{cccc}
-4 \frac{g_{\alpha_{b c}} g_{\alpha_{a b}}}{g_{\alpha_{a c}}} & 0 & 0 & 0 \\
0 & -4 \frac{g_{\beta_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & 0 & 0 \\
0 & 0 & -4 \frac{g_{\beta_{b c}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0 \\
0 & 0 & 0 & -4 \frac{g_{\alpha_{b c}} g_{\beta_{a c}}}{g_{\beta_{a b}}}
\end{array}\right)
$$

Proposition 76 (Cases $\sharp 15-\sharp 17$). Let $1 \leq a<b<c \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -2 \frac{g_{\varepsilon_{c}} g_{\alpha_{a b}}}{g_{\varepsilon_{a}}} & 2 \frac{g_{\varepsilon_{c}} g_{\alpha_{a b}}}{g_{a c}} \\
-2 \frac{g_{\varepsilon_{c}} g_{\alpha_{a b}}}{g_{\varepsilon_{a}}} & 0 & -2 \frac{g_{\varepsilon_{a} g_{\alpha_{a c}}}}{g_{\beta_{a b}}} \\
2 \frac{g_{\varepsilon_{c}}{g_{a b}}_{g_{a c}}}{g_{\beta_{a c}}} & -2 \frac{g_{\varepsilon_{b}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0
\end{array}\right) .
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -2 \frac{g_{\varepsilon_{a}} g_{\alpha_{b c}}}{g_{\beta_{a b}}} \\
-2 \frac{g_{\varepsilon_{a}} g_{\alpha_{b c}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}$:

$$
M_{\eta}=0
$$

Proposition 77 (Cases $\sharp 18$). Let $1 \leq a<b \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+2 \varepsilon_{b}$:

$$
M_{\eta}=-2 \frac{g_{\varepsilon_{b}} g_{\alpha_{a b}}}{g_{\varepsilon_{a}}}
$$

Proposition 78. The entries of the matrix of the trivial module are determined by the diagonals of the matrices above :

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=\left(M_{\alpha-\beta}\right)_{(\alpha \beta)(\alpha \beta)}
$$

except for the diagonals. For $\alpha \in \Delta_{\mathfrak{m}}^{+}$the following holds

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}= \begin{cases}8 g_{\alpha} & \alpha \in\left\{\alpha_{i j}, \beta_{i j}\right\} \\ g_{\alpha} & \alpha=\varepsilon_{i}\end{cases}
$$

General modifications of $S O(2 n+1)$

The modifications described in the beginning of the section in the case of $S O(2 n+1)$ are the following:
1.) We move the diagonals of $\sharp 11-14$ and 18 into the matrix of the trivial module.
2.) The off diagonals of $\sharp 4$ to the diagonal of the $\langle W Z\rangle$ block of $\sharp 1$.
3.) The off diagonals of $\sharp 5$ to the $\langle V W\rangle$ block of $\sharp 1$, the $\langle X Z\rangle$ block and the upper triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
4.) The off diagonal of $\sharp 6$ the lower triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
5.) The off diagonals of $\sharp 8$ to the $\langle V Z\rangle$ block, the $\langle V X\rangle$ block and the upper triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.
6.) The off diagonal of $\sharp 9$ the lower triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.
7.) The off diagonals of $\sharp 15$ to the $\langle V D\rangle$ block of $\sharp 1$, the $\langle X Z\rangle$ block and the upper triangular part of the $\langle X Y\rangle$ block of $\sharp 3$.
8.) The off diagonal of $\sharp 9$ the lower triangular part of the $\langle X Y\rangle$ block of $\sharp 3$.

We remark that similarly to the modifications of $S U(n+1)$, in each step have a bijection between the referenced entries of all matrices of the mentioned case $\sharp i$.

Then the modified holomorphic curvature tensor is given by the following matrices
Proposition 79 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right), w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right)$ and $D_{1}=\left(\varepsilon_{b}, \varepsilon_{a}\right)$ with $i=1, . ., a-1, t=1, . ., b-a-1$ and $j=1, . ., n-b$. Then we have

$$
M_{\eta}=\left(\begin{array}{cccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle & \langle V D\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle & \langle W D\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle \\
\langle V D\rangle^{T} & \langle W D\rangle^{T} & \langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{ll}
V \in \operatorname{Sym}_{a-1}(\mathbb{R}) & V_{i s}=4 g_{\alpha_{s a}} \text { for } i \leq s \\
W \in \operatorname{Sym}_{n-b}(\mathbb{R}) & W_{i s}=4 g_{\alpha_{b, b+i}} \text { for } i \leq s \\
X \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & X_{i s}=4 g_{\beta_{a+s, b}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\beta_{s b}} \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=4 g_{\beta_{b, b+s}} \text { for } i \leq s \\
D \in \operatorname{Sym}_{1}(\mathbb{R}) & D_{11}=\frac{\left(g_{\varepsilon_{b}}\right)^{2}}{g_{\beta_{a b}}}
\end{array}
$$

and the off diagonals being given by the following where i and s vary in the ranges determined by the diagonals

$$
\begin{aligned}
& \langle V W\rangle_{i s}=-8 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} \quad\langle V X\rangle_{i s}=8 \frac{g_{\alpha_{i a}} g_{\beta_{a+s, b}}}{g_{\beta_{i, a+s}}} \\
& \langle V Z\rangle_{i s}=-8 \frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} \quad\langle V D\rangle_{i 1}=-4 \frac{g_{\alpha_{i a}} g_{\varepsilon_{b}}}{g_{\varepsilon_{i}}} \\
& \langle W Y\rangle_{i s}=4 g_{\alpha_{b, b+i}} \\
& \langle X Y\rangle_{i s}=-4 g_{\beta_{a+i, b}} \quad\langle X Z\rangle_{i s}=-4 g_{\beta_{b, b+s}} \\
& \langle Y D\rangle_{i 1}=2 g_{\varepsilon_{b}} \\
& \begin{array}{l}
\langle V Y\rangle_{i s}=\left\{\begin{array}{l}
-4 g_{\alpha_{i a}} \\
-8 \frac{g_{\alpha_{a}} g_{\beta_{s b}}}{g_{\beta_{i s}}}
\end{array}\right. \\
\langle W X\rangle_{i s}=-4 g_{\alpha_{b, b+i}} \\
\langle W D\rangle_{i 1}=2 g_{\alpha_{b, b+i}} \\
\langle X D\rangle_{i 1}=-2 g_{\varepsilon_{b}} \\
\langle Z D\rangle_{i 1}=2 g_{\varepsilon_{b}}
\end{array} \\
& \langle W Z\rangle_{i s}=\left\{\begin{array}{l}
8 \frac{g_{\alpha_{b, b+i}} g_{\beta_{b, b+i}}}{g_{\beta_{a b}}} \\
4 g_{\alpha_{b, b+i}}
\end{array}\right. \\
& \langle Y Z\rangle_{i s}=4 g_{\beta_{b, b+s}}
\end{aligned}
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.
Proposition 80 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=4 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & Z_{i s}=4 g_{\alpha_{a+s, b}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-4 g_{\alpha_{s a}} & i=s \\
-8 \frac{g_{\alpha_{s} b} g_{\alpha_{i a}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=8 \frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-4 g_{\alpha_{a+s, b}}\right.
$$

Proposition 81 (Case $\sharp 3$). Let $\eta=-\varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \varepsilon_{i}\right), y_{i}=\left(\varepsilon_{i}, \beta_{i a}\right), z_{j}=\left(\varepsilon_{a+j}, \beta_{a, a+j}\right)$ with $i=1, . ., a-1$ and $j=1, . ., n-a$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=2 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=2 g_{\varepsilon_{s}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-a}(\mathbb{R}) & Z_{i s}=2 g_{\varepsilon_{a+s}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-2 g_{\alpha_{i a}} & i=s \\
-4 \frac{g_{\alpha_{i a}} g_{\varepsilon_{s}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=4 \frac{g_{\alpha_{i a}} g_{\varepsilon_{a+s}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-2 g_{\varepsilon_{a+s}}\right.
$$

Proposition 82. We give the entries of the matrix of the trivial module just for the upper triangular part by symmetry, i.e. for the pairs (α, β) with $\alpha<\beta$.
i) Along the diagonal we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}=\left\{\begin{array}{ll}
8 g_{\alpha} & \alpha \in\left\{\alpha_{i j}, \beta_{i j}\right\} \\
g_{\alpha} & \alpha=\varepsilon_{i}
\end{array} .\right.
$$

ii) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i a}, \alpha_{i b}\right),\left(\alpha_{b j}, \alpha_{a j}\right),\left(\beta_{k b}, \beta_{a k}\right)\right.$,

$$
\left.\left(\beta_{i b}, \beta_{i a}\right),\left(\beta_{b j}, \beta_{a j}\right),\left(\alpha_{i a}, \beta_{i b}\right),\left(\alpha_{i b}, \beta_{i a}\right),\left(\alpha_{k b}, \beta_{a k}\right)\right\} \text { we have }
$$

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=4 g_{\alpha}
$$

iii) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i a}, \varepsilon_{i}\right),\left(\varepsilon_{i}, \beta_{i a}\right),\left(\varepsilon_{j}, \beta_{a j}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=2 g_{\alpha}
$$

iv) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i b}, \alpha_{a i}\right),\left(\beta_{i b}, \alpha_{a i}\right),\left(\beta_{b j}, \alpha_{a j}\right)\left(\alpha_{b j}, \beta_{a j}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=-8 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}
$$

$v)$ For the following pairs $(\alpha, \beta)=\left(\varepsilon_{j}, \alpha_{a j}\right)$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=-4 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}
$$

vi) For the following pairs $(\alpha, \beta)=\left(\varepsilon_{b}, \varepsilon_{a}\right)$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=\frac{\left(g_{\alpha}\right)^{2}}{g_{\alpha+\beta}}
$$

Notice that the entries in the trivial module that have been doubled are $i v$) and v).

$7.3 \quad S p(n)$

As for $S U(n+1)$ we define the ordering on the positive roots as in proposition 15 with the slight modification that we use the ordered basis ε_{j} with $j=1, . ., n$ instead of the simple roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 83. For the C space $\left(S p(n), \mathbb{T}^{n}, J_{s t d}\right)$ let η be a non zero weight of $F i x\left(J_{s t d}\right)$, i.e an element in

$$
\Delta_{H}=\left\{\alpha-\beta \mid \alpha<\beta \in \Delta_{\mathfrak{g}}^{+}\right\} .
$$

Then η is in the following table together with the pairs $\alpha<\beta$ with $\alpha-\beta=\eta$:

\#	η	$I(\eta)$	n_{η}
1	$-\varepsilon_{a}+\varepsilon_{b}$	$\begin{aligned} & \left(\alpha_{i a}, \alpha_{i b}\right), i=1, . ., a-1 \\ & \left(\alpha_{b j}, \alpha_{a j}\right), j=b+1, . ., n \\ & \left(\beta_{t b}, \beta_{a t}\right), t=a+1, . ., b-1 \\ & \left(\beta_{s b}, \beta_{s a}\right), s=1, . ., a-1 \\ & \left(\beta_{b r}, \beta_{a r}\right), r=b+1, . ., n \\ & \left(\beta_{a b}, \gamma_{a}\right) \\ & \left(\gamma_{b}, \beta_{a b}\right) \end{aligned}$	$2 n-b+a-1$
2	$-\varepsilon_{a}-\varepsilon_{b}$	$\begin{aligned} & \left(\alpha_{s a}, \beta_{s b}\right), s=1, . ., a-1 \\ & \left(\alpha_{s b}, \beta_{s a}\right), s=1, . ., a-1 \\ & \left(\alpha_{t b}, \beta_{a t}\right), t=a+1, . ., b-1 \\ & \left(\alpha_{a b}, \gamma_{a}\right) \end{aligned}$	$b+a-2$
3	$-2 \varepsilon_{a}$	$\left(\alpha_{s a}, \beta_{s a}\right), s=1, . ., a-1$	$a-1$
4	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \alpha_{a b}\right),\left(\alpha_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \beta_{a d}\right)$	3
5	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$	$\left(\alpha_{b c}, \alpha_{a d}\right),\left(\beta_{b d}, \beta_{a c}\right)$	2
6	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \beta_{a b}\right)$	1
7	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \alpha_{a b}\right),\left(\beta_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \alpha_{a d}\right)$	3
8	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{b c}, \beta_{a d}\right),\left(\alpha_{b d}, \beta_{a c}\right)$	2
9	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \beta_{a b}\right)$	1
10	$-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \alpha_{a b}\right)\left(\gamma_{b}, \beta_{a c}\right)$	2
11	$-\varepsilon_{a}+2 \varepsilon_{b}+\varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a b}\right)\left(\gamma_{b}, \alpha_{a c}\right)$	2
12	$-\varepsilon_{a}+\varepsilon_{b}+2 \varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a c}\right)\left(\gamma_{c}, \alpha_{a b}\right)$	2
13	$-\varepsilon_{a}+\varepsilon_{b}-2 \varepsilon_{c}$	$\left(\alpha_{b c}, \beta_{a c}\right)$	1
14	$-\varepsilon_{a}-\varepsilon_{b}+2 \varepsilon_{c}$	$\left(\gamma_{c}, \beta_{a b}\right)$	1
15	$-2 \varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}$	$\left(\beta_{b c}, \gamma_{a}\right)$	1
16	$-2 \varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \gamma_{a}\right)$	1
17	$-2 \varepsilon_{a}+2 \varepsilon_{b}$	$\left(\gamma_{b}, \gamma_{a}\right)$	1
18	$-\varepsilon_{a}+3 \varepsilon_{b}$	$\left(\gamma_{b}, \alpha_{a b}\right)$	1

Proof. The elements in the list are obviously weights and these are all of them for dimensional reasons. The elements in the list are obviously weights and these are all of them for
dimensional reasons. In fact, from (4.1) we only have to verify that

$$
\frac{\left|\Delta_{\mathfrak{g}}^{+}\right|\left(\left|\Delta_{\mathfrak{g}}^{+}\right|-1\right)}{2}=\sum_{\eta \in \Delta_{H}} n_{\eta}
$$

holds. In fact, we know $\left|\Delta_{\mathfrak{g}}^{+}\right|=n^{2}$ and the right hand side is this time given by

$$
\begin{array}{r}
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n}(2 n+2 a-1)+\sum_{a=1}^{n}(a-1) \\
+10\binom{n}{3}+12\binom{n}{4}
\end{array}
$$

Easy calculations yield that left and right hand side coincide and therefore we found all weights.

In the following, we determine the curvature matrices M_{η}. Since the indices of M_{η} are pairs of roots (α, β) with $\alpha<\beta$ and $\alpha-\beta=\eta$ it makes sense to choose an ordering of these pairs. We will do so in each M_{η} separately. The proofs reduce to plugging in the values of $g_{\alpha}, N_{\alpha, \beta}$ and z_{α} as determined for the classical groups in section 1.8 into the equations of proposition 16 and will therefore be omitted. An exemplary calculation was made in the proof of proposition 44

Proposition 84 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right), w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right), D_{1}=\left(\beta_{a b}, \gamma_{a}\right)$ and $E_{1}=\left(\gamma_{b}, \beta_{a b}\right)$ with $i=1 \ldots(a-1), t=1 \ldots(b-a-1)$ and $j=1$...n-b. Then we have

$$
M_{\eta}=\left(\begin{array}{ccccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle & \langle V D\rangle & \langle V E\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle & \langle W D\rangle\langle W E\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle & \langle X E\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle & \langle Y E\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle & \langle Z E\rangle \\
\langle V D\rangle^{T} & \langle W D\rangle^{T} & \langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D & \langle D E\rangle \\
\langle V E\rangle^{T} & \langle W E\rangle^{T} & \langle X E\rangle^{T} & \langle Y E\rangle^{T} & \langle Z E\rangle^{T} & \langle D E\rangle & E
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
V \in \operatorname{Sym}_{a-1}(\mathbb{R}) & V_{i s}=g_{\alpha_{s a}} & \text { for } i \leq s \\
W \in \operatorname{Sym}_{n-b}(\mathbb{R}) & W_{i s}=g_{\alpha_{b, b+i}} & \text { for } i \leq s \\
X \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & X_{i s}=g_{\beta_{a+s, b}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=g_{\beta_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=g_{\beta_{b, b+s}} & \text { for } i \leq s \\
D \in \operatorname{Sym}_{1}(\mathbb{R}) & D_{11}=g_{\beta_{a b}} & \\
E \in \operatorname{Sym}_{1}(\mathbb{R}) & E_{11}=g_{\gamma_{b}} &
\end{array}
$$

and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

$$
\begin{array}{lll}
\langle V W\rangle_{i s}=-\frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} & \langle V X\rangle_{i s}=-\frac{g_{\alpha_{i a}} g_{\beta_{a+s}, b}}{g_{\beta_{i, a+s}}} & \langle V Y\rangle_{i s}= \begin{cases}-\frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\gamma_{i}}} \\
-\frac{g_{\alpha_{i a}} g_{g_{s b}}}{g_{\beta_{i s}}}\end{cases} \\
\langle V Z\rangle_{i s}=-\frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} & \langle V D\rangle_{i 1}=-\frac{g_{\alpha_{i a}} g_{\beta_{a b}}}{g_{\beta_{i a}}} & \langle V E\rangle_{i 1}=-\frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\beta_{i b}}} \\
\langle W X\rangle_{i s}=g_{\alpha_{b, b+i}} & \langle W Y\rangle_{i s}=g_{\alpha_{b, b+i}} & \langle W Z\rangle_{i s}= \begin{cases}\frac{g_{\alpha_{b, b+i}}\left(g_{\alpha_{a, b+i}}+g_{\beta_{a b}}\right)}{g_{\beta_{a b}}} \\
g_{\alpha_{b, b+i}}\end{cases} \\
\langle W D\rangle_{i 1}=g_{\alpha_{b, b+i}} & \langle W E\rangle_{i 1}=g_{\alpha_{b, b+i}} & \langle X Y\rangle_{i s}=g_{\beta_{a+i, b}} \\
\langle X Z\rangle_{i s}=g_{\beta_{b, b+s}} & \langle X D\rangle_{i 1}=g_{\beta_{a+i, b}} & \langle X E\rangle_{i 1}=g_{\gamma_{b}} \\
\langle Y Z\rangle_{i s}=g_{\beta_{b, b+s}} & \langle Y D\rangle_{i 1}=g_{\beta_{a b}} & \langle Y E\rangle_{i 1}=g_{\gamma_{b}} \\
\langle Z D\rangle_{i 1}=g_{\beta_{b, b+i}} & \langle Z E\rangle_{i 1}=g_{\beta_{b, b+i}} & \langle D E\rangle_{i 1}=g_{\gamma_{b}}
\end{array}
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.
Proposition 85 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ and $D_{1}=\left(\alpha_{a b}, \gamma_{a}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$. Then we have

$$
M_{\eta}=\left(\begin{array}{cccc}
X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle \\
\langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & Z_{i s}=g_{\alpha_{a+s, b}} & \text { for } i \leq s \\
D \in \operatorname{Sym}_{1}(\mathbb{R}) & D_{11}=g_{\alpha_{a b}} &
\end{array}
$$

and the off diagonals being given by

$$
\begin{aligned}
& \langle X Y\rangle_{i s}=\left\{\begin{array}{lll}
-\frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\gamma_{i}}} & i=s \\
\frac{g_{\alpha_{s b}}}{g_{\alpha_{i a}}} & i \neq s & \langle X Z\rangle_{i s}=\frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}}
\end{array}\right. \\
& \langle Y Z\rangle_{i s}=g_{\alpha_{a+s, b}}
\end{aligned}
$$

Proposition 86 (Case $\sharp 3$). Let $\eta=-2 \varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i a}\right)$ for $i=1 \ldots a-1$. Then we have

$$
\left(M_{\eta}\right)_{i s}= \begin{cases}2 \frac{\left(g_{\alpha_{s a}}\right)^{2}}{g_{\gamma}} & i=s \\ \frac{g_{\alpha_{s a}}\left(2 g_{\beta_{i s}}-g_{\beta_{s a}}\right)}{g_{\beta_{i s}}} & i<s\end{cases}
$$

Proposition 87 (Cases $\sharp 4-\sharp 9$). Let $1 \leq a<b<c<d \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 0 & \frac{g_{\alpha_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
\frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & \frac{g_{\alpha_{b d}} g_{\alpha_{a c}}}{g_{\alpha_{a b}}} & 0
\end{array}\right) .
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & \frac{g_{\alpha_{b}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} \\
\frac{g_{\alpha_{b c}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=0
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -\frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a d}}} & -\frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-\frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a d}}} & 0 & -\frac{g_{\beta_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
-\frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -\frac{g_{\beta_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -\frac{g_{\alpha_{\alpha_{c}}} g_{\beta_{a d}}}{g_{\beta_{a b}}} \\
-\frac{g_{\alpha_{b c}} g_{\beta_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=0
$$

Proposition 88 (Cases $\sharp 10-\sharp 12$). Let $1 \leq a<b<c \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$:

$$
M_{\eta}=\left(\begin{array}{cc}
-\frac{g_{\alpha_{b c}} g_{\alpha_{a b}}}{g_{\alpha_{a c}}} & \frac{g_{\alpha_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a b}}} \\
\frac{g_{\alpha_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}+2 \varepsilon_{b}+\varepsilon_{c}:$

$$
M_{\eta}=\left(\begin{array}{cc}
-\frac{g_{\beta_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -\frac{g_{\beta_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a b}}} \\
-\frac{g_{\beta_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}+2 \varepsilon_{c}$:

$$
M_{\eta}=\left(\begin{array}{cc}
-\frac{g_{\beta_{b c}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & -\frac{g_{\gamma_{c}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-\frac{g_{\gamma_{c}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & 0
\end{array}\right)
$$

Since they are all one dimensional, we write the cases $\sharp 13-\sharp 16$ in one matrix
Proposition 89 (Cases $\sharp 13-\sharp 16$). We consider for $1 \leq a<b<c \leq n$ the ordering $\left(\alpha_{b c}, \beta_{a c}\right),\left(\gamma_{c}, \beta_{a b}\right),\left(\beta_{b c}, \gamma_{a}\right),\left(\alpha_{b c}, \gamma_{a}\right)$. The direct sum of the corresponding $M_{\eta}^{\prime} s$ is given by

$$
\left(\begin{array}{ccccc}
-\frac{g_{\alpha_{\alpha_{c}}} g_{\beta_{a c}}}{g_{\beta_{a b}}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Proposition 90 (Cases $\sharp 17-\sharp 18$). We consider for $1 \leq a<b \leq n$ the ordering $\left(\gamma_{b}, \gamma_{a}\right)$, $\left(\gamma_{b}, \alpha_{a b}\right)$. The direct sum of the corresponding $M_{\eta}^{\prime} s$ is given by

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & -\frac{g_{\gamma_{b}} g_{\alpha_{a b}}}{g_{\beta_{a b}}}
\end{array}\right)
$$

Proposition 91. The entries of the matrix of the trivial module are determined by the diagonals of the matrices above :

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=\left(M_{\alpha-\beta}\right)_{(\alpha \beta)(\alpha \beta)}
$$

except for the diagonals. For $\alpha \in \Delta_{\mathfrak{m}}^{+}$the following holds

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}= \begin{cases}2 g_{\alpha} & \alpha \in\left\{\alpha_{i j}, \beta_{i j}\right\} \\ g_{\alpha} & \alpha=\gamma_{i}\end{cases}
$$

General modifications of $S p(n)$

After completing the steps described in the beginning of the section in the case of $S p(n)$, that is
1.) We move the diagonals of $\sharp 10-18$ into the matrix of the trivial module.
2.) The off diagonals of $\sharp 4$ to the $\langle V W\rangle$ block of $\sharp 1$, the $\langle X Z\rangle$ block and the upper triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
3.) The off diagonal of $\sharp 5$ the lower triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
4.) The off diagonals of $\sharp 7$ to the $\langle V Z\rangle$ block, the $\langle V X\rangle$ block and the upper triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.
5.) The off diagonal of $\sharp 8$ the lower triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.
6.) The off diagonals of $\sharp 10$ to the $\langle X D\rangle$ block of $\sharp 2$.
7.) The off diagonals of $\sharp 11$ to the $\langle V D\rangle$ block of $\sharp 1$.
8.) The off diagonals of $\sharp 12$ to the $\langle V E\rangle$ block of $\sharp 1$.

We remark that, similarly to the modifications of $S U(n+1)$, in each step we have a bijection between the referenced entries of all matrices of the mentioned cases $\sharp i$.

Then the modified holomorphic curvature tensor is given by the following matrices
Proposition 92 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right), w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right), D_{1}=\left(\beta_{a b}, \gamma_{a}\right)$ and $E_{1}=\left(\gamma_{b}, \beta_{a b}\right)$ with $i=1 \ldots(a-1), t=1 \ldots(b-a-1)$ and $j=1 . . . n-b$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle & \langle V D\rangle & \langle V E\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle & \langle W D\rangle & \langle W E\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle & \langle X E\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle & \langle Y E\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle & \langle Z E\rangle \\
\langle V D\rangle^{T} & \langle W D\rangle^{T} & \langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D & \langle D E\rangle \\
\langle V E\rangle^{T} & \langle W E\rangle^{T} & \langle X E\rangle^{T} & \langle Y E\rangle^{T} & \langle Z E\rangle^{T} & \langle D E\rangle & E
\end{array}\right)
$$

with the diagonal matrices being

$V \in \operatorname{Sym}_{a-1}(\mathbb{R})$	$V_{i s}=g_{\alpha_{s a}}$	for $i \leq s$
$W \in \operatorname{Sym}_{n-b}(\mathbb{R})$	$W_{i s}=g_{\alpha_{b, b+i}}$	for $i \leq s$
$X \in \operatorname{Sym}_{b-a-1}(\mathbb{R})$	$X_{i s}=g_{\beta_{a+s, b}}$	for $i \leq s$
$Y \in \operatorname{Sym}_{a-1}(\mathbb{R})$	$Y_{i s}=g_{\beta_{s b}}$	for $i \leq s$
$Z \in \operatorname{Sym}_{n-b}(\mathbb{R})$	$Z_{i s}=g_{\beta_{b, b+s}}$	for $i \leq s$
$D \in \operatorname{Sym}_{1}(\mathbb{R})$	$D_{11}=g_{\beta_{a b}}$	
$E \in \operatorname{Sym}_{1}(\mathbb{R})$	$E_{11}=g_{\gamma_{b}}$	

and the off diagonals being given by the following where i and s vary in the ranges determined by the diagonals

$$
\begin{array}{lll}
\langle V W\rangle_{i s}=-2 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} & \langle V X\rangle_{i s}=-2 \frac{g_{\alpha_{i a}} g_{\beta_{a+s}, b}}{g_{\beta_{i, a+s}}} & \langle V Y\rangle_{i s}= \begin{cases}-\frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\gamma_{i}}} \\
-2 \frac{g_{\alpha_{i a}} g_{\beta_{s b}}}{g_{\beta_{i s}}}\end{cases} \\
\langle V Z\rangle_{i s}=-2 \frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} & \langle V D\rangle_{i 1}=-2 \frac{g_{\alpha_{i a}} g_{\beta_{a b}}}{g_{\beta_{i a}}} & \langle V E\rangle_{i 1}=-2 \frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\beta_{i b}}} \\
\langle W X\rangle_{i s}=g_{\alpha_{b, b+i}} & \langle W Y\rangle_{i s}=g_{\alpha_{b, b+i}} & \langle W Z\rangle_{i s}= \begin{cases}\frac{g_{\alpha_{b, b+i}}\left(g_{\alpha_{a, b+i}}+g_{\beta_{a b}}\right)}{g_{\beta_{a b}}} \\
g_{\alpha_{b, b+i}}\end{cases} \\
\langle W D\rangle_{i 1}=g_{\alpha_{b, b+i}} & \langle W E\rangle_{i 1}=g_{\alpha_{b, b+i}} & \langle X Y\rangle_{i s}=g_{\beta_{a+i, b}} \\
\langle X Z\rangle_{i s}=g_{\beta_{b, b+s}} & \langle X D\rangle_{i 1}=g_{\beta_{a+i, b}} & \langle X E\rangle_{i 1}=g_{\gamma_{b}} \\
\langle Y Z\rangle_{i s}=g_{\beta_{b, b+s}} & \langle Y D\rangle_{i 1}=g_{\beta_{a b}} & \langle Y E\rangle_{i 1}=g_{\gamma_{b}} \\
\langle Z D\rangle_{i 1}=g_{\beta_{b, b+i}} & \langle Z E\rangle_{i 1}=g_{\beta_{b, b+i}} & \langle D E\rangle_{11}=g_{\gamma_{b}}
\end{array}
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.
Proposition 93 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ and $D_{1}=\left(\alpha_{a b}, \gamma_{a}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$. Then we have

$$
M_{\eta}=\left(\begin{array}{cccc}
X & \langle X Y\rangle & \langle X Z\rangle & \langle X D\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle & \langle Y D\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z & \langle Z D\rangle \\
\langle X D\rangle^{T} & \langle Y D\rangle^{T} & \langle Z D\rangle^{T} & D
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & Z_{i s}=g_{\alpha_{a+s, b}} & \text { for } i \leq s \\
D \in \operatorname{Sym}_{1}(\mathbb{R}) & D_{11}=g_{\alpha_{a b}} &
\end{array}
$$

and the off diagonals being given by

$$
\begin{aligned}
& \langle X Y\rangle_{i s}=\left\{\begin{array}{lll}
-\frac{g_{\alpha_{i a}} g_{\gamma_{b}}}{g_{\gamma_{i}}} & i=s \\
2 \frac{g_{\alpha_{b}} g_{\alpha_{i a}}}{g_{\beta_{s i}}} & i \neq s & \langle X Z\rangle_{i s}=2 \frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}}
\end{array}\right\rangle\langle X D\rangle_{i 1}=2 \frac{g_{\alpha_{i a}} g_{\alpha_{a b}}}{g_{\beta_{i a}}} \\
& \langle Y Z\rangle_{i s}=g_{\alpha_{a+s, b}}
\end{aligned}
$$

Proposition 94 (Case $\sharp 3$). Let $\eta=-2 \varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i a}\right)$ for $i=1 \ldots a-1$. Then we have

$$
\left(M_{\eta}\right)_{i s}= \begin{cases}2 \frac{\left(g_{\alpha_{i a}}\right)^{2}}{g_{\gamma_{i}}} & i=s \\ \frac{g_{\alpha_{s a}}\left(2 g_{\beta_{i s}}-g_{\beta_{s a}}\right)}{g_{\beta_{i s}}} & i<s\end{cases}
$$

Proposition 95. We give the entries of the matrix of the trivial module just for the upper triangular part by symmetry, i.e. for the pairs (α, β) with $\alpha<\beta$.
i) Along the diagonal we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}=\left\{\begin{array}{ll}
2 g_{\alpha} & \alpha \in\left\{\alpha_{i j}, \beta_{i j}\right\} \\
g_{\alpha} & \alpha=\gamma_{i}
\end{array} .\right.
$$

ii) For the following $(\alpha, \beta) \in\left\{\left(\alpha_{i a}, \alpha_{i b}\right),\left(\alpha_{b j}, \alpha_{a j}\right),\left(\beta_{k b}, \beta_{a k}\right),\left(\beta_{i b}, \beta_{i a}\right),\left(\beta_{b j}, \beta_{a j}\right)\right.$, $\left.\left(\beta_{a b}, \gamma_{a}\right),\left(\gamma_{b}, \beta_{a b}\right),\left(\alpha_{i a}, \beta_{i b}\right),\left(\alpha_{i b}, \beta_{i a}\right),\left(\alpha_{k b}, \beta_{a k}\right),\left(\alpha_{a b}, \gamma_{a}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=g_{\alpha}
$$

iii) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i b}, \alpha_{a i}\right),\left(\beta_{i b}, \alpha_{a i}\right),\left(\beta_{b j}, \alpha_{a j}\right),\left(\alpha_{b j}, \beta_{a j}\right),\left(\gamma_{b}, \alpha_{a b}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=-2 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}
$$

iv) For the following pairs $(\alpha, \beta)=\left(\alpha_{s a}, \beta_{s a}\right)$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=2 \frac{\left(g_{\alpha}\right)^{2}}{g_{\alpha+\beta}}
$$

Notice that the entries in the trivial module that have been doubled are iii).

7.4 $S O(2 n)$

As for $S U(n+1)$ we define the ordering on the positive roots as in proposition 15 with the slight modification that we use the ordered basis ε_{j} with $j=1, . ., n$ instead of the simple roots to induce the ordering. It is easy to see that the desired properties are still true.
Proposition 96. For the C space $\left(S O(2 n), \mathbb{T}^{n}, J_{s t d}\right)$ let η be a non zero weight of Fix $\left(J_{s t d}\right)$, i.e an element in

$$
\Delta_{H}=\left\{\alpha-\beta \mid \alpha<\beta \in \Delta_{\mathfrak{g}}^{+}\right\}
$$

Then η is in the following table together with the pairs $\alpha<\beta$ with $\alpha-\beta=\eta$:

\#	η	$I(\eta)$	n_{η}
1	$-\varepsilon_{a}+\varepsilon_{b}$	$\begin{aligned} & \left(\alpha_{i a}, \alpha_{i b}\right), i=1, . ., a-1 \\ & \left(\alpha_{b j}, \alpha_{a j}\right), j=b+1, . ., n \\ & \left(\beta_{t b}, \beta_{a t}\right), t=a+1, . ., b-1 \\ & \left(\beta_{s b}, \beta_{s a}\right), s=1, . ., a-1 \\ & \left(\beta_{b r}, \beta_{a r}\right), r=b+1, . ., n \end{aligned}$	$2 n-b+a-3$
2	$-\varepsilon_{a}-\varepsilon_{b}$	$\begin{aligned} & \left(\alpha_{s a}, \beta_{s b}\right), s=1, . ., a-1 \\ & \left(\alpha_{s b}, \beta_{s a}\right), s=1, . ., a-1 \\ & \left(\alpha_{t b}, \beta_{a t}\right), t=a+1, . ., b-1 \end{aligned}$	$b+a-3$
3	$-2 \varepsilon_{a}$	$\left(\alpha_{s a}, \beta_{s a}\right), s=1, . ., a-1$	$a-1$
4	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \alpha_{a b}\right),\left(\alpha_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \beta_{a d}\right)$	3
5	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$	$\left(\alpha_{b c}, \alpha_{a d}\right),\left(\beta_{b d}, \beta_{a c}\right)$	2
6	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \beta_{a b}\right)$	1
7	$-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$	$\left(\beta_{c d}, \alpha_{a b}\right),\left(\beta_{b d}, \alpha_{a c}\right),\left(\beta_{b c}, \alpha_{a d}\right)$	3
8	$-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{b c}, \beta_{a d}\right),\left(\alpha_{b d}, \beta_{a c}\right)$	2
9	$-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$	$\left(\alpha_{c d}, \beta_{a b}\right)$	1
10	$-\varepsilon_{a}+2 \varepsilon_{b}-\varepsilon_{c}$	$\left(\alpha_{b c}, \alpha_{a b}\right)$	1
11	$-\varepsilon_{a}+2 \varepsilon_{b}+\varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a b}\right)$	1
12	$-\varepsilon_{a}+\varepsilon_{b}+2 \varepsilon_{c}$	$\left(\beta_{b c}, \alpha_{a c}\right)$	1
13	$-\varepsilon_{a}+\varepsilon_{b}-2 \varepsilon_{c}$	$\left(\alpha_{b c}, \beta_{a c}\right)$	1

Proof. The elements in the list are obviously weights and these are all of them for dimensional reasons. In fact, from 4.1 we only have to verify that

$$
\frac{\left|\Delta_{\mathfrak{g}}^{+}\right|\left(\left|\Delta_{\mathfrak{g}}^{+}\right|-1\right)}{2}=\sum_{\eta \in \Delta_{H}} n_{\eta}
$$

holds. In fact, we know $\left|\Delta_{\mathfrak{g}}^{+}\right|=n(n-1)$ and the right hand side is given by

$$
\begin{array}{r}
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n}(2 n+2 a-6)+\sum_{a=1}^{n}(a-1) \\
+4\binom{n}{3}+12\binom{n}{4}
\end{array}
$$

Easy calculations yield that left and right hand side coincide and therefore we found all weights.

In the following, we determine the curvature matrices M_{η}. Since the indices of M_{η} are pairs of roots (α, β) with $\alpha<\beta$ and $\alpha-\beta=\eta$ it makes sense to choose an ordering of these pairs. We will do so in each M_{η} separately. The proofs reduce to plugging in the values of $g_{\alpha}, N_{\alpha, \beta}$ and z_{α} as determined for the classical groups in section 1.8 into the equations of proposition 16 and will therefore be omitted. An exemplary calculation was made in the proof of proposition 44
Proposition 97 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right), w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right)$ with $i=1, . ., a-1, t=1, . ., b-a-1$ and $j=1, . ., n-b$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{ll}
V \in \operatorname{Sym}_{a-1}(\mathbb{R}) & V_{i s}=4 g_{\alpha_{s a}} \text { for } i \leq s \\
W \in \operatorname{Sym}_{n-b}(\mathbb{R}) & W_{i s}=4 g_{\alpha_{b, b+i}} \text { for } i \leq s \\
X \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & X_{i s}=4 g_{\beta_{a+s, b}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\beta_{s b}} \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=4 g_{\beta_{b, b+s}} \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by the following where i and s vary in the ranges determined by the diagonals

$$
\left.\begin{array}{ll}
\langle V W\rangle_{i s}=-4 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} & \langle V X\rangle_{i s}=4 \frac{g_{\alpha_{i a}} g_{\beta_{a+s, b}}}{g_{\beta_{i, a+s}}}
\end{array}\right\rangle\langle V Y\rangle_{i s}=\left\{\begin{array}{l}
-4 g_{\alpha_{i a}} \\
-4 \frac{g_{\alpha_{a}} g_{\beta_{s b}}}{g_{\beta_{i s}}}
\end{array} \begin{array}{ll}
\langle V Z\rangle_{i s}=-4 \frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} & \langle W X\rangle_{i s}=-4 g_{\alpha_{b, b+i}}
\end{array}\left\langle\begin{array}{l}
\langle W Y\rangle_{i s}=4 g_{\alpha_{b, b+i}}
\end{array}\right\} \begin{array}{ll}
\langle W Z\rangle_{i s}= \begin{cases}4 \frac{g_{\alpha_{b, b+i}} g_{\beta_{b, b+i}}}{g_{\beta_{a b}}} & \langle X Y\rangle_{i s}=-4 g_{\beta_{a+i, b}} \\
4 g_{\alpha_{b, b+i}} & \langle X Z\rangle_{i s}=-4 g_{\beta_{b, b+s}}\end{cases} \\
\langle Y Z\rangle_{i s}=4 g_{\beta_{b, b+s}} &
\end{array}\right.
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.

Proposition 98 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=4 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=4 g_{\alpha_{a+s, b}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-4 g_{\alpha_{s a}} & i=s \\
-4 \frac{g_{s b} g_{\alpha_{i a}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=4 \frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-4 g_{\alpha_{a+s, b}}\right.
$$

Proposition 99 (Case $\sharp 3$). Let $\eta=-2 \varepsilon_{a}$ for $1 \leq a \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i a}\right)$ for $i=1 \ldots a-1$. Then we have

$$
\left(M_{\eta}\right)_{i s}= \begin{cases}0 & i=s \\ 4 \frac{g_{\alpha_{s}} g_{\beta_{s a}}}{g_{\beta_{i s}}} & i<s\end{cases}
$$

Proposition 100 (Cases $\sharp 4-\sharp 9$). Let $1 \leq a<b<c<d \leq n$. We order the pairs as given in the table from left to right. Then we have for $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 4 \frac{g_{\alpha_{\alpha_{d}}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\alpha_{a d}}} & 0 & -4 \frac{g_{\alpha_{d d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
4 \frac{g_{\alpha_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -4 \frac{g_{\alpha_{\alpha_{d}}} g_{\alpha_{a c}}}{g_{\alpha_{a b}}} & 0
\end{array}\right) .
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -4 \frac{g_{\alpha_{b c}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} \\
-4 \frac{g_{\alpha_{b_{c}}} g_{\alpha_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}:$

$$
M_{\eta}=0
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{ccc}
0 & -4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a d}}} & 4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} \\
-4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{a d}} & 0 & -4 \frac{g_{\beta_{b}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} \\
4 \frac{g_{\beta_{c d}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & -4 \frac{g_{\beta_{b d}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=\left(\begin{array}{cc}
0 & -4 \frac{g_{\alpha_{b c}} g_{\beta_{a d}}}{g_{\beta_{a b}}} \\
-4 \frac{g_{\alpha_{b c}} g_{\beta_{a d}}}{g_{\beta_{a b}}} & 0
\end{array}\right)
$$

For $\eta=-\varepsilon_{a}-\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{d}$:

$$
M_{\eta}=0
$$

Since they are all one dimensional, we write the cases $\sharp 10-\sharp 13$ in one matrix
Proposition 101 (Cases $\sharp 10-\sharp 13$). We consider for $1 \leq a<b<c \leq n$ the ordering $\left(\alpha_{b c}, \alpha_{a b}\right),\left(\beta_{b c}, \alpha_{a b}\right),\left(\beta_{b c}, \alpha_{a c}\right),\left(\alpha_{b c}, \beta_{a c}\right)$. The direct sum of the corresponding $M_{\eta}^{\prime} s$ is given by

$$
\left(\begin{array}{cccc}
-4 \frac{g_{\alpha_{b c}} g_{\alpha_{a b}}}{g_{\alpha_{a c}}} & 0 & 0 & 0 \\
0 & -4 \frac{g_{\beta_{b c}} g_{\alpha_{a b}}}{g_{\beta_{a c}}} & 0 & 0 \\
0 & 0 & -4 \frac{g_{\beta_{b c}} g_{\alpha_{a c}}}{g_{\beta_{a b}}} & 0 \\
0 & 0 & 0 & -4 \frac{g_{\alpha_{b c}} g_{\beta_{a c}}}{g_{\beta_{a b}}}
\end{array}\right)
$$

Proposition 102. The entries of the matrix of the trivial module are determined by the diagonals of the matrices above :

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=\left(M_{\alpha-\beta}\right)_{(\alpha \beta)(\alpha \beta)}
$$

except for the diagonals. For $\alpha \in \Delta_{\mathfrak{m}}^{+}$the following holds

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}=8 g_{\alpha}
$$

General modifications of $S O(2 n)$

After completing the steps described in the beginning of the section in the case of $S O(2 n)$, that is
1.) We move the diagonals of $\sharp 10-13$ into the matrix of the trivial module.
2.) The off diagonals of $\sharp 3$ to the diagonal of the $\langle W Z\rangle$ block of $\sharp 1$.
3.) The off diagonals of $\sharp 4$ to the $\langle V W\rangle$ block of $\sharp 1$, the $\langle X Z\rangle$ block and the upper triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
4.) The off diagonal of $\sharp 5$ to the lower triangular part of the $\langle X Y\rangle$ block of $\sharp 2$.
5.) The off diagonals of $\sharp 7$ to the $\langle V Z\rangle$ block, the $\langle V X\rangle$ block and the upper triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.
6.) The off diagonal of $\sharp 8$ the lower triangular part of the $\langle V Y\rangle$ block of $\sharp 1$.

We remark that similarly to the modifications of $S U(n+1)$, in each step have a bijection between the referenced entries of all matrices of the mentioned case $\sharp i$.

Then the modified holomorphic curvature tensor is given by the following matrices
Proposition 103 (Case $\sharp 1$). Let $\eta=-\varepsilon_{a}+\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $v_{i}=\left(\alpha_{i a}, \alpha_{i b}\right)$, $w_{j}=\left(\alpha_{b, b+j}, \alpha_{a, b+j}\right), x_{t}=\left(\beta_{a+t, b}, \beta_{a, a+t}\right), y_{i}=\left(\beta_{i b}, \beta_{i a}\right), z_{j}=$ $\left(\beta_{b, b+j}, \beta_{a, b+j}\right)$ with $i=1, . ., a-1, t=1, . ., b-a-1$ and $j=1, . ., n-b$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccccc}
V & \langle V W\rangle & \langle V X\rangle & \langle V Y\rangle & \langle V Z\rangle \\
\langle V W\rangle^{T} & W & \langle W X\rangle & \langle W Y\rangle & \langle W Z\rangle \\
\langle V X\rangle^{T} & \langle W X\rangle^{T} & X & \langle X Y\rangle & \langle X Z\rangle \\
\langle V Y\rangle^{T} & \langle W Y\rangle^{T} & \langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle V Z\rangle^{T} & \langle W Z\rangle^{T} & \langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{ll}
V \in \operatorname{Sym}_{a-1}(\mathbb{R}) & V_{i s}=4 g_{\alpha_{s a}} \text { for } i \leq s \\
W \in \operatorname{Sym}_{n-b}(\mathbb{R}) & W_{i s}=4 g_{\alpha_{b, b+i}} \text { for } i \leq s \\
X \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & X_{i s}=4 g_{\beta_{a+s, b}} \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\beta_{s b}} \text { for } i \leq s \\
Z \in \operatorname{Sym}_{n-b}(\mathbb{R}) & Z_{i s}=4 g_{\beta_{b, b+s}} \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by the following where i and s vary in the ranges determined by the diagonals

$$
\begin{array}{lll}
\langle V W\rangle_{i s}=-8 \frac{g_{\alpha_{i a}} g_{\alpha_{b, b+s}}}{g_{\alpha_{i, b+s}}} & \langle V X\rangle_{i s}=8 \frac{g_{\alpha_{i a}} g_{\beta_{a+s, b}}}{g_{\beta_{i, a+s}}} & \langle V Y\rangle_{i s}=\left\{\begin{array}{l}
-4 g_{\alpha_{\alpha_{a}}} \\
-8 \frac{g_{\alpha_{i a}} g_{\beta_{s b}}}{g_{\beta_{i s}}}
\end{array}\right. \\
\langle V Z\rangle_{i s}=-8 \frac{g_{\alpha_{i a}} g_{\beta_{b, b+s}}}{g_{\beta_{i, b+s}}} & \langle W X\rangle_{i s}=-4 g_{\alpha_{b, b+i}} & \langle W Y\rangle_{i s}=4 g_{\alpha_{b, b+i}} \\
\langle W Z\rangle_{i s}= \begin{cases}8 \frac{g_{\alpha_{b, b+i}} g_{\beta_{b, b+i}}}{g_{\beta_{a b}}} & \langle X Y\rangle_{i s}=-4 g_{\beta_{a+i, b}} \\
4 g_{\alpha_{b, b+i}} & \langle X Z\rangle_{i s}=-4 g_{\beta_{b, b+s}}\end{cases} \\
\langle Y Z\rangle_{i s}=4 g_{\beta_{b, b+s}} &
\end{array}
$$

In the two case distinctions the upper case corresponds to $i=s$ and the lower case to $i \neq s$.
Proposition 104 (Case $\sharp 2$). Let $\eta=-\varepsilon_{a}-\varepsilon_{b}$ for $1 \leq a<b \leq n$. We order the pairs as follows $x_{i}=\left(\alpha_{i a}, \beta_{i b}\right), y_{i}=\left(\alpha_{i b}, \beta_{i a}\right), z_{t}=\left(\alpha_{a+t, b}, \beta_{a, a+t}\right)$ with $i=1, . ., a-1$ and $t=1, . ., b-a-1$. Then we have

$$
M_{\eta}=\left(\begin{array}{ccc}
X & \langle X Y\rangle & \langle X Z\rangle \\
\langle X Y\rangle^{T} & Y & \langle Y Z\rangle \\
\langle X Z\rangle^{T} & \langle Y Z\rangle^{T} & Z
\end{array}\right)
$$

with the diagonal matrices being

$$
\begin{array}{lll}
X \in \operatorname{Sym}_{a-1}(\mathbb{R}) & X_{i s}=4 g_{\alpha_{s a}} & \text { for } i \leq s \\
Y \in \operatorname{Sym}_{a-1}(\mathbb{R}) & Y_{i s}=4 g_{\alpha_{s b}} & \text { for } i \leq s \\
Z \in \operatorname{Sym}_{b-a-1}(\mathbb{R}) & Z_{i s}=4 g_{\alpha_{a+s, b}} & \text { for } i \leq s
\end{array}
$$

and the off diagonals being given by

$$
\langle X Y\rangle_{i s}=\left\{\begin{array}{ll}
-4 g_{\alpha_{s a}} & i=s \\
-8 \frac{g_{\alpha_{s}} g_{\alpha_{i a}}}{g_{\beta_{s i}}} & i \neq s
\end{array} \quad\langle X Z\rangle_{i s}=8 \frac{g_{\alpha_{i a}} g_{\alpha_{a+s, b}}}{g_{\beta_{i, a+s}}} \quad\langle Y Z\rangle_{i s}=-4 g_{\alpha_{a+s, b}}\right.
$$

Proposition 105. We give the entries of the matrix of the trivial module just for the upper triangular part by symmetry, i.e. for the pairs (α, β) with $\alpha<\beta$.
i) Along the diagonal we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\alpha \alpha)}=8 g_{\alpha}
$$

ii) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i a}, \alpha_{i b}\right),\left(\alpha_{b j}, \alpha_{a j}\right),\left(\beta_{k b}, \beta_{a k}\right),\left(\beta_{i b}, \beta_{i a}\right),\left(\beta_{b j}, \beta_{a j}\right)\right.$, $\left.\left(\alpha_{i a}, \beta_{i b}\right),\left(\alpha_{i b}, \beta_{i a}\right),\left(\alpha_{k b}, \alpha_{a k}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=4 g_{\alpha}
$$

iii) For the following pairs $(\alpha, \beta) \in\left\{\left(\alpha_{i b}, \alpha_{a i}\right),\left(\beta_{i b}, \alpha_{a i}\right),\left(\beta_{b j}, \alpha_{a j}\right),\left(\alpha_{b j}, \beta_{a j}\right)\right\}$ we have

$$
\left(M_{0}\right)_{(\alpha \alpha)(\beta \beta)}=-8 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}
$$

Notice that the entries in the trivial module that have been doubled are iii).

Chapter 8

The case of $H(4)$

In the following we consider the holomorphic curvature tensors for $\left(G, \mathbb{T}, J_{s t d}, g_{K E}\right)$ for G being a classical Lie group of rank 4 and show that there are four forms turning those tensors positive definite. Afterwards, we go on to larger isotropy groups with their corresponding Kähler Einstein metrics. By the result of section 5, the corresponding curvature matrices are obtained from those of (G, \mathbb{T}) via going to submatrices and plugging in different coefficients for the metrics.

Before we continue to the calculations, we want to state the following useful
Lemma 106 (Auxiliary Lemma). Let $M \in \operatorname{Mat}_{n}(\mathbb{R})$ be given as the symmetric matrix $M_{i j}=a_{i}$ for $i \leq j$. Then we have

$$
\operatorname{det}(M)=a_{1} \prod_{i=1}^{n}\left(a_{i+1}-a_{i}\right)
$$

In particular, if $0 \leq a_{i} \leq a_{i+1}$ holds, then M is positive semidefinite. Additionally, if strict inequalities hold then M is positive definite.
Proof. The expression of the determinant is an easy exercise. The positive (semi-) definiteness, follows from Sylvester's criterion for symmetric matrices once one notices that every minor of M is again of the same type as M and hence the above determinant formula applies also for the minors.

8.1 The case of $S U(5)$

The positive roots in increasing order are

$$
\begin{equation*}
\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{45}, \alpha_{34}, \alpha_{35}, \alpha_{23}, \alpha_{24}, \alpha_{25}, \alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}\right\} . \tag{8.1}
\end{equation*}
$$

and we have the simple roots as follows on the Dynkin diagram:

After applying the general modifications of section 7.1 the matrices M_{η} representing the modified holomorphic curvature tensor are indexed with $\eta \in \Delta_{\mathfrak{g}}^{-} \cup\{0\}$. In the case of $S U(5)$ this corresponds to the following:

First of all the roots $-\alpha_{1 i}$ with $i=2 . .5$:

$$
\begin{array}{ll}
M_{-\alpha_{12}}=\left(\begin{array}{lll}
g_{\alpha_{23}} & g_{\alpha_{23}} & g_{\alpha_{23}} \\
g_{\alpha_{23}} & g_{\alpha_{24}} & g_{\alpha_{24}} \\
g_{\alpha_{23}} & g_{\alpha_{24}} & g_{\alpha_{25}}
\end{array}\right) & M_{-\alpha_{13}}=\left(\begin{array}{l}
g_{\alpha_{34}} g_{\alpha_{34}} \\
g_{\alpha_{34}} \\
g_{\alpha_{35}}
\end{array}\right) \\
M_{-\alpha_{14}}=\left(g_{\alpha_{45}}\right) & M_{-\alpha_{15}}=(\emptyset)
\end{array}
$$

Then the roots $-\alpha_{2 i}$ with $i=3 . .5$:

$$
\begin{gathered}
M_{-\alpha_{23}}=\left(\begin{array}{ccc}
g_{\alpha_{12}} & -2 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & -2 \frac{g_{\alpha_{12}} g_{\alpha_{35}}}{g_{\alpha_{15}}} \\
-2 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & g_{\alpha_{34}} & g_{\alpha_{34}} \\
-2 \frac{g_{\alpha_{12}} g_{\alpha_{35}}}{g_{\alpha_{15}}} & g_{\alpha_{34}} & g_{\alpha_{35}}
\end{array}\right) \quad M_{-\alpha_{24}}=\left(\begin{array}{cc}
g_{\alpha_{12}} & -2 \frac{g_{\alpha_{12}} g_{\alpha_{45}}}{g_{\alpha_{15}}} \\
-2 \frac{g_{\alpha_{12}} g_{\alpha_{45}}}{g_{\alpha_{15}}} & g_{\alpha_{45}}
\end{array}\right) \\
M_{-\alpha_{25}}=\left(g_{\alpha_{12}}\right)
\end{gathered}
$$

and the roots $-\alpha_{3 i}$ with $i=4,5$:

$$
M_{-\alpha_{34}}=\left(\begin{array}{ccc}
g_{\alpha_{13}} & g_{\alpha_{23}} & -2 \frac{g_{\alpha_{13}} g_{\alpha_{45}}}{g_{\alpha_{15}}} \\
g_{\alpha_{23}} & g_{\alpha_{23}} & -2 \frac{g_{\alpha_{23}} g_{\alpha_{45}}}{g_{\alpha_{25}}} \\
-2 \frac{g_{\alpha_{13}} g_{\alpha_{45}}}{g_{\alpha_{15}}}-2 \frac{g_{\alpha_{23}} g_{\alpha_{45}}}{g_{\alpha_{25}}} & g_{\alpha_{45}}
\end{array}\right) \quad M_{-\alpha_{35}}=\binom{g_{\alpha_{13}} g_{\alpha_{23}}}{g_{\alpha_{23}} g_{\alpha_{23}}}
$$

Last but not least $-\alpha_{45}$:

$$
M_{-\alpha_{45}}=\left(\begin{array}{ccc}
g_{\alpha_{14}} & g_{\alpha_{24}} & g_{\alpha_{34}} \\
g_{\alpha_{24}} & g_{\alpha_{24}} & g_{\alpha_{34}} \\
g_{\alpha_{24}} & g_{\alpha_{34}} & g_{\alpha_{34}}
\end{array}\right) .
$$

In the increasing ordering of the basis from equation (8.1) we have that the matrix M_{0} on the trivial module is given by:

$$
\left(\begin{array}{c|cc|ccc|cccc}
2 g_{\alpha_{45}} & * & g_{\alpha_{45}} & 0 & * & g_{\alpha_{45}} & 0 & 0 & * & g_{\alpha_{45}} \\
\hline * & 2 g_{\alpha_{34}} & g_{\alpha_{34}} & * & g_{\alpha_{34}} & 0 & 0 & * & g_{\alpha_{34}} & 0 \\
g_{\alpha_{45}} & g_{\alpha_{34}} & 2 g_{\alpha_{35}} & * & 0 & g_{\alpha_{35}} & 0 & * & 0 & g_{\alpha_{35}} \\
\hline 0 & * & * & 2 g_{\alpha_{23}} & g_{\alpha_{23}} & g_{\alpha_{23}} & * & g_{\alpha_{23}} & 0 & 0 \\
* & g_{\alpha_{34}} & 0 & g_{\alpha_{23}} & 2 g_{\alpha_{24}} & g_{\alpha_{24}} & * & 0 & g_{\alpha_{24}} & 0 \\
g_{\alpha_{45}} & 0 & g_{\alpha_{35}} & g_{\alpha_{23}} & g_{\alpha_{24}} & 2 g_{\alpha_{25}} & * & 0 & 0 & g_{\alpha_{25}} \\
\hline 0 & 0 & 0 & * & * & * & 2 g_{\alpha_{12}} & g_{\alpha_{12}} & g_{\alpha_{12}} & g_{\alpha_{12}} \\
0 & * & * & g_{\alpha_{23}} & 0 & 0 & g_{\alpha_{12}} & 2 g_{\alpha_{13}} & g_{\alpha_{13}} & g_{\alpha_{13}} \\
* & g_{\alpha_{34}} & 0 & 0 & g_{\alpha_{24}} & 0 & g_{\alpha_{12}} & g_{\alpha_{13}} & 2 g_{\alpha_{14}} & g_{\alpha_{14}} \\
g_{\alpha_{45}} & 0 & g_{\alpha_{35}} & 0 & 0 & g_{\alpha_{25}} & g_{\alpha_{12}} & g_{\alpha_{13}} & g_{\alpha_{14}} & 2 g_{\alpha_{15}}
\end{array}\right)
$$

where $*$ at the entry (α, β) is a place holder for $-2 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}$ for formatting reasons.
Even though the above corresponds to $\left(S U(5), \mathbb{T}, J_{s t d}, g\right)$ with an arbitrary Kähler metric, by corollary 50 the curvature tensor with a different isotropy group K is given by minors of the above together with the property that the metric on the simple roots of K is zero. Hence we see that for any isotropy group the matrices (the corresponding submatrices of them resp.) $M_{-\alpha_{12}}, M_{-\alpha_{13}}, M_{-\alpha_{14}}, M_{-\alpha_{25}}, M_{-\alpha_{35}}, M_{-\alpha_{45}}$ are positive semidefinite, by the auxiliary lemma, which is sufficient proposition 31. Furthermore, we have

$$
\operatorname{det}\left(M_{-\alpha_{24}}\right)=g_{\alpha_{12}} g_{\alpha_{45}}\left(1-4 \frac{g_{\alpha_{12}} g_{\alpha_{45}}}{g_{\alpha_{15}}^{2}}\right)
$$

which is nonnegative because $g_{\alpha_{15}}=g_{\alpha_{12}}+g_{\alpha_{24}}+g_{\alpha_{45}}$ implies

$$
g_{\alpha_{15}}^{2}-4 g_{\alpha_{12}} g_{\alpha_{45}} \geq\left(g_{\alpha_{12}}+g_{\alpha_{45}}\right)^{2}-4 g_{\alpha_{12}} g_{\alpha_{45}}=\left(g_{\alpha_{12}}-g_{\alpha_{45}}\right)^{2} .
$$

Therefore, we only have to consider $M_{0}, M_{-\alpha_{23}}$ and $M_{-\alpha_{34}}$. Since they are more complicated, we consider them separately in all cases.

Toric Isotropy

Now we consider the Kähler Einstein metric of $\left(S U(5), \mathbb{T}, J_{s t d}\right)$, which is given on the simple roots by

α	α_{12}	α_{23}	α_{34}	α_{45}
g_{α}	1	1	1	1

Then we have

$$
M_{-\alpha_{23}}=\left(\begin{array}{ccc}
1 & -\frac{2}{3} & -1 \\
-\frac{2}{3} & 1 & 1 \\
-1 & 1 & 2
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -\frac{2}{3} \\
-1 & -\frac{2}{3} & 1
\end{array}\right)
$$

which are obviously positive definite by calculating the minors.

$$
M_{0}=\left(\begin{array}{c|cc|ccc|cccc}
2 & -1 & 1 & 0 & -\frac{4}{3} & 1 & 0 & 0 & -\frac{3}{2} & 1 \\
\hline-1 & 2 & 1 & -1 & 1 & 0 & 0 & -\frac{4}{3} & 1 & 0 \\
1 & 1 & 4 & -\frac{4}{3} & 0 & 2 & 0 & -2 & 0 & 2 \\
\hline 0 & -1 & -\frac{4}{3} & 2 & 1 & 1 & -1 & 1 & 0 & 0 \\
-\frac{4}{3} & 1 & 0 & 1 & 4 & 2 & -\frac{4}{3} & 0 & 2 & 0 \\
1 & 0 & 2 & 1 & 2 & 6 & -\frac{3}{2} & 0 & 0 & 3 \\
\hline 0 & 0 & 0 & -1 & -\frac{4}{3} & -\frac{3}{2} & 2 & 1 & 1 & 1 \\
0 & -\frac{4}{3} & -2 & 1 & 0 & 0 & 1 & 4 & 2 & 2 \\
-\frac{3}{2} & 1 & 0 & 0 & 2 & 0 & 1 & 2 & 6 & 3 \\
1 & 0 & 2 & 0 & 0 & 3 & 1 & 2 & 3 & 8
\end{array}\right)
$$

By calculating the determinants of the principal minors, we note that all of them are positive and hence no further 4 forms are needed and we get that $\left(S U(5), \mathbb{T}, J_{s t d}, g_{K E}\right)$ has positive holomorphic curvature.

Larger Isotropy

By the previous discussion, we know that the isotropy groups we have to consider correspond to painted Dynkin diagrams, which leaves us with the following groups K and the corresponding painted Dynkin diagram. We also calculate γ_{K}^{*} from (3.3) which gives us the Kähler Einstein metric. In addition, we only consider the cases, where $\operatorname{dim}(\mathfrak{z}(K))>2$ since the other cases are covered by the result of Itoh and theorem 22 .

K	$D=(V, E)$	γ_{K}^{*}	$g_{\alpha_{12}}$	$g_{\alpha_{23}}$	$g_{\alpha_{34}}$	$g_{\alpha_{45}}$
$S U(2) \mathbb{T}^{3}$	-	$\varepsilon_{1}-\varepsilon_{2}$	0	$\frac{3}{2}$	1	1
$\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$	-	$\varepsilon_{2}-\varepsilon_{3}$	$\frac{3}{2}$	0	$\frac{3}{2}$	1
$\mathbb{T}^{2} S U(2) \mathbb{S}^{1}$	-	$\varepsilon_{3}-\varepsilon_{4}$	1	$\frac{3}{2}$	0	$\frac{3}{2}$
$\mathbb{T}^{3} S U(2)$	\bigcirc	$\varepsilon_{4}-\varepsilon_{5}$	1	1	$\frac{3}{2}$	0

By the symmetry of the Dynkin diagram of $S U(5)$, it is sufficient to consider the first two cases.

Isotropy group $K=S U(2) \mathbb{T}^{3}$
By proposition 48 we consider the restriction of the holomorphic curvature tensor to \mathfrak{m} and then plug in the coefficients of the metric given above. The act of restricting corresponds by corollary 50 to erasing all rows and columns whose index contains α_{12}. Yielding

$$
M_{-\alpha_{23}}=\left(\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{ccc}
\frac{3}{2} & \frac{3}{2} & -\frac{6}{7} \\
\frac{3}{2} & \frac{3}{2} & -\frac{6}{7} \\
-\frac{6}{7} & -\frac{6}{7} & 1
\end{array}\right)
$$

which are obviously positive semi-definite by calculating the minors. The matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{c|cc|ccc|ccc}
2 & -1 & 1 & 0 & -\frac{10}{7} & 1 & 0 & -\frac{10}{7} & 1 \\
\hline-1 & 2 & 1 & -\frac{6}{5} & 1 & 0 & -\frac{6}{5} & 1 & 0 \\
1 & 1 & 4 & -\frac{12}{7} & 0 & 2 & -\frac{12}{7} & 0 & 2 \\
\hline 0 & -\frac{6}{5} & -\frac{12}{7} & 3 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & 0 & 0 \\
-\frac{10}{7} & 1 & 0 & \frac{3}{2} & 5 & \frac{5}{2} & 0 & \frac{5}{2} & 0 \\
1 & 0 & 2 & \frac{3}{2} & \frac{5}{2} & 7 & 0 & 0 & \frac{7}{2} \\
\hline 0 & -\frac{6}{5} & -\frac{12}{7} & \frac{3}{2} & 0 & 0 & 3 & \frac{3}{2} & \frac{3}{2} \\
-\frac{10}{7} & 1 & 0 & 0 & \frac{5}{2} & 0 & \frac{3}{2} & 5 & \frac{5}{2} \\
1 & 0 & 2 & 0 & 0 & \frac{5}{2} & \frac{3}{2} & \frac{5}{2} & 7
\end{array}\right)
$$

which is positive definite.
Isotropy group $K=\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$
In this case we have

$$
M_{-\alpha_{23}}=\left(\begin{array}{ccc}
\frac{3}{2} & -\frac{3}{2} & -\frac{15}{8} \\
-\frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
-\frac{15}{8} & \frac{3}{2} & \frac{5}{2}
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{cc}
1 & -\frac{3}{4} \\
-\frac{3}{4} & \frac{3}{2}
\end{array}\right)
$$

which are obviously positive semi-definite by calculating the minors. The matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{c|cc|cc|cccc}
2 & -\frac{6}{5} & 1 & -\frac{6}{5} & 1 & 0 & 0 & -\frac{3}{2} & 1 \\
\hline-\frac{6}{5} & 3 & \frac{3}{2} & \frac{3}{2} & 0 & 0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
1 & \frac{3}{2} & 5 & 0 & \frac{5}{2} & 0 & -\frac{15}{8} & 0 & \frac{5}{2} \\
\hline-\frac{6}{5} & \frac{3}{2} & 0 & 3 & \frac{3}{2} & -\frac{3}{2} & 0 & \frac{3}{2} & 0 \\
1 & 0 & \frac{5}{2} & \frac{3}{2} & 5 & -\frac{15}{8} & 0 & 0 & \frac{5}{2} \\
\hline 0 & 0 & 0 & -\frac{3}{2} & -\frac{15}{8} & 3 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
0 & -\frac{3}{2} & -\frac{15}{8} & 0 & 0 & \frac{3}{2} & 3 & \frac{3}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{3}{2} & 0 & \frac{3}{2} & 0 & \frac{3}{2} & \frac{3}{2} & 6 & 3 \\
1 & 0 & \frac{5}{2} & 0 & \frac{5}{2} & \frac{3}{2} & \frac{3}{2} & 3 & 8
\end{array}\right) .
$$

This is not positive definite. In fact, for $v=\left(0, \frac{1}{2}, \frac{2}{5},-\frac{1}{2},-\frac{2}{5}, 1,-1,0,0\right)$ we have

$$
v M_{0} v^{T}=-\frac{1}{4}
$$

Hence further four forms are necessary. As we saw in proposition 31 we may add any negative value symmetrically to the off diagonal entries of M_{0}, then the four form realizing this change only improves positivity of the other matrices M_{η}. In the case of this K, it is enough to add -1 to the entries $\left(M_{0}\right)_{6,7}$ and $\left(M_{0}\right)_{7,6}$. The resulting matrix is now positive definite as one verifies by calculating the principal minors.

8.2 The case of $S O(9)$

The positive roots are

$$
\begin{gather*}
\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{34}, \alpha_{23}, \alpha_{24}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right. \tag{8.2}\\
\beta_{34}, \beta_{23}, \beta_{24}, \beta_{12}, \beta_{13}, \beta_{14}, \\
\left.\varepsilon_{4}, \varepsilon_{3}, \varepsilon_{2}, \varepsilon_{1}\right\}
\end{gather*}
$$

and the simple roots are placed on the Dynkin diagram as follows

After applying the general modifications of section 7.2 the matrices M_{η} representing the modified holomorphic curvature tensor are indexed with $\eta \in \Delta_{\mathfrak{g}}^{-} \cup\{0\}$. In the case of $S O(9)$ this corresponds to the following:

We begin with the ones corresponding to $-\alpha_{i j}$.

$$
\begin{aligned}
& M_{-\alpha_{12}}=\left(\begin{array}{cc|cc|c}
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & 8 \frac{g_{\alpha_{23}} g_{\beta_{23}}}{g_{\beta_{12}}} & 4 g_{\alpha_{23}} & 2 g_{\alpha_{23}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{24}} & 4 g_{\alpha_{24}} & 8 \frac{g_{\alpha_{24}} g_{\beta_{24}}}{g_{\beta_{12}}} & 2 g_{\alpha_{24}} \\
\hline 8 \frac{g_{\alpha_{23}} g_{\beta_{23}}}{g_{\beta_{12}}} & 4 g_{\alpha_{24}} & 4 g_{\beta_{23}} & 4 g_{\beta_{24}} & 2 g_{\varepsilon_{2}} \\
4 g_{\alpha_{23}} & 8 \frac{g_{\alpha_{24}} g_{\beta_{24}}}{g_{\beta_{12}}} & 4 g_{\beta_{24}} & 4 g_{\beta_{24}} & 2 g_{\varepsilon_{2}} \\
\hline 2 g_{\alpha_{23}} & 2 g_{\alpha_{24}} & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{2}} & \frac{\left(g_{\varepsilon_{2}}\right)^{2}}{g_{\beta_{12}}}
\end{array}\right) \\
& M_{-\alpha_{13}}=\left(\begin{array}{c|c|c|c}
4 g_{\alpha_{34}} & -4 g_{\alpha_{34}} & 8 \frac{g_{\alpha_{34}} g_{\beta_{34}}}{g_{\beta_{13}}} & 2 g_{\alpha_{34}} \\
\hline-4 g_{\alpha_{34}} & 4 g_{\beta_{23}} & -4 g_{\beta_{34}} & -2 g_{\varepsilon_{3}} \\
\hline 8 \frac{g_{\alpha_{34}} g_{\beta_{34}}}{g_{\beta_{13}}} & -4 g_{\beta_{34}} & 4 g_{\beta_{34}} & 2 g_{\varepsilon_{3}} \\
\hline 2 g_{\alpha_{34}} & -2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}} & \frac{\left(g_{\varepsilon_{3}}\right)^{2}}{g_{\beta_{13}}}
\end{array}\right) M_{-\alpha_{14}}=\left(\begin{array}{cc|c}
4 g_{\beta_{24}} & 4 g_{\beta_{34}} & -2 g_{\varepsilon_{4}} \\
4 g_{\beta_{34}} & 4 g_{\beta_{34}} & -2 g_{\varepsilon_{4}} \\
\hline-2 g_{\varepsilon_{4}}-2 g_{\varepsilon_{4}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{14}}}
\end{array}\right) \\
& M_{-\alpha_{23}}=\left(\begin{array}{c|c|c|c|c}
4 g_{\alpha_{12}} & -8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & -4 g_{\alpha_{12}} & -8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} & -4 \frac{g_{\alpha_{12}} g_{\varepsilon_{3}}}{g_{\varepsilon_{1}}} \\
\hline-8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & 4 g_{\alpha_{34}} & 4 g_{\alpha_{34}} & 8 \frac{g_{\alpha_{34}} g_{\beta_{34}}}{g_{\beta_{23}}} & 2 g_{\alpha_{34}} \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{34}} & 4 g_{\beta_{13}} & 4 g_{\beta_{34}} & 2 g_{\varepsilon_{3}} \\
\hline-8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} & 8 \frac{g_{\alpha_{34}} g_{\beta_{34}}}{g_{\beta_{23}}} & 4 g_{\beta_{34}} & 4 g_{\beta_{34}} & 2 g_{\varepsilon_{3}} \\
\hline-4 \frac{g_{\alpha_{12}} g_{\varepsilon_{3}}}{g_{\varepsilon_{1}}} & 2 g_{\alpha_{34}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}} & \frac{\left(g_{\varepsilon_{3}}\right)^{2}}{g_{\beta_{23}}}
\end{array}\right) \\
& M_{-\alpha_{24}}=\left(\begin{array}{c|c|c|c}
4 g_{\alpha_{12}} & 8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & -4 g_{\alpha_{12}} & -4 \frac{g_{\alpha_{12}} g_{\varepsilon_{4}}}{g_{\varepsilon_{1}}} \\
\hline 8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & 4 g_{\beta_{34}} & -4 g_{\beta_{34}} & -2 g_{\varepsilon_{4}} \\
\hline-4 g_{\alpha_{12}} & -4 g_{\beta_{34}} & 4 g_{\beta_{14}} & 2 g_{\varepsilon_{4}} \\
\hline-4 \frac{g_{\alpha_{12}} g_{\varepsilon_{4}}}{g_{\varepsilon_{1}}} & -2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{24}}}
\end{array}\right)
\end{aligned}
$$

$$
M_{-\alpha_{34}}=\left(\begin{array}{cc|cc|c}
4 g_{\alpha_{13}} & 4 g_{\alpha_{23}} & -4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} & -4 \frac{g_{\alpha_{13}} g_{\varepsilon_{4}}}{g_{\varepsilon_{1}}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & -8 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} & -4 \frac{g_{\alpha_{23}} g_{\varepsilon_{4}}}{g_{\varepsilon_{2}}} \\
\hline-4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & 4 g_{\beta_{14}} & 4 g_{\beta_{24}} & 2 g_{\varepsilon_{4}} \\
-8 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} & 4 g_{\beta_{24}} & 4 g_{\beta_{24}} & 2 g_{\varepsilon_{4}} \\
\hline-4 \frac{g_{\alpha_{13}} g_{\varepsilon_{4}}}{g_{\varepsilon_{1}}} & -4 \frac{g_{\alpha_{23}} g_{\varepsilon_{4}}}{g_{\varepsilon_{2}}} & 2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{34}}}
\end{array}\right)
$$

Those corresponding to $\beta_{i j}$ are

$$
\begin{aligned}
& M_{-\beta_{12}}=\emptyset \quad M_{-\beta_{13}}=\left(4 g_{\alpha_{23}}\right) \quad M_{-\beta_{14}}=\binom{4 g_{\alpha_{24}} 4 g_{\alpha_{34}}}{4 g_{\alpha_{34}} 4 g_{\alpha_{34}}} \\
& M_{-\beta_{23}}=\left(\begin{array}{c|c}
4 g_{\alpha_{12}} & -4 g_{\alpha_{12}} \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{13}}
\end{array}\right) \quad M_{-\beta_{24}}=\left(\begin{array}{c|c|c}
4 g_{\alpha_{12}} & -4 g_{\alpha_{12}} & 8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\beta_{13}}} \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{14}} & -4 g_{\alpha_{34}} \\
\hline 8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\beta_{13}}} & -4 g_{\alpha_{34}} & 4 g_{\alpha_{34}}
\end{array}\right) \\
& M_{-\beta_{34}}=\left(\begin{array}{cc|cc}
4 g_{\alpha_{13}} & 4 g_{\alpha_{23}} & -4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\beta_{12}}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & -8 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} \\
\hline-4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & 4 g_{\alpha_{14}} & 4 g_{\alpha_{24}} \\
-8 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} & 4 g_{\alpha_{24}} & 4 g_{\alpha_{24}}
\end{array}\right)
\end{aligned}
$$

and then we have for the ε_{i} :

$$
\begin{aligned}
& M_{-\varepsilon_{1}}=\left(\begin{array}{ccc}
2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{4}} \\
2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{4}} \\
2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}}
\end{array}\right) \quad M_{-\varepsilon_{2}}=\left(\begin{array}{c|c|cc}
2 g_{\alpha_{12}} & -2 g_{\alpha_{12}} & 4 \frac{g_{\alpha_{12}} g_{\varepsilon_{3}}}{g_{\beta_{13}}} & 4 \frac{g_{\alpha_{12}} g_{\varepsilon_{4}}}{g_{\beta_{14}}} \\
\hline-2 g_{\alpha_{12}} & 2 g_{\varepsilon_{1}} & -2 g_{\varepsilon_{3}} & -2 g_{\varepsilon_{4}} \\
\hline 4 \frac{g_{\alpha_{12}} g_{\varepsilon_{3}}}{g_{\beta_{13}}} & -2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{4}} \\
4 \frac{g_{\alpha_{12}} g_{\varepsilon_{4}}}{g_{\beta_{14}}} & -2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}}
\end{array}\right) \\
& M_{-\varepsilon_{3}}=\left(\begin{array}{cc|cc|c}
2 g_{\alpha_{13}} & 2 g_{\alpha_{23}} & -2 g_{\alpha_{13}} & -4 \frac{g_{\alpha_{13}} g_{\varepsilon_{2}}}{g_{\beta_{12}}} & 4 \frac{g_{\alpha_{13}} g_{\varepsilon_{4}}}{g_{\beta_{14}}} \\
2 g_{\alpha_{23}} & 2 g_{\alpha_{23}} & -4 \frac{g_{\alpha_{23}} g_{\varepsilon_{1}}}{g_{\beta_{12}}} & -2 g_{\alpha_{23}} & 4 \frac{g_{\alpha_{23}} g_{\varepsilon_{4}}}{g_{\beta_{24}}} \\
\hline-2 g_{\alpha_{13}} & -4 \frac{g_{\alpha_{23}} g_{\varepsilon_{1}}}{g_{\beta_{12}}} & 2 g_{\varepsilon_{1}} & 2 g_{\varepsilon_{2}} & -2 g_{\varepsilon_{4}} \\
-4 \frac{g_{\alpha_{13}} g_{\varepsilon_{2}}}{g_{1_{12}}} & -2 g_{\alpha_{23}} & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{2}} & -2 g_{\varepsilon_{4}} \\
\hline 4 \frac{g_{\alpha_{13}} g_{\varepsilon_{4}}}{g_{\beta_{14}}} & 4 \frac{g_{\alpha_{23}} g_{\varepsilon_{4}}}{g_{\beta_{24}}} & -2 g_{\varepsilon_{4}} & -2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{4}}
\end{array}\right) \\
& M_{-\varepsilon_{4}}=\left(\begin{array}{cccccc}
2 g_{\alpha_{14}} & 2 g_{\alpha_{24}} & 2 g_{\alpha_{34}} & -2 g_{\alpha_{14}} & -4 \frac{g_{\alpha_{14}} g_{\varepsilon_{2}}}{g_{\beta_{12}}} & -4 \frac{g_{\alpha_{14}} g_{\varepsilon_{3}}}{g_{\beta_{13}}} \\
2 g_{\alpha_{24}} & 2 g_{\alpha_{24}} & 2 g_{\alpha_{34}} & -4 \frac{g_{\alpha_{24}} g_{\varepsilon_{1}}}{g_{\beta_{12}}} & -2 g_{\alpha_{24}} & -4 \frac{g_{\alpha_{24}} g_{\varepsilon_{3}}}{g_{\beta_{23}}} \\
2 g_{\alpha_{34}} & 2 g_{\alpha_{34}} & 2 g_{\alpha_{34}} & -4 \frac{g_{\alpha_{34}}}{g_{\varepsilon_{1}}} & -4 \frac{g_{\alpha_{34}} g_{\varepsilon_{2}}}{g_{\beta_{23}}} & -2 g_{\alpha_{34}} \\
\hline-2 g_{\alpha_{14}} & -4 \frac{g_{\alpha_{24}} g_{\varepsilon_{1}}}{g_{\beta_{12}}} & -4 \frac{g_{\alpha_{34}} g_{\varepsilon_{1}}}{g_{\beta_{13}}} & 2 g_{\varepsilon_{1}} & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{3}} \\
-4 \frac{g_{\alpha_{14}} g_{\varepsilon_{2}}}{g_{12}} & -2 g_{\alpha_{24}} & -4 \frac{g_{\alpha_{34}} g_{\varepsilon_{2}}}{g_{\beta_{23}}} & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{3}} \\
-4 \frac{g_{\alpha_{14}} g_{\varepsilon_{3}}}{g_{\beta_{13}}} & -4 \frac{g_{\alpha_{24}} g_{\varepsilon_{3}}}{g_{\beta_{23}}} & -2 g_{\alpha_{34}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{3}}
\end{array}\right)
\end{aligned}
$$

Ordering the basis as given in (8.2) the matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{ccc}
A & \langle A B\rangle & \langle A C\rangle \\
\langle A B\rangle^{T} & B & \langle B C\rangle \\
\langle A C\rangle^{T} & \langle B C\rangle^{T} & C
\end{array}\right)
$$

with

$$
\begin{aligned}
& A=\left(\begin{array}{c|cc|ccc}
8 g_{\alpha_{34}} & * & 4 g_{\alpha_{34}} & 0 & * & 4 g_{\alpha_{34}} \\
\hline * & 8 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & * & 4 g_{\alpha_{23}} & 0 \\
4 g_{\alpha_{34}} & 4 g_{\alpha_{23}} & 8 g_{\alpha_{24}} & * & 0 & 4 g_{\alpha_{24}} \\
\hline 0 & * & * & 8 g_{\alpha_{12}} & 4 g_{\alpha_{12}} & 4 g_{\alpha_{12}} \\
* & 4 g_{\alpha_{23}} & 0 & 4 g_{\alpha_{12}} & 8 g_{\alpha_{13}} & 4 g_{\alpha_{13}} \\
4 g_{\alpha_{34}} & 0 & 4 g_{\alpha_{24}} & 4 g_{\alpha_{12}} & 4 g_{\alpha_{13}} & 8 g_{\alpha_{14}}
\end{array}\right) \quad B=\left(\begin{array}{c|cc|ccc}
8 g_{\beta_{34}} & 4 g_{\beta_{34}} & 4 g_{\beta_{34}} & 0 & 4 g_{\beta_{34}} & 4 g_{\beta_{34}} \\
\hline 4 g_{\beta_{34}} & 8 g_{\beta_{23}} & 4 g_{\beta_{24}} & 4 g_{\beta_{23}} & 4 g_{\beta_{23}} & 0 \\
4 g_{\beta_{34}} & 4 g_{\beta_{24}} & 8 g_{\beta_{24}} & 4 g_{\beta_{24}} & 0 & 4 g_{\beta_{24}} \\
\hline 0 & 4 g_{\beta_{23}} & 4 g_{\beta_{24}} & 8 g_{\beta_{12}} & 4 g_{\beta_{13}} & 4 g_{\beta_{14}} \\
4 g_{\beta_{34}} & 4 g_{\beta_{23}} & 0 & 4 g_{\beta_{13}} & 8 g_{\beta_{13}} & 4 g_{\beta_{14}} \\
4 g_{\beta_{34}} & 0 & 4 g_{\beta_{24}} & 4 g_{\beta_{14}} & 4 g_{\beta_{14}} & 8 g_{\beta_{14}}
\end{array}\right) \\
& C=\left(\begin{array}{cccc}
g_{\varepsilon_{4}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{34}}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{24}}} & \frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{14}}} \\
\frac{\left(g_{\varepsilon_{4}}\right)^{2}}{g_{\beta_{34}}} & g_{\varepsilon_{3}} & \frac{\left(g_{e_{3}}\right)^{2}}{g_{\beta_{23}}} & \frac{\left(g_{\varepsilon_{3}}\right)^{2}}{g_{\beta_{13}}} \\
\frac{\left(g_{\varepsilon_{4}}\right)^{2}}{} & \frac{\left(g_{\varepsilon_{3}}\right)^{2}}{g_{\beta_{24}}} & g_{\varepsilon_{2}} & \frac{\left(g_{\varepsilon_{2}}\right)^{2}}{g_{\beta_{12}}} \\
\frac{\left(\varepsilon_{4}\right)^{2}}{g_{\beta_{14}}} & \frac{\left(g_{3}\right)^{2}}{g_{\beta_{13}}} & \frac{\left(g_{\varepsilon_{2}}\right)^{2}}{g_{\beta_{12}}} & g_{\varepsilon_{1}}
\end{array}\right) \quad\langle A B\rangle=\left(\begin{array}{c|cc|cccc}
0 & 4 g_{\alpha_{34}} & * & 0 & 4 g_{\alpha_{34}} & * \\
\hline * & 0 & 4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & * & 0 \\
* & 4 g_{\alpha_{24}} & 0 & 4 g_{\alpha_{24}} & 0 & * \\
\hline 0 & * & * & 0 & 4 g_{\alpha_{12}} & 4 g_{\alpha_{12}} \\
* & * & 0 & 4 g_{\alpha_{13}} & 0 & 4 g_{\alpha_{13}} \\
* & 0 & * & 4 g_{\alpha_{14}} & 4 g_{\alpha_{14}} & 0
\end{array}\right) \\
& \langle A C\rangle=\left(\begin{array}{cccc}
* * & 2 g_{\alpha_{34}} & 0 & 0 \\
\hline 0 & * * & 2 g_{\alpha_{23}} & 0 \\
* * & 0 & 2 g_{\alpha_{24}} & 0 \\
\hline 0 & 0 & * * & 2 g_{\alpha_{12}} \\
0 & * * & 0 & 2 g_{\alpha_{13}} \\
* * & 0 & 0 & 2 g_{\alpha_{14}}
\end{array}\right) \quad\langle B C\rangle=\left(\begin{array}{cccc}
2 g_{\varepsilon_{4}} & 2 g_{\varepsilon_{3}} & 0 & 0 \\
0 & 2 g_{\varepsilon_{3}} & 2 g_{\varepsilon_{2}} & 0 \\
2 g_{\varepsilon_{4}} & 0 & 2 g_{\varepsilon_{2}} & 0 \\
\hline 0 & 0 & 2 g_{\varepsilon_{2}} & 2 g_{\varepsilon_{1}} \\
0 & 2 g_{\varepsilon_{3}} & 0 & 2 g_{\varepsilon_{1}} \\
2 g_{\varepsilon_{4}} & 0 & 0 & 2 g_{\varepsilon_{1}}
\end{array}\right)
\end{aligned}
$$

where we used $*($ respectively $* *)$ at the entry (α, β) as place holder for $-8 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}$ (respectively $-4 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}$). In the following, we present the full modification for the toric isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of $\left(S O(9), \mathbb{T}, J_{s t d}\right)$, which is given on the simple roots by

α	α_{12}	α_{23}	α_{34}	ε_{4}
g_{α}	2	2	2	1

First of all, we notice that we do not have to consider the matrices $M_{-\eta}$ for η being one of $\left\{\beta_{12}, \beta_{13}, \beta_{14}, \beta_{23}\right\}$, since they are positive semi definite by the auxiliary lemma. We remark
here that also $M_{-\varepsilon_{1}}$ is positive definite but we will need it to compensate for the other matrices. The matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{cccccc|cccccc|cccc}
16 & -8 & 8 & 0 & -\frac{32}{3} & 8 & 0 & 8 & -12 & 0 & 8 & -\frac{64}{5} & -\frac{8}{3} & 4 & 0 & 0 \\
-8 & 16 & 8 & -8 & 8 & 0 & -\frac{32}{3} & 0 & 8 & 8 & -\frac{40}{3} & 0 & 0 & -\frac{24}{5} & 4 & 0 \\
8 & 8 & 32 & -\frac{32}{3} & 0 & 16 & -16 & 16 & 0 & 16 & 0 & -\frac{64}{3} & -\frac{16}{5} & 0 & 8 & 0 \\
0 & -8 & -\frac{32}{3} & 16 & 8 & 8 & 0 & -\frac{64}{5} & -12 & 0 & 8 & 8 & 0 & 0 & -\frac{40}{7} & 4 \\
-\frac{32}{3} & 8 & 0 & 8 & 32 & 16 & -16 & -\frac{64}{3} & 0 & 16 & 0 & 16 & 0 & -\frac{48}{7} & 0 & 8 \\
8 & 0 & 16 & 8 & 16 & 48 & -\frac{96}{5} & 0 & -24 & 24 & 24 & 0 & -\frac{24}{7} & 0 & 0 & 12 \\
\hline 0 & -\frac{32}{3} & -16 & 0 & -16 & -\frac{96}{5} & 32 & 16 & 16 & 0 & 16 & 16 & 2 & 6 & 0 & 0 \\
8 & 0 & 16 & -\frac{64}{5} & -\frac{64}{3} & 0 & 16 & 64 & 24 & 32 & 32 & 0 & 0 & 6 & 10 & 0 \\
-12 & 8 & 0 & -12 & 0 & -24 & 16 & 24 & 48 & 24 & 0 & 24 & 2 & 0 & 10 & 0 \\
0 & 8 & 16 & 0 & 16 & 24 & 0 & 32 & 24 & 96 & 40 & 32 & 0 & 0 & 10 & 14 \\
8 & -\frac{40}{3} & 0 & 8 & 0 & 24 & 16 & 32 & 0 & 40 & 80 & 32 & 0 & 6 & 0 & 14 \\
-\frac{64}{5} & 0 & -\frac{64}{3} & 8 & 16 & 0 & 16 & 0 & 24 & 32 & 32 & 64 & 2 & 0 & 0 & 14 \\
\hline-\frac{8}{3} & 0 & -\frac{16}{5} & 0 & 0 & -\frac{24}{7} & 2 & 0 & 2 & 0 & 0 & 2 & 1 & \frac{1}{4} & \frac{1}{6} & \frac{1}{8} \\
4 & -\frac{24}{5} & 0 & 0 & -\frac{48}{7} & 0 & 6 & 6 & 0 & 0 & 6 & 0 & \frac{1}{4} & 3 & \frac{9}{8} & \frac{9}{10} \\
0 & 4 & 8 & -\frac{40}{7} & 0 & 0 & 0 & 10 & 10 & 10 & 0 & 0 & \frac{1}{6} & \frac{9}{8} & 5 & \frac{25}{12} \\
0 & 0 & 0 & 4 & 8 & 12 & 0 & 0 & 0 & 14 & 14 & 14 & \frac{1}{8} & \frac{9}{10} & \frac{25}{12} & 7
\end{array}\right)
$$

It is not positive definite and hence further four forms are necessary. The other matrices are

$$
\left.\left.\begin{array}{ll}
M_{-\alpha_{12}}=\left(\begin{array}{ccccc}
8 & 8 & \frac{32}{3} & 8 & 4 \\
8 & 16 & 16 & 16 & 8 \\
\frac{32}{3} & 16 & 32 & 24 & 10 \\
8 & 16 & 24 & 24 & 10 \\
4 & 8 & 10 & 10 & \frac{25}{12}
\end{array}\right) \\
M_{-\alpha_{14}}=\left(\begin{array}{ccccc}
24 & 16 & -2 \\
16 & 16 & -2 \\
-2 & -2 & \frac{1}{8}
\end{array}\right) \\
M_{-\alpha_{24}}=\left(\begin{array}{ccccc}
8 & -8 & \frac{32}{5} & 4 \\
-8 & 32 & -16 & -6 \\
\frac{32}{5} & -16 & 16 & 6 \\
4 & -6 & 6 & \frac{9}{10}
\end{array}\right) \\
\frac{M_{-\alpha_{13}}}{5} & M_{-\alpha_{23}}=\left(\begin{array}{ccccc}
8 & -\frac{16}{3} & -8 & -8 & -\frac{24}{7} \\
-\frac{16}{3} & 8 & 8 & 8 & 4 \\
-8 & 8 & 40 & 16 & 6 \\
-8 & 8 & 16 & 16 & 6 \\
-\frac{24}{7} & 4 & 6 & 6 & \frac{9}{8}
\end{array}\right) \\
-\frac{8}{7} & -16
\end{array}\right) 32 \begin{array}{lll}
2 \\
-2 & 2 & \frac{1}{6}
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{ccccc}
16 & 8 & -16 & -16 & -\frac{16}{7} \\
8 & 8 & -\frac{32}{3} & -8 & -\frac{8}{5} \\
-16 & -\frac{32}{3} & 32 & 24 & 2 \\
-16 & -8 & 24 & 24 & 2 \\
-\frac{16}{7} & -\frac{8}{5} & 2 & 2 & \frac{1}{4}
\end{array}\right) .
$$

The remaining matrices are

$$
M_{-\beta_{24}}=\left(\begin{array}{ccc}
8 & -8 & \frac{16}{5} \\
-8 & 24 & -8 \\
\frac{16}{5} & -8 & 8
\end{array}\right) \quad M_{-\beta_{34}}=\left(\begin{array}{cccc}
16 & 8 & -16 & -\frac{32}{3} \\
8 & 8 & -8 & -8 \\
-16 & -8 & 24 & 16 \\
-\frac{32}{3} & -8 & 16 & 16
\end{array}\right)
$$

and

$$
\begin{array}{cc}
M_{-\varepsilon_{1}}=\left(\begin{array}{ccc}
10 & 6 & 2 \\
6 & 6 & 2 \\
2 & 2 & 2
\end{array}\right) & M_{-\varepsilon_{2}}=\left(\begin{array}{cccc}
4 & -4 & \frac{12}{5} & 1 \\
-4 & 14 & -6 & -2 \\
\frac{12}{5} & -6 & 6 & 2 \\
1 & -2 & 2 & 2
\end{array}\right) \\
M_{-\varepsilon_{3}}=\left(\begin{array}{ccccc}
8 & 4 & -8 & -\frac{20}{3} & 2 \\
4 & 4 & -\frac{14}{3} & -4 & \frac{4}{3} \\
-8 & -\frac{14}{3} & 14 & 10 & -2 \\
-\frac{20}{3} & -4 & 10 & 10 & -2 \\
2 & \frac{4}{3} & -2 & -2 & 2
\end{array}\right) \quad M_{-\varepsilon_{4}}=\left(\begin{array}{cccccc}
12 & 8 & 4 & -12 & -10 & -\frac{36}{5} \\
8 & 8 & 4 & -\frac{28}{3} & -8 & -6 \\
4 & 4 & 4 & -\frac{28}{5} & -5 & -4 \\
-12 & -\frac{28}{3} & -\frac{28}{5} & 14 & 10 & 6 \\
-10 & -8 & -5 & 10 & 10 & 6 \\
-\frac{36}{5} & -6 & -4 & 6 & 6 & 6
\end{array}\right)
\end{array}
$$

One observes that in the $\alpha_{i j}$ matrices positive definiteness is prevented by the relatively small last entry on the diagonal. Not using the actual criteria of diagonal dominance for positive definiteness but inspired by its idea, we will use four forms to increase that diagonal entry and decrease the absolute values of the entries in the last column and row of these matrices. Increasing the diagonal will modify M_{0} and changing off diagonal entries modifies the other M_{η}. We represent all elementary operations in the following table, where we use the same notation as in the modifications of $\left(G_{2}, \mathbb{T}, J_{s t d}\right)$ in section 4 .

Exemplary, we explain how we obtain the first forced modification from the first intended modification:

Example 107. The entry $(1,5)$ of $M_{-\alpha_{12}}$ corresponds by proposition 79 to the pair of pairs of roots $\left(\alpha_{23}, \alpha_{13}\right),\left(\varepsilon_{2}, \varepsilon_{1}\right)$. By equation (3.2) the other entry we are forced to change corresponds to the pair $\left(\alpha_{23}, \varepsilon_{2}\right),\left(\alpha_{13}, \varepsilon_{1}\right)$ which is an entry of the matrix M_{η} with $\eta=$ $-\alpha_{12}+\left(\alpha_{13}-\varepsilon_{2}\right)=-\varepsilon_{3}$. By proposition 81 the pair corresponds to the entry $(2,1)$ of said matrix. By symmetry that is the same as (1,2).

Value	Intended	Forced	Value	Intended	Forced
$-\frac{3}{5}$	$\left(M_{-\alpha_{12}}\right)_{(1,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(1,2)}$	$-\frac{3}{10}$	$\left(M_{-\alpha_{24}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,3)}$
$-\frac{6}{5}$	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$	$\frac{1}{10}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
$-\frac{3}{2}$	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$	$-\frac{37}{80}$	$\left(M_{-\alpha_{34}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(2,3)}$
-	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$	$-\frac{1}{2}$	$\left(M_{-\alpha_{34}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{2}}\right)_{(3,4}$
$\frac{5}{4}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$	$\frac{1}{4}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$
-1	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,3)}$	$-\frac{5}{4}$	$\left(M_{0}\right)_{(3,15)}$	$\left(M_{\left.-\varepsilon_{4}\right)_{(2,2)}}\right.$
$\frac{3}{2}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$	- 4	$\left(M_{0}\right)_{(4,16)}$	$\left(M_{-\varepsilon_{2}}\right)_{(1,1)}$
- $\frac{17}{8}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$	$\frac{107}{80}$	$\left(M_{0}\right)_{(7,13)}$	$\left(M_{\left.-\varepsilon_{3}\right)_{(5,5)}}\right.$
$\frac{9}{10}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$	$-\frac{3}{10}$	$\left(M_{0}\right)_{(8,14)}$	$\left(M_{-\varepsilon_{2}}\right)_{(3,3)}$
$\frac{3}{10}$	$\left(M_{-\alpha_{14}}\right)_{(1,3)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,4)}$	$\frac{77}{80}$	$\left(M_{0}\right)_{(9,13)}$	$\left(M_{-\varepsilon_{2}}\right)_{(4,4)}$
$\frac{3}{10}$	$\left(M_{-\alpha_{14}}\right)_{(2,3)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,5)}$	$-\frac{5}{4}$	$\left(M_{0}\right)_{(9,15)}$	$\left(M_{\left.-\varepsilon_{4}\right)_{(5,5)}}\right.$
$\frac{3}{40}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$	$-\frac{51}{200}$	$\left(M_{0}\right)_{(10,15)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,1)}$
-1	$\left(M_{-\alpha_{23}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,3)}$	- $\frac{15}{2}$	$\left(M_{0}\right)_{(10,16)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,2)}$
$-\frac{3}{2}$	$\left(M_{-\alpha_{23}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,2)}$	- $\frac{25}{2}$	$\left(M_{0}\right)_{(11,12)}$	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$
$-\frac{3}{2}$	$\left(M_{-\alpha_{23}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,6)}$	$-\frac{17}{8}$	$\left(M_{0}\right)_{(11,14)}$	$\left(M_{-\varepsilon_{1}}\right)_{(2,2)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$	$-\frac{81}{40}$	$\left(M_{0}\right)_{(11,16)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,3)}$
$\frac{3}{10}$	$\left(M_{-\alpha_{24}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{3}}\right)_{(4,5)}$	$\frac{5}{4}$	$\left(M_{0}\right)_{(12,13)}$	$\left(M_{-\varepsilon_{1}}\right)_{(3,3)}$

By calculating the determinants of the minors of the resulting matrices, we see that all of them are positive except for M_{0}. In fact, the modified matrices are:

$$
\left.\begin{array}{ll}
M_{-\alpha_{12}}=\left(\begin{array}{ccccc}
8 & 8 & \frac{32}{3} & 8 & \frac{17}{5} \\
8 & 16 & 16 & 16 & \frac{34}{5} \\
\frac{32}{3} & 16 & 32 & 24 & \frac{17}{2} \\
8 & 16 & 24 & 24 & \frac{17}{2} \\
\frac{17}{5} & \frac{34}{5} & \frac{17}{2} & \frac{17}{2} & \frac{10}{3}
\end{array}\right) \\
M_{-\alpha_{14}}=\left(\begin{array}{ccccc}
24 & 16 & -\frac{17}{10} \\
16 & 16 & -\frac{17}{10} \\
-\frac{17}{10} & -\frac{17}{10} & \frac{1}{5}
\end{array}\right) \\
M_{-\alpha_{24}}=\left(\begin{array}{ccccc}
8 & -8 & \frac{32}{5} & 3 \\
-8 & 32 & -16 & -\frac{9}{2} \\
\frac{32}{5} & -16 & 16 & \frac{31}{8} \\
3 & -\frac{9}{2} & \frac{31}{8} & \frac{9}{5}
\end{array}\right) \\
\frac{32}{5} & 16
\end{array}-16 \quad-\frac{17}{10}\right)\left(\begin{array}{ccccc}
8 & -\frac{16}{3} & -8 & -8 & -\frac{24}{7} \\
-8 & -16 & 32 & \frac{17}{10} \\
-\frac{8}{7} & -\frac{17}{10} & \frac{17}{10} & \frac{4}{15}
\end{array}\right) \quad M_{-\alpha_{23}}=\left(\begin{array}{ccccc}
-\frac{16}{3} & 8 & 8 & 8 & 3 \\
-8 & 8 & 40 & 16 & \frac{9}{2} \\
-8 & 8 & 16 & 16 & \frac{9}{2} \\
-\frac{24}{7} & 3 & \frac{9}{2} & \frac{9}{2} & \frac{9}{4}
\end{array}\right)
$$

The remaining matrices are

$$
\begin{aligned}
& M_{-\varepsilon_{1}}=\left(\begin{array}{ccc}
\frac{2051}{200} & \frac{15}{2} & \frac{23}{10} \\
\frac{15}{2} & \frac{65}{8} & \frac{197}{80} \\
\frac{23}{10} & \frac{197}{80} & \frac{3}{4}
\end{array}\right) \quad M_{-\varepsilon_{2}}=\left(\begin{array}{cccc}
\frac{25}{4} & -4 & \frac{12}{5} & 1 \\
-4 & \frac{43}{2} & -\frac{15}{2} & -\frac{23}{10} \\
\frac{12}{5} & -\frac{15}{2} & \frac{63}{10} & \frac{5}{2} \\
1 & -\frac{23}{10} & \frac{5}{2} & \frac{83}{80}
\end{array}\right) \\
& M_{-\varepsilon_{3}}=\left(\begin{array}{ccccc}
8 & \frac{23}{5} & -8 & -\frac{20}{3} & 2 \\
\frac{23}{5} & 4 & -\frac{14}{3} & -4 & \frac{4}{3} \\
-8 & -\frac{14}{3} & \frac{641}{40} & \frac{23}{2} & -\frac{23}{10} \\
-\frac{20}{3} & -4 & \frac{23}{2} & 10 & -\frac{23}{10} \\
2 & \frac{4}{3} & -\frac{23}{10} & -\frac{23}{10} & \frac{53}{80}
\end{array}\right) \quad M_{-\varepsilon_{4}}=\left(\begin{array}{cccccc}
12 & \frac{46}{5} & 5 & -12 & -10 & -\frac{36}{5} \\
\frac{46}{5} & 8 & 5 & -\frac{28}{3} & -8 & -6 \\
5 & 5 & 4 & -\frac{28}{5} & -5 & -4 \\
-12 & -\frac{28}{3} & -\frac{28}{5} & 14 & \frac{23}{2} & \frac{65}{8} \\
-10 & -8 & -5 & \frac{23}{2} & 10 & \frac{15}{2} \\
-\frac{36}{5} & -6 & -4 & \frac{65}{8} & \frac{15}{2} & 6
\end{array}\right) \\
& M_{0}=\left(\begin{array}{cccccc|cccccc|cccc}
16 & -8 & 8 & 0 & -\frac{32}{3} & 8 & 0 & 8 & -12 & 0 & 8 & -\frac{64}{5} & -\frac{8}{3} & 4 & 0 & 0 \\
-8 & 16 & 8 & -8 & 8 & 0 & -\frac{32}{3} & 0 & 8 & 8 & -\frac{40}{3} & 0 & 0 & -\frac{24}{5} & 4 & 0 \\
8 & 8 & 32 & -\frac{32}{3} & 0 & 16 & -16 & 16 & 0 & 16 & 0 & -\frac{64}{3} & -\frac{16}{5} & 0 & \frac{27}{4} & 0 \\
0 & -8 & -\frac{32}{3} & 16 & 8 & 8 & 0 & -\frac{64}{5} & -12 & 0 & 8 & 8 & 0 & 0 & -\frac{40}{7} & \frac{7}{4} \\
-\frac{32}{3} & 8 & 0 & 8 & 32 & 16 & -16 & -\frac{64}{3} & 0 & 16 & 0 & 16 & 0 & -\frac{48}{7} & 0 & 8 \\
8 & 0 & 16 & 8 & 16 & 48 & -\frac{96}{5} & 0 & -24 & 24 & 24 & 0 & -\frac{24}{7} & 0 & 0 & 12 \\
\hline 0 & -\frac{32}{3} & -16 & 0 & -16 & -\frac{96}{5} & 32 & 16 & 16 & 0 & 16 & 16 & \frac{267}{80} & 6 & 0 & 0 \\
8 & 0 & 16 & -\frac{64}{5} & -\frac{64}{3} & 0 & 16 & 64 & 24 & 32 & 32 & 0 & 0 & \frac{57}{10} & 10 & 0 \\
-12 & 8 & 0 & -12 & 0 & -24 & 16 & 24 & 48 & 24 & 0 & 24 & \frac{237}{80} & 0 & \frac{35}{4} & 0 \\
0 & 8 & 16 & 0 & 16 & 24 & 0 & 32 & 24 & 96 & 40 & 32 & 0 & 0 & \frac{1949}{200} & \frac{13}{2} \\
8 & -\frac{40}{3} & 0 & 8 & 0 & 24 & 16 & 32 & 0 & 40 & 80 & \frac{39}{2} & 0 & \frac{31}{8} & 0 & \frac{479}{40} \\
-\frac{64}{5} & 0 & -\frac{64}{3} & 8 & 16 & 0 & 16 & 0 & 24 & 32 & \frac{39}{2} & 64 & \frac{13}{4} & 0 & 0 & 14 \\
\hline-\frac{8}{3} & 0 & -\frac{16}{5} & 0 & 0 & -\frac{24}{7} & \frac{267}{80} & 0 & \frac{237}{80} & 0 & 0 & \frac{13}{4} & 1 & 0 & \frac{1}{15} & \frac{1}{20} \\
4 & -\frac{24}{5} & 0 & 0 & -\frac{48}{7} & 0 & 6 & \frac{57}{10} & 0 & 0 & \frac{31}{8} & 0 & 0 & 3 & 0 & 0 \\
0 & 4 & \frac{27}{4} & -\frac{40}{7} & 0 & 0 & 0 & 10 & \frac{35}{4} & \frac{1949}{200} & 0 & 0 & \frac{1}{15} & 0 & 5 & \frac{5}{6} \\
0 & 0 & 0 & \frac{7}{4} & 8 & 12 & 0 & 0 & 0 & \frac{13}{2} & \frac{479}{40} & 14 & \frac{1}{20} & 0 & \frac{5}{6} & 7
\end{array}\right)
\end{aligned}
$$

Now all M_{η} are positive definite and the following argument turns also M_{0} positive definite and therefore finishes the proof for $\left(S O(9), \mathbb{T}^{4}, J_{s t d}\right)$. The rows and columns 10 and 16 of M_{0} have nonnegative entries. Hence, by the same argument as in the example of G_{2} we erase all off diagonal entries of rows and columns 10 and 16 . Then the new M_{0} is a block matrix consisting of a positive definite two dimensional diagonal block and a 14×14 block. Calculating the minors of that block proves that it is positive definite and hence we a have positive modified holomorphic curvature tensor.

Larger Isotropy

We will not present the above for all K in the same detail. In fact, we will present here the different possible K and their Kähler Einstein metrics. By corollary 50 the curvature matrices
are then obtained by considering the correct submatrices of the matrices of $\left(S O(9), \mathbb{T}, J_{s t d}\right)$ with the new metric coefficients. The difficulty lies in determining suitable four forms to turn these matrices positive definite. Even though the four forms are essential to prove positive holomorphic curvature, it does not seem to be very relevant to see the actual values at this point. Therefore we present them in the appendix for the interested reader. For each K, we will give the indices of the rows and columns of the curvature matrices that have to be erased to obtain the restriction and give a detailed table of the used four forms. We only consider the case $\operatorname{dim}(\mathfrak{z}(k))>1$, since the other cases are covered by Itoh.

K	$D=(V, E)$	γ_{K}^{*}	$g_{\alpha_{12}}$	$g_{\alpha_{23}}$	$g_{\alpha_{34}}$	$g_{\varepsilon_{4}}$
$S U(2) \mathbb{T}^{3}$		α_{12}	0	3	2	1
$\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$		α_{23}	3	0	3	1
$\mathbb{T}^{2} S U(2) \mathbb{S}^{1}$		α_{34}	2	3	0	2
$\mathbb{T}^{3} S U(2)$		ε_{4}	2	2	3	0
$S U(3) \mathbb{T}^{2}$		$2 \alpha_{13}$	0	0	4	1
$S U(2) \mathbb{S}^{1} S U(2) \mathbb{S}^{1}$		$\alpha_{12}-\alpha_{34}$	0	4	0	2
$S U(2) \mathbb{T}^{2} S U(2)$		$\alpha_{12}+\varepsilon_{4}$	0	3	3	0
$\mathbb{S}^{1} S U(3) \mathbb{S}^{1}$		$2 \alpha_{24}$	4	0	0	3
$\mathbb{S}^{1} S U(2) \mathbb{S}^{1} S U(2)$		$\alpha_{23}+\varepsilon_{4}$	3	0	4	0
$\mathbb{T}^{2} S O(5)$		$3 \varepsilon_{3}+\varepsilon_{4}$	2	5	0	0

8.3 The case of $S p(4)$

The positive roots are

$$
\begin{gather*}
\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{34}, \alpha_{23}, \alpha_{24}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right. \tag{8.3}\\
\beta_{34}, \beta_{23}, \beta_{24}, \beta_{12}, \beta_{13}, \beta_{14} \\
\left.\gamma_{4}, \gamma_{3}, \gamma_{2}, \gamma_{1}\right\}
\end{gather*}
$$

and the simple roots are placed on the Dynkin diagram as follows

After applying the general modifications of section 7.3 the matrices M_{η} representing the modified holomorphic curvature tensor are indexed with $\eta \in \Delta_{\mathfrak{g}}^{-} \cup\{0\}$. In the case of $S p(4)$ this corresponds to the following:

We begin with the ones corresponding to $-\alpha_{i j}$.

$$
M_{-\alpha_{23}}=\left(\begin{array}{c|c|c|c|c|c}
g_{\alpha_{12}} & -2 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & -\frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\gamma_{1}}} & -2 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} & -2 \frac{g_{\alpha_{12}} g_{\beta_{23}}}{g_{\beta_{12}}} & -2 \frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\beta_{13}}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & g_{\alpha_{34}} & g_{\alpha_{34}} & \frac{g_{\alpha_{34}}\left(g_{\alpha_{24}}+g_{\beta_{23}}\right)}{g_{\beta_{23}}} & g_{\alpha_{34}} & g_{\alpha_{34}} \\
\hline-\frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\gamma_{1}}} & g_{\alpha_{34}} & g_{\beta_{13}} & g_{\beta_{34}} & g_{\beta_{23}} & g_{\gamma_{3}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} & \frac{g_{\alpha_{34}}\left(g_{\left.\alpha_{24}+g_{\beta_{23}}\right)}^{g_{\beta_{23}}}\right.}{} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\beta_{23}}}{g_{\beta_{12}}} & g_{\alpha_{34}} & g_{\beta_{23}} & g_{\beta_{34}} & g_{\beta_{23}} & g_{\gamma_{3}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\beta_{13}}} & g_{\alpha_{34}} & g_{\gamma_{3}} & g_{\beta_{34}} & g_{\gamma_{3}} & g_{\gamma_{3}}
\end{array}\right)
$$

$$
M_{-\alpha_{24}}=\left(\begin{array}{c|c|c|c|c}
g_{\alpha_{12}} & -2 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & -\frac{g_{\alpha_{12}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & -2 \frac{g_{\alpha_{12}} g_{\beta_{24}}}{g_{\beta_{12}}} & -2 \frac{g_{\alpha_{12}} g_{\gamma_{4}}}{g_{\beta_{14}}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\gamma_{4}} \\
\hline-\frac{g_{\alpha_{12}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & g_{\beta_{34}} & g_{\beta_{14}} & g_{\beta_{24}} & g_{\gamma_{4}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\beta_{24}}}{g_{\beta_{12}}} & g_{\beta_{34}} & g_{\beta_{24}} & g_{\beta_{24}} & g_{\gamma_{4}} \\
\hline-2 \frac{g_{\alpha_{12}} g_{\gamma_{4}}}{g_{\beta_{14}}} & g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}}
\end{array}\right)
$$

$$
M_{-\alpha_{34}}=\left(\begin{array}{cc|cc|c|c}
g_{\alpha_{13}} & g_{\alpha_{23}} & -\frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & -2 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} & -2 \frac{g_{\alpha_{13}} g_{\beta_{34}}}{g_{\beta_{13}}} & -2 \frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\beta_{14}}} \\
g_{\alpha_{23}} & g_{\alpha_{23}} & -2 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & -\frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\gamma_{2}}} & -2 \frac{g_{\alpha_{\alpha_{3}}} g_{\beta_{34}}}{g_{\beta_{23}}} & -2 \frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\beta_{24}}} \\
\hline-\frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & -2 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & g_{\beta_{14}} & g_{\beta_{24}} & g_{\beta_{34}} & g_{\gamma_{4}} \\
-2 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} & -\frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\gamma_{2}}} & g_{\beta_{24}} & g_{\beta_{24}} & g_{\beta_{34}} & g_{\gamma_{4}} \\
\hline-2 \frac{g_{\alpha_{13}} g_{\beta_{34}}}{g_{\beta_{13}}}-2 \frac{g_{\alpha_{23}} g_{\beta_{34}}}{g_{\beta_{23}}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\gamma_{4}} \\
\hline-2 \frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\beta_{14}}} & -2 \frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\beta_{24}}} & g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}}
\end{array}\right)
$$

$$
\begin{aligned}
& M_{-\alpha_{12}}=\left(\begin{array}{cc|cc|c|l}
g_{\alpha_{23}} & g_{\alpha_{23}} & \frac{g_{\alpha_{23}}\left(g_{\left.\alpha_{13}+g_{\beta_{12}}\right)}^{g_{\beta_{12}}}\right.}{} & g_{\alpha_{23}} & g_{\alpha_{23}} & g_{\alpha_{23}} \\
g_{\alpha_{23}} & g_{\alpha_{24}} & g_{\alpha_{24}} & \frac{g_{\alpha_{24}\left(g_{\alpha_{14}}+g_{\beta_{12}}\right)}^{g_{\beta_{12}}}}{} & g_{\alpha_{24}} & g_{\alpha_{24}} \\
\frac{g_{\alpha_{23}}\left(g_{\alpha_{13}}+g_{\beta_{12}}\right)}{g_{\beta_{12}}} & g_{\alpha_{24}} & g_{\beta_{23}} & g_{\beta_{24}} & g_{\beta_{23}} & g_{\beta_{23}} \\
g_{\alpha_{23}} & \frac{g_{\alpha_{24}}\left(g_{\left.\alpha_{14}+g_{\beta_{12}}\right)}^{g_{\beta_{12}}}\right.}{} & g_{\beta_{24}} & g_{\beta_{24}} & g_{\beta_{24}} & g_{\beta_{24}} \\
\hline g_{\alpha_{23}} & g_{\alpha_{24}} & g_{\beta_{23}} & g_{\beta_{24}} & g_{\beta_{12}} & g_{\gamma_{2}} \\
\hline g_{\alpha_{23}} & g_{\alpha_{24}} & g_{\beta_{23}} & g_{\beta_{24}} & g_{\gamma_{2}} & g_{\gamma_{2}}
\end{array}\right) \\
& M_{-\alpha_{13}}=\left(\begin{array}{c|c|c|c|c}
g_{\alpha_{34}} & g_{\alpha_{34}} & \frac{g_{\alpha_{34}}\left(g_{\alpha_{14}}+g_{\beta_{13}}\right)}{g_{\beta_{13}}} & g_{\alpha_{34}} & g_{\alpha_{34}} \\
\hline g_{\alpha_{34}} & g_{\beta_{23}} & g_{\beta_{34}} & g_{\beta_{23}} & g_{\gamma_{3}} \\
\hline \frac{g_{\alpha_{34}}\left(g_{\alpha_{14}}+g_{\beta_{13}}\right)}{g_{\beta_{13}}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} \\
\hline g_{\alpha_{34}} & g_{\beta_{23}} & g_{\beta_{34}} & g_{\beta_{13}} & g_{\gamma_{3}} \\
\hline g_{\alpha_{34}} & g_{\gamma_{3}} & g_{\beta_{34}} & g_{\gamma_{3}} & g_{\gamma_{3}}
\end{array}\right) \\
& M_{-\alpha_{14}}=\left(\begin{array}{ll|l|l}
g_{\beta_{24}} & g_{\beta_{34}} & g_{\beta_{24}} & g_{\gamma_{4}} \\
g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & g_{\gamma_{4}} \\
\hline g_{\beta_{24}} & g_{\beta_{34}} & g_{\beta_{14}} & g_{\gamma_{4}} \\
\hline g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}} & g_{\gamma_{4}}
\end{array}\right)
\end{aligned}
$$

Those corresponding to $\beta_{i j}$ are

$$
\begin{aligned}
& M_{-\beta_{12}}=\left(g_{\alpha_{12}}\right) \quad M_{-\beta_{13}}=\left(\begin{array}{l|l}
g_{\alpha_{23}} & g_{\alpha_{23}} \\
\hline g_{\alpha_{23}} \mid g_{\alpha_{13}}
\end{array}\right) \\
& M_{-\beta_{14}}=\left(\begin{array}{c|c|c|c|c}
g_{\alpha_{24}} & g_{\alpha_{34}} & g_{\alpha_{24}} \\
g_{\alpha_{34}} & g_{\alpha_{34}} & g_{\alpha_{34}} \\
\hline g_{\alpha_{24}} g_{\alpha_{34}} & g_{\alpha_{14}}
\end{array}\right) \quad M_{-\beta_{23}}=\left(\begin{array}{cc|c}
g_{\alpha_{12}} & -\frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\gamma_{1}}} & 2 \frac{g_{\alpha_{12}} g_{\alpha_{23}}}{g_{\beta_{12}}} \\
\hline-\frac{g_{\alpha_{12}} g_{\gamma_{3}}}{g_{\gamma_{1}}} & g_{\alpha_{13}} & g_{\alpha_{23}} \\
\hline 2 \frac{g_{\alpha_{12}} g_{\alpha_{23}}}{g_{\beta_{12}}} & g_{\alpha_{23}} & g_{\alpha_{23}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{-\beta_{34}}=\left(\begin{array}{cc|cc|c}
g_{\alpha_{13}} & g_{\alpha_{23}} & -\frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & 2 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\beta_{12}}} & 2 \frac{g_{\alpha_{13}} g_{\alpha_{34}}}{g_{\beta_{13}}} \\
g_{\alpha_{23}} & g_{\alpha_{23}} & 2 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & -\frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\gamma_{2}}} & 2 \frac{g_{\alpha_{23}} g_{\alpha_{34}}}{g_{\beta_{23}}} \\
\hline-\frac{g_{\alpha_{13}} g_{\gamma_{4}}}{g_{\gamma_{1}}} & 2 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & g_{\alpha_{14}} & g_{\alpha_{24}} & g_{\alpha_{34}} \\
2 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\alpha_{12}}} & -\frac{g_{\alpha_{23}} g_{\gamma_{4}}}{g_{\gamma_{2}}} & g_{\alpha_{24}} & g_{\alpha_{24}} & g_{\alpha_{34}} \\
2 \frac{g_{\alpha_{13}} g_{\alpha_{34}}}{g_{\beta_{13}}} & 2 \frac{g_{\alpha_{23}} g_{\alpha_{34}}}{g_{\beta_{23}}} & g_{\alpha_{34}} & g_{\alpha_{34}} & g_{\alpha_{34}}
\end{array}\right)
\end{aligned}
$$

and then we have for the γ_{i} :

$$
\begin{gathered}
M_{-\gamma_{1}}=\emptyset \quad M_{-\gamma_{2}}=\left(2 \frac{\left(g_{\alpha_{12}}\right)^{2}}{g_{\gamma_{1}}}\right) \quad M_{-\gamma_{3}}=\left(\begin{array}{ccc}
2 \frac{\left(g_{\alpha_{13}}\right)^{2}}{g_{\gamma_{1}}} & \frac{g_{\alpha_{23}}\left(2 g_{\beta_{12}}-g_{\beta_{23}}\right)}{g_{\beta_{12}}} \\
\frac{g_{\alpha_{23}}\left(2 g_{\beta_{12}}-g_{\beta_{23}}\right)}{g_{\beta_{12}}} & 2 \frac{\left(g_{\alpha_{23}}\right)^{2}}{g_{\gamma_{2}}}
\end{array}\right) \\
M_{-\gamma_{4}}=\left(\begin{array}{ccc}
2 \frac{\left(g_{\alpha_{14}}\right)^{2}}{g_{\gamma_{1}}} & \left.\frac{g_{\alpha_{24}}\left(2 g_{\beta_{12}}-g_{\beta_{24}}\right)}{g_{\beta_{12}}}\right) & \frac{g_{\alpha_{34}}\left(2 g_{\left.\beta_{13}-g_{\beta_{34}}\right)}\right.}{g_{\beta_{13}}} \\
\frac{g_{\alpha_{24}}\left(2 g_{\beta_{12}}-g_{\beta_{24}}\right)}{\left.g_{\beta_{12}}\right)} & 2 \frac{\left(g_{\alpha_{24}}\right)^{2}}{g_{\gamma_{2}}} & \frac{g_{\alpha_{34}}\left(2 g_{\beta_{23}}-g_{\beta_{34}}\right)}{g_{\beta_{23}}} \\
\frac{g_{\alpha_{34}}\left(2 g_{\beta_{13}}-g_{\beta_{34}}\right)}{g_{\beta_{13}}} & \frac{g_{\alpha_{34}}\left(2 g_{\beta_{23}}-g_{\beta_{34}}\right)}{g_{\beta_{23}}} & 2 \frac{\left(g_{\alpha_{34}}\right)^{2}}{g_{\gamma_{4}}}
\end{array}\right)
\end{gathered}
$$

Ordering the basis as given in 8.2 the matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{ccc}
A & \langle A B\rangle & \langle A C\rangle \\
\langle A B\rangle^{T} & B & \langle B C\rangle \\
\langle A C\rangle^{T} & \langle B C\rangle^{T} & C
\end{array}\right)
$$

with

$$
A=\left(\begin{array}{c|cc|ccc}
2 g_{\alpha_{34}} & * & g_{\alpha_{34}} & 0 & * & g_{\alpha_{34}} \\
\hline * & 2 g_{\alpha_{23}} & g_{\alpha_{23}} & * & g_{\alpha_{23}} & 0 \\
g_{\alpha_{34}} & g_{\alpha_{23}} & 2 g_{\alpha_{24}} & * & 0 & g_{\alpha_{24}} \\
\hline 0 & * & * & 2 g_{\alpha_{12}} & g_{\alpha_{12}} & g_{\alpha_{12}} \\
* & g_{\alpha_{23}} & 0 & g_{\alpha_{12}} & 2 g_{\alpha_{13}} & g_{\alpha_{13}} \\
g_{\alpha_{34}} & 0 & g_{\alpha_{24}} & g_{\alpha_{12}} & g_{\alpha_{13}} & 2 g_{\alpha_{14}}
\end{array}\right) \quad B=\left(\begin{array}{c|cc|ccc}
2 g_{\beta_{34}} & g_{\beta_{34}} & g_{\beta_{34}} & 0 & g_{\beta_{34}} & g_{\beta_{34}} \\
\hline g_{\beta_{34}} & 2 g_{\beta_{23}} & g_{\beta_{24}} & g_{\beta_{23}} & g_{\beta_{23}} & 0 \\
g_{\beta_{34}} & g_{\beta_{24}} & 2 g_{\beta_{24}} & g_{\beta_{24}} & 0 & g_{\beta_{24}} \\
\hline 0 & g_{\beta_{23}} & g_{\beta_{24}} & 2 g_{\beta_{12}} & g_{\beta_{13}} & g_{\beta_{14}} \\
g_{\beta_{34}} & g_{\beta_{23}} & 0 & g_{\beta_{13}} & 2 g_{\beta_{13}} & g_{\beta_{14}} \\
g_{\beta_{34}} & 0 & g_{\beta_{24}} & g_{\beta_{14}} & g_{\beta_{14}} & 2 g_{\beta_{14}}
\end{array}\right)
$$

$$
\begin{gathered}
C=\left(\begin{array}{cccc}
g_{\gamma_{4}} & 0 & 0 & 0 \\
0 & g_{\gamma_{3}} & 0 & 0 \\
0 & 0 & g_{\gamma_{2}} & 0 \\
0 & 0 & 0 & g_{\gamma_{1}}
\end{array}\right)\langle A B\rangle=\left(\begin{array}{cccccc}
\frac{2 \frac{\left(g_{\alpha_{34}}\right)^{2}}{g_{\gamma_{3}}}}{} & g_{\alpha_{34}} & * & 0 & g_{\alpha_{34}} & * \\
* & 2 \frac{\left(g_{\alpha_{23}}\right)^{2}}{g_{\gamma_{2}}} & g_{\alpha_{23}} & g_{\alpha_{23}} & * & 0 \\
* & g_{\alpha_{24}} & 2 \frac{\left(g_{\alpha_{24}}\right)^{2}}{g_{\gamma_{2}}} & g_{\alpha_{24}} & 0 & * \\
\hline 0 & * & * & 2 \frac{\left(g_{\alpha_{12}}\right)^{2}}{g_{\gamma_{1}}} & g_{\alpha_{12}} & g_{\alpha_{13}} \\
* & * & 0 & g_{\alpha_{13}} & 2 \frac{\left(g_{\alpha_{13}}\right)^{2}}{g_{\gamma_{1}}} & g_{\alpha_{13}} \\
* & 0 & * & g_{\alpha_{14}} & g_{\alpha_{14}} & 2 \frac{\left(g_{\left.\alpha_{14}\right)^{2}}\right.}{g_{\gamma_{1}}}
\end{array}\right) \\
\langle A C\rangle=\left(\begin{array}{cccc}
* g_{\alpha_{34}} & 0 & 0 \\
\hline 0 & * & g_{\alpha_{23}} & 0 \\
* & 0 & g_{\alpha_{24}} & 0 \\
0 & 0 & * & g_{\alpha_{12}} \\
0 & * & 0 & g_{\alpha_{13}} \\
* & 0 & 0 & g_{\alpha_{14}}
\end{array}\right)
\end{gathered}
$$

where we used $*$ at the entry (α, β) as place holder for $-2 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}$.
Similar to the case of $S O(9)$, we notice that the matrices $M_{-\beta_{12}}, M_{-\beta_{13}}$ and $M_{-\beta_{14}}$ are positive semidefinite by the auxiliary lemma for any kind of metric with $g_{\alpha+\beta} \geq g_{\alpha}$, which is true for the Kähler Einstein metrics for all isotropy groups K. However, in some cases we might need the matrices for $-\eta=\beta_{12}, \beta_{13}, \beta_{14}$ to compensate for other matrices. In the following, we do the full modification for the toric isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of $\left(S p(4), \mathbb{T}, J_{s t d}\right)$, which is given on the simple roots by

α	α_{12}	α_{23}	α_{34}	γ_{4}
g_{α}	1	1	1	2

The matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{cccccc|ccccccc|cccc}
2 & -1 & 1 & 0 & -\frac{4}{3} & 1 & \frac{1}{2} & 1 & -\frac{8}{5} & 0 & 1 & -\frac{5}{3} & -\frac{4}{3} & 1 & 0 & 0 \\
-1 & 2 & 1 & -1 & 1 & 0 & -\frac{3}{2} & \frac{1}{3} & 1 & 1 & -\frac{12}{7} & 0 & 0 & -\frac{8}{5} & 1 & 0 \\
1 & 1 & 4 & -\frac{4}{3} & 0 & 2 & -\frac{12}{5} & 2 & \frac{4}{3} & 2 & 0 & -\frac{20}{7} & -2 & 0 & 2 & 0 \\
0 & -1 & -\frac{4}{3} & 2 & 1 & 1 & 0 & -\frac{5}{3} & -\frac{8}{5} & \frac{1}{4} & 1 & 1 & 0 & 0 & -\frac{12}{7} & 1 \\
-\frac{4}{3} & 1 & 0 & 1 & 4 & 2 & -\frac{12}{5} & -\frac{20}{7} & 0 & 2 & 1 & 2 & 0 & -\frac{8}{3} & 0 & 2 \\
1 & 0 & 2 & 1 & 2 & 6 & -3 & 0 & -\frac{24}{7} & 3 & 3 & \frac{9}{4} & -\frac{12}{5} & 0 & 0 & 3 \\
\hline \frac{1}{2} & -\frac{3}{2} & -\frac{12}{5} & 0 & -\frac{12}{5} & -3 & 6 & 3 & 3 & 0 & 3 & 3 & 2 & 3 & 0 & 0 \\
1 & \frac{1}{3} & 2 & -\frac{5}{3} & -\frac{20}{7} & 0 & 3 & 10 & 4 & 5 & 5 & 0 & 0 & 4 & 5 & 0 \\
-\frac{8}{5} & 1 & \frac{4}{3} & -\frac{8}{5} & 0 & -\frac{24}{7} & 3 & 4 & 8 & 4 & 0 & 4 & 2 & 0 & 4 & 0 \\
0 & 1 & 2 & \frac{1}{4} & 2 & 3 & 0 & 2 & 4 & 14 & 6 & 5 & 0 & 0 & 6 & 7 \\
1 & -\frac{12}{7} & 0 & 1 & 1 & 3 & 3 & 2 & 0 & 6 & 12 & 5 & 0 & 4 & 0 & 6 \\
-\frac{5}{3} & 0 & -\frac{20}{7} & 1 & 2 & \frac{9}{4} & 3 & 0 & 4 & 5 & 5 & 10 & 2 & 0 & 0 & 5 \\
\hline-\frac{4}{3} & 0 & -2 & 0 & 0 & -\frac{12}{5} & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
1 & -\frac{8}{5} & 0 & 0 & -\frac{8}{3} & 0 & 3 & 4 & 0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 \\
0 & 1 & 2 & -\frac{12}{7} & 0 & 0 & 0 & 5 & 4 & 6 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0 & 0 & 0 & 7 & 6 & 5 & 0 & 0 & 0 & 8
\end{array}\right)
$$

It is not positive definite and hence further four forms are necessary. The other matrices are

$$
\begin{aligned}
& M_{-\alpha_{12}}=\left(\begin{array}{cccccc}
1 & 1 & \frac{9}{7} & 1 & 1 & 1 \\
1 & 2 & 2 & \frac{20}{7} & 2 & 2 \\
\frac{9}{7} & 2 & 5 & 4 & 5 & 5 \\
1 & \frac{20}{7} & 4 & 4 & 4 & 4 \\
1 & 2 & 5 & 4 & 7 & 6 \\
1 & 2 & 5 & 4 & 6 & 6
\end{array}\right) \quad M_{-\alpha_{13}}=\left(\begin{array}{ccccc}
1 & 1 & \frac{3}{2} & 1 & 1 \\
1 & 5 & 3 & 5 & 4 \\
\frac{3}{2} & 3 & 3 & 3 & 3 \\
1 & 5 & 3 & 6 & 4 \\
1 & 4 & 3 & 4 & 4
\end{array}\right) \\
& M_{-\alpha_{14}}=\left(\begin{array}{cccc}
4 & 3 & 4 & 2 \\
3 & 3 & 3 & 2 \\
4 & 3 & 5 & 2 \\
2 & 2 & 2 & 2
\end{array}\right) \quad M_{-\alpha_{23}}=\left(\begin{array}{cccccc}
1 & -\frac{2}{3} & -\frac{1}{2} & -\frac{6}{5} & -\frac{10}{7} & -\frac{4}{3} \\
-\frac{2}{3} & 1 & 1 & \frac{7}{5} & 1 & 1 \\
-\frac{1}{2} & 1 & 6 & 3 & 5 & 4 \\
-\frac{6}{5} & \frac{7}{5} & 3 & 3 & 3 & 3 \\
-\frac{10}{7} & 1 & 5 & 3 & 5 & 4 \\
-\frac{4}{3} & 1 & 4 & 3 & 4 & 4
\end{array}\right) \\
& M_{-\alpha_{24}}=\left(\begin{array}{ccccc}
1 & -1 & -\frac{1}{4} & -\frac{8}{7} & -\frac{4}{5} \\
-1 & 3 & 3 & 3 & 2 \\
-\frac{1}{4} & 3 & 5 & 4 & 2 \\
-\frac{8}{7} & 3 & 4 & 4 & 2 \\
-\frac{4}{5} & 2 & 2 & 2 & 2
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{cccccc}
2 & 1 & -\frac{1}{2} & -\frac{16}{7} & -2 & -\frac{8}{5} \\
1 & 1 & -\frac{10}{7} & -\frac{1}{3} & -\frac{6}{5} & -1 \\
-\frac{1}{2} & -\frac{10}{7} & 5 & 4 & 3 & 2 \\
-\frac{16}{7} & -\frac{1}{3} & 4 & 4 & 3 & 2 \\
-2 & -\frac{6}{5} & 3 & 3 & 3 & 2 \\
-\frac{8}{5} & -1 & 2 & 2 & 2 & 2
\end{array}\right)
\end{aligned}
$$

The remaining matrices are

$$
\begin{array}{cc}
M_{-\beta_{12}}=(1) & M_{-\beta_{13}}=\left(\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right) \\
M_{-\beta_{14}}=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right) \\
M_{-\beta_{24}}=\left(\begin{array}{cccc}
1 & -\frac{1}{4} & \frac{1}{3} & \frac{4}{7} \\
-\frac{1}{4} & 3 & 1 & 2 \\
\frac{1}{3} & 1 & 1 & 1 \\
\frac{4}{7} & 2 & 1 & 2
\end{array}\right) & M_{-\beta_{23}}=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{2}{7} \\
-\frac{1}{2} & 2 & 1 \\
\frac{2}{7} & 1 & 1
\end{array}\right) \\
\end{array}
$$

and

$$
\begin{array}{cc}
M_{-\gamma_{1}}=() & M_{-\gamma_{2}}=\left(\frac{1}{4}\right) \\
M_{-\gamma_{3}}=\left(\begin{array}{cc}
1 & \frac{9}{7} \\
\frac{9}{7} & \frac{1}{3}
\end{array}\right) & M_{-\gamma_{4}}=\left(\begin{array}{ccc}
\frac{9}{4} & \frac{20}{7} & \frac{3}{2} \\
\frac{20}{7} & \frac{4}{3} & \frac{7}{5} \\
\frac{3}{2} & \frac{7}{5} & \frac{1}{2}
\end{array}\right)
\end{array}
$$

Now we have to modify these as follows:

Value	Intended	Forced
$\frac{3}{4}$	$\left(M_{-\alpha_{12}}\right)_{(1,2)}$	$\left(M_{-\alpha_{34}}\right)_{(1,2)}$
$\frac{9}{56}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
1	$\left(M_{-\alpha_{12}}\right)_{(1,4)}$	$\left(M_{-\beta_{34}}\right)_{(1,2)}$
$\frac{3}{4}$	$\left(M_{-\alpha_{12}}\right)_{(1,5)}$	$\left(M_{-\beta_{13}}(1,2)\right.$
$\frac{3}{4}$	$\left(M_{-\alpha_{12}}\right)_{(1,6)}$	$\left(M_{-\beta_{23}}\right)_{(2,3)}$
$-\frac{37}{112}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$\frac{1}{4}$	$\left(M_{-\alpha_{12}}\right)_{(2,6)}$	$\left(M_{-\beta_{24}}\right)_{(2,4)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{5}{8}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{1}{4}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
$-\frac{1}{8}$	$\left(M_{-\alpha_{13}}\right)_{(1,3)}$	$\left(M_{-\gamma_{4}}\right)_{(1,3)}$
$\frac{1}{16}$	$\left(M_{-\alpha_{14}}\right)_{(2,4)}$	$\left(M_{-\alpha_{34}}(3,6)\right.$
$-\frac{1}{10}$	$\left(M_{-\alpha_{23}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(2,3)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,11)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{23}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(8,14)}$

Value	Intended	Forced
5	$\left(M_{-\alpha_{24}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,12)}$
$-\frac{9}{8}$	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{\left.-\beta_{34}\right)_{(1,3)}}\right.$
$-\frac{9}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{\left.-\beta_{34}\right)_{(2,4)}}\right.$
$\frac{1}{4}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{1}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$
$\frac{11}{8}$	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(7,14)}$
$\frac{1}{6}$	$\left(M_{-\alpha_{34}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(7,13)}$
$\frac{1}{4}$	$\left(M_{-\gamma_{2}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,10)}$
1	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{1}{3}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
$\frac{9}{4}$	$\left(M_{-\gamma_{4} 4}(1,1)\right.$	$\left(M_{0}\right)_{(6,12)}$
$\frac{4}{3}$	$\left(M_{\left.-\gamma_{4}\right)}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
$\frac{1}{2}$	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$
$-\frac{3}{4}$	$\left(M_{0}\right)_{(1,11)}$	$\left(M_{\left.-\beta_{14}\right)_{(2,2)}}\right.$

The modified matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{cccccc|cccccc|cccc}
2 & -1 & 1 & 0 & -\frac{4}{3} & 1 & 0 & 1 & -\frac{8}{5} & 0 & \frac{1}{4} & -\frac{5}{3} & -\frac{4}{3} & 1 & 0 & 0 \\
-1 & 2 & \frac{7}{8} & -1 & \frac{5}{8} & 0 & -\frac{3}{2} & 0 & 1 & 1 & -\frac{12}{7} & 0 & 0 & -\frac{8}{5} & 1 & 0 \\
1 & \frac{7}{8} & 4 & -\frac{4}{3} & 0 & \frac{13}{8} & -\frac{12}{5} & 2 & 0 & 2 & 0 & -\frac{20}{7} & -2 & 0 & 2 & 0 \\
0 & -1 & -\frac{4}{3} & 2 & 1 & 1 & 0 & -\frac{5}{3} & -\frac{8}{5} & 0 & 1 & 1 & 0 & 0 & -\frac{12}{7} & 1 \\
-\frac{4}{3} & \frac{5}{8} & 0 & 1 & 4 & \frac{7}{4} & -\frac{12}{5} & -\frac{20}{7} & 0 & 2 & 0 & 2 & 0 & -\frac{8}{3} & 0 & 2 \\
1 & 0 & \frac{13}{8} & 1 & \frac{7}{4} & 6 & -3 & 0 & -\frac{24}{7} & 3 & 3 & 0 & -\frac{12}{5} & 0 & 0 & 3 \\
\hline 0 & -\frac{3}{2} & -\frac{12}{5} & 0 & -\frac{12}{5} & -3 & 6 & 3 & 3 & 0 & 3 & 3 & \frac{11}{6} & \frac{21}{8} & 0 & 0 \\
1 & 0 & 2 & -\frac{5}{3} & -\frac{20}{7} & 0 & 3 & 10 & \frac{11}{4} & 5 & \frac{35}{8} & 0 & 0 & \frac{7}{2} & 5 & 0 \\
-\frac{8}{5} & 1 & 0 & -\frac{8}{5} & 0 & -\frac{24}{7} & 3 & \frac{11}{4} & 8 & 4 & 0 & \frac{15}{4} & 2 & 0 & 4 & 0 \\
0 & 1 & 2 & 0 & 2 & 3 & 0 & 5 & 4 & 14 & \frac{19}{4} & 0 & 0 & 0 & 6 & 7 \\
\frac{1}{4} & -\frac{12}{7} & 0 & 1 & 0 & 3 & 3 & \frac{35}{8} & 0 & \frac{19}{4} & 12 & \frac{29}{8} & 0 & 4 & 0 & 6 \\
-\frac{5}{3} & 0 & -\frac{20}{7} & 1 & 2 & 0 & 3 & 0 & \frac{15}{4} & 0 & \frac{29}{8} & 10 & 2 & 0 & 0 & 5 \\
\hline-\frac{4}{3} & 0 & -2 & 0 & 0 & -\frac{12}{5} & \frac{11}{6} & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
1 & -\frac{8}{5} & 0 & 0 & -\frac{8}{3} & 0 & \frac{21}{8} & \frac{7}{2} & 0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 \\
0 & 1 & 2 & -\frac{12}{7} & 0 & 0 & 0 & 5 & 4 & 6 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0 & 0 & 0 & 7 & 6 & 5 & 0 & 0 & 0 & 8
\end{array}\right)
$$

It is not positive definite and hence further four forms are necessary. The other matrices are

$$
\begin{aligned}
& M_{-\alpha_{12}}\left(\begin{array}{cccccc}
\frac{11}{8} & \frac{7}{4} & \frac{81}{56} & 2 & \frac{7}{4} & \frac{7}{4} \\
\frac{7}{4} & \frac{19}{8} & 2 & \frac{283}{112} & 2 & \frac{9}{4} \\
\frac{81}{56} & 2 & \frac{45}{8} & 4 & 5 & 5 \\
2 & \frac{283}{112} & 4 & \frac{17}{4} & 4 & 4 \\
\frac{7}{4} & 2 & 5 & 4 & 7 & 6 \\
\frac{7}{4} & \frac{9}{4} & 5 & 4 & 6 & 6
\end{array}\right) \quad M_{-\alpha_{13}}=\left(\begin{array}{ccccc}
1 & 1 & \frac{11}{8} & 1 & 1 \\
1 & 5 & 3 & 5 & 4 \\
\frac{11}{8} & 3 & 3 & 3 & 3 \\
1 & 5 & 3 & 6 & 4 \\
1 & 4 & 3 & 4 & 4
\end{array}\right) \\
& M_{-\alpha_{14}}=\left(\begin{array}{cccc}
4 & 3 & 4 & 2 \\
3 & 3 & 3 & \frac{33}{16} \\
4 & 3 & 5 & 2 \\
2 & \frac{33}{16} & 2 & 2
\end{array}\right) \quad M_{-\alpha_{23}}=\left(\begin{array}{cccccc}
1 & -\frac{2}{3} & -\frac{1}{2} & -\frac{6}{5} & -\frac{10}{7} & -\frac{4}{3} \\
-\frac{2}{3} & 1 & 1 & \frac{13}{10} & 1 & 1 \\
-\frac{1}{2} & 1 & \frac{29}{4} & 3 & 5 & 4 \\
-\frac{6}{5} & \frac{13}{10} & 3 & 3 & 3 & 3 \\
-\frac{10}{7} & 1 & 5 & 3 & 5 & 4 \\
-\frac{4}{3} & 1 & 4 & 3 & 4 & \frac{9}{2}
\end{array}\right) \\
& M_{-\alpha_{24}}=\left(\begin{array}{ccccc}
1 & -1 & -\frac{1}{4} & -\frac{8}{7} & -\frac{4}{5} \\
-1 & 3 & 3 & 3 & 2 \\
-\frac{1}{4} & 3 & 10 & 4 & 2 \\
-\frac{8}{7} & 3 & 4 & 4 & 2 \\
-\frac{4}{5} & 2 & 2 & 2 & 2
\end{array}\right) \quad M_{-\alpha_{34}}=\left(\begin{array}{cccccc}
\frac{9}{4} & \frac{1}{4} & -\frac{13}{8} & -\frac{16}{7} & -2 & -\frac{8}{5} \\
\frac{1}{4} & \frac{9}{8} & -\frac{10}{7} & -\frac{35}{24} & -\frac{6}{5} & -1 \\
-\frac{13}{8} & -\frac{10}{7} & \frac{51}{8} & 4 & 3 & \frac{31}{16} \\
-\frac{16}{7} & -\frac{35}{24} & 4 & \frac{21}{4} & 3 & 2 \\
-2 & -\frac{6}{5} & 3 & 3 & \frac{27}{8} & 2 \\
-\frac{8}{5} & -1 & \frac{31}{16} & 2 & 2 & \frac{13}{6}
\end{array}\right)
\end{aligned}
$$

The remaining matrices are

$$
\begin{array}{cc}
M_{-\beta_{12}}=(1) & M_{-\beta_{13}}=\left(\begin{array}{cc}
1 & \frac{1}{4} \\
\frac{1}{4} & 2
\end{array}\right) \\
M_{-\beta_{14}}=\left(\begin{array}{ccc}
2 & 1 & 2 \\
1 & \frac{7}{4} & 1 \\
2 & 1 & 3
\end{array}\right) \\
M_{-\beta_{24}}=\left(\begin{array}{cccc}
1 & -\frac{1}{2} & \frac{2}{7} \\
-\frac{1}{4} & 2 & \frac{1}{4} \\
\frac{2}{7} & \frac{1}{4} & 1
\end{array}\right) \\
\frac{1}{4} & 3
\end{array} \frac{1}{3} \frac{4}{7} \begin{aligned}
& \frac{7}{4} \\
& \frac{1}{7}
\end{aligned} \frac{7}{4}
$$

and

$$
M_{-\gamma_{1}}=() \quad M_{-\gamma_{2}}=\left(\frac{1}{2}\right)
$$

$$
M_{-\gamma_{3}}=\left(\begin{array}{cc}
2 & \frac{9}{8} \\
\frac{9}{8} & \frac{2}{3}
\end{array}\right) \quad M_{-\gamma_{4}}=\left(\begin{array}{ccc}
\frac{9}{2} & \frac{51}{16} & \frac{13}{8} \\
\frac{51}{16} & \frac{8}{3} & \frac{3}{2} \\
\frac{13}{8} & \frac{3}{2} & 1
\end{array}\right)
$$

These are all positive definite, except for M_{0} but as in the previous chapters we can discard rows and columns 10 and 16 since all entries are nonnegative. The resulting 14×14 matrix is positive definite, which finishes the proof for $K=\mathbb{T}$.

Larger Isotropy

As in the case of $S O(9)$, we will not present the above for all K in the same detail. In fact, we will present here the different possible K and their Kähler Einstein metrics. By corollary 50 the curvature matrices are then obtained by considering the correct submatrices of the matrices of $\left(S p(4), \mathbb{T}, J_{s t d}\right)$ with the new metric coefficients. As before, we present the details in the appendix for the interested reader. For each K, we will give the indices of the rows and columns of the curvature matrices that have to be erased to obtain the restriction and give a detailed table of the used four forms. We only consider the case $\operatorname{dim}(\mathfrak{z}(k))>1$, since the other cases are covered by Itoh. Note, that we scaled the metric by 2 in order to avoid unnecessary fractions.

K	$D=(V, E)$	γ_{K}^{*}	$g_{\alpha_{12}}$	$g_{\alpha_{23}}$	$g_{\alpha_{34}}$	$g_{\varepsilon_{4}}$
$S U(2) \mathbb{T}^{3}$		α_{12}	0	3	2	4
$\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$		α_{23}	3	0	3	4
$\mathbb{T}^{2} S U(2) \mathbb{S}^{1}$		α_{34}	2	3	0	6
$\mathbb{T}^{3} S U(2)$		γ_{4}	2	2	4	0
$S U(3) \mathbb{T}^{2}$		$2 \alpha_{13}$	0	0	4	4
$S U(2) \mathbb{S}^{1} S U(2) \mathbb{S}^{1}$		$\alpha_{12}+\alpha_{34}$	0	4	0	6
$S U(2) \mathbb{T}^{2} S U(2)$		$\alpha_{12}+\gamma_{4}$	0	3	4	0
$\mathbb{S}^{1} S U(3) \mathbb{S}^{1}$		$2 \alpha_{24}$	4	0	0	8
$\mathbb{S}^{1} S U(2) \mathbb{S}^{1} S U(2)$		$\alpha_{23}+\gamma_{4}$	3	0	5	0
$\mathbb{T}^{2} S p(2)$		$4 \varepsilon_{3}+2 \varepsilon_{4}$	2	6	0	0

8.4 The case of $S O(8)$

The positive roots are

$$
\begin{align*}
\Delta_{\mathfrak{g}}^{+}=\left\{\alpha_{34}, \alpha_{23}, \alpha_{24}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right. \tag{8.4}\\
\left.\beta_{34}, \beta_{23}, \beta_{24}, \beta_{12}, \beta_{13}, \beta_{14}\right\}
\end{align*}
$$

and the simple roots are placed on the Dynkin diagram as follows

After applying the general modifications of section 7.4 the matrices M_{η} representing the modified holomorphic curvature tensor are indexed with $\eta \in \Delta_{\mathfrak{g}}^{-} \cup\{0\}$. In the case of $S O(8)$ this corresponds to the following:

We begin with the ones corresponding to $-\alpha_{i j}$.

$$
\begin{aligned}
& M_{-\alpha_{12}}=\left(\begin{array}{cc|cc}
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & 8 \frac{g_{\alpha_{23}} g_{\beta_{23}}}{g_{\beta_{12}}} & 4 g_{\alpha_{23}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{24}} & 4 g_{\alpha_{24}} & 8 \frac{g_{\alpha_{24}} g_{\beta_{24}}}{g_{\beta_{12}}} \\
\hline 8 \frac{g_{\alpha_{23}} g_{\beta_{23}}}{g_{\beta_{12}}} & 4 g_{\alpha_{24}} & 4 g_{\beta_{23}} & 4 g_{\beta_{24}} \\
4 g_{\alpha_{23}} & 8 \frac{g_{\alpha_{24}} g_{g_{24}}}{g_{\beta_{12}}} & 4 g_{\beta_{24}} & 4 g_{\beta_{24}}
\end{array}\right) \\
& M_{-\alpha_{13}}=\left(\begin{array}{c|c|c}
4 g_{\alpha_{34}} & -4 g_{\alpha_{34}} & 8 \frac{4 g_{\alpha_{33} 4} 4 g_{\beta_{34}}}{g_{\beta_{13}}} \\
\hline-4 g_{\alpha_{34}} & 4 g_{\beta_{23}} & -4 g_{\beta_{34}} \\
\hline 8 \frac{4 g_{\alpha_{34}} 4 g_{\beta_{34}}}{g_{\beta_{13}}} & -4 g_{\beta_{34}} & 4 g_{\beta_{34}}
\end{array}\right) \quad M_{-\alpha_{14}}=\left(\begin{array}{cc}
4 g_{\beta_{24}} & 4 g_{\beta_{34}} \\
4 g_{\beta_{34}} & 4 g_{\beta_{34}}
\end{array}\right) \\
& M_{-\alpha_{23}}=\left(\begin{array}{c|c|c|c}
4 g_{\alpha_{12}} & -8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & -4 g_{\alpha_{12}} & -8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} \\
\hline-8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\alpha_{14}}} & 4 g_{\alpha_{34}} & 4 g_{\alpha_{34}} & 8 \frac{g_{\alpha_{34}} g_{\beta_{34}}}{g_{\beta_{23}}} \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{34}} & 4 g_{\beta_{13}} & 4 g_{\beta_{34}} \\
\hline-8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{14}}} & 8 \frac{g_{\alpha_{34}} g_{34}}{g_{\beta_{23}}} & 4 g_{\beta_{34}} & 4 g_{\beta_{34}}
\end{array}\right) \\
& M_{-\alpha_{24}}=\left(\begin{array}{c|c|c}
4 g_{\alpha_{12}} & 8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & -4 g_{\alpha_{12}} \\
\hline 8 \frac{g_{\alpha_{12}} g_{\beta_{34}}}{g_{\beta_{13}}} & 4 g_{\beta_{34}} & -4 g_{\beta_{34}} \\
\hline-4 g_{\alpha_{12}} & -4 g_{\beta_{34}} & 4 g_{\beta_{14}}
\end{array}\right) \\
& M_{-\alpha_{34}}=\left(\begin{array}{cc|cc}
4 g_{\alpha_{13}} & 4 g_{\alpha_{23}} & -4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & -8 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} \\
\hline-4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{23}} g_{\beta_{14}}}{g_{\beta_{12}}} & 4 g_{\beta_{14}} & 4 g_{\beta_{24}} \\
-8 \frac{g_{\alpha_{13}} g_{\beta_{24}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} & 4 g_{\beta_{24}} & 4 g_{\beta_{24}}
\end{array}\right)
\end{aligned}
$$

Those corresponding to $\beta_{i j}$ are

$$
\begin{gathered}
M_{-\beta_{12}}=\emptyset \quad M_{-\beta_{13}}=\left(4 g_{\alpha_{23}}\right) \quad M_{-\beta_{14}}=\left(\begin{array}{c|c|c}
4 g_{\alpha_{24}} & 4 g_{\alpha_{34}} \\
4 g_{\alpha_{34}} & 4 g_{\alpha_{34}}
\end{array}\right) \\
M_{-\beta_{23}}=\left(\begin{array}{c|c|c|c}
4 g_{\alpha_{12}} & -4 g_{\alpha_{12}} \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{13}}
\end{array}\right) \quad M_{-\beta_{24}}=\left(\begin{array}{cc}
4 g_{\alpha_{12}} & -4 g_{\alpha_{12}} \left\lvert\, 8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\beta_{13}}}\right. \\
\hline-4 g_{\alpha_{12}} & 4 g_{\alpha_{14}} \\
\hline \left.8 \frac{g_{\alpha_{12}} g_{\alpha_{34}}}{g_{\beta_{13}}} \right\rvert\,-4 g_{\alpha_{34}} & 4 g_{\alpha_{34}}
\end{array}\right) \\
M_{-\beta_{34}}=\left(\begin{array}{cc|cc}
4 g_{\alpha_{13}} & 4 g_{\alpha_{23}} & -4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\beta_{12}}} \\
4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & -8 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} \\
\hline-4 g_{\alpha_{13}} & -8 \frac{g_{\alpha_{23}} g_{\alpha_{14}}}{g_{\beta_{12}}} & 4 g_{\alpha_{14}} & 4 g_{\alpha_{24}} \\
-8 \frac{g_{\alpha_{13}} g_{\alpha_{24}}}{g_{\beta_{12}}} & -4 g_{\alpha_{23}} & 4 g_{\alpha_{24}} & 4 g_{\alpha_{24}}
\end{array}\right)
\end{gathered}
$$

Ordering the basis as given in 8.4 the matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{cc}
A & \langle A B\rangle \\
\langle A B\rangle^{T} & B
\end{array}\right)
$$

with

$$
\begin{gathered}
A=\left(\begin{array}{c|cc|ccc}
8 g_{\alpha_{34}} & * & 4 g_{\alpha_{34}} & 0 & * & 4 g_{\alpha_{34}} \\
\hline * & 8 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & * & 4 g_{\alpha_{23}} & 0 \\
4 g_{\alpha_{34}} & 4 g_{\alpha_{23}} & 8 g_{\alpha_{24}} & * & 0 & 4 g_{\alpha_{24}} \\
\hline 0 & * & * & 8 g_{\alpha_{12}} & 4 g_{\alpha_{12}} & 4 g_{\alpha_{12}} \\
* & 4 g_{\alpha_{23}} & 0 & 4 g_{\alpha_{12}} & 8 g_{\alpha_{13}} & 4 g_{\alpha_{13}} \\
4 g_{\alpha_{34}} & 0 & 4 g_{\alpha_{24}} & 4 g_{\alpha_{12}} & 4 g_{\alpha_{13}} & 8 g_{\alpha_{14}}
\end{array}\right) \quad B=\left(\begin{array}{c|ccccc}
8 g_{\beta_{34}} & 4 g_{\beta_{34}} & 4 g_{\beta_{34}} & 0 & 4 g_{\beta_{34}} & 4 g_{\beta_{34}} \\
\hline 4 g_{\beta_{34}} & 8 g_{\beta_{23}} & 4 g_{\beta_{24}} & 4 g_{\beta_{23}} & 4 g_{\beta_{23}} & 0 \\
4 g_{\beta_{34}} & 4 g_{\beta_{24}} & 8 g_{\beta_{24}} & 4 g_{\beta_{24}} & 0 & 4 g_{\beta_{24}} \\
\hline 0 & 4 g_{\beta_{23}} & 4 g_{\beta_{24}} & 8 g_{\beta_{12}} & 4 g_{\beta_{13}} & 4 g_{\beta_{14}} \\
4 g_{\beta_{34}} & 4 g_{\beta_{23}} & 0 & 4 g_{\beta_{13}} & 8 g_{\beta_{13}} & 4 g_{\beta_{14}} \\
4 g_{\beta_{34}} & 0 & 4 g_{\beta_{24}} & 4 g_{\beta_{14}} 4 g_{\beta_{14}} & 8 g_{\beta_{14}}
\end{array}\right) \\
\langle A B\rangle=\left(\begin{array}{c|c|c|ccc}
0 & 4 g_{\alpha_{34}} & * & 0 & 4 g_{\alpha_{34}} & * \\
\hline * & 0 & 4 g_{\alpha_{23}} & 4 g_{\alpha_{23}} & * & 0 \\
* & 4 g_{\alpha_{24}} & 0 & 4 g_{\alpha_{24}} & 0 & * \\
\hline 0 & * & * & 0 & 4 g_{\alpha_{12}} & 4 g_{\alpha_{12}} \\
* & * & 0 & 4 g_{\alpha_{13}} & 0 & 4 g_{\alpha_{13}} \\
* & 0 & * & 4 g_{\alpha_{14}} & 4 g_{\alpha_{14}} & 0
\end{array}\right)
\end{gathered}
$$

where we used $*$ at the entry (α, β) as place holder for $-8 \frac{g_{\alpha} g_{\beta}}{g_{\alpha+\beta}}$. In the following, we do the full modification for the toric isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of $\left(S O(8), \mathbb{T}, J_{s t d}\right)$, which is given on the simple roots by

α	α_{12}	α_{23}	α_{34}	β_{34}
g_{α}	1	1	1	1

First of all, we notice that we do not have to consider the matrices $M_{-\eta}$ for η being one of $\left\{\alpha_{14}, \beta_{12}, \beta_{13}, \beta_{14}, \beta_{23}\right\}$, since they are positive definite by the auxiliary lemma. The remaining matrices are

$$
\begin{array}{cc}
M_{-\alpha_{12}}=\left(\begin{array}{cccc}
4 & 4 & \frac{24}{5} & 4 \\
4 & 8 & 8 & \frac{32}{5} \\
\frac{24}{5} & 8 & 12 & 8 \\
4 & \frac{32}{5} & 8 & 8
\end{array}\right) & M_{-\alpha_{13}}=\left(\begin{array}{ccc}
4 & -4 & 2 \\
-4 & 12 & -4 \\
2 & -4 & 4
\end{array}\right) \\
M_{-\alpha_{23}}=\left(\begin{array}{ccc}
4 & -\frac{8}{3} & -4 \\
-\frac{8}{3} \\
-\frac{8}{3} & 4 & 4
\end{array} \frac{8}{3}\right. \\
-4 & 4
\end{array} 16
$$

$$
M_{-\alpha_{34}}=\left(\begin{array}{cccc}
8 & 4 & -8 & -\frac{32}{5} \\
4 & 4 & -\frac{24}{5} & -4 \\
-8 & -\frac{24}{5} & 12 & 8 \\
-\frac{32}{5} & -4 & 8 & 8
\end{array}\right)
$$

Those corresponding to $\beta_{i j}$ are

$$
M_{-\beta_{24}}=\left(\begin{array}{ccc}
4 & -4 & 2 \\
-4 & 12 & -4 \\
2 & -4 & 4
\end{array}\right) \quad M_{-\beta_{34}}=\left(\begin{array}{cccc}
8 & 4 & -8 & -\frac{32}{5} \\
4 & 4 & -\frac{24}{5} & -4 \\
-8 & -\frac{24}{5} & 12 & 8 \\
-\frac{32}{5} & -4 & 8 & 8
\end{array}\right)
$$

and the matrix of the trivial module is given by

$$
M_{0}=\left(\begin{array}{cccccc|cccccc}
8 & -4 & 4 & 0 & -\frac{16}{3} & 4 & 0 & 4 & -\frac{16}{3} & 0 & 4 & -6 \\
-4 & 8 & 4 & -4 & 4 & 0 & -4 & 0 & 4 & 4 & -\frac{32}{5} & 0 \\
4 & 4 & 16 & -\frac{16}{3} & 0 & 8 & -\frac{16}{3} & 8 & 0 & 8 & 0 & -\frac{48}{5} \\
0 & -4 & -\frac{16}{3} & 8 & 4 & 4 & 0 & -6 & -\frac{16}{3} & 0 & 4 & 4 \\
-\frac{16}{3} & 4 & 0 & 4 & 16 & 8 & -\frac{16}{3} & -\frac{48}{5} & 0 & 8 & 0 & 8 \\
4 & 0 & 8 & 4 & 8 & 24 & -6 & 0 & -\frac{48}{5} & 12 & 12 & 0 \\
\hline 0 & -4 & -\frac{16}{3} & 0 & -\frac{16}{3} & -6 & 8 & 4 & 4 & 0 & 4 & 4 \\
4 & 0 & 8 & -6 & -\frac{48}{5} & 0 & 4 & 24 & 8 & 12 & 12 & 0 \\
-\frac{16}{3} & 4 & 0 & -\frac{16}{3} & 0 & -\frac{48}{5} & 4 & 8 & 16 & 8 & 0 & 8 \\
0 & 4 & 8 & 0 & 8 & 12 & 0 & 12 & 8 & 40 & 16 & 12 \\
4 & -\frac{32}{5} & 0 & 4 & 0 & 12 & 4 & 12 & 0 & 16 & 32 & 12 \\
-6 & 0 & -\frac{48}{5} & 4 & 8 & 0 & 4 & 0 & 8 & 12 & 12 & 24
\end{array}\right)
$$

It turns out that no further changes are necessary, since all of these matrices are positive definite by Sylvester's criterion.

Larger Isotropy

We will not present the above for all K in the same detail. In fact, we will present here the different possible K and their Kähler Einstein metrics. By corollary 50 the curvature matrices are then obtained by considering the correct submatrices of the matrices of $\left(S O(8), \mathbb{T}, J_{\text {std }}\right)$ with the new metric coefficients. As before, we present the details in the appendix for the interested reader. For each K, we will give the indices of the rows and columns of the curvature matrices that have to be erased to obtain the restriction and give a detailed table of the used four forms. We can reduce the different cases for K to the following three using the trialtrian symmetry of D_{4} and theorem 22 together with the result of Itoh.

K	$D=(V, E)$	γ_{K}^{*}	$g_{\alpha_{12}}$	$g_{\alpha_{23}}$	$g_{\alpha_{34}}$	$g_{\beta_{34}}$
$S U(2) \mathbb{T}^{3}$	α_{12}	0	$\frac{3}{2}$	1	1	
$\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$		α_{23}	$\frac{3}{2}$	0	$\frac{3}{2}$	$\frac{3}{2}$
$\mathbb{T}^{2} S U(2) S U(2)$		$2 \varepsilon_{3}$	1	2	0	0

Chapter 9

Appendix

We use the appendix to present the remaining part of the proof of conjecture $H(4)$, proving that the holomorphic curvature tensor can be modified into a positive tensor via four forms in all C spaces $\left(G, K, J_{s t d}, g_{K E}\right)$, where G is a simple classical group of rank 4 and K is the centralizer of a torus leaving $J_{s t d}$ invariant. That means in detail, that we describe the needed \mathbb{T} invariant four forms and the submatrices of the curvature matrices of ($G, \mathbb{T}, J_{\text {std }}$) corresponding to the curvature tensor with isotropy K as presented in corollary 50 . Notice, that we are allowed to use \mathbb{T} invariant four forms by lemma 18 ,

The larger isotropy groups of $S U(5)$ are already completely covered in section 8.1 which is why we begin with B_{4}.

Larger isotropy of $S O(9)$

We treat each case in the table of possible isotropy groups K in section 8.2 separately. In order to keep the indices understandable, we add first the four forms to the matrices from the beginning of section 8.2 and cancel rows and columns afterwards.

Isotropy group $K=S U(2) \mathbb{T}^{3}$
In this case the desired modifications are:

Value	Intended	Forced
-4	$\left(M_{-\alpha_{12}}\right)_{(1,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(1,2)}$
$-\frac{20}{3}$	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$
-8	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$
-8	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$
4	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
8	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
3	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$-\frac{4}{5}$	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,3)}$
$\frac{6}{5}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
$-\frac{6}{5}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$
1	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{1}{7}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$
$-\frac{8}{5}$	$\left(M_{-\alpha_{23}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,3)}$
$-\frac{12}{5}$	$\left(M_{-\alpha_{23}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,2)}$

Value	Intended	Forced
$-\frac{12}{5}$	$\left(M_{-\alpha_{23}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,6)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{24}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{3}}\right)_{(4,5)}$
$-\frac{1}{2}$	$\left(M_{-\alpha_{24}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,3)}$
-2	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
-2	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$
$\frac{1}{4}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$
6	$\left(M_{-\varepsilon_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,16)}$
6	$\left(M_{-\varepsilon_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,15)}$
12	$\left(M_{-\varepsilon_{3}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,16)}$
12	$\left(M_{-\varepsilon_{3}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,15)}$
10	$\left(M_{-\varepsilon_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,16)}$
10	$\left(M_{-\varepsilon_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
12	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$
12	$\left(M_{-\varepsilon_{4}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(9,15)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	\times	1	1	\times	\times	\times	\times	1	1	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	1	\times	\times	4

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 12×12 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$
In this case the desired modifications are:

Value	Intended	Forced
$-\frac{9}{10}$	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$
$-\frac{6}{5}$	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$
$-\frac{6}{5}$	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$
$\frac{16}{11}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$-\frac{9}{10}$	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,3)}$
$\frac{6}{5}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
$-\frac{6}{5}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$
$\frac{16}{11}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{1}{8}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$

Value	Intended	Forced
1	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,5)}$
2	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{1}{5}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
$\frac{1}{5}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$
1	$\left(M_{-\varepsilon_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,16)}$
$\frac{27}{800}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
$\frac{27}{800}$	$\left(M_{-\varepsilon_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,14)}$
1	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	\times	\times	\times	2	\times	1	\times	\times	\times	2

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	\times	2	\times	2

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,11 and 16 (enumerated prior to erasing the second row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 12×12 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=\mathbb{T}^{2} S U(2) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
2	$\left(M_{-\alpha_{12}}\right)_{(1,4)}$	$\left(M_{-\beta_{34}}\right)_{(1,2)}$
2	$\left(M_{-\alpha_{12}}\right)_{(2,3)}$	$\left(M_{-\beta_{34}}\right)_{(3,4)}$
$\frac{25}{12}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
$-\frac{3}{8}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$
$\frac{4}{9}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{14}}\right)_{(1,3)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,4)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{14}}\right)_{(2,3)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,5)}$
$\frac{4}{9}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$

Value	Intended	Forced
$\frac{4}{7}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{4}{7}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
$\frac{253}{400}$	$\left(M_{-\alpha_{34}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(2,3)}$
$\frac{253}{400}$	$\left(M_{-\alpha_{34}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{2}}\right)_{(3,4)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$
$\frac{15}{2}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
$\frac{8}{5}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$
$-\frac{5}{8}$	$\left(M_{-\varepsilon_{1}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(11,14)}$
$-\frac{5}{8}$	$\left(M_{-\varepsilon_{1}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(12,13)}$

Now all matrices are positive semidefinite except for M_{0}. We need further changes, but since they all correspond to adding negative off diagonal entries to M_{0} by the arguments in the proof of proposition 31 this does not worsen the M_{η}. Therefore, we do not have to keep track of the forced modifications of the following:

Entry of M_{0}	$(4,11)$	$(6,11)$	$(2,15)$	$(3,15)$	$(8,15)$	$(9,15)$
Value	-2	-2	$-\frac{87}{40}$	$-\frac{87}{40}$	$-\frac{11}{20}$	$-\frac{11}{20}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	1	\times	2	\times	\times	\times	\times	2	\times	3	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	\times	\times	3	1

As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the first row and column) have only positive entries and can discarded as in the example of G_{2}. The remaining 13×13 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=\mathbb{T}^{3} S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
$-\frac{4}{5}$	$\left(M_{-\alpha_{12}}\right)_{(1,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(1,2)}$
-2	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$
-2	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$
-2	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$
$\frac{25}{12}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$-\frac{12}{5}$	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{\left.-\varepsilon_{4}\right)_{(1,3)}}\right.$
$\frac{12}{5}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
$-\frac{12}{5}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{\left.-\varepsilon_{4}\right)(4,6)}\right.$
$\frac{9}{10}$	$\left.\left(M_{-\alpha_{13}}\right)_{(4,4)}\right)$	$\left(M_{0}\right)_{(14,16)}$

Value	Intended	Forced
$-\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,3)}$
$-\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,2)}$
$-\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(4,5)}$	$\left(M_{\left.-\varepsilon_{4}\right)_{(5,6)}}\right.$
$\frac{9}{8}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{5}{8}$	$\left(M_{-\varepsilon_{3} 3}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,16)}$
$\frac{3}{8}$	$\left(M_{-\varepsilon_{4} 4}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
$\frac{5}{8}$	$\left(M_{-\varepsilon_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,14)}$
14	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$
$\frac{5}{8}$	$\left(M_{-\varepsilon_{4} 4}\right)_{(6,6)}$	$\left(M_{0}\right)_{(7,14)}$

We need further changes, but since they all correspond to adding negative off diagonal entries to M_{0} by the arguments in the proof of proposition 31 this does not worsen the M_{η}. Therefore, we do not have to keep track of the forced modifications of the following:

Entry of M_{0}	$(8,15)$	$(9,15)$
Value	$-\frac{5}{4}$	$-\frac{5}{4}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	3	\times	4	5	\times	\times	\times	\times	\times	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	3	4	5	\times	13

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 13×13 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=S U(3) \mathbb{T}^{2}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{5}{2}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{1}{6}$	$\left.\left(M_{-\alpha_{14}}\right)_{(3,3)}\right)$	$\left(M_{0}\right)_{(13,16)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{1}{6}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
$\frac{1}{6}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	\times	1	1	1,2	\times	1	\times	1,2	1	1,2

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	1	1,2	\times	$2,4,5$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row $10,11,14,15$ and 16 (enumerated prior to erasing the second fourth and fifth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 8×8 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $K=S U(2) \mathbb{S}^{1} S U(2) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
8	$\left(M_{-\alpha_{12}}\right)_{(1,4)}$	$\left(M_{-\beta_{34}}\right)_{(1,2)}$
8	$\left(M_{-\alpha_{12}}\right)_{(2,3)}$	$\left(M_{-\beta_{34}}\right)_{(3,4)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
3	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$

Value	Intended	Forced
$\frac{1}{2}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
-8	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
-8	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$
8	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
8	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
$\frac{11}{4}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
1	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	1	\times	1,2	1	\times	\times	\times	2	1	1,3	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	1	\times	3	1,4

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,15 and 16 (enumerated prior to erasing the first and fourth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=S U(2) \mathbb{T}^{2} S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
3	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$-\frac{9}{5}$	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,3)}$
$\frac{9}{5}$	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
$-\frac{9}{5}$	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$
1	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$-\frac{9}{5}$	$\left(M_{-\alpha_{23}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,3)}$
$-\frac{9}{5}$	$\left(M_{-\alpha_{23}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{1}}\right)_{(1,2)}$

Value	Intended	Forced
$-\frac{9}{5}$	$\left(M_{-\alpha_{23}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,6)}$
1	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,16)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,14)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(9,15)}$
$\frac{23}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(7,14)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	3	1	1,4	5	\times	\times	\times	1	1	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	3	1,4	5	\times	4,13

Now all matrices are positive semidefinite except for M_{0}. We add $-\frac{1}{4}$ to the symmetrically to the entry $(9,12)$ of M_{0}. For the resulting M_{0} we see as in the case of the toric isotropy that column and row 10, 15 and 16 (enumerated prior to erasing the fourth and thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $K=\mathbb{S}^{1} S U(3) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{9}{10}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$\frac{9}{10}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$
$\frac{9}{10}$	$\left(M_{-\alpha_{14}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(13,16)}$
$\frac{23}{8}$	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,5)}$
$\frac{3}{2}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$

Value	Intended	Forced
$\frac{23}{8}$	$\left(M_{-\alpha_{24}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,6)}$
$\frac{3}{2}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(13,15)}$
$\frac{23}{8}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{3}{2}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(13,14)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1,2	1	\times	2	\times	2	\times	1	1,2	\times	3	2,4

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	\times	\times	2	2,3	$1,2,3$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row $10,11,12$ and 16 (enumerated prior to erasing the first , second and third row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 9×9 block is now positive definite and hence we have a modified positive holomorphic curvature tensor.

Isotropy group $K=\mathbb{S}^{1} S U(2) \mathbb{S}^{1} S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
-2	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$
-2	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$
-2	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$
$\frac{16}{11}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
-2	$\left(M_{-\alpha_{13}}\right)_{(1,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,3)}$
2	$\left(M_{-\alpha_{13}}\right)_{(2,4)}$	$\left(M_{-\varepsilon_{2}}\right)_{(2,3)}$
-2	$\left(M_{-\alpha_{13}}\right)_{(3,4)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,6)}$
$\frac{16}{11}$	$\left(M_{-\alpha_{13}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(14,16)}$

Value	Intended	Forced
2	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(14,15)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,16)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,14)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(9,15)}$
$\frac{21}{80}$	$\left(M_{-\varepsilon_{4}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(7,14)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	3	\times	4	2,5	\times	1	\times	\times	\times	2

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	3	4	2,5	\times	2,13

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,11 and 16 (enumerated prior to erasing the second and thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $K=\mathbb{T}^{2} S O(5)$
In this case the desired modifications are:

Value	Intended	Forced
-1	$\left(M_{-\alpha_{12}}\right)_{(1,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(1,2)}$
-1	$\left(M_{-\alpha_{12}}\right)_{(2,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,2)}$
-1	$\left(M_{-\alpha_{12}}\right)_{(3,5)}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,4)}$
-1	$\left(M_{-\alpha_{12}}\right)_{(4,5)}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,5)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
$\frac{25}{12}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(15,16)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
$\frac{27}{8}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$

Value	Intended	Forced
$\frac{27}{8}$	$\left(M_{-\beta_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,12)}$
$\frac{27}{8}$	$\left(M_{-\beta_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,9)}$
$\frac{27}{8}$	$\left(M_{-\beta_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(6,11)}$
$\frac{27}{8}$	$\left(M_{-\beta_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(3,8)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,16)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,15)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{3}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,16)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{3}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,15)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,16)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,15)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{4}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(12,16)}$
$\frac{3}{4}$	$\left(M_{-\varepsilon_{4}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(9,15)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	3	\times	4	5	\times	\times	\times	\times	\times	\times

and

$-\eta$	ε_{1}	ε_{2}	ε_{3}	ε_{4}	0
\sharp of M_{η}	3	4	5	\times	$1,7,13,14$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the first, seventh, thirteenth and fourteenth row and column) have only positive entries and can discarded as in the example of G_{2}. The remaining 10×10 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Larger isotropy of $S p(4)$

We treat each case in the table of possible isotropy groups K in section 8.3 separately. In order to keep the indices understandable, we add first the four forms to the matrices from the beginning of section 8.3 and cancel rows and columns afterwards.

Isotropy group $S U(2) \mathbb{T}^{3}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{15}{14}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{9}{8}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
14	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(10,16)}$
14	$\left(M_{-\alpha_{12}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(10,15)}$

Value	Intended	Forced
-3	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
-3	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$
$\frac{9}{7}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{9}{7}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
$\frac{25}{7}$	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{25}{7}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
1	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$
$-\frac{1}{4}$	$\left(M_{0}\right)_{(7,14)}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	\times	1	1	\times	\times	\times	\times	1	1	\times

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	1	\times	\times	4

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 12×12 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$
In this case the desired modifications are:

Value	Intended	Forced
$-\frac{1}{4}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$-\frac{1}{4}$	$\left(M_{-\alpha_{13}}\right)_{(1,3)}$	$\left(M_{-\gamma_{4}}\right)_{(1,3)}$
$\frac{5}{8}$	$\left(M_{-\alpha_{23}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(2,3)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,5)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(1,3)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,11)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(7,9)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(8,15)}$

Value	Intended	Forced
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(8,14)}$
10	$\left(M_{-\alpha_{24}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,12)}$
10	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
$\frac{9}{8}$	$\left(M_{-\gamma_{2}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,10)}$
$\frac{9}{8}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{9}{2}$	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{9}{5}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
$\frac{9}{5}$	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	\times	\times	\times	2	\times	1	\times	3	\times	2

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	\times	2	\times	2

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,11 and 16 (enumerated prior to erasing the second row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 12×12 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $\mathbb{T}^{2} S U(2) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
$-\frac{1}{4}$	$\left.\left(M_{-\alpha_{12}}\right)_{(1,3)}\right)$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$-\frac{1}{4}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{1}{2}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{3}{2}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{3}{2}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,11)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{24}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,12)}$
$-\frac{15}{4}$	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{\left.-\beta_{34}\right)_{(1,3)}}\right.$
$-\frac{15}{4}$	$\left(M_{-\alpha_{34} 4}\right)_{(2,4)}$	$\left(M_{\left.-\beta_{34}\right)_{(2,4)}}\right.$

Value	Intended	Forced
$\frac{5}{4}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{7}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$
$\frac{15}{8}$	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
$\frac{15}{8}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
$\frac{5}{8}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(7,14)}$
$\frac{5}{8}$	$\left(M_{\left.-\alpha_{34}\right)_{(6,6)}}\right)$	$\left(M_{0}\right)_{(7,13)}$
$\frac{1}{2}$	$\left(M_{-\gamma_{2}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,10)}$
$\frac{25}{8}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{3}{2}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
$\frac{25}{8}$	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{3}{2}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	1	\times	2	\times	\times	\times	\times	2	\times	3	5

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	\times	\times	3	1

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the first row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 13×13 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $\mathbb{T}^{3} S U(2)$

In this case the desired modifications are:

Value	Intended	Forced
$-\frac{4}{7}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$-\frac{24}{7}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$-\frac{11}{4}$	$\left(M_{-\alpha_{13}}\right)_{(1,3)}$	$\left(M_{-\gamma_{4}}\right)_{(1,3)}$
$-\frac{25}{8}$	$\left(M_{-\alpha_{23}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(2,3)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,11)}$
$-\frac{5}{2}$	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
$-\frac{5}{2}$	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$

Value	Intended	Forced
$\frac{1}{2}$	$\left(M_{-\gamma_{2}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,10)}$
2	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{2}{3}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
8	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
6	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
$\frac{21}{4}$	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	4	\times	5	6	\times	\times	\times	\times	\times	\times

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	\times	\times	\times	13

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 13×13 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $S U(3) \mathbb{T}^{2}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{8}{3}$	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{8}{3}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
$\frac{8}{3}$	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	\times	1	1	1,2	\times	\times	\times	\times	1	1,2

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	1	2	\times	$2,4,5$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row $10,11,14,15$ and 16 (enumerated prior to erasing the second, fourth and fifth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 8×8 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $S U(2) \mathbb{S}^{1} S U(2) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{4}{7}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$\frac{4}{7}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(10,16)}$
$\frac{7}{4}$	$\left(M_{-\alpha_{12}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(10,15)}$
-4	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$

Value	Intended	Forced
-4	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(7,14)}$
$\frac{3}{8}$	$\left(M_{-\alpha_{34}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(7,13)}$
$\frac{16}{7}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{16}{7}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
$\frac{16}{7}$	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{16}{7}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	1	\times	1,2	1	\times	\times	\times	2	1	1,3	5

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	1	\times	3	1,4

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,15 and 16 (enumerated prior to erasing the first and fourth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $S U(2) \mathbb{T}^{2} S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{15}{14}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$-\frac{7}{2}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$-\frac{15}{4}$	$\left(M_{-\alpha_{13}}\right)_{(1,3)}$	$\left(M_{-\gamma_{4}}\right)_{(1,3)}$
$-\frac{15}{4}$	$\left(M_{-\alpha_{23}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(2,3)}$
-3	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
-3	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$

Value	Intended	Forced
$\frac{9}{7}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
$\frac{9}{7}$	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
7	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
$\frac{57}{8}$	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
4	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$
$-\frac{1}{4}$	$\left(M_{0}\right)_{(9,12)}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	\times	4	1	1,5	6	\times	\times	\times	1	1	\times

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	1	\times	\times	4,13

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth and thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $\mathbb{S}^{1} S U(3) \mathbb{S}^{1}$
In this case the desired modifications are:

Value	Intended	Forced
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,5)}$
$\frac{5}{4}$	$\left.\left(M_{-\alpha_{23}}\right)_{(3,3)}\right)$	$\left(M_{0}\right)_{(10,11)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(7,9)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(8,15)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{23}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(8,14)}$
$\frac{5}{4}$	$\left.\left(M_{-\alpha_{24}}\right)_{(1,1)}\right)$	$\left(M_{0}\right)_{(4,6)}$
$\frac{5}{4}$	$\left(M_{\left.\left.-\alpha_{24}\right)_{(2,2)}\right)}\left(M_{0}\right)_{(7,8)}\right.$	
$\frac{5}{4}$	$\left(M_{-\alpha_{24}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,12)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{24}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,15)}$

Value	Intended	Forced
$\frac{5}{4}$	$\left(M_{\left.-\alpha_{24}\right)_{(5,5)}}\right.$	$\left(M_{0}\right)_{(9,13)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
$\frac{5}{4}$	$\left.\left(M_{-\alpha_{34}}\right)_{(3,3)}\right)$	$\left(M_{0}\right)_{(11,12)}$
$\frac{5}{4}$	$\left.\left(M_{-\alpha_{34}}\right)_{(4,4)}\right)$	$\left(M_{0}\right)_{(8,9)}$
$\frac{5}{4}$	$\left(M_{-\alpha_{34}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(7,14)}$
$\frac{5}{4}$	$\left(M_{\left.\left.-\alpha_{34}\right)_{(6,6)}\right)}\left(M_{0}\right)_{(7,13)}\right.$	
2	$\left.\left(M_{-\gamma_{2}}\right)_{(1,1)}\right)$	$\left(M_{0}\right)_{(4,10)}$
2	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
2	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1,2	1	\times	2	\times	2	\times	1	1,2	3	3,4	$2,4,5$

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	\times	2	2,3	$1,2,3$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row $10,11,12$ and 16 (enumerated prior to erasing the first three rows and columns) have only positive entries and can be discarded as in the example of G_{2}. The remaining 9×9 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy groups $\mathbb{S}^{1} S U(2) \mathbb{S}^{1} S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
$-\frac{25}{8}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$-\frac{25}{8}$	$\left(M_{-\alpha_{13}}\right)_{(1,3)}$	$\left(M_{-\gamma_{4}}\right)_{(1,3)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,5)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(1,3)}$
13	$\left(M_{-\alpha_{23}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(10,11)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(7,9)}$
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(5,5)}$	$\left(M_{0}\right)_{(8,15)}$

Value	Intended	Forced
$\frac{5}{2}$	$\left(M_{-\alpha_{23}}\right)_{(6,6)}$	$\left(M_{0}\right)_{(8,14)}$
$\frac{9}{8}$	$\left(M_{-\gamma_{2}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(4,10)}$
$\frac{9}{8}$	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
8	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
5	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$
5	$\left(M_{-\gamma_{4}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(1,7)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	1	\times	4	\times	5	2,6	\times	1	\times	3	\times	2

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	\times	2	\times	2,13

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10,11 and 16 (enumerated prior to erasing the second and thirteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 11×11 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Isotropy group $\mathbb{T}^{2} S p(2)$

In this case the desired modifications are:

Value	Intended	Forced
$-\frac{24}{7}$	$\left(M_{-\alpha_{12}}\right)_{(1,3)}$	$\left(M_{-\gamma_{3}}\right)_{(1,2)}$
$-\frac{24}{7}$	$\left(M_{-\alpha_{12}}\right)_{(2,4)}$	$\left(M_{-\gamma_{4}}\right)_{(1,2)}$
$-\frac{55}{8}$	$\left(M_{-\alpha_{34}}\right)_{(1,3)}$	$\left(M_{-\beta_{34}}\right)_{(1,3)}$
$-\frac{55}{8}$	$\left(M_{-\alpha_{34}}\right)_{(2,4)}$	$\left(M_{-\beta_{34}}\right)_{(2,4)}$
2	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$

Value	Intended	Forced
2	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
8	$\left(M_{-\gamma_{3}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,11)}$
6	$\left(M_{-\gamma_{3}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,8)}$
8	$\left(M_{-\gamma_{4}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(6,12)}$
6	$\left(M_{-\gamma_{4}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,9)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
\sharp of M_{η}	\times	$1,3,5$	2,4	$2,4,6$	2,5	5,6	\times	\times	2	\times	3	5

and

$-\eta$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0
\sharp of M_{η}	\times	1	\times	3	$1,7,13,14$

Now all matrices are positive semidefinite except for M_{0}. As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated prior to erasing the first, seventh, thirteenth and fourteenth row and column) have only positive entries and can be discarded as in the example of G_{2}. The remaining 10×10 block is now positive definite and hence we have a positive modified holomorphic curvature tensor.

Larger isotropy $S O(8)$

We treat each case in the table of possible isotropy groups K in section 8.4 separately. In order to keep the indices understandable, we add first the four forms to the matrices from the beginning of section 8.4 and cancel rows and columns afterwards.

Isotropy group $S U(2) \mathbb{T}^{3}$

In this case the desired modifications are:

Value	Intended	Forced
-1	$\left(M_{0}\right)_{(9,12)}$	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}	0
\sharp of M_{η}	\times	\times	\times	1	1	\times	\times	\times	\times	1	1	\times	4

Now all matrices are positive semidefinite and M_{0} is positive definite. Hence we can modify the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have positive holomorphic curvature.

Isotropy group $\mathbb{S}^{1} S U(2) \mathbb{T}^{2}$
In this case the desired modifications are:

Value	Intended	Forced
-1	$\left(M_{0}\right)_{(4,5)}$	$\left(M_{-\alpha_{23}}\right)_{(1,1)}$
-1	$\left(M_{0}\right)_{(7,9)}$	$\left(M_{-\alpha_{23}}\right)_{(4,4)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}	0
\sharp of M_{η}	1	\times	\times	\times	\times	2	\times	1	\times	\times	\times	2	2

Now all matrices are positive semidefinite and M_{0} is positive definite. Hence we can modify the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have positive holomorphic curvature.

Isotropy group $\mathbb{T}^{2} S U(2) S U(2)$
In this case the desired modifications are:

Value	Intended	Forced
2	$\left(M_{-\alpha_{12}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(2,5)}$
2	$\left(M_{-\alpha_{12}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(3,6)}$
2	$\left(M_{-\alpha_{12}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(8,11)}$
2	$\left(M_{-\alpha_{12}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(9,12)}$
2	$\left(M_{-\alpha_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,6)}$
2	$\left(M_{-\alpha_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,3)}$

Value	Intended	Forced
2	$\left(M_{-\alpha_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(11,12)}$
2	$\left(M_{-\alpha_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(8,9)}$
2	$\left(M_{-\beta_{34}}\right)_{(1,1)}$	$\left(M_{0}\right)_{(5,12)}$
2	$\left(M_{-\beta_{34}}\right)_{(2,2)}$	$\left(M_{0}\right)_{(2,9)}$
2	$\left(M_{-\beta_{34}}\right)_{(3,3)}$	$\left(M_{0}\right)_{(6,11)}$
2	$\left(M_{-\beta_{34}}\right)_{(4,4)}$	$\left(M_{0}\right)_{(3,8)}$

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following rows and columns:

$-\eta$	α_{12}	α_{13}	α_{14}	α_{23}	α_{24}	α_{34}	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}	0
\sharp of M_{η}	\times	1,3	2	2,4	2	\times	\times	\times	2	\times	3	\times	1,7

Now all matrices are positive semidefinite and M_{0} is positive definite. Hence we can modify the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have positive holomorphic curvature.

Bibliography

[Arv92] Andreas Theoharis Arvanitoyeorgos. Invariant Einstein metrics on generalized flag manifolds. ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)-University of Rochester.
[AW75] Simon Aloff and Nolan R. Wallach. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Amer. Math. Soc., 81:9397, 1975.
[BB76] L. Berard-Bergery. Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. Pures Appl. (9), 55(1):47-67, 1976.
[Ber61] M. Berger. Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa (3), 15:179-246, 1961.
[BFR86] M. Bordemann, M. Forger, and H. Römer. Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models. Comm. Math. Phys., 102(4):605-617, 1986.
[BH58] A. Borel and F. Hirzebruch. Characteristic classes and homogeneous spaces. I. Amer. J. Math., 80:458-538, 1958.
[Bor54] Armand Borel. Kählerian coset spaces of semisimple Lie groups. Proc. Nat. Acad. Sci. U. S. A., 40:1147-1151, 1954.
[Bou68] N. Bourbaki. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
[CE75] Jeff Cheeger and David G. Ebin. Comparison theorems in Riemannian geometry. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9.
[FH91] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
[GZ81] Ignacio Guerrero and Stanley M. Zoltek. On the sectional curvature of holomorphic curvature operators. Proc. Amer. Math. Soc., 83(2):362-368, 1981.
[Hel01] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
[Ito78] Mitsuhiro Itoh. On curvature properties of Kähler C-spaces. J. Math. Soc. Japan, 30(1):39-71, 1978.
[Kli61] Wilhelm Klingenberg. On compact Kaehlerian manifolds with positive holomorphic curvature. Proc. Amer. Math. Soc., 12:350-356, 1961.
[Mat72] Yozo Matsushima. Remarks on Kähler-Einstein manifolds. Nagoya Math. J., 46:161-173, 1972.
[Müt87] Michael Müter. Krümmungserhöhende Deformationen mittels Gruppenaktionen. 1987. Thesis (Ph.D.)-University of Münster.
[Nom54] Katsumi Nomizu. Invariant affine connections on homogeneous spaces. Amer. J. Math., 76:33-65, 1954.
[O'N66] Barrett O'Neill. The fundamental equations of a submersion. Michigan Math. J., 13:459-469, 1966.
[Tho71] John A. Thorpe. The zeros of nonnegative curvature operators. J. Differential Geometry, 5:113-125, 1971.
[Tsu57] Yôtarô Tsukamoto. On Kählerian manifolds with positive holomorphic sectional curvature. Proc. Japan Acad., 33:333-335, 1957.
[Wal72] Nolan R. Wallach. Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. of Math. (2), 96:277-295, 1972.
[Wan54] Hsien-Chung Wang. Closed manifolds with homogeneous complex structure. Amer. J. Math., 76:1-32, 1954.
[WG68] Joseph A. Wolf and Alfred Gray. Homogeneous spaces defined by Lie group automorphisms. II. J. Differential Geometry, 2:115-159, 1968.
[Wil99] Burkhard Wilking. The normal homogeneous space $(\mathrm{SU}(3) \times \mathrm{SO}(3)) / \mathrm{U}^{\bullet}(2)$ has positive sectional curvature. Proc. Amer. Math. Soc., 127(4):1191-1194, 1999.
[WZ18] Burkhard Wilking and Wolfgang Ziller. Revisiting homogeneous spaces with positive curvature. J. Reine Angew. Math., 738:313-328, 2018.
[XW15] Ming Xu and Joseph A. Wolf. $\mathrm{Sp}(2) / \mathrm{U}(1)$ and a positive curvature problem. Differential Geom. Appl., 42:115-124, 2015.
[Zil07] Wolfgang Ziller. Examples of Riemannian manifolds with non-negative sectional curvature. In Surveys in differential geometry. Vol. XI, volume 11 of Surv. Differ. Geom., pages 63-102. Int. Press, Somerville, MA, 2007.

