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Introduction

One of the most challenging problems in Riemannian geometry is to develop a good under-
standing of the concept of curvature of a geometric object. That means how to quantify the
deviation of a curved object from a �at Euclidean space. The mathematical answer to this
question was given by Bernhard Riemann in his habilitation in 1854 and is now known as
the Riemannian curvature tensor

R : TM × TM × TM × TM → R

for the curved object of a Riemannian manifold (M, g). The amount of information of M
encoded in R is very rich and until today we are far from having a complete understanding
of R due to its complexity.

However, the symmetries satis�ed by R imply that, at the point p ∈M , it is completely
determined by its values on tuples (X,Y,X, Y ) for X,Y being orthonormal in (TpM, gp).
This results in the de�nition of the sectional curvature of a tangent plane σ = 〈X,Y 〉R

sec(σ) = R(X,Y,X, Y )

which corresponds to the Gauss curvature of the totally geodesic surface generated by σ.

Since sec still decodes the full complexity of R, mathematicians considered various re-
ductions, such as the Ricci tensor and the scalar curvature, obtaining tractability at the
expense of losing information aboutM . In the analysis of each of these curvature terms, the
following fundamental questions arose. What characterises a Riemannian manifold (M, g)
that has positive curvature? Is positive curvature a strong restriction? These questions are
di�cult to answer and we are therefore interested in �nding examples in order to develop
some intuition.

There are many famous partial results addressing these questions in the literature. We
want to point out that these questions are very hard, even in the comparatively easy case of
metrics with transitive isometry group. In fact, for example the the classi�cation of homo-
geneous spaces with sec > 0 is the result of a long series of papers by Berger, Wallach, Alo�,
Bérard Bergery, Wilking, Xu, Wolf ([Ber61][Wal72][AW75][BB76],[Wil99][XW15]) and has
only recently been completed by Wilking and Ziller in [WZ18] closing the last remaining
gap. For more details on the contributions of the various authors we refer the interested
reader to the exposition on [WZ18].

If the Riemannian manifold had the additional structure of being Kähler, i.e. having a
compatible parallel complex structure J , one can de�ne another reduction of the curvature
tensor. The so-called holomorphic sectional curvature is given by

H : SM → R X 7→ sec(X ∧ JX)

being the sectional curvature of complex planes in the complex vector space (TpM,J). As
with the other curvatures, we ask the following questions. How strong is the condition that
H is positive? What examples are known?

7



8 INTRODUCTION

Similar to the Bonnet-Myers theorem for Ricci curvature, Tsukamoto proved in [Tsu57]
that if the holomorphic curvature is bounded from below by a positive constant then the
manifold is compact, simply connected and there is a upper bound for the diameter. Further-
more, as Klingenberg showed in [Kli61] the equality case is only satis�ed if M has constant
holomorphic curvature and biholomorphically isometric to complex projective space with its
standard Kähler structure. Therefore one is left with the impression that the property of hav-
ing positive holomorphic curvature seems similarly strong as having positive Ricci curvature.

The purpose of this thesis is to present evidence to support the impression that pos-
itive holomorphic curvature is not too strong by constructing new examples leading to an
interesting conjecture. Following the idea of the Grove symmetry program, we treat the
question of positive holomorphic curvature in the setting of a large isometry group, i.e. ho-
mogeneous Kähler manifolds. If we have positive holomorphic curvature on a homogeneous
Kähler manifold, this immediately implies that H is bounded from below by a positive con-
stant and hence we may restrict our attention to simply connected compact homogeneous
Kähler manifolds.

These spaces are called Kähler C spaces or generalised �ag manifolds. Their real rep-
resentation turns out to be M = G/K where G is a semisimple compact Lie group and the
isotropy group K is the centraliser of a torus in G. This implies that K shares a maximal
torus with G and, since it is a compact group, it factors up to covering into the product of
its center and a semisimple factor Kss. Via the isotropy action, K decomposes TK(G/K)
into irreducible modules and roughly speaking we get the correlation that the larger Kss is,
the fewer irreducible modules there are. Resulting in the following rule of thumb:

The smaller the dimension of the center of K the nicer the description of invariant
geometric objects on G/K.

Examples of these objects are of course the metric, the Riemannian curvature tensor and
the holomorphic sectional curvature.

The only results known to the author pertaining to the positivity of the holomorphic
sectional curvature of these spaces were obtained by Itoh in [Ito78]. His examples require
that the tangent space decomposes into at most two irreducible modules with respect to
the isotropy representation. This forces b2(M) = dim(z(K)) to be 1 and therefore these ex-
amples are on the easier side of the spectrum of C spaces. While his theorem covers already
all cases where b2(M) = 1 for G being a classical simple group and yields therefore a large
family of examples. Nothing seems to be known about the cases of b2(M) > 1.

The �rst result of the thesis is a generalisation of Itoh's theorem yielding the �rst C
spaces with b2(M) > 1:

Theorem 22. Let (G,K, J) be a C space, such that TK(G/K) decomposes into at most
three irreducible modules. Then the holomorphic sectional curvature of any Kähler metric
is positive.

This includes in�nitely many new examples with dim(z(K)) = 2, i.e.

SU(n+ 1)/S(U(k1) U(k2) U(k3)), SO(2n)/SUi(n− 1) T2, E6/SO(8)T2

where k1 +k2 +k3 = n+1 and SUi(n−1) ↪→ SO(2n) for i = 1, 2 denotes two non equivalent
embeddings. Furthermore, we get eight new examples with dim(z(K)) = 1, which are all
quotients of exceptional groups. However, this result applies also only to easier C spaces,
i.e. those with small b2.

At the opposite end of the spectrum, we have the case of K being the maximal torus
of G, i.e. b2(M) = rk(G), whose decomposition into irreducible modules is the most com-
plicated. In particular, the amount of Kähler metrics for a given complex structure is fairly
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large. However, it is known that there exists, up to scaling, a unique Kähler Einstein metric
gJKE for each C space (G,K, J) to which we will restrict our attention. The �rst result is
that the holomorphic curvature of the Kähler Einstein metric is independent of the complex
structure in the following sense:

Corollary 39. For any two invariant complex structures J , J ′ on G/T there exists a biho-
lomorphic isometry

(G,T, J, gJKE)→ (G,T, J ′, gJ
′

KE).

Hence the holomorphic curvature of the corresponding Kähler Einstein metric is independent
of the chosen complex structure.

Therefore, we may �x a preferred complex structure Jstd. In the case of larger iso-
tropy groups the above does not hold any more. However, each classical C space is biho-
lomorphically isometric to one with complex structure induced by Jstd via the submersion
G/T→ G/K, which allows the further restriction to the spaces (G,K, Jstd, gKE).

In this context, we formulate the following conjecture H(k) depending on k ∈ N:

Conjecture 51. Let (Gk,K, Jstd, gKE) be a simple Kähler Einstein C space with G being a
classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

Since H(k) being true implies having examples with b2(M) = k, we see that we are
leaving the "easier" end of the spectrum of C spaces. The naturally arising questions, we
seek to answer are the following:

i) Is there a k ∈ N such that H(k) is true?

ii) Is there a relation between H(k1) and H(k2) for k1 < k2?

Assuming that the answer to (i) is yes and the independence of the complex structure, the
following question arises naturally:

Does every classical Kähler Einstein C space have positive holomorphic sectional
curvature, i.e. is H(k) true for all k? If not, what characterises the smallest k for which

H(k) is wrong?

The main results of this thesis are the following answers to questions i) and ii):

Theorem 52, Theorem 54.

i) H(4) is true.

ii) If H(n) is true so is H(k) for k ≤ n.

Itoh's approach, which we also used to prove theorem 22, becomes very complicated and
unfeasible in cases of larger b2(M). Hence, we choose a di�erent strategyby describing the
holomorphic sectional curvature H as a restriction of the quadratic form of the so-called
holomorphic curvature tensor. This step allows us to use techniques developed in [Tho71]
and [GZ81] to prove positivity for the H(4) cases. This results in a variety of new examples
with 1 < b2(M) ≤ 4. As an exemplary application of the techniques we also prove

Theorem 47. Every Kähler Einstein C space (G2,K, J, gKE) has positive holomorphic sec-
tional curvature.

Sadly, even in these cases it is hard to prove positivity and there does not seem to exist
an easily generalisable pattern to prove H(k) for an arbitrary k. However, we did not detect
any kind of obstruction, which leads us to believe that H(k) might actually be true for all
k ∈ N.

As the last results of this thesis, we analysed the implications of the assumption of H(k)
being true for all k ∈ N. It is clear that H(k) being true implies that (Gk,Tk, Jstd, gKE) has
positive holomorphic curvature. This alone leads to
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Theorem 59. If (Gk,Tk, Jstd, gKE) has positive holomorphic curvature for all k, then all
classical Kähler C spaces have nonnegative holomorphic curvature.

Hence, �nding a negatively curved complex plane in a classical Kähler C space with
any complex structure and any compatible Kähler metric would imply that there is also a
negatively curved plane for the Kähler Einstein metric of a C space with toric isotropy and
hence disproves H(k) for all k larger than a certain k∗. In fact if one relaxes the requirement
from positive to nonnegative holomorphic curvature one even obtains an equivalence

Corollary 60. The spaces (Gk,Tk, Jstd, gKE) have nonnegative holomorphic curvature for
all k ∈ N if and only if all classical Kähler C spaces have nonnegative holomorphic curvature.

The thesis is structured in the following way. In order to be as self-contained as possible
we present in chapter 1 all necessary requirements we will use throughout the thesis, includ-
ing an introduction to the structure of Kähler C spaces, their Riemannian curvature tensor
and the holomorphic curvature tensor. Furthermore, we introduce the general techniques of
[Tho71] to prove positive curvature. We end the chapter with a description of the algebraic
setting for the classical compact simple Lie groups including the de�nition of their standard
complex structures.

Chapter 2 is dedicated to the proof of theorem 22 generalising Itoh's result. This chapter
also describes explicitly all spaces to which we can apply the theorem, which are therefore
new examples of Kähler C spaces with positive holomorphic curvature.

In chapter 3, we analyse in detail the structure of the holomorphic curvature tensor and
how we can apply Thorpe's methods. Furthermore, we present the Kähler Einstein metrics
on C spaces in general and in particular for the classical compact simple groups. In the end
of the chapter we investigate the question of how strongly the choice of complex structure
in�uences the problems at hand, resulting in the proof of corollary 39.

Chapter 4 serves two purposes. First, it gives a complete answer to the question of
positive holomorphic curvature for Kähler Einstein C spaces with G being the exceptional
group G2, i.e. theorem 47. Second, it provides the reader with a small-dimensional example
of how we use Thorpe's methods.

In chapter 5, we present a relationship between the holomorphic curvature tensor of
the C spaces (G,T, Jstd) and (G,K, Jstd). This will turn out useful in calculations in later
chapters. However, as we point out, it is not enough to establish some kind of monotonicity
of curvature in the sense of O'Neill's formula for Riemannian submersions.

Chapter 6 is dedicated to the formulation of H(k), its monotonicity in k and the discus-
sion of its consequences including proofs of theorem 59 and corollary 60.

Chapters 7 and 8 present the holomorphic curvature tensors in the case of classical
compact simple groups and the discussion of the case of rank 4, i.e. the proof of H(4).



Chapter 1

Preliminaries

We begin by giving an accurate description of the spaces considered and present how the
symmetry translates all geometric objects involved into purely algebraic ones. To do so
throughout this section we follow closely the introductory lines of [Arv92].

1.1 Reduction to the algebraic setting

De�nition 1. A Kähler C space M is a compact simply connected complex homogeneous
space that carries a homogeneous Kähler metric.

Then by [Wan54] and [BFR86], we know that there is a biholomorphism

M = (G/K, J)

where G is a real semisimple compact Lie group, K is the centralizer of a torus in G and
J is a G invariant complex structure. In particular, this implies that G and K share a
common maximal torus T which will allow us to exploit the Lie structure coming from the
semisimplicity of G.

De�nition 2. The triple (G,K, J) without the choice of a �xed Kähler metric is called a C
space.

Remark: We call a Kähler C space simple or classical if the group G is simple or
classical. If the Kähler metric is Einstein, we call the space a Kähler Einstein C space.
Let p = eK ∈M = G/K. Then the following is useful to describe the geometric structures
at hand using the homogeneity.

Proposition 3. The restriction to TpM induces one to one correspondences as follows

i) Every homogeneous almost complex structure is uniquely determined by an element
J ∈ Aut(TpM)K with J2 = −id.

ii) Every homogeneous metric is uniquely determined by a K invariant inner product on
TpM .

where the superscript K means invariance under the isotropy action of K.

We will use the same notation whether referring to the structure on G/K or its restriction
to the tangent space.
Now we observe that by homogeneity of g, J and the Nijenhuis tensor

NJ(−,−) = [−,−] + J [J−,−] + J [−, J−]− [J−, J−]

the properties of J being an isometry with respect to g and integrable, i.e. NJ = 0, are true
as long as they are true on TpM . Hence it is natural to describe the tangent space at p in

11



12 CHAPTER 1. PRELIMINARIES

more detail. To that end, let t ⊂ k ⊂ g be the Lie algebras of T ⊂ K ⊂ G. Let B denote
the Killing form of G and also its complexi�cation to gC and de�ne m = k⊥ with respect to
B. Then it is well known , e. g. from [CE75], that the following map

πK : m→ TK(G/K)

X 7→ X∗K =
d

dt

∣∣∣∣
t=0

exp(tX)K

de�nes a K equivariant linear isomorphism with respect to the Adjoint action on m and the
isotropy action on TK(G/K). Therefore, we can describe the metric and complex structure as
well as the compatibility and integrability conditions in terms of m. After complexi�cation,
we have that tC = h is a Jordan algebra for gC and we obtain a root space decomposition,
where ∆g denotes the root system of G:

gC = h⊕
⊕
α∈∆g

gα

and by regularity of K, we get the further decomposition:

gC = kC ⊕mC = h⊕
⊕
α∈∆k

gα ⊕
⊕
α∈∆m

gα

where ∆k ⊂ ∆g is the root system of the semisimple part of K and ∆m = ∆g \∆k is the set
of K complementary roots.

1.2 Complex Structure and Metric

By proposition 3 and the isomorphism πK the almost complex structure corresponds to an
AdK equivariant map

J : m→ m

satisfying J2 = −id and the integrability is equivalent to

NJ = 0.

In our particular case, there are signi�cantly more explicit descriptions for the conditions
on J and g. To that end, we consider the complexi�cation of g as in the previous section
and consider the complexi�ed version of J .

Then we get that J is diagonalizable with eigenvalues ±i and we de�ne m± = Eig±i(J).
The Ad(T) equivariance implies that the eigenspaces are sums of root spaces, i. e. we obtain
a decomposition

∆m = ∆+
m ∪∆−m

where ∆±m = {α ∈ ∆m| gα ⊂ m±}. Now we analyse what properties for ∆+
m we can derive

from K equivariance and the integrability condition.
First of all, we note that since J is the complexi�cation of a real map it commutes with
complex conjugation, which in turn implies

m− = m+.

In addition, the fact that the roots take imaginary values on t yields gα = g−α and therefore

∆−m = −∆+
m.

The property corresponding to the equivariance of J is obtained from the following. From
di�erentiation, we get that J commutes with adk for k ∈ gγ ⊂ kC. Then we have for
X ∈ gα ⊂ m+

J([k,X]) =J(adk(X)) = adk(J(X))

= adk(iX) = i(adk(X))

= i[k,X].
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Since [k,X] is a generator of gα+γ , we obtain the following property for ∆+
m. Let α ∈ ∆+

m

and γ ∈ ∆k with α+ γ ∈ ∆g that
α+ γ ∈ ∆+

m.

By the Newlander-Nirenberg theorem, NJ = 0 is equivalent to [m+,m+]m ⊂ m+ and hence
we derive the property: Let α, β ∈ ∆+

m with α+ β ∈ ∆g then

α+ β ∈ ∆+
m.

In fact we have the following by [Arv92, Proposition 2]:

Proposition 4. There is a one to one correspondence between complex structures on G/K
and decompositions ∆m = ∆+

m ∪∆−m satisfying

i) ∆−m = −∆+
m

ii) For α ∈ ∆+
m and γ ∈ ∆k with α+ γ ∈ ∆g, we have

α+ γ ∈ ∆+
m

iii) For α, β ∈ ∆+
m with α+ β ∈ ∆g, we have

α+ β ∈ ∆+
m

given by J |gα = i Id|gα if and only if α ∈ ∆+
m.

Now we want to determine similar properties for the K invariant inner product

g : m×m→ R

de�ning the metric. Since the killing form B of G is negative de�nite and biinvariant on g,
we can write

g(X,Y ) = −B(PX, Y )

for all X,Y ∈ m where P : m→ m is a positive K equivariant isomorphism. Since we know
that m decomposes into inequivalent irreducible Ad(T) modules mα = m ∩ (gα ⊕ g−α) for
α ∈ ∆+

m, P decomposes into the sum of endomorphisms of the form

Pα : mα → mα

with Pα = gαIdmα by Schur's lemma with gα > 0. Note that this already ensures that J is
an isometry of g, i.e. commutes with P . In particular , this implies that J is an isometry
for the killing form. Furthermore, the K equivariance of P implies with k ∈ gγ ⊂ k and
X ∈ gα ⊂ m+

gα+γ [k,X] = P ([k,X]) = P (adk(X))

= adk(P (X)) = adk(gαX) = gα(adk(X))

= gα[k,X].

So we get gα+γ = gα for α ∈ ∆+
m,γ ∈ ∆k with α + γ ∈ ∆+

m. In fact this is also a su�cient
condition due to [Bor54]:

Proposition 5. Every K invariant inner product g on m is given by

g =
∑
α∈∆+

m

gα(−B)|mα×mα

for positive constants gα satisfying
gα+γ = gα

for α ∈ ∆+
m, γ ∈ ∆k with α+ γ ∈ ∆+

m.
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Now we want to consider the additional conditions g has to satisfy in order to induce a
Kähler metric on G/K. By de�nition a hermitian metric g with a complex structure J is
Kähler if and only if the induced 2 form is closed, i.e.

dω = 0

for ω(−,−) = g(J−,−) being the characteristic two form. In our particular case we see that
this implies the following. Let X ∈ gα, Y ∈ gβ and Z ∈ g−α−β with α, β, α+β ∈ ∆+

m. Then

0 =dω(X,Y, Z)

=ω([X,Y ], Z) + ω([Z,X], Y ) + ω([Y, Z], X)

=g(J [X,Y ], Z) + g(J [Z,X], Y ) + g(J [Y,Z], X)

=igα+β(−B)([X,Y ], Z)− igβ(−B)([Z,X], Y )− igα(−B)([Y, Z], X)

=i(gα+β − gα − gβ)(−B)([X,Y ], Z)

By semisimplicity of G, that implies

gα+β = gα + gβ .

Hence we get

Proposition 6 ([WG68]). A inner product on m induces a homogeneous Kähler metric on
(G,K) with the complex structure J if and only if it is of the form

g =
∑
α∈∆+

m

gα(−B)|mα×mα

for positive constants gα satisfying

i) gα+γ = gα for α ∈ ∆+
m, γ ∈ ∆k, and α+ γ ∈ ∆+

m

ii) gα+β = gα + gβ for α, β, α+ β ∈ ∆+
m

We see that the second property implies a certain type of additivity. Together with the
notion of bases of root systems this can be used to simplify further the construction of
Kähler metrics. Since the set ∆m is not a root system in the classical sense, we need to
consider in some detail how ∆g,∆k and ∆m interact. We do so via the following

Proposition 7. Let (G,K, J, g) be a Kähler C space. Then for any choice of positive roots
of ∆k there is a unique choice of positive roots ∆+

g of G such that the following holds

i) ∆+
m determined by J is exactly ∆m ∩∆+

g

ii) ∆+
k = ∆+

g ∩∆k

In particular, any base of ∆k can be extended to a base of ∆g.

Proof. From set theoretic considerations it is clear that the two properties determine ∆+
g

uniquely. It remains to show, that it is in fact a set of positive roots. As mentioned before,
the existence of a Kähler metric forces K to be the centralizer of a torus. In fact, [BFR86]
proved that there has to be an h1 ∈ z(k) such that

ω(X,Y ) = B(adh1
(X), Y ),

i.e. −P ◦ J = adh1
. If we apply this to an X ∈ gα for α ∈ ∆+

m we get

α(ih1)X = adih1
(X) = iadh1

(X)

= −iP ◦ J(X) = P (X) = gαX.

Hence α(ih1) > 0 for all α ∈ ∆+
m and γ(ih1) = 0 for all γ ∈ ∆k since h1 lies in the center

of k. On the other hand, any choice of positive roots ∆+
k of ∆k corresponds to an element
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h2 ∈ h with the property that γ(h2) > 0 for all positive roots of k. This is just the choice of
a Weyl Chamber for k. Then there has to be a t > 0 such that with h3 = tih1 + h2 we have

α(h3) > 0

for all α ∈ ∆+
m ∪∆+

k . This proves i) and ii). In order to conclude that we can extend bases,
we recall that there is a canonical way to obtain a base of a given set of positive roots, i.e.
the set of indecomposable roots. The last step is to see that an indecomposable element in
∆+

k stays indecomposable in ∆+
g . In fact, let γ be a indecomposable element in ∆+

k and
assume γ = α+ β with α, β ∈ ∆+

g \∆k = ∆+
m then we have by property ii) of proposition 4

−β = α− γ ∈ ∆+
m

which yields a contradiction.

By the above we can �x a base Φ = Φk ∪ Φm of ∆+
g such that Φk is a base of ∆+

k . Let
r = |Φm|. Then we de�ne the following projection:

ρ : ∆g → Zr (1.1)∑
α∈Φ

aαα 7→ (aα)α∈Φm

By the properties of the base of a root system, we know ρ(∆+
m) ⊂ Nr \ {0}. Furthermore,

we know that for any positive root α there is a string of simple roots α1, ..., αl whose partial
sum βs =

∑s
i=1 αi is a positive root and βl = α, see [Bou68, p. 159]. These known facts for

root systems imply together with proposition 6 the following for the coe�cients of a Kähler
metric

gα =
∑
β∈Φm

ρ(α)βgβ . (1.2)

This implies that a Kähler metric is completely determined by

r = |Φm| = rk(G)− rk(Kss) = dim(z(k))

positive constants where Kss is the semisimple factor of K. We want to remark here that
the image of ρ corresponds to the so called t roots . For a structured presentation of those we
refer the reader to [Arv92, Chapter 2]. We reformulate with our notation the following result
concerning the decomposition of m into irreducible K modules, which will be signi�cant for
our �rst result:

Proposition 8 ([Arv92, Theorem 2]). The image of ρ from (1.1) indexes the decomposition
of m into irreducible AdK modules, i.e.

m =
⊕

x∈ρ(∆+
m)

mx

where mx = ⊕α∈ρ−1(x)mα is irreducible.

In the light of proposition 7, we shift the point of view slightly. Instead of starting with
a pair (G,K) and constructing J , i.e. extending a Φk to Φ, we consider a pair (G, J) where
G is a compact semisimple Lie group and J is a complex structure on G/T and we want
to determine the groups K ⊂ G such that J descends to a complex structure on G/K, i.e.
given a Φ we consider the groups K with semisimple part induced by a set Φk ⊂ Φ.
These observations lead to the following construction of K:

i) Fix a complex structure on G/T, i.e. a choice of positive roots of G.

ii) Fix a base Φ of simple roots for this choice of positive roots.
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iii) Choose an arbitrary subset Φk ⊂ Φ and de�ne ∆k = ∆g ∩ 〈Φk〉R.

iv) Let K be the connected Lie subgroup of G with Lie algebra

k = g ∩ (h⊕
⊕
α∈∆k

gα)

In fact, the following shows that we obtain all isotropy groups this way.

Proposition 9. Let K be constructed as above, then ∆+
m = ∆+

g \∆k satis�es the requirements
of proposition 4 and induces a complex structure J̄ on G/K. This is the unique complex
structure such that the projection

π : (G/T, J)→ (G/K, J̄)

is holomorphic. Equivalently, J is K equivariant. Furthermore, every K leaving J invariant
is obtained this way.

Proof. First, we show that ∆+
m satis�es the requirements of proposition 4, i.e. for α ∈ ∆+

m

and β ∈ ∆k ∪ ∆+
m with α + β ∈ ∆g we have α + β ∈ ∆+

m. Since every root is a linear
combination of the simple roots Φ with either all positive or all negative coe�cient it is
su�cient to show that there are positive coe�cients in the expression of α + β in terms of
Φ. This follows easily from the simple fact that ρ(α+ β) = ρ(α) + ρ(β) lies in Nr \ {0} for
α ∈ ∆+

m and β ∈ ∆+
m ∪∆k. The fact that the projection is holomorphic is immediate since

J and J̄ coincide when pulled back to m.
That any K arises this way is just proposition 7 and the trivial observation that an

indecomposable element in ∆+
g is also indecomposable in ∆+

k .

1.3 Painting Dynkin diagrams

Uniting propositions 7 and 9 we obtain the following

Theorem 10. Consider (G,T, J), where G is a compact semisimple Lie group, T its max-
imal torus and J a complex structure on G/T. Let D = (V,E) be the Dynkin diagram
corresponding to the base Φ of positive roots determined by J . Then every subgroup K ⊂ G
leaving J invariant corresponds to the choice of a set VK ⊂ V . In particular, K = TKss

where the semisimple part Kss has the Dynkin diagram

DK = (VK , EK)

where EK = {(v, w) ∈ E | v, w ∈ VK}.

Remark:

1) This can be visualized by painting the sub Dynkin diagram DK ⊂ D black. This will be
used frequently throughout the following chapters.
2) Remember that the vertices of the Dynkin diagram are exactly the simple roots, i.e. VK
corresponds to Φk.

As an example we present the painted Dynkin diagram representing the Kähler C space

SO(9)/T2SO(5)

for SO(5) being the lower 5 × 5 block in SO(9) together with the complex structure Jstd
which will be de�ned later:
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1.4 Riemannian Curvature Tensor

1.4.1 Chevalley Basis

We begin this chapter with the choice of a special basis, which will be useful for explicit
calculations of the curvature tensor.
By non degeneracy of B on h there is a unique element Hα ∈ h satisfying

B(Hα, H) = α(H) (1.3)

for all H ∈ h. It is known, that [gα, g−α] is one dimensional and spanned by Hα. Hence
the interesting properties of the following are actually the later two. Then we can get the
following basis:

Proposition 11 ([Hel01]). There exists a basis B = {Eα ∈ gα| α ∈ ∆g} of
⊕

α∈∆g
gα

satisfying the following conditions:

i) [Eα, E−α] = zαHα for α ∈ ∆g and zα ∈ C.

ii) [Eα, Eβ ] = Nα,βEα+β for α 6= β

iii) Eα = −E−α.

The Nα,β satisfy the following relations:

a) Nα,β = 0 if α+ β 6∈ ∆g

b) N−α,−β = −Nα,β

Remark: Furthermore, it is possible to require the zα to be 1 for all α. We refrain from
requiring it, since the above is strong enough to make actual calculations and it is easier
to �nd a basis with arbitrary zα. In addition, we observe that it is easy to determine
zα = B(Eα, E−α) since

α(H)B(Eα, E−α) = B(H, [Eα, E−α]) = zαα(H)

holds for all H. This implies the zα to be real and z−α = zα.

1.4.2 Curvature formulae

Now we turn over to the Riemannian curvature tensor. To that end, let U : m×m→ m be
the symmetric tensor de�ned by

2g(U(X,Y ), Z) = g(adZX,Y ) + g(X, adZY ).

This enables us to de�ne

Λ : m×m→ m

(X,Y ) 7→ 1

2
[X,Y ]m + U(X,Y )

where the index m denotes the projection. Due to [Nom54] with this notation the curvature
tensor is given by

R(X,Y ) : m→ m

Z 7→ −[Λ(X),Λ(Y )]Z+Λ([X,Y ]m)Z + [[X,Y ]k, Z]

As before we will denote the complexi�cations with the same symbol. Furthermore, we want
to remark here that with this sign convention the sectional curvature is given by

sec(X ∧ Y ) =
g(R(X,Y )X,Y )

‖X ∧ Y ‖2
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In the case of C spaces with the root space decomposition of m there are nice descriptions
for U and Λ. The following results are due to [Ito78, Chapter 2]. However, he did not seem
to have stated all cases we need in proposition 16, which is why we present the results here
together with their proofs. Note that in general, for the complexi�cation of a real bilinear
form q, we have

q(x̄, ȳ) = q(x, y)

and therefore the following determines U and Λ completely:

Proposition 12. Let Xα ∈ gα, Xβ ∈ gβ. Then we have

i) U(Xα, Xβ) =
gβ−gα
2gα+β

[Xα, Xβ ]mC

ii) U(Xα, Xβ) =


1
2 [Xα, Xβ ]mC α− β ∈ ∆−m
− 1

2 [Xα, Xβ ]mC α− β ∈ ∆+
m

0 otherwise

This implies for Λ

i) Λ(Xα)(Xβ) =
gβ
gα+β

[Xα, Xβ ]m+

ii) Λ(Xα)(Xβ) = [Xα, Xβ ]m−

Proof. This follows straightforward from the expression of the metric. For brevity we write
only here X−β = Xβ , note that this is not a Chevalley basis. In fact, we get

2g(U(Xα, X±β), Z) = gβ(−B)([Z,Xα], X±β) + gα(−B)(Xα, [Z,X±β ])

= (gβ − gα)(−B)([Xα, X±β ], Z)

=
(gβ − gα)

gγ
g([Xα, X±β ], Z)

if [Xα, X±β ] ∈ gγ . Going through the di�erent possibilities for γ one obtains the claimed
equalities. The equations for Λ are immediate consequences.

A interesting fact is the following

Proposition 13. For X,Y ∈ m+ and Z ∈ mC we have

R(X,Y )Z = 0 = R(X,Y )Z

Proof. Notice, that from proposition 12 we get that Λ(Z) : m± → m± and therefore also
R(Z, V ) : m± → m± for any Z, V ∈ mC. If we restrict now to X,Y being both either in m+

or m− we obtain for Z, V ∈ mC

g(R(X,Y )Z, V ) = g(R(Z, V )X,Y )

= g(J(R(Z, V )X), JY )

= −g(R(Z, V )X,Y )

= −g(R(X,Y )Z, V )

which concludes the proof by non degeneracy of g.

The above proposition has two crucial consequences, the �rst being that the only non
vanishing curvatures are in

m+ ×m− ×m+ ×m−

and its complex conjugate. The second consequence being being the following

Lemma 14. Let X,Y, V,W ∈ m+ then the following symmetry holds

R(X,Y , V,W ) = R(X,W, V, Y ).
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Proof. By the �rst Bianchi identity, we have

R(X,Y , V,W ) +R(Y , V,X,W ) + g(R(V,X)Y ,W ) = 0.

The last term is zero by proposition 13 and the second term equals −R(X,W, V, Y ) by the
standard symmetries of the curvature tensor.

Now, we calculate the curvatures in terms of the Chevalley basis de�ned in proposition
11. In order to keep the calculations and the notation simple, we assume an ordering on the
positive roots with the following properties

i) If α < β then α− β 6∈ ∆+
m.

ii) If α < β and γ ≤ δ then α+ γ < β + δ.

It is easy to construct such an ordering in terms of simple roots as we can see in the following.

Proposition 15. Let ε1, .., εn be the set of simple roots of ∆+
g . The ordering ” < ” on ∆+

g

given by

α =

r∑
i=1

niεi < β =

r∑
i=1

miεi

if and only if ni∗ < mi∗ with i∗ = min{i | mi 6= ni} satis�es properties i) and ii) and its
restriction to ∆+

m is a ordering as desired.

Proof. For the �rst part we notice that every positive root is a linear combination of simple
roots with nonnegative coe�cients. Hence if α < β then the �rst non vanishing coe�cient
of α− β is negative and therefore α− β can not be a positive root. The second property is
a straightforward calculation.

Now we turn to the curvature formulas. To that end we �x a Chevalley basis as in proposition
11. Then let

Rαβγδ = g(R(Eα, E−β)Eγ , E−δ)

for α, β, γ, δ ∈ ∆+
m.

Proposition 16 ([Ito78]). Then we have that

Rαβγδ = 0 unless α+ γ = β + δ (1.4)

completely determined by Rαβγδ with α ≤ β, δ ≤ γ and α− β = δ − γ. In that case we have

Case (α, β, γ, δ) Rαβγδ

Ia α− β = 0 γ − β ∈ ∆+
m −gα

(
zαzγ(α, γ) + zα+γ

gα
gα+γ

N2
α,γ

)
Ib otherwise −gγ

(
zαzγ(α, γ) + zα+γ

gγ
gα+γ

N2
α,γ

)
IIa α− β 6= 0 γ − β ∈ ∆+

m −gαzα−βNα,−βNγ,−δ − zα+γ
gαgβ
gα+γ

Nα,γNβ,δ

IIb otherwise −gδzα−βNα,−βNγ,−δ − zα+γ
gγgδ
gα+γ

Nα,γNβ,δ

Here, we denote (α, β) = B(Hα, Hβ).

Proof. Let us consider R(Eα, E−β)Eγ �rst.

R(Eα, E−β)Eγ =− [Λ(Eα),Λ(E−β)]Eγ + Λ([Eα, E−β ]mC)Eγ + [[Eα, E−β ]kC , Eγ ]

= − Λ(Eα) (Λ(E−β)(Eγ))

+ Λ(E−β) (Λ(Eα)(Eγ))

+ Λ([Eα, E−β ]mC)Eγ

+ [[Eα, E−β ]kC , Eγ ] (1.5)
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Using the equations from proposition 12, we see that the above equals

(1.5) =− gγ−β
gα+γ−β

[Eα, [E−β , Eγ ]m+ ]m+ (1.6)

+
gγ
gα+γ

[E−β , [Eα, Eγ ]m+ ]m+ (1.7)

+
gγ

gγ+α−β
[[Eα, E−β ]m+ , Eγ ]m+ (1.8)

+ [[Eα, E−β ]m− , Eγ ]m+ (1.9)

+ [[Eα, E−β ]kC , Eγ ]m+ (1.10)

Analysing these expressions we get that they either vanish or lie in gα+γ−β if α+γ−β ∈
∆+

m. Therefore, we get

Rαβγδ = 0 unless δ = α+ γ − β ∈ ∆+
m

which proves the �rst claim. For the second claim, note that the symmetries of the curvature
tensor, that it commutes with complex conjugation and the result of lemma 14 imply the
following symmetries

Rαβγδ = Rβαδγ = Rαδγβ = Rγδαβ . (1.11)

Notice that all of these operations maintain α−β = δ− γ and that they allow us to assume
that α is a smallest root within {α, β, γ, δ} with respect to the ordering on ∆+

m. That leads
to the following case distinction:

I If α = β, then we have automatically γ = δ and the curvature entry in question is
Rααγγ .

II If α < β then δ < γ. In fact, if γ ≤ δ then α + γ < δ + β which is a contradiction to
α− β = δ − γ. Therefore, the entry in question is Rαβγδ with α < β and δ < γ.

Now we continue the calculation of (1.5) with the restriction that α−β = δ−γ, α ≤ β and
δ ≤ γ. From the �rst property of our ordering, we get that α−β 6∈ ∆+

m and therefore (1.8) = 0
and (1.9) + (1.10) = [[Eα, E−β ], Eγ ]m+ . Pairing this with g(−, E−δ) = gδ(−B)((−)gδ , E−δ)
yields

(1.5) =

{
−gγ−βB ([E−β , Eγ ], [Eα, E−δ]) γ − β ∈ ∆+

m

0 otherwise

+
gγgδ
gα+γ

B ([Eα, Eγ ], [E−β , E−δ])

− gδB ([Eα, E−β ], [Eγ , E−δ])

Now we consider the two cases of the �rst term. To that end assume γ− β ∈ ∆+
m. Using

the biinvariance of B and the Jacobi identity, i.e.

[Eα, [E−β , Eγ ]] = [[Eα, E−β ], Eγ ] + [E−β , [Eα, Eγ ]].

We obtain

−gγ−βB ([E−β , Eγ ], [Eα, E−δ]) =− gγ−βB ([Eα, Eγ ], [E−β , E−δ])

gγ−βB ([Eα, E−β ], [Eγ , E−δ]) ,

which leaves us with

(1.5) =

(
gγgδ
gα+γ

− gγ−β
)
B ([Eα, Eγ ], [E−β , E−δ])

(gγ−β − gδ)B ([Eα, E−β ], [Eγ , E−δ])

=
gαgβ
gα+γ

B ([Eα, Eγ ], [E−β , E−δ])

− gαB ([Eα, E−β ], [Eγ , E−δ])
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On the other hand, if γ − β 6∈ ∆+
m then

(1.5) =
gγgδ
gα+γ

B ([Eα, Eγ ], [E−β , E−δ])

− gδB ([Eα, E−β ], [Eγ , E−δ])

Using now the zα and Nα,β from proposition 11 the entries of the table follow in a straight-
forward fashion. Furthermore, we see that Rαβγδ is a real number and hence in (1.11) we
can actually drop the complex conjugation.

1.5 The holomorphic curvature tensor

We are interested in the holomorphic sectional curvature of a Kähler C space (G,K, J, g),
i.e.

H(X) = sec(X ∧ JX)

for a non zero vectorX ∈ m. In particular, we want to show thatH is positive. As we will see
in theorem 22 the actual function H becomes fairly complicated if m decomposes in a large
number of K modules, hence we present the alternative approach using the curvature tensor
and its modi�cations. This technique is due to [Tho71] and explicitly for the holomorphic
curvature tensor to [GZ81]. The curvature tensor is de�ned as the symmetric tensor,

R : Λ2(TM)× Λ2(TM)→ R
(X ∧ Y, V ∧W ) 7→ R(X,Y, V,W ).

Using the identi�cation via πK , we have

Λ2(TM) = Λ2(m)

and the map J : m→ m induces a map, also denoted as J , on the two forms with the property
J2 = idΛ2(m). By an easy calculation all complex planes X ∧ JX are in the eigenspace of J
of the eigenvalue one. Therefore, we are interested in the restriction of the curvature tensor
to this eigenspace.

De�nition 17. We call the restriction of R to Fix(J) ⊂ Λ2(m) the holomorphic curvature
tensor and denote it by H.

Remark: If the holomorphic curvature tensor is positive de�nite, then the holomorphic
sectional curvature is positive In fact we have for a unit vector X ∈ m

0 < H(X ∧ JX,X ∧ JX) = R(X, JX,X, JX) = sec(X ∧ JX) = H(X)

Unfortunately, it is possible to have positive holomporphic sectional curvature without the
tensor actually being positive, therefore it is of great interest how one may modify the tensor
without changing the holomorphic sectional curvature. The �rst approach is the idea due to
Thorpe to add a symmetric tensor ω to H with the property that ω(X ∧ JX,X ∧ JX) = 0.
In that case one would have that

(H + ω)(X ∧ JX,X ∧ JX) = H(X) (1.12)

but H +ω is a di�erent tensor, that might be positive de�nite. Therefore, one way to prove
positive holomorphic sectional curvature would be to determine a ω as above such that H+ω
is a positive tensor.

1.6 Modifying the holomorphic curvature tensor

This section is dedicated to the detailed discussion of how one can modify the curvature
tensor by adding suitable symmetric tensors on Λ2(m) introduced by [Tho71]. It turns out
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the suitable tensors are induced by four forms on m. We want to determine how adding one
of these forms changes the curvature tensor. To that purpose, let us revisit how a four-form
may be added to a symmetric form on Λ2(m). Since we �xed a Kähler C space (G,K, J, g)
we simplify notation slightly denoting the metric as

g(−,−) = 〈−,−〉.

This induces an inner product on Λl(m) via

〈x1 ∧ ... ∧ xl, y1 ∧ ... ∧ yl〉Λlm = det(〈xi, yj〉).

If we extend the action of K as usual via

Adk : Λl(m)→ Λl(m)

x1 ∧ ... ∧ xl 7→ Adk(x1) ∧ ... ∧Adk(xl),

K acts via isometries on Λl(m). Then we see that a four form ω induces a symmetric bilinear
form on Λ2(m) via

ω 7→ ω′ = 〈ω,− ∧−〉Λ4m.

As mentioned before, adding such an ω′ changes the holomorphic curvature tensor but since

ω′(X ∧ Y,X ∧ Y ) = 〈ω,X ∧ Y ∧X ∧ Y 〉Λ4(m) = 0

holds the quadratic form induced by H + ω′ is the same as the holomorphic sectional
curvature. Therefore this is a viable technique to prove positivity.

However, it is a hard problem to determine a suitable ω′ or proof its non existence.
Bearing that in mind there still are some observations simplifying the search for ω′.

We remark that any arbitrary choice of ω′ is allowed to be added even though it might
not be K invariant and hence H + ω′ would not be well de�ned on all of G/K. In fact,
the positivity of H +ω′ implies the positivity of the holomorphic sectional curvature at this
point, which is now invariant under K and therefore positive everywhere. On the other
hand, the following lemma is still useful since it allows us to decrease the dimension of the
space of allowed forms, which makes the search easier.

Lemma 18. Let ω ∈ Λ4(m) such that H + ω′ is positive de�nite then

H +
1

vol(K)

∫
K

Ad∗kω
′dK

is positive de�nite where dK is a biinvariant volume form on K.

Proof. The proof is an easy averaging calculation.

1.7 Relevant invariant forms

Since the holomorphic curvature tensor is the restriction to Fix(J) also for the four forms
we are only interested in their inner products with Fix(J) ∧ Fix(J). Hence the four forms
in (Fix(J)∧Fix(J))⊥ do not change the holomorphic curvature tensor at all. Therefore, we
may restrict our attention to forms in Fix(J) ∧ Fix(J). Considering that, if at all possible,
positivity can be achieved via adding a invariant four form by lemma 18 and the isotropy
subgroup of a C space contains always a maximal torus, we can restrict our attention to the
T invariant four forms in Fix(J) ∧ Fix(J). We call those relevant forms. In the following
we show what characterizes relevant forms. To that end we de�ne with the basis from
proposition 11 the following

E(α,β,γ,δ) = Eα ∧ Eβ ∧ Eγ ∧ Eδ

Proposition 19. Let ω be a four form. Then we have that T invariance is characterized by
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i) ω is T invariant i� d
dt

∣∣
t=0

Adexp(tH)ω = 0 for all H ∈ h = tC.

ii) d
dt

∣∣
t=0

Adexp(tH)E(α,β,γ,δ) = (α+ β + γ + δ)(H)E(α,β,γ,δ)

and J invariance means

iii) J(E(α,β,γ,δ)) = E(α,β,γ,δ) i� |{α, β, γ, δ} ∩∆+
m| ∈ {0, 2, 4}

Proof. Part i) follows from the fact that Ad is a group homomorphism and ii) is a straight
forward calculation using the fact that the Eα are root vectors. Similarly, iii) follows by the
de�nition of ∆±m, i.e. J(E±α) = ±iE±α for α ∈ ∆+

m.

This leads us easily to

Proposition 20. The real vectorspace of relevant forms is spanned by

Eα,−β,γ,−δ + Eα,−β,γ,−δ and i(Eα,−β,γ,−δ − Eα,−β,γ,−δ)

with α+ γ = β + δ and α, β, γ, δ ∈ ∆+
m.

Remark: Note, that Eα,−β,γ,−δ = Eβ,−α,δ,−γ holds.

Proof. Let ω ∈ Λ4(m)C be T and J invariant with ω = ω. Then we can write

ω =
∑

I=(α1,α2,α3,α4)

λIEI

with λI ∈ C for linear independent EI . By Proposition 19 ii) and iii) we have that
|I ∩∆+

m| = 2. After possible reordering inside of I we have EI = Eα,−β,γ,−δ and α+γ = β+δ.
Furthermore we obtain from ω = ω that λ−I = λI = aI − ibI and therefore

ω =
1

2

∑
λIEI + λIEI

=
1

2

∑
aI(EI + EI) + bI i(EI − EI)

We observe here that since

〈Eα, Eβ〉 = gα(−B)(Eα, Eβ) =

{
−zαgα β = −α
0 β 6= −α

.

the value of 〈E(α1,α2,α3,α4), E(β1,β2,β3,β4)〉 is a real number and vanishes unless there is a
bijection σ ∈ S4 such that βi = −ασ(i) and in that case we have

〈E(α1,α2,α3,α4), E(−ασ(1),−ασ(2),−ασ(3),−ασ(4))〉Λ4(m) = sign(σ)

4∏
i=1

zαigαi . (1.13)
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1.8 Algebraic structure of the classical groups

Since every Kaehler C space comes from a semisimple compact group G and the centralizer
K of a torus in G, we get that the decomposition of G = G1 × ... × Gl into simple factors
induces a decomposition of K = K1 × ... × Kl with Ki ⊂ Gi. By representation theory,
every K invariant complex structure J and a corresponding Kähler metric g decompose into
complex structures and Kähler metrics on Gi/Ki, i.e. we have

(G/K, J, g) =

(
l∏
i=1

Gi/Ki,⊕li=1Ji,⊕li=1gi

)
=

l∏
i=1

(Gi/Ki, Ji, gi) .

A straightforward calculation using the standard properties of the connections of Riemannian
product manifolds yields that for two hermitian manifolds (Mi, Ji, gi) with i = 1, 2 we have
that the holomorphic sectional curvature of a tangent vector V = X1 +X2 on the product
manifold (M1 ×M2, J1 ⊕ J2, g1 ⊕ g2) is given by

H(X1 +X2) =
‖X1‖4

‖X1 +X2‖4
H1(X1) +

‖X2‖4

‖X1 +X2‖4
H2(X2).

Consequently, it is su�cient to show positivity separately for every factor.
Hence we restrict to the Kähler C spaces with simple compact isometry group. These are
classi�ed by connected Dynkin diagrams, i.e. the classical groups corresponding to the fam-
ilies An, Bn, Cn, Dn for n ∈ N and the exceptional ones corresponding to G2, F4, E6, E7, E8.
In the following, we present the algebraic structure of the simple classical compact groups.
The choice of basis used are motivated by [Hel01, Chapter 8]. To that end let Ekl ∈ glm(K)
for K ∈ {R,C} be the matrix with

(Ekl)ij = δkiδlj

where δ denotes the Kronecker delta. Furthermore, let Fkl = Elk−Ekl be the skew symmetric
matrix with −1 at the entry (k, l).

1.8.1 Family An : SU(n+ 1)

In this section we describe the algebraic setting of the Lie group SU(n + 1), including
a Chevalley basis and the structure constants. We choose the maximal torus to be the
standard diagonal torus in SU(n+ 1), i.e.

T = {Diag(z1, .., zn+1) | ‖zj‖ = 1,
∏

zj = 1}.

Then we have
g = {A ∈ gln+1(C) | AH = −A, trC(A) = 0}

and

t = {Diag(ia1, .., ian+1) | aj ∈ R,
n+1∑
j=1

aj = 0}.

Complexi�cation yields gC = {A ∈ gln+1(C) | trC(A) = 0} and

h = tC = {Diag(z1, .., zn) | zj ∈ C,
n+1∑
j=1

zj = 0}.

Obviously, the Hk = Ekk form a complex basis of the space of complex diagonal matrices
and we denote the dual basis by εk. It is easy to see that for H ∈ h we have

[H,Ekl] = αkl(H)Ekl
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for αkl = εk − εl ∈ h∗. In fact it is known that

∆g = ∆su(n+1) = {αkl | 1 ≤ k 6= l ≤ n+ 1}

and the root spaces are given by gαkl = 〈Ekl〉C. As we will see in theorem 38 it makes sense to
�x a preferred "standard" complex structure Jstd, i.e a �xed choice of of ∆+

m. Furthermore,
we �x a normalization of the killing form. In fact, let

a) ∆+
m = ∆+

g = {αkl | 1 ≤ k < l ≤ n+ 1}

b) and scale the complexi�ed killing form such that

B(X,Y ) = trC(XY )

where trC : gln+1(C)→ C is the usual trace of complex valued matrices.

Then we get with the notation of the proposition 11 that

Eαkl = Ekl and Hαkl = Hk −Hl

In particular this implies zα = 1 for all α ∈ ∆g and

Nαkl,αst =


1 s = l , t 6= k

−1 t = k , s 6= l

0 otherwise

1.8.2 Family Bn : SO(2n+ 1)

In this section we describe the algebraic setting of the Lie group SO(2n + 1), including
a Chevalley basis and the structure constants. We choose the maximal torus to be the
standard diagonal torus in SO(2n+ 1), i.e.

T = {Diag(R(θ1), .., R(θn), 1) | θi ∈ R}

where

R(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

Then we have
g = {A ∈ gl2n+1(R) | AT = −A}

and
t = 〈Hk |k = 1, .., n〉R

where (Hk) = F2k−1,2k. Complexi�cation yields

gC = {A ∈ gl2n+1(C) | AT = −A}

and
h = tC = 〈Hk | k = 1, .., n〉C.

Obviously, the iHk form a complex basis of the space of complex diagonal matrices and we
denote the dual basis by εk. De�ne for k < l the matrices Eεk , Eαkl , Eβkl ∈ gC as

Eεk = F2k−1,2n+1 + iF2k,2n+1

Eαkl = F2k−1,2l−1 + F2k,2l − i(F2k−1,2l − F2k,2l−1)

Eβkl = F2k−1,2l−1 − F2k,2l + i(F2k−1,2l + F2k,2l−1).

Notice that the complex conjugation coming from g ⊂ gC is the same as the complex
conjugation on gl2n+1(C). Hence we de�ne for α ∈ {εk, αkl, βkl | 1 ≤ k < l ≤ n}

E−α = −Eα.
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These will turn out to be root vectors, but before we prove that we consider the following
examples in the case n = 2.

Eε1 =



−1

−i

1 i


Eα12

=



−1 i

−i −1

1 i

−i 1


Eβ12

=



−1 −i

−i 1

1 i

i −1


Now let H =

∑n
k=1 hkHk =

∑n
k=1−ihkiHk ∈ h then it is easy to see

[H,Eεk ] = (−ihk)Eεk = εk(H)Eεk
[H,Eαkl ] = (−ihk + ihl)Eαkl = αkl(H)Eαkl
[H,Eβkl ] = (−ihk − ihl)Eβkl = βkl(H)Eβkl

for αkl = εk − εl and βkl = εk + εl. In fact, we have that

∆g = ∆so(2n+1) = {±εk,±αkl,±βkl | k < l}

and the root spaces are given by gεk = 〈Eεk〉C, gαkl = 〈Eαkl〉C and gβkl = 〈Eβkl〉C. As we
will see in theorem 38 it makes sense to �x a preferred "standard" complex structure Jstd,
i.e a �xed choice of of ∆+

m. Furthermore, we �x a normalization of the killing form. In fact,
let

a) ∆+
m = ∆+

g = {εk, αkl, βkl | k < l}

b) and scale the complexi�ed killing form such that

B(X,Y ) =
1

8
trC(XY )

where trC : gl2n+1(C)→ C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition 11. First of all with this choice
of biinvariant form we have

zα = B(Eα, E−α) =


1
2 α = εk

1 α = αkl

1 α = βkl

and the Nαβ are given by the following list together with the properties N−α−β = −Nαβ
and Nαβ = −Nβα.

(α, β) Nα,β

(εk, εl) 1

(εk,−εl) −1

(εl, αkl) 2

(εk,−αkl) 2

(εk,−βkl) −2

(εl,−βkl) 2

(αkl, αlj) −2

(αkl,−αsl) −2

(αkl,−αkj) 2

(α, β) Nα,β

(αkl, βlj) −2

(αkl, βsl)

{
2 k < s

−2 s < k

(αkl,−βkj)

{
2 l < j

−2 j < l

(αkl,−βsk) 2

(βkl,−βlj) 2

(βkl,−βkj) −2

(βkl,−βsl) −2

where we assume k < l.
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1.8.3 Family Cn : Sp(n)

In this section we describe the algebraic setting of the Lie group Sp(n), including a Chevalley
basis and the structure constants. We choose the maximal torus to be the standard diagonal
torus in Sp(n), i.e.

T = {Diag(z1, .., zn) | ‖zj‖ = 1}.

In order to have a nice description of the complexi�cation it is useful to consider it embedded
via

Sp(n) ↪→ SU(2n)

A+Bj 7→

 A B

−B̄ Ā

 .

Then we have

g =


 X Y

−Ȳ X̄

 ∈ gl2n(C)

∣∣∣∣∣∣ XH = −X,Y T = Y


and

t = {Diag(ia1, .., ian,−ia1, ..,−ian) | ai ∈ R}.

Complexi�cation yields

gC =


X Y1

Y2 −XT

 ∈ gl2n(C)

∣∣∣∣∣∣ Yl ∈ Sym(C)


and

h = tC = {Diag(z1, .., zn,−z1, ..,−zn) | zi ∈ C}.

Obviously, the elements Hk = Ek,k − En+k,n+k for k = 1...n form a complex basis of h and
we denote the dual basis by εk. De�ne for k < l the matrices Eγk , Eαkl , Eβkl ∈ gC as

Eγk = Ek,n+k

Eαkl = Ek,l − En+l,n+k

Eβkl = Ek,n+l + El,n+k.

Notice that the complex conjugation coming from g ⊂ gC is the same as the restriction of
the map M 7→ −MH on gl2n(C). Hence we de�ne for α ∈ {εk, αkl, βkl | 1 ≤ k < l ≤ n}

E−α = −Eα = EHα .

These will turn out to be root vectors, but before we prove that we consider the following
examples in the case n = 2.

Eγ1 =


1 0

0 0

Eα12 =


0 1

0 0

0 0

−1 0

Eβ12 =


0 1

1 0


Now let H = Diag(h1, .., hn,−h1, ..,−hn) then it is easy to see that

[H,Eγk ] = (2hk)Eγk = γk(H)Eγk
[H,Eαkl ] = (hk − hl)Eαkl = αkl(H)Eαkl
[H,Eβkl ] = (hk + hl)Eβkl = βkl(H)Eβkl
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for γk = 2εk, αkl = εk − εl and βkl = εk + εl. In fact, we have that

∆g = ∆sp(n) = {±γk,±αkl,±βkl | 1 ≤ k < l ≤ n}

and the root spaces are given by gγk = 〈Eγk〉C, gαkl = 〈Eαkl〉C and gβkl = 〈Eβkl〉C. As we
will see in theorem 38 it makes sense to �x a preferred "standard" complex structure Jstd,
i.e a �xed choice of of ∆+

m. Furthermore, we �x a normalization of the killing form. In fact,
let

a) ∆+
m = ∆+

g = {γk, αkl, βkl | 1 ≤ k < l ≤ n}

b) and scale the complexi�ed killing form such that

B(X,Y ) =
1

2
trC(XY )

where trC : gl2n(C)→ C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition 11. First of all with this choice
of biinvariant form we have

zα = B(Eα, E−α) =


1
2 α = γk

1 α = αkl

1 α = βkl

and the Nαβ are given by the following list together with the properties N−α−β = −Nαβ
and Nαβ = −Nβα.

(α, β) Nα,β

(αis, αst) 1

(αsj ,−αst) −1

(αit,−αst) 1

(αis, βst) 1

(αit, βst)

{
1 i 6= s

2 i = s

(αtj ,−βst) −1

(α, β) Nα,β

(αsj ,−βst)

{
−1 j 6= t

−2 j = t

(αis, γs) 1

(αsj ,−γs) −1

(βij ,−βst) 1 if |{i, j} ∩ {s, t}| = 1

(βis,−γs) 1

(βsj ,−γs) 1

1.8.4 Family Dn : SO(2n)

In this section we describe the algebraic setting of the Lie group SO(2n), including a Che-
valley basis and the structure constants. It is very similar to the Bn series. We choose the
maximal torus to be the standard diagonal torus in SO(2n), i.e.

T = {Diag(R(θ1), .., R(θn)) | θi ∈ R}

where R(θ) is de�ned as in the section of SO(2n+ 1). Then we have

g = {A ∈ gl2n(R) | AT = −A}

and for (Hk) = F2k−1,2k as before

t = 〈Hk |k = 1, .., n〉R.

Complexi�cation yields
gC = {A ∈ gl2n(C) | AT = −A}

and
h = tC = 〈Hk | k = 1, .., n〉C.
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Obviously, the iHk form a complex basis of h and we denote the dual basis by εk. De�ne
for k < l the matrices Eαkl , Eβkl ∈ gC as

Eαkl = F2k−1,2l−1 + F2k,2l − i(F2k−1,2l − F2k,2l−1)

Eβkl = F2k−1,2l−1 − F2k,2l + i(F2k−1,2l + F2k,2l−1).

Notice that the complex conjugation coming from g ⊂ gC is the same as the complex
conjugation on gl2n+1(C). Hence we de�ne for α ∈ {αkl, βkl | 1 ≤ k < l ≤ n}

E−α = −Eα.

These will turn out to be root vectors. Now let H =
∑n
k=1 hkHk =

∑n
k=1−ihkiHk ∈ h then

it is easy to see

[H,Eαkl ] = (−ihk + ihl)Eαkl = αkl(H)Eαkl
[H,Eβkl ] = (−ihk − ihl)Eβkl = βkl(H)Eβkl

for αkl = εk − εl and βkl = εk + εl. In fact, we have that

∆g = ∆so(2n) = {±αkl,±βkl | 1 ≤ k < l ≤ n}

and the root spaces are given by gαkl = 〈Eαkl〉C and gβkl = 〈Eβkl〉C. As we will see in
theorem 38 it makes sense to �x a preferred "standard" complex structure Jstd, i.e a �xed
choice of of ∆+

m. Furthermore, we �x a normalization of the killing form. In fact, let

a) ∆+
m = ∆+

g = {αkl, βkl | 1 ≤ k < l ≤ n}

b) and scale the complexi�ed killing form such that

B(X,Y ) =
1

8
trC(XY )

where trC : gl2n(C)→ C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition 11. First of all with this choice
of biinvariant form we have

zα = B(Eα, E−α) =

{
1 α = αkl

1 α = βkl

and the Nαβ are given by the following list together with the properties N−α−β = −Nαβ
and Nαβ = −Nβα.

(α, β) Nα,β

(αkl, αlj) −2

(αkl,−αsl) −2

(αkl,−αkj) 2

(αkl, βlj) −2

(αkl, βsl)

{
2 k < s

−2 s < k

(α, β) Nα,β

(αkl,−βkj)

{
2 l < j

−2 j < l

(αkl,−βsk) 2

(βkl,−βlj) 2

(βkl,−βkj) −2

(βkl,−βsl) −2

where we assume k < l.
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Chapter 2

Approach Itoh's and Three

Modules

The approach to treat holomorphic curvature on Kähler C spaces so far was to consider the
decomposition of m+ in irreducible K modules. In this chapter we follow that approach
extending a result of Itoh. However, in the proof it will become clear that it is hard and
complicated to extend the results even further without changing the method used.

By proposition 8 the irreducible modules are indexed by the positive t roots, i.e the image
of ρ from (1.1):

m+ =
⊕

x∈ρ(∆+
m)

m+
x

where m+
x = ⊕α∈ρ−1(x)gα. Then one notes that for a unit vector X ∈ m and the vector

Z = 1√
2
(X − iJX) ∈ m+, we have

H(X) = R(X, JX,X, JX) = −R(Z, Z̄, Z, Z̄).

Using the above decomposition, we can write Z =
∑
x∈ρ(∆+

m) Zx and use the obvious bracket
relations

[m+
x ,m

+
y ] ⊂ m+

x+y

and their counterparts via complex conjugation to get explicit expressions for the curvature.
Notice that we have x ∈ Nr with

r = dim(z(k)) = b1(K) = b2(G/K)

where z(k) denotes the center of k. This is due to Borel and Hirzebruch [BH58].
This was done by Itoh with the following result:

Theorem 21 (Itoh). Let M = (G,K, J, g) be a simple Kähler C space with b2(M) = 1
such that m+ decomposes into two irreducible modules. Then M has positive holomorphic
curvature.

Remark:

1) This covers all classical simple groups G and all with J compatible groupsK with b1(K) =
1 and some but not all of the exceptional ones.
2) In the case of b2(M) = 1 and irreducible m+, we are in the case of hermitian symmetric
spaces which carry a negative multiple of the killing form as Kähler metric and have positive
holomorphic curvature as well. These are also the only cases when the killing form induces
a Kähler metric.
We extend the result here with similar techniques as Itoh to the following

Theorem 22. Let M = (G,K, J, g) be a simple Kähler C space such that m+ decomposes
into three irreducible modules. Then M has positive holomorphic curvature.
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Proof. First of all, we notice that in fact the decomposition into three modules is only
possible if b1(K) ≤ 2. In fact, assume b1(K) > 2 then, with the decomposition of a base for
∆+

g as in (1.1) Φ = Φm ∪ Φk , this is equivalent to |Φm| > 2 and hence there are at least
three simple roots α1, α2, α3 ∈ ∆+

g with pairwise di�erent images under ρ. Furthermore, for
the highest root λ =

∑
α∈Φ nαα, we have nα > 0 for all α. Hence

ρ(λ)− ρ(αi) =

(nαi − 1)ρ(αi) +
∑

α∈Φ\{αi}

nαα

 6= 0

Therefore we have at least four irreducible modules corresponding to ρ(α1), ρ(α2), ρ(α3) and
ρ(λ) which is a contradiction.
Now we denote the decomposition by m+ = m+

x1
⊕m+

x2
⊕m+

x3
and we make two case distinc-

tions:

i) If b2(K) = 1 then up to permutation we have x2 = 2x1 and x3 = 3x1, where x1 is the
image of ρ of the only simple root in ∆+

m. In particular, we have x3 = x1 + x2.

ii) If b2(K) = 2 then up to permutation we have x3 = x1 + x2 where x1 and x2 are the
coordinate vectors of the only simple roots in ∆+

m.

In both cases we obtain the following table for the brackets where the superscript ∗ means
that it is zero in case ii). We abbreviate m+

xi = mi.

[−,−] m1 m2 m3 m1 m2 m3

m1 m∗2 m3 0 k m1
∗ m2

m2 m3 0 0 m∗1 k m1

m3 0 0 0 m2 m1 k

We continue with the proof for this table assuming that [m1,m1] ⊂ m2 may possibly be non
zero. The only di�erence is that we have to consider a few more terms in the expression
for the holomorphic curvature. As mentioned above we consider a unit vector X and Z =
1√
2
(X − iJX). Then

H(X) = −R(Z, Z̄, Z, Z̄) = g
(
−R(Z, Z̄)Z, Z̄

)
.

Since Z ∈ m+ we write it as Z = Z1 +Z2 +Z3 with Zi ∈ mi. Let λij =
gj

gi+gj
with i, j = 1, 2,

then we get from the bracket table and section 1.4.2 that the mi components of −R(Z, Z̄)Z
are given by(

−R(Z, Z̄)Z
)

1
=− (λ12 − λ21)[Z̄2, [Z1, Z2]]

− [[Z1, Z̄2], Z2]− [[Z1, Z̄3], Z3]− [[Z2, Z̄3], Z2]

− [[Z1, Z̄1] + [Z2, Z̄2] + [Z3, Z̄3], Z1](
−R(Z, Z̄)Z

)
2

= λ11[Z1, [Z̄1, Z2]] + λ11[Z1, [Z̄2, Z3]]

− λ11[[Z2, Z̄1], Z1]− λ11[[Z3, Z̄2], Z1]

− (λ12 − λ21)[Z̄1, [Z1, Z2]]

− [[Z1, Z̄2], Z3]− [[Z2, Z̄3], Z3]

− [[Z1, Z̄1] + [Z2, Z̄2] + [Z3, Z̄3], Z2](
−R(Z, Z̄)Z

)
3

= λ12[Z1, [Z̄1, Z3]] + λ21[Z2, [Z̄1, Z2]] + λ21[Z2, [Z̄2, Z3]]

− λ21[[Z3, Z̄1], Z1]− λ12[[Z2, Z̄1], Z2]− λ12[[Z3, Z̄2], Z2]

− [[Z1, Z̄1] + [Z2, Z̄2] + [Z3, Z̄3], Z3]

Note that R(Z,Z)Z ∈ m+ by proposition 12.



33

Using the antisymmetry of the Lie bracket we see that the �rst two rows in the expres-
sion of (−R(Z, Z̄)Z)2 cancel and the �rst two rows of (−R(Z, Z̄)Z)3 match except for the
coe�cient. Furthermore we know that

g((−R(Z, Z̄)Z)i, Z̄) = g((−R(Z, Z̄)Z)i, Z̄i) = gi(−B)((−R(Z, Z̄)Z)i, Z̄i)

which allows us to use the skew symmetry of adX with respect to B. If we denote the
hermitian form 〈X,Y 〉 = −B(X, Ȳ ) and ‖X‖2 = 〈X,X〉 then with g3 = g1 + g2 by the
Kähler property, we get

H(X) =− g1(λ12 − λ21)‖[Z1, Z2]‖2

+ g1‖[Z1, Z̄2]‖2 + g1‖[Z1, Z̄3]‖2 + g1‖[Z1, Z̄1]‖2

+ g1〈[Z2, Z̄2], [Z1, Z̄1]〉+ g1〈[Z3, Z̄3], [Z1, Z̄1]〉+ g1〈[Z2, Z̄3], [Z1, Z̄2]〉
+ g2(λ12 − λ21)‖[Z1, Z2]‖2 + g2‖[Z2, Z̄3]‖2 + g2‖[Z2, Z̄2]‖2

+ g2〈[Z1, Z̄1], [Z2, Z̄2]〉+ g2〈[Z3, Z̄3], [Z2, Z̄2]〉+ g2〈[Z1, Z̄2], [Z2, Z̄3]〉
− (g1 + g2)(λ12 − λ21)‖[Z̄1, Z3]‖2

+ (g1 + g2)(λ12 − λ21)‖[Z̄2, Z3]‖2

+ (g1 + g2)‖[Z3, Z̄3]‖2

+ (g1 + g2)(λ12 − λ21)〈[Z̄1, Z2], [Z̄2, Z3]〉
+ (g1 + g2)〈[Z1, Z̄1], [Z3, Z̄3]〉+ (g1 + g2)〈[Z2, Z̄2], [Z3, Z̄3]〉

Before we continue matching and modifying these terms, we observe the following con-
sequence of the skew symmetry of ad with respect to the killing form:

〈[A, Ā], [B, B̄]〉 = ‖[Ā, B]‖2 − ‖[A,B]‖2 (2.1)

This implies immediately that

i) The term 〈[Zi, Z̄i], [Zj , Z̄j ]〉 is a real number and hence is symmetric with respect to
i, j.

ii) For i, j with i + j > 3 we have ‖[Zi, Zj ]‖2 = 0 which implies 〈[Zi, Z̄i], [Zj , Z̄j ]〉 =
‖[Zi, Z̄j ]‖2.

Using the above and (λ12 − λ21) = g2−g1
g2+g1

we collect terms in the expression of H(X) and
obtain:

H(X) =(2g1 + g2)‖[Z1, Z̄2]‖2 − 4
g1g2

g1 + g2
‖[Z1, Z2]‖2

+ 4g1‖[Z1, Z̄3]‖2 + 4g2‖[Z2, Z̄3]‖2

+ g1‖[Z1, Z̄1]‖2 + g2‖[Z2, Z̄2]‖2 + (g2 + g1)‖[Z3, Z̄3]‖2

+ g2(〈[Z1, Z̄2], [Z2, Z̄3]〉+ 〈[Z̄1, Z2], [Z̄2, Z3]〉).

It is left to control the second term in the �rst row and the two terms of the last row. To
that end we use the following equations coming from polarization

〈[Z1, Z̄2], [Z2, Z̄3]〉+ 〈[Z̄1, Z2], [Z̄2, Z3]〉

=

∥∥∥∥1

2
[Z1, Z̄2] + 2[Z2, Z̄3]

∥∥∥∥2

− 1

4
‖[Z1, Z̄2]‖2 − 4‖[Z2, Z̄3]‖2

and this one coming from equation (2.1),

−‖[Z1, Z2]‖2 = −‖[Z1, Z̄2]‖2 + 〈[Z1, Z̄1], [Z2, Z̄2]〉
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Hence

H(X) =

(
2g1 +

3

4
g2 −

4g1g2

g1 + g2

)
‖[Z1, Z̄2]‖2 + 4g1‖[Z1, Z̄3]‖2

+ g1‖[Z1, Z̄1]‖2 +
4g1g2

g1 + g2
〈[Z1, Z̄1], [Z2, Z̄2]〉+ g2‖[Z2, Z̄2]‖2

+ (g2 + g1)‖[Z3, Z̄3]‖2 + g2

∥∥∥∥1

2
[Z1, Z̄2] + 2[Z2, Z̄3]

∥∥∥∥2

=
(16g1 − 5g2)2 + 71g2

2

128(g1 + g2)
‖[Z1, Z̄2]‖2 + 4g1‖[Z1, Z̄3]‖2

+
1

g1 + g2

(∥∥g1[Z1, Z̄1] + g2[Z2, Z̄2]
∥∥2

+ g1g2

∥∥[Z1, Z̄1] + [Z2, Z̄2]
∥∥2
)

+ (g2 + g1)‖[Z3, Z̄3]‖2 + g2

∥∥∥∥1

2
[Z1, Z̄2] + 2[Z2, Z̄3]

∥∥∥∥2

which is nonnegative. Furthermore, it is immediate that H(X) = 0 implies [Z3, Z̄3] = 0 and
[Z2, Z̄2] = −[Z1, Z̄1]. We will show now that this implies Z3 = Z2 = Z1 = 0. First of all,
we show that the second equation implies [Z1, Z̄1] = [Z2, Z̄2] = 0. The key is to see that for
V ∈ m+,

[V, V̄ ]h = −
∑
γ∈Φ

µγHγ

with µγ ≥ 0 and Hγ de�ned as in (1.3). In fact, we have for V =
∑
α∈∆+

m
mαEα with a

Chevalley basis such that zα = 1 and Ēα = −E−α that

[V, V̄ ]h =
∑
α∈∆+

m

∑
β∈∆+

m

mαm̄β [Eα, Ēβ ]h = −
∑
α∈∆+

m

‖mα‖2Hα

= −
∑
α∈∆+

m

‖mα‖2
∑
γ∈Φ

n(α)γHγ = −
∑
γ∈Φ

 ∑
α∈∆+

m

n(α)γ‖mα‖2
Hγ

= −
∑
γ∈Φ

µγHγ

where we used α =
∑
γ∈Φ n(α)γγ with n(α)γ ∈ N. Therefore [Z2, Z̄2] = −[Z1, Z̄1] is

only possible if [Z2, Z̄2]h = [Z1, Z̄1]h = 0. By the calculation above it is clear that for
V ∈ {Z1, Z2, Z3} the equation [V, V̄ ]h = 0 implies that µγ = 0 for all γ ∈ Φ which in turn
implies that n(α)γ‖mα‖2 = 0 for all α ∈ ∆+

m and γ ∈ Φ. Since for each α there has to be at
least one γ with n(α)γ > 0 we get mα = 0 for all α ∈ ∆+

m and hence V = 0.

The C spaces covered by the above can be read o� of the following diagrams, where the
number nα at each simple root represents the coe�cient of the highest weight in that basis.
Those can be found in [Bou68, p.250f]. Then the result above applies to the spaces obtained
by the following two ways of painting the diagrams:

i) Paint all vertices black except for a single one with

nα

{
≤ 2 Itoh

= 3 the above

ii) Paint all vertices black except for two with nα = 1.
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Family G (V,E)

An SU(n+ 1)
1 1 1 1

Bn SO(2n+ 1)
1 2 2 2

Cn Sp(n)
2 2 2 1

Dn SO(2n)
1 2 2

1

1

E6 E6 1 2

2

3 2 1

E7 E7 2 3

2

4 3 2 1

E8 E8 2 4

3

6 5 4 3 2

F4 F4
2 3 4 2

G2 G2
2 3

In fact, the new examples of positive holomorphic curvature with b2(M) = 2 are

SU(n+ 1)/S(U(a) U(b) U(c)), SO(2n)/SUi(n− 1) T2, E6/SO(8)T2

with a+ b+ c = n+ 1 and for two nonequivalent embeddings of SUi(n− 1) ↪→ SO(2n) for
i = 1, 2. The seven new exceptional b2(M) = 1 examples are

E6/SU(3)S1SU(2)SU(3), E7/SU(2)S1SU(6), E7/SU(5)S1SU(3),

E8/SU(8)S1, E8/E6S1SU(2), F4/SU(2)S1SU(3), G2/SU(2)S1

We remark, that this closes the b2(M) = 1 case for the groups G2 and E6 and leaves only 6
open cases for the other exceptional groups.
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Chapter 3

Holomorphic sectional curvature

In this chapter we describe the holomorphic curvature tensor from section 1.5 in the special
case of a Kähler C space using the fact that the isotropy group contains a maximal torus
T of G. We do so via identifying the tensor with a symmetric endomorphism and use the
T equivariance of said endomorphism to split it into the sum of smaller endomorphisms.
Afterwards, we describe the unique Kähler Einstein metric for a C space (G,K, J) and
determine it explicitly for the classical groups with the chosen Jstd. The last section of
the chapter is dedicated to the argument, why it is su�cient to consider only our preferred
complex structure.

3.1 Structure of a T invariant symmetric tensor

In this section, we describe the structure of a symmetric T invariant tensor F on Fix(J),
i.e. a symmetric bilinear form

F : Fix(J)× Fix(J)→ R,

and will apply this to H and the four forms ω. First of all we identify the tensor with an
endomorphism. We do so using the T invariant inner product 〈−,−〉Λ2(m) from section 1.6
on Λ2(m). By the invariance of F , we obtain a unique T equivariant symmetric map

F̄ : Fix(J)→ Fix(J)

such that F (ω1, ω2) = 〈F̄ (ω1), ω2〉Λ2m. Complexi�cation gives us the possibility to decom-
pose Fix(J) into weight spaces.

Proposition 23. The weight space decomposition of Fix(J)C is given by

Fix(J)C =
⊕
α∈∆+

m

⊕
β∈∆+

m

gα ∧ g−β .

Let ∆H = {α− β | α, β ∈ ∆+
m}/Z2. Then we have the isotypical decomposition

Fix(J)C =
⊕
η∈∆H

mη

where mη =
⊕

α−β∈η gα ∧ g−β.

Proof. For dimensional reasons it is su�cient to show the inclusion of the right hand side
in the left hand side which follows immediately from

J(Xα ∧ Y−β) = J(Xα) ∧ J(Y−β) = i(−i)Xα ∧ Y−β = Xα ∧ Y−β

for Xα ∈ gα and Y−β ∈ g−β . In fact, it is easy to see that

dimC(Λ2(m)C) =

(
|∆m|

2

)
= (2|∆+

m| − 1)|∆+
m|

37
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and we see that the following vectors are linearly independent Eigenvectors of J with ei-
genvalue 1 for Eα ∧ E−β for α, β ∈ ∆+

m and eigenvalue −1 for Eα ∧ Eβ , E−α ∧ E−β for
α < β ∈ ∆+

m which give a basis of Λ2(m)C by counting. It remains to show that the sum-
mands are weight spaces and that they are equivalent if and only if they induce the same
element in ∆H . Therefore we want to determine the weights of the action of T ⊂ K. To
that end, let v ∈ t and v(t) = exp(tv) then we have,

d

dt

∣∣∣∣
t=0

Adv(t) (Xα ∧ Y−β) =
d

dt

∣∣∣∣
t=0

Adv(t)Xα ∧Adv(t)Y−β

=

(
d

dt

∣∣∣∣
t=0

Adv(t)Xα

)
∧ Y−β +Xα ∧

(
d

dt

∣∣∣∣
t=0

Adv(t)Y−β

)
= (advXα) ∧ Y−β +Xα ∧ (advY−β)

=α(v)Xα ∧ Y−β − β(v)Xα ∧ Y−β
=(α− β)(v)Xα ∧ Y−β

The t equivariance of F̄ implies that the tensor satis�es F (mη,mη′) = 0 otherwise the
projection of the restriction of F̄ , i.e. prη′ ◦ F |mη : mη → mη′ , would be a non zero
equivariant map between non equivalent modules. Hence F̄ decomposes into the sum of
maps F̄η : mη → mη for η ∈ ∆H . In order to describe the F̄η more carefully, we will
go on to describe them with a useful basis. To that end we identify ∆H with the set
{α − β | α < β ∈ ∆+

m} ∪ {0} for a ordering < as in proposition 15 on ∆+
m and make the

following

De�nition 24. We de�ne

i) for α < β the module
mαβ = gα ∧ g−β ⊕ gβ ∧ g−α,

ii) for η ∈ ∆H \ {0} the index set

I(η) = {(α, β) | α < β, α− β = η}

and its cardinality to be nη = |I(η)|.
Using this notation we have

mη =
⊕

(α,β)∈I(η)

mαβ m0 =
⊕
α∈∆+

m

gα ∧ g−α

and dimC(mη) = 2nη and dimC(m0) = |∆+
m|.

For a �xed pair α < β, we choose the ordered basis Aαβ = Eα∧E−β and Bαβ = Eβ∧E−α
of mαβ , where the Eα are the Chevalley basis from proposition 11. Obviously, this induces
a basis of the real module

mR
αβ = m ∩mαβ = 〈Φαβ ,Ψαβ〉R

where Φαβ = 1√
2
(Aαβ −Bαβ) and Ψαβ = i√

2
(Aαβ +Bαβ). In general, the projection of the

restriction of F̄ to the submodules of mη, i.e.

F̄αβγδ = prγδ ◦ F̄ |mαβ : mαβ → mγδ

is a intertwining map of equivalent T modules. However, since these are complex represent-
ations the space of intertwining maps is two dimensional and in fact it is fairly easy to see
that in the basis A,B of the corresponding modules, we have the matrix representation

F̄αβγδ =
1

〈Aγδ, Bγδ〉Λ2(m)

λ µ

µ̄ λ̄


where λ = F (Aγδ, Bγδ) and µ = F (Bγδ, Bγδ). However, it will be useful to consider a more
restrictive type of tensor F . In fact, we present the following
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Proposition 25. Let η ∈ ∆H be non zero. Let F be a symmetric tensor as before, that
satis�es for all (α, β), (γ, δ) ∈ I(η):

1) F (Aαβ , Aγδ) is zero and

2) F (Aαβ , Bγδ) is a real number.

Then we have that F is positive de�nite on mη if and only if the matrix M(Fη) ∈ Symnη (R)
de�ned as (

M(Fη)
)

(α,β)(γ,δ)
= −F (Aαβ , Bγδ)

with (α, β), (γ, δ) ∈ I(η) is positive de�nite.

Proof. Consider the matrix X representing the bilinear form F on mR
αβ ×mR

γδ, i.e.

X =

F (Φαβ ,Φγδ) F (Φαβ ,Ψγδ)

F (Ψαβ ,Φγδ) F (Ψαβ ,Ψγδ)


Then by expanding the expressions of Φ,Ψ in terms of A and B, and using the fact
that from Aαβ = Bαβ follows F (Aαβ , Bγδ) = F (Aαβ , Bγδ) = F (Bαβ , Aγδ) and similarly
F (Aαβ , Aγδ) = F (Bαβ , Bγδ) we get

X =

 Re
(
F (Aαβ , Aγδ)− F (Aαβ , Bγδ)

)
−Im

(
F (Aαβ , Aγδ) + F (Aαβ , Bγδ)

)
−Im

(
F (Aαβ , Aγδ)− F (Aαβ , Bγδ)

)
−Re

(
F (Aαβ , Aγδ) + F (Aαβ , Bγδ)

)
 .

Now using properties 1) and 2) we obtain

X = −F (Aαβ , Bγδ)

 1 0

0 1

 .

Since this is true for all pairs of pairs (α, β), (γ, δ) ∈ I(η) we get that the matrix representing
F on mη ×mη is

M(Fη)⊗

 1 0

0 1


where ⊗ denotes the Kronecker product of matrices. Now it is known that the eigenvalues
of the Kronecker product of two diagonalizable matrices are exactly the products of their
eigenvalues. Hence it follows that F is positive de�nite on mη if and only ifM(Fη) is positive
de�nite.

For the trivial module we choose the basis Cα = Eα ∧ E−α and the real version is
obviously Ωα = iCα. Then the version of the above for the trivial module is given by

Proposition 26. The tensor F on m0 is positive de�nite if and only if the matrix M(F0) ∈
Sym|∆+

m|(R) de�ned as (
M(F0)

)
(α,α),(β,β)

= −F (Cα, Cβ)

is positive de�nite.

Proof. This is even simpler, since the matrix representing F on mR
0 ×mR

0 is given by Xαβ =
F (Ωα,Ωβ) = −F (Cα, Cβ).

Now we want to apply proposition 25 to the holomorphic curvature tensor and to the
elementary relevant four forms from proposition 20. To that end, denote the elementary
forms by

ω1 = Ex,−y,v,−w + Ex,−y,v,−w and ω2 = i(Ex,−y,v,−w − Ex,−y,v,−w)

with x− y = w − v and x < y,w < v ∈ ∆+
m.
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Proposition 27. The holomorphic curvature tensor H and the elementary four forms ω1

satisfy the requirements of proposition 25.

Remark: We want to remark that with the same proof also ω2 satis�es property 1) but
not property 2) and hence the changes induced by ω2 on the curvature tensor can not be
represented in the matrices M(Fη). We will restrict ourself to the modi�cations realizable
in the M(Fη) since they will be su�cient for our proofs. However, it might be worthwhile
to investigate further how ω2 modi�es the curvature tensor.

Proof. First we consider the holomorphic curvature tensor H. The �rst property is true
because H(Aαβ , Aγδ) = Rαβγδ = 0 by equation (1.4) since α − β = η = γ − δ 6= δ − γ and
H(Aαβ , Bγδ) = Rαβδγ is a real number by the table of proposition 16. Secondly, we consider
ω1. Then we have by T invariance as in proposition 19 that

ω′1(Aαβ , Aγδ) = 〈ω1, Eα,−β,γ,−δ〉Λ4(m)

= 〈Adexp(tv)(ω1), Eα,−β,γ,−δ〉Λ4(m)

= 〈ω1, Adexp(−tv)(Eα,−β,γ,−δ)〉Λ4(m)

and di�erentiation in t yields 0 = (α−β+γ− δ)(v)〈ω1, Eα,−β,γ,−δ〉Λ4(m) for v ∈ t. As above
we have α − β + γ − δ 6= 0 and hence ω′1(Aαβ , Aγδ) = 0 as claimed. The second property
follows from the fact that the expression (1.13) only yields real values.

All of the above allows us to reduce the transformation of the holomorphic curvature
tensor into a positive de�nite tensor via forms of the type ω1 to the matrices M(Fη) with
F ∈ {H,ω1}. Before we determine those matrices in detail including the di�erent possibilities
of roots x, y, v, w in the choice of ω1, we describe the strategy we will follow: Notice, that
the requirements of proposition 25 are additive in F and hence we have for two symmetric
T invariant tensors F, P satisfying the requirements, that F + P satis�es them as well and
we have

M ((F + P )η) = M(Fη) +M(Pη),

in particular M((H + ω)η) = M(Hη) + M(ωη) for ω being a four form in the span of all
elementary relevant forms of type ω1. Hence, once determined M(Hη) the proof of positive
holomorphic sectional curvature reduces to adding matrices coming from four forms until the
resulting matrix is positive de�nite. By proposition 25 the symmetric tensor corresponding
to that matrix is positive de�nite and by (1.12) the holomorphic sectional curvature is
positive.

Now we determine the matrices for the mentioned tensors.

Proposition 28. The matrices representing the holomorphic curvature tensor are given by
the following: For η ∈ ∆H being a non zero weight

M(Hη)(α,β)(γ,δ) = −Rαβδγ

with (α, β), (γ, δ) ∈ I(η) and for the trivial module

M(H0)(α,α)(β,β) = −Rααββ

for α, β ∈ ∆+
m.

In the case of ω1 we distinguish two cases:

Proposition 29 (Case I). Assume |{x, y, v, w}| = 4. Then we may assume x < y, v, w.In
this case the only non vanishing entries of the matrices M((ω1)η) are the following:

M((ω1)(x−y))(x,y)(w,v) = −c and M((ω1)(x−w))(x,w)(y,v) = c

and their symmetric counterparts, where c = zαzβzγzδgαgβgγgδ.
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Proof. First of all notice that ω1(x, y, w, v) = Ex,−y,v,−w+Ey,−x,w,−v = ω1(w, v, x, y) which
allows us to assume x < y, v, w. Then we have to check when

M((ω1)η)(α,β)(γ,δ) = −〈ω1, E(α,−β,δ,−γ)〉Λ4(m)

with α ≤ β, γ ≤ δ and α − β = γ − δ = η is non zero. Note that the equality cases α = β
and γ = δ are orthogonal to ω1 since all x, y, v, w are di�erent. It is easy to see that the
only non zero cases are

〈ω1, E(α,−β,δ,−γ)〉Λ4(m) =


c (α, β, γ, δ) = (x, y, w, v)

c (α, β, γ, δ) = (w, v, x, y)

−c (α, β, γ, δ) = (x,w, y, v)

−c (α, β, γ, δ) = (y, v, x, w)

Here we see that the �rst two are the symmetric entries in M((ω1)(x−y)) and the later two
are the symmetric entries in M((ω1)(x−w)) as claimed.

Proposition 30 (Case II). Assume |{x, y, v, w}| = 2. Then x = w and y = v and the only
non vanishing entries of the matrices M((ω1)η) are the following

M((ω1)(x−y))(x,y)(x,y) = 2c and M((ω1)0)(x,x)(y,y) = −2c

and its symmetric counterpart. Here we have c = z2
xz

2
yg

2
xg

2
y.

Proof. It is clear that x = w and y = v. In that case we have ω1(x, y, x, y) = 2Ex,−y,y,−x
which is orthogonal to E(α,−β,δ,−β) unless

(α, β, γ, δ) ∈ {(x, x, y, y), (y, y, x, x), (x, y, x, y)}

and we have

〈2Ex,−y,y,−x, E(α,−β,δ,−γ)〉Λ4(m) =


−2c (α, β, γ, δ) = (y, y, x, x)

−2c (α, β, γ, δ) = (x, x, y, y)

2c (α, β, γ, δ) = (x, y, x, y)

Remark: The value of c is actually not important since we can scale ω1 arbitrarily. The
important results of the above was to determine the non vanishing entries and the signs of
the modi�cation.

The summary of the above is the following recipe on how to prove positive holomorphic
sectional curvature:

i) Determine the set ∆H of weights.

ii) Determine the matrices M(Hη) representing the holomorphic curvature tensor.

iii) Modify the matrices to turn them positive de�nite using an arbitrary amount of the
following modi�cations:
I : Adding the value s ∈ R on the diagonal of an M(Hη) with η ∈ ∆H \ {0} and
subtracting s symmetrically o� the entry of M(H0) as given in proposition 30.

II : Adding the value s symmetrically to an o� diagonal entry ofM(Hη) with η ∈ ∆H \
{0} and subtracting s symmetrically from the matrix M(Hη′) as given in proposition
29.

A useful observation is that it is su�cient to have all M(Hη) positive semide�nite and
only M(H0) positive de�nite.

Proposition 31. If there are four forms such that the modi�ed matricesM(Hη) are positive
semide�nite and M(H0) is positive de�nite, then there are also four forms such that all of
them are positive de�nite.
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Proof. If we take for ε > 0 the four form ω that has the matrix expression

M(ω0)(α,β) =

{
0 α = β

−ε α 6= β

and

M(ωη)(α,β)(γ,δ) =

{
0 (α, β) 6= (γ, δ)

ε (α, β) = (γ, δ)

and denote by H ′ the modi�ed tensor as stated in the claim, then we have that for ε small
enough but not zero M(H ′0) + M(ω0) is still positive de�nite since it is an open condition
and at the same time M(H ′η) + M(ωη) is positive de�nite since it is the sum of a positive
de�nite and a positive semide�nite matrix.

Notice that the symmetry coming from the Bianchi identity in lemma 14 and the sym-
metry coming from the four form, i.e. ω(A ∧B,C ∧D) = −ω(A ∧ C,B ∧D), imply

M(Hη)(α,β)(γ,δ) = M(Hη+β−γ)(α,γ)(β,δ) (3.1)

and

M(ωη)(α,β)(γ,δ) = −M(ωη+β−γ)(α,γ)(β,δ). (3.2)

Hence, we can see here as stated by [Tho71] that the four forms are exactly the tensors
breaking the Bianchi identity.

3.2 Kähler Einstein metric

As mentioned in the introduction, we will restrict ourself to a particular kind of Kähler
metric. It is well known due to [Mat72], that for a �xed complex structure on a C space there
is up to scaling exactly one homogeneous Kähler Einstein metric. For a detailed exposition
we suggest [Arv92, p.36f]. In fact there is a simple and explicit formula for the coe�cients
gα in the Kähler Einstein case considering that the complex structure is determined by a
particular set ∆+

m of roots as given in proposition 4:

gα = B(α, δ∗K),

where δ∗K =
∑
β∈∆+

m
β. Now assume that we have a complex structure on (G,T) compatible

with the one on (G,K), i.e a decomposition ∆+
g = ∆+

m ∪∆+
k as in proposition 7. Then it is

useful to consider γ∗K =
∑
α∈∆+

k
α to determine the Kähler Einstein metric of (G,K) from

the one of (G,T) in the following way:

(gKKE)α = B
(
δ∗K , α

)
= B

( ∑
β∈∆+

m

β, α

)

= B

( ∑
β∈∆+

g

β, α

)
−B

( ∑
β∈∆+

k

β, α

)
= B (δ∗T, α)−B (γ∗K , α)

= (gTKE)α −B (γ∗K , α) . (3.3)

In the following, we determine the Kähler Einstein metrics of (G,T, Jstd) for the classical
groups, their maximal tori and �xed complex structures whilst using the scaled killing form
from section 1.8

Proposition 32 (Kähler Einstein metric of SU(n+ 1)). Up to scaling of the full metric the
coe�cients of the Kähler Einstein metric are given by

gKEαij = j − i (3.4)
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Proof. Notice that

δ∗ =

n∑
i=1

n+1∑
j=i+1

αij =

n+1∑
i=1

(n+ 2− 2i)εi

Hence since B(εi, εi) = 1
2 we have

B(δ∗, αkl) =
1

2
((n+ 2− 2l)− (n+ 2− 2k)) = (l − k).

Proposition 33 (Kähler Einstein metric of SO(2n + 1)). Up to scaling of the full metric
the coe�cients of the Kähler Einstein metric are given by

gKEα =


2(k − l) α = αkl

2(2n+ 1− (l + k)) α = βkl

(2n+ 1− 2k) α = εk

(3.5)

Proof. Notice that

δ∗ =

 n∑
i=1

εi +

n−1∑
i=1

n∑
j=i+1

(αij + βij)

 =

n∑
i=1

(2n− 2i+ 1)εi

Hence since B(εi, εi) = 4 we have

B(δ∗, αkl) = 4 ((2n− 2l + 1)− (2n− 2k + 1)) = 8(l − k)

B(δ∗, βkl) = 4 ((2n− 2l + 1) + (2n− 2k + 1)) = 8(2n+ 1− (l + k))

B(δ∗, εk) = 4(2n− 2k + 1)

Proposition 34 (Kähler Einstein metric of Sp(n)). Up to scaling of the full metric the
coe�cients of the Kähler Einstein metric are given by

gKEα =


l − k α = αkl

2n+ 2− (l + k) α = βkl

2n+ 2− 2k α = γk

(3.6)

Proof. Notice that

δ∗ =

 n∑
i=1

2εi +

n−1∑
i=1

n∑
j=i+1

(αij + βij)

 = 2

n∑
i=1

(n− i+ 1)εi

Hence since B(εi, εi) = 1 we have

B(δ∗, αkl) = 2 ((n− l + 1)− (n− k + 1)) = 2(l − k)

B(δ∗, βkl) = 2 ((n− l + 1) + (n− k + 1)) = 2(2n+ 2− (l + k))

B(δ∗, γk) = B(δ∗, 2εk) = 4(n− k + 1)
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Proposition 35 (Kähler Einstein metric of SO(2n)). Up to scaling of the full metric the
coe�cients of the Kähler Einstein metric are given by

gKEα =

{
(k − l) α = αkl

(2n− (l + k)) α = βkl
(3.7)

Proof. Notice that

δ∗ =

n−1∑
i=1

n∑
j=i+1

(αij + βij) = 2

n∑
i=1

(n− i)εi

Hence since B(εi, εi) = 4 we have

B(δ∗, αkl) = 8 ((n− l)− (n− k)) = 8(l − k)

B(δ∗, βkl) = 8 ((n− l) + (n− k)) = 8(2n− (l + k))

It is well known, e. g. from [Bou68] , that bases for the positive roots of the classical
groups are given by

ΦSU(n+1) = {αi,i+1 | i = 1...n}
ΦSO(2n+1) = {αi,i+1 | i = 1...n− 1} ∪ {εn}

ΦSp(n) = {αi,i+1 | i = 1...n− 1} ∪ {γn}
ΦSO(2n) = {αi,i+1 | i = 1...n− 1} ∪ {βn−1,n}

This gives rise to the following Dynkin diagrams, where we write the pair (α, (gKE)α)
above each vertex, since the metric is determined by its values on the simple roots by
equation (1.2).
SU(n+ 1) :

(α12, 1) (α23, 1) (αn−1,n, 1) (αn,n+1, 1)

SO(2n+ 1) :

(α12, 2) (α23, 2) (αn−1,n, 2) (εn, 1)

Sp(n) :

(α12, 1) (α23, 1) (αn−1,n, 1) (γn, 2)

SO(2n) :

(α12, 1) (α23, 1) (αn−2,n−1, 1)
(αn−1,n, 1)

(βn−1,n, 1)

We observe that the coe�cients of the simple roots of the Kähler Einstein metric do not
depend on the rank.
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3.3 Independence of complex structure

Before we apply the discussion of the holomorphic curvature tensor to an example, we want
to point out the following observations concerning the holomorphic curvature of the Kähler
Einstein metric with respect to di�erent complex structures.

By proposition 4 we know that a complex structure on G/T corresponds to a choice of
positive roots which in turn corresponds to a Weyl chamber and we know that the Weyl
group acts transitively on those, hence it is a natural question how the Weyl group interacts
with complex structures. In fact it is known, e.g. by [Arv92, p.21 f], that thanks to the
Weyl group all complex structures on G/T are equivalent:

Lemma 36. Let J, J ′ be two complex structures on G/T. Then there is a biholomorphic
equivariant di�eomorphism

ϕ : (G/T, J)→ (G/T, J ′)

induced by an automorphism ψ of G,i.e.

ϕ(g.g′T) = ψ(g).ϕ(g′T)

Proof. The two complex structures induce sets of positive roots in ∆g. By classical results
on semisimple Lie algebras two of these orderings are conjugate via the Weyl group and
hence there exists a element g ∈ NG(T) in the normalizer of the maximal torus such that
ψ(x) = gxg−1 induces an automorphism of G/T moving one complex structure into the
other.

This is not true any more if we consider the case G/K. However, in the light of proposi-
tion 9 and lemma 36, it makes sense to restrict to a �xed "standard" Jstd on G/T and only
consider the complex structures induced by this complex structure.

Lemma 37. Let (G,K, J) a C space with an arbitrary complex structure J . Then there is
a C space (G,K ′, J ′) and a equivariant biholomorphism

ϕ′ : (G/K, J)→ (G/K ′, J ′)

with the property that the submersion

π : (G/T, Jstd)→ (G/K ′, J ′)

is holomorphic.

Remark: In other words, every C space (G,K, J) is equivariantly biholomorphic to a
C space with complex structure induced by Jstd.

Proof. By proposition 9 there is a complex structure J̃ such that (G/T, J̃) → (G/K, J)
is a holomorphic submersion. By lemma 36, we get a automorphism ψ : G → G with
ψ(T) = T that induces an biholomorphic di�eomorphism ϕ : (G/T, J̃)→ (G/T, Jstd). Now
with K ′ = ϕ(K) it is easy to see that Jstd is K ′ invariant and therefore letJ ′ be the complex
structure on G/K ′ induced by Jstd. This implies already that the submersion is holomorphic.
Furthermore, we have a biholomorphic di�eomorphism

ϕ′ : (G/K, J)→ (G/K ′, J ′)

by construction.

This uniqueness property of the Kähler Einstein metric can be used nicely to proof the
following theorem.

Theorem 38. Let (G,K, J, gKE) be a Kähler Einstein C space. Then, up to scaling, the
biholomorphism from lemma 37 is an isometry between the Kähler Einstein metrics.
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Proof. Let ϕ′ : (G/K, J)→ (G/K ′, J ′) be the equivariant biholomorphism from lemma 37.
Now, it is only left to show that this is actually an isometry between the Kähler Einstein
metrics. Let us denote g′ = ϕ′−1∗gKE . It certainly is an isometry between

ϕ′ : (G/K, J, gKE)→ (G/K ′, J ′, g′).

So it is only left to show that g′ is a homogeneous Kähler Einstein metric. Since the Kähler
and Einstein properties are preserved under pullback it is su�cient to prove that g′ is G
invariant, because of the uniqueness (up to scalar) of homogeneous Kähler Einstein metrics
on C spaces. Therefore, we consider for x ∈ G

x∗g′ =x∗(ϕ′−1∗gKE)

=(ϕ′−1 ◦ x)∗gKE

=(ψ−1(x) ◦ ϕ′−1)∗gKE

=ϕ′−1∗(ψ−1(x)∗gKE)

=ϕ′−1∗gKE

=g′.

Here we used the equivariance of ϕ with respect to ψ.

The proof allows us to deduce the following.

Corollary 39. For any two invariant complex structures J , J ′ on G/T there exists a biho-
lomorphic isometry

(G,T, J, gJKE)→ (G,T, J ′, gJ
′

KE).

Hence the holomorphic curvature of the corresponding Kähler Einstein metric is independent
of the chosen complex structure.

Corollary 40. If (G,K, Jstd, gKE) has positive holomorphic curvature for all K leaving Jstd
invariant, then the same is true for any complex structure.

The previous two corollaries allow us to restrict all our e�orts to a particular �xed
complex structure Jstd. We will do so for the most part of the rest of the thesis. However,
we will recall from time to time in relevant situations the independence of the complex
structure.
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Example of (G2,T2)

Since there is only one Kähler Einstein C space with simple group G2 that is not covered by
Itoh and theorem 22, i.e. the case of K = T2, we will use this case as an detailed example of
how the above description of the holomorphic curvature tensor can be used to proof positive
holomorphic sectional curvature. First of all we summarize the well known algebraic setting
of G2, which is necessary to determine the curvatures, i.e. zα and Nα,β from proposition 11.
The following can be found in [FH91, p.346f].

Proposition 41. The root system of G2 and its positive roots determining Jstd are generated
by the two simple roots α, β in the following way

∆+
g ={α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}

={α1, α2, α3, α4, α5, α6}

with the Dynkin diagram

β α

.

We know that the cartan matrix de�ning the killing form on h up to scalar is of the form

2

 (α,α)
(α,α)

(α,β)
(α,α)

(α,β)
(β,β)

(β,β)
(β,β)

 =

 2 −3

−1 2

 .

Furthermore, there is a basis H1, H2, Eα with α ∈ ∆ of gC2 such that H1, H2 span h and
Eα ∈ gα and the Lie bracket is given by the following table.

[X,Y ] H1 H2 Eα1
E−α1

Eα2
E−α2

Eα3
E−α3

Eα4
E−α4

Eα5
E−α5

Eα6
E−α6

H1 0 0 2Eα1
−2E−α1

−3Eα2
3E−α2

−Eα3
E−α3

Eα4
−E−α4

3Eα5
−3E−α5

0 0

H2 0 −Eα1
E−α1

2Eα2
−2E−α2

Eα3
−E−α3

0 0 −Eα5
E−α5

Eα6
−E−α6

Eα1
0 H1 Eα3

0 2Eα4
−3E−α2

−3Eα5
−2E−α3

0 E−α4
0 0

E−α1
0 0 −E−α3

3Eα2
−2E−α4

2Eα3
3Eα5

−Eα4
0 0 0

Eα2 0 H2 0 E−α1 0 0 −Eα6 0 0 E−α5

E−α2
0 −Eα1

0 0 0 0 −Eα6
−Eα5

0

Eα3 0 H1 + 3H2 −3Eα6 2E−α1 0 0 0 E−α4

E−α3
0 −2Eα1

3E−α6
0 0 −Eα4

0

Eα4 0 2H1 + 3H2 0 −E−α1 0 E−α3

E−α4
0 Eα1

0 −Eα3
0

Eα5 0 H1 +H2 0 −E−α2

E−α5
0 Eα2

0

Eα6 0 H1 + 2H2

E−α6
0

We will now extract all necessary information to calculate the holomorphic curvature
tensor, i.e. the killing form, gγ and the zγ .

47
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Lemma 42. Up to scaling, the Kähler Einstein metric and the zγ are given by

γ α1 α2 α3 α4 α5 α6

gγ 1 3 4 5 6 9

zγ 1 1
3 1 1 1

3
1
3

and the angles between the roots are given by

(αi, αj) =



2 −3 −1 1 3 0

6 3 0 −3 3

2 1 0 3

2 3 3

6 3

6


Proof. By the cartan matrix, we know 1

3 (β, β) = (α, α) = − 2
3 (α, β). If we normalize the

killing form such that (α, α) = 2 we get

B =

 (α, α) (α, β)

(β, α) (β, β)

 =

 2 −3

−3 6

 .

Using the expressions of the αi in terms of α = α1 and β = α2 we obtain the matrix
representing the angles between the di�erent roots. Since for the Kähler Einstein metric we
have

gγ = (δ∗, γ)

with δ∗ =
∑6
i=1 αi = 10α+ 6β the gγ are easily obtained.

To determine the zγ , we consider the following. Let Hi = [Eαi , E−αi ]. Then we see
αi(Hi) = 2 for all i and Hi = cHαi . This implies in fact

c(αi, αi) = B(Hα, Hi) = α(Hi) = 2.

Now we have zαi = 1
c = 2

(αi,αi)
which is determined by the previous calculations of the

killing form.

Now we have all the data we need to move towards calculating the curvature tensor
considering, that the Nγ,δ can be read from the bracket table.

To determine the holomorphic curvature tensor, the �rst step is to determine the set
∆H = {γ − δ | γ < δ ∈ ∆+

g }. To that end, we use the ordering induced by proposition 15
with ε1 = β and ε2 = α, i.e

α1 < α2 < α3 < α4 < α5 < α6.
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Proposition 43. For the C space (G2,T2) let η be a non zero weight of Fix(Jstd), i.e an
element in ∆H . Then η is in the following table together with the pairs γ < δ with γ−δ = η:

] η I(η) nη

1 −β + α (α1, α2) 1

2 −α (α2, α3), (α3, α4), (α4, α5) 3

3 −2α (α2, α4), (α3, α5) 2

4 −3α (α2, α5) 1

5 −β (α1, α3), (α5, α6) 2

6 −β − α (α1, α4), (α4, α6) 2

7 −β − 2α (α1, α5), (α3, α6) 2

8 −β − 3α (α2, α6) 1

9 −2β − 2α (α1, α6) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, we know dimC(Fix(J)C) = |∆+

g |2 from proposition 23 and on the other
hand

dimC(Fix(J)C) =dimC(m0) +
∑
η∈∆H

dimC(mη)

=|∆+
g |+

∑
η∈∆H

∑
(α,β)∈I(η)

dimC(mαβ)

=|∆+
g |+ 2

∑
η∈∆H

nη.

Hence we only have to verify that

|∆+
g |
(
|∆+

g | − 1
)

2
=
∑
η∈∆H

nη (4.1)

holds. Note that this equation holds for all semisimple groups. Since |∆+
g | = 6 and the right

hand side is given by the sum of the entries in of the third column we see easily that both
left and right hand side equal 15 and hence we found all weights.

Having determined ∆H and for each η also the pairs whose di�erence equals η, the next
step is to determine the matricesM(Hη) representing the curvature tensor on mη. We recall
from proposition 25 that each entry of M(Hη) is indexed by two pairs of positive roots with
di�erence η, i.e. two pairs from the second column of the table above and we have

M(Hη)(x,y)(v,w) = −Rxywv.

To obtain an actual matrix, we need to order these pairs. We choose to order them as given
in the second column of the table read from left to right, but any order does the trick. The
proofs are straightforward calculations plugging in the values of Nαiαj , zαi and (αi, αj) into
the formulas from proposition 16. For notational simplicity, we write all one dimensional
matrices together in one larger diagonal matrix
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Proposition 44. The holomorphic curvature tensor in these cases is represented by the
matrix indexed via

i) the pairs (α1, α2), (α2, α5), (α2, α6), (α1, α6) in the cases ]1, ]4, ]8, ]9:
− 3

4 0 0 0

0 − 2
3 0 0

0 0 1 0

0 0 0 0


ii) the pairs (α2, α3), (α3, α4), (α4, α5) in case ]2:

3 −6 − 5
3

−6 28
3 −8

− 5
3 −8 5


iii) the pairs (α2, α4), (α3, α5) in case ]3: 0 − 5

3

− 5
3 0


iv) the pairs (α1, α3), (α5, α6) in case ]5:− 1

5 1

1 2


v) the pairs (α1, α4), (α4, α6) in case ]6:  3

2 2

2 5


vi) the pairs (α1, α5), (α3, α6) in case ]7:  1 1

1 4


Proof. By the explanations above this reduces to calculating Rαβγδ and hence corresponds
to evaluating the equations from proposition 16. We will do so exemplary for one case and
will omit it throughout the rest of the thesis. We consider the entry M(H−α)(α2,α3)(α4,α5).
Since α2−α3 = −α1 6= 0 and α5−α3 = 2α1 6∈ ∆+

g we are in the case IIb of proposition 16.
Note that α2 + α5 = α6 and hence we have

M(H−α1)(α2,α3)(α4,α5) =−Rα2α3α5α4

=gα4
zα1

Nα2,−α3
Nα5,−α4

+ zα6

gα5gα4

gα6

Nα2,α5
Nα3,α4

=5 · 1 · 1 · (−1) +
1

3
· 6 · 5

9
· (−1) · (−3)

=− 5

3



51

We recall from proposition 26 that for the matrix of the trivial module, we have

M(H0)ij = −Rαiαiαjαj

and this results in

Proposition 45. The holomorphic curvature tensor on the trivial module is represented by

M(H0) =



2 − 3
4 −

1
5

3
2 1 0

− 3
4 2 3 0 − 2

3 1

− 1
5 3 8 28

3 0 4

3
2 0 28

3 10 5 5

1 − 2
3 0 5 4 2

0 1 4 5 2 6


It is easy to see that these matrices are not positive de�nite and hence we do not have

a positive holomorphic curvature tensor. However, using four forms we may be able to
produce a positive modi�ed holomorphic curvature tensor, which is still su�cient for positive
holomorphic curvature. We present our general strategy to improve the tensor but want to
remark that there are di�erent ways to reach a positive modi�ed tensor and it is not clear
to us if there is a preferred one and which one that would be.

Modi�cations

In the light of proposition 31, we start with the matrices corresponding to η 6= 0 and want
to turn them positive semide�nite. We start with the matrix of the cases ]1, ]4, ]8, ]9. Here
there is no choice but to add something to the negative values on the diagonal. In detail that
means we want to add the four form ω to our tensor such that the matrix N representing ω
has the property

M(ω−β+α)(α1,α2)(α1,α2) =
3

4
M(ω−3α)(α2,α5)(α2,α5) =

2

3

by proposition 30 these changes can be realized by a four form if we also have

M(ω0)(α1,α1)(α2,α2) = −3

4
= M(ω0)(α2,α2)(α1,α1)

M(ω0)(α2,α2)(α5,α5) = −2

3
= M(ω0)(α5,α5)(α2,α2)

Hence we can erase the negative diagonals if we subtract 3
4 from M(H0)12 and M(H0)21

and 2
3 from M(H0)25 and M(H0)52. We write this compactly as follows

Value Intended Forced

3
4 M(H−β+α)(1,1) M(H0)(1,2)

2
3 M(H−3α)(1,1) M(H0)(2,5)

Note, that we only mention one o� diagonal entry in the second column even though
the changes must of course be applied symmetrically. Now we have that the matrix for
]1, ]4, ]8, ]9 is positive semide�nite, but we have to keep track of the changes to M0.
Here we did not have much of a choice in other cases there are di�erent ways to achieve
positive de�niteness. To see this consider the matrix of case ]3, here we have the choice to
either add something positive (e.g. 5

3 ) to the diagonals such that the matrix is positive semi-
de�nite. As above that would have impact to the matrix of the trivial module. The other
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option is adding 5
3 symmetrical to the o� diagonal entries resulting in the positive semidef-

inite 0 matrix. The four form to do that needs to have the property that its representing
matrix N satis�es symmetrically

M(ω−2α)(α2,α4)(α3,α5) =
5

3

in order to realize that by a four form we need by proposition 29 (or more explicitly by
equation (3.2)) that

M(ω−α)(α2,α3)(α4,α5) = −5

3

holds also symmetrically. Again we denote this change compactly by

Value Intended Forced

5
3 M(H−2α)(1,2) M(H−α)(1,3)

Following this fashion, we do all the following changes, notice the �rst three are just the
ones already discussed:

Value Intended Forced

3
4 M(H−β+α)(1,1) M(H0)(1,2)

2
3 M(H−3α)(1,1) M(H0)(2,5)

5
3 M(H−2α)(1,2) M(H−α)(1,3)

3 M(H−α)(1,1) M(H0)(2,3)

10 M(H−α)(2,2) M(H0)(3,4)

7 M(H−α)(3,3) M(H0)(4,5)

1
5 M(H−β)(1,1) M(H0)(2,4)

−1 M(H−β)(1,2) M(H−β−2α)(1,3)

Realizing all these changes, we obtain the following modi�ed matrices:

Diag(0, 0, 1, 0) M(H−α) =


6 −6 − 10

3

−6 58
3 −8

− 10
3 −8 12


M(H−2α) =

 0 0

0 0

 M(H−β) =

 0 0

0 2


M(H−β−α) =

 3
2 2

2 5

 M(H−β−2α) =

 1 2

2 4


which are all positive semide�nite. The modi�ed matrix representing the tensor on the
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trivial module is given by

M(H0) =



2 − 3
2 −

1
5

3
2 1 0

− 3
2 2 0 − 1

5 −
4
3 1

− 1
5 0 8 − 2

3 0 4

3
2 −

1
5 −

2
3 10 −2 5

1 − 4
3 0 −2 4 2

0 1 4 5 2 6


which is sadly not positive de�nite. In fact for example for v = (1,−1,−1,−1 − 1, 1), we
have vM(H0)vt = −2. Hence further changes to M(H0) are necessary. At this stage we
want to point out that by the arguments as in the proof of proposition 31 and the fact
that we are not interested in the actual matrices but that they are positive semide�nite,
we may now add symmetrical arbitrary negative values to M(H0) since the forced changes
to the other matrices correspond to increasing the values on the diagonals which maintains
semipositivity. This allows us to "erase" rows and columns that have exclusively nonnegative
entries without keeping track of the explicit changes on the M(Hη). In this case, we see
that the sixth row and column of M(H0) have no negative entries and hence can be erased
using four forms. Resulting in the positive de�nite matrix

M(H0) =



2 − 3
2 −

1
5

3
2 1 0

− 3
2 2 0 − 1

5 −
4
3 0

− 1
5 0 8 − 2

3 0 0

3
2 −

1
5 −

2
3 10 −2 0

1 − 4
3 0 −2 4 0

0 0 0 0 0 6


By proposition 31 we proved that there is a family of four forms that modify the holomorphic
curvature tensor into a positive tensor resulting in

Corollary 46. The Kähler Einstein C space (G2,T2, Jstd, gKE) has positive holomorphic
curvature.

Together with Itoh, theorem 22 and corollary 40, we obtain

Theorem 47. Every Kähler Einstein C space (G2,K, J, gKE) has positive holomorphic
sectional curvature.
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Chapter 5

From T to K

In the example of (G2,T2), we have seen how to determine and represent the holomorphic
curvature tensor in a simple fashion and how to modify it using four forms. In later sections
we are also interested in larger isotropy groups than the maximal torus, which makes it
desirable to have a relation between the curvature tensors. Sadly, the description of Kähler
metrics in proposition 6 makes it obvious that there is no equivariant Riemannian submersion
between Kähler metrics

(G/T, JT, gT)→ (G/K, JK , gK)

because gT is not K invariant. Therefore an application of O'Neill's curvature formula for
submersions is not possible (cf. [O'N66]). Unfortunately, we were not able to �nd a relation
between the holomorphic sectional curvature functions but there is still a connection between
the holomorphic curvature tensors simplifying the calculations in later sections.

By lemmata 36 and 37, we can assume to have the complex structure Jstd of our choice
on G/T such that the submersion to G/K is holomorphic. Then Jstd and its image JKstd on
G/K are determined by a decomposition of a base of the positive roots of G by proposition
7

Φ = Φk ∪ Φm.

For notational reasons, assume that Φ = {α1, .., αr} and Φk = {α1, .., αs} with s < r. By
equation (1.2) any Kähler metric on (G/T, Jstd) is determined by its values cαi > 0 on the
root spaces corresponding to simple roots, hence is given as an inner product

gT(cα1
, .., cαr ) : n× n→ R

and similarly any Kähler metric on (G/K, JKstd) is given by

gK(cαs+1 , .., cαr ) : m×m→ R.

Here we used the B orthogonal decomposition

g = t⊕ p⊕m

with n = p⊕m and k = t⊕ p.
Moving (cα1

, ..., cαs) to zero corresponds to shrinking the metric on p and therefore
collapsing K whilst maintaining the Kähler property and ending up with the desired Kähler
metric on G/K. So the natural question is if the holomorphic curvature tensors are related as
well. In fact, they are. Before we present this in detail, we want to give a short comment on
the fact that we collapse K, because apart from O'Neils curvature formula for Riemannian
submersions there is another famous tool to improve curvature which is called Cheeger
deformation. For details we suggest the exposition in [Zil07] and [Müt87] .

In words the underlying idea of this technique is that scaling the metric down in the
direction of the orbits of a Lie group action of isometries does not decrease and often increases
curvature.
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However, our comment is that we can not apply Cheeger deformations in our case for two
reasons: Firstly, K does not act via isometries in the Kähler metric of (G,T) and secondly,
even though we are scaling the metric on p to zero, the fact that we maintain the Kähler
property implies that we change the metric also on m.

Now we want to formalize the actual relationship. To that end we �x a Kähler metric
on G/K as gK = gK(cαs+1

, .., cαr ) and de�ne the Kähler metric gt = gT(t, .., t, cαs+1
, .., cαr )

on G/T for t > 0. This induces a holomorphic curvature tensor

Ht : Fix(Jstd)× Fix(Jstd)→ R

whose restriction Ht
K to Fix(JKstd) = Fix(Jstd) ∩ Λ2(m) satis�es

Proposition 48. As elements in Sym2(Fix(JKstd)), we have that

lim
t→0

Ht
K = HK

where HK is the curvature tensor of gK .

Before we proof this we need a short fairly obvious

Lemma 49. Let α ∈ ∆+
m and β ∈ ∆+

k then we have

lim
t→0

gtα = gKα and lim
t→0

gtβ = 0

Proof. By (1.2), we can write

gtα =
∑
γ∈Φ

ρ(α)γg
t
γ =

∑
γ∈Φk

ρ(α)γg
t
γ +

∑
γ∈Φm

ρ(α)γg
t
γ

=
∑
γ∈Φk

ρ(α)γt+
∑
γ∈Φm

ρ(α)γcγ

=t

∑
γ∈Φk

ρ(α)γ

+
∑
γ∈Φm

ρ(α)γcγ

Now it is obvious that for α ∈ ∆k the second term is zero and hence the claim follows. For
α ∈ ∆m again by (1.2) the second term equals gKα , which concludes the proof.

Proof of proposition 48. The convergence is equivalent to the convergence of the entries of
the matrix representing the tensors in a �xed basis. In our case that means the matrices
M(Hη). The entries of these matrices are −Rtαβγδ where generally α, β, γ, δ ∈ ∆+

g . Since we
consider the restriction to Λ2(m), we are only interested in the case where α, β, γ, δ ∈ ∆+

m.
Hence, the proof boils down to

lim
t→0

Rtαβγδ = RK(Eα, E−β , Eγ , E−δ)

for those roots. As before, we know that that these terms are zero in both cases unless
α+ γ = β + δ which we assume to be true from now on. Now note that from (1.5), we have

Rtαβγδ =−
gtγ−β
gtα+γ−β

gt
(
[Eα, [E−β , Eγ ]n+ ]n+ , E−δ

)
+

gtγ
gKα+γ

gt
(
[E−β , [Eα, Eγ ]n+ ]n+ , E−δ

)
+

gtγ
gtγ+α−β

gt
(
[[Eα, E−β ]n+ , Eγ ]n+ , E−δ

)
+ gt

(
[[Eα, E−β ]n− , Eγ ]n+ , E−δ

)
+ gt

(
[[Eα, E−β ]tC , Eγ ]n+ , E−δ

)
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Since the projections satisfy (−)n+ = (−)p+ + (−)m+ and gt(−, E−δ) = gtδB(−, E−δ) is zero
on p because δ ∈ ∆+

m, we obtain

Rtαβγδ =−
gtγ−βg

t
δ

gtα+γ−β
B
(
[Eα, [E−β , Eγ ]n+ ]m+ , E−δ

)
(5.1)

+
gtγg

t
δ

gtα+γ

B
(
[E−β , [Eα, Eγ ]n+ ]m+ , E−δ

)
(5.2)

+
gtγg

t
δ

gtγ+α−β
B
(
[[Eα, E−β ]n+ , Eγ ]m+ , E−δ

)
(5.3)

+ gtδB
(
[[Eα, E−β ]n− , Eγ ]m+ , E−δ

)
(5.4)

+ gtδB
(
[[Eα, E−β ]tC , Eγ ]m+ , E−δ

)
(5.5)

Now, we consider these terms separately

(5.1) = −gtγ−β
(
B
(
[Eα, [E−β , Eγ ]m+ ]m+ , E−δ

)
+B

([
Eα, [E−β , Eγ ]p+

]
m+ , E−δ

))
(5.2) =

gtγg
t
δ

gtα+γ

(
B
(
[E−β , [Eα, Eγ ]m+ ]m+ , E−δ

)
+B

([
E−β , [Eα, Eγ ]p+

]
m+ , E−δ

))
(5.3) = gtγ

(
B
(
[[Eα, E−β ]m+ , Eγ ]m+ , E−δ

)
+B

([
[Eα, E−β ]p+ , Eγ

]
m+ , E−δ

))
(5.4) = gtδ

(
B
(
[[Eα, E−β ]m− , Eγ ]m+ , E−δ

)
+B

([
[Eα, E−β ]p− , Eγ

]
m+ , E−δ

))
(5.5) = gtδB

(
[[Eα, E−β ]tC , Eγ ]m+ , E−δ

)
and observe:

• The second term of (5.1) is only non zero if γ−β ∈ ∆+
k , but in that case we have that

lim
t→0

gtγ−β = 0

and therefore the second term vanishes for t→ 0.

• Since α, γ ∈ ∆+
m we have that either α+ γ is no root or α+ γ ∈ ∆+

m as well. Therefore
the second term of (5.2) is constant 0.

• The second terms of (5.3) and (5.4) together with (5.5) yield

(gtγ − gtδ)B
([

[Eα, E−β ]p+ , Eγ
]
m+ , E−δ

)
+ gtδB

(
[[Eα, E−β ]kC , Eγ ]m+ , E−δ

)
where we notice that the �rst term is either zero or α− β = δ − γ ∈ ∆+

k . In the later
case we have from the Kähler property that

(gtγ − gtδ) = −gtδ−γ

which converges to 0 for t→ 0.

• Last but not least, we see that the remaining terms, i.e. the �rst terms of (5.1), (5.2),
(5.3), (5.4) are either 0 because the bracket vanishes or the corresponding root x, i.e
γ − β, α+ γ, γ, δ, are in ∆+

m and for these we know

lim
t→0

gtx = gKx
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Using all these observations, we see

lim
t→0

Rtαβγδ =−
gKγ−βg

K
δ

gKα+γ−β
B
(
[Eα, [E−β , Eγ ]m+ ]m+ , E−δ

)
+
gKγ g

K
δ

gKα+γ

B
(
[E−β , [Eα, Eγ ]m+ ]m+ , E−δ

)
+

gKγ g
K
δ

gKγ+α−β
B
(
[[Eα, E−β ]m+ , Eγ ]m+ , E−δ

)
+ gKδ B

(
[[Eα, E−β ]m− , Eγ ]m+ , E−δ

)
+ gKδ B

(
[[Eα, E−β ]kC , Eγ ]m+ , E−δ

)
= RKαβγδ

Remark:

We want to remark that the way how we approach 0 on the coe�cients gt of the simple
roots in k is not relevant. With slight changes the proof would also work for

g(t1,..,ts) = gT(t1, .., ts, cs+1, .., cr)

with ‖(t1, .., ts)‖ → 0 instead of gt, only the notation would get worse.
The proof of the above allows us to derive the following technique to obtain the curvature

matrices of G/K from those of G/T.

Corollary 50. Let η ∈ ∆H be a weight of (G,K, JKstd, g
K) and let M(Hη)K be the curvature

matrix corresponding to η. Then for all t, we denote by M(Hη)t the curvature matrix of
(G,T, JKstd, gt). Then we have

M(Hη)K = M̃(Hη)t
∣∣∣
t=0

where M̃(Hη)t is the submatrix of M(Hη)t obtained via erasing all rows and columns whose
index contains a root in ∆+

k .



Chapter 6

The conjecture H(k)

This chapter is dedicated to the formulation of our main theorem and its place in the larger
context of positive holomorphic curvature for classical Kähler C spaces. Furthermore, we will
point out the extraordinary position of the classical Kähler Einstein C space (G,T, Jstd, gKE)
and the consequences of positivity of its holomorphic sectional curvature for arbitrary clas-
sical Kähler C spaces even though the previous section showed the di�culties connected to
this.

We begin with the de�nition of the conjecture H(k) for k ≥ 1 to be that the following
statement is true:

Conjecture 51. Let (Gk,K, Jstd, gKE) be a simple Kähler Einstein C space with G being
a classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

A priori, it might not seem reasonable to de�ne the conjecture in dependency the rank
of the group, since there might be a classical group G of rank k with isotropy groups K1

and K2 such that G/K1 has positive holomorphic curvature but G/K2 does not. However,
there is some monotonicity to it if one formulates it this way. In fact, the statement of the
following theorem is basically the assertion:

If H(n) is true, then H(k) is true for all k < n.

The actual formulation is the following:

Theorem 52. Let (Gk,K, Jstd, gKE) be a classical Kähler Einstein C space with rk(Gk) = k
then there is a holomorphic totally geodesic isometric embedding of

(Gk/K, Jstd, gKE) ↪→ (Gn/K̃, J
n
std, g

n
KE)

where (Gn, K̃) is a C space with Gn being the classical Lie group of rank n of the same
family as Gk.

Proof. We de�ne the embedding of Gk into Gn as

Gk ↪→ Gn

A 7→

 idl(n−k) 0

0 A


where l is two in the case of Bk, Dk and one otherwise. On the level of Dynkin diagrams
this corresponds to

α1 αn−k
Diagram of Gk

Now we de�ne K̃ = U(n− k)×K ⊂ Gn by the painted diagram:
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α1 αn−k
Painted Diagram of (Gk,K)

In order to prove that Gk/K ↪→ Gn/K̃ is totally geodesic, we write it as the �xed point set
of a subtorus T ⊂ Tn of isometries using a technique from [WZ18] which gives us

Fix(T ) = CGn(T )/(CGn(T ) ∩ K̃)

where CGn(T ) denotes the centralizer of T in Gn. Let t = t⊥k ⊂ tn be the Lie algebra of the
torus T orthogonal to the maximal torus of Gk, i.e the maximal torus of U(n − k). Since
T , as the subset of the maximal torus of Gn, acts via isometries in gnKE and commutes with
Jnstd, Fix(T ) is a complex totally geodesic submanifold. In fact, it is easy to see from the
de�nition that CGn(T ) = T ×Gk and (CGn(T ) ∩ K̃) = T ×K and therefore we have

Fix(T ) = Gk/K.

It is left to show that the induced structures on Gk/K coming from Gn/K̃ actually coincide
with the intrinsic structures of Gk/K. By the choice of K̃ and the embedding in terms of
Dynkin diagrams, we see that all positive roots of Gk/K are also positive roots of Gn/K̃.
Hence the complex structures coincide. By the Kähler property it is su�cient to check the
metric on the simple roots in Gk/K. For such a root α we have that

(gnKE)α =(gT
n

KE)α − (γ∗
K̃
, α) = gT

n

KE − (γ∗U(n−k), α)− (γ∗K , α)

=(gT
k

KE)α − (γ∗K , α)− (γ∗U(n−k), α)

=(gKE)α − (γ∗U(n−k), α)

=(gKE)α

where we used equation (3.3) and the following facts:

i) γ∗
K̃

= γ∗K + γ∗U(n−k) since K̃ = U(n− k)×K.

ii) (γ∗U(n−k), α) = 0 since U(n− k) and Gk commute.

iii) (gT
n

KE)α = (gT
k

KE)α on the simple roots α in Gk by our discussion of the classical groups
in the end of section 3.2.

Remark: Actually the important property in the de�nition of K̃ is that the vertex αn−k
is not painted. An immediate consequence of the above and corollary 40 is the following:

Theorem 53. Let G be a simple compact classical Lie group with rk(G) ≤ n, then, if
H(n) is true, any Kähler Einstein C space (G,K, J, gKE) has positive holomorphic sectional
curvature curvature.

Proof. By lemma 38, we know there is a biholomorphic G equivariant isometry

(G,K, J, gKE)→ (G,K ′, Jstd, g
std
KE).

By theorem 52 there is a totally geodesic holomorphic embedding

(G,K ′, Jstd, g
std
KE) ↪→ (Gn, K̃, Jstd, g

std
KE)

where Gn is the simple compact classical group of rank n of the same family as G and by
H(n) we know that (Gn, K̃, Jstd, g

std
KE) has positive holomorphic curvature and therefore so

does (G,K, J, gKE).



61

This leads to the following interesting
Questions:

1) Is there a k for which H(k) holds?

2) Do all classical Kähler Einstein C spaces have positive holomorphic sectional
curvature, i.e. is H(k) true for all k?

3) If not, what is the maximal k∗ for which H(k∗) is true and in that case what is the
di�erence between k∗ and k∗ + 1?

The next few sections are dedicated to proving our main theorem, that is a answer to 1):

Theorem 54. The conjecture H(k) is true for k ≤ 4.

Even though the technique to prove the statement is �nding the right four forms in
most cases separately and therefore might not be suitable to proof H(k) for general k, it
certainly gives the impression that there does not seem to be an obstruction identi�able in
the holomorphic curvature tensor, which leads us to believe that the answer to 2) might
actually be yes.

Before we turn to the proof of H(4), we want to dedicate the rest of the section to the
discussion of some consequences of H(k) being true for all k, i.e. implications of 2). First of
all we want to point out a nice property of the Kähler Einstein metric for the toric isotropy.

Theorem 55. Let (Gk,Tk, Jstd, g(c1, .., ck)) be a classical Kähler C space of rank k with the
metric notation from section 5. Then there is a holomorphic totally geodesic embedding

(Gk,Tk, Jstd, g(c1, .., ck))→ (Gn,Tn, Jstd, gKE)

for n >> k if the following condition, depending on the type of Gk, is true:

Ak : ci ∈ N for i = 1...k

Bk : ci ∈ 2N for i = 1...k − 1 and ck ∈ 2N + 1

Ck : ci ∈ N for i = 1...k − 1 and ck ∈ 2N

Dk : ci ∈ N for i = 1...k − 1 and ck + ck−1 ∈ 2N

Proof. The idea of the proof is similar to the one of theorem 52 in that we want to �nd the
embedding as the �xed point set of isometries. We begin by identifying the tangent space
of our totally geodesic subset having the right metric coe�cients. Hence let the ci satisfy
the conditions of the claim. Then the following is a natural number

n =



∑k
i=1 ci Ak

1
2

(∑k
i=1 ci + 1

)
Bk

1
2ck +

∑k−1
i=1 ci Ck

1
2 (ck + ck−1) +

∑k−2
i=1 ci + 1 Dk

and we de�ne with λ =

{
1
2 Bk

1 otherwise
the function

f : {1, .., k + 1} → N (6.1)

s 7→ 1 +

s−1∑
i=1

λci

Now we de�ne the subset Rk of roots of ∆gn indexed by f , i.e

Rk =


{αij | i, j ∈ f({1, ..., k + 1})} Ak

{αij , βij , εi, | i, j ∈ f({1, ..., k})} Bk

{αij , βij , γi, | i, j ∈ f({1, ..., k})} Ck

{αij , βij | i, j ∈ f({1, ..., k})} Dk

.
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It is fairly easy to see that Rk is isomorphic to ∆gk as root systems via ηI 7→ ηf(I) for
a root η ∈ ∆gk . We will see that later in more detail. For now we want to point out
that the space

⊕
α∈Rk gα would carry the right metric coe�cients if it were the tangent

space of a homogeneous �xed point set of isometries. Therefore we calculate that on the
images of the simple roots we have by the equations for the Kähler Einstein metric, i.e
(3.4) (3.5) (3.6) (3.7), in all cases that

(gKE)αf(i)f(i+1)
=

1

λ
(f(i+ 1)− f(i)) =

1

λ
λci = ci

and additionally in the case of Bn

(gKE)εf(k) = 2n+ 1− 2f(k) =

k∑
i=1

ci + 2− 2f(k) = ck,

in the case of Cn

(gKE)γf(k) = 2n+ 2− 2f(k) = ck +

k−1∑
i=1

2ci + 2− 2f(k) = ck

and the case of Dn

(gKE)βf(k−1)f(k)
= 2n− (f(k) + f(k − 1))

= ck + ck−1 +

k−2∑
i=1

2ci + 2− (f(k) + f(k − 1))

= ck

With that at hand, it is su�cient to show that there is a set F ⊂ Tn of isometries of Gn/Tn
with the property that Fix(F ) = Gk/Tk and TTn(Fix(F ))C =

⊕
α∈Rk gα. This would also

prove the above mentioned isomorphism Rk = ∆gk . The existence of such an F follows from
the next propositions.

Proposition 56. Let A ∈ GLl(K) with (l,K) ∈ {(n + 1,C), (2n + 1,R), (2n,C), (2n,R)}
depending on whether we consider An, Bn, Cn or Dn with the following properties

i) The conjugation map CA : GLl(K)→ GLl(K) leaves the pair (Gn,Tn) invariant.

ii) For Gk ⊂ Gn being the lower k × k block as in theorem 52 and its root system ∆gk ⊂
∆gn , we have

Rk = {α ◦Ad−1
A | α ∈ ∆gk}.

Then there is a set of biholomorphic isometries F of (Gn,Tn, Jstd, gKE) such that Fix(F ) =
Gk/Tk and

TTn(Fix(F ))C =
⊕
α∈Rk

gα.

Proof. As we have seen in theorem 52, there is a subset F̃ of Tn ⊂ Isom(Gn,Tn, gKE) with

Fix(F̃ ) = CGn(F̃ )/CGn(F̃ ) ∩ Tn = GkTn−k/Tn = Gk/Tk

where Gk is embedded as the lower block. We notice that by property i) CA descends to a
map which we denote also by CA : Gn/Tn → Gn/Tn. Now we de�ne F = CA(F̃ ) ⊂ Tn and
see that Fix(F ) = CA(Fix(F̃ )) = CA(GkTn−k/Tn). Therefore Fix(F ) ∼= Gk/Tk and by
the standard identi�cations with subspaces of gn we have TTnFix(F̃ ) =

⊕
α∈∆gk

gα which
leads us to

TTn(Fix(F )) = TTn(CA(Fix(F̃ ))) = CA∗(TTnFix(F̃ ))

= AdA

 ⊕
α∈∆gk

gα


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Since we know that AdA leaves Tn invariant, we have that AdA respects the decomposition
in root spaces. In fact we have for h ∈ h = (tn)C and X ∈ gα that

adh(AdA(X)) = [h,AdA(X)] = AdA[Ad−1
A h,X] = AdA(α(Ad−1

A (h))X)

= α(Ad−1
A (h))AdA(X) = (α ◦Ad−1

A )(h)AdA(X)

Hence AdA(gα) = gα◦Ad−1
A
, and therefore we have from property ii)

TTn(Fix(F )) =
⊕

α∈∆gk

AdAgα =
⊕

α∈∆gk

gα◦Ad−1
A

=
⊕
α∈Rk

gα

In order to �nish the proof of theorem 55, it remains to show that an A as in proposition
56 exists.

Proposition 57. There exists a permutation matrix A ∈ GLl(K) satisfying the requirements
of theorem 56.

Proof. First of all we want to de�ne a suitable permutation. Let κ be 1 in the case of An
and 0 otherwise. Then we consider the function

g : {n− k + 1, ..., n+ κ} → {1, ..., n+ κ}
n− k + i 7→ f(i)

where f is the function de�ned in (6.1). Now let g′ be the monotonous bijection of {1, ..., n−
k} → {1, ..., n + κ} \ Im(g). Then we de�ne the permutation σ ∈ Sn+κ partially by g and
g′. Now we de�ne the matrix A ∈ Gll(K) as follows

A =


P−1
σ SU(n+ 1)

Diag
(
P−1
σ ⊗ id2, 1

)
SO(2n+ 1)

id2 ⊗ P−1
σ Sp(n) ⊂ SU(2n)

P−1
σ ⊗ id2 SO(2n)

.

Here Pσ ∈ O(n+ κ) is the permutation matrix with respect to σ, i.e.

(Pσ)ij = δσ(i)j

with the Kronecker delta notation. Since A is lies in U(l), O(l), Sp(l) it is clear that the
conjugation map preserves Gn. The maximal torus is also preserved since conjugation with
A permutes the diagonal entries of diagonal matrices in the cases of SU(l) and Sp(l). In
the case of SO(l), we permute the upper n 2 × 2-blocks which correspond to the maximal
torus. Hence it remains to show that, we have

Rk = {α ◦Ad−1
A | α ∈ ∆gk}. (6.2)

Before we do this, we observe that A can be seen as the matrix representing the following
permutations:

An)

σ1 : {1, ..., n+ 1} → {1, ..., n+ 1}
i 7→ σ−1(i)

Bn)

σ2 : {1, ..., 2n+ 1} → {1, ..., 2n+ 1}
2i− 1 7→ 2σ−1(i)− 1

2i 7→ 2σ−1(i)

2n+ 1 7→ 2n+ 1
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Cn)

σ3 : {1, ..., 2n} → {1, ..., 2n}
i 7→ σ−1(i)

n+ i 7→ n+ σ−1(i)

Dn)

σ4 : {1, ..., 2n} → {1, ..., 2n}
2i− 1 7→ 2σ−1(i)− 1

2i 7→ 2σ−1(i)

where i ranges from 1 to n in the last three cases. It is easy to see that for the matrix Ekl
used to describe all root vectors for the di�erent groups and a permutation matrix Pτ the
following holds

AdPτ (Ekl) = PτEklP
−1
τ = Eτ−1(k)τ−1(l).

Now we will show (6.2) separately for the families An, Bn, Cn, Dn.

An) It is su�cient to show that AdAEαn−k+i,n−k+j = Eαf(i)f(j) and since Eαkl = Ekl we
have immediately

(AdA(Eαn−k+i,n−k+j )) = (P−1
σ Eαn−k+i,n−k+jPσ)

= (Eασ(n−k+i)σ(n−k+j))

= Eαf(i)f(j)

which �nishes the case of An.

Bn) Similarly, we want to show the above for Eαn−k+i,n−k+j , Eβn−k+i,n−k+j and Eεn−k+i ,
we only do the calculation for Eαn−k+i,n−k+j since the others go analogously. By the
description in section 1.8.2, we have the Eα given in terms of Fkl = Elk − Ekl. It
is immediate that AdPτ (Fkl) = Fτ−1(k)τ−1(l) holds. Hence with s = n − k + i and
t = n− k + j we have

AdA(Eαn−k+i,n−k+j ) =Pσ2
Eαn−k+i,n−k+jP

−1
σ2

=Pσ2
(F2s−1,2t−1 + F2s,2t

− i(F2s−1,2t − F2s,2t−1))P−1
σ2

=F2σ(s)−1,2σ(t)−1 + F2σ(s),2σ(t)

− i(F2σ(s)−1,2σ(t) − F2σ(s),2σ(t)−1)

=Eασ(s),σ(t)

=Eαf(i)f(j)

Cn) Similarly, we want to show the above for Eαn−k+i,n−k+jEβn−k+i,n−k+j and Eγn−k+i ,
we only do the calculation for Eαn−k+i,n−k+j since the others go analogously. By the
description in section 1.8.3, we have Eαst = Est −En+t,n+s. Hence with s = n− k+ i
and t = n− k + j we have

AdA(Eαn−k+i,n−k+j ) =Pσ3
Eαn−k+i,n−k+jP

−1
σ3

=Pσ3(Es,t + En+t,n+s)P
−1
σ3

=Eσ(s),σ(t) + En+σ(t),n+σ(s)

=Eασ(s),σ(t)

=Eαf(i)f(j)
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Dn) This works exactly as for Bn.

The consequences of the existence of these embeddings even though just for particular
coe�cients are fairly strong. In fact, let IGk ⊂ Nk be the set of coe�cients satisfying the
conditions of theorem 55 depending on the type of Gk. Then it is easy to see that by

Qk+ = Q+ · IGk

every Kähler metric with rational coe�cients cα has positive holomorphic curvature if this
is true for (Gn,Tn, Jstd, gKE) and all n ∈ N. In detail that results in the following

Corollary 58. If (Gn,Tn, Jstd, gKE) has positive holomorphic curvature for all n, then we
have for any k ∈ N

i) (Gk,Tk, Jstd, g(c1, .., ck)) has positive holomorphic curvature if ci ∈ Q

ii) (Gk,Tk, Jstd, g) has nonnegative holomorphic curvature for any Kähler metric g

Proof. The �rst statement is clear. The second uses that the holomorphic curvature tensor
depends continuously on the coe�cients ci and density of Qk ⊂ Rk.

Combining the second statement with the description of the holomorphic curvature tensor
of a Kähler C space with arbitrary isotropy group from section 5 as the limit of holomorphic
curvature tensors on a Kähler C space with toric isotropy yields the following result

Theorem 59. If (Gn,Tn, Jstd, gKE) has positive holomorphic curvature for all n then all
classical Kähler C spaces have nonnegative holomorphic sectional curvature.

Proof. Let (G,K, J, g) be a classical Kähler C space. Then it is biholomorphically isometric
to (G,K ′, Jstd, g̃) by lemma 37. Here g̃ is the pullback of g via the biholomorphism

(G,K ′, Jstd)→ (G,K, J).

Now let k = rk(G) and s = dim(z(k′). Then as in chapter 5 we have positive constants
cs+1, .., ck such that g̃ = g(cs+1, ..., ct) and we de�ne the Kähler metric on (G,Tk, Jstd)
by g̃t = gT(t, ..t, cs+1, ..., cr). Then by corollary 58 ii), we have that for all t > 0 the
Kähler C space (G,Tk, Jstd, gt) has nonnegative holomorphic sectional curvature. With the
decomposition from section 5

g = t⊕ p⊕m

where m is the tangent space of G/K ′ and n = p⊕m is the tangent space of G/Tk. Then for
X ∈ m we represent the plane X ∧ Jstd(X) as the coe�cient vector v in terms of the basis
Ωα,Φαβ , Psiαβ with α < β ∈ ∆+

m from section 3.1. Then nonnegativity of the holomorphic
sectional curvature implies vTHtv ≥ 0 for the holomorphic curvature tensor Ht of g̃t and
all t > 0. Then we have from proposition 48

0 ≤ lim
t→0

vTHtv = lim
t→0

(
vTHt

K′v
)

= vT
(

lim
t→0

Ht
K′

)
v = vtHK′v = HK′(X)

where Ht
K′ is the restriction of Ht from n to m and HK′ denotes the holomorphic curvature

tensor and then the holomorphic sectional curvature of g̃.

Remark:

1.) Note that there is no version of this theorem with bounded rank. As we see in the proof
of theorem 55 the choice of the large n enabling the embedding and hence the curvature
deduction does depend on the metric and not only on the rank k. Hence, also for �xed rank
k the n can grow arbitrarily large depending on the choice of metric coe�cients on (Gk,Tk).
2.) We want to point out that even though it is obvious that every C space carries a ho-
mogeneous hermitian metric with non negative holomorphic curvature (i.e. the submersion
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metric of the killing form), this metric is only Kähler in the cases of Hermitian symmetric
spaces, i.e. when the isotropy representation is irreducible.

A strong consequence of theorem 59 is that to disprove the conjecture H(k) it is su�cient
to �nd any classical Kähler C space admitting a negatively curved complex line. On the
other hand, to prove the slightly weaker version of H(k) with nonnegative instead of positive
holomorphic curvature it is su�cient to restrict oneself to the toric isotropy and the Kähler
Einstein metric, i.e

Corollary 60. The spaces (Gn,Tn, Jstd, gKE) have nonnegative holomorphic curvature for
all n ∈ N if and only if all classical Kähler C spaces have nonnegative holomorphic curvature.



Chapter 7

Curvature Matrices

Before we restrict ourselves to the classical groups of rank 4 we use this chapter to determine
the weights ∆H and the corresponding matrices representing the holomorphic curvature
tensor for the classical C spaces of arbitrary rank (Gn,Tn, Jstd) with an arbitrary Kähler
metric. As we will see the amount of di�erent kind of modules seems overwhelming at �rst,
but careful observations allow us to reduce the problem of positive holomorphic curvature
in general to just two to four di�erent kinds of modules depending on G instead of the in
the following presented four to eighteen kinds. The remaining modules will be the trivial
module and the modules with η ∈ ∆−m. In the following we will not write the representing
matrices of the four forms explicitly but rather their e�ect on the matrices representing the
curvature tensor. Therefore, we simplify notation slightly writing

Mη = M(Hη)

for the matrices of the holomorphic curvature tensor.
The �rst observation will be that if η 6∈ ∆−m then the matrices representing the curvature
tensor on these modules cannot be positive de�nite because they either have negative values
on the diagonal or zeros on the diagonal and non zero o�diagonal entries. Hence it is
necessary to modify these matrices via four forms to keep the hope alive to be able to prove
positive holomorphic curvature via the tensor. As indicated by the recipe in the end of
section 1.7, we will do the following:

I) If there is a negative value −c < 0 on the diagonal of the matrix Mη at (α, β)(α, β),
we erase it, i.e add its absolute value c to that entry. To realize that via four forms we
have to subtract the same absolute value from the corresponding entry of the matrix
of the trivial module. That means in the notation of chapter 4 to

Value Intended Forced

c (Mη)(α,β)(α,β) (M0)(α,α)(β,β)

By the Bianchi identity, the entry of the matrix of the trivial module has the same
value as the diagonal entry of Mη, see (3.1). Therefore erasing all negative diagonals
results in doubling all negative entries of the matrix of the trivial module.

II) After erasing all negative diagonal entries, we are consider all resulting matrices that
have zeros on the diagonal and non zero o� diagonal entries. We want to erase
those o� diagonal entries as well. Assume that we want to erase the o� diagonal
entry (Mη)(α,β)(γ,δ) = c via four forms. By (3.2) we are forced to modify the entry
(Mη+β−γ)(α,γ)(β,δ) in the opposite direction. In the notation of chapter 4 this means

Value Intended Forced

−c (Mη)(α,β)(γ,δ) (Mη+β−γ)(α,γ)(β,δ)

67
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We will see that for every entry of a matrix Mη with zero diagonal the corresponding
matrix Mη+β−γ has positive diagonal entries. As in case I) the values of these two
entries coincide and hence erasing the entry in Mη results in multiplying the entry in
Mη+β−γ by two.

We specify for each classical group separately in the section "General modi�cations" how
these modi�cations a�ect the matrices. Exemplary, we will present the full details in the
case of SU(n+ 1).

7.1 SU(n+ 1)

We de�ne the ordering on the positive roots as in proposition 15 with the slight modi�cation
that we use the ordered basis εj with j = 1, .., n + 1 instead of the simple roots to induce
the ordering. It is easy to see that the desired properties are still true.

Proposition 61. For the C space (SU(n + 1),Tn, Jstd) let η be a non zero weight of
Fix(Jstd), i.e an element in

∆H = {α− β | α < β ∈ ∆+
g }.

Then η is in the following table together with the pairs α < β with α− β = η:

] η I(η) nη

1 −εa + εb (αia, αib) , i = 1..a− 1 n− b+ a

(αbj , αaj) , j = b+ 1..n+ 1

2 −εa + εb + εc − εd (αcd, αab), (αbd, αac) 2

3 −εa + εb − εc + εd (αbc, αad) 1

4 −εa + 2εb − εc (αbc, αab) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1) we only have to verify that

|∆+
g |
(
|∆+

g | − 1
)

2
=
∑
η∈∆H

nη

holds. In fact, we know |∆+
g | =

n(n+1)
2 and the right hand side is given by

n∑
a=1

n+1∑
b=a+1

(n− b+ a) +

(
n+ 1

3

)
+ 3

(
n+ 1

4

)
Easy calculations yield that left and right hand side coincide and therefore we found all
weights.

In the following, we determine the curvature matrices Mη. Since the indices of Mη are
pairs of roots (α, β) with α < β and α−β = η it makes sense to choose an ordering of these
pairs. We will do so in each Mη separately. The proofs reduce to plugging in the values of
gα, Nα,β and zα as determined for the classical groups in section 1.8 into the equations of
proposition 16 and will therefore be omitted. An exemplary calculation was made in the
proof of proposition 44.

Proposition 62 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n+ 1. We order the pairs as
follows xi = (αia, αib) with i = 1, .., a− 1 and yj = (αb,b+j , αa,b+j) with j = 1, .., n+ 1− b.
Then we have

Mη =

 X 〈XY 〉

〈XY 〉T Y





7.1. SU(N + 1) 69

with diagonal blocks

X ∈Syma−1(R) Xis = gαsa for i ≤ s
Y ∈Symn+1−b(R) Yis = gαb,b+i for i ≤ s

and o� diagonal block entries

〈XY 〉is = −
gαiagαb,b+s
gαi,b+s

Proposition 63 (Case ]2). Let η = −εa + εb + εc − εd for 1 ≤ a < b < c < d ≤ n+ 1. We
order the pairs as follows (αcd, αab), (αbd, αac). Then we have

Mη =

 0 − gαcdgαabgαad

− gαcdgαabgαad
0


Proposition 64 (Case ]3). Let η = −εa + εb − εc + εd for 1 ≤ a < b < c < d ≤ n+ 1. We
only have one entry corresponding to (αbc, αad), (αbd, αac). Then we have

Mη = 0

Proposition 65 (Case ]4). Let η = −εa + 2εb − εc for 1 ≤ a < b < c ≤ n + 1. We only
have one entry corresponding to (αbc, αab). Then we have

Mη = −gαabgαbc
gαac

Proposition 66. The entries of the matrix of the trivial module are determined by the
diagonals of the matrices above :

(M0)(αα)(ββ) = (Mα−β)(αβ)(αβ)

except for the diagonals. For α = αij the following holds

(M0)(αα)(αα) = 2gα

General modi�cations of SU(n+ 1)

We present the modi�cations following step I) and II) described in the beginning of the
section for SU(n+ 1) in detail. Roughly speaking we make the following modi�cations:

1.) We move the diagonals of ]4 into the matrix of the trivial module.

2.) The o� diagonals of ]2 into the 〈XY 〉 block of ]1.

In detail, the modi�cations of 1.) with the notation from chapter 4 correspond to the fol-
lowing changes for all 1 ≤ a < b < c ≤ n+ 1

Value Intended Forced
gαabgαbc
gαac

(M−εa+2εb−εc)(αbc,αab)(αbc,αab) (M0)(αbc,αbc)(αab,αab)

and 2.) for 1 ≤ a < b < c < d ≤ n+ 1

Value Intended Forced
gαcdgαab
gαad

(M−εa+εb+εc−εd)(αcd,αab)(αbd,αac) (M−εb+εc)(αab,αac)(αcd,αbd)

We want to remark here that even though one needs multiple small matrices of type ]2 to
cover the 〈X,Y 〉 block of one matrix of type ]1 in the end we cover all of them. In fact, it is
easy to see that the map "Intended" to "Forced" is a bijection between o� diagonal entries
of all matrices of type ]2 to entries of 〈X,Y 〉 blocks of all matrices of type ]1.

After these changes the now modi�ed curvature tensor decomposes into the following
matrices
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Proposition 67 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n+ 1. We order the pairs as
follows xi = (αia, αib) and yj = (αb,b+j , αa,b+j) with i = 1, .., a − 1 and j = 1, .., n + 1 − b.
Then we have the modi�ed matrices

Mη =

 X 〈XY 〉

〈XY 〉T Y


with diagonal blocks

X ∈Syma−1(R) Xis = gαsa for i ≤ s
Y ∈Symn+1−b(R) Yis = gαb,b+i for i ≤ s

and o� diagonal block entries

〈XY 〉is = −2
gαiagαb,b+s
gαi,b+s

Proposition 68. The entries of the matrix of the trivial module are given by:

(M0)(αα)(ββ) =


2gα α = β

gαia (α, β) = (αia, αib)

gαbj (α, β) = (αbj , αaj)

−2
gαaigαib
gαab

(α, β) = (αai, αib)

for α ≤ β.

7.2 SO(2n+ 1)

As for SU(n+ 1) we de�ne the ordering on the positive roots as in proposition 15 with the
slight modi�cation that we use the ordered basis εj with j = 1, .., n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 69. For the C space (SO(2n + 1),Tn, Jstd) let η be a non zero weight of
Fix(Jstd), i.e an element in

∆H = {α− β | α < β ∈ ∆+
g }.

Then η is in the following table together with the pairs α < β with α− β = η:

] η I(η) nη

1 −εa + εb (αia, αib) , i = 1, .., a− 1 2n− b+ a− 2

(αbj , αaj) , j = b+ 1, .., n

(βtb, βat) , t = a+ 1, .., b− 1

(βsb, βsa) , s = 1, .., a− 1

(βbr, βar) , r = b+ 1, .., n

(εb, εa)

2 −εa − εb (αsa, βsb) , s = 1, .., a− 1 b+ a− 3

(αsb, βsa) , s = 1, .., a− 1

(αtb, βat) , t = a+ 1, .., b− 1

3 −εa (αsa, εs) , s = 1, .., a− 1 n+ a− 2

(εs, βsa) , s = 1, .., a− 1

(εr, βar) , r = a+ 1, .., n
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] η I(η) nη

4 −2εa (αsa, βsa) , s = 1, .., a− 1 a− 1

5 −εa + εb + εc − εd (αcd, αab), (αbd, αac), (βbc, βad) 3

6 −εa + εb − εc + εd (αbc, αad), (βbd, βac) 2

7 −εa − εb + εc + εd (βcd, βab) 1

8 −εa + εb + εc + εd (βcd, αab), (βbd, αac), (βbc, αad) 3

9 −εa + εb − εc − εd (αbc, βad), (αbd, βac) 2

10 −εa − εb + εc − εd (αcd, βab) 1

11 −εa + 2εb − εc (αbc, αab) 1

12 −εa + 2εb + εc (βbc, αab) 1

13 −εa + εb + 2εc (βbc, αac) 1

14 −εa + εb − 2εc (αbc, βac) 1

15 −εa + εb + εc (εc, αab), (εb, αac), (βbc, εa) 3

16 −εa + εb − εc (αbc, εa), (εb, βac) 2

17 −εa − εb + εc (εc, βab) 1

18 −εa + 2εb (εb, αab) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1) we only have to verify that

|∆+
g |
(
|∆+

g | − 1
)

2
=
∑
η∈∆H

nη

holds. In fact, we know |∆+
g | = n2 and the right hand side is given by

n−1∑
a=1

n∑
b=a+1

(2n+ 2a− 4) +

n∑
a=1

(n+ 2a− 3)

+10

(
n

3

)
+ 12

(
n

4

)
Easy calculations yield that left and right hand side coincide and therefore we found all
weights.

In the following, we determine the curvature matrices Mη. Since the indices of Mη are
pairs of roots (α, β) with α < β and α−β = η it makes sense to choose an ordering of these
pairs. We will do so in each Mη separately. The proofs reduce to plugging in the values of
gα, Nα,β and zα as determined for the classical groups in section 1.8 into the equations of
proposition 16 and will therefore be omitted. An exemplary calculation was made in the
proof of proposition 44.

Proposition 70 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j) and D1 = (εb, εa) with i = 1, .., a − 1, t = 1, .., b − a − 1 and j = 1, .., n − b.
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Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉 〈V D〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉 〈WD〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉 〈XD〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉 〈Y D〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z 〈ZD〉

〈V D〉T 〈WD〉T 〈XD〉T 〈Y D〉T 〈ZD〉T D


with the diagonal matrices being

V ∈Syma−1(R) Vis = 4gαsa for i ≤ s
W ∈Symn−b(R) Wis = 4gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = 4gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = 4gβsb for i ≤ s
Z ∈Symn−b(R) Zis = 4gβb,b+s for i ≤ s

D ∈Sym1(R) D11 =
(gεb)

2

gβab

and the o� diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

〈VW 〉is = −4
gαiagαb,b+s
gαi,b+s

〈V X〉is = 4
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
−4gαia
−4

gαiagβsb
gβis

〈V Z〉is = −4
gαiagβb,b+s
gβi,b+s

〈V D〉i1 = −2
gαiagεb
gεi

〈WX〉is = −4gαb,b+i

〈WY 〉is = 4gαb,b+i 〈WZ〉is =

{
4
gαb,b+igβb,b+i

gβab

4gαb,b+i
〈WD〉i1 = 2gαb,b+i

〈XY 〉is = −4gβa+i,b 〈XZ〉is = −4gβb,b+s 〈XD〉i1 = −2gεb
〈Y Z〉is = 4gβb,b+s 〈Y D〉i1 = 2gεb 〈ZD〉is = 2gεb

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.

Proposition 71 (Case ]2). Let η = −εa−εb for 1 ≤ a < b ≤ n. We order the pairs as follows
xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) with i = 1, .., a− 1 and t = 1, .., b− a− 1
. Then we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

X ∈Syma−1(R) Xis = 4gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 4gαsb for i ≤ s
Z ∈Symb−a−1(R) Zis = 4gαa+s,b for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−4gαsa i = s

−4
gαsbgαia
gβsi

i 6= s
〈XZ〉is = 4

gαiagαa+s,b
gβi,a+s

〈Y Z〉is = −4gαa+s,b
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Proposition 72 (Case ]3). Let η = −εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, εi), yi = (εi, βia), zj = (εa+j , βa,a+j) with i = 1, .., a−1 and j = 1, .., n−a . Then
we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

X ∈Syma−1(R) Xis = 2gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 2gεs for i ≤ s
Z ∈Symn−a(R) Zis = 2gεa+s for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−2gαia i = s

−2
gαiagεs
gβsi

i 6= s
〈XZ〉is = 2

gαiagεa+s
gβi,a+s

〈Y Z〉is = −2gεa+s

Proposition 73 (Case ]4). Let η = −2εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, βia) for i = 1...a− 1. Then we have

(Mη)is =

{
0 i = s

4
gαsagβsa
gβis

i < s

Proposition 74 (Cases ]5− ]10). Let 1 ≤ a < b < c < d ≤ n. We order the pairs as given
in the table from left to right. Then we have for η = −εa + εb + εc − εd :

Mη =


0 −4

gαcdgαab
gαad

4
gαcdgαab
gβac

−4
gαcdgαab
gαad

0 −4
gαbdgαac
gβab

4
gαcdgαab
gβac

−4
gαbdgαac
gαab

0

 .

For η = −εa + εb − εc + εd :

Mη =

 0 −4
gαbcgαad
gβab

−4
gαbcgαad
gβab

0


For η = −εa − εb + εc + εd :

Mη = 0

For η = −εa + εb + εc + εd :

Mη =


0 −4

gβcdgαab
gβad

4
gβcdgαab
gβac

−4
gβcdgαab
gβad

0 −4
gβbdgαac
gβab

4
gβcdgαab
gβac

−4
gβbdgαac
gβab

0


For η = −εa + εb − εc − εd :

Mη =

 0 −4
gαbcgβad
gβab

−4
gαbcgβad
gβab

0


For η = −εa − εb + εc − εd :

Mη = 0
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Since they are all one dimensional, we write the cases ]11− ]14 in one matrix

Proposition 75 (Cases ]11 − ]14). We consider for 1 ≤ a < b < c ≤ n the ordering
(αbc, αab), (βbc, αab), (βbc, αac), (αbc, βac). The direct sum of the corresponding M ′ηs is given
by 

−4
gαbcgαab
gαac

0 0 0

0 −4
gβbcgαab
gβac

0 0

0 0 −4
gβbcgαac
gβab

0

0 0 0 −4
gαbcgβac
gβab


Proposition 76 (Cases ]15− ]17). Let 1 ≤ a < b < c ≤ n. We order the pairs as given in
the table from left to right. Then we have for η = −εa + εb + εc :

Mη =


0 −2

gεcgαab
gεa

2
gεcgαab
gβac

−2
gεcgαab
gεa

0 −2
gεbgαac
gβab

2
gεcgαab
gβac

−2
gεbgαac
gβab

0

 .

For η = −εa + εb − εc :

Mη =

 0 −2
gεagαbc
gβab

−2
gεagαbc
gβab

0


For η = −εa − εb + εc :

Mη = 0

Proposition 77 (Cases ]18). Let 1 ≤ a < b ≤ n. We order the pairs as given in the table
from left to right. Then we have for η = −εa + 2εb :

Mη = −2
gεbgαab
gεa

Proposition 78. The entries of the matrix of the trivial module are determined by the
diagonals of the matrices above :

(M0)(αα)(ββ) = (Mα−β)(αβ)(αβ)

except for the diagonals. For α ∈ ∆+
m the following holds

(M0)(αα)(αα) =

{
8gα α ∈ {αij , βij}
gα α = εi

General modi�cations of SO(2n+ 1)

The modi�cations described in the beginning of the section in the case of SO(2n + 1) are
the following:

1.) We move the diagonals of ]11− 14 and 18 into the matrix of the trivial module.

2.) The o� diagonals of ]4 to the diagonal of the 〈WZ〉 block of ]1.

3.) The o� diagonals of ]5 to the 〈VW 〉 block of ]1, the 〈XZ〉 block and the upper
triangular part of the 〈XY 〉 block of ]2.

4.) The o� diagonal of ]6 the lower triangular part of the 〈XY 〉 block of ]2.

5.) The o� diagonals of ]8 to the 〈V Z〉 block, the 〈V X〉 block and the upper triangular
part of the 〈V Y 〉 block of ]1.
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6.) The o� diagonal of ]9 the lower triangular part of the 〈V Y 〉 block of ]1.

7.) The o� diagonals of ]15 to the 〈V D〉 block of ]1 , the 〈XZ〉 block and the upper
triangular part of the 〈XY 〉 block of ]3.

8.) The o� diagonal of ]9 the lower triangular part of the 〈XY 〉 block of ]3.

We remark that similarly to the modi�cations of SU(n + 1), in each step have a bijection
between the referenced entries of all matrices of the mentioned case ]i.

Then the modi�ed holomorphic curvature tensor is given by the following matrices

Proposition 79 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j) and D1 = (εb, εa) with i = 1, .., a − 1, t = 1, .., b − a − 1 and j = 1, .., n − b.
Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉 〈V D〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉 〈WD〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉 〈XD〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉 〈Y D〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z 〈ZD〉

〈V D〉T 〈WD〉T 〈XD〉T 〈Y D〉T 〈ZD〉T D


with the diagonal matrices being

V ∈Syma−1(R) Vis = 4gαsa for i ≤ s
W ∈Symn−b(R) Wis = 4gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = 4gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = 4gβsb for i ≤ s
Z ∈Symn−b(R) Zis = 4gβb,b+s for i ≤ s

D ∈Sym1(R) D11 =
(gεb)

2

gβab

and the o� diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

〈VW 〉is = −8
gαiagαb,b+s
gαi,b+s

〈V X〉is = 8
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
−4gαia
−8

gαiagβsb
gβis

〈V Z〉is = −8
gαiagβb,b+s
gβi,b+s

〈V D〉i1 = −4
gαiagεb
gεi

〈WX〉is = −4gαb,b+i

〈WY 〉is = 4gαb,b+i 〈WZ〉is =

{
8
gαb,b+igβb,b+i

gβab

4gαb,b+i
〈WD〉i1 = 2gαb,b+i

〈XY 〉is = −4gβa+i,b 〈XZ〉is = −4gβb,b+s 〈XD〉i1 = −2gεb
〈Y Z〉is = 4gβb,b+s 〈Y D〉i1 = 2gεb 〈ZD〉i1 = 2gεb

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.

Proposition 80 (Case ]2). Let η = −εa−εb for 1 ≤ a < b ≤ n. We order the pairs as follows
xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) with i = 1, .., a− 1 and t = 1, .., b− a− 1
. Then we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


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with the diagonal matrices being

X ∈Syma−1(R) Xis = 4gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 4gαsb for i ≤ s
Z ∈Symb−a−1(R) Zis = 4gαa+s,b for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−4gαsa i = s

−8
gαsbgαia
gβsi

i 6= s
〈XZ〉is = 8

gαiagαa+s,b
gβi,a+s

〈Y Z〉is = −4gαa+s,b

Proposition 81 (Case ]3). Let η = −εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, εi), yi = (εi, βia), zj = (εa+j , βa,a+j) with i = 1, .., a−1 and j = 1, .., n−a . Then
we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

X ∈Syma−1(R) Xis = 2gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 2gεs for i ≤ s
Z ∈Symn−a(R) Zis = 2gεa+s for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−2gαia i = s

−4
gαiagεs
gβsi

i 6= s
〈XZ〉is = 4

gαiagεa+s
gβi,a+s

〈Y Z〉is = −2gεa+s

Proposition 82. We give the entries of the matrix of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs (α, β) with α < β.

i) Along the diagonal we have

(M0)(αα)(αα) =

{
8gα α ∈ {αij , βij}
gα α = εi

.

ii) For the following pairs (α, β) ∈ {(αia, αib), (αbj , αaj), (βkb, βak),
(βib, βia), (βbj , βaj), (αia, βib), (αib, βia), (αkb, βak)} we have

(M0)(αα)(ββ) = 4gα

iii) For the following pairs (α, β) ∈ {(αia, εi), (εi, βia), (εj , βaj)} we have

(M0)(αα)(ββ) = 2gα

iv) For the following pairs (α, β) ∈ {(αib, αai), (βib, αai), (βbj , αaj)(αbj , βaj)} we have

(M0)(αα)(ββ) = −8
gαgβ
gα+β

v) For the following pairs (α, β) = (εj , αaj) we have

(M0)(αα)(ββ) = −4
gαgβ
gα+β

vi) For the following pairs (α, β) = (εb, εa) we have

(M0)(αα)(ββ) =
(gα)2

gα+β

Notice that the entries in the trivial module that have been doubled are iv) and v).
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7.3 Sp(n)

As for SU(n+ 1) we de�ne the ordering on the positive roots as in proposition 15 with the
slight modi�cation that we use the ordered basis εj with j = 1, .., n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 83. For the C space (Sp(n),Tn, Jstd) let η be a non zero weight of Fix(Jstd),
i.e an element in

∆H = {α− β | α < β ∈ ∆+
g }.

Then η is in the following table together with the pairs α < β with α− β = η:

] η I(η) nη

1 −εa + εb (αia, αib) , i = 1, .., a− 1 2n− b+ a− 1

(αbj , αaj) , j = b+ 1, .., n

(βtb, βat) , t = a+ 1, .., b− 1

(βsb, βsa) , s = 1, .., a− 1

(βbr, βar) , r = b+ 1, .., n

(βab, γa)

(γb, βab)

2 −εa − εb (αsa, βsb) , s = 1, .., a− 1 b+ a− 2

(αsb, βsa) , s = 1, .., a− 1

(αtb, βat) , t = a+ 1, .., b− 1

(αab, γa)

3 −2εa (αsa, βsa) , s = 1, .., a− 1 a− 1

4 −εa + εb + εc − εd (αcd, αab), (αbd, αac), (βbc, βad) 3

5 −εa + εb − εc + εd (αbc, αad), (βbd, βac) 2

6 −εa − εb + εc + εd (βcd, βab) 1

7 −εa + εb + εc + εd (βcd, αab), (βbd, αac), (βbc, αad) 3

8 −εa + εb − εc − εd (αbc, βad), (αbd, βac) 2

9 −εa − εb + εc − εd (αcd, βab) 1

10 −εa + 2εb − εc (αbc, αab)(γb, βac) 2

11 −εa + 2εb + εc (βbc, αab)(γb, αac) 2

12 −εa + εb + 2εc (βbc, αac)(γc, αab) 2

13 −εa + εb − 2εc (αbc, βac) 1

14 −εa − εb + 2εc (γc, βab) 1

15 −2εa + εb + εc (βbc, γa) 1

16 −2εa + εb − εc (αbc, γa) 1

17 −2εa + 2εb (γb, γa) 1

18 −εa + 3εb (γb, αab) 1

Proof. The elements in the list are obviously weights and these are all of them for dimen-
sional reasons. The elements in the list are obviously weights and these are all of them for
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dimensional reasons. In fact, from (4.1) we only have to verify that

|∆+
g |
(
|∆+

g | − 1
)

2
=
∑
η∈∆H

nη

holds. In fact, we know |∆+
g | = n2 and the right hand side is this time given by

n−1∑
a=1

n∑
b=a+1

(2n+ 2a− 1) +

n∑
a=1

(a− 1)

+10

(
n

3

)
+ 12

(
n

4

)
Easy calculations yield that left and right hand side coincide and therefore we found all
weights.

In the following, we determine the curvature matrices Mη. Since the indices of Mη are
pairs of roots (α, β) with α < β and α−β = η it makes sense to choose an ordering of these
pairs. We will do so in each Mη separately. The proofs reduce to plugging in the values of
gα, Nα,β and zα as determined for the classical groups in section 1.8 into the equations of
proposition 16 and will therefore be omitted. An exemplary calculation was made in the
proof of proposition 44.

Proposition 84 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j), D1 = (βab, γa) and E1 = (γb, βab) with i = 1...(a− 1), t = 1...(b− a− 1) and
j = 1...n− b. Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉 〈V D〉 〈V E〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉 〈WD〉 〈WE〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉 〈XD〉 〈XE〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉 〈Y D〉 〈Y E〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z 〈ZD〉 〈ZE〉

〈V D〉T 〈WD〉T 〈XD〉T 〈Y D〉T 〈ZD〉T D 〈DE〉

〈V E〉T 〈WE〉T 〈XE〉T 〈Y E〉T 〈ZE〉T 〈DE〉 E


with the diagonal matrices being

V ∈Syma−1(R) Vis = gαsa for i ≤ s
W ∈Symn−b(R) Wis = gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = gβsb for i ≤ s
Z ∈Symn−b(R) Zis = gβb,b+s for i ≤ s
D ∈Sym1(R) D11 = gβab
E ∈Sym1(R) E11 = gγb

and the o� diagonals being given by the following where i and s vary in the ranges determined
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by the diagonals

〈VW 〉is = −
gαiagαb,b+s
gαi,b+s

〈V X〉is = −
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
− gαiagγbgγi

− gαiagβsbgβis

〈V Z〉is = −
gαiagβb,b+s
gβi,b+s

〈V D〉i1 = −gαiagβab
gβia

〈V E〉i1 = −gαiagγb
gβib

〈WX〉is = gαb,b+i 〈WY 〉is = gαb,b+i 〈WZ〉is =

{ gαb,b+i (gαa,b+i+gβab )

gβab

gαb,b+i

〈WD〉i1 = gαb,b+i 〈WE〉i1 = gαb,b+i 〈XY 〉is = gβa+i,b
〈XZ〉is = gβb,b+s 〈XD〉i1 = gβa+i,b 〈XE〉i1 = gγb
〈Y Z〉is = gβb,b+s 〈Y D〉i1 = gβab 〈Y E〉i1 = gγb
〈ZD〉i1 = gβb,b+i 〈ZE〉i1 = gβb,b+i 〈DE〉i1 = gγb

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.

Proposition 85 (Case ]2). Let η = −εa − εb for 1 ≤ a < b ≤ n. We order the pairs
as follows xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) and D1 = (αab, γa) with
i = 1, .., a− 1 and t = 1, .., b− a− 1 . Then we have

Mη =


X 〈XY 〉 〈XZ〉 〈XD〉

〈XY 〉T Y 〈Y Z〉 〈Y D〉

〈XZ〉T 〈Y Z〉T Z 〈ZD〉

〈XD〉T 〈Y D〉T 〈ZD〉T D


with the diagonal matrices being

X ∈Syma−1(R) Xis = gαsa for i ≤ s
Y ∈Syma−1(R) Yis = gαsb for i ≤ s
Z ∈Symb−a−1(R) Zis = gαa+s,b for i ≤ s
D ∈Sym1(R) D11 = gαab

and the o� diagonals being given by

〈XY 〉is =

{
− gαiagγbgγi

i = s
gαsbgαia
gβsi

i 6= s
〈XZ〉is =

gαiagαa+s,b
gβi,a+s

〈XD〉i1 =
gαiagαab
gβia

〈Y Z〉is = gαa+s,b 〈Y D〉i1 = gαab 〈ZD〉i1 = gαa+s,b

Proposition 86 (Case ]3). Let η = −2εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, βia) for i = 1...a− 1. Then we have

(Mη)is =

2
(gαsa )2

gγs
i = s

gαsa (2gβis−gβsa )

gβis
i < s

Proposition 87 (Cases ]4 − ]9). Let 1 ≤ a < b < c < d ≤ n. We order the pairs as given
in the table from left to right. Then we have for η = −εa + εb + εc − εd :

Mη =


0 − gαcdgαabgαad

gαcdgαab
gβac

− gαcdgαabgαad
0

gαbdgαac
gβab

gαcdgαab
gβac

gαbdgαac
gαab

0

 .
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For η = −εa + εb − εc + εd :

Mη =

 0
gαbcgαad
gβab

gαbcgαad
gβab

0


For η = −εa − εb + εc + εd :

Mη = 0

For η = −εa + εb + εc + εd :

Mη =


0 − gβcdgαabgβad

− gβcdgαabgβac

− gβcdgαabgβad
0 − gβbdgαacgβab

− gβcdgαabgβac
− gβbdgαacgβab

0


For η = −εa + εb − εc − εd :

Mη =

 0 − gαbcgβadgβab

− gαbcgβadgβab
0


For η = −εa − εb + εc − εd :

Mη = 0

Proposition 88 (Cases ]10− ]12). Let 1 ≤ a < b < c ≤ n. We order the pairs as given in
the table from left to right. Then we have for η = −εa + 2εb − εc :

Mη =

− gαbcgαabgαac

gαbcgαab
gβab

gαbcgαab
gβab

0


For η = −εa + 2εb + εc :

Mη =

− gβbcgαabgβac
− gβbcgαabgβab

− gβbcgαabgβab
0


For η = −εa + εb + 2εc :

Mη =

− gβbcgαacgβab
− gγcgαabgβac

− gγcgαabgβac
0


Since they are all one dimensional, we write the cases ]13− ]16 in one matrix

Proposition 89 (Cases ]13 − ]16). We consider for 1 ≤ a < b < c ≤ n the ordering
(αbc, βac), (γc, βab), (βbc, γa), (αbc, γa). The direct sum of the corresponding M ′ηs is given by

− gαbcgβacgβab
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Proposition 90 (Cases ]17 − ]18). We consider for 1 ≤ a < b ≤ n the ordering (γb, γa),
(γb, αab). The direct sum of the corresponding M ′ηs is given by 0 0

0 − gγbgαabgβab


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Proposition 91. The entries of the matrix of the trivial module are determined by the
diagonals of the matrices above :

(M0)(αα)(ββ) = (Mα−β)(αβ)(αβ)

except for the diagonals. For α ∈ ∆+
m the following holds

(M0)(αα)(αα) =

{
2gα α ∈ {αij , βij}
gα α = γi

General modi�cations of Sp(n)

After completing the steps described in the beginning of the section in the case of Sp(n),
that is

1.) We move the diagonals of ]10− 18 into the matrix of the trivial module.

2.) The o� diagonals of ]4 to the 〈VW 〉 block of ]1,the 〈XZ〉 block and the upper trian-
gular part of the 〈XY 〉 block of ]2.

3.) The o� diagonal of ]5 the lower triangular part of the 〈XY 〉 block of ]2.

4.) The o� diagonals of ]7 to the 〈V Z〉 block, the 〈V X〉 block and the upper triangular
part of the 〈V Y 〉 block of ]1.

5.) The o� diagonal of ]8 the lower triangular part of the 〈V Y 〉 block of ]1.

6.) The o� diagonals of ]10 to the 〈XD〉 block of ]2.

7.) The o� diagonals of ]11 to the 〈V D〉 block of ]1.

8.) The o� diagonals of ]12 to the 〈V E〉 block of ]1.

We remark that, similarly to the modi�cations of SU(n+1), in each step we have a bijection
between the referenced entries of all matrices of the mentioned cases ]i.

Then the modi�ed holomorphic curvature tensor is given by the following matrices

Proposition 92 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j), D1 = (βab, γa) and E1 = (γb, βab) with i = 1...(a− 1), t = 1...(b− a− 1) and
j = 1...n− b. Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉 〈V D〉 〈V E〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉 〈WD〉 〈WE〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉 〈XD〉 〈XE〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉 〈Y D〉 〈Y E〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z 〈ZD〉 〈ZE〉

〈V D〉T 〈WD〉T 〈XD〉T 〈Y D〉T 〈ZD〉T D 〈DE〉

〈V E〉T 〈WE〉T 〈XE〉T 〈Y E〉T 〈ZE〉T 〈DE〉 E


with the diagonal matrices being

V ∈Syma−1(R) Vis = gαsa for i ≤ s
W ∈Symn−b(R) Wis = gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = gβsb for i ≤ s
Z ∈Symn−b(R) Zis = gβb,b+s for i ≤ s
D ∈Sym1(R) D11 = gβab
E ∈Sym1(R) E11 = gγb
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and the o� diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

〈VW 〉is = −2
gαiagαb,b+s
gαi,b+s

〈V X〉is = −2
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
− gαiagγbgγi

−2
gαiagβsb
gβis

〈V Z〉is = −2
gαiagβb,b+s
gβi,b+s

〈V D〉i1 = −2
gαiagβab
gβia

〈V E〉i1 = −2
gαiagγb
gβib

〈WX〉is = gαb,b+i 〈WY 〉is = gαb,b+i 〈WZ〉is =

{ gαb,b+i (gαa,b+i+gβab )

gβab

gαb,b+i

〈WD〉i1 = gαb,b+i 〈WE〉i1 = gαb,b+i 〈XY 〉is = gβa+i,b
〈XZ〉is = gβb,b+s 〈XD〉i1 = gβa+i,b 〈XE〉i1 = gγb
〈Y Z〉is = gβb,b+s 〈Y D〉i1 = gβab 〈Y E〉i1 = gγb
〈ZD〉i1 = gβb,b+i 〈ZE〉i1 = gβb,b+i 〈DE〉11 = gγb

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.

Proposition 93 (Case ]2). Let η = −εa − εb for 1 ≤ a < b ≤ n. We order the pairs
as follows xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) and D1 = (αab, γa) with
i = 1, .., a− 1 and t = 1, .., b− a− 1 . Then we have

Mη =


X 〈XY 〉 〈XZ〉 〈XD〉

〈XY 〉T Y 〈Y Z〉 〈Y D〉

〈XZ〉T 〈Y Z〉T Z 〈ZD〉

〈XD〉T 〈Y D〉T 〈ZD〉T D


with the diagonal matrices being

X ∈Syma−1(R) Xis = gαsa for i ≤ s
Y ∈Syma−1(R) Yis = gαsb for i ≤ s
Z ∈Symb−a−1(R) Zis = gαa+s,b for i ≤ s
D ∈Sym1(R) D11 = gαab

and the o� diagonals being given by

〈XY 〉is =

{
− gαiagγbgγi

i = s

2
gαsbgαia
gβsi

i 6= s
〈XZ〉is = 2

gαiagαa+s,b
gβi,a+s

〈XD〉i1 = 2
gαiagαab
gβia

〈Y Z〉is = gαa+s,b 〈Y D〉i1 = gαab 〈ZD〉i1 = gαa+i,b

Proposition 94 (Case ]3). Let η = −2εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, βia) for i = 1...a− 1. Then we have

(Mη)is =

2
(gαia )2

gγi
i = s

gαsa (2gβis−gβsa )

gβis
i < s

Proposition 95. We give the entries of the matrix of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs (α, β) with α < β.

i) Along the diagonal we have

(M0)(αα)(αα) =

{
2gα α ∈ {αij , βij}
gα α = γi

.
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ii) For the following (α, β) ∈ {(αia, αib), (αbj , αaj), (βkb, βak), (βib, βia), (βbj , βaj),
(βab, γa), (γb, βab), (αia, βib), (αib, βia), (αkb, βak), (αab, γa)} we have

(M0)(αα)(ββ) = gα

iii) For the following pairs (α, β) ∈ {(αib, αai), (βib, αai), (βbj , αaj), (αbj , βaj), (γb, αab)}
we have

(M0)(αα)(ββ) = −2
gαgβ
gα+β

iv) For the following pairs (α, β) = (αsa, βsa) we have

(M0)(αα)(ββ) = 2
(gα)2

gα+β

Notice that the entries in the trivial module that have been doubled are iii).

7.4 SO(2n)

As for SU(n+ 1) we de�ne the ordering on the positive roots as in proposition 15 with the
slight modi�cation that we use the ordered basis εj with j = 1, .., n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 96. For the C space (SO(2n),Tn, Jstd) let η be a non zero weight of Fix(Jstd)
, i.e an element in

∆H = {α− β | α < β ∈ ∆+
g }.

Then η is in the following table together with the pairs α < β with α− β = η:

] η I(η) nη

1 −εa + εb (αia, αib) , i = 1, .., a− 1 2n− b+ a− 3

(αbj , αaj) , j = b+ 1, .., n

(βtb, βat) , t = a+ 1, .., b− 1

(βsb, βsa) , s = 1, .., a− 1

(βbr, βar) , r = b+ 1, .., n

2 −εa − εb (αsa, βsb) , s = 1, .., a− 1 b+ a− 3

(αsb, βsa) , s = 1, .., a− 1

(αtb, βat) , t = a+ 1, .., b− 1

3 −2εa (αsa, βsa) , s = 1, .., a− 1 a− 1

4 −εa + εb + εc − εd (αcd, αab), (αbd, αac), (βbc, βad) 3

5 −εa + εb − εc + εd (αbc, αad), (βbd, βac) 2

6 −εa − εb + εc + εd (βcd, βab) 1

7 −εa + εb + εc + εd (βcd, αab), (βbd, αac), (βbc, αad) 3

8 −εa + εb − εc − εd (αbc, βad), (αbd, βac) 2

9 −εa − εb + εc − εd (αcd, βab) 1

10 −εa + 2εb − εc (αbc, αab) 1

11 −εa + 2εb + εc (βbc, αab) 1

12 −εa + εb + 2εc (βbc, αac) 1

13 −εa + εb − 2εc (αbc, βac) 1
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Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1) we only have to verify that

|∆+
g |
(
|∆+

g | − 1
)

2
=
∑
η∈∆H

nη

holds. In fact, we know |∆+
g | = n(n− 1) and the right hand side is given by

n−1∑
a=1

n∑
b=a+1

(2n+ 2a− 6) +

n∑
a=1

(a− 1)

+4

(
n

3

)
+ 12

(
n

4

)
Easy calculations yield that left and right hand side coincide and therefore we found all
weights.

In the following, we determine the curvature matrices Mη. Since the indices of Mη are
pairs of roots (α, β) with α < β and α−β = η it makes sense to choose an ordering of these
pairs. We will do so in each Mη separately. The proofs reduce to plugging in the values of
gα, Nα,β and zα as determined for the classical groups in section 1.8 into the equations of
proposition 16 and will therefore be omitted. An exemplary calculation was made in the
proof of proposition 44.

Proposition 97 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j) with i = 1, .., a− 1, t = 1, .., b− a− 1 and j = 1, .., n− b. Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

V ∈Syma−1(R) Vis = 4gαsa for i ≤ s
W ∈Symn−b(R) Wis = 4gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = 4gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = 4gβsb for i ≤ s
Z ∈Symn−b(R) Zis = 4gβb,b+s for i ≤ s

and the o� diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

〈VW 〉is = −4
gαiagαb,b+s
gαi,b+s

〈V X〉is = 4
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
−4gαia
−4

gαiagβsb
gβis

〈V Z〉is = −4
gαiagβb,b+s
gβi,b+s

〈WX〉is = −4gαb,b+i 〈WY 〉is = 4gαb,b+i

〈WZ〉is =

{
4
gαb,b+igβb,b+i

gβab

4gαb,b+i
〈XY 〉is = −4gβa+i,b 〈XZ〉is = −4gβb,b+s

〈Y Z〉is = 4gβb,b+s

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.
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Proposition 98 (Case ]2). Let η = −εa−εb for 1 ≤ a < b ≤ n. We order the pairs as follows
xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) with i = 1, .., a− 1 and t = 1, .., b− a− 1
. Then we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

X ∈Syma−1(R) Xis = 4gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 4gαsb for i ≤ s
Z ∈Symn−b(R) Zis = 4gαa+s,b for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−4gαsa i = s

−4
gαsbgαia
gβsi

i 6= s
〈XZ〉is = 4

gαiagαa+s,b
gβi,a+s

〈Y Z〉is = −4gαa+s,b

Proposition 99 (Case ]3). Let η = −2εa for 1 ≤ a ≤ n. We order the pairs as follows
xi = (αia, βia) for i = 1...a− 1. Then we have

(Mη)is =

{
0 i = s

4
gαsagβsa
gβis

i < s

Proposition 100 (Cases ]4− ]9). Let 1 ≤ a < b < c < d ≤ n. We order the pairs as given
in the table from left to right. Then we have for η = −εa + εb + εc − εd :

Mη =


0 −4

gαcdgαab
gαad

4
gαcdgαab
gβac

−4
gαcdgαab
gαad

0 −4
gαbdgαac
gβab

4
gαcdgαab
gβac

−4
gαbdgαac
gαab

0

 .

For η = −εa + εb − εc + εd :

Mη =

 0 −4
gαbcgαad
gβab

−4
gαbcgαad
gβab

0


For η = −εa − εb + εc + εd :

Mη = 0

For η = −εa + εb + εc + εd :

Mη =


0 −4

gβcdgαab
gβad

4
gβcdgαab
gβac

−4
gβcdgαab
gβad

0 −4
gβbdgαac
gβab

4
gβcdgαab
gβac

−4
gβbdgαac
gβab

0


For η = −εa + εb − εc − εd :

Mη =

 0 −4
gαbcgβad
gβab

−4
gαbcgβad
gβab

0


For η = −εa − εb + εc − εd :

Mη = 0
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Since they are all one dimensional, we write the cases ]10− ]13 in one matrix

Proposition 101 (Cases ]10 − ]13). We consider for 1 ≤ a < b < c ≤ n the ordering
(αbc, αab), (βbc, αab), (βbc, αac), (αbc, βac). The direct sum of the corresponding M ′ηs is given
by 

−4
gαbcgαab
gαac

0 0 0

0 −4
gβbcgαab
gβac

0 0

0 0 −4
gβbcgαac
gβab

0

0 0 0 −4
gαbcgβac
gβab


Proposition 102. The entries of the matrix of the trivial module are determined by the
diagonals of the matrices above :

(M0)(αα)(ββ) = (Mα−β)(αβ)(αβ)

except for the diagonals. For α ∈ ∆+
m the following holds

(M0)(αα)(αα) = 8gα

General modi�cations of SO(2n)

After completing the steps described in the beginning of the section in the case of SO(2n),
that is

1.) We move the diagonals of ]10− 13 into the matrix of the trivial module.

2.) The o� diagonals of ]3 to the diagonal of the 〈WZ〉 block of ]1.

3.) The o� diagonals of ]4 to the 〈VW 〉 block of ]1,the 〈XZ〉 block and the upper trian-
gular part of the 〈XY 〉 block of ]2.

4.) The o� diagonal of ]5 to the lower triangular part of the 〈XY 〉 block of ]2.

5.) The o� diagonals of ]7 to the 〈V Z〉 block, the 〈V X〉 block and the upper triangular
part of the 〈V Y 〉 block of ]1.

6.) The o� diagonal of ]8 the lower triangular part of the 〈V Y 〉 block of ]1.

We remark that similarly to the modi�cations of SU(n + 1), in each step have a bijection
between the referenced entries of all matrices of the mentioned case ]i.

Then the modi�ed holomorphic curvature tensor is given by the following matrices

Proposition 103 (Case ]1). Let η = −εa + εb for 1 ≤ a < b ≤ n. We order the pairs
as follows vi = (αia, αib), wj = (αb,b+j , αa,b+j), xt = (βa+t,b, βa,a+t), yi = (βib, βia), zj =
(βb,b+j , βa,b+j) with i = 1, .., a− 1, t = 1, .., b− a− 1 and j = 1, .., n− b. Then we have

Mη =



V 〈VW 〉 〈V X〉 〈V Y 〉 〈V Z〉

〈VW 〉T W 〈WX〉 〈WY 〉 〈WZ〉

〈V X〉T 〈WX〉T X 〈XY 〉 〈XZ〉

〈V Y 〉T 〈WY 〉T 〈XY 〉T Y 〈Y Z〉

〈V Z〉T 〈WZ〉T 〈XZ〉T 〈Y Z〉T Z


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with the diagonal matrices being

V ∈Syma−1(R) Vis = 4gαsa for i ≤ s
W ∈Symn−b(R) Wis = 4gαb,b+i for i ≤ s
X ∈Symb−a−1(R) Xis = 4gβa+s,b for i ≤ s
Y ∈Syma−1(R) Yis = 4gβsb for i ≤ s
Z ∈Symn−b(R) Zis = 4gβb,b+s for i ≤ s

and the o� diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

〈VW 〉is = −8
gαiagαb,b+s
gαi,b+s

〈V X〉is = 8
gαiagβa+s,b
gβi,a+s

〈V Y 〉is =

{
−4gαia
−8

gαiagβsb
gβis

〈V Z〉is = −8
gαiagβb,b+s
gβi,b+s

〈WX〉is = −4gαb,b+i 〈WY 〉is = 4gαb,b+i

〈WZ〉is =

{
8
gαb,b+igβb,b+i

gβab

4gαb,b+i
〈XY 〉is = −4gβa+i,b 〈XZ〉is = −4gβb,b+s

〈Y Z〉is = 4gβb,b+s

In the two case distinctions the upper case corresponds to i = s and the lower case to i 6= s.

Proposition 104 (Case ]2). Let η = −εa − εb for 1 ≤ a < b ≤ n. We order the pairs
as follows xi = (αia, βib), yi = (αib, βia), zt = (αa+t,b, βa,a+t) with i = 1, .., a − 1 and
t = 1, .., b− a− 1 . Then we have

Mη =


X 〈XY 〉 〈XZ〉

〈XY 〉T Y 〈Y Z〉

〈XZ〉T 〈Y Z〉T Z


with the diagonal matrices being

X ∈Syma−1(R) Xis = 4gαsa for i ≤ s
Y ∈Syma−1(R) Yis = 4gαsb for i ≤ s
Z ∈Symb−a−1(R) Zis = 4gαa+s,b for i ≤ s

and the o� diagonals being given by

〈XY 〉is =

{
−4gαsa i = s

−8
gαsbgαia
gβsi

i 6= s
〈XZ〉is = 8

gαiagαa+s,b
gβi,a+s

〈Y Z〉is = −4gαa+s,b

Proposition 105. We give the entries of the matrix of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs (α, β) with α < β.

i) Along the diagonal we have
(M0)(αα)(αα) = 8gα

ii) For the following pairs (α, β) ∈ {(αia, αib), (αbj , αaj), (βkb, βak), (βib, βia), (βbj , βaj),
(αia, βib), (αib, βia), (αkb, αak)} we have

(M0)(αα)(ββ) = 4gα

iii) For the following pairs (α, β) ∈ {(αib, αai), (βib, αai), (βbj , αaj), (αbj , βaj)} we have

(M0)(αα)(ββ) = −8
gαgβ
gα+β

Notice that the entries in the trivial module that have been doubled are iii).
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Chapter 8

The case of H(4)

In the following we consider the holomorphic curvature tensors for (G,T, Jstd, gKE) for G
being a classical Lie group of rank 4 and show that there are four forms turning those tensors
positive de�nite. Afterwards, we go on to larger isotropy groups with their corresponding
Kähler Einstein metrics. By the result of section 5, the corresponding curvature matrices are
obtained from those of (G,T) via going to submatrices and plugging in di�erent coe�cients
for the metrics.

Before we continue to the calculations, we want to state the following useful

Lemma 106 (Auxiliary Lemma). Let M ∈ Matn(R) be given as the symmetric matrix
Mij = ai for i ≤ j. Then we have

det(M) = a1

n∏
i=1

(ai+1 − ai).

In particular, if 0 ≤ ai ≤ ai+1 holds, then M is positive semide�nite. Additionally, if strict
inequalities hold then M is positive de�nite.

Proof. The expression of the determinant is an easy exercise. The positive (semi-) de�nite-
ness, follows from Sylvester's criterion for symmetric matrices once one notices that every
minor ofM is again of the same type asM and hence the above determinant formula applies
also for the minors.

8.1 The case of SU(5)

The positive roots in increasing order are

∆+
g = {α45, α34, α35, α23, α24, α25, α12, α13, α14, α15}. (8.1)

and we have the simple roots as follows on the Dynkin diagram:

α12 α23 α34 α45

After applying the general modi�cations of section 7.1 the matrices Mη representing the
modi�ed holomorphic curvature tensor are indexed with η ∈ ∆−g ∪{0}. In the case of SU(5)
this corresponds to the following:

First of all the roots −α1i with i = 2..5:

M−α12
=


gα23

gα23
gα23

gα23 gα24 gα24

gα23 gα24 gα25

 M−α13
=

 gα34
gα34

gα34
gα35


M−α14

=
(
gα45

)
M−α15

= (∅)

89
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Then the roots −α2i with i = 3..5:

M−α23
=


gα12 −2

gα12gα34

gα14
−2

gα12gα35

gα15

−2
gα12gα34

gα14
gα34 gα34

−2
gα12gα35

gα15
gα34 gα35

 M−α24
=

 gα12
−2

gα12
gα45

gα15

−2
gα12

gα45

gα15
gα45


M−α25

=
(
gα12

)
and the roots −α3i with i = 4, 5:

M−α34
=


gα13

gα23
−2

gα13
gα45

gα15

gα23
gα23

−2
gα23

gα45

gα25

−2
gα13

gα45

gα15
−2

gα23
gα45

gα25
gα45

 M−α35
=

 gα13
gα23

gα23 gα23


Last but not least −α45:

M−α45 =


gα14 gα24 gα34

gα24 gα24 gα34

gα24
gα34

gα34

 .

In the increasing ordering of the basis from equation (8.1) we have that the matrix M0 on
the trivial module is given by:

2gα45 ∗ gα45
0 ∗ gα45

0 0 ∗ gα45

∗ 2gα34
gα34

∗ gα34
0 0 ∗ gα34

0

gα45
gα34

2gα35
∗ 0 gα35

0 ∗ 0 gα35

0 ∗ ∗ 2gα23
gα23

gα23
∗ gα23

0 0

∗ gα34
0 gα23

2gα24
gα24

∗ 0 gα24
0

gα45 0 gα35 gα23 gα24 2gα25 ∗ 0 0 gα25

0 0 0 ∗ ∗ ∗ 2gα12
gα12

gα12
gα12

0 ∗ ∗ gα23 0 0 gα12 2gα13 gα13 gα13

∗ gα34 0 0 gα24 0 gα12 gα13 2gα14 gα14

gα45
0 gα35

0 0 gα25
gα12

gα13
gα14

2gα15


where ∗ at the entry (α, β) is a place holder for −2

gαgβ
gα+β

for formatting reasons.
Even though the above corresponds to (SU(5),T, Jstd, g) with an arbitrary Kähler metric,

by corollary 50 the curvature tensor with a di�erent isotropy group K is given by minors
of the above together with the property that the metric on the simple roots of K is zero.
Hence we see that for any isotropy group the matrices (the corresponding submatrices of
them resp.) M−α12

,M−α13
,M−α14

,M−α25
,M−α35

,M−α45
are positive semide�nite, by the

auxiliary lemma, which is su�cient proposition 31. Furthermore, we have

det(M−α24
) = gα12

gα45

(
1− 4

gα12gα45

g2
α15

)
which is nonnegative because gα15

= gα12
+ gα24

+ gα45
implies

g2
α15
− 4gα12

gα45
≥ (gα12

+ gα45
)2 − 4gα12

gα45
= (gα12

− gα45
)2.

Therefore, we only have to considerM0,M−α23
andM−α34

. Since they are more complicated,
we consider them separately in all cases.
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Toric Isotropy

Now we consider the Kähler Einstein metric of (SU(5),T, Jstd), which is given on the simple
roots by

α α12 α23 α34 α45

gα 1 1 1 1

Then we have

M−α23 =


1 − 2

3 −1

− 2
3 1 1

−1 1 2

 M−α34 =


2 1 −1

1 1 − 2
3

−1 − 2
3 1


which are obviously positive de�nite by calculating the minors.

M0 =



2 −1 1 0 − 4
3 1 0 0 − 3

2 1

−1 2 1 −1 1 0 0 − 4
3 1 0

1 1 4 − 4
3 0 2 0 −2 0 2

0 −1 − 4
3 2 1 1 −1 1 0 0

− 4
3 1 0 1 4 2 − 4

3 0 2 0

1 0 2 1 2 6 − 3
2 0 0 3

0 0 0 −1 − 4
3 −

3
2 2 1 1 1

0 − 4
3 −2 1 0 0 1 4 2 2

− 3
2 1 0 0 2 0 1 2 6 3

1 0 2 0 0 3 1 2 3 8


By calculating the determinants of the principal minors, we note that all of them are positive
and hence no further 4 forms are needed and we get that (SU(5),T, Jstd, gKE) has positive
holomorphic curvature.

Larger Isotropy

By the previous discussion, we know that the isotropy groups we have to consider corres-
pond to painted Dynkin diagrams, which leaves us with the following groups K and the
corresponding painted Dynkin diagram. We also calculate γ∗K from (3.3) which gives us the
Kähler Einstein metric. In addition, we only consider the cases, where dim(z(K)) > 2 since
the other cases are covered by the result of Itoh and theorem 22.

K D = (V,E) γ∗K gα12
gα23

gα34
gα45

SU(2) T3 ε1 − ε2 0 3
2 1 1

S1 SU(2) T2 ε2 − ε3
3
2 0 3

2 1

T2 SU(2) S1 ε3 − ε4 1 3
2 0 3

2

T3 SU(2) ε4 − ε5 1 1 3
2 0

By the symmetry of the Dynkin diagram of SU(5), it is su�cient to consider the �rst two
cases.



92 CHAPTER 8. THE CASE OF H(4)

Isotropy group K = SU(2) T3

By proposition 48 we consider the restriction of the holomorphic curvature tensor to m and
then plug in the coe�cients of the metric given above. The act of restricting corresponds
by corollary 50 to erasing all rows and columns whose index contains α12. Yielding

M−α23
=

 1 1

1 2

 M−α34
=


3
2

3
2 −

6
7

3
2

3
2 −

6
7

− 6
7 −

6
7 1


which are obviously positive semi-de�nite by calculating the minors. The matrix of the
trivial module is given by

M0 =



2 −1 1 0 − 10
7 1 0 − 10

7 1

−1 2 1 − 6
5 1 0 − 6

5 1 0

1 1 4 − 12
7 0 2 − 12

7 0 2

0 − 6
5 −

12
7 3 3

2
3
2

3
2 0 0

− 10
7 1 0 3

2 5 5
2 0 5

2 0

1 0 2 3
2

5
2 7 0 0 7

2

0 − 6
5 −

12
7

3
2 0 0 3 3

2
3
2

− 10
7 1 0 0 5

2 0 3
2 5 5

2

1 0 2 0 0 5
2

3
2

5
2 7


which is positive de�nite.

Isotropy group K = S1 SU(2) T2

In this case we have

M−α23
=


3
2 − 3

2 −
15
8

− 3
2

3
2

3
2

− 15
8

3
2

5
2

 M−α34
=

 1 − 3
4

− 3
4

3
2


which are obviously positive semi-de�nite by calculating the minors. The matrix of the
trivial module is given by

M0 =



2 − 6
5 1 − 6

5 1 0 0 − 3
2 1

− 6
5 3 3

2
3
2 0 0 − 3

2
3
2 0

1 3
2 5 0 5

2 0 − 15
8 0 5

2

− 6
5

3
2 0 3 3

2 − 3
2 0 3

2 0

1 0 5
2

3
2 5 − 15

8 0 0 5
2

0 0 0 − 3
2 −

15
8 3 3

2
3
2

3
2

0 − 3
2 −

15
8 0 0 3

2 3 3
2

3
2

− 3
2

3
2 0 3

2 0 3
2

3
2 6 3

1 0 5
2 0 5

2
3
2

3
2 3 8



.

This is not positive de�nite. In fact, for v =
(
0, 1

2 ,
2
5 ,−

1
2 ,−

2
5 , 1,−1, 0, 0

)
we have

vM0v
T = −1

4
.
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Hence further four forms are necessary. As we saw in proposition 31, we may add any
negative value symmetrically to the o� diagonal entries of M0, then the four form realizing
this change only improves positivity of the other matrices Mη. In the case of this K, it is
enough to add −1 to the entries (M0)6,7 and (M0)7,6. The resulting matrix is now positive
de�nite as one veri�es by calculating the principal minors.

8.2 The case of SO(9)

The positive roots are

∆+
g = {α34, α23,α24, α12, α13, α14, (8.2)

β34,β23, β24, β12, β13, β14,

ε4, ε3, ε2, ε1}

and the simple roots are placed on the Dynkin diagram as follows

α12 α23 α34 ε4

After applying the general modi�cations of section 7.2 the matrices Mη representing the
modi�ed holomorphic curvature tensor are indexed with η ∈ ∆−g ∪{0}. In the case of SO(9)
this corresponds to the following:

We begin with the ones corresponding to −αij .

M−α12
=



4gα23
4gα23

8
gα23

gβ23
gβ12

4gα23
2gα23

4gα23
4gα24

4gα24
8
gα24

gβ24
gβ12

2gα24

8
gα23gβ23
gβ12

4gα24 4gβ23 4gβ24 2gε2

4gα23 8
gα24gβ24
gβ12

4gβ24 4gβ24 2gε2

2gα23
2gα24

2gε2 2gε2
(gε2 )2

gβ12



M−α13
=


4gα34

−4gα34
8
gα34

gβ34
gβ13

2gα34

−4gα34 4gβ23 −4gβ34 −2gε3

8
gα34

gβ34
gβ13

−4gβ34 4gβ34 2gε3

2gα34
−2gε3 2gε3

(gε3 )2

gβ13

M−α14
=


4gβ24

4gβ34
−2gε4

4gβ34
4gβ34

−2gε4

−2gε4 −2gε4
(gε4 )2

gβ14



M−α23 =



4gα12 −8
gα12gα34

gα14
−4gα12 −8

gα12gβ34
gβ14

−4
gα12gε3
gε1

−8
gα12

gα34

gα14
4gα34

4gα34
8
gα34

gβ34
gβ23

2gα34

−4gα12 4gα34 4gβ13 4gβ34 2gε3

−8
gα12

gβ34
gβ14

8
gα34

gβ34
gβ23

4gβ34 4gβ34 2gε3

−4
gα12

gε3
gε1

2gα34
2gε3 2gε3

(gε3 )2

gβ23



M−α24
=


4gα12

8
gα12

gβ34
gβ13

−4gα12
−4

gα12
gε4

gε1

8
gα12gβ34
gβ13

4gβ34 −4gβ34 −2gε4

−4gα12
−4gβ34

4gβ14
2gε4

−4
gα12

gε4
gε1

−2gε4 2gε4
(gε4 )2

gβ24


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M−α34 =



4gα13
4gα23

−4gα13
−8

gα13gβ24
gβ12

−4
gα13

gε4
gε1

4gα23
4gα23

−8
gα23

gβ14
gβ12

−4gα23
−4

gα23
gε4

gε2

−4gα13
−8

gα23
gβ14

gβ12
4gβ14

4gβ24
2gε4

−8
gα13

gβ24
gβ12

−4gα23 4gβ24 4gβ24 2gε4

−4
gα13

gε4
gε1

−4
gα23

gε4
gε2

2gε4 2gε4
(gε4 )2

gβ34


Those corresponding to βij are

M−β12 = ∅ M−β13 = (4gα23) M−β14 =

 4gα24
4gα34

4gα34 4gα34



M−β23
=

 4gα12
−4gα12

−4gα12
4gα13

 M−β24
=


4gα12

−4gα12
8
gα12

gα34

gβ13

−4gα12 4gα14 −4gα34

8
gα12

gα34

gβ13
−4gα34

4gα34



M−β34
=


4gα13

4gα23
−4gα13

−8
gα13

gα24

gβ12

4gα23
4gα23

−8
gα23

gα14

gβ12
−4gα23

−4gα13 −8
gα23gα14

gβ12
4gα14 4gα24

−8
gα13gα24

gβ12
−4gα23 4gα24 4gα24


and then we have for the εi:

M−ε1 =


2gε2 2gε3 2gε4

2gε3 2gε3 2gε4

2gε4 2gε4 2gε4

 M−ε2 =


2gα12

−2gα12
4
gα12

gε3
gβ13

4
gα12

gε4
gβ14

−2gα12 2gε1 −2gε3 −2gε4

4
gα12

gε3
gβ13

−2gε3 2gε3 2gε4

4
gα12

gε4
gβ14

−2gε4 2gε4 2gε4



M−ε3 =



2gα13
2gα23

−2gα13
−4

gα13gε2
gβ12

4
gα13gε4
gβ14

2gα23 2gα23 −4
gα23gε1
gβ12

−2gα23 4
gα23gε4
gβ24

−2gα13
−4

gα23
gε1

gβ12
2gε1 2gε2 −2gε4

−4
gα13

gε2
gβ12

−2gα23
2gε2 2gε2 −2gε4

4
gα13gε4
gβ14

4
gα23gε4
gβ24

−2gε4 −2gε4 2gε4



M−ε4 =



2gα14
2gα24

2gα34
−2gα14

−4
gα14

gε2
gβ12

−4
gα14

gε3
gβ13

2gα24
2gα24

2gα34
−4

gα24
gε1

gβ12
−2gα24

−4
gα24

gε3
gβ23

2gα34
2gα34

2gα34
−4

gα34
gε1

gβ13
−4

gα34
gε2

gβ23
−2gα34

−2gα14 −4
gα24gε1
gβ12

−4
gα34gε1
gβ13

2gε1 2gε2 2gε3

−4
gα14gε2
gβ12

−2gα24 −4
gα34gε2
gβ23

2gε2 2gε2 2gε3

−4
gα14gε3
gβ13

−4
gα24gε3
gβ23

−2gα34 2gε3 2gε3 2gε3


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Ordering the basis as given in (8.2) the matrix of the trivial module is given by

M0 =


A 〈AB〉 〈AC〉

〈AB〉T B 〈BC〉

〈AC〉T 〈BC〉T C


with

A =



8gα34 ∗ 4gα34 0 ∗ 4gα34

∗ 8gα23
4gα23

∗ 4gα23
0

4gα34 4gα23 8gα24 ∗ 0 4gα24

0 ∗ ∗ 8gα12
4gα12

4gα12

∗ 4gα23 0 4gα12 8gα13 4gα13

4gα34
0 4gα24

4gα12
4gα13

8gα14


B =



8gβ34 4gβ34 4gβ34 0 4gβ34 4gβ34

4gβ34
8gβ23

4gβ24
4gβ23

4gβ23
0

4gβ34 4gβ24 8gβ24 4gβ24 0 4gβ24

0 4gβ23
4gβ24

8gβ12
4gβ13

4gβ14

4gβ34 4gβ23 0 4gβ13 8gβ13 4gβ14

4gβ34
0 4gβ24

4gβ14
4gβ14

8gβ14



C =


gε4

(gε4 )2

gβ34

(gε4 )2

gβ24

(gε4 )2

gβ14
(gε4 )2

gβ34
gε3

(gε3 )2

gβ23

(gε3 )2

gβ13
(gε4 )2

gβ24

(gε3 )2

gβ23
gε2

(gε2 )2

gβ12
(gε4 )2

gβ14

(gε3 )2

gβ13

(gε2 )2

gβ12
gε1

 〈AB〉 =



0 4gα34 ∗ 0 4gα34 ∗

∗ 0 4gα23
4gα23

∗ 0

∗ 4gα24 0 4gα24 0 ∗

0 ∗ ∗ 0 4gα12
4gα12

∗ ∗ 0 4gα13 0 4gα13

∗ 0 ∗ 4gα14 4gα14 0



〈AC〉 =



∗∗ 2gα34
0 0

0 ∗∗ 2gα23
0

∗∗ 0 2gα24
0

0 0 ∗∗ 2gα12

0 ∗∗ 0 2gα13

∗∗ 0 0 2gα14


〈BC〉 =



2gε4 2gε3 0 0

0 2gε3 2gε2 0

2gε4 0 2gε2 0

0 0 2gε2 2gε1

0 2gε3 0 2gε1

2gε4 0 0 2gε1


where we used ∗( respectively ∗∗ ) at the entry (α, β) as place holder for −8

gαgβ
gα+β(

respectively − 4
gαgβ
gα+β

)
. In the following, we present the full modi�cation for the toric

isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of (SO(9),T, Jstd), which is given on the simple
roots by

α α12 α23 α34 ε4

gα 2 2 2 1

First of all, we notice that we do not have to consider the matrices M−η for η being one of
{β12, β13, β14, β23}, since they are positive semi de�nite by the auxiliary lemma. We remark
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here that also M−ε1 is positive de�nite but we will need it to compensate for the other
matrices. The matrix of the trivial module is given by

M0 =



16 −8 8 0 − 32
3 8 0 8 −12 0 8 − 64

5 −
8
3 4 0 0

−8 16 8 −8 8 0 − 32
3 0 8 8 − 40

3 0 0 − 24
5 4 0

8 8 32 − 32
3 0 16 −16 16 0 16 0 − 64

3 −
16
5 0 8 0

0 −8 − 32
3 16 8 8 0 − 64

5 −12 0 8 8 0 0 − 40
7 4

− 32
3 8 0 8 32 16 −16 − 64

3 0 16 0 16 0 − 48
7 0 8

8 0 16 8 16 48 − 96
5 0 −24 24 24 0 − 24

7 0 0 12

0 − 32
3 −16 0 −16 − 96

5 32 16 16 0 16 16 2 6 0 0

8 0 16 − 64
5 −

64
3 0 16 64 24 32 32 0 0 6 10 0

−12 8 0 −12 0 −24 16 24 48 24 0 24 2 0 10 0

0 8 16 0 16 24 0 32 24 96 40 32 0 0 10 14

8 − 40
3 0 8 0 24 16 32 0 40 80 32 0 6 0 14

− 64
5 0 − 64

3 8 16 0 16 0 24 32 32 64 2 0 0 14

− 8
3 0 − 16

5 0 0 − 24
7 2 0 2 0 0 2 1 1

4
1
6

1
8

4 − 24
5 0 0 − 48

7 0 6 6 0 0 6 0 1
4 3 9

8
9
10

0 4 8 − 40
7 0 0 0 10 10 10 0 0 1

6
9
8 5 25

12

0 0 0 4 8 12 0 0 0 14 14 14 1
8

9
10

25
12 7


It is not positive de�nite and hence further four forms are necessary. The other matrices are

M−α12
=



8 8 32
3 8 4

8 16 16 16 8

32
3 16 32 24 10

8 16 24 24 10

4 8 10 10 25
12


M−α13

=


8 −8 32

5 4

−8 32 −16 −6

32
5 −16 16 6

4 −6 6 9
10



M−α14
=


24 16 −2

16 16 −2

−2 −2 1
8

 M−α23
=



8 − 16
3 −8 −8 − 24

7

− 16
3 8 8 8 4

−8 8 40 16 6

−8 8 16 16 6

− 24
7 4 6 6 9

8



M−α24
=


8 32

5 −8 − 8
7

32
5 16 −16 −2

−8 −16 32 2

− 8
7 −2 2 1

6

 M−α34
=



16 8 −16 −16 − 16
7

8 8 − 32
3 −8 − 8

5

−16 − 32
3 32 24 2

−16 −8 24 24 2

− 16
7 −

8
5 2 2 1

4





8.2. THE CASE OF SO(9) 97

The remaining matrices are

M−β24
=


8 −8 16

5

−8 24 −8

16
5 −8 8

 M−β34
=


16 8 −16 − 32

3

8 8 −8 −8

−16 −8 24 16

− 32
3 −8 16 16


and

M−ε1 =


10 6 2

6 6 2

2 2 2

 M−ε2 =


4 −4 12

5 1

−4 14 −6 −2

12
5 −6 6 2

1 −2 2 2



M−ε3 =



8 4 −8 − 20
3 2

4 4 − 14
3 −4 4

3

−8 − 14
3 14 10 −2

− 20
3 −4 10 10 −2

2 4
3 −2 −2 2


M−ε4 =



12 8 4 −12 −10 − 36
5

8 8 4 − 28
3 −8 −6

4 4 4 − 28
5 −5 −4

−12 − 28
3 −

28
5 14 10 6

−10 −8 −5 10 10 6

− 36
5 −6 −4 6 6 6


One observes that in the αij matrices positive de�niteness is prevented by the relatively
small last entry on the diagonal. Not using the actual criteria of diagonal dominance for
positive de�niteness but inspired by its idea , we will use four forms to increase that diagonal
entry and decrease the absolute values of the entries in the last column and row of these
matrices. Increasing the diagonal will modify M0 and changing o� diagonal entries modi�es
the other Mη. We represent all elementary operations in the following table, where we use
the same notation as in the modi�cations of (G2,T, Jstd) in section 4.

Exemplary, we explain how we obtain the �rst forced modi�cation from the �rst intended
modi�cation:

Example 107. The entry (1, 5) of M−α12 corresponds by proposition 79 to the pair of
pairs of roots (α23, α13), (ε2, ε1). By equation (3.2) the other entry we are forced to change
corresponds to the pair (α23, ε2), (α13, ε1) which is an entry of the matrix Mη with η =
−α12 + (α13 − ε2) = −ε3. By proposition 81 the pair corresponds to the entry (2, 1) of said
matrix. By symmetry that is the same as (1, 2).



98 CHAPTER 8. THE CASE OF H(4)

Value Intended Forced

− 3
5 (M−α12

)(1,5) (M−ε3)(1,2)

− 6
5 (M−α12)(2,5) (M−ε4)(1,2)

− 3
2 (M−α12

)(3,5) (M−ε3)(3,4)

− 3
2 (M−α12

)(4,5) (M−ε4)(4,5)

5
4 (M−α12

)(5,5) (M0)(15,16)

−1 (M−α13)(1,4) (M−ε4)(1,3)

3
2 (M−α13

)(2,4) (M−ε2)(2,3)

− 17
8 (M−α13

)(3,4) (M−ε4)(4,6)

9
10 (M−α13

)(4,4) (M0)(14,16)

3
10 (M−α14)(1,3) (M−ε2)(2,4)

3
10 (M−α14

)(2,3) (M−ε3)(3,5)

3
40 (M−α14

)(3,3) (M0)(13,16)

−1 (M−α23
)(2,5) (M−ε4)(2,3)

− 3
2 (M−α23)(3,5) (M−ε1)(1,2)

− 3
2 (M−α23

)(4,5) (M−ε4)(5,6)

9
8 (M−α23

)(5,5) (M0)(14,15)

3
10 (M−α24

)(2,4) (M−ε3)(4,5)

Value Intended Forced

− 3
10 (M−α24

)(3,4) (M−ε1)(1,3)

1
10 (M−α24)(4,4) (M0)(13,15)

− 37
80 (M−α34

)(3,5) (M−ε1)(2,3)

− 1
2 (M−α34

)(4,5) (M−ε2)(3,4)

1
4 (M−α34

)(5,5) (M0)(13,14)

− 5
4 (M0)(3,15) (M−ε4)(2,2)

− 9
4 (M0)(4,16) (M−ε2)(1,1)

107
80 (M0)(7,13) (M−ε3)(5,5)

− 3
10 (M0)(8,14) (M−ε2)(3,3)

77
80 (M0)(9,13) (M−ε2)(4,4)

− 5
4 (M0)(9,15) (M−ε4)(5,5)

− 51
200 (M0)(10,15) (M−ε1)(1,1)

− 15
2 (M0)(10,16) (M−ε2)(2,2)

− 25
2 (M0)(11,12) (M−α34)(3,3)

− 17
8 (M0)(11,14) (M−ε1)(2,2)

− 81
40 (M0)(11,16) (M−ε3)(3,3)

5
4 (M0)(12,13) (M−ε1)(3,3)

By calculating the determinants of the minors of the resulting matrices, we see that all of
them are positive except for M0. In fact, the modi�ed matrices are:

M−α12
=



8 8 32
3 8 17

5

8 16 16 16 34
5

32
3 16 32 24 17

2

8 16 24 24 17
2

17
5

34
5

17
2

17
2

10
3


M−α13

=


8 −8 32

5 3

−8 32 −16 − 9
2

32
5 −16 16 31

8

3 − 9
2

31
8

9
5



M−α14 =


24 16 − 17

10

16 16 − 17
10

− 17
10 −

17
10

1
5

 M−α23 =



8 − 16
3 −8 −8 − 24

7

− 16
3 8 8 8 3

−8 8 40 16 9
2

−8 8 16 16 9
2

− 24
7 3 9

2
9
2

9
4



M−α24
=


8 32

5 −8 − 8
7

32
5 16 −16 − 17

10

−8 −16 32 17
10

− 8
7 −

17
10

17
10

4
15

 M−α34
=



16 8 −16 −16 − 16
7

8 8 − 32
3 −8 − 8

5

−16 − 32
3

89
2 24 123

80

−16 −8 24 24 3
2

− 16
7 −

8
5

123
80

3
2

1
2


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The remaining matrices are

M−ε1 =


2051
200

15
2

23
10

15
2

65
8

197
80

23
10

197
80

3
4

 M−ε2 =


25
4 −4 12

5 1

−4 43
2 − 15

2 −
23
10

12
5 −

15
2

63
10

5
2

1 − 23
10

5
2

83
80



M−ε3 =



8 23
5 −8 − 20

3 2

23
5 4 − 14

3 −4 4
3

−8 − 14
3

641
40

23
2 − 23

10

− 20
3 −4 23

2 10 − 23
10

2 4
3 − 23

10 −
23
10

53
80


M−ε4 =



12 46
5 5 −12 −10 − 36

5

46
5 8 5 − 28

3 −8 −6

5 5 4 − 28
5 −5 −4

−12 − 28
3 −

28
5 14 23

2
65
8

−10 −8 −5 23
2 10 15

2

− 36
5 −6 −4 65

8
15
2 6



M0 =



16 −8 8 0 − 32
3 8 0 8 −12 0 8 − 64

5 −
8
3 4 0 0

−8 16 8 −8 8 0 − 32
3 0 8 8 − 40

3 0 0 − 24
5 4 0

8 8 32 − 32
3 0 16 −16 16 0 16 0 − 64

3 −
16
5 0 27

4 0

0 −8 − 32
3 16 8 8 0 − 64

5 −12 0 8 8 0 0 − 40
7

7
4

− 32
3 8 0 8 32 16 −16 − 64

3 0 16 0 16 0 − 48
7 0 8

8 0 16 8 16 48 − 96
5 0 −24 24 24 0 − 24

7 0 0 12

0 − 32
3 −16 0 −16 − 96

5 32 16 16 0 16 16 267
80 6 0 0

8 0 16 − 64
5 −

64
3 0 16 64 24 32 32 0 0 57

10 10 0

−12 8 0 −12 0 −24 16 24 48 24 0 24 237
80 0 35

4 0

0 8 16 0 16 24 0 32 24 96 40 32 0 0 1949
200

13
2

8 − 40
3 0 8 0 24 16 32 0 40 80 39

2 0 31
8 0 479

40

− 64
5 0 − 64

3 8 16 0 16 0 24 32 39
2 64 13

4 0 0 14

− 8
3 0 − 16

5 0 0 − 24
7

267
80 0 237

80 0 0 13
4 1 0 1

15
1
20

4 − 24
5 0 0 − 48

7 0 6 57
10 0 0 31

8 0 0 3 0 0

0 4 27
4 − 40

7 0 0 0 10 35
4

1949
200 0 0 1

15 0 5 5
6

0 0 0 7
4 8 12 0 0 0 13

2
479
40 14 1

20 0 5
6 7


Now all Mη are positive de�nite and the following argument turns also M0 positive de�nite
and therefore �nishes the proof for (SO(9),T4, Jstd). The rows and columns 10 and 16 of
M0 have nonnegative entries. Hence, by the same argument as in the example of G2 we
erase all o� diagonal entries of rows and columns 10 and 16. Then the new M0 is a block
matrix consisting of a positive de�nite two dimensional diagonal block and a 14× 14 block.
Calculating the minors of that block proves that it is positive de�nite and hence we a have
positive modi�ed holomorphic curvature tensor.

Larger Isotropy

We will not present the above for allK in the same detail. In fact, we will present here the dif-
ferent possible K and their Kähler Einstein metrics. By corollary 50 the curvature matrices
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are then obtained by considering the correct submatrices of the matrices of (SO(9),T, Jstd)
with the new metric coe�cients. The di�culty lies in determining suitable four forms to
turn these matrices positive de�nite. Even though the four forms are essential to prove
positive holomorphic curvature, it does not seem to be very relevant to see the actual values
at this point. Therefore we present them in the appendix for the interested reader. For each
K, we will give the indices of the rows and columns of the curvature matrices that have to
be erased to obtain the restriction and give a detailed table of the used four forms. We only
consider the case dim(z(k)) > 1, since the other cases are covered by Itoh.

K D = (V,E) γ∗K gα12 gα23 gα34 gε4

SU(2) T3 α12 0 3 2 1

S1 SU(2) T2 α23 3 0 3 1

T2 SU(2) S1 α34 2 3 0 2

T3 SU(2) ε4 2 2 3 0

SU(3) T2 2α13 0 0 4 1

SU(2) S1 SU(2) S1 α12 − α34 0 4 0 2

SU(2) T2 SU(2) α12 + ε4 0 3 3 0

S1 SU(3) S1 2α24 4 0 0 3

S1 SU(2) S1 SU(2) α23 + ε4 3 0 4 0

T2 SO(5) 3ε3 + ε4 2 5 0 0

8.3 The case of Sp(4)

The positive roots are

∆+
g = {α34, α23,α24, α12, α13, α14, (8.3)

β34,β23, β24, β12, β13, β14,

γ4, γ3, γ2, γ1}

and the simple roots are placed on the Dynkin diagram as follows

α12 α23 α34 γ4

After applying the general modi�cations of section 7.3 the matrices Mη representing the
modi�ed holomorphic curvature tensor are indexed with η ∈ ∆−g ∪{0}. In the case of Sp(4)
this corresponds to the following:
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We begin with the ones corresponding to −αij .

M−α12
=



gα23
gα23

gα23
(gα13

+gβ12 )

gβ12
gα23

gα23
gα23

gα23
gα24

gα24

gα24
(gα14

+gβ12 )

gβ12
gα24 gα24

gα23
(gα13

+gβ12 )

gβ12
gα24

gβ23
gβ24

gβ23
gβ23

gα23

gα24
(gα14

+gβ12 )

gβ12
gβ24

gβ24
gβ24

gβ24

gα23 gα24 gβ23 gβ24 gβ12 gγ2

gα23
gα24

gβ23
gβ24

gγ2 gγ2



M−α13
=



gα34
gα34

gα34
(gα14

+gβ13 )

gβ13
gα34

gα34

gα34
gβ23

gβ34
gβ23

gγ3
gα34 (gα14+gβ13 )

gβ13
gβ34 gβ34 gβ34 gβ34

gα34
gβ23

gβ34
gβ13

gγ3

gα34
gγ3 gβ34

gγ3 gγ3



M−α14
=


gβ24

gβ34 gβ24 gγ4

gβ34
gβ34

gβ34
gγ4

gβ24 gβ34 gβ14 gγ4

gγ4 gγ4 gγ4 gγ4



M−α23 =



gα12
−2

gα12
gα34

gα14
− gα12

gγ3
gγ1

−2
gα12

gβ34
gβ14

−2
gα12

gβ23
gβ12

−2
gα12

gγ3
gβ13

−2
gα12gα34

gα14
gα34 gα34

gα34 (gα24+gβ23 )

gβ23
gα34 gα34

− gα12
gγ3

gγ1
gα34

gβ13
gβ34

gβ23
gγ3

−2
gα12gβ34
gβ14

gα34 (gα24+gβ23 )

gβ23
gβ34 gβ34 gβ34 gβ34

−2
gα12

gβ23
gβ12

gα34
gβ23

gβ34
gβ23

gγ3

−2
gα12gγ3
gβ13

gα34 gγ3 gβ34 gγ3 gγ3



M−α24
=



gα12
−2

gα12
gβ34

gβ13
− gα12

gγ4
gγ1

−2
gα12

gβ24
gβ12

−2
gα12

gγ4
gβ14

−2
gα12gβ34
gβ13

gβ34 gβ34 gβ34 gγ4

− gα12
gγ4

gγ1
gβ34

gβ14
gβ24

gγ4

−2
gα12gβ24
gβ12

gβ34 gβ24 gβ24 gγ4

−2
gα12

gγ4
gβ14

gγ4 gγ4 gγ4 gγ4



M−α34
=



gα13 gα23 − gα13gγ4
gγ1

−2
gα13gβ24
gβ12

−2
gα13gβ34
gβ13

−2
gα13gγ4
gβ14

gα23 gα23 −2
gα23gβ14
gβ12

− gα23gγ4
gγ2

−2
gα23gβ34
gβ23

−2
gα23gγ4
gβ24

− gα13
gγ4

gγ1
−2

gα23
gβ14

gβ12
gβ14

gβ24
gβ34

gγ4

−2
gα13

gβ24
gβ12

− gα23
gγ4

gγ2
gβ24

gβ24
gβ34

gγ4

−2
gα13gβ34
gβ13

−2
gα23gβ34
gβ23

gβ34
gβ34

gβ34
gγ4

−2
gα13

gγ4
gβ14

−2
gα23

gγ4
gβ24

gγ4 gγ4 gγ4 gγ4


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Those corresponding to βij are

M−β12 = (gα12) M−β13 =

 gα23
gα23

gα23
gα13



M−β14
=


gα24

gα34
gα24

gα34
gα34

gα34

gα24
gα34

gα14

 M−β23
=


gα12 − gα12gγ3

gγ1
2
gα12gα23

gβ12

− gα12
gγ3

gγ1
gα13

gα23

2
gα12gα23

gβ12
gα23 gα23



M−β24
=


gα12

− gα12
gγ4

gγ1
2
gα12

gα34

gβ13
2
gα12

gα24

gβ12

− gα12gγ4
gγ1

gα14 gα34 gα24

2
gα12

gα34

gβ13
gα34

gα34
gα34

2
gα12gα24

gβ12
gα24 gα34 gα24



M−β34
=



gα13
gα23

− gα13
gγ4

gγ1
2
gα13

gα24

gβ12
2
gα13

gα34

gβ13

gα23
gα23

2
gα23

gα14

gβ12
− gα23

gγ4
gγ2

2
gα23

gα34

gβ23

− gα13gγ4
gγ1

2
gα23gα14

gβ12
gα14 gα24 gα34

2
gα13gα24

gβ12
− gα23gγ4

gγ2
gα24 gα24 gα34

2
gα13

gα34

gβ13
2
gα23

gα34

gβ23
gα34

gα34
gα34


and then we have for the γi:

M−γ1 = ∅ M−γ2 =

(
2

(gα12
)2

gγ1

)
M−γ3 =

 2
(gα13

)2

gγ1

gα23
(2gβ12−gβ23 )

gβ12
gα23

(2gβ12−gβ23 )

gβ12
2

(gα23 )2

gγ2



M−γ4 =


2

(gα14
)2

gγ1

gα24 (2gβ12−gβ24 )

gβ12

gα34 (2gβ13−gβ34 )

gβ13
gα24

(2gβ12−gβ24 )

gβ12
2

(gα24
)2

gγ2

gα34
(2gβ23−gβ34 )

gβ23
gα34

(2gβ13−gβ34 )

gβ13

gα34
(2gβ23−gβ34 )

gβ23
2

(gα34
)2

gγ4


Ordering the basis as given in (8.2) the matrix of the trivial module is given by

M0 =


A 〈AB〉 〈AC〉

〈AB〉T B 〈BC〉

〈AC〉T 〈BC〉T C


with

A =



2gα34
∗ gα34

0 ∗ gα34

∗ 2gα23
gα23

∗ gα23
0

gα34
gα23

2gα24
∗ 0 gα24

0 ∗ ∗ 2gα12
gα12

gα12

∗ gα23
0 gα12

2gα13
gα13

gα34 0 gα24 gα12 gα13 2gα14


B =



2gβ34
gβ34

gβ34
0 gβ34

gβ34

gβ34
2gβ23

gβ24
gβ23

gβ23
0

gβ34
gβ24

2gβ24
gβ24

0 gβ24

0 gβ23
gβ24

2gβ12
gβ13

gβ14

gβ34
gβ23

0 gβ13
2gβ13

gβ14

gβ34 0 gβ24 gβ14 gβ14 2gβ14


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C =


gγ4 0 0 0

0 gγ3 0 0

0 0 gγ2 0

0 0 0 gγ1

 〈AB〉 =



2
(gα34

)2

gγ3
gα34

∗ 0 gα34
∗

∗ 2
(gα23

)2

gγ2
gα23

gα23
∗ 0

∗ gα24
2

(gα24
)2

gγ2
gα24

0 ∗

0 ∗ ∗ 2
(gα12 )2

gγ1
gα12 gα13

∗ ∗ 0 gα13 2
(gα13 )2

gγ1
gα13

∗ 0 ∗ gα14 gα14 2
(gα14 )2

gγ1



〈AC〉 =



∗ gα34 0 0

0 ∗ gα23
0

∗ 0 gα24 0

0 0 ∗ gα12

0 ∗ 0 gα13

∗ 0 0 gα14


〈BC〉 =



gγ4 gβ34 0 0

0 gγ3 gβ23
0

gγ4 0 gβ24 0

0 0 gγ2 gβ12

0 gγ3 0 gβ13

gγ4 0 0 gβ14


where we used ∗ at the entry (α, β) as place holder for −2

gαgβ
gα+β

.
Similar to the case of SO(9), we notice that the matrices M−β12

,M−β13
and M−β14

are
positive semide�nite by the auxiliary lemma for any kind of metric with gα+β ≥ gα, which
is true for the Kähler Einstein metrics for all isotropy groups K. However, in some cases
we might need the matrices for −η = β12, β13, β14 to compensate for other matrices. In the
following, we do the full modi�cation for the toric isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of (Sp(4),T, Jstd), which is given on the simple
roots by

α α12 α23 α34 γ4

gα 1 1 1 2
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The matrix of the trivial module is given by

M0 =



2 −1 1 0 − 4
3 1 1

2 1 − 8
5 0 1 − 5

3 −
4
3 1 0 0

−1 2 1 −1 1 0 − 3
2

1
3 1 1 − 12

7 0 0 − 8
5 1 0

1 1 4 − 4
3 0 2 − 12

5 2 4
3 2 0 − 20

7 −2 0 2 0

0 −1 − 4
3 2 1 1 0 − 5

3 −
8
5

1
4 1 1 0 0 − 12

7 1

− 4
3 1 0 1 4 2 − 12

5 −
20
7 0 2 1 2 0 − 8

3 0 2

1 0 2 1 2 6 −3 0 − 24
7 3 3 9

4 − 12
5 0 0 3

1
2 − 3

2 −
12
5 0 − 12

5 −3 6 3 3 0 3 3 2 3 0 0

1 1
3 2 − 5

3 −
20
7 0 3 10 4 5 5 0 0 4 5 0

− 8
5 1 4

3 − 8
5 0 − 24

7 3 4 8 4 0 4 2 0 4 0

0 1 2 1
4 2 3 0 2 4 14 6 5 0 0 6 7

1 − 12
7 0 1 1 3 3 2 0 6 12 5 0 4 0 6

− 5
3 0 − 20

7 1 2 9
4 3 0 4 5 5 10 2 0 0 5

− 4
3 0 −2 0 0 − 12

5 2 0 2 0 0 2 2 0 0 0

1 − 8
5 0 0 − 8

3 0 3 4 0 0 4 0 0 4 0 0

0 1 2 − 12
7 0 0 0 5 4 6 0 0 0 0 6 0

0 0 0 1 2 3 0 0 0 7 6 5 0 0 0 8


It is not positive de�nite and hence further four forms are necessary. The other matrices are

M−α12
=



1 1 9
7 1 1 1

1 2 2 20
7 2 2

9
7 2 5 4 5 5

1 20
7 4 4 4 4

1 2 5 4 7 6

1 2 5 4 6 6


M−α13

=



1 1 3
2 1 1

1 5 3 5 4

3
2 3 3 3 3

1 5 3 6 4

1 4 3 4 4



M−α14
=


4 3 4 2

3 3 3 2

4 3 5 2

2 2 2 2

 M−α23
=



1 − 2
3 −

1
2 −

6
5 −

10
7 −

4
3

− 2
3 1 1 7

5 1 1

− 1
2 1 6 3 5 4

− 6
5

7
5 3 3 3 3

− 10
7 1 5 3 5 4

− 4
3 1 4 3 4 4



M−α24 =



1 −1 − 1
4 −

8
7 −

4
5

−1 3 3 3 2

− 1
4 3 5 4 2

− 8
7 3 4 4 2

− 4
5 2 2 2 2


M−α34 =



2 1 − 1
2 −

16
7 −2 − 8

5

1 1 − 10
7 −

1
3 −

6
5 −1

− 1
2 −

10
7 5 4 3 2

− 16
7 −

1
3 4 4 3 2

−2 − 6
5 3 3 3 2

− 8
5 −1 2 2 2 2


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The remaining matrices are

M−β12
= (1) M−β13

=

 1 1

1 2



M−β14
=


2 1 2

1 1 1

2 1 3

 M−β23
=


1 − 1

2
2
7

− 1
2 2 1

2
7 1 1



M−β24 =


1 − 1

4
1
3

4
7

− 1
4 3 1 2

1
3 1 1 1

4
7 2 1 2

 M−β34 =



2 1 − 1
2

8
7

2
3

1 1 6
7 −

1
3

2
5

− 1
2

6
7 3 2 1

8
7 −

1
3 2 2 1

2
3

2
5 1 1 1


and

M−γ1 = () M−γ2 =

(
1

4

)

M−γ3 =

 1 9
7

9
7

1
3

 M−γ4 =


9
4

20
7

3
2

20
7

4
3

7
5

3
2

7
5

1
2


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Now we have to modify these as follows:

Value Intended Forced

3
4 (M−α12

)(1,2) (M−α34
)(1,2)

9
56 (M−α12

)(1,3) (M−γ3)(1,2)

1 (M−α12)(1,4) (M−β34)(1,2)

3
4 (M−α12)(1,5) (M−β13)(1,2)

3
4 (M−α12

)(1,6) (M−β23
)(2,3)

− 37
112 (M−α12

)(2,4) (M−γ4)(1,2)

1
4 (M−α12)(2,6) (M−β24)(2,4)

3
8 (M−α12)(1,1) (M0)(2,5)

3
8 (M−α12

)(2,2) (M0)(3,6)

5
8 (M−α12

)(3,3) (M0)(8,11)

1
4 (M−α12)(4,4) (M0)(9,12)

− 1
8 (M−α13)(1,3) (M−γ4)(1,3)

1
16 (M−α14

)(2,4) (M−α34
)(3,6)

− 1
10 (M−α23

)(2,4) (M−γ4)(2,3)

5
4 (M−α23)(3,3) (M0)(10,11)

1
2 (M−α23)(6,6) (M0)(8,14)

Value Intended Forced

5 (M−α24
)(3,3) (M0)(10,12)

− 9
8 (M−α34

)(1,3) (M−β34
)(1,3)

− 9
8 (M−α34)(2,4) (M−β34)(2,4)

1
4 (M−α34)(1,1) (M0)(5,6)

1
8 (M−α34

)(2,2) (M0)(2,3)

11
8 (M−α34

)(3,3) (M0)(11,12)

5
4 (M−α34)(4,4) (M0)(8,9)

3
8 (M−α34)(5,5) (M0)(7,14)

1
6 (M−α34

)(6,6) (M0)(7,13)

1
4 (M−γ2)(1,1) (M0)(4,10)

1 (M−γ3)(1,1) (M0)(5,11)

1
3 (M−γ3)(2,2) (M0)(2,8)

9
4 (M−γ4)(1,1) (M0)(6,12)

4
3 (M−γ4)(2,2) (M0)(3,9)

1
2 (M−γ4)(3,3) (M0)(1,7)

− 3
4 (M0)(1,11) (M−β14)(2,2)

The modi�ed matrix of the trivial module is given by

M0 =



2 −1 1 0 − 4
3 1 0 1 − 8

5 0 1
4 − 5

3 −
4
3 1 0 0

−1 2 7
8 −1 5

8 0 − 3
2 0 1 1 − 12

7 0 0 − 8
5 1 0

1 7
8 4 − 4

3 0 13
8 − 12

5 2 0 2 0 − 20
7 −2 0 2 0

0 −1 − 4
3 2 1 1 0 − 5

3 −
8
5 0 1 1 0 0 − 12

7 1

− 4
3

5
8 0 1 4 7

4 − 12
5 −

20
7 0 2 0 2 0 − 8

3 0 2

1 0 13
8 1 7

4 6 −3 0 − 24
7 3 3 0 − 12

5 0 0 3

0 − 3
2 −

12
5 0 − 12

5 −3 6 3 3 0 3 3 11
6

21
8 0 0

1 0 2 − 5
3 −

20
7 0 3 10 11

4 5 35
8 0 0 7

2 5 0

− 8
5 1 0 − 8

5 0 − 24
7 3 11

4 8 4 0 15
4 2 0 4 0

0 1 2 0 2 3 0 5 4 14 19
4 0 0 0 6 7

1
4 −

12
7 0 1 0 3 3 35

8 0 19
4 12 29

8 0 4 0 6

− 5
3 0 − 20

7 1 2 0 3 0 15
4 0 29

8 10 2 0 0 5

− 4
3 0 −2 0 0 − 12

5
11
6 0 2 0 0 2 2 0 0 0

1 − 8
5 0 0 − 8

3 0 21
8

7
2 0 0 4 0 0 4 0 0

0 1 2 − 12
7 0 0 0 5 4 6 0 0 0 0 6 0

0 0 0 1 2 3 0 0 0 7 6 5 0 0 0 8


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It is not positive de�nite and hence further four forms are necessary. The other matrices are

M−α12 =



11
8

7
4

81
56 2 7

4
7
4

7
4

19
8 2 283

112 2 9
4

81
56 2 45

8 4 5 5

2 283
112 4 17

4 4 4

7
4 2 5 4 7 6

7
4

9
4 5 4 6 6


M−α13 =



1 1 11
8 1 1

1 5 3 5 4

11
8 3 3 3 3

1 5 3 6 4

1 4 3 4 4



M−α14 =


4 3 4 2

3 3 3 33
16

4 3 5 2

2 33
16 2 2

 M−α23 =



1 − 2
3 −

1
2 −

6
5 −

10
7 −

4
3

− 2
3 1 1 13

10 1 1

− 1
2 1 29

4 3 5 4

− 6
5

13
10 3 3 3 3

− 10
7 1 5 3 5 4

− 4
3 1 4 3 4 9

2



M−α24 =



1 −1 − 1
4 −

8
7 −

4
5

−1 3 3 3 2

− 1
4 3 10 4 2

− 8
7 3 4 4 2

− 4
5 2 2 2 2


M−α34 =



9
4

1
4 − 13

8 −
16
7 −2 − 8

5

1
4

9
8 − 10

7 −
35
24 −

6
5 −1

− 13
8 −

10
7

51
8 4 3 31

16

− 16
7 −

35
24 4 21

4 3 2

−2 − 6
5 3 3 27

8 2

− 8
5 −1 31

16 2 2 13
6


The remaining matrices are

M−β12
= (1) M−β13

=

 1 1
4

1
4 2



M−β14
=


2 1 2

1 7
4 1

2 1 3

 M−β23
=


1 − 1

2
2
7

− 1
2 2 1

4

2
7

1
4 1



M−β24
=


1 − 1

4
1
3

4
7

− 1
4 3 1 7

4

1
3 1 1 1

4
7

7
4 1 2

 M−β34
=



2 0 5
8

8
7

2
3

0 1 6
7

19
24

2
5

5
8

6
7 3 2 1

8
7

19
24 2 2 1

2
3

2
5 1 1 1


and

M−γ1 = () M−γ2 =

(
1

2

)
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M−γ3 =

 2 9
8

9
8

2
3

 M−γ4 =


9
2

51
16

13
8

51
16

8
3

3
2

13
8

3
2 1


These are all positive de�nite, except for M0 but as in the previous chapters we can

discard rows and columns 10 and 16 since all entries are nonnegative. The resulting 14× 14
matrix is positive de�nite, which �nishes the proof for K = T.

Larger Isotropy

As in the case of SO(9), we will not present the above for all K in the same detail. In
fact, we will present here the di�erent possible K and their Kähler Einstein metrics. By
corollary 50 the curvature matrices are then obtained by considering the correct submatrices
of the matrices of (Sp(4),T, Jstd) with the new metric coe�cients. As before, we present the
details in the appendix for the interested reader. For each K, we will give the indices of the
rows and columns of the curvature matrices that have to be erased to obtain the restriction
and give a detailed table of the used four forms. We only consider the case dim(z(k)) > 1,
since the other cases are covered by Itoh. Note, that we scaled the metric by 2 in order to
avoid unnecessary fractions.

K D = (V,E) γ∗K gα12
gα23

gα34
gε4

SU(2) T3 α12 0 3 2 4

S1 SU(2) T2 α23 3 0 3 4

T2 SU(2) S1 α34 2 3 0 6

T3 SU(2) γ4 2 2 4 0

SU(3) T2 2α13 0 0 4 4

SU(2) S1 SU(2) S1 α12 + α34 0 4 0 6

SU(2) T2 SU(2) α12 + γ4 0 3 4 0

S1 SU(3) S1 2α24 4 0 0 8

S1 SU(2) S1 SU(2) α23 + γ4 3 0 5 0

T2 Sp(2) 4ε3 + 2ε4 2 6 0 0

8.4 The case of SO(8)

The positive roots are

∆+
g = {α34, α23,α24, α12, α13, α14, (8.4)

β34,β23, β24, β12, β13, β14}

and the simple roots are placed on the Dynkin diagram as follows

α12 α23
α34

β34
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After applying the general modi�cations of section 7.4 the matrices Mη representing the
modi�ed holomorphic curvature tensor are indexed with η ∈ ∆−g ∪{0}. In the case of SO(8)
this corresponds to the following:

We begin with the ones corresponding to −αij .

M−α12
=


4gα23

4gα23
8
gα23

gβ23
gβ12

4gα23

4gα23
4gα24

4gα24
8
gα24

gβ24
gβ12

8
gα23

gβ23
gβ12

4gα24
4gβ23

4gβ24

4gα23
8
gα24

gβ24
gβ12

4gβ24
4gβ24



M−α13
=


4gα34 −4gα34 8

4gα344gβ34
gβ13

−4gα34
4gβ23

−4gβ34

8
4gα34

4gβ34
gβ13

−4gβ34
4gβ34

 M−α14
=

 4gβ24 4gβ34

4gβ34 4gβ34



M−α23
=


4gα12

−8
gα12

gα34

gα14
−4gα12

−8
gα12

gβ34
gβ14

−8
gα12gα34

gα14
4gα34 4gα34 8

gα34gβ34
gβ23

−4gα12
4gα34

4gβ13
4gβ34

−8
gα12

gβ34
gβ14

8
gα34

gβ34
gβ23

4gβ34
4gβ34



M−α24 =


4gα12

8
gα12

gβ34
gβ13

−4gα12

8
gα12gβ34
gβ13

4gβ34 −4gβ34

−4gα12
−4gβ34

4gβ14



M−α34 =


4gα13 4gα23 −4gα13 −8

gα13gβ24
gβ12

4gα23 4gα23 −8
gα23gβ14
gβ12

−4gα23

−4gα13
−8

gα23
gβ14

gβ12
4gβ14

4gβ24

−8
gα13

gβ24
gβ12

−4gα23
4gβ24

4gβ24


Those corresponding to βij are

M−β12
= ∅ M−β13

= (4gα23
) M−β14

=

 4gα24 4gα34

4gα34 4gα34



M−β23 =

 4gα12
−4gα12

−4gα12
4gα13

 M−β24 =


4gα12

−4gα12
8
gα12

gα34

gβ13

−4gα12
4gα14

−4gα34

8
gα12gα34

gβ13
−4gα34 4gα34



M−β34
=


4gα13

4gα23 −4gα13 −8
gα13

gα24

gβ12

4gα23
4gα23

−8
gα23

gα14

gβ12
−4gα23

−4gα13
−8

gα23
gα14

gβ12
4gα14

4gα24

−8
gα13gα24

gβ12
−4gα23 4gα24 4gα24


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Ordering the basis as given in (8.4) the matrix of the trivial module is given by

M0 =

 A 〈AB〉

〈AB〉T B


with

A =



8gα34 ∗ 4gα34 0 ∗ 4gα34

∗ 8gα23
4gα23

∗ 4gα23
0

4gα34 4gα23 8gα24 ∗ 0 4gα24

0 ∗ ∗ 8gα12
4gα12

4gα12

∗ 4gα23 0 4gα12 8gα13 4gα13

4gα34 0 4gα24 4gα12 4gα13 8gα14


B =



8gβ34 4gβ34 4gβ34 0 4gβ34 4gβ34

4gβ34
8gβ23

4gβ24
4gβ23

4gβ23
0

4gβ34 4gβ24 8gβ24 4gβ24 0 4gβ24

0 4gβ23
4gβ24

8gβ12
4gβ13

4gβ14

4gβ34 4gβ23 0 4gβ13 8gβ13 4gβ14

4gβ34 0 4gβ24 4gβ14 4gβ14 8gβ14



〈AB〉 =



0 4gα34
∗ 0 4gα34

∗

∗ 0 4gα23
4gα23

∗ 0

∗ 4gα24
0 4gα24

0 ∗

0 ∗ ∗ 0 4gα12
4gα12

∗ ∗ 0 4gα13
0 4gα13

∗ 0 ∗ 4gα14
4gα14

0


where we used ∗ at the entry (α, β) as place holder for −8

gαgβ
gα+β

. In the following, we do
the full modi�cation for the toric isotropy.

Toric Isotropy

Now we consider the Kähler Einstein metric of (SO(8),T, Jstd), which is given on the simple
roots by

α α12 α23 α34 β34

gα 1 1 1 1

First of all, we notice that we do not have to consider the matrices M−η for η being one
of {α14, β12, β13, β14, β23}, since they are positive de�nite by the auxiliary lemma. The
remaining matrices are

M−α12
=


4 4 24

5 4

4 8 8 32
5

24
5 8 12 8

4 32
5 8 8

 M−α13 =


4 −4 2

−4 12 −4

2 −4 4



M−α23 =


4 − 8

3 −4 − 8
3

− 8
3 4 4 8

3

−4 4 16 4

− 8
3

8
3 4 4

 M−α24 =


4 2 −4

2 4 −4

−4 −4 12


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M−α34
=


8 4 −8 − 32

5

4 4 − 24
5 −4

−8 − 24
5 12 8

− 32
5 −4 8 8


Those corresponding to βij are

M−β24
=


4 −4 2

−4 12 −4

2 −4 4

 M−β34
=


8 4 −8 − 32

5

4 4 − 24
5 −4

−8 − 24
5 12 8

− 32
5 −4 8 8


and the matrix of the trivial module is given by

M0 =



8 −4 4 0 − 16
3 4 0 4 − 16

3 0 4 −6

−4 8 4 −4 4 0 −4 0 4 4 − 32
5 0

4 4 16 − 16
3 0 8 − 16

3 8 0 8 0 − 48
5

0 −4 − 16
3 8 4 4 0 −6 − 16

3 0 4 4

− 16
3 4 0 4 16 8 − 16

3 −
48
5 0 8 0 8

4 0 8 4 8 24 −6 0 − 48
5 12 12 0

0 −4 − 16
3 0 − 16

3 −6 8 4 4 0 4 4

4 0 8 −6 − 48
5 0 4 24 8 12 12 0

− 16
3 4 0 − 16

3 0 − 48
5 4 8 16 8 0 8

0 4 8 0 8 12 0 12 8 40 16 12

4 − 32
5 0 4 0 12 4 12 0 16 32 12

−6 0 − 48
5 4 8 0 4 0 8 12 12 24


It turns out that no further changes are necessary, since all of these matrices are positive
de�nite by Sylvester's criterion.

Larger Isotropy

We will not present the above for allK in the same detail. In fact, we will present here the dif-
ferent possible K and their Kähler Einstein metrics. By corollary 50 the curvature matrices
are then obtained by considering the correct submatrices of the matrices of (SO(8),T, Jstd)
with the new metric coe�cients. As before, we present the details in the appendix for the
interested reader. For each K, we will give the indices of the rows and columns of the
curvature matrices that have to be erased to obtain the restriction and give a detailed table
of the used four forms. We can reduce the di�erent cases for K to the following three using
the trialtrian symmetry of D4 and theorem 22 together with the result of Itoh.
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K D = (V,E) γ∗K gα12
gα23

gα34
gβ34

SU(2) T3 α12 0 3
2 1 1

S1 SU(2) T2 α23
3
2 0 3

2
3
2

T2 SU(2) SU(2) 2ε3 1 2 0 0



Chapter 9

Appendix

We use the appendix to present the remaining part of the proof of conjecture H(4), proving
that the holomorphic curvature tensor can be modi�ed into a positive tensor via four forms
in all C spaces (G,K, Jstd, gKE), where G is a simple classical group of rank 4 and K is
the centralizer of a torus leaving Jstd invariant. That means in detail, that we describe the
needed T invariant four forms and the submatrices of the curvature matrices of (G,T, Jstd)
corresponding to the curvature tensor with isotropy K as presented in corollary 50. Notice,
that we are allowed to use T invariant four forms by lemma 18.

The larger isotropy groups of SU(5) are already completely covered in section 8.1 which
is why we begin with B4.

113
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Larger isotropy of SO(9)

We treat each case in the table of possible isotropy groups K in section 8.2 separately. In
order to keep the indices understandable, we add �rst the four forms to the matrices from
the beginning of section 8.2 and cancel rows and columns afterwards.

Isotropy group K = SU(2) T3

In this case the desired modi�cations are:

Value Intended Forced

−4 (M−α12
)(1,5) (M−ε3)(1,2)

− 20
3 (M−α12

)(2,5) (M−ε4)(1,2)

−8 (M−α12)(3,5) (M−ε3)(3,4)

−8 (M−α12
)(4,5) (M−ε4)(4,5)

4 (M−α12
)(2,2) (M0)(3,6)

8 (M−α12
)(3,3) (M0)(8,11)

3 (M−α12)(5,5) (M0)(15,16)

− 4
5 (M−α13

)(1,4) (M−ε4)(1,3)

6
5 (M−α13

)(2,4) (M−ε2)(2,3)

− 6
5 (M−α13)(3,4) (M−ε4)(4,6)

1 (M−α13)(4,4) (M0)(14,16)

1
7 (M−α14

)(3,3) (M0)(13,16)

− 8
5 (M−α23

)(2,5) (M−ε4)(2,3)

− 12
5 (M−α23)(3,5) (M−ε1)(1,2)

Value Intended Forced

− 12
5 (M−α23

)(4,5) (M−ε4)(5,6)

1
2 (M−α24

)(2,4) (M−ε3)(4,5)

− 1
2 (M−α24)(3,4) (M−ε1)(1,3)

−2 (M−α34
)(1,3) (M−β34

)(1,3)

−2 (M−α34
)(2,4) (M−β34

)(2,4)

1
4 (M−α34

)(5,5) (M0)(13,14)

6 (M−ε3)(1,1) (M0)(5,16)

6 (M−ε3)(2,2) (M0)(2,15)

12 (M−ε3)(3,3) (M0)(11,16)

12 (M−ε3)(4,4) (M0)(8,15)

10 (M−ε4)(1,1) (M0)(6,16)

10 (M−ε4)(2,2) (M0)(3,15)

12 (M−ε4)(4,4) (M0)(12,16)

12 (M−ε4)(5,5) (M0)(9,15)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × × 1 1 × × × × 1 1 ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη × 1 × × 4

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10, 15 and 16 (enumerated prior to erasing the fourth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 × 12 block is now positive de�nite and hence we have a modi�ed positive
holomorphic curvature tensor.
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Isotropy group K = S1 SU(2) T2

In this case the desired modi�cations are:

Value Intended Forced

− 9
10 (M−α12

)(2,5) (M−ε4)(1,2)

− 6
5 (M−α12

)(3,5) (M−ε3)(3,4)

− 6
5 (M−α12)(4,5) (M−ε4)(4,5)

16
11 (M−α12

)(5,5) (M0)(15,16)

− 9
10 (M−α13

)(1,4) (M−ε4)(1,3)

6
5 (M−α13

)(2,4) (M−ε2)(2,3)

− 6
5 (M−α13)(3,4) (M−ε4)(4,6)

16
11 (M−α13

)(4,4) (M0)(14,16)

1
8 (M−α14

)(3,3) (M0)(13,16)

Value Intended Forced

1 (M−α23)(1,1) (M0)(4,5)

2 (M−α23
)(5,5) (M0)(14,15)

1
5 (M−α24

)(4,4) (M0)(13,15)

1
5 (M−α34)(5,5) (M0)(13,14)

1 (M−ε4)(1,1) (M0)(6,16)

27
800 (M−ε4)(2,2) (M0)(3,15)

27
800 (M−ε4)(3,3) (M0)(1,14)

1 (M−ε4)(4,4) (M0)(12,16)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × × × × 2 × 1 × × × 2

and

−η ε1 ε2 ε3 ε4 0

] of Mη × × 2 × 2

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10, 11 and 16 (enumerated prior to erasing the second row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 × 12 block is now positive de�nite and hence we have a modi�ed positive
holomorphic curvature tensor.

Isotropy group K = T2 SU(2) S1

In this case the desired modi�cations are:

Value Intended Forced

2 (M−α12)(1,4) (M−β34)(1,2)

2 (M−α12)(2,3) (M−β34)(3,4)

25
12 (M−α12

)(5,5) (M0)(15,16)

3
8 (M−α13

)(2,4) (M−ε2)(2,3)

− 3
8 (M−α13)(3,4) (M−ε4)(4,6)

4
9 (M−α13)(4,4) (M0)(14,16)

3
8 (M−α14

)(1,3) (M−ε2)(2,4)

3
8 (M−α14

)(2,3) (M−ε3)(3,5)

4
9 (M−α14)(3,3) (M0)(13,16)

Value Intended Forced

4
7 (M−α23)(5,5) (M0)(14,15)

4
7 (M−α24)(4,4) (M0)(13,15)

253
400 (M−α34

)(3,5) (M−ε1)(2,3)

253
400 (M−α34

)(4,5) (M−ε2)(3,4)

9
8 (M−α34)(2,2) (M0)(2,3)

15
2 (M−α34)(4,4) (M0)(8,9)

8
5 (M−α34

)(5,5) (M0)(13,14)

− 5
8 (M−ε1)(2,2) (M0)(11,14)

− 5
8 (M−ε1)(3,3) (M0)(12,13)
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Now all matrices are positive semide�nite except for M0. We need further changes, but
since they all correspond to adding negative o� diagonal entries to M0 by the arguments in
the proof of proposition 31 this does not worsen the Mη. Therefore, we do not have to keep
track of the forced modi�cations of the following:

Entry of M0 (4, 11) (6, 11) (2, 15) (3, 15) (8, 15) (9, 15)

Value −2 −2 − 87
40 − 87

40 − 11
20 − 11

20

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × 1 × 2 × × × × 2 × 3 ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη × × × 3 1

As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated
prior to erasing the �rst row and column) have only positive entries and can discarded as in
the example of G2. The remaining 13× 13 block is now positive de�nite and hence we have
a modi�ed positive holomorphic curvature tensor.

Isotropy group K = T3 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

− 4
5 (M−α12

)(1,5) (M−ε3)(1,2)

−2 (M−α12)(2,5) (M−ε4)(1,2)

−2 (M−α12
)(3,5) (M−ε3)(3,4)

−2 (M−α12
)(4,5) (M−ε4)(4,5)

25
12 (M−α12

)(5,5) (M0)(15,16)

− 12
5 (M−α13)(1,4) (M−ε4)(1,3)

12
5 (M−α13

)(2,4) (M−ε2)(2,3)

− 12
5 (M−α13

)(3,4) (M−ε4)(4,6)

9
10 (M−α13)(4,4) (M0)(14,16)

Value Intended Forced

− 5
4 (M−α23

)(2,5) (M−ε4)(2,3)

− 5
4 (M−α23)(3,5) (M−ε1)(1,2)

− 5
4 (M−α23

)(4,5) (M−ε4)(5,6)

9
8 (M−α23

)(5,5) (M0)(14,15)

5
8 (M−ε3)(3,3) (M0)(11,16)

3
8 (M−ε4)(2,2) (M0)(3,15)

5
8 (M−ε4)(3,3) (M0)(1,14)

14 (M−ε4)(4,4) (M0)(12,16)

5
8 (M−ε4)(6,6) (M0)(7,14)

We need further changes, but since they all correspond to adding negative o� diagonal
entries to M0 by the arguments in the proof of proposition 31 this does not worsen the Mη.
Therefore, we do not have to keep track of the forced modi�cations of the following:

Entry of M0 (8, 15) (9, 15)

Value − 5
4 − 5

4

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:
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−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × 3 × 4 5 × × × × × ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη 3 4 5 × 13

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 13 × 13 block is now positive de�nite and hence we have a modi�ed positive
holomorphic curvature tensor.

Isotropy group K = SU(3) T2

In this case the desired modi�cations are:

Value Intended Forced

5
2 (M−α12

)(5,5) (M0)(15,16)

5
2 (M−α13

)(4,4) (M0)(14,16)

1
6 (M−α14

)(3,3) (M0)(13,16)

5
2 (M−α23)(5,5) (M0)(14,15)

1
6 (M−α24

)(4,4) (M0)(13,15)

1
6 (M−α34

)(5,5) (M0)(13,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × × 1 1 1, 2 × 1 × 1, 2 1 1, 2

and

−η ε1 ε2 ε3 ε4 0

] of Mη × 1 1, 2 × 2, 4, 5

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10, 11,14,15 and 16 (enumerated prior to erasing the second
fourth and �fth row and column) have only positive entries and can be discarded as in the
example of G2. The remaining 8 × 8 block is now positive de�nite and hence we have a
positive modi�ed holomorphic curvature tensor.
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Isotropy group K = SU(2) S1 SU(2) S1

In this case the desired modi�cations are:

Value Intended Forced

8 (M−α12
)(1,4) (M−β34

)(1,2)

8 (M−α12)(2,3) (M−β34)(3,4)

11
4 (M−α12

)(1,1) (M0)(2,5)

11
4 (M−α12

)(2,2) (M0)(3,6)

11
4 (M−α12

)(3,3) (M0)(8,11)

11
4 (M−α12)(4,4) (M0)(9,12)

3 (M−α12
)(5,5) (M0)(15,16)

1
2 (M−α13

)(4,4) (M0)(14,16)

1
2 (M−α14

)(3,3) (M0)(13,16)

Value Intended Forced

1
2 (M−α23

)(5,5) (M0)(14,15)

1
2 (M−α24)(4,4) (M0)(13,15)

−8 (M−α34
)(1,3) (M−β34

)(1,3)

−8 (M−α34
)(2,4) (M−β34

)(2,4)

8 (M−α34
)(1,1) (M0)(5,6)

8 (M−α34)(2,2) (M0)(2,3)

11
4 (M−α34

)(3,3) (M0)(11,12)

11
4 (M−α34

)(4,4) (M0)(8,9)

1 (M−α34
)(5,5) (M0)(13,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × 1 × 1, 2 1 × × × 2 1 1, 3 ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη × 1 × 3 1, 4

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10, 15 and 16 (enumerated prior to erasing the �rst and fourth
row and column) have only positive entries and can be discarded as in the example of G2.
The remaining 11× 11 block is now positive de�nite and hence we have a modi�ed positive
holomorphic curvature tensor.
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Isotropy group K = SU(2) T2 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

3 (M−α12
)(5,5) (M0)(15,16)

− 9
5 (M−α13

)(1,4) (M−ε4)(1,3)

9
5 (M−α13)(2,4) (M−ε2)(2,3)

− 9
5 (M−α13)(3,4) (M−ε4)(4,6)

1 (M−α13
)(4,4) (M0)(14,16)

− 9
5 (M−α23

)(2,5) (M−ε4)(2,3)

− 9
5 (M−α23)(3,5) (M−ε1)(1,2)

Value Intended Forced

− 9
5 (M−α23

)(4,5) (M−ε4)(5,6)

1 (M−α23)(5,5) (M0)(14,15)

23
80 (M−ε4)(1,1) (M0)(6,16)

23
80 (M−ε4)(2,2) (M0)(3,15)

23
80 (M−ε4)(3,3) (M0)(1,14)

23
80 (M−ε4)(4,4) (M0)(12,16)

23
80 (M−ε4)(5,5) (M0)(9,15)

23
80 (M−ε4)(6,6) (M0)(7,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × 3 1 1, 4 5 × × × 1 1 ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη 3 1, 4 5 × 4, 13

Now all matrices are positive semide�nite except for M0. We add − 1
4 to the symmetrically

to the entry (9, 12) of M0. For the resulting M0 we see as in the case of the toric isotropy
that column and row 10, 15 and 16 (enumerated prior to erasing the fourth and thirteenth
row and column) have only positive entries and can be discarded as in the example of G2.
The remaining 11× 11 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.
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Isotropy group K = S1 SU(3) S1

In this case the desired modi�cations are:

Value Intended Forced

9
10 (M−α12

)(5,5) (M0)(15,16)

9
10 (M−α13)(4,4) (M0)(14,16)

9
10 (M−α14

)(3,3) (M0)(13,16)

23
8 (M−α23

)(1,1) (M0)(4,5)

3
2 (M−α23

)(5,5) (M0)(14,15)

Value Intended Forced

23
8 (M−α24

)(1,1) (M0)(4,6)

3
2 (M−α24

)(4,4) (M0)(13,15)

23
8 (M−α34)(1,1) (M0)(5,6)

3
2 (M−α34)(5,5) (M0)(13,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1, 2 1 × 2 × 2 × 1 1, 2 × 3 2, 4

and

−η ε1 ε2 ε3 ε4 0

] of Mη × × 2 2, 3 1, 2, 3

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11,12 and 16 (enumerated prior to erasing the �rst , second
and third row and column) have only positive entries and can be discarded as in the example
of G2. The remaining 9 × 9 block is now positive de�nite and hence we have a modi�ed
positive holomorphic curvature tensor.

Isotropy group K = S1 SU(2) S1 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

−2 (M−α12)(2,5) (M−ε4)(1,2)

−2 (M−α12)(3,5) (M−ε3)(3,4)

−2 (M−α12
)(4,5) (M−ε4)(4,5)

16
11 (M−α12

)(5,5) (M0)(15,16)

−2 (M−α13)(1,4) (M−ε4)(1,3)

2 (M−α13)(2,4) (M−ε2)(2,3)

−2 (M−α13
)(3,4) (M−ε4)(4,6)

16
11 (M−α13

)(4,4) (M0)(14,16)

Value Intended Forced

2 (M−α23
)(5,5) (M0)(14,15)

21
80 (M−ε4)(1,1) (M0)(6,16)

21
80 (M−ε4)(2,2) (M0)(3,15)

21
80 (M−ε4)(3,3) (M0)(1,14)

21
80 (M−ε4)(4,4) (M0)(12,16)

21
80 (M−ε4)(5,5) (M0)(9,15)

21
80 (M−ε4)(6,6) (M0)(7,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:
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−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × 3 × 4 2, 5 × 1 × × × 2

and

−η ε1 ε2 ε3 ε4 0

] of Mη 3 4 2, 5 × 2, 13

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second and
thirteenth row and column) have only positive entries and can be discarded as in the example
of G2. The remaining 11 × 11 block is now positive de�nite and hence we have a positive
modi�ed holomorphic curvature tensor.

Isotropy group K = T2 SO(5)

In this case the desired modi�cations are:

Value Intended Forced

−1 (M−α12
)(1,5) (M−ε3)(1,2)

−1 (M−α12
)(2,5) (M−ε4)(1,2)

−1 (M−α12
)(3,5) (M−ε3)(3,4)

−1 (M−α12)(4,5) (M−ε4)(4,5)

27
8 (M−α12

)(1,1) (M0)(2,5)

27
8 (M−α12

)(2,2) (M0)(3,6)

27
8 (M−α12

)(3,3) (M0)(8,11)

27
8 (M−α12)(4,4) (M0)(9,12)

25
12 (M−α12

)(5,5) (M0)(15,16)

27
8 (M−α34

)(1,1) (M0)(5,6)

27
8 (M−α34

)(2,2) (M0)(2,3)

27
8 (M−α34)(3,3) (M0)(11,12)

27
8 (M−α34

)(4,4) (M0)(8,9)

Value Intended Forced

27
8 (M−β34)(1,1) (M0)(5,12)

27
8 (M−β34)(2,2) (M0)(2,9)

27
8 (M−β34

)(3,3) (M0)(6,11)

27
8 (M−β34

)(4,4) (M0)(3,8)

3
4 (M−ε3)(1,1) (M0)(5,16)

3
4 (M−ε3)(2,2) (M0)(2,15)

3
4 (M−ε3)(3,3) (M0)(11,16)

3
4 (M−ε3)(4,4) (M0)(8,15)

3
4 (M−ε4)(1,1) (M0)(6,16)

3
4 (M−ε4)(2,2) (M0)(3,15)

3
4 (M−ε4)(4,4) (M0)(12,16)

3
4 (M−ε4)(5,5) (M0)(9,15)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × 3 × 4 5 × × × × × ×

and

−η ε1 ε2 ε3 ε4 0

] of Mη 3 4 5 × 1, 7, 13, 14

Now all matrices are positive semide�nite except for M0. As in the case of the toric iso-
tropy, we see that column and row 10 and 16 (enumerated prior to erasing the �rst, sev-
enth,thirteenth and fourteenth row and column) have only positive entries and can discarded
as in the example of G2. The remaining 10× 10 block is now positive de�nite and hence we
have a positive modi�ed holomorphic curvature tensor.
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Larger isotropy of Sp(4)

We treat each case in the table of possible isotropy groups K in section 8.3 separately. In
order to keep the indices understandable, we add �rst the four forms to the matrices from
the beginning of section 8.3 and cancel rows and columns afterwards.

Isotropy group SU(2) T3

In this case the desired modi�cations are:

Value Intended Forced

15
14 (M−α12

)(1,3) (M−γ3)(1,2)

9
8 (M−α12

)(1,1) (M0)(2,5)

9
8 (M−α12

)(2,2) (M0)(3,6)

9
8 (M−α12)(3,3) (M0)(8,11)

9
8 (M−α12

)(4,4) (M0)(9,12)

14 (M−α12
)(5,5) (M0)(10,16)

14 (M−α12
)(6,6) (M0)(10,15)

Value Intended Forced

−3 (M−α34
)(1,3) (M−β34

)(1,3)

−3 (M−α34
)(2,4) (M−β34

)(2,4)

9
7 (M−γ3)(1,1) (M0)(5,11)

9
7 (M−γ3)(2,2) (M0)(2,8)

25
7 (M−γ4)(1,1) (M0)(6,12)

25
7 (M−γ4)(2,2) (M0)(3,9)

1 (M−γ4)(3,3) (M0)(1,7)

− 1
4 (M0)(7,14) (M−α34

)(5,5)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × × 1 1 × × × × 1 1 ×

and

−η γ1 γ2 γ3 γ4 0

] of Mη × 1 × × 4

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 × 12 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.
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Isotropy group S1 SU(2) T2

In this case the desired modi�cations are:

Value Intended Forced

− 1
4 (M−α12

)(2,4) (M−γ4)(1,2)

− 1
4 (M−α13)(1,3) (M−γ4)(1,3)

5
8 (M−α23

)(2,4) (M−γ4)(2,3)

5
4 (M−α23

)(1,1) (M0)(4,5)

5
4 (M−α23

)(2,2) (M0)(1,3)

5
4 (M−α23)(3,3) (M0)(10,11)

5
4 (M−α23

)(4,4) (M0)(7,9)

5
4 (M−α23

)(5,5) (M0)(8,15)

Value Intended Forced

5
4 (M−α23

)(6,6) (M0)(8,14)

10 (M−α24)(3,3) (M0)(10,12)

10 (M−α34
)(3,3) (M0)(11,12)

9
8 (M−γ2)(1,1) (M0)(4,10)

9
8 (M−γ3)(1,1) (M0)(5,11)

9
2 (M−γ4)(1,1) (M0)(6,12)

9
5 (M−γ4)(2,2) (M0)(3,9)

9
5 (M−γ4)(3,3) (M0)(1,7)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × × × × 2 × 1 × 3 × 2

and

−η γ1 γ2 γ3 γ4 0

] of Mη × × 2 × 2

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 × 12 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.
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Isotropy group T2 SU(2) S1

In this case the desired modi�cations are:

Value Intended Forced

− 1
4 (M−α12

)(1,3) (M−γ3)(1,2)

− 1
4 (M−α12

)(2,4) (M−γ4)(1,2)

1
2 (M−α12)(1,1) (M0)(2,5)

1
2 (M−α12)(2,2) (M0)(3,6)

3
2 (M−α12

)(3,3) (M0)(8,11)

3
2 (M−α12

)(4,4) (M0)(9,12)

5
4 (M−α23)(3,3) (M0)(10,11)

5
4 (M−α24)(3,3) (M0)(10,12)

− 15
4 (M−α34

)(1,3) (M−β34
)(1,3)

− 15
4 (M−α34

)(2,4) (M−β34
)(2,4)

Value Intended Forced

5
4 (M−α34

)(1,1) (M0)(5,6)

7
8 (M−α34)(2,2) (M0)(2,3)

15
8 (M−α34

)(3,3) (M0)(11,12)

15
8 (M−α34

)(4,4) (M0)(8,9)

5
8 (M−α34

)(5,5) (M0)(7,14)

5
8 (M−α34)(6,6) (M0)(7,13)

1
2 (M−γ2)(1,1) (M0)(4,10)

25
8 (M−γ3)(1,1) (M0)(5,11)

3
2 (M−γ3)(2,2) (M0)(2,8)

25
8 (M−γ4)(1,1) (M0)(6,12)

3
2 (M−γ4)(2,2) (M0)(3,9)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × 1 × 2 × × × × 2 × 3 5

and

−η γ1 γ2 γ3 γ4 0

] of Mη × × × 3 1

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the �rst row and column)
have only positive entries and can be discarded as in the example of G2. The remaining
13 × 13 block is now positive de�nite and hence we have a positive modi�ed holomorphic
curvature tensor.
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Isotropy group T3 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

− 4
7 (M−α12

)(1,3) (M−γ3)(1,2)

− 24
7 (M−α12)(2,4) (M−γ4)(1,2)

− 11
4 (M−α13

)(1,3) (M−γ4)(1,3)

− 25
8 (M−α23

)(2,4) (M−γ4)(2,3)

5
2 (M−α23

)(3,3) (M0)(10,11)

− 5
2 (M−α34)(1,3) (M−β34)(1,3)

− 5
2 (M−α34

)(2,4) (M−β34
)(2,4)

Value Intended Forced

1
2 (M−γ2)(1,1) (M0)(4,10)

2 (M−γ3)(1,1) (M0)(5,11)

2
3 (M−γ3)(2,2) (M0)(2,8)

8 (M−γ4)(1,1) (M0)(6,12)

6 (M−γ4)(2,2) (M0)(3,9)

21
4 (M−γ4)(3,3) (M0)(1,7)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × 4 × 5 6 × × × × × ×

and

−η γ1 γ2 γ3 γ4 0

] of Mη × × × × 13

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 13 × 13 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.

Isotropy group SU(3) T2

In this case the desired modi�cations are:

Value Intended Forced

8
3 (M−γ4)(1,1) (M0)(6,12)

8
3 (M−γ4)(2,2) (M0)(3,9)

8
3 (M−γ4)(3,3) (M0)(1,7)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × × 1 1 1, 2 × × × × 1 1, 2

and
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−η γ1 γ2 γ3 γ4 0

] of Mη × 1 2 × 2, 4, 5

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11,14,15 and 16 (enumerated prior to erasing the second,
fourth and �fth row and column) have only positive entries and can be discarded as in the
example of G2. The remaining 8 × 8 block is now positive de�nite and hence we have a
positive modi�ed holomorphic curvature tensor.

Isotropy group SU(2) S1 SU(2) S1

In this case the desired modi�cations are:

Value Intended Forced

4
7 (M−α12

)(1,3) (M−γ3)(1,2)

4
7 (M−α12

)(2,4) (M−γ4)(1,2)

7
4 (M−α12)(1,1) (M0)(2,5)

7
4 (M−α12

)(2,2) (M0)(3,6)

7
4 (M−α12

)(3,3) (M0)(8,11)

7
4 (M−α12

)(4,4) (M0)(9,12)

7
4 (M−α12)(5,5) (M0)(10,16)

7
4 (M−α12

)(6,6) (M0)(10,15)

−4 (M−α34
)(1,3) (M−β34

)(1,3)

Value Intended Forced

−4 (M−α34
)(2,4) (M−β34

)(2,4)

3
8 (M−α34

)(1,1) (M0)(5,6)

3
8 (M−α34)(4,4) (M0)(8,9)

3
8 (M−α34

)(5,5) (M0)(7,14)

3
8 (M−α34

)(6,6) (M0)(7,13)

16
7 (M−γ3)(1,1) (M0)(5,11)

16
7 (M−γ3)(2,2) (M0)(2,8)

16
7 (M−γ4)(1,1) (M0)(6,12)

16
7 (M−γ4)(2,2) (M0)(3,9)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × 1 × 1, 2 1 × × × 2 1 1, 3 5

and

−η γ1 γ2 γ3 γ4 0

] of Mη × 1 × 3 1, 4

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the �rst and fourth
row and column) have only positive entries and can be discarded as in the example of G2.
The remaining 11× 11 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.
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Isotropy group SU(2) T2 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

15
14 (M−α12

)(1,3) (M−γ3)(1,2)

− 7
2 (M−α12)(2,4) (M−γ4)(1,2)

− 15
4 (M−α13

)(1,3) (M−γ4)(1,3)

− 15
4 (M−α23

)(2,4) (M−γ4)(2,3)

−3 (M−α34
)(1,3) (M−β34

)(1,3)

−3 (M−α34)(2,4) (M−β34)(2,4)

Value Intended Forced

9
7 (M−γ3)(1,1) (M0)(5,11)

9
7 (M−γ3)(2,2) (M0)(2,8)

7 (M−γ4)(1,1) (M0)(6,12)

57
8 (M−γ4)(2,2) (M0)(3,9)

4 (M−γ4)(3,3) (M0)(1,7)

− 1
4 (M0)(9,12) (M−α12)(4,4)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × × 4 1 1, 5 6 × × × 1 1 ×

and

−η γ1 γ2 γ3 γ4 0

] of Mη × 1 × × 4, 13

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth and
thirteenth row and column) have only positive entries and can be discarded as in the example
of G2. The remaining 11 × 11 block is now positive de�nite and hence we have a positive
modi�ed holomorphic curvature tensor.
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Isotropy group S1 SU(3) S1

In this case the desired modi�cations are:

Value Intended Forced

5
4 (M−α23

)(1,1) (M0)(4,5)

5
4 (M−α23)(3,3) (M0)(10,11)

5
4 (M−α23

)(4,4) (M0)(7,9)

5
4 (M−α23

)(5,5) (M0)(8,15)

5
4 (M−α23

)(6,6) (M0)(8,14)

5
4 (M−α24)(1,1) (M0)(4,6)

5
4 (M−α24

)(2,2) (M0)(7,8)

5
4 (M−α24

)(3,3) (M0)(10,12)

5
4 (M−α24

)(4,4) (M0)(9,15)

Value Intended Forced

5
4 (M−α24

)(5,5) (M0)(9,13)

5
4 (M−α34)(1,1) (M0)(5,6)

5
4 (M−α34

)(3,3) (M0)(11,12)

5
4 (M−α34

)(4,4) (M0)(8,9)

5
4 (M−α34

)(5,5) (M0)(7,14)

5
4 (M−α34)(6,6) (M0)(7,13)

2 (M−γ2)(1,1) (M0)(4,10)

2 (M−γ3)(1,1) (M0)(5,11)

2 (M−γ4)(1,1) (M0)(6,12)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1, 2 1 × 2 × 2 × 1 1, 2 3 3, 4 2, 4, 5

and

−η γ1 γ2 γ3 γ4 0

] of Mη × × 2 2, 3 1, 2, 3

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11,12 and 16 (enumerated prior to erasing the �rst three
rows and columns) have only positive entries and can be discarded as in the example of G2.
The remaining 9 × 9 block is now positive de�nite and hence we have a positive modi�ed
holomorphic curvature tensor.
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Isotropy groups S1 SU(2) S1 SU(2)

In this case the desired modi�cations are:

Value Intended Forced

− 25
8 (M−α12)(2,4) (M−γ4)(1,2)

− 25
8 (M−α13

)(1,3) (M−γ4)(1,3)

5
2 (M−α23

)(1,1) (M0)(4,5)

5
2 (M−α23

)(2,2) (M0)(1,3)

13 (M−α23)(3,3) (M0)(10,11)

5
2 (M−α23

)(4,4) (M0)(7,9)

5
2 (M−α23

)(5,5) (M0)(8,15)

Value Intended Forced

5
2 (M−α23

)(6,6) (M0)(8,14)

9
8 (M−γ2)(1,1) (M0)(4,10)

9
8 (M−γ3)(1,1) (M0)(5,11)

8 (M−γ4)(1,1) (M0)(6,12)

5 (M−γ4)(2,2) (M0)(3,9)

5 (M−γ4)(3,3) (M0)(1,7)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη 1 × 4 × 5 2, 6 × 1 × 3 × 2

and

−η γ1 γ2 γ3 γ4 0

] of Mη × × 2 × 2, 13

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second and
thirteenth row and column) have only positive entries and can be discarded as in the example
of G2. The remaining 11 × 11 block is now positive de�nite and hence we have a positive
modi�ed holomorphic curvature tensor.

Isotropy group T2 Sp(2)

In this case the desired modi�cations are:

Value Intended Forced

− 24
7 (M−α12)(1,3) (M−γ3)(1,2)

− 24
7 (M−α12

)(2,4) (M−γ4)(1,2)

− 55
8 (M−α34

)(1,3) (M−β34
)(1,3)

− 55
8 (M−α34)(2,4) (M−β34)(2,4)

2 (M−α34)(2,2) (M0)(2,3)

Value Intended Forced

2 (M−α34)(4,4) (M0)(8,9)

8 (M−γ3)(1,1) (M0)(5,11)

6 (M−γ3)(2,2) (M0)(2,8)

8 (M−γ4)(1,1) (M0)(6,12)

6 (M−γ4)(2,2) (M0)(3,9)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34

] of Mη × 1, 3, 5 2, 4 2, 4, 6 2, 5 5, 6 × × 2 × 3 5
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and

−η γ1 γ2 γ3 γ4 0

] of Mη × 1 × 3 1, 7, 13, 14

Now all matrices are positive semide�nite except forM0. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the �rst, seventh,
thirteenth and fourteenth row and column) have only positive entries and can be discarded
as in the example of G2. The remaining 10× 10 block is now positive de�nite and hence we
have a positive modi�ed holomorphic curvature tensor.

Larger isotropy SO(8)

We treat each case in the table of possible isotropy groups K in section 8.4 separately. In
order to keep the indices understandable, we add �rst the four forms to the matrices from
the beginning of section 8.4 and cancel rows and columns afterwards.

Isotropy group SU(2) T3

In this case the desired modi�cations are:

Value Intended Forced

−1 (M0)(9,12) (M−α12
)(4,4)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34 0

] of Mη × × × 1 1 × × × × 1 1 × 4

Now all matrices are positive semide�nite and M0 is positive de�nite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have
positive holomorphic curvature.

Isotropy group S1 SU(2) T2

In this case the desired modi�cations are:

Value Intended Forced

−1 (M0)(4,5) (M−α23
)(1,1)

−1 (M0)(7,9) (M−α23
)(4,4)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34 0

] of Mη 1 × × × × 2 × 1 × × × 2 2

Now all matrices are positive semide�nite and M0 is positive de�nite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have
positive holomorphic curvature.
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Isotropy group T2 SU(2) SU(2)

In this case the desired modi�cations are:

Value Intended Forced

2 (M−α12
)(1,1) (M0)(2,5)

2 (M−α12)(2,2) (M0)(3,6)

2 (M−α12
)(3,3) (M0)(8,11)

2 (M−α12
)(4,4) (M0)(9,12)

2 (M−α34
)(1,1) (M0)(5,6)

2 (M−α34)(2,2) (M0)(2,3)

Value Intended Forced

2 (M−α34
)(3,3) (M0)(11,12)

2 (M−α34)(4,4) (M0)(8,9)

2 (M−β34
)(1,1) (M0)(5,12)

2 (M−β34
)(2,2) (M0)(2,9)

2 (M−β34
)(3,3) (M0)(6,11)

2 (M−β34)(4,4) (M0)(3,8)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

−η α12 α13 α14 α23 α24 α34 β12 β13 β14 β23 β24 β34 0

] of Mη × 1, 3 2 2, 4 2 × × × 2 × 3 × 1, 7

Now all matrices are positive semide�nite and M0 is positive de�nite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition 31 and hence we have
positive holomorphic curvature.
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