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Introduction

One of the most challenging problems in Riemannian geometry is to develop a good under-
standing of the concept of curvature of a geometric object. That means how to quantify the
deviation of a curved object from a flat FEuclidean space. The mathematical answer to this
question was given by Bernhard Riemann in his habilitation in 1854 and is now known as
the Riemannian curvature tensor

R:TM xTM xTMxTM — R

for the curved object of a Riemannian manifold (M,g). The amount of information of M
encoded in R is very rich and until today we are far from having a complete understanding
of R due to its complexity.

However, the symmetries satisfied by R imply that, at the point p € M, it is completely
determined by its values on tuples (X,Y, X,Y) for X,Y being orthonormal in (T,MM, g,).
This results in the definition of the sectional curvature of a tangent plane o = (X,Y)g

sec(o) = R(X,Y, X,Y)

which corresponds to the Gauss curvature of the totally geodesic surface generated by o.

Since sec still decodes the full complexity of R, mathematicians considered various re-
ductions, such as the Ricci tensor and the scalar curvature, obtaining tractability at the
expense of losing information about M. In the analysis of each of these curvature terms, the
following fundamental questions arose. What characterises a Riemannian manifold (M, g)
that has positive curvature? Is positive curvature a strong restriction? These questions are
difficult to answer and we are therefore interested in finding examples in order to develop
some intuition.

There are many famous partial results addressing these questions in the literature. We
want to point out that these questions are very hard, even in the comparatively easy case of
metrics with transitive isometry group. In fact, for example the the classification of homo-
geneous spaces with sec > 0 is the result of a long series of papers by Berger, Wallach, Aloff,
Bérard Bergery, Wilking, Xu, Wolf ([Ber61][Wal72|[AWT75][BB76],[Wil99][XW15]) and has
only recently been completed by Wilking and Ziller in [WZ18| closing the last remaining
gap. For more details on the contributions of the various authors we refer the interested
reader to the exposition on [WZ1§].

If the Riemannian manifold had the additional structure of being Kahler, i.e. having a
compatible parallel complex structure J, one can define another reduction of the curvature
tensor. The so-called holomorphic sectional curvature is given by

H:SM —R X — sec(X NJX)

being the sectional curvature of complex planes in the complex vector space (7,M,J). As
with the other curvatures, we ask the following questions. How strong is the condition that
H is positive? What examples are known?
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Similar to the Bonnet-Myers theorem for Ricci curvature, Tsukamoto proved in [Tsu57]
that if the holomorphic curvature is bounded from below by a positive constant then the
manifold is compact, simply connected and there is a upper bound for the diameter. Further-
more, as Klingenberg showed in [KIi61] the equality case is only satisfied if M has constant
holomorphic curvature and biholomorphically isometric to complex projective space with its
standard Kahler structure. Therefore one is left with the impression that the property of hav-
ing positive holomorphic curvature seems similarly strong as having positive Ricci curvature.

The purpose of this thesis is to present evidence to support the impression that pos-
itive holomorphic curvature is not too strong by constructing new examples leading to an
interesting conjecture. Following the idea of the Grove symmetry program, we treat the
question of positive holomorphic curvature in the setting of a large isometry group, i.e. ho-
mogeneous Kéhler manifolds. If we have positive holomorphic curvature on a homogeneous
Ka&hler manifold, this immediately implies that H is bounded from below by a positive con-
stant and hence we may restrict our attention to simply connected compact homogeneous
Kahler manifolds.

These spaces are called Kdhler C spaces or generalised flag manifolds. Their real rep-
resentation turns out to be M = G/K where G is a semisimple compact Lie group and the
isotropy group K is the centraliser of a torus in G. This implies that K shares a maximal
torus with G and, since it is a compact group, it factors up to covering into the product of
its center and a semisimple factor Ks. Via the isotropy action, K decomposes Tk (G/K)
into irreducible modules and roughly speaking we get the correlation that the larger Ky is,
the fewer irreducible modules there are. Resulting in the following rule of thumb:

The smaller the dimension of the center of K the nicer the description of invariant
geometric objects on G/K.

Examples of these objects are of course the metric, the Riemannian curvature tensor and
the holomorphic sectional curvature.

The only results known to the author pertaining to the positivity of the holomorphic
sectional curvature of these spaces were obtained by Itoh in [[to78]. His examples require
that the tangent space decomposes into at most two irreducible modules with respect to
the isotropy representation. This forces by (M) = dim(3(K)) to be 1 and therefore these ex-
amples are on the easier side of the spectrum of C spaces. While his theorem covers already
all cases where by(M) = 1 for G being a classical simple group and yields therefore a large
family of examples. Nothing seems to be known about the cases of by(M) > 1.

The first result of the thesis is a generalisation of Itoh’s theorem yielding the first C
spaces with bo (M) > 1:

Theorem @. Let (G,K,J) be a C space, such that Tk (G/K) decomposes into at most
three irreducible modules. Then the holomorphic sectional curvature of any Kdihler metric
1§ positive.

This includes infinitely many new examples with dim(3(K)) = 2, i.e.
SU(n+1)/S(U (k1) U(kz) U(ks)), SO(2n)/SU;(n — 1) T?, Eg/SO(8)T?

where k1 + ko + ks =n+1 and SU;(n—1) — SO(2n) for i = 1,2 denotes two non equivalent
embeddings. Furthermore, we get eight new examples with dim(3(K)) = 1, which are all
quotients of exceptional groups. However, this result applies also only to easier C spaces,
i.e. those with small bs.

At the opposite end of the spectrum, we have the case of K being the maximal torus
of G, i.e. ba(M) = rk(G), whose decomposition into irreducible modules is the most com-
plicated. In particular, the amount of Kahler metrics for a given complex structure is fairly
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large. However, it is known that there exists, up to scaling, a unique Kéhler Einstein metric
g#p for each C space (G, K,J) to which we will restrict our attention. The first result is
that the holomorphic curvature of the Kéhler Einstein metric is independent of the complex
structure in the following sense:

Corollary For any two invariant complex structures J, J' on G/T there exists a biho-
lomorphic isometry )
(Ga Ta Ja g}I(E) — (G7 Ta ']/a g}I(E)

Hence the holomorphic curvature of the corresponding Kihler Einstein metric is independent
of the chosen complex structure.

Therefore, we may fix a preferred complex structure Jgq. In the case of larger iso-
tropy groups the above does not hold any more. However, each classical C space is biho-
lomorphically isometric to one with complex structure induced by Js;q via the submersion
G/T — G/K, which allows the further restriction to the spaces (G, K, Jstd, g E)-

In this context, we formulate the following conjecture H (k) depending on k € N:

Conjecture Let (G, K, Jsta, g E) be a simple Kihler Einstein C space with G being a
classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

Since H (k) being true implies having examples with by(M) = k, we see that we are
leaving the "easier” end of the spectrum of C spaces. The naturally arising questions, we
seek to answer are the following;:

i) Is there a k € N such that H(k) is true?
i1) Is there a relation between H (ki) and H (k) for ky < ko?

Assuming that the answer to (i) is yes and the independence of the complex structure, the
following question arises naturally:

Does every classical Kihler Einstein C space have positive holomorphic sectional
curvature, i.e. is H(k) true for all k2 If not, what characterises the smallest k for which
H(k) is wrong?

The main results of this thesis are the following answers to questions ¢) and 3):
Theorem Theorem

i) H(4) is true.

it) If H(n) is true so is H(k) for k < n.

Itoh’s approach, which we also used to prove theorem becomes very complicated and
unfeasible in cases of larger by(M). Hence, we choose a different strategyby describing the
holomorphic sectional curvature H as a restriction of the quadratic form of the so-called
holomorphic curvature tensor. This step allows us to use techniques developed in [Tho71]
and [GZ&]1] to prove positivity for the H(4) cases. This results in a variety of new examples
with 1 < bo(M) < 4. As an exemplary application of the techniques we also prove

Theorem Every Kdihler FEinstein C space (Ga, K, J, gk ) has positive holomorphic sec-
tional curvature.

Sadly, even in these cases it is hard to prove positivity and there does not seem to exist
an easily generalisable pattern to prove H (k) for an arbitrary k. However, we did not detect
any kind of obstruction, which leads us to believe that H (k) might actually be true for all
k e N.

As the last results of this thesis, we analysed the implications of the assumption of H (k)
being true for all k¥ € N. It is clear that H (k) being true implies that (G, T¥, J.4, gk £) has
positive holomorphic curvature. This alone leads to
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Theorem If (Gy,T%, Jsta, 9icE) has positive holomorphic curvature for all k, then all
classical Kdhler C spaces have nonnegative holomorphic curvature.

Hence, finding a negatively curved complex plane in a classical Kéhler C space with
any complex structure and any compatible Kahler metric would imply that there is also a
negatively curved plane for the Kahler Einstein metric of a C space with toric isotropy and
hence disproves H (k) for all k larger than a certain k*. In fact if one relaxes the requirement
from positive to nonnegative holomorphic curvature one even obtains an equivalence

Corollary The spaces (G, T*, Ja, g ) have nonnegative holomorphic curvature for
all k € N if and only if all classical Kihler C spaces have nonnegative holomorphic curvature.

The thesis is structured in the following way. In order to be as self-contained as possible
we present in chapter [1| all necessary requirements we will use throughout the thesis, includ-
ing an introduction to the structure of Kahler C spaces, their Riemannian curvature tensor
and the holomorphic curvature tensor. Furthermore, we introduce the general techniques of
[ThoT1] to prove positive curvature. We end the chapter with a description of the algebraic
setting for the classical compact simple Lie groups including the definition of their standard
complex structures.

Chapter [2]is dedicated to the proof of theorem [22] generalising Itoh’s result. This chapter
also describes explicitly all spaces to which we can apply the theorem, which are therefore
new examples of Kihler C spaces with positive holomorphic curvature.

In chapter [3] we analyse in detail the structure of the holomorphic curvature tensor and
how we can apply Thorpe’s methods. Furthermore, we present the Kihler Einstein metrics
on C spaces in general and in particular for the classical compact simple groups. In the end
of the chapter we investigate the question of how strongly the choice of complex structure
influences the problems at hand, resulting in the proof of corollary 39}

Chapter [] serves two purposes. First, it gives a complete answer to the question of
positive holomorphic curvature for K&hler Einstein C spaces with G being the exceptional
group Go, i.e. theorem [I7] Second, it provides the reader with a small-dimensional example
of how we use Thorpe’s methods.

In chapter we present a relationship between the holomorphic curvature tensor of
the C spaces (G, T, Jstq) and (G, K, Jstq). This will turn out useful in calculations in later
chapters. However, as we point out, it is not enough to establish some kind of monotonicity
of curvature in the sense of O’Neill’s formula for Riemannian submersions.

Chapter |§| is dedicated to the formulation of H(k), its monotonicity in k and the discus-
sion of its consequences including proofs of theorem [59] and corollary

Chapters [7] and [§ present the holomorphic curvature tensors in the case of classical
compact simple groups and the discussion of the case of rank 4, i.e. the proof of H(4).



Chapter 1

Preliminaries

We begin by giving an accurate description of the spaces considered and present how the
symmetry translates all geometric objects involved into purely algebraic ones. To do so
throughout this section we follow closely the introductory lines of [Arv92].

1.1 Reduction to the algebraic setting

Definition 1. A Kdhler C space M is a compact simply connected complex homogeneous
space that carries a homogeneous Kdhler metric.

Then by [Wan54] and [BFR&6|, we know that there is a biholomorphism
M= (G/K,J)

where G is a real semisimple compact Lie group, K is the centralizer of a torus in G and
J is a G invariant complex structure. In particular, this implies that G and K share a
common maximal torus T which will allow us to exploit the Lie structure coming from the
semisimplicity of G.

Definition 2. The triple (G, K, J) without the choice of a fized Kdihler metric is called a C
space.

Remark: We call a Kihler C space simple or classical if the group G is simple or
classical. If the Kahler metric is Einstein, we call the space a Kdhler Einstein C space.
Let p=eK € M = G/K. Then the following is useful to describe the geometric structures
at hand using the homogeneity.

Proposition 3. The restriction to T, M induces one to one correspondences as follows

1) Every homogeneous almost complex structure is uniquely determined by an element
J € Aut(T, M)XK with J* = —id.

i) Every homogeneous metric is uniquely determined by a K invariant inner product on
T,M.

where the superscript K means invariance under the isotropy action of K.

We will use the same notation whether referring to the structure on G/K or its restriction
to the tangent space.
Now we observe that by homogeneity of g, J and the Nijenhuis tensor

Ny(= =) ===+ J= =+ J= T = [ = T ]

the properties of J being an isometry with respect to g and integrable, i.e. N; = 0, are true
as long as they are true on 7T, M. Hence it is natural to describe the tangent space at p in

11
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more detail. To that end, let t C £ C g be the Lie algebras of T C K C G. Let B denote
the Killing form of G and also its complexification to g© and define m = - with respect to
B. Then it is well known , e. g. from [CE75], that the following map

T M — TK(G/K)

d
X Xi=—

p exp(tX)K

t=0

defines a K equivariant linear isomorphism with respect to the Adjoint action on m and the
isotropy action on Tk (G/K). Therefore, we can describe the metric and complex structure as
well as the compatibility and integrability conditions in terms of m. After complexification,
we have that € = b is a Jordan algebra for g© and we obtain a root space decomposition,
where Ay denotes the root system of G:

g(C = b 2] @ Ja
a€Ag
and by regularity of K, we get the further decomposition:
gC:E(C@mC:b@ @ 9o @ @ Ja
aEAg a€EAn

where Ay C Ay is the root system of the semisimple part of K and Ay, = Ay \ Ag is the set
of K complementary roots.

1.2 Complex Structure and Metric

By proposition |3| and the isomorphism 7x the almost complex structure corresponds to an
Ady equivariant map

J:m—m
satisfying J2 = —id and the integrability is equivalent to
Ny =0.

In our particular case, there are significantly more explicit descriptions for the conditions
on J and g. To that end, we consider the complexification of g as in the previous section
and consider the complexified version of J.

Then we get that J is diagonalizable with eigenvalues i and we define my = Eigy,(J).
The Ad(T) equivariance implies that the eigenspaces are sums of root spaces, i. e. we obtain
a decomposition

Am=ALUA,
where AL = {a € Ay| go C mi}. Now we analyse what properties for A% we can derive
from K equivariance and the integrability condition.
First of all, we note that since J is the complexification of a real map it commutes with
complex conjugation, which in turn implies

m_ =my.
In addition, the fact that the roots take imaginary values on t yields g4 = g_, and therefore
AL =-AL.

The property corresponding to the equivariance of J is obtained from the following. From
differentiation, we get that J commutes with ady for k € g, C tC. Then we have for
X e€goCm™
J([k, X]) =J (adi(X)) = ady(J (X))
= adk(zX) = z(adk(X))
=ik, X].
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Since [k, X] is a generator of g,1-, we obtain the following property for Af. Let o € Af,
and v € A¢ with o + v € Ay that
a+vy AL

By the Newlander-Nirenberg theorem, N; = 0 is equivalent to [my, my], C my and hence
we derive the property: Let o, 8 € Af, with o+ 8 € Ag then

a+ B e Af.
In fact we have the following by [Arv92, Proposition 2]:

Proposition 4. There is a one to one correspondence between complex structures on G/K
and decompositions Ay = AL U AL satisfying

i) Ap =—Ag
it) For av € A}, and v € Ay with o+ € Ay, we have

a+ve A

iii) For o, 8 € A} with a+ 8 € Ay, we have

a+pBe Al

given by J|g, =1 Id|g, if and only if o € A}.

Now we want to determine similar properties for the K invariant inner product
g:mxm—R

defining the metric. Since the killing form B of G is negative definite and biinvariant on g,
we can write

g(X,Y) = —B(PX,Y)

for all X,Y € m where P : m — m is a positive K equivariant isomorphism. Since we know
that m decomposes into inequivalent irreducible Ad(T) modules m, = m N (g ® g—q) for
a € A, P decomposes into the sum of endomorphisms of the form

P, :m, —> m,

with P, = goldm, by Schur’s lemma with g, > 0. Note that this already ensures that .J is
an isometry of g, i.e. commutes with P. In particular , this implies that J is an isometry
for the killing form. Furthermore, the K equivariance of P implies with & € g, C ¢ and
X €go Cmt

o[k, X] = P([k, X]) = P(ady(X))
= adk(P(X)) = adk(gaX) = g(y(adk(X))
:ga[k’X]'

So we get gaty = ga for o € A,y € A with o+ € Af. In fact this is also a sufficient
condition due to [Bor54]:

Proposition 5. Fvery K invariant inner product g on m is given by
9= Z 9a(=B)|m, xm.,
acAl

for positive constants g, satisfying
Jat+~y = Ja
fora € AL, v € Ap witha +v € Af.
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Now we want to consider the additional conditions ¢ has to satisfy in order to induce a
Kahler metric on G/K. By definition a hermitian metric g with a complex structure J is
Kéhler if and only if the induced 2 form is closed, i.e.

dw =0

for w(—, —) = g(J—, —) being the characteristic two form. In our particular case we see that
this implies the following. Let X € g, Y € gg and Z € g_,_p with o, 8,a+ 3 € Af,. Then

0 =dw(X,Y, Z)
=w([X,Y],2) +w([Z,X],Y) + w([Y, Z], X)
=9(J[X,Y], 2) +g(J[Z, X],Y) + g(J[Y, Z], X)
=iga+s(=B)([X,Y], Z) —igs(=B)([2, X],Y) —iga(=B)([Y; 2], X)
=i(ga+s — 9o — 98)(=B)([X,Y], 2)

By semisimplicity of G, that implies

Jat+B = Yo + 9p-
Hence we get

Proposition 6 ([WG68|). A inner product on m induces a homogeneous Kdhler metric on
(G, K) with the complex structure J if and only if it is of the form

0= 3 Gal=B)lmoxm.
aceAlL
for positive constants g, satisfying
0) Jaty = Gga for a € AL,y € A, and o+ € A}
i) ga+s = ga + 95 for o, B,a+ B € AY

We see that the second property implies a certain type of additivity. Together with the
notion of bases of root systems this can be used to simplify further the construction of
Kahler metrics. Since the set Ay is not a root system in the classical sense, we need to
consider in some detail how Ay, A¢ and Ay, interact. We do so via the following

Proposition 7. Let (G, K, J,g) be a Kdhler C space. Then for any choice of positive roots
of A¢ there is a unique choice of positive roots Aa‘ of G such that the following holds

i) Ay determined by J is evactly Ay NAF
ii) Ay = AFNAg
In particular, any base of Ay can be extended to a base of Ag.

Proof. From set theoretic considerations it is clear that the two properties determine A;
uniquely. It remains to show, that it is in fact a set of positive roots. As mentioned before,
the existence of a Kéhler metric forces K to be the centralizer of a torus. In fact, [BFR86]
proved that there has to be an hy € 3(€) such that

w(X,Y) = B(ads, (X),Y),
i.e. —PoJ=adp,. If we apply this to an X € g, for a« € A we get

a(th))X = adip, (X) = iadp, (X)
= —iPoJ(X) = P(X) = ga X.

Hence a(ihy) > 0 for all @ € A}, and ~v(ihy) = 0 for all v € A, since hy lies in the center
of . On the other hand, any choice of positive roots Azr of A corresponds to an element
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ho € b with the property that v(hg) > 0 for all positive roots of €. This is just the choice of
a Weyl Chamber for €. Then there has to be a t > 0 such that with h3 = tih; 4+ hy we have

Oé(hg) >0

for all @ € A, UA{ . This proves i) and ii). In order to conclude that we can extend bases,
we recall that there is a canonical way to obtain a base of a given set of positive roots, i.e.
the set of indecomposable roots. The last step is to see that an indecomposable element in
A; stays indecomposable in Agf In fact, let v be a indecomposable element in A;r and
assume v = a + § with o, 8 € A;‘ \ Ay = A} then we have by property 74) of proposition

—B=a-—-vy€Af
which yields a contradiction. O

By the above we can fix a base ® = &, U &, of A; such that ®; is a base of Azr. Let
r = |Py|. Then we define the following projection:

p:Ag = 7" (1.1)
D et (aa)aca,

acd

By the properties of the base of a root system, we know p(A}) c N™\ {0}. Furthermore,
we know that for any positive root « there is a string of simple roots aq, ..., a; whose partial
sum By = Y ;_, a; is a positive root and f; = «, see [Bou68, p. 159]. These known facts for
root systems imply together with proposition [f] the following for the coefficients of a Kéhler
metric

ga= Y pla)sgs. (1.2)

BEDP M

This implies that a Kihler metric is completely determined by
r= Iq)m| = Tk(G) - rk(Kss) = dim(ﬁ(é))

positive constants where K, is the semisimple factor of K. We want to remark here that
the image of p corresponds to the so called t roots . For a structured presentation of those we
refer the reader to [Arv92, Chapter 2]. We reformulate with our notation the following result
concerning the decomposition of m into irreducible K modules, which will be significant for
our first result:

Proposition 8 (JArv92, Theorem 2]|). The image of p from (L.1)) indexes the decomposition
of m into irreducible Adx modules, i.e.

n= @ m

zep(AF)
where My, = Bqcp-1(p)Ma 18 irreducible.

In the light of proposition [7] we shift the point of view slightly. Instead of starting with
a pair (G, K) and constructing J, i.e. extending a ®¢ to ®, we consider a pair (G, J) where
G is a compact semisimple Lie group and J is a complex structure on G/T and we want
to determine the groups K C G such that J descends to a complex structure on G/K, i.e.
given a ® we consider the groups K with semisimple part induced by a set ®; C P.
These observations lead to the following construction of K:

1) Fix a complex structure on G/T, i.e. a choice of positive roots of G.

1) Fix a base @ of simple roots for this choice of positive roots.
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i13) Choose an arbitrary subset ®¢ C ® and define Ax = Ay N (Pg)g.

iv) Let K be the connected Lie subgroup of G with Lie algebra

E:gﬂ(b@ @ga)

aEA,

In fact, the following shows that we obtain all isotropy groups this way.

Proposition 9. Let K be constructed as above, then A}, = A;‘\Ag satisfies the requirements
of proposition and induces a complex structure J on G/K. This is the unique complex
structure such that the projection

7:(G/T,J) — (G/K,J)

s holomorphic. Equivalently, J is K equivariant. Furthermore, every K leaving J invariant
s obtained this way.

Proof. First, we show that A} satisfies the requirements of proposition 4} i.e. for a € A
and € Ay UAY with o + 8 € Ay we have o + 3 € A, Since every root is a linear
combination of the simple roots ® with either all positive or all negative coefficient it is
sufficient to show that there are positive coefficients in the expression of o 4+ § in terms of
®. This follows easily from the simple fact that p(a + ) = p(«) + p(B) lies in N" \ {0} for
a € Al and g € Al UA,. The fact that the projection is holomorphic is immediate since
J and J coincide when pulled back to m.

That any K arises this way is just proposition [7] and the trivial observation that an
indecomposable element in A; is also indecomposable in A?. O

1.3 Painting Dynkin diagrams

Uniting propositions [7] and [9] we obtain the following

Theorem 10. Consider (G,T,J), where G is a compact semisimple Lie group, T its maz-
imal torus and J a complex structure on G/T. Let D = (V,E) be the Dynkin diagram
corresponding to the base ® of positive roots determined by J. Then every subgroup K C G
leaving J invariant corresponds to the choice of a set Vi C V. In particular, K = TKg,
where the semisimple part K5 has the Dynkin diagram

Dy = (Vk, Ex)
where Ex = {(v,w) € E | v,w € Vi }.

Remark:
1) This can be visualized by painting the sub Dynkin diagram Dg C D black. This will be
used frequently throughout the following chapters.
2) Remember that the vertices of the Dynkin diagram are exactly the simple roots, i.e. Vi
corresponds to .

As an example we present the painted Dynkin diagram representing the Kéhler C space

SO(9)/T2S0(5)

for SO(5) being the lower 5 x 5 block in SO(9) together with the complex structure Jsq
which will be defined later:

O—0O—0—@
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1.4 Riemannian Curvature Tensor

1.4.1 Chevalley Basis

We begin this chapter with the choice of a special basis, which will be useful for explicit
calculations of the curvature tensor.
By non degeneracy of B on h there is a unique element H, € h satisfying

B(Hy,, H) = o(H) (1.3)

for all H € §. It is known, that [g,,g—n] is one dimensional and spanned by H,. Hence
the interesting properties of the following are actually the later two. Then we can get the
following basis:

Proposition 11 ([HelO1|). There exists a basis B = {E, € go| o € Ay} of @aeAﬂ Jo
satisfying the following conditions:

i) [Ea,E_o] = zaHq for ao € Ay and z, € C.

i) [Ea, Eg] = NagEoyp for a7
iii) Eo = —E_,.
The N, g satisfy the following relations:
a) Nopg=0ifa+8¢&A
b) Nea,—p = —Nas

Remark: Furthermore, it is possible to require the z, to be 1 for all a. We refrain from
requiring it, since the above is strong enough to make actual calculations and it is easier
to find a basis with arbitrary z,. In addition, we observe that it is easy to determine
zo = B(E,, E_,) since

&(H)B(Ew, E_o) = B(H, [Eu, E_a]) = zaa(H)

holds for all H. This implies the z, to be real and z_, = z,.

1.4.2 Curvature formulae

Now we turn over to the Riemannian curvature tensor. To that end, let U : m x m — m be
the symmetric tensor defined by

29(U(X,Y),Z)=g(adzX,Y) 4+ g(X,adzY).
This enables us to define
Armxm—om

(X,Y) = S [X, Y] + U(X,Y)

1
2
where the index m denotes the projection. Due to [Nom54] with this notation the curvature
tensor is given by

R(X,)Y):m—m
Z = =[AX), AV ZHA(X, Y]wm) Z + [[X, Y], Z]

As before we will denote the complexifications with the same symbol. Furthermore, we want
to remark here that with this sign convention the sectional curvature is given by

g(R(X,Y)X,Y)

sec(X NY) = X AY|P



18 CHAPTER 1. PRELIMINARIES

In the case of C spaces with the root space decomposition of m there are nice descriptions
for U and A. The following results are due to [[to78, Chapter 2]. However, he did not seem
to have stated all cases we need in proposition which is why we present the results here
together with their proofs. Note that in general, for the complexification of a real bilinear
form ¢, we have

q(z,7) = q(z,y)

and therefore the following determines U and A completely:

Proposition 12. Let X, € go, Xp € gg. Then we have

Z) U(Xa,Xg) = §8—da [XavXﬁ]mC

T 29a+8

- %[Xa,@mc a—peA,
1) U(Xq, Xp) = —%[Xa,Xﬁ]mc a—peA}
0 otherwise

This implies for A

i) MXo)(Xp) = 32 [Xa, Xl

Ja+p
i) A(Xa)(rﬂ) = [Xavrﬁ]m*
Proof. This follows straightforward from the expression of the metric. For brevity we write
only here X_g = Xg, note that this is not a Chevalley basis. In fact, we get
29(U(Xa, X1p), Z) = gs(=B)([Z, Xa], X18) + 9a(=B)(Xa, [Z, X1])
= (98 = 9a) (= B)([Xa, X15], Z)

_ (g‘gga’gquxﬂ], 2)

if [Xo,X+p8] € g,. Going through the different possibilities for v one obtains the claimed
equalities. The equations for A are immediate consequences. O

A interesting fact is the following

Proposition 13. For X,Y € m* and Z € m® we have
R(X,Y)Z=0=R(X,Y)Z

Proof. Notice, that from proposition we get that A(Z) : m™ — m* and therefore also
R(Z,V):m* — m* for any Z,V € m". If we restrict now to X,Y being both either in m*
or m~ we obtain for Z,V € m®

9(R(X,Y)Z,V) = g(R(Z,V)X.,Y)
g(J(R(Z,V)X),JY)

= —9(R(Z,V)X,Y)

= —9(R(X,Y)Z,V)

which concludes the proof by non degeneracy of g. O

The above proposition has two crucial consequences, the first being that the only non

vanishing curvatures are in

+ +

m - xXxm Xxm' xm

and its complex conjugate. The second consequence being being the following

Lemma 14. Let X,Y,V,W € m* then the following symmetry holds

R(X,Y,V,W)=R(X,W,V,Y).
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Proof. By the first Bianchi identity, we have
R(X,)Y,V,W)+ R(Y,V,X, W)+ g(R(V,X)Y , W) =0

The last term is zero by proposition [13[and the second term equals —R(X, W, V,Y) by the
standard symmetries of the curvature tensor. O

Now, we calculate the curvatures in terms of the Chevalley basis defined in proposition
In order to keep the calculations and the notation simple, we assume an ordering on the
positive roots with the following properties

i) If « < B then a— 3 & A{.
i) fa < pand vy <6 then a+v < B+9.
It is easy to construct such an ordering in terms of simple roots as we can see in the following.

Proposition 15. Let ¢1,..,&, be the set of simple roots of A; The ordering” <7 on A;

given by
T T
a = Z?’Lifi < ﬁ = Zmisi
i=1 i=1

if and only if ni~ < my« with i* = min{i | m; # n;} satisfies properties i) and ii) and its
restriction to Al is a ordering as desired.

Proof. For the first part we notice that every positive root is a linear combination of simple
roots with nonnegative coefficients. Hence if v < 8 then the first non vanishing coefficient
of a — 3 is negative and therefore a — 8 can not be a positive root. The second property is
a straightforward calculation. O

Now we turn to the curvature formulas. To that end we fix a Chevalley basis as in proposition
[[Il Then let
Rapys = g(R(Ea, E_g)Ey, E_5)

for o, B,7,0 € Al.
Proposition 16 ([Ito78]). Then we have that

Ropys =0 unless o +vy=p+06 (1.4)

completely determined by Rogys with o < 8,6 <y and oo — 3 = — . In that case we have

Case (a, B,7,9) Ropvs
Ia a—-B=0|v-B€eAf —Ja (zazw(a,'y) + Zagy g2 wa)
1b otherwise —0gy (zazw( v) + Za+»ygg” N§,7>
1la a—B#0 | vy=B€AL | —9aza—pNa,—gNy s zaﬂg - 92 Ny ~Ng.s
1Ib otherwise —95%2a—8Na,—gNy _5 — Zaty ] Iy98 N ayNg.s
Here, we denote (a, 8) = B(Ha, Hs).
Proof. Let us consider R(E,, E_z)E., first.
R(EomEfﬁ)E"/ == [A(Ea), ME-)|Ey + M[Ea, E—plme) By + [[Ea, E-plec, B,
= — A(Ea) (M(E-5)(E5))
+A( )(A(Ea (E))

+ [[EavEfﬁ]Bcv ‘Y] (1'5)
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Using the equations from proposition [I2] we see that the above equals

g~—
[C3) = — == [Ea, [E—p, Byl s (1.6)
Jat+~-8
g
+ [E—ﬁa [Eom E’Y]m*]er (17)
Ja+~y
g
+ —"—[[Eas E_glm+» Ey] s (1.8)
Iy+a—p
+ [[EavEfﬁ}m_vE’Y]wﬁ (19)

+ [[EaaE—ﬁ}Ech’Y} (110)

mt
Analysing these expressions we get that they either vanish or lie in go4y—g if a+v—5 €
Al Therefore, we get
Ragrs =0unless d =a+v— B €A}

which proves the first claim. For the second claim, note that the symmetries of the curvature
tensor, that it commutes with complex conjugation and the result of lemma imply the
following symmetries

Rapys = Rpasy = Rasys = Rysap. (1.11)

Notice that all of these operations maintain o — 8 = § — v and that they allow us to assume
that « is a smallest root within {a, 8,7, d} with respect to the ordering on Aj,. That leads
to the following case distinction:

I If o = 3, then we have automatically v = § and the curvature entry in question is
Roary-

II If a < B then 6 < ~. In fact, if v < § then o + v < § + 8 which is a contradiction to
o — 3 =9 — . Therefore, the entry in question is R,gy5 With o < 8 and 6 < 7.

Now we continue the calculation of (1.5)) with the restriction that «a—8 = §—~, < § and
§ < ~. From the first property of our ordering, we get that a— 3 € A} and therefore (1.8) =0

and (1.9) + (1.10) = [[Ea, E_g], Ey|m+. Pairing this with g(—, E_5) = gs(—B)((—)g;, E—s)
yields

(1.5)

_ 797—5B ([E—Ba E’Y]a [Em E—J]) v—-BE€ A$
0 otherwise

9~9s
+ s B([EOHE’Y]a[E*ﬁaEfts])
Ja+~y

- g9sB ([EOM E*BL [E“w E,(;])

Now we consider the two cases of the first term. To that end assume v — 3 € A, Using
the biinvariance of B and the Jacobi identity, i.e.

[Ea, [E-p, E]] = [[Ea, E—g], E5] + [E-3, [Ea, E5]].
We obtain
—9y-B ([B—3, B\, [Eas Es]) = — g,-pB ([Eas B, ), [E—s, E_s])
gV*ﬂB ([Ea, E*ﬁ]? [EW E*5D ,

which leaves us with

@D = (22~ 5,-5) BU1Ew £} 1B, 4]

(9v—8 — 95)B ([Ea, E—g], [E, E—5])

—9998 B (|E, E,),[E_p, B_s))
Ja+~y

— gaoB ([Eav E*BL [E’Yv E*t?D
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On the other hand, if v — 8 ¢ A/l then

[C5) =29 B ([Ba, ), [B—s, B_4))
Yo+~

— 95B ([Ea, E-g], [E, E—5])

Using now the z, and N, g from proposition [II] the entries of the table follow in a straight-
forward fashion. Furthermore, we see that R,gs is a real number and hence in (1.11)) we
can actually drop the complex conjugation. O

1.5 The holomorphic curvature tensor

We are interested in the holomorphic sectional curvature of a Kédhler C space (G, K, J,g),
i.e.
H(X)=sec(X NJX)

for a non zero vector X € m. In particular, we want to show that H is positive. As we will see
in theorem [22) the actual function H becomes fairly complicated if m decomposes in a large
number of K modules, hence we present the alternative approach using the curvature tensor
and its modifications. This technique is due to [Tho71] and explicitly for the holomorphic
curvature tensor to [GZ81]. The curvature tensor is defined as the symmetric tensor,

R:A*(TM) x A*(TM) —» R
(XAY,VAW) = R(X,Y,V,W).

Using the identification via 7, we have
A*(TM) = A*(m)

and the map J : m — m induces a map, also denoted as J, on the two forms with the property
J? = idp2(m)- By an easy calculation all complex planes X A JX are in the eigenspace of J
of the eigenvalue one. Therefore, we are interested in the restriction of the curvature tensor
to this eigenspace.

Definition 17. We call the restriction of R to Fix(J) C A%(m) the holomorphic curvature
tensor and denote it by H.

Remark: If the holomorphic curvature tensor is positive definite, then the holomorphic
sectional curvature is positive In fact we have for a unit vector X € m

0<HXAJX,XAJX)=R(X,JX,X,JX) = sec(X N JJX) = H(X)

Unfortunately, it is possible to have positive holomporphic sectional curvature without the
tensor actually being positive, therefore it is of great interest how one may modify the tensor
without changing the holomorphic sectional curvature. The first approach is the idea due to
Thorpe to add a symmetric tensor w to H with the property that w(X A JX, X A JX) = 0.
In that case one would have that

(H+w)(XAJX, X AJX) = H(X) (1.12)

but H + w is a different tensor, that might be positive definite. Therefore, one way to prove
positive holomorphic sectional curvature would be to determine a w as above such that H 4w
is a positive tensor.

1.6 Modifying the holomorphic curvature tensor

This section is dedicated to the detailed discussion of how one can modify the curvature
tensor by adding suitable symmetric tensors on A?(m) introduced by [Tho71]. It turns out
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the suitable tensors are induced by four forms on m. We want to determine how adding one
of these forms changes the curvature tensor. To that purpose, let us revisit how a four-form
may be added to a symmetric form on A?(m). Since we fixed a Kéhler C space (G, K, J, g)
we simplify notation slightly denoting the metric as

This induces an inner product on Al(m) via

(1 A Az Y A Ay anm = det({2s, y5)).
If we extend the action of K as usual via

Ady : AY(m) — Al(m)
A IANAN Tl Adk(:z:l) A A Adk(azl),

K acts via isometries on A'(m). Then we see that a four form w induces a symmetric bilinear
form on A%(m) via
wew = {w,— A —)rtm.

As mentioned before, adding such an w’ changes the holomorphic curvature tensor but since
WXANY,XAY)=(W,XAYAXAY)pi@m) =0

holds the quadratic form induced by H + w’ is the same as the holomorphic sectional
curvature. Therefore this is a viable technique to prove positivity.

However, it is a hard problem to determine a suitable w’ or proof its non existence.
Bearing that in mind there still are some observations simplifying the search for w’.

We remark that any arbitrary choice of w’ is allowed to be added even though it might
not be K invariant and hence H + w’ would not be well defined on all of G/K. In fact,
the positivity of H +w’ implies the positivity of the holomorphic sectional curvature at this
point, which is now invariant under K and therefore positive everywhere. On the other
hand, the following lemma is still useful since it allows us to decrease the dimension of the
space of allowed forms, which makes the search easier.

Lemma 18. Let w € A*(m) such that H + W' is positive definite then

1
H4+ ———— Adi'dK
+vol<K>/K K

is positive definite where dK is a biinvariant volume form on K.

Proof. The proof is an easy averaging calculation. O

1.7 Relevant invariant forms

Since the holomorphic curvature tensor is the restriction to Fix(J) also for the four forms
we are only interested in their inner products with Fix(J) A Fix(J). Hence the four forms
in (Fix(J) A Fix(J))* do not change the holomorphic curvature tensor at all. Therefore, we
may restrict our attention to forms in Fix(J) A Fix(J). Considering that, if at all possible,
positivity can be achieved via adding a invariant four form by lemma and the isotropy
subgroup of a C space contains always a maximal torus, we can restrict our attention to the
T invariant four forms in Fix(J) A Fix(J). We call those relevant forms. In the following
we show what characterizes relevant forms. To that end we define with the basis from
proposition [T1] the following

E(apr.6) = Ea NEg NEy N\ Es

Proposition 19. Let w be a four form. Then we have that T invariance is characterized by
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1) w is T invariant iff %|t10 Adeypmw =0 for all H € b = .

i) 4 l,—o Adeapei) Bla,p.,6) = (@ + B+ 7 +8)(H) E(a,5.4.6)
and J invariance means
”Z) J(E(a,ﬁ;y,é)) = E(a,ﬁ,'y,é) Z[f |{OZ, ﬁa v 6}’ N A::‘ € {07 27 4}

Proof. Part i) follows from the fact that Ad is a group homomorphism and i) is a straight
forward calculation using the fact that the E, are root vectors. Similarly, 7i:) follows by the
definition of AL ie. J(Ei,) = +iFy, for a € Af. O

This leads us easily to

Proposition 20. The real vectorspace of relevant forms is spanned by
Eo,-py.~6+ Eai—py—s and i(Ea,—py.—5 = Ea—py.—s)
with a+v =049 and o, 8,7,5 € Af.
Remark: Note, that E, 5. _5 = Eg _qa,5,—~ holds.
Proof. Let w € A*(m)® be T and J invariant with w = @. Then we can write
W= Z ArEr
I=(a1,02,03,04)

with A\; € C for linear independent E;. By Proposition 14) and 4i7) we have that
[T N Af| = 2. After possible reordering inside of I we have E; = E, g, s and a4y = 49.
Furthermore we obtain from w = @ that A_; = A\; = a; — ib; and therefore

1 _
w :5 Z)\]E] + A Er

1 — ) _
:5 Za[(E[ + E]) + b[Z(EI — E])

We observe here that since

—Z2afa B=-«a

<Ea’Eﬂ>:ga(_B>(Ea’Eﬂ): {O ﬂ;é—a.

the value of (E(qa,.as,a5,04) F(81,85,85,84)) 1S @ real number and vanishes unless there is a
bijection o € Sy such that 8; = —a,(;) and in that case we have

4

<E(0¢17O¢270t3,064)7 E(_aa(1)7_ao(2)7_ao’(3))_aa(4))>A4(m) = Sign(a) H FaiJa - (1'13)
1=1
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1.8 Algebraic structure of the classical groups

Since every Kaehler C space comes from a semisimple compact group G and the centralizer
K of a torus in G, we get that the decomposition of G = G X ... X G} into simple factors
induces a decomposition of K = K; x ... x K; with K; C G;. By representation theory,
every K invariant complex structure J and a corresponding Kéhler metric g decompose into
complex structures and Kéhler metrics on G;/K;, i.e. we have

! !
(G/K,J.g) = <H Gi/Km@é_lJi,@éﬂgi) =[[(Gi/Ki. Ji g:) -

i=1 i=1

A straightforward calculation using the standard properties of the connections of Riemannian
product manifolds yields that for two hermitian manifolds (M;, J;, g;) with ¢ = 1,2 we have
that the holomorphic sectional curvature of a tangent vector V' = X; + X5 on the product
manifold (M; x My, J; & Jo, g1 B g2) is given by

Rl

1
Hi(X)+—"""7
)+ 1z X

H(X, +X2)=m 1

Hy(X5).

Consequently, it is sufficient to show positivity separately for every factor.

Hence we restrict to the Kdhler C spaces with simple compact isometry group. These are
classified by connected Dynkin diagrams, i.e. the classical groups corresponding to the fam-
ilies A,,, By, Cy,, Dy, for n € N and the exceptional ones corresponding to Go, Fy, Fg, Fr, Eg.
In the following, we present the algebraic structure of the simple classical compact groups.
The choice of basis used are motivated by [Hel01, Chapter 8]. To that end let Ey; € g, (K)
for K € {R,C} be the matrix with

(Ek1)ij = Orili;

where § denotes the Kronecker delta. Furthermore, let Fy; = Ej;,— Fy; be the skew symmetric
matrix with —1 at the entry (k,1).

1.8.1 Family A, : SU(n+1)

In this section we describe the algebraic setting of the Lie group SU(n + 1), including
a Chevalley basis and the structure constants. We choose the maximal torus to be the
standard diagonal torus in SU(n + 1), i.e.

T = (Diag(z1, . zni1) | 125 = 1, [T 25 = 1).
Then we have
g= {A € g[n+1(c) | AH = —A,t’l”(c(A) = 0}

and
n+1

t = {Diag(ia1, .., ian+1) | a; € R, Z a; = 0}.
j=1

Complexification yields g© = {4 € gl,,,1(C) | trc(A) = 0} and

n+1
b=t = {Diag(z1,..,2) | 2, € C,> 2 = 0}.

J=1

Obviously, the Hy = Ejyi form a complex basis of the space of complex diagonal matrices
and we denote the dual basis by e. It is easy to see that for H € h we have

[H, E] = ag(H)Ey
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for ag; = e — ¢; € h*. In fact it is known that
Ag=Agyniy ={am [ 1<k #1<n+1}

and the root spaces are given by ga,, = (Eri)c. As we will see in theorem [3§]it makes sense to
fix a preferred "standard" complex structure Jgq, i.e a fixed choice of of A}}. Furthermore,
we fix a normalization of the killing form. In fact, let

a) AL =Af={an [1<k<I<n+1}
b) and scale the complexified killing form such that
B(X,Y) = tre(XY)
where trc : gl 1(C) — C is the usual trace of complex valued matrices.
Then we get with the notation of the proposition [IT] that
E,,, = By and H,,, = H, — H,
In particular this implies z, = 1 for all & € Ay and
1 s=1,t#k

Naklvast: -1 t:ka 5751
0 otherwise

1.8.2 Family B, : SO(2n +1)

In this section we describe the algebraic setting of the Lie group SO(2n + 1), including
a Chevalley basis and the structure constants. We choose the maximal torus to be the
standard diagonal torus in SO(2n + 1), i.e.

T = {Diag(R(6,), ., R(6,),1) | 6; € R}

where
cos(f) —sin(6)
sin(f) cos(0)

R(0) =

Then we have
g={Acglh, ;(R)] AT = —A}

and
t= <Hk |k = 17 "an>]R

where (Hy) = Fag_1,2;. Complexification yields
- ={4e gla,41(C) | AT = -4}
and
b = {C = <Hk | k= ].7..,7'L>(C.

Obviously, the iHj form a complex basis of the space of complex diagonal matrices and we
denote the dual basis by €. Define for k < [ the matrices E., , E,,,, Es,, € g* as

B, = Fop_1.2n+1 + tFop 2041

Eo = Fop—1,21-1 + Fopo1 — i(For—1,21 — For21-1)

Eg,, = Fop—1,21-1 — Fopo1 + 1(For—1,21 + For,21-1)-

Notice that the complex conjugation coming from g C gC is the same as the complex
conjugation on gl,, ,,(C). Hence we define for o € {e, ap;, B | 1 <k <1< n}
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These will turn out to be root vectors, but before we prove that we consider the following
examples in the case n = 2.

-1 -1 3 -1 —3

—1 -1 —1 -1 1

E€1 = Eam = 1 Eﬁm = 1

1 4

Now let H =", hyH = > _, —ihxiH), € b then it is easy to see
[H7 Eik] (_ihk)EEk = Ek(H)EEk
[H7 Emcz] = (*ihk + ihl)EOLkz = akl(H)EOékl
[H> Eﬂkz] = (_ihk - ihl)Eﬁkz = ﬁkl(H)Eﬁkz

for ag; = e — g; and By = e + ;. In fact, we have that
Ag = Dgo(2nt1) = {Fen, Taw, £0u | k <1}

and the root spaces are given by g., = (E¢,)c, Jan, = (Eay,)c and gg,, = (Eg,,)c. As we
will see in theorem [38] it makes sense to fix a preferred "standard" complex structure Jgq,
i.e a fixed choice of of A}. Furthermore, we fix a normalization of the killing form. In fact,
let

a) AL =AL = {ex,an, Bu | E <1}
b) and scale the complexified killing form such that
1
B(X.Y) = gtre(XY)

where trc : gly, 1 (C) — C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition [[I] First of all with this choice
of biinvariant form we have

% o = €L
2a = B(Eo, E_o) =<1 a=ay
1 a=Pr
and the N,g are given by the following list together with the properties N_n_g = —Nag
and Nag = —Nga.
a, Ny
( 5) ’ (aaﬁ) Na,,B
€k, E 1
(k,20) (ke Bij) —2
(ks —€1) —1 ( 8.1) 2 k<s
« ) S
(e1, o) 2 Ho sl -2 s<k
— 2 I<y
(ks —atrt) 2 (i, —Brj) {_2 ' <Jl
(ks —Br1) | —2 /
agr, —Bs 2
(&1, —Bri) 2 (@1, =Bar)
, 2
(amsay) | —2 (Brt, —Bij)
, -2
(gt —ast) | =2 (Bra, =Bri)
y T Ms -2
(akla —Oék]) 2 (Bkl 5 l)

where we assume k < [.
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1.8.3 Family C, : Sp(n)

In this section we describe the algebraic setting of the Lie group Sp(n), including a Chevalley
basis and the structure constants. We choose the maximal torus to be the standard diagonal
torus in Sp(n), i.e.

T = {Diag(z1, .., zn) | ll2;]| = 1}.
In order to have a nice description of the complexification it is useful to consider it embedded

via

Sp(n) — SU(2n)

A B
A+ Bj— o
—-B A
Then we have
XY
g= | egh,(©| X =-XYT=Y
-Y X

and
t = {Diag(ia, .., 1an, —ia1, .., —ia,) | a; € R}.

Complexification yields

. X Y
g = € g, (C) | Y1 € Sym(C)
Yy, —X7T

and
h= € = {Diag(z1, .., 2n, —21,-, —2n) | 2; € C}.

Obviously, the elements Hy = Ei ;, — Eptkntk for k= 1..n form a complex basis of h and
we denote the dual basis by ex. Define for k < [ the matrices E.,, Eq,,, Eg,, € g€ as

Ey, = Ekpntr
E(Xkl = Ek,l - En+l,7b+k
Eﬁkl = Ek,n+l + El,nJrk-

Notice that the complex conjugation coming from g C g is the same as the restriction of
the map M ~ —M* on gl,, (C). Hence we define for a € {eg, o, B | 1 <k <1< n}

E_ .=-E,=EH

These will turn out to be root vectors, but before we prove that we consider the following
examples in the case n = 2.

—-10

Now let H = Diag(hy, .., hn, —h1,..,—hy) then it is easy to see that
[Ha E’YIJ = (Qhk)E% = ’Yk(H)E’Yk
[Hv EO{M] = (hk - hl)E@kl = akl(H)Eakl
(H, Eg,| = (hi + ) Eg,, = Bu(H)Eg,
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for v, = 2ep, ap = € — €; and By = e + ¢;. In fact, we have that
Ay = Dgpin) = {7 T, £6u | 1 <k <1 <n}

and the root spaces are given by g,, = (E.,)c; Gay = (Fay)c and gg,, = (Egz,,)c. As we
will see in theorem [38] it makes sense to fix a preferred "standard" complex structure Jgsq,
i.e a fixed choice of of AY. Furthermore, we fix a normalization of the killing form. In fact,
let

Cl) AIT‘L :A;:_ = {’kaakbﬁkl | 1< k<l§n}

b) and scale the complexified killing form such that
1
B(X,Y)= itr@(XY)

where tre : gly,, (C) — C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition First of all with this choice
of biinvariant form we have

3 =%
Za :B(EOUE_Q) = 1 o= oy
L a=pBu
and the N,g are given by the following list together with the properties N_n_g = —Nag
and N,p = —Ngq.
(a, B) Na,p (o, B) Nag
. EEEPY
() ! (evsjs —Bst) {2 ’ f t
(asj’ _ast) -1 j=
(air, —tar) 1 (s, s) 1
Qsjy, —Vs —1
(s Bat) 1 (055, =)
1 izs || Bin—Ba) | 1if[{ij}n{st}| =1
(ait’ BSt) 2 1=5 (ﬁisa _'78) 1
(e, —Bst) —1 (Bajs —s) )

1.8.4 Family D, : SO(2n)

In this section we describe the algebraic setting of the Lie group SO(2n), including a Che-
valley basis and the structure constants. It is very similar to the B,, series. We choose the
maximal torus to be the standard diagonal torus in SO(2n), i.e.

T = {Diag(R(0:1), .., R(0,)) | 0; € R}
where R(6) is defined as in the section of SO(2n + 1). Then we have
g={A€gh,(R)| AT = -4}
and for (Hy) = Fai_1 2k as before
t=(Hp |k=1,.,n)r.

Complexification yields
g“ ={Aegh,(C) | AT = -4}

and
h=t"=(H, | k=1,.,n)c.
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Obviously, the iHj form a complex basis of h and we denote the dual basis by €. Define
for k < [ the matrices E,,,, Eg,, € g* as

Eo,, = Fop—121-1 + For.21 — i(Fop—1,21 — For21-1)
Es,, = Fop—121-1 — Fopo1 + 1(For—1,21 + For,21-1)-

Notice that the complex conjugation coming from g C g® is the same as the complex
conjugation on gl,,,;(C). Hence we define for o € {a, By | 1 <k <1< n}

E_,=—E,.

These will turn out to be root vectors. Now let H = >} hiHy, = Y _, —ihyiHy € b then
it is easy to see

[Hv Eam] = (*ihk + ihl)EaM = O‘kl(H)Eakl
[Hv Eﬁkz] = (_ihk - ihl)Eﬁkz = ﬁkl(H)EBkz

for ag; = € — ¢ and B = e + ;. In fact, we have that
Ag = Agoran) = {Fan, £0u | 1 <k <l <n}

and the root spaces are given by ga,, = (Ea,)c and g, = (Es,)c- As we will see in
theorem [38] it makes sense to fix a preferred "standard" complex structure Jyq, i.e a fixed
choice of of Af. Furthermore, we fix a normalization of the killing form. In fact, let

a) AL =AF ={ap,fu |1 <k<i<n}

b) and scale the complexified killing form such that
1
B(X,Y) = gtrC(XY)

where tre : gly,, (C) — C is the usual trace of complex valued matrices.

Let us determine the structure constants from proposition [[I] First of all with this choice
of biinvariant form we have

1 o= Okl
Za = B E ,E_ =
’ e X {1 a = B
and the N,p are given by the following list together with the properties N_,_g = —Nag
and Nog = —Ngq.
(a, B) Na,s (o, B) Na,s
' - 2 1<
(g, uj) 2 (art, —Brj) {_2 . <jl
(gt —usr) -2 j
(akh _ak:j) 2 (akl, 755]6) 2
(art, Biz) -2 (Bris —Bij) 2
(i, B) 2 k<s (Bris —Brj) -2
Akl Psl
—2 s<k (Brt, —Bst) —2

where we assume k < [.
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Chapter 2

Approach Itoh’s and Three
Modules

The approach to treat holomorphic curvature on Kahler C spaces so far was to consider the
decomposition of m* in irreducible K modules. In this chapter we follow that approach
extending a result of Itoh. However, in the proof it will become clear that it is hard and
complicated to extend the results even further without changing the method used.

By proposition [§]the irreducible modules are indexed by the positive t roots, i.e the image

of p from :
mt = @ m;

zE€p(AY)

where m} = Daecp-1(z)8a- Then one notes that for a unit vector X € m and the vector
7 = %(X —iJX) € mT, we have
H(X) = R(X,JX,X,JX) = ~R(Z,2,7,7).

Using the above decomposition, we can write Z = Zmep(A+) Z, and use the obvious bracket
relations

[miv m;_] - m:;t+y

and their counterparts via complex conjugation to get explicit expressions for the curvature.
Notice that we have x € N” with

r=dim(3(¢)) = b1 (K) = b2(G/K)

where 3(£) denotes the center of £. This is due to Borel and Hirzebruch [BH58].
This was done by Itoh with the following result:

Theorem 21 (Ttoh). Let M = (G, K, J,g) be a simple Kihler C space with by(M) = 1
such that m* decomposes into two irreducible modules. Then M has positive holomorphic
curvature.

Remark:

1) This covers all classical simple groups G and all with J compatible groups K with b, (K) =
1 and some but not all of the exceptional ones.

2) In the case of by(M) = 1 and irreducible m*, we are in the case of hermitian symmetric
spaces which carry a negative multiple of the killing form as Kahler metric and have positive
holomorphic curvature as well. These are also the only cases when the killing form induces
a Kihler metric.

We extend the result here with similar techniques as Itoh to the following

Theorem 22. Let M = (G, K, J, g) be a simple Kihler C space such that m™ decomposes
into three irreducible modules. Then M has positive holomorphic curvature.
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Proof. First of all, we notice that in fact the decomposition into three modules is only
possible if b; (K) < 2. In fact, assume by (K) > 2 then, with the decomposition of a base for
A; as in ® = O, U Py , this is equivalent to |Py| > 2 and hence there are at least
three simple roots aq, as, ag € Ag with pairwise different images under p. Furthermore, for

the highest root A = ) _ .4 na, we have n, > 0 for all a. Hence

p(N) = p(ai) = | (M, = Dp(i) + > naa | #0

aed\{a;}

Therefore we have at least four irreducible modules corresponding to p(«1), p(asg), p(as) and
p(A) which is a contradiction.

Now we denote the decomposition by m™ = mf @mf ®m] and we make two case distinc-
tions:

1) If by(K) = 1 then up to permutation we have x5 = 2x1 and x5 = 31, where z; is the
image of p of the only simple root in Aj. In particular, we have x3 = z1 + xa.

i1) If bo(K) = 2 then up to permutation we have x5 = x1 + x5 where 1 and x5 are the
coordinate vectors of the only simple roots in Af.

In both cases we obtain the following table for the brackets where the superscript * means
that it is zero in case 4i). We abbreviate m; = m;.

(=] |my | mg | mg | WMy | my | Mg
my m | m3 | O g |l mt | my
my mg | O 0 | m] t my
ms 0 0 0 mo my t

We continue with the proof for this table assuming that [m;, m;] C my may possibly be non
zero. The only difference is that we have to consider a few more terms in the expression
for the holomorphic curvature. As mentioned above we consider a unit vector X and Z =

%(X —4JX). Then

H(X)=-R(Z,2,2,Z) = g (~R(2,2)Z,Z) .

Since Z € m* we write it as Z = Zy + Zo + Z5 with Z; € m;. Let \;; = g,ﬁ_jg, with i,7 = 1,2,
itT9g;

then we get from the bracket table and section that the m; components of —R(Z, Z)Z
are given by
(=R(Z,2)Z), = — (M2 — A21)[ 22, [ 21, Z5]]
(21, Z2), Z5] — |21, Z3), Zs] — ([ 22, Z5], Z5)]
— 1121, Z1) + [ Z2, Zo) + [Z3, Z3), Z1]
(—R(Z, Z)Z)2 = MuilZ1,[Z1, Zo)] + Mi|Z1, [ Z2, Z5)]
— Mul[Z2, Z1], Z1) — Ml Zs, 2], Z4]
— (M2 — A21)[Z1, [ 21, Z5)]
— 21, Z2), Z5) — (|22 Z5), Zs]
121, 2] + (22, Z5) + (23, Z), Z5)]
(—R(Z, Z)Z)3 = \2lZ1,[Z1, Z3)| 4+ Na1[ 2o, (21, Zo)) + Na1[Zo, [ Z2, Z5)]
— Ma1l[Zs, Z1], Z1) — M2l[Z2, Z1], Za) — M2l Zs3, 2], Zo]
— 1121, Z1] + [Z2, Zo) + [Z3, Z3), Z3)

Note that R(Z,Z)Z € m* by proposition
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Using the antisymmetry of the Lie bracket we see that the first two rows in the expres-
sion of (—R(Z,Z)Z)2 cancel and the first two rows of (—R(Z, Z)Z)s match except for the
coefficient. Furthermore we know that

9(-R(2,2)2)i, 2) = g(—R(Z,2)2), Zi) = 9:(-B)(-R(Z,2)Z):, Z)

which allows us to use the skew symmetry of adx with respect to B. If we denote the
hermitian form (X,Y) = —B(X,Y) and || X|? = (X, X) then with g3 = g1 + g2 by the
Kahler property, we get
H(X) =~ g1(M2 = 2)ll[Z1, Zo] |
+ 911121, Z2|1” + a1ll[Z1, Zs]|1? + 9 ll[Z0, Z0))1P
+ 91{[Z2, Zo), (21, Z1)) + 91|23, Z3), (21, Z1)) + 91{(Za, Z3), [ 21, Z2])
+g2(M2 = Aa)[[[Z1, Zo)|1? + 2| Z2 Zs] |12 + 921|122, Zo]|1?
+92([21, 21), [ Za, Za)) + 9223, Z3), [ Za, Z2)) + 92{(21, Z2), [ Z2, Z3])
— (91 4 92) (M2 = A)[|[ 21, Zs] |12
+ (91 + g2) M1z — A1) [[[Z2, Z5]|1?
+ (91 + 92)1[Zs, Z3]|I”
+ (g1 + 92) (M2 — AN )([Z1, Z2), [ Z2, Z3))
+( )

(
91+ 92)([21, 21, [ Z3, Z3]) + (g1 + 92)([Z2, Zo), [Z3, Zs])

Before we continue matching and modifying these terms, we observe the following con-
sequence of the skew symmetry of ad with respect to the killing form:

([A, AL, (B, B]) = ||I[4, B]|I” - [I[A, B]||? (2.1)
This implies immediately that

i) The term ([Z;, Z;],[Z;, Z;]) is a real number and hence is symmetric with respect to
i, j.

ii) For 4,7 with i + j > 3 we have ||[Z;, Z;]||*> = 0 which implies ([Z;, Z],[Z;, Z;]) =
112, Z;]11%.

Using the above and (A2 — Aa1) = gz;gi we collect terms in the expression of H(X) and
obtain:

H(X) =2g1 + 921, 2] P — 42221, 2]
g1+ 92
+ 49111121, Zs)|1? + 492 Z2, Zs]|1?
+a1lllZ, 210017 + g2ll[Za, Z)|IP + (92 + 90)[1[Zs, Zs]|1?
+ 92(([21, 22, | Za, Z3)) + ([ 21, Za), [ Z2, Z3))).

It is left to control the second term in the first row and the two terms of the last row. To
that end we use the following equations coming from polarization

(21, Z2), 122, Z3]) + (|21, Zal, | Za, Zs3])

1 1 _ _
5 — 121, Za] 2 — 4](Z2, Zs]

‘ (21, Z5) + 2[Zs, Z3)

and this one coming from equation (2.1)),

—121, Zo)|I> = =21, Za)|I* + ([Z1, Z1), [ Za, Za))
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Hence

3 4 - _
100 = (204 300 = 282 ) (23, 2P + 0l 21, 2P

49192 (

+gl||[Z1; Zl]||2 + 21721]7 [22722]> +92H[ZQ7 ZQ]”Q
g1+ 92

2
_ 1 _ _
+ (92 + 90 Z3, Zs]|I* + g2 §[Z1» Zo] + 2[Z2, Z3]

(1691 — 5g2)* + 7195 _ ~
= o ) 22l + gz Z?

(Hg1 (21, Z1] + g2(Z2, Zz]||2 + 9192 121, Z1] + [ 22, Zz”|2>

2

g1+ g2
_ 1 _ _
+ (92 + 90 Z3, Zs]|I* + g2 5[21» Zs] + 2[Z3, Z3]

which is nonnegative. Furthermore, it is immediate that H(X) = 0 implies [Z3, Z3] =0 and
[Z2, Z5) = —[Z1, Z1]. We will show now that this implies Z3 = Z, = Z; = 0. First of all,
we show that the second equation implies [Z1, Z1] = [Za, Z2] = 0. The key is to see that for
V emt,

v, V}h = Zﬂ’yH’y

yeP

with g, > 0 and H, defined as in 1D In fact, we have for V = ZaeA$ maF, with a
Chevalley basis such that z, =1 and E, = —FE_, that

ViVlp= Y Y mamglBa, Egly = — Y [mall*Ha

acAf peAt acAf
== 2 Imal® X nle)Hy = =3 | 32 nla@)lmal® | H,
acAf ved YE€EP \aeAl
==
vED
where we used o = } g n(a),y with n(a), € N. Therefore (Z2,Z5)] = —[Z1,71] is

only possible if [ZQ,ZQ]h = [Z1,Z1]b = 0. By the calculation above it is clear that for
V € {Z1,Z,Z3} the equation [V, V], = 0 implies that u, = 0 for all ¥ € ® which in turn
implies that n(a),|[ma|/? = 0 for all @ € A, and v € ®. Since for each « there has to be at
least one y with n(a), > 0 we get mq = 0 for all a € A}, and hence V = 0. O

The C spaces covered by the above can be read off of the following diagrams, where the
number n,, at each simple root represents the coefficient of the highest weight in that basis.
Those can be found in [Bou68| p.250f]. Then the result above applies to the spaces obtained
by the following two ways of painting the diagrams:

1) Paint all vertices black except for a single one with

<2 TItoh
N
=3 the above

i1) Paint all vertices black except for two with n, = 1.
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Family G (V,E)
1 1 1 1
An | SUAD) O—0OO0—0
1 2 2 2
B | 50Gn+D O—O OO
2 2 2 1
R B O—0O OO
1
D, | SO0(@n) (1)—(2} 2
2
Ee Eg 1 2 3 2 1
2
Er Er 2 3 4 3 2 1
3
Ly Ly 2 4 6 5 4 3 2
Fy Py 2 3 4 2
2 3
e o Ce=0

In fact, the new examples of positive holomorphic curvature with bo(M) = 2 are
SU(n+1)/S(U(a) U(b) U(c)), SO(2n)/SU;(n — 1) T2, Es/SO(8)T?

with a + b+ ¢ =n + 1 and for two nonequivalent embeddings of SU;(n — 1) — SO(2n) for
i =1,2. The seven new exceptional bo(M) = 1 examples are

Es/SU(3)S'SU(2)SU(3), E;/SU(2)S'SU(6), E;/SU(5)S'SU(3),
FEg/SU(8)S', Eg/EsS'SU(2), Fy/SU(2)S'SU(3), Go/SU(2)S*

We remark, that this closes the bo(M) = 1 case for the groups G2 and Eg and leaves only 6
open cases for the other exceptional groups.
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Chapter 3

Holomorphic sectional curvature

In this chapter we describe the holomorphic curvature tensor from section [1.5]in the special
case of a Kdhler C space using the fact that the isotropy group contains a maximal torus
T of G. We do so via identifying the tensor with a symmetric endomorphism and use the
T equivariance of said endomorphism to split it into the sum of smaller endomorphisms.
Afterwards, we describe the unique Kéhler Einstein metric for a C space (G, K,J) and
determine it explicitly for the classical groups with the chosen Jg 4. The last section of
the chapter is dedicated to the argument, why it is sufficient to consider only our preferred
complex structure.

3.1 Structure of a T invariant symmetric tensor

In this section, we describe the structure of a symmetric T invariant tensor F' on Fixz(J),
i.e. a symmetric bilinear form

F: Fiz(J) x Fiz(J) — R,

and will apply this to H and the four forms w. First of all we identify the tensor with an
endomorphism. We do so using the T invariant inner product (—, —)z2(m) from section
on A%(m). By the invariance of F', we obtain a unique T equivariant symmetric map

F: Fiz(J) — Fiz(J)

such that F(wi,ws) = (F(w1),w2)r2m. Complexification gives us the possibility to decom-
pose Fiz(J) into weight spaces.

Proposition 23. The weight space decomposition of Fix(J)C is given by
Fis(° = @ @D shan
a€AY BeA
Let Ay = {a— B | a,8 € AL}/Zs. Then we have the isotypical decomposition
Fiz()* = P m,
UISAN

where m,, = ®a—ﬁen o N G_35.

Proof. For dimensional reasons it is sufficient to show the inclusion of the right hand side
in the left hand side which follows immediately from

J(XaANY_g) =J( X)) ANJ(Y_p) =i(—) X NY_g=Xo ANY_p
for X, € go and Y_g € g_g. In fact, it is easy to see that

A

dime(*(m)®) = (15

) — (2A%] - 1AL

37
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and we see that the following vectors are linearly independent Eigenvectors of J with ei-
genvalue 1 for E, A E_g for a, 8 € A}, and eigenvalue —1 for E, A Eg, E_, N E_g for
a < B € AY which give a basis of A?(m)® by counting. It remains to show that the sum-
mands are weight spaces and that they are equivalent if and only if they induce the same
element in Agy. Therefore we want to determine the weights of the action of T C K. To
that end, let v € t and v(t) = exp(tv) then we have,

d d
pn Adv(t) (Xa A Y_ﬁ) = pn Adv(t)Xa N Adv(t)Y_[g
t=0 t=0
(L] Adyxa ) AYst Xan (L] Adyy
= i o v(t) o -5 «a dt —o v(t)L -8

= (ad,Xo) NY_pg + Xo A (adyY_p)
=a(v)Xa ANY_g— B(v)Xa ANY_g
=(a=pB)(0)Xa ANY g
O

The t equivariance of F implies that the tensor satisfies F (my, m,y) = 0 otherwise the
projection of the restriction of F, i.e. pry o Fln, @ my, — m,y, would be a non zero
equivariant map between non equivalent modules. Hence F' decomposes into the sum of
maps F, : m; — m, for n € Ag. In order to describe the F, more carefully, we will
go on to describe them with a useful basis. To that end we identify Ay with the set
{a =B | a< B e AL} uU{0} for a ordering < as in proposition [L5{ on A}, and make the
following

Definition 24. We define

1) for a < B the module
Mo =0a NG DI N I—qa;

1) forn € Apg \ {0} the index set
I(n) ={(a, ) | « < f,a =B =n}
and its cardinality to be n, = |I1(n)

Using this notation we have

m, = @ Mg my = @ 9o NB—a

(e, B)€I(n) aeAd

and dim¢(m,;) = 2n,, and dime(mg) = |AL].

For a fixed pair a < 3, we choose the ordered basis A,g = EqAE_gand Bog = EgAE_,
of myg, where the E, are the Chevalley basis from proposition Obviously, this induces
a basis of the real module

mis =mNMmap = (Pag, Vap)r

where @5 = J5(Aag — Bag) and Wag = J5(Aap + Bag). In general, the projection of the

restriction of F' to the submodules of m,, i.e.

F'%ﬁ = prys o F|mw TMeg — My
is a intertwining map of equivalent T modules. However, since these are complex represent-
ations the space of intertwining maps is two dimensional and in fact it is fairly easy to see

that in the basis A, B of the corresponding modules, we have the matrix representation

pes_ L [An
7 (Aye Bas)azam) \ A

where A = F'(Ays, Bys) and u = F(B.s, Bys). However, it will be useful to consider a more
restrictive type of tensor F. In fact, we present the following
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Proposition 25. Let n € Ay be non zero. Let F be a symmetric tensor as before, that
satisfies for all (o, B), (v,96) € I(n):

1) F(Aap, Ays) is zero and
2) F(Aup, Bys) is a real number.

Then we have that F is positive definite on m,, if and only if the matriz M (F,) € Sym,, (R)
defined as

(M(E2)) (0 ) = ~F(Aass Bya)
with («, B), (v,0) € I(n) is positive definite.

Proof. Consider the matrix X representing the bilinear form F' on mﬂiﬁ X msé, ie.

F(®ap, Prs) F(Pap, Vas)
F(Wap, @y5) F(Vag, Vys)

X =

Then by expanding the expressions of ®, ¥ in terms of A and B, and using the fact
that from A.3 = Bag follows F(Aug, Bys) = F(Aap, Bys) = F(Bag, Ays) and similarly
F(Aaﬁ,Aws) = F(Bag, Bﬁﬂs) we get

Re(F(Aaﬁ,Aws) — F(Aag, BM;)) —Im(F(Aaﬁ,Aws) + F(Aag, Bﬂﬂs))
—Im(F(Aap, Ays) = F(Aap, Bys)) —Re(F(Aag, Ays) + F(Aag, Bys))

X =

Now using properties 1) and 2) we obtain

10
X = —F(Aag, Bys)

Since this is true for all pairs of pairs («, 3), (7,0) € I(n) we get that the matrix representing
F onm, xm,is

10
01

M(F,) @

where ® denotes the Kronecker product of matrices. Now it is known that the eigenvalues
of the Kronecker product of two diagonalizable matrices are exactly the products of their
eigenvalues. Hence it follows that F is positive definite on m,, if and only if M (F,) is positive
definite. O

For the trivial module we choose the basis C, = E, A E_, and the real version is
obviously Q. = iCy,. Then the version of the above for the trivial module is given by

Proposition 26. The tensor F' on my is positive definite if and only if the matriz M (Fy) €
Syma+|(R) defined as

(M (F0)) (g1, (5,87 = ~F(Caxs C)
is positive definite.

Proof. This is even simpler, since the matrix representing F' on m§ x m§ is given by X,5 =

F(Qa,Qp) = —F(Cq,Cp).
O

Now we want to apply proposition 25] to the holomorphic curvature tensor and to the
elementary relevant four forms from proposition 20} To that end, denote the elementary
forms by

w1 =FEy yo—wt B yo—w and wy = Z(Eac,—y,v,—w - Eac,—y,v,—w)

withz —y=w—vand z < y,w <v € A].
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Proposition 27. The holomorphic curvature tensor H and the elementary four forms wq
satisfy the requirements of proposition[25

Remark: We want to remark that with the same proof also wo satisfies property 1) but
not property 2) and hence the changes induced by ws on the curvature tensor can not be
represented in the matrices M (F},). We will restrict ourself to the modifications realizable
in the M (F),) since they will be sufficient for our proofs. However, it might be worthwhile
to investigate further how wo modifies the curvature tensor.

Proof. First we consider the holomorphic curvature tensor H. The first property is true
because H(Aqg, Ays) = Rapys = 0 by equation sincea—f=n=v—§#§— and
H(Aap, Bys) = Raps is areal number by the table of proposition Secondly, we consider
w1. Then we have by T invariance as in proposition [19| that

w/l(Aaﬁv A'yé) = <UJ1, Ea,76,7,75>A4(m)
= (Adeap(tv)(W1), Ea,—B,y,—5) A4(m)
= (W1, Adeap(—tv) (Ea,—B,4,—8)) A*(m)

and differentiation in ¢ yields 0 = (o — 8+~ —6)(v)(w1, Ea,—g,y,—5) a4(m) for v € t. As above
we have o — f + v — ¢ # 0 and hence w](Aq3,A,5) = 0 as claimed. The second property
follows from the fact that the expression (1.13)) only yields real values. O

All of the above allows us to reduce the transformation of the holomorphic curvature
tensor into a positive definite tensor via forms of the type wi to the matrices M (F,) with
F € {H,w; }. Before we determine those matrices in detail including the different possibilities
of roots x,y,v,w in the choice of wy, we describe the strategy we will follow: Notice, that
the requirements of proposition [25] are additive in F' and hence we have for two symmetric
T invariant tensors F|, P satisfying the requirements, that F' + P satisfies them as well and
we have

M ((F + P)y) = M(F,) + M(P,),

in particular M ((H + w),) = M(H,) + M(w;,) for w being a four form in the span of all
elementary relevant forms of type w;. Hence, once determined M (H,,) the proof of positive
holomorphic sectional curvature reduces to adding matrices coming from four forms until the
resulting matrix is positive definite. By proposition [25] the symmetric tensor corresponding
to that matrix is positive definite and by the holomorphic sectional curvature is
positive.

Now we determine the matrices for the mentioned tensors.

Proposition 28. The matrices representing the holomorphic curvature tensor are given by
the following: For n € Ay being a non zero weight

M(Hy)(a,6)(v.6) = —Rapsy
with (cv, B), (7,8) € I(n) and for the trivial module
M(HO)(O"&)(ﬁﬁ) = _Raaﬁﬁ
for a, B € AL,
In the case of w; we distinguish two cases:

Proposition 29 (Case I). Assume |{z,y,v,w}| = 4. Then we may assume x < y,v,w.In
this case the only non vanishing entries of the matrices M((w1),) are the following:

M((wl)(x—y))(z,y)(w,v) = —c and M((wl)(a:—w))(x,w)(y,v) =c

and their symmetric counterparts, where ¢ = 242322590 989~95-
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Proof. First of all notice that wi(z,y,w,v) = Eg _y v —w+Ey, —gw,—v = wi(w, v, z,y) which
allows us to assume x < y,v,w. Then we have to check when

M((wW1)n)(a,8)(v,6) = — (W1, E(a,—8,6,—7)) A%(m)

with a < 8,7 < d and a — B =~ — § = n is non zero. Note that the equality cases a =
and v = § are orthogonal to wy since all x,y,v, w are different. It is easy to see that the
only non zero cases are

c (Oé’/87f}/75) ( 7y7w,U)
¢ (a,8,7,6)=(wv,2,y)
(Wi, E(a,—8,5,—)) Ad(m) =
(@O0 T e (0, 8,7,0) = (z,w,,v)
—C (Oé,ﬂ,’}/,d) (y v, T U})
Here we see that the first two are the symmetric entries in M ((w1)z—,)) and the later two
are the symmetric entries in M ((w1)(y—w)) as claimed. O

Proposition 30 (Case II). Assume |{z,y,v,w}| =2. Then x = w and y = v and the only
non vanishing entries of the matrices M ((w1)y) are the following

M((wl)(x—y))(x,y)(w,y) = 2c and M((wl)O)(x,w)(y,y) =—2c

and its symmetric counterpart. Here we have ¢ = zmzzgggz

Proof. Tt is clear that = w and y = v. In that case we have wi(z,y,2,y) = 2E; _y 4y -2
which is orthogonal to F(,, _g 5 gy unless

(o, 8,7,0) € {(z,2,9,), (,y, 2, 2), (2,9, z,y) }

and we have

—2c (O[a/Ba’%(S) = (y,y,x,x)
<2E$7—y7y;_$’E(Oé’*ﬂ’(s,*’y)%\“(m) = 726 (Ot,ﬂ,")/,(;) = (:c,:z:,y,y)
2¢  (a,8,7,6) = (z,y,2,y)

O

Remark: The value of ¢ is actually not important since we can scale w; arbitrarily. The
important results of the above was to determine the non vanishing entries and the signs of
the modification.

The summary of the above is the following recipe on how to prove positive holomorphic
sectional curvature:

1) Determine the set Ay of weights.
i1) Determine the matrices M (H,) representing the holomorphic curvature tensor.

i41) Modify the matrices to turn them positive definite using an arbitrary amount of the
following modifications:
I : Adding the value s € R on the diagonal of an M (H,) with n € Ay \ {0} and
subtracting s symmetrically off the entry of M(Hy) as given in proposition

IT : Adding the value s symmetrically to an off diagonal entry of M (H,)) with n € Ag\
{0} and subtracting s symmetrically from the matrix M (H,,) as given in proposition

A useful observation is that it is sufficient to have all M (H,) positive semidefinite and
only M (Hy) positive definite.

Proposition 31. If there are four forms such that the modified matrices M (H,) are positive
semidefinite and M (Hy) is positive definite, then there are also four forms such that all of
them are positive definite.
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Proof. If we take for € > 0 the four form w that has the matrix expression

a=p

0
M (wo)(a,8) = {_E o045

and

0 (a,B) # (v,9)
e (o, f) =(7,9)

and denote by H’ the modified tensor as stated in the claim, then we have that for e small
enough but not zero M (H]) + M (wy) is still positive definite since it is an open condition
and at the same time M (H)) + M (wy) is positive definite since it is the sum of a positive
definite and a positive semidefinite matrix. O

M (wn)(a,8)(+.8) = {

Notice that the symmetry coming from the Bianchi identity in lemma [14] and the sym-
metry coming from the four form, i.e. w(AA B,CAD)=—-w(AAC,BA D), imply

M(Hy) (a,6)(+,8) = M (Hyt-8-7) (a,7)(5,6) (3.1)

and

M(wWn)(a8)(v.8) = —M(Wn+8-+) (a,7)(8.6)- (3.2)

Hence, we can see here as stated by [Tho7I] that the four forms are exactly the tensors
breaking the Bianchi identity.

3.2 Kahler Einstein metric

As mentioned in the introduction, we will restrict ourself to a particular kind of Kéahler
metric. It is well known due to [Mat72], that for a fixed complex structure on a C space there
is up to scaling exactly one homogeneous Kéhler Einstein metric. For a detailed exposition
we suggest [Arv92l p.36f]. In fact there is a simple and explicit formula for the coefficients
go in the Kéahler Einstein case considering that the complex structure is determined by a
particular set A of roots as given in proposition

ga = B(a75;()7

where 0}, = ZﬂeAx B. Now assume that we have a complex structure on (G, T) compatible
with the one on (G, K), i.e a decomposition A; =AtU A; as in proposition Then it is
useful to consider vz = > apato determine the K&hler Einstein metric of (G, K) from
the one of (G, T) in the following way:

(9K p)a = B(0k.0) = B( 3 /a,a>

BeAay
:B( > 5,a) —B(ﬂ%ﬁﬁ,a)
= B (o1, a) — B (k. @)
= (9xp)a — B(Vk, ). (3.3)

In the following, we determine the Kéhler Einstein metrics of (G, T, Jgq) for the classical
groups, their maximal tori and fixed complex structures whilst using the scaled killing form
from section [I.8]

Proposition 32 (Kihler Einstein metric of SU(n+1)). Up to scaling of the full metric the
coefficients of the Kdhler Einstein metric are given by

ghF =g —i (3.4)
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Proof. Notice that

n n+l n+1
(S*ZZ Z aij=Z(n+2—2i)5i
i=1 j=i+1 i=1

Hence since B(e;, ¢;) = 3 we have

BO6* am) == ((n+2—2) — (n+2 —2k)) = (I — k).

N |

O

Proposition 33 (Kihler Einstein metric of SO(2n + 1)). Up to scaling of the full metric
the coefficients of the Kdhler Einstein metric are given by

2(k — l) o =
gEF =82@2n+1—(1+k) a=pu (3.5)
(2n+1—2k) a=¢cg

Proof. Notice that

n

n n—1 n
0 = Zé‘i + Z Z (aij + Bij) | = 2(271 — 20+ 1)g;
i=1

i=1 j=i+1 i=1

Hence since B(e;,e;) = 4 we have

B(6*, ar) =4(2n—21+1) — (2n —2k + 1)) =8( — k)
B(0*, Br) =4(2n— 20+ 1)+ (2n — 2k + 1)) =8(2n+ 1 — (I + k))
B(6*,ex) = 4(2n — 2k + 1)

O

Proposition 34 (Kédhler Einstein metric of Sp(n)). Up to scaling of the full metric the
coefficients of the Kdhler Einstein metric are given by

l—k o = Qg
gEE =8 om42—(14+k) a=pu (3.6)
2n + 2 — 2k a =g

Proof. Notice that
n n—1 n
SN D SRS 3 SCIRER) S S TS
i=1 i=1 j=i+1 im1
Hence since B(eg;,e;) = 1 we have

B(6*,ap)=2((n—1+1)—(n—k+1))=2(—k)
B(6*,Br) =2(n—1+1)+(n—k+1)=22n+2—-(1+k))
B(6*,v%) = B(6%,2e) =4(n—k+1)
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Proposition 35 (Kihler Einstein metric of SO(2n)). Up to scaling of the full metric the
coefficients of the Kdhler Einstein metric are given by

KE _ (k—=1) Q=
Yo N {(Qn — (l + k)) o = ﬂkl (37)

Proof. Notice that

n—-1 n n
§ =) (i +Biy) =2 (n—i)e
i=1 j=i+1 i=1

Hence since B(e;,&;) = 4 we have
B(6*,ar)=8(n—1)—(n—k)) =
B(6", Br) =8((n—1) + (n—k)) =
O

It is well known, e. g. from [Bou68| , that bases for the positive roots of the classical
groups are given by

Psv(ng1) = {aiiz1 | i =1..n}
Psoent1) = {auit1 | i=1.n =1} U{e,}
Popn) = {viiv1 |i=1.n— 1} U {7}
Pso(en) = {1 | i=1.n =1} U{Bn_1,n}

This gives rise to the following Dynkin diagrams, where we write the pair (o, (9xE)a)
above each vertex, since the metric is determined by its values on the simple roots by

equation (1.2)).
SUMn+1):
(02,1) (a23,1)  (n—1m,1) (onpg1,1)

SO(2n +1) :

(012,2) (a23,2)  (n—1m,2) (en, 1)
Sp(n)

(a12,1) (a3, 1) (Cn—1,n,1) (Yn, 2)
SO(2n) :

(anflﬂw 1)
(a12,1) (ovo3,1)  (ap—2.n-1,1)

Q—Q (577,71,7171)

We observe that the coefficients of the simple roots of the Kéhler Einstein metric do not
depend on the rank.
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3.3 Independence of complex structure

Before we apply the discussion of the holomorphic curvature tensor to an example, we want
to point out the following observations concerning the holomorphic curvature of the Kéhler
Einstein metric with respect to different complex structures.

By proposition 4] we know that a complex structure on G/T corresponds to a choice of
positive roots which in turn corresponds to a Weyl chamber and we know that the Weyl
group acts transitively on those, hence it is a natural question how the Weyl group interacts
with complex structures. In fact it is known, e.g. by [Arv92, p.21 f], that thanks to the
Weyl group all complex structures on G/T are equivalent:

Lemma 36. Let J,J' be two complex structures on G/T. Then there is a biholomorphic
equivariant diffeomorphism
¢ (G/T,J) = (G/T,J)

induced by an automorphism v of Gi.e.

©(g.9'T) = ¥(g9).0(g'T)

Proof. The two complex structures induce sets of positive roots in Ag. By classical results
on semisimple Lie algebras two of these orderings are conjugate via the Weyl group and
hence there exists a element g € Ng(T) in the normalizer of the maximal torus such that
Y¥(x) = grg~! induces an automorphism of G/T moving one complex structure into the
other. O

This is not true any more if we consider the case G/K. However, in the light of proposi-
tion |§| and lemma it makes sense to restrict to a fixed "standard" Jgq on G/T and only
consider the complex structures induced by this complex structure.

Lemma 37. Let (G,K,J) a C space with an arbitrary complex structure J. Then there is
a C space (G,K',J') and a equivariant biholomorphism

¢ (G/K,J)— (G/K',J)
with the property that the submersion

7 (G/T, Jsta) — (G/K',J")
18 holomorphic.

Remark: In other words, every C space (G, K, J) is equivariantly biholomorphic to a
C space with complex structure induced by Jg¢q-

Proof. By proposition |§| there is a complex structure .J such that (G/T,J) — (G/K,.J)
is a holomorphic submersion. By lemma we get a automorphism ¢ : G — G with
¢(T) = T that induces an biholomorphic diffeomorphism ¢ : (G/T, J) = (G/T, Jgq). Now
with K’ = ¢(K) it is easy to see that Jgq is K’ invariant and therefore letJ’ be the complex
structure on G/ K’ induced by Jg;q. This implies already that the submersion is holomorphic.
Furthermore, we have a biholomorphic diffeomorphism

¢ (G/K,J) = (G/K', )
by construction. O

This uniqueness property of the Kahler Einstein metric can be used nicely to proof the
following theorem.

Theorem 38. Let (G, K, J, gkg) be a Kihler Einstein C space. Then, up to scaling, the
biholomorphism from lemma[37 is an isometry between the Kihler Einstein metrics.
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Proof. Let ¢’ : (G/K,J) = (G/K’,J') be the equivariant biholomorphism from lemma [37]
Now, it is only left to show that this is actually an isometry between the Kéhler Einstein
metrics. Let us denote ¢’ = '~ gxp. It certainly is an isometry between

¢ (G/K,J, gkg) = (G/K',J',q).

So it is only left to show that ¢’ is a homogeneous Kéhler Einstein metric. Since the Kahler
and Einstein properties are preserved under pullback it is sufficient to prove that ¢’ is G
invariant, because of the uniqueness (up to scalar) of homogeneous Kéhler Einstein metrics
on C spaces. Therefore, we consider for z € G

’I*gl :ZL'* slel*gKE)

=(¢' ' ox)gkp
=@ (x) o' )gkE
="M 2) gk E)

Here we used the equivariance of ¢ with respect to . O
The proof allows us to deduce the following.

Corollary 39. For any two invariant complex structures J, J' on G/T there exists a biho-

lomorphic isometry )
(G,T, ng}I(E) - (G’Tv leg}](E)'

Hence the holomorphic curvature of the corresponding Kdahler Einstein metric is independent
of the chosen complex structure.

Corollary 40. If (G, K, Jsta, gk E) has positive holomorphic curvature for all K leaving Jgq
invariant, then the same is true for any complex structure.

The previous two corollaries allow us to restrict all our efforts to a particular fixed
complex structure Jgq. We will do so for the most part of the rest of the thesis. However,
we will recall from time to time in relevant situations the independence of the complex
structure.
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Example of (G5, T?)

Since there is only one Kahler Einstein C space with simple group G5 that is not covered by
Itoh and theorem [22] i.e. the case of K = T?, we will use this case as an detailed example of
how the above description of the holomorphic curvature tensor can be used to proof positive
holomorphic sectional curvature. First of all we summarize the well known algebraic setting
of G2, which is necessary to determine the curvatures, i.e. z, and N, g from proposition
The following can be found in [FH91], p.346f].

Proposition 41. The root system of Go and its positive roots determining Jsq are generated
by the two simple roots o, B in the following way

AY ={a,B,a+ B,2a + B,3a + B,3a + 28}
:{Oél,ag, agz, g, A5, 046}

with the Dynkin diagram

We know that the cartan matriz defining the killing form on § up to scalar is of the form

v
—~
2

=

(o,

2 (a,) (ov,0) _ 2 -3
(a,8) (B.B) -1 92
(B.8) (8.8)

Furthermore, there is a basis Hy, Ho, E, with o € A of g5 such that Hy, Hy span b and
E, € go and the Lie bracket is given by the following table.

X,Y] | H Hy| Eo,  E_a B, Evy, | Ea, E_, Ea, E_,, Eay  Eony | Eag E_q,
H | 0 0 |2B., -2E.a | —3Es, 3B a, | —Fay  F_a, Foa, —E_n, |3Ea, —3E . | 0 0
Hy 0 | —Ba, E-a | 2Ba, —2E_a, | Bay,  —E_a, 0 0 —Bay  Eowy | Eay  —FE_ag
Fa, 0 H, o 0 2E,, —3F_a, | —3Ee, —2E_., 0 Fea, 0 0

E_q, 0 0 —E_ o, | 3B, —2E_,, | 2Ea, 3B, —E., 0 0 0
Foy 0 H, 0 E_a, 0 0 —E,, 0 0 E_a,

E_a, 0 —E., 0 0 0 0 —Eoy | —Ea, 0
FEa, 0  Hy+3Hy | —3E., 2E_,, 0 0 0 E_q,

E o, 0 —2E,,  3E_a 0 0 —E,, 0
Fa, 0  2H +3Hy| 0 —E_a, 0 E_,,

E_, 0 Ea, 0 —FEa, 0
FEa, 0 Hy+Hy| 0 —E_a,

E_, 0 Ea, 0
Foag 0 Hy+2H,

E_o, 0

We will now extract all necessary information to calculate the holomorphic curvature

tensor, i.e. the killing form, g, and the z,.

47
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Lemma 42. Up to scaling, the Kihler Finstein metric and the z, are given by

Y| o1 g Q3 Q4 Q5 Qg

|1 3 4 5 6 9

|1 & 1 1 & 1
and the angles between the roots are given by
2-3-1130
6 3 0-33
2103
(aiv aj) -
233
6 3
6
Proof. By the cartan matrix, we know %(575) = (a,a) = —%(a,ﬁ). If we normalize the
killing form such that (a, ) = 2 we get
a,a) (a, 2 -3
L [@oes)
(8,0) (B,8) -3 6

Using the expressions of the «; in terms of @ = a7 and 8 = a we obtain the matrix
representing the angles between the different roots. Since for the Kahler Einstein metric we
have

gy = (6",7)
with 0* = 3% | a; = 10 + 64 the g, are easily obtained.
To determine the z,, we consider the following. Let H; = [E,,, E_,,]. Then we see

a;(H;) =2 for all 4 and H; = cH,,. This implies in fact
c(ai, i) = B(Ha, Hi) = o(H;) = 2.

Now we have z,, = % = ﬁ which is determined by the previous calculations of the
killing form. O

Now we have all the data we need to move towards calculating the curvature tensor
considering, that the IV, ;5 can be read from the bracket table.

To determine the holomorphic curvature tensor, the first step is to determine the set
Ag={y-4d|v<de A;}. To that end, we use the ordering induced by proposition
with 61 = f and g5 = o, i.e

) <oy <az <oy <oas<og.
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Proposition 43. For the C space (G, T?) let 1 be a non zero weight of Fix(Jsq), i.e an
element in Ag. Then n is in the following table together with the pairs v < § with y—6 =1

f U 1(n) ny
1| —B+a | (,a2) 1
2 —« (g, a3), (a3, ), (g, 5) | 3
3 —2a (a2, a4), (a3, ) 2
4 —3a (a2, as) 1
5 —B (a1, a3), (a5, o) 2
6| —B—a | (a1,04),(ag,06) 2
7| —-B—-2a | (a1,a5), (a3, ap) 2
8| =8 —3a | (a2, ap) 1
9| —28—2a | (a1,a6) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, we know dimc(Fixz(J)®) = |Af|?* from proposition [23] and on the other
hand

dimC(Fix(J) ) =dime(mg) Z dimc(m,,)
neEAy

—|A+‘ + Z Z dimc(mag)

nelu (a,f)el(n
:|A;‘ | +2 Z Ny

ISAN 2
Hence we only have to verify that

AT AJr,
Y 5 "

neEAH

holds. Note that this equation holds for all semisimple groups. Since |A§| = 6 and the right
hand side is given by the sum of the entries in of the third column we see easily that both
left and right hand side equal 15 and hence we found all weights. O

Having determined Ay and for each 7 also the pairs whose difference equals 7, the next
step is to determine the matrices M (H,) representing the curvature tensor on m,,. We recall
from proposition mtha‘c each entry of M (H,) is indexed by two pairs of positive roots with
difference 7, i.e. two pairs from the second column of the table above and we have

M(Hn)(mn,y)(v,w) = _Ravywv-

To obtain an actual matrix, we need to order these pairs. We choose to order them as given
in the second column of the table read from left to right, but any order does the trick. The
proofs are straightforward calculations plugging in the values of Ny, q;, 2o, and (o, «;) into
the formulas from proposition For notational simplicity, we write all one dimensional
matrices together in one larger diagonal matrix
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Proposition 44. The holomorphic curvature tensor in these cases is represented by the
matriz indezed via

l) the pairs (051, 062), (042, 0(5), (O‘Qa a6)7 (ah aﬁ) in the cases ﬂlv ﬁ47 ﬂ87 ﬁg

3
-7 000
2
0 -500
0 010
0 00O
i1) the pairs (a9, as), (as, aq), (aq, as) in case §2:
3 —6-2
2
—6 2 8
5
-3 -85
i1i) the pairs (o2, au), (a3, as) in case §3:
=
5
50
iv) the pairs (a1, a3), (as, ag) in case §5:
—11
1 2
v) the pairs (o1, ), (g, ap) in case 46:
3
52
25
vi) the pairs (a1, as), (as, ag) in case §7:
11
14

Proof. By the explanations above this reduces to calculating R, 8v¢d and hence corresponds
to evaluating the equations from proposition [I6] We will do so exemplary for one case and
will omit it throughout the rest of the thesis. We consider the entry M (H_a)(as,a5)(cq,0s)-
Since ag —a3 = —a; # 0 and a5 —ag =201 € Ag we are in the case I1b of proposition
Note that oy + a5 = ag and hence we have

M(H—a1)(a2,a3)(a47a5) = Raza3a5a4

Jas9a
=Yos2ar Nas,—as Nag,—as T Zag : 4Naz,a5Na3,a4
Gag
1 6-5
—5.1-1- (1) +=.-22.(-1). (-3
(041 88 )
__5
3
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We recall from proposition 26] that for the matrix of the trivial module, we have
M(HO)ij = _Raiaiajaj
and this results in

Proposition 45. The holomorphic curvature tensor on the trivial module is represented by

3 1 3
2 -3-53 10
3 2
-32 3 0-21
1 28
M(Hy) = -+ 3 8 204
30 21055
2 3
1 =20 5 42
0 1 45 26

It is easy to see that these matrices are not positive definite and hence we do not have
a positive holomorphic curvature tensor. However, using four forms we may be able to
produce a positive modified holomorphic curvature tensor, which is still sufficient for positive
holomorphic curvature. We present our general strategy to improve the tensor but want to
remark that there are different ways to reach a positive modified tensor and it is not clear
to us if there is a preferred one and which one that would be.

Modifications

In the light of proposition we start with the matrices corresponding to n # 0 and want
to turn them positive semidefinite. We start with the matrix of the cases f1, #4, §8, 9. Here
there is no choice but to add something to the negative values on the diagonal. In detail that
means we want to add the four form w to our tensor such that the matrix N representing w
has the property

3 2
M(w*5+a)(0417042)(017042) = Z M(w*36¥)(a27045)(0¢27015) = g

by proposition [30] these changes can be realized by a four form if we also have
3
M(wo)(ar,an)(az.02) = —7 = M(wo)(az,02)(ar.an)
2
M(“O)(az,az)(as,as) = _g = M(WO)(as,as)(ag,ag)

Hence we can erase the negative diagonals if we subtract 2 from M (Hp)12 and M (Ho)a:
and 2 from M (Hg)a2s and M(Hg)s2. We write this compactly as follows

Value Intended Forced
T |M(H_pra)a,n)|M(Ho) 2
2| M(H_34)1,1) |M(Ho)(2,5)

Note, that we only mention one off diagonal entry in the second column even though
the changes must of course be applied symmetrically. Now we have that the matrix for
#1, 14, #8, 19 is positive semidefinite, but we have to keep track of the changes to M.

Here we did not have much of a choice in other cases there are different ways to achieve
positive definiteness. To see this consider the matrix of case #3, here we have the choice to
either add something positive (e.g. g) to the diagonals such that the matrix is positive semi-
definite. As above that would have impact to the matrix of the trivial module. The other



52 CHAPTER 4. EXAMPLE OF (G5, T?)

option is adding % symmetrical to the off diagonal entries resulting in the positive semidef-
inite 0 matrix. The four form to do that needs to have the property that its representing
matrix N satisfies symmetrically

5

M(W—QQ)(a27a4)(a3,a5) = g

in order to realize that by a four form we need by proposition (or more explicitly by

equation (3.2)) that
5

3
holds also symmetrically. Again we denote this change compactly by

M(Wfa)(ag,ozs)(a%as) ==

Value| Intended Forced
2 IM(H-2a)(1,2)|M(H-o) (1 3)

Following this fashion, we do all the following changes, notice the first three are just the
ones already discussed:

Value| Intended Forced
S IM(H_gta)ay)| M(Ho)2)
2 | M(H-32)a,1 | M(Ho)s
5 | M(H-20)a,2) | M(H-a)q3)
3 | M(H-o)a,) | M(Ho)zs)
10 | M(H_4)2,2) M(Ho) (3,4
7 | M(H-a)@33) | M(Ho)ups)
| M(Hp)an) | M(Ho)@za
=1 | M(H_g)a,2) |M(H_p-24)(1,3)

Realizing all these changes, we obtain the following modified matrices:

Diag(0,0,1,0)

00

M(H_3) =
00
32

M(H_g-a) =
25

which are all positive semidefinite.

10
6 —6-1
M(H o) =] -6 % -8
10

-8 12
00

M(H_p) =
02
12

M(Hfﬁan):
24

The modified matrix representing the tensor on the
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trivial module is given by

2§44 10
3 1 4
-2 2 0 —f-31
1 2
M (Hy) = -+ 0 8 -2 04
3 12190 -25
2 5 3
1 -2 0 —2 42
01 4 5 26

which is sadly not positive definite. In fact for example for v = (1,—1,—-1,—1 — 1,1), we
have vM (Ho)vt = —2. Hence further changes to M (Hy) are necessary. At this stage we
want to point out that by the arguments as in the proof of proposition and the fact
that we are not interested in the actual matrices but that they are positive semidefinite,
we may now add symmetrical arbitrary negative values to M (Hj) since the forced changes
to the other matrices correspond to increasing the values on the diagonals which maintains
semipositivity. This allows us to "erase" rows and columns that have exclusively nonnegative
entries without keeping track of the explicit changes on the M(H,). In this case, we see
that the sixth row and column of M (Hj) have no negative entries and hence can be erased
using four forms. Resulting in the positive definite matrix

3 1 3
2 5-53 10
3 1 4
-2 2 0 -t-%4o0
_1 _2
M) = | 01 82 200
1 -2 0 —240
00 0 0 06

By proposition [31] we proved that there is a family of four forms that modify the holomorphic
curvature tensor into a positive tensor resulting in

Corollary 46. The Kihler Einstein C space (G2, T2, Jsa, gicr) has positive holomorphic
curvature.

Together with Itoh, theorem 22 and corollary [0, we obtain

Theorem 47. Every Kdihler Einstein C space (Go, K, J,gxE) has positive holomorphic
sectional curvature.



54

CHAPTER 4. EXAMPLE OF (G5, T?)




Chapter 5

From T to K

In the example of (Go,T?), we have seen how to determine and represent the holomorphic
curvature tensor in a simple fashion and how to modify it using four forms. In later sections
we are also interested in larger isotropy groups than the maximal torus, which makes it
desirable to have a relation between the curvature tensors. Sadly, the description of Kahler
metrics in proposition[6makes it obvious that there is no equivariant Riemannian submersion
between Kihler metrics

(G/T, Jr,g1) = (G/K, JK, gK)

because gr is not K invariant. Therefore an application of O’Neill’s curvature formula for
submersions is not possible (cf. [O’N66]). Unfortunately, we were not able to find a relation
between the holomorphic sectional curvature functions but there is still a connection between
the holomorphic curvature tensors simplifying the calculations in later sections.

By lemmata [36] and we can assume to have the complex structure Jg;q of our choice
on G/T such that the submersion to G/K is holomorphic. Then Jy, and its image J%; on
G/K are determined by a decomposition of a base of the positive roots of G by proposition
i

D=0 U Dy,

For notational reasons, assume that ® = {a1,..,a,} and ®¢ = {aq,..,as} with s < r. By
equation (1.2) any Kahler metric on (G/T, Jsq) is determined by its values ¢,, > 0 on the
root spaces corresponding to simple roots, hence is given as an inner product

9T(Cays o Ca,) inxn— R
and similarly any Kéhler metric on (G/K, JX ) is given by
9K (Caniyy s Carn) im X m — R
Here we used the B orthogonal decomposition
g=toOpdm

withn=p@mand t=tap.

Moving (ca,,.-sCa,) to zero corresponds to shrinking the metric on p and therefore
collapsing K whilst maintaining the K&hler property and ending up with the desired Kéahler
metric on G/K. So the natural question is if the holomorphic curvature tensors are related as
well. In fact, they are. Before we present this in detail, we want to give a short comment on
the fact that we collapse K, because apart from O’Neils curvature formula for Riemannian
submersions there is another famous tool to improve curvature which is called Cheeger
deformation. For details we suggest the exposition in [Zil07] and [Mut87] .

In words the underlying idea of this technique is that scaling the metric down in the
direction of the orbits of a Lie group action of isometries does not decrease and often increases
curvature.

95
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However, our comment is that we can not apply Cheeger deformations in our case for two
reasons: Firstly, K does not act via isometries in the Kahler metric of (G, T) and secondly,
even though we are scaling the metric on p to zero, the fact that we maintain the K&hler
property implies that we change the metric also on m.

Now we want to formalize the actual relationship. To that end we fix a Kdhler metric
on G/K as g% = gk(ca.,,s - Ca,) and define the Kéhler metric g = gr(t, .., ¢, Casirr s Cay)
on G/T for ¢ > 0. This induces a holomorphic curvature tensor

H: Fiz(Jga) x Fiz(Jyad) — R
whose restriction Hi to Fiz(JE,) = Fiz(Jsq) N A%(m) satisfies
Proposition 48. As elements in Syms(Fiz(JX,)), we have that

. t
iy 1 = T
where Hy is the curvature tensor of g**.

Before we proof this we need a short fairly obvious

Lemma 49. Let o € A, and 8 € Af then we have
A ¢ St
lim g, = go and limgs =0
Proof. By (1.2)), we can write
gh = pla)ygh = pla)yg + > pla)yg,

VeP YEDe YEPmM
= Z pla)yt + Z pla)ycy
YED, YEPm
=t Z pla)y | + Z p(ar)ycy
~yED YEDP

Now it is obvious that for o € A the second term is zero and hence the claim follows. For
a € Ay, again by (|1.2) the second term equals g, which concludes the proof. O

Proof of proposition[{8 The convergence is equivalent to the convergence of the entries of
the matrix representing the tensors in a fixed basis. In our case that means the matrices
M(H,,). The entries of these matrices are —R’;ﬂ,ﬂ; where generally «, 8,7,9 € A;. Since we
consider the restriction to A%(m), we are only interested in the case where «, 3,7, € Af.
Hence, the proof boils down to

}ij% R;,B'yé = Rk (Ea, B3, Ey, E_5)

for those roots. As before, we know that that these terms are zero in both cases unless
a+ 7 =+ ¢ which we assume to be true from now on. Now note that from (1.5), we have

t

g~_
Riﬁ’ﬁ =T 3 = g' ([Ea» [E—g, B Ja+] o+ 7E75)
a+y—p
gt
+ K’Y gt ([E—Ba [Eou E’y]n+}n+ aE—é)
ga+fy
t
g
+ . gt ([[EaaE—ﬂ]11+vE7]n+ aE—é)

Iyta—p
+ gt ([[Eav E*ﬁ]n— ) E’y},ﬁ ) Efzs)
+9" (([Ba, E—glie, By 1 E-s)
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Since the projections satisfy (—)u+ = (=)p+ + (—)m+ and ¢g*(—, E_s) = g§B(—, E_s) is zero
on p because § € Al we obtain

t t
9~_39s
Rigys == B ([Bas [E-p, B Jut] s - E—5) (5.1)
Yot~y—p
995
+ Z B ([E*Ba [Ea, Ey]nt ]+ aEﬂS) (5.2)
g(y-!,-'y
9595
+ = . B ([[EavE*ﬁ]n+7Ev]m+ ,E,(g) (5.3)
9y+a—p
+g(t5B (HEOHE— ]n*vE’y]er ,E—é) (54)

B
+95B ([[Eas E-plie, By| s » E-s)
Now, we consider these terms separately
(1) = _9276 (B ([Em [Efﬁva]m+]m+ 7E*5) +B ([Em [Efﬁva]pJ’}nﬁ 7E76))
6 = 52 (55 BBl e E-5) + B (B B Bl ] B5)

- - 97 ( ( (B E—glm+, Byl yr E-s ) +B ([[EwE—B]p+’Ev]m+ ,E_(;))
. _95( ( E B B m_vE ]m+ E- ) +B([[EQ7E*B]p—7EV]m+ 7E76))
) = 95B ([[Ea, E-glic, Byl s E-s)

and observe:

e The second term of (5.1 is only non zero if v — 3 € A, but in that case we have that

. ¢ o
1975 =0

and therefore the second term vanishes for ¢ — 0.

e Since a,y € A}, we have that either o+~ is no root or a++~ € A, as well. Therefore
the second term of (5.2)) is constant 0.

e The second terms of (5.3]) and (5.4 together with (5.5) yield
(g'ty - g(t;)B (HEOH E‘—B]F‘Jr ) E’Y]m+ 7E—5) + ggB (HEOH E—,B]E‘Cv E’y]m+ 7E—5)

where we notice that the first term is either zero or a — 8 = § — v € A{. In the later
case we have from the K&hler property that

(9% — 95) = =95,
which converges to 0 for t — 0.

e Last but not least, we see that the remaining terms, i.e. the first terms of (5.1)), (5.2)),
(5.3), (5.4) are either 0 because the bracket vanishes or the corresponding root z, i.e
v —B,a+7,7,d, are in A} and for these we know

i =
tg% g:p 9:1:
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Using all these observations, we see

K K

. 9~_39s

lim R g 5 = — =B ([Ba, [B—p, Byt s » B—5)
Yotr—p
92 g5

+ WK B ([E*Bﬂ [EOHEW]m*]m-%— ,E,(s)
oty
9x g5

+ }z B(HEavEfﬂ]m*'aE'y]mﬁ- aEfzs)
Iy+a-p

—|—ng ([[EmE—ﬁ]m*aE’y]nﬁ aE—é)

+g§(B ([[EwE*ﬁ]ECvEW]nﬁ 7E*5)
_ RK
— flapys

O

Remark:
We want to remark that the way how we approach 0 on the coefficients g of the simple
roots in £ is not relevant. With slight changes the proof would also work for

g(th“’tS) = gT(tla -'7tS7CS+la --707')

with [|(t1,..,ts)| — 0 instead of g, only the notation would get worse.
The proof of the above allows us to derive the following technique to obtain the curvature
matrices of G/K from those of G/T.

Corollary 50. Letn € Ay be a weight of (G, K, JE,, g) and let M(H,)¥ be the curvature
matriz corresponding to 1. Then for all ¢, we denote by M(H,)" the curvature matriz of
(G,T,JE, g'). Then we have

M(Hn)K = M(Hn)t -0

where M (H,)! is the submatriz of M (H,)" obtained via erasing all rows and columns whose
index contains a root in A;.



Chapter 6

The conjecture H (k)

This chapter is dedicated to the formulation of our main theorem and its place in the larger
context of positive holomorphic curvature for classical K&hler C spaces. Furthermore, we will
point out the extraordinary position of the classical K&hler Einstein C space (G, T, Jstd, 9x E)
and the consequences of positivity of its holomorphic sectional curvature for arbitrary clas-
sical Kahler C spaces even though the previous section showed the difficulties connected to
this.

We begin with the definition of the conjecture H (k) for k > 1 to be that the following
statement is true:

Conjecture 51. Let (Gy, K, Jsia, gk E) be a simple Kihler Einstein C space with G being
a classical Lie group of rank k. Then it has positive holomorphic sectional curvature.

A vpriori, it might not seem reasonable to define the conjecture in dependency the rank
of the group, since there might be a classical group G of rank k with isotropy groups K;
and K5 such that G/K; has positive holomorphic curvature but G/K> does not. However,
there is some monotonicity to it if one formulates it this way. In fact, the statement of the
following theorem is basically the assertion:

If H(n) is true, then H(k) is true for all k < n.
The actual formulation is the following:

Theorem 52. Let (G, K, Jsta, gk E) be a classical Kdahler Einstein C space with rk(Gy) = k
then there is a holomorphic totally geodesic isometric embedding of

(Gk/K; JstdagKE) — (Gn/Ra JgtdaQ%E)

where (Gn,K) is a C space with G, being the classical Lie group of rank n of the same
family as Gy.

Proof. We define the embedding of Gy, into G, as
Gk — Gn

idjn—p) 0
0 A

A

where [ is two in the case of By, Dy and one otherwise. On the level of Dynkin diagrams
this corresponds to

a1 Qp—k
O—QO+O—O— Diagram of Gy

Now we define K = U(n — k) x K C G,, by the painted diagram:

59
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(%} Qp—k

o O .—O—{ Painted Diagram of (G, K) ‘

In order to prove that G/K < G,,/K is totally geodesic, we write it as the fixed point set
of a subtorus T C T™ of isometries using a technique from [WZ18] which gives us

Fiz(T) = Cg,(T)/(Ca, (T) N K)

where Cg, (T) denotes the centralizer of T in G,,. Let t = t;- C t,, be the Lie algebra of the
torus T orthogonal to the maximal torus of Gy, i.e the maximal torus of U(n — k). Since
T, as the subset of the maximal torus of G,,, acts via isometries in g% 5 and commutes with
J2% 4 Fiz(T) is a complex totally geodesic submanifold. In fact, it is easy to see from the
definition that Cg, (T) =T x G, and (Cq,(T) N K) =T x K and therefore we have

Fix(T) = Gy/K.

It is left to show that the induced structures on Gy /K coming from G, /K actually coincide
with the intrinsic structures of Gj/K. By the choice of K and the embedding in terms of
Dynkin diagrams, we see that all positive roots of G/K are also positive roots of Gy, /K.
Hence the complex structures coincide. By the Kahler property it is sufficient to check the
metric on the simple roots in G /K. For such a root o we have that

(9k)a =0k p)a — (Ve @) = gk — (VWrin_iy @) — (Vic, @)
=(gk5)a — (Vi @) = (Vi (n—r)» )
=(9xB)a = (VO (n—k) @)
=(9KE)a

where we used equation (3.3)) and the following facts:
i) Ve = Vi F Vrn_ since K =U(n—k) x K.

) (vz,(nfk),oz) = 0 since U(n — k) and G commute.

iii) (Jkp)a = (g}T;E)a on the simple roots a in G, by our discussion of the classical groups
in the end of section 3.2

O

Remark: Actually the important property in the definition of K is that the vertex ay,_j
is not painted. An immediate consequence of the above and corollary [A0]is the following:

Theorem 53. Let G be a simple compact classical Lie group with rk(G) < n, then, if
H(n) is true, any Kdhler Einstein C space (G, K, J, gk r) has positive holomorphic sectional
curvature curvature.

Proof. By lemma we know there is a biholomorphic G equivariant isometry
(G, K, J,gxE) — (G, K', Jsa, git%).
By theorem [52] there is a totally geodesic holomorphic embedding
(G, K, Jstdyg%%) — (G, f(7 Jstdmg%%)

where G, is the simple compact classical group of rank n of the same family as G and by
H(n) we know that (G, K, Ja, 95t%) has positive holomorphic curvature and therefore so
does (G, K, J, gk ). O
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This leads to the following interesting
Questions:

1) Is there a k for which H(k) holds?

2) Do all classical Kihler Einstein C spaces have positive holomorphic sectional
curvature, i.e. is H(k) true for all k?

3) If not, what is the maximal k* for which H(k*) is true and in that case what is the
difference between k* and k* + 17

The next few sections are dedicated to proving our main theorem, that is a answer to 1):
Theorem 54. The conjecture H (k) is true for k < 4.

Even though the technique to prove the statement is finding the right four forms in
most cases separately and therefore might not be suitable to proof H(k) for general k, it
certainly gives the impression that there does not seem to be an obstruction identifiable in
the holomorphic curvature tensor, which leads us to believe that the answer to 2) might
actually be yes.

Before we turn to the proof of H(4), we want to dedicate the rest of the section to the
discussion of some consequences of H (k) being true for all k, i.e. implications of 2). First of
all we want to point out a nice property of the Kahler Einstein metric for the toric isotropy.

Theorem 55. Let (G, TF, Jyiq, g(c1, .., ck)) be a classical Kéihler C space of rank k with the
metric notation from section[5 Then there is a holomorphic totally geodesic embedding

(Gry T, Jga, g(c1yoncr)) = (Gn, T, Jsia, 9K E)
for n >> k if the following condition, depending on the type of Gy, is true:
Ap:c; €N fori=1.k
Br:c€2N fori=1..k—1 andc; € 2N+ 1
Cy:cieNfori=1.k—1 and ¢, € 2N
Di:c;eNfori=1.k—1andcy + cp—1 € 2N

Proof. The idea of the proof is similar to the one of theorem [52]in that we want to find the
embedding as the fixed point set of isometries. We begin by identifying the tangent space
of our totally geodesic subset having the right metric coefficients. Hence let the ¢; satisfy
the conditions of the claim. Then the following is a natural number

Y Ay
n= 2 (Zf:l ¢+ 1) By
%Ck + Zf;ll C; Ch
%(Ck + Ck,1) + Zf:_f ci+1 Dy
1 By
and we define with A\ = { 2 ~ the function
1 otherwise
f:{l,.,k+1} - N (6.1)

s—1
s— 1+ Z AC;
i=1

Now we define the subset R} of roots of A, indexed by f, i.e

{aij 14,5 € F({L, ... k+1})} Ay,
{eij, Bijseis 14,5 € f({1,...k})} By
{aij, Bijsvin | 1,7 € FH{L, . kD) Cr
{aij’ﬂij ‘ 1,J € f({lv’k})} Dy,

Ry =
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It is fairly easy to see that Ry is isomorphic to Ay, as root systems via 9y — 7y for
a root n € Ay,. We will see that later in more detail. For now we want to point out
that the space @, R, 9o Would carry the right metric coefficients if it were the tangent
space of a homogeneous fixed point set of isometries. Therefore we calculate that on the
images of the simple roots we have by the equations for the K&hler Einstein metric, i.e

, in all cases that
1

(9KE) a0y pmny = %(f(l +1) = f(i) = X/\Ci =¢

and additionally in the case of B,

k
(9KE)e;o =20+ 1= 2f(k) = ;i +2—2f(k) = cx,
i=1

in the case of C),

k—1
(9KE)vpw =2n+2—2f(k) =ci+ > _2¢;i+2—2f(k) = ci
=1

and the case of D,,

(IKE) By sy = 21— (f(k) + f(k—1))
k-2

cht et Y 20 +2— (f(k)+ f(k—1))
i=1

:Ck

With that at hand, it is sufficient to show that there is a set F' C T" of isometries of G,,/T"
with the property that Fiz(F) = Gy/T" and Trn (Fiz(F))® = @,cp, 8a- This would also
prove the above mentioned isomorphism Ry = Ay, . The existence of such an F' follows from
the next propositions. O

Proposition 56. Let A € GL;(K) with (I,K) € {(n + 1,C), (2n + 1,R), (2n,C), (2n,R)}
depending on whether we consider A,, B,,C, or D, with the following properties

i) The conjugation map Ca : GL;(K) = GLi(K) leaves the pair (G,,T™) invariant.

i) For Gy C G, being the lower k x k block as in theorem and its root system Ay, C
Ag,., we have
Ry ={aoAd,' | a € Ay}

Then there is a set of biholomorphic isometries F' of (G, T", Jsta, gk g) such that Fix(F) =
Gr/T* and
Tre (Fiz(F)) = @D ga-

aERy
Proof. As we have seen in theorem there is a subset F of T™ C Isom(G,,T", gk g) with
Fix(F) = Cg, (F)/Cq, (F)NT" = GT"F/T" = Gy /T*

where Gy, is embedded as the lower block. We notice that by property i) C4 descends to a

map which we denote also by Cs : G, /T" — G, /T". Now we define I = CA(F) C T" and
see that Fiz(F) = Ca(Fiz(F)) = C4(GyT""*/T"). Therefore Fiz(F) = Gi/T" and by

the standard identifications with subspaces of g, we have Tt Fix(F) = @, A,, G0 which
leads us to

Trn (Fiz(F)) = Tpa (Ca(Fiz(F))) = Cuu(Ton Fiz(F))

= AdA @ Ja

a€lAg,
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Since we know that Ad, leaves T" invariant, we have that Ad 4 respects the decomposition
in root spaces. In fact we have for h € h = (t*)C and X € g, that

adp(Ada(X)) = [h, Ada(X)] = Ada[Ad ' h, X] = Ada(a(Ad, ' (h))X)
= a(Ad; (h)Ada(X) = (a0 Ad3Y)(h)Ada(X)
Hence Ad4(ga) = 8404 A and therefore we have from property i)
Tpn (Fiz(F)) = @ Adaga = P Suona; = P 0o
a€Ag, a€Ag, aERy

O

In order to finish the proof of theorem it remains to show that an A as in proposition
exists.

Proposition 57. There exists a permutation matriz A € GL;(K) satisfying the requirements

of theorem [56]

Proof. First of all we want to define a suitable permutation. Let s be 1 in the case of A,
and 0 otherwise. Then we consider the function

g:{n—k+1,..,n+r}—{1l,..,n+k}
n—k+i— f(i)
where f is the function defined in (6.1]). Now let ¢’ be the monotonous bijection of {1,...,n—

k} = {1,...,n+ &} \ Im(g). Then we define the permutation o € S, partially by g and
g'. Now we define the matrix A € G{;(K) as follows

Pl SU(n+1)

A ) Diag (P;!®idy, 1) SO(2n+1)
idy ® Pyt Sp(n) C SU(2n)
Pl ®idy SO(2n)

Here P, € O(n + k) is the permutation matrix with respect to o, i.e.
(Po)ij = 00i);

with the Kronecker delta notation. Since A is lies in U(l),O(l), Sp(l) it is clear that the
conjugation map preserves GG,,. The maximal torus is also preserved since conjugation with
A permutes the diagonal entries of diagonal matrices in the cases of SU(I) and Sp(l). In
the case of SO(l), we permute the upper n 2 x 2-blocks which correspond to the maximal
torus. Hence it remains to show that, we have

R ={aoAd' | a € Ay} (6.2)
Before we do this, we observe that A can be seen as the matrix representing the following
permutations:
An)

o1 :{l,..,n+1} = {1,..,n+1}

i+ o (i)

oz {l,...,2n+ 1} = {1,...,2n + 1}
2 — 120 1) -1
2i +» 2071 (4)
n+1—2n+1
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Ch)
o3 :{1,..,2n} — {1,...,2n}
i+ o (i)
n+in+o (i)
D,)

o4 :{1,....,2n} = {1,...,2n}
2 — 120 (i) -1

2i > 20 (1)

where i ranges from 1 to n in the last three cases. It is easy to see that for the matrix Ej;
used to describe all root vectors for the different groups and a permutation matrix P, the
following holds

Adp, (Ekl) = P‘,-Eklp;l = Lr—1(k)r—1(1)-

Now we will show (6.2)) separately for the families A,,, B,,, Cy,, D,,.

A,) It is sufficient to show that AdaEo, (i iy = Eo s and since Eq,, = Eg we
have immediately
-1
(AdA(Eanfkﬂ»i,nfk«Fj)) = (Pa Ean—k+i7n7k+jP0')
= (an(n—k#»i)a(nkarj))
= Bai50)

which finishes the case of A,,.

B,,) Similarly, we want to show the above for E,, _, ., . .. Es. wyin_ny; and Ec
we only do the calculation for E,, ., ... since the others go analogously. By the
description in section [1.8.2] we have the E, given in terms of Fy; = Ej, — Fy. It
is immediate that Adp (Fy) = Fr-1(y);-1¢) holds. Hence with s = n — k + i and
t=n—k+ j we have

AdA(E :PUQEan,—k+i,n—k+j PO'_21
=P, (Fos—1,2t—1 + Fag 21
— i(Fos—1,0t — F2s,2t—1))Pg_21

=Fo5(5)=1,20(t)—1 T F20(s),20(1)

Qp—ktin—k+j )

—i(Foo(s)—1,20(t) — Fao(s),20(t)—1)
=F
=F

Qo (s),0(t)

LHONG!
Cp) Similarly, we want to show the above for E,, ... .. FEg ... .. and E,
we only do the calculation for E,, ., ., since the others go analogously. By the
description in section [1.8.3] we have E,,, = Est — Epttnts. Hence with s=n—k 41
and t =n — k + j we have

Ada(E,

a1L7k+i,n—k+j)

=P,.E, p!

n—k+in—k+j> 03
-1
:Pcrz (Es,t + En+t,n+S)Pag

=Es(s),0(t) T Ento(t)ntols)
E

THag(s),0(t)

=Fa ;509
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D,,) This works exactly as for B,.
O

The consequences of the existence of these embeddings even though just for particular
coefficients are fairly strong. In fact, let Ig, C N* be the set of coefficients satisfying the
conditions of theorem [55] depending on the type of G. Then it is easy to see that by

Qt =Qy I,

every Kihler metric with rational coefficients ¢, has positive holomorphic curvature if this
is true for (G, T, Jsta, gk r) and all n € N. In detail that results in the following

Corollary 58. If (G, T", Jsta, gx E) has positive holomorphic curvature for all n, then we
have for any k € N

i) (Gr,T*, Jsta, g(c1,..,cx)) has positive holomorphic curvature if ¢; € Q
1) (Gk,T’“, Jstd, ) has nonnegative holomorphic curvature for any Kdhler metric g

Proof. The first statement is clear. The second uses that the holomorphic curvature tensor
depends continuously on the coefficients ¢; and density of Q% C R¥. O

Combining the second statement with the description of the holomorphic curvature tensor
of a Kahler C space with arbitrary isotropy group from section [5] as the limit of holomorphic
curvature tensors on a Kéhler C space with toric isotropy yields the following result

Theorem 59. If (G,,T", Jsta, gxE) has positive holomorphic curvature for all n then all
classical Kdhler C spaces have nonnegative holomorphic sectional curvature.

Proof. Let (G, K, J,g) be a classical Kihler C space. Then it is biholomorphically isometric
to (G, K', Jsta, §) by lemma Here g is the pullback of g via the biholomorphism

(G,K', Jsq) — (G, K, J).

Now let k = rk(G) and s = dim(3(¢). Then as in chapter [5| we have positive constants
Cst1,- ¢ such that § = g(csi1,...,¢¢) and we define the Kihler metric on (G, TF, J,4)
by g8 = ¢%(t,..t,cs11,...,¢,). Then by corollary i1), we have that for all ¢ > 0 the
Kihler C space (G, T*, J.4, g*) has nonnegative holomorphic sectional curvature. With the
decomposition from section [f]

g=t®pdm

where m is the tangent space of G/K’ and n = p@m is the tangent space of G//T*. Then for
X € m we represent the plane X A Jsq(X) as the coefficient vector v in terms of the basis
Qa, Pog, Psiap with a < 8 € A, from section Then nonnegativity of the holomorphic
sectional curvature implies v7 Htv > 0 for the holomorphic curvature tensor H* of §¢ and
all ¢ > 0. Then we have from proposition [4g]

0 < limvT H'v = lim (’UTH;(/U) =: (lim Hﬁ(,) v=v'Hpv=Hyg (X)
t—0 t—0 t—0

where HY, is the restriction of H* from n to m and Hg denotes the holomorphic curvature
tensor and then the holomorphic sectional curvature of g. O

Remark:

1.) Note that there is no version of this theorem with bounded rank. As we see in the proof
of theorem the choice of the large n enabling the embedding and hence the curvature
deduction does depend on the metric and not only on the rank k. Hence, also for fixed rank
k the n can grow arbitrarily large depending on the choice of metric coefficients on (Gy, TF).
2.) We want to point out that even though it is obvious that every C space carries a ho-
mogeneous hermitian metric with non negative holomorphic curvature (i.e. the submersion
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metric of the killing form), this metric is only K&hler in the cases of Hermitian symmetric
spaces, i.e. when the isotropy representation is irreducible.

A strong consequence of theorem [59|is that to disprove the conjecture H (k) it is sufficient
to find any classical Kéhler C space admitting a negatively curved complex line. On the
other hand, to prove the slightly weaker version of H (k) with nonnegative instead of positive
holomorphic curvature it is sufficient to restrict oneself to the toric isotropy and the K&hler
Einstein metric, i.e

Corollary 60. The spaces (G, T", Jsta, g ) have nonnegative holomorphic curvature for
alln € N if and only if all classical Kihler C spaces have nonnegative holomorphic curvature.



Chapter 7

Curvature Matrices

Before we restrict ourselves to the classical groups of rank 4 we use this chapter to determine
the weights Ay and the corresponding matrices representing the holomorphic curvature
tensor for the classical C spaces of arbitrary rank (G,,T", Jsq) with an arbitrary K&hler
metric. As we will see the amount of different kind of modules seems overwhelming at first,
but careful observations allow us to reduce the problem of positive holomorphic curvature
in general to just two to four different kinds of modules depending on G instead of the in
the following presented four to eighteen kinds. The remaining modules will be the trivial
module and the modules with n € A_,. In the following we will not write the representing
matrices of the four forms explicitly but rather their effect on the matrices representing the
curvature tensor. Therefore, we simplify notation slightly writing

M, = M(H,)

for the matrices of the holomorphic curvature tensor.

The first observation will be that if n ¢ A_ then the matrices representing the curvature
tensor on these modules cannot be positive definite because they either have negative values
on the diagonal or zeros on the diagonal and non zero offdiagonal entries. Hence it is
necessary to modify these matrices via four forms to keep the hope alive to be able to prove
positive holomorphic curvature via the tensor. As indicated by the recipe in the end of
section [I.7} we will do the following:

I) If there is a negative value —c < 0 on the diagonal of the matrix M, at (o, 8)(c, ),
we erase it, i.e add its absolute value ¢ to that entry. To realize that via four forms we
have to subtract the same absolute value from the corresponding entry of the matrix
of the trivial module. That means in the notation of chapter [4] to

Value| Intended Forced

¢ |(My)(a,6)(.8)|(Mo)(a,0)(8,8)

By the Bianchi identity, the entry of the matrix of the trivial module has the same
value as the diagonal entry of M,, see (3.1). Therefore erasing all negative diagonals
results in doubling all negative entries of the matrix of the trivial module.

IT) After erasing all negative diagonal entries, we are consider all resulting matrices that
have zeros on the diagonal and non zero off diagonal entries. We want to erase
those off diagonal entries as well. Assume that we want to erase the off diagonal
entry (Mp)(a,8)(v,6) = ¢ via four forms. By we are forced to modify the entry
(M4 8-~)(a,7)(8,6) in the opposite direction. In the notation of chapter this means

Value| Intended Forced

—c |(My)(a,8)(.6) | (Mu+8-~) (a,7)(8,6)

67
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We will see that for every entry of a matrix M,, with zero diagonal the corresponding
matrix M, s~ has positive diagonal entries. As in case I) the values of these two
entries coincide and hence erasing the entry in M,, results in multiplying the entry in
M, 35—~ by two.

We specify for each classical group separately in the section "General modifications” how
these modifications affect the matrices. Exemplary, we will present the full details in the
case of SU(n + 1).

71 SU(n+1)

We define the ordering on the positive roots as in proposition [I5| with the slight modification
that we use the ordered basis €; with j = 1,..,n 4 1 instead of the simple roots to induce
the ordering. It is easy to see that the desired properties are still true.

Proposition 61. For the C space (SU(n + 1),T", Jsa) let 1 be a non zero weight of
Fix(Jstq), i.e an element in

Ag={a—-pla<peAf}

Then n is in the following table together with the pairs o < 8 with o — = n:

f U I(n) ny

1 —Eq + € (Qia,p) ;i =1l.a—1 n—b+a
(apj,aq5) , j=b+1.n+1

2 | —eateptec—ea | (Qed, Qab), (Qd; Aac) 2

3| —ater—ecteq | (Qesaa) 1

4 —€q + 26 — &¢ (Qbe, ab) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1) we only have to verify that

[Agl(1Ag—1
CHEDI

neEAy

holds. In fact, we know |[Af| = w and the right hand side is given by

n n+1

1 1
SN (anraH(n;r >+3(n;r >
a=1b=a+1

Easy calculations yield that left and right hand side coincide and therefore we found all
weights. O

In the following, we determine the curvature matrices M,. Since the indices of M, are
pairs of roots (o, 8) with o < § and o — 8 = 7 it makes sense to choose an ordering of these
pairs. We will do so in each M, separately. The proofs reduce to plugging in the values of
9o, No,g and z, as determined for the classical groups in section into the equations of
proposition and will therefore be omitted. An exemplary calculation was made in the
proof of proposition [44]

Proposition 62 (Case #1). Let n = —e, +¢p for 1 <a <b<n+1. We order the pairs as
follows x; = (viq, cvuip) with i =1,..,a — 1 and y; = (b4, Qaptj) With j =1,..,n+1—0.
Then we have

X (XY)

M, =
(xXY)T Y
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with diagonal blocks
X eSym,_1(R) Xis = 9ga., fori<s
Y GSymn+1_b(R) }/is = gab,b+i fOT‘Z’ § S

and off diagonal block entries

<XY>< __ YaiaJap,pys
8

gaz\b+s

Proposition 63 (Case f2). Let n = —c, +¢ep+e.—eq forl <a<b<c<d<n+1. We
order the pairs as follows (acq, ap), (pd, ac). Then we have

0 _ Y9acqgY9aqp
Mn = Joqa
_ Y9acqY9aqp 0
Gouq

Proposition 64 (Case #3). Let n = —¢c, +¢ep —c.teq forl <a<b<e<d<n+1. We
only have one entry corresponding to (e, ¥ad), (Qpd; ac). Then we have

M, =0
Proposition 65 (Case #4). Let n = —e, +2ep —e. for 1 <a<b<c<n+1. We only
have one entry corresponding to (Qpe, ap). Then we have

M, = _ Yaap Yo
gaac

Proposition 66. The entries of the matriz of the trivial module are determined by the
diagonals of the matrices above :

(Mo)(ae)(88) = (Ma—p) (ap)(as)
except for the diagonals. For a = a;; the following holds

(MO)(aoc)(aa) = 29

General modifications of SU(n + 1)

We present the modifications following step I) and I7) described in the beginning of the
section for SU(n + 1) in detail. Roughly speaking we make the following modifications:

1.) We move the diagonals of {4 into the matrix of the trivial module.
2.) The off diagonals of §2 into the (XY) block of #1.

In detail, the modifications of 1.) with the notation from chapter |4 correspond to the fol-
lowing changes forall 1 <a<b<ec<n+1

Value Intended Forced
ga;zif:hc (M—c,+2¢,—e.) (e, aan)(Qbe,xab) (Mo) (ape,abe)(ab,xab)

and 2.)for 1<a<b<e<d<n+1

Value Intended Forced

Ja.g9ayp

(M—€a+8b+5c—€d)(acd,aab)(abd,aac) (M_Eb"l‘ac)(aabyaac)(acd:abd)

Ja, g

We want to remark here that even though one needs multiple small matrices of type #2 to
cover the (X,Y") block of one matrix of type f1 in the end we cover all of them. In fact, it is
easy to see that the map "Intended" to "Forced" is a bijection between off diagonal entries
of all matrices of type f2 to entries of (X,Y") blocks of all matrices of type #1.

After these changes the now modified curvature tensor decomposes into the following
matrices
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Proposition 67 (Case #1). Let n = —e, + ¢ for 1 <a <b<n+1. We order the pairs as
follows x; = (Qia, i) and y; = (Qpptj; Qaprj) wWithi=1,.,a—1and j=1,.,n+1-0.
Then we have the modified matrices

X (XY)
M, =
(XY vy
with diagonal blocks
X eSym,—1(R) Xis = ga., fori<s
Y Gsymn+1_b(R) )/is = gab,b+i fOT'i S S

and off diagonal block entries

(XY)‘ . _2gam9ab,b+s
18

go‘i,b+s

Proposition 68. The entries of the matriz of the trivial module are given by:

20 a=p
Jo, (o, B) = (Qia, aip)
M [e70e% =
(Mo) (aa)(38) Gou, (o, B) = (aj, aqj)
2%t (o, B) = (0ai, vin)

for a < 5.

7.2 SO(2n+1)

As for SU(n + 1) we define the ordering on the positive roots as in proposition [15| with the
slight modification that we use the ordered basis ¢; with j = 1,..,n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 69. For the C space (SO(2n + 1),T"™, Jgq) let n be a non zero weight of
Fix(Jgaq), i.e an element in

Ag={a—-pla<peAf}
Then n is in the following table together with the pairs o < 3 with o — = n:

il n I(n) iy
1| —e4+¢p

(g, i) ,i=1,.,a—1 M—bta—2
(awj @aj) , 5 =b+1,..
(Bevs Bat) s t=a+1,.,b—1
(Bst, Bsa) » s =1,..,a—1
(Bors Bar) , 7 =b+1,.
(€b,€a)
2 | —ea—¢&p | (@sa;Bsp) , s=1,.,a—1 b+a—3
(
(
(
(
(

sy

Oétb75at),t—a+1 b_l

Qsay€s) 5, $=1,.,a—1 n+a—2
Emﬂsa);s_l a_l
€rsPar) , T=a+1,.
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i n I(n) "y
4 —2e, (asas Bsa) s s=1,.,a—1 a—1
5 | —eateptec—ea | (Qed,@ap), (Wbds Xac)s (Boes Bad) | 3
6 | —catep—ccted | (e, ¥ad)s (Bods Bac) 2
7T | —ea—ev+ectea | (Beds Bav) 1
8 | —eatebtected | (Beds ¥ab)s (Bods Yac)s (Boes tad) 3
9 | —cateb—ec—¢a | (Qe,Bad), (s Bac) 2
10 | —eq —ep+ec—ea | (Qea,Bab) 1
11 —&4 + 26 — ¢ (b, ap) 1
12 —€a + 26p + ¢ (Bbes ab) 1
13| —eatep+2ec | (Boe, ac) 1
14 | —eq+ep—2e, (abe, Bac) 1
15 —€q+€p+ €0 (€, @ab), (€vs Qtac); (Boc, €a) 3
16 —€a + b — Ec (Qbes€a)s (€bs Bac) 2
17 —€q — € + € (¢ Bab) 1
18 —€4 + 26 (€, tab) 1

Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1)) we only have to verify that

Z”n

nEAq

|Ag] (IN\ - 1)

holds. In fact, we know |Al| = n? and the right hand side is given by
n—1 n n
Z Z(2n+2a— Zn+2a—

a=1b=a+1
n n
1 12

Easy calculations yield that left and right hand side coincide and therefore we found all
weights. O

In the following, we determine the curvature matrices M,. Since the indices of M, are
pairs of roots (o, 8) with a < 8 and o — 8 = 7 it makes sense to choose an ordering of these
pairs. We will do so in each M, separately. The proofs reduce to plugging in the values of
9oy Na,p and z, as determined for the classical groups in section @ into the equations of
proposition and will therefore be omitted. An exemplary calculation was made in the
proof of proposition [44]

Proposition 70 (Case fl1). Let n = —e, + & for 1 < a < b < n. We order the paz’rs

as follows v; = (Qia, ip), w; = (Abptj, Mabti), Tt = (Batt,ps Bajatt) Yi = (sz,ﬁm) =
(Bo,b+js Bap+;) and D1 = (ep,eq) withi=1,..,a—1,t=1,...,b—a—1 and j=1,..,n—0.
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Then we have

{

<

(
(
(
(
with the diagonal matrices being

Vv ES’yma,l(R)
w esymnfb(R)
X ESymb_a_l(R)

Vis =49q.,, fori<s
Wis = 4gay 4y fori<s
Xis = 498,.,, fori<s

Y eSymq—1(R) Yis = 4gp,, fori<s
Z €Symp_p(R) Zis = 4gp, ., fori<s
_ (gsb)2
D eSym,(R) Dy = —~
9Bas

and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

) ) —44.,
(VIV)io = —afeetinnse (v, =gl vy, = {—4‘3&:2%
Qi bts i,a+s 98,
(V2)iy = —a70tse (VD) = plende (WX )iy = ~4ga,,.,
i,b+s €
4gab,b+i95b,b+z‘
<WY>18 = 4gab,b+i <WZ>iS = 9Bas <WD>i1 = anb,b+i
4gab,b+i

<XY>is = _4gﬁa+i,b
<YZ>ZS = 495b,b+s

<XZ>iS = _4gﬁb,b+s
(YD);1 = 2ge,

(XD)s = —2ge,
<Z-D>zs = 2951,

In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.

Proposition 71 (Case 2). Letn = —ec,—¢p for 1 < a < b < n. We order the pairs as follows
XT; = (aiav Bib)vyi = (aibvﬂia)v Zt = (aa+t,bvﬁa,a+t) with i = ]-v . a— landt= 17 ooy b—a-1
. Then we have

X (XY) (XZ)
XV Y (YZ)
(X2)T (yz)T z

M,

with the diagonal matrices being

X eSymq_1(R) Xis = 49a., fori<s
Y eSymq—1(R) Yis = 44a., fori<s
Z €Symp_q_1(R) Zis = 4Gay . fori<s

and the off diagonals being given by

—494 i=3s o Ja
XY)s = e XZ),;g = 4720 "ated YZ)is = —4g,
( ) {457&;1;9@(1 i#s ( ) Dr s ( ) Joats,s
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Proposition 72 (Case #3). Let n = —¢, for 1 < a < n. We order the pairs as follows
zi = (Qia, €i), Yi = (€45 Bia)s 25 = (Eatj» Pajatj) withi=1,..,a—1and j=1,..,n—a . Then
we have

X (XY) (XZ)

My =1 (xY)" Y (YZ)
AL A

with the diagonal matrices being

X eSym,_1(R) Xis = 29a., fori<s
Y eSym,—1(R) Yis = 2¢., fori<s
Z esymn—a(R) Zis = 298a+s fOT’i <s

and the off diagonals being given by

—2Ga, 1= -
<XY>zs = {_2ga:955 <XZ>25 = QM

. YZ)is = —29c,.,
9Bsi ! 7& 5 9Bi,a+s -

Proposition 73 (Case #4). Let n = —2¢, for 1 < a < n. We order the pairs as follows
x; = (Qia, Bia) fori=1..a—1. Then we have

0 i1=3S5
(Mn)is = {4gam§ﬁsa i< s

Proposition 74 (Cases f{5 — #10). Let 1 <a < b < ¢ <d <n. We order the pairs as given
in the table from left to right. Then we have for n = —e, +€p + 6. —€q :

0 —492ca9%p  gY92ciIoan
Goagq 9Bac
‘2\477 — _4g"¥cdg”ab 0 _4g(¥bdg°ac
Jagq 9Bap
49acdgo¢ab _4gabdgaac 0
9Bac oy
Forn=—c4,+ep—¢c.+¢eq:
0 —492pc9%d
M, = 98
—492c9%d 0
9Bap
Forn=—¢c, —ep+e.+eq:
M, =0
Forn=—¢c,+ep+e.+e¢q:
0 _49Pca92ab g 9BedIap
9Baa 9Bac
M — 74.‘7ﬁcd§aab 0 749/31,(19@@@
n 9Baq 9Bab
4gﬁcd9aab —4 9Bpa9ac O
9Bac 9Bab
Forn=—eq+ep—e.—¢€q:
0 — 49269844
M, = 9Bab
K 4 9be 9504 0
9Bab
Forn=—eq—cp+e.—¢€q:

M, =0
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Since they are all one dimensional, we write the cases f11 — 14 in one matrix

Proposition 75 (Cases #11 — #14). We consider for 1 < a < b < ¢ < n the ordering
(bey @ab)s (Bbes Qab)s (Bbes ac)s (Qbe, Bac). The direct sum of the corresponding Més is given
by

74 gagl;gaab O O 0
0 —47ctoan g 0
0 0  —4fBedeee
ab
0 0 0 —4enefiee
gﬁab

Proposition 76 (Cases §15 — #17). Let 1 <a < b < ¢ < n. We order the pairs as given in
the table from left to right. Then we have for n = —e, 4+ €p + €. :

0 _295C9aab 295c90<ab
Geq 9Bac
Mn — _29509aub 0 _2gsb9aau
Geq 9Bap
295cgaab _29€bgaac 0
9Bac 9Bab

Forn=—¢e,+¢ep—c.:

0 _295a9abc

M, = 9ias
_9 9eq 9oy, 0
9Bab

Forn=—e4, —cp+e.:
M, =0

Proposition 77 (Cases #18). Let 1 < a < b < n. We order the pairs as given in the table
from left to right. Then we have for n = —e, + 2¢y :

M — 72951)90(@[)
Ge,

Proposition 78. The entries of the matriz of the trivial module are determined by the
diagonals of the matrices above :

(Mo) (aay(88) = (Ma—p) (ap)(as)
except for the diagonals. For a € A the following holds

8ga «a € {aij, Bij
(MO)(aa)(aa) = { { ! ]}
Ja a=¢g;

General modifications of SO(2n + 1)

The modifications described in the beginning of the section in the case of SO(2n + 1) are
the following:

1.) We move the diagonals of #11 — 14 and 18 into the matrix of the trivial module.
2.) The off diagonals of #4 to the diagonal of the (IWZ) block of #1.

3.) The off diagonals of §5 to the (VW) block of #1, the (XZ) block and the upper
triangular part of the (XY") block of #2.

4.) The off diagonal of #6 the lower triangular part of the (XY) block of £2.

5.) The off diagonals of #8 to the (V' Z) block, the (VX) block and the upper triangular
part of the (VYY) block of f1.



7.2. SO(2N +1) 75

6.) The off diagonal of #9 the lower triangular part of the (VYY) block of #1.

7.) The off diagonals of #§15 to the (VD) block of f1 , the (XZ) block and the upper
triangular part of the (XY') block of 3.

8.) The off diagonal of #9 the lower triangular part of the (XY) block of £3.

We remark that similarly to the modifications of SU(n + 1), in each step have a bijection
between the referenced entries of all matrices of the mentioned case fi.
Then the modified holomorphic curvature tensor is given by the following matrices

Proposition 79 (Case #1). Let n = —e, + ¢, for 1 < a < b < n. We order the pairs

as follows v; = (ia, @ip), w; = (Qbptj, Capts), Tt = (Battps Baatt), Vi = (Bivs Bia)s 25 =
(Bo,b+5> Bap+i) and Dy = (ep,eq) withi=1,..,a—1,t=1,..,.b—a—1and j=1,..,n—0.
Then we have

vV (VW) (VX) (VY) (VZ) (VD)
(vwr - w  (WX) (WY) (WZ) (WD)
vy wx) X (XY) (XZ) (XD)

(Vx)© (Wx)
(Vy)© (wy)
vyt waz)t (xz)"
(VD)™ (WD)

with the diagonal matrices being

V eSymq_1(R)
w ESymn,b(R)
X eSymp_q—1(R)

Vis =4¢a,, fori<s
Wis = 4gay ,,; fori <s
Xis =498,,,, fori <s
Yio = dgs, fori<s

Y ESyma_l (R)
)

7Z €Symy,_p(R Zis = 498, .., fori <s
2
D eSym;(R) Dy = M
9Bas

and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

) ) —44,,
(VW) = —giedintis (v x),, = gl (V¥)ia = _gomeon,

Jo; pts 9Biats 8 96,
<VZ>iS = _8% <VD>l1 = _4905‘;& <WX>iS = _4gab,b+i

ibt+s €4
oy b i 98y bti
<WY>is = 4gab,b+i <WZ>1'S = 9Bas <WD>21 = 2gO¢b,b+i
4gab,b+i

<XY>is = _49ﬂa+i,b
<YZ>iS = 4gﬁb,b+s

In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.

<XZ>is = _4gl3b,b+s
(YD);1 = 2ge,

(XD)i1 = —2g,
(ZD)i1 = 2g.,

Proposition 80 (Case #2). Let n = —e,—¢p for 1 < a < b < n. We order the pairs as follows

z; = (Qia, Biv), Yi = (v, Bia)s 2t = (Qast,s Baatt) withi=1,..,a—1andt=1,...b—a—1
. Then we have

X (XY) (XZ)
XYV)VT Y (YZ)
(X2)T (YZ2)T 2

M, =
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with the diagonal matrices being

X eSym,—1(R) Xis = 49a., fori<s
Y eSyme—1(R) Yis = 44a., fori<s
Z €Symyp_q—1(R) Zis = 4Gau, fori<s

and the off diagonals being given by

—49a i=s Joiaorays
XY s = sa ' XZ s = 8 ia a+s,b YZ s = 74 o
< > E {—857&;29(‘““ 17& s < > E 9o < > Jaatsp

Proposition 81 (Case £3). Let n = —¢, for 1 < a < n. We order the pairs as follows
zi = (Qia, €i), Yi = (€45 Bia)s 25 = (Eatj, Pa,atj) withi=1,..,a—1and j=1,..,n—a . Then
we have

X (XY) (XZ)

My=|xWT Y (YZ)
(x2)T (vyz)T  z

with the diagonal matrices being

X eSymgy—1(R) Xis = 29a., fori<s
Y eSymq—1(R) Yis = 2¢., fori<s
Z €Symy_q(R) Zis = 29, fori<s
and the off diagonals being given by
—24a, i=s G Ge
XY)is = b X7 = 47077 0ts YZ)is = —2
< > E {_4ga;;?s,g i 7& s < > : 95 n < > : Jeats

Proposition 82. We give the entries of the matriz of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs («, ) with o < S.

i) Along the diagonal we have

890 € {ayj, Bij}

(MO)(aa)(aa) = { .

Ja @ =¢&;

1) For the following pairs (o, 8) € {(ia, ib), (W, ®aj), (Brb, Bak)s
(Bivs Bia)s (Boj, Baj), (tia, Bin), (iv, Bia)s (kb, Bak) } we have

(Mo) (@e(85) = 490
i13) For the following pairs (o, B) € {(®ia,€i), (€4, Bia), (€5, Baj)} we have
(Mo) (@a)(55) = 29a

iv) For the following pairs (o, 8) € {(cp, @ai), (Biv, i)y (Bojs @aj)(j, Baj)} we have
_3 9adp

(MO) aa =
(aa)(BB) Jats

v) For the following pairs (o, 8) = (g5, aqj) we have

9o dp
(MO) aa = —4—
(ac)(BB) Jatd
vi) For the following pairs (o, 8) = (ep,€,) we have
2
Yo
(MO aa =
o) = 4 =

Notice that the entries in the trivial module that have been doubled are iv) and v).



7.3. SP(N) 77

7.3 Sp(n)

As for SU(n + 1) we define the ordering on the positive roots as in proposition [15| with the
slight modification that we use the ordered basis ¢; with j = 1,..,n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 83. For the C space (Sp(n), T™, Jsq) let n be a non zero weight of Fix(Jsq),
i.e an element in
Agp={a—-Bla<pelAl}

Then n is in the following table together with the pairs o < § with o — = n:

f U 1(n) ny

1 —Ea t+ &b Qig, p) , 1 =1,..,a—1 Mm—b4+a—1
Qpj,0qj) , j=b+1,.,n
Bty Bat) ; t=a+1,..,b—1
Bsby Bsa) » s=1,.,a—1

b?“7ﬁa7’) , T = b+ 1a"7”

™

ﬂaba7a)
Vbaﬂab)
Qsa,PBsp) , s=1,..,a—1 b+a—2

2 —E4 — €p

atbaﬁat) 7t:a+17"ab_1

(

(

(

(

(

(

(

(

(

(

(Ctabs Ya)
3 —2¢e, (Qsay Bsa) s 8s=1,.,a—1 a—1
4 | —eqtept+ec—ea | (Qeds Qab), (Qd, Qac); (Boes Bad) 3
5 | —eat+eb—¢ectea | (e, @ad), (Bods Bac) 2
6 | —ca—ev+ectea | (Bed Bav) 1
7T | —eatevtectea | (Bedsab)s (Bods dac)s (Boe, tad) 3
8 | —€atep—ec—ca | (e Baa)s (ds Bac) 2
9 | —ea—¢btec—ea | (edsBab) 1
10 | —ea+2ep—¢cc | (e @ab) (b5 Bac) 2
11 —€q + 26p + & (Bres tab) (Vs Qtac) 2
12 | —eatep+2ec | (Boe, Qac) (Ve Xab) 2
13| —eatey—2 | (e Bac) 1
14 —€q — €b + 2¢, (Ye» Bab) 1
15| —2e.+ep+ec | (Boerva) 1
16 | —2ea+ep—ec | (QesVa) 1
17 —2e, + 2¢ (V6> Va) 1
18 —ca + 3¢ (V6> tap) 1

Proof. The elements in the list are obviously weights and these are all of them for dimen-
sional reasons. The elements in the list are obviously weights and these are all of them for
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dimensional reasons. In fact, from (4.1)) we only have to verify that

=2 m

ne€EAy

\A+|(|A+|—1

holds. In fact, we know |Af| = n? and the right hand side is this time given by

Z Z (2n +2a — 1) —l—Z(a—l)

a=1b=a+1 =1

() ()

Easy calculations yield that left and right hand side coincide and therefore we found all
weights. 0

In the following, we determine the curvature matrices M,. Since the indices of M, are
pairs of roots (o, 8) with o < § and o — 8 = 7 it makes sense to choose an ordering of these
pairs. We will do so in each M, separately. The proofs reduce to plugging in the values of
9o, No,g and z, as determined for the classical groups in section into the equations of
proposition and will therefore be omitted. An exemplary calculation was made in the
proof of proposition [44]

Proposition 84 (Case #1). Let n = —e, + ¢, for 1 < a < b < n. We order the pairs
as follows v; = (iq, ip), w; = (Qbpt5s Qa,p+5), Tt = (Batt,ps Ba,atrt)s Yi = (Biv, Bia)s 2 =
(Bb,ptjs Bap+i)s D1 = (Bav,Va) and Ey = (v, Bap) with i =1...(a—1),t = 1.~(b—a— 1) and
j=1..n—>b. Then we have

Vo (VW) (VX) (VY) (VZ) (VD) (VE)
vwT W (WX) (WY) (WZ) (WD) (WE)
Vvx)T wx)T X (XY) (XZ) (XD) (XE)

My =1 (v)" (Wy)" (xY)" Y (YZ) (YD) (YE)
vt wW2)T (X2)T (vZ)T 7 (ZD) (ZE)
(vD)T (WD)T (XD)T (YD)T (zD)T D (DE)
(VE)T (WE)T (XE)T (YE)T (ZE)T (DE) E

with the diagonal matrices being

V €Syma-_1(R) Vis = o, fori<s
W eSym.,_p(R) Wis = Gapyis fori<s
X eSymp_q—1(R) Xis = 9Bason fori<s
Y eSyma-1(R) Yis = 5., fori<s
Z €Symy,_p(R) Zis = GBy.pyis fori<s
D e€Sym(R) Dy = g3,

E eSymi(R) Ei = gy,

and the off diagonals being given by the following where i and s vary in the ranges determined
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by the diagonals

Goiq 9vp
Yoo 9o bt s 90 9Bas, T g,
(VW) = -2t (), = —=efutsl (YY), =&
Jou; pys 9Bia+s _Tis
<VZ>16 — _gaiagﬂb,lﬂ»s <VD>Z1 — _gaiagﬁab <VE>11 — _gaiag')’b
9Bi b+s 9Bia 9B
g("h,b+i(g“a,b+i+gﬁab)
<WX>is = Gop bti <WY>is = Gap pti <WZ>is = { 9Bab
go‘b,b+w
<WD>1'1 = Yoy p4i <WE il = Yop 44 <XY>ZS = 9Batin
<XZ>ZS = 9Bp,b+s <XD>11 = 9Batin <XE>11 = G,
YZ)is = 98,0+ (YD)i = gg,, (YE)i1 = gy,
(ZD)ir = 98,11 (ZE)ir = 9By4s (DE)i1 = gy,

In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.

Proposition 85 (Case #2). Let n = —e, —¢p for 1 < a < b < n. We order the pairs

as follows x; = (ia,Biv)Yi = (v, Bia)s 2t = (Qagt,b, Ba,art) and Dy = (aap,Va) with
t=1,.,a—1landt=1,...,.b—a—1. Then we have

X (XY) (XZ) (X

S

with the diagonal matrices being

X eSymgy—1(R) Xis = Ya., fori<s
Y eSymq_1(R) Yis = Ga., fori<s
Z €Symp_q—1(R) Zis = Jovason fori<s
D eSym(R) D11 = ga,,

and the off diagonals being given by

 9aiq 9 Z =3 g g g g
. Aija I Xg+s ia a
(XY)is = { gagont, (XZ)js = =2t (XD)jy = ==t
Zﬁsi e ¢ 7é S 9Bi.ats 9Bia
(YZ)is = Goasan (YD)ir = g, (ZD)i1 = Goui e

Proposition 86 (Case #3). Let n = —2¢, for 1 < a < n. We order the pairs as follows
x; = (Qia, Bia) fori=1..a — 1. Then we have

2
27(5";3@) i=s
J— Vs
(Mn)“ osa (298, —98sa)  :
Shsartolis IPsal  j LS
98;s

Proposition 87 (Cases 4 —19). Let 1 <a < b < c < d<n. We order the pairs as given
in the table from left to right. Then we have for n = —e, +€p + 6. —€q :

0 _ GoggYGauy Yaeg9ogs
Ga,q 9Bac
M”Z — _ GoggYGagy 0 Japg9oac
Gagq 9Bap
9acg9aqp  Japg9aac 0

9Bac Joap
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Forn=—e4,+ep—c.+¢eq:

0 JopeIoqd
Mﬂ = 9Bap
JopeJoaq 0
gﬁab
F0T77: —€q —Ept+EcteEq:
M, =0
Forn=—e,+ep+ec+eq:
O _9Bcq9aqb _ 9Bca9oan
gﬁad 9Bac
Al’ = __gégigggi O __gﬁgggﬁgg
K 9Baa 9Bap
_98cqY92qp _ 9BpgY9eac 0
9Bac 950,
F0T77= —€qtEp—Ec—€q:
0 _9eue98ay
M, = 9Bab
n _ 924 9Bad 0
9Bap
Forn=—e4, —cp+e.—¢€q:
M, =0

Proposition 88 (Cases §10 — #12). Let 1 < a < b < ¢ < n. We order the pairs as given in
the table from left to right. Then we have for n = —e, + 2 — e ¢

_ GopGogy GapcGagy

_ Gagc 9Bap
My = Yoy 9 §
bed%ab O

9Bap

Forn=—eq+2ep +¢.:

_9Bpc9vab __ IBbcI%an

M, = 9Bac 9Bas
_ 9By 9o 0
gﬁab

Forn=—e,+¢ep+2¢.:

_ 98pcY9cac _ GveGogp

]\477 — 9Bab 9Bac
_ GveYagy 0
9Bac

Since they are all one dimensional, we write the cases §13 — #16 in one matrix

Proposition 89 (Cases #13 — #16). We consider for 1 < a < b < ¢ < n the ordering
(Qbes Bac)s (Ver Bav), (Boes Ya)s (e, Ya)- The direct sum of the corresponding M s is given by

_ Y9ap.9Bac 000

gﬁab

0 000
0 000
0 000

Proposition 90 (Cases #17 — #18). We consider for 1 < a < b < n the ordering (b, Va),
(Vp, aap). The direct sum of the corresponding M,’75 18 given by

0 0

0— IvpGagp
9Bap
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Proposition 91. The entries of the matriz of the trivial module are determined by the
diagonals of the matrices above :

(Mo) (@a)(88) = (Ma—p) (ap)(ap)
except for the diagonals. For a € A the following holds

200 @ € {ayj, Bis}
(MO)(aa)(aa) = { _ ’ !
Yo =7

General modifications of Sp(n)

After completing the steps described in the beginning of the section in the case of Sp(n),
that is

1.) We move the diagonals of 10 — 18 into the matrix of the trivial module.

2.) The off diagonals of #4 to the (VW) block of f1,the (X Z) block and the upper trian-
gular part of the (XY') block of #2.

3.) The off diagonal of 45 the lower triangular part of the (XY") block of £2.

4.) The off diagonals of 47 to the (V' Z) block, the (VX) block and the upper triangular
part of the (VY) block of £1.

5.) The off diagonal of 48 the lower triangular part of the (V'Y) block of £1.
6.) The off diagonals of §10 to the (X D) block of £2.
7.) The off diagonals of {11 to the (VD) block of #1.
8.) The off diagonals of §12 to the (V E) block of f1.

We remark that, similarly to the modifications of SU(n+1), in each step we have a bijection
between the referenced entries of all matrices of the mentioned cases fi.
Then the modified holomorphic curvature tensor is given by the following matrices

Proposition 92 (Case f1). Let n = —e, + ¢, for 1 < a < b < n. We order the pairs
as follows v; = (Qiq, W), Wj; = (Qbpt+js Yab+5), Tt = (Battbs Basatt)s Yi = (Bivs Bia)s 2 =
(Bo,b+5> Bab+i) D1 = (Bav,Va) and E1 = (Vp, Bap) withi=1...(a—1),t =1...(b—a—1) and
j=1..n—>5b. Then we have

14 (VW) (VX) (VY) (VZ) (VD) (VE)
VW W (WX) (WY (WZ) (WD) (WE)
Wvx)T (wx)T X (XY) (XZ) (XD) (XE)
M, = | (vv\T (wy)T (XY)T Y (YZ) (YD) (VE)
Vot (wWaot ( X2yt (y2yt zZ (ZD) (ZE)
(VD)T (WD)T (XDVT (YD)T (ZD)T D (DE)
(VEYT (WE)T (XE)T (YE)T (ZE\" (DE) E
with the diagonal matrices being
V eSyma-1(R) Vis = Jaua fori<s
W eSym,,—p(R) Wis = Gapprs fori<s
X eSymp_q—1(R) Xis = GBarus fori<s
Y €Sym,_1(R) Yis = g3., fori<s
Z €Symy,_p(R) Zis = By ps. fori<s
D eSym;(R) D11 = g3,
E €Sym;(R) En =gy,
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and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

_92ia9m
<VW>25 _ _2gaia,gab,b+s <VX>zs _ _2gaia,gﬁa+s,b <VY>15 _ g‘iz;gﬂsb
Joiprs 9Bi.ats _QW
<VZ>¢S _ _29(¥ta95b,b+s <VD>21 _ _29aiagﬁab <VE>11 _ _2904iag’)’b
9Bi,b+rs 9Bia 9Bis
Gop pyiGag piiT98.1)
<WX>ZS = Goup by <WY>zs = YGap pyi <WZ>15 = 9Bab
Gap,pts
<WD>i1 = Gop bt <WE il = Goup vy <XY is = YBatin
(XZ)is = 9By s (XD)i1 = 98,4is (XE)i1 = gy,
<YZ>iS = 9Bb,b+s <YD>i1 = 9B <YE>11 = Gy
<ZD>11 = 9Bv.b+s <ZE>11 = 9Bv bti <DE>11 =Gy

In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.

Proposition 93 (Case #2). Let n = —e, — ¢ for 1 < a < b < n. We order the pairs
as fOllOU)S Ty = (aiaaﬂib>7yi = (aib;/Bia)7'zt = (aa+t,b76a,a+t) and Dl = (aabaf)/a) with
i=1,.,a—1landt=1,...,.b—a—1. Then we have

X (XY) (XZ) (XD)

with the diagonal matrices being

X eSym,—1(R) Xis = oo, fori<s
Y €Syma-1(R) Yis = o, fori<s
Z €Symp_q-1(R) Zis = Gavaros fori<s
D €Symi(R) D11 = ga,,

and the off diagonals being given by

Joiq 9 _
— S o a N o o
(XV)ie =1 , %% (XZ);q = o0wboarer iy, = gfaindow
2# L 7& S 9Bi,a+ts 9Bia
(YZ)is = Gouien (YD)i1 = G, (ZD)ir = Gagyrs

Proposition 94 (Case #3). Let n = —2¢, for 1 < a < n. We order the pairs as follows
x; = (Qia, Bia) fori=1...a — 1. Then we have
2

2(50%,,,) i=s

(Mn)is =

94
Jasa (2951‘,5 _gﬂsa)

1< 8
98

Proposition 95. We give the entries of the matriz of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs («, 8) with o < 8.
i) Along the diagonal we have

29 a€e{a; ’ﬂ
(Mo)(aay(aa) =4 " 7{ Pk
Joo Q=7
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ii) For the following (o, 8) € {(Qia, iv), (s @aj)s (Bbs Bak)s (Bivs Bia)s (Bbjs Baj),
(Baby 7a)7 ('va ﬂab)v (aiav ﬁib)7 (aibv ﬁia)» (akbv ﬁak)a (aab7 ’Ya)} we have

(Mo)(aa)(88) = 9a

i1i) For the following pairs (o, B) € {(ap, @ai), (Biv, @ai)s (Bojs aj)s (g, Bag)s (Yo, an)}
we have ags

(Mo) (aer =-2
0)(a) (88) Gors
iv) For the following pairs (o, B) = (®sq, Bsa) we have

(ga)2
Ja+p

(Mo) (ac)(pp) =2

Notice that the entries in the trivial module that have been doubled are #ii).

7.4 SO(2n)

As for SU(n + 1) we define the ordering on the positive roots as in proposition (15 with the
slight modification that we use the ordered basis €; with j = 1,..,n instead of the simple
roots to induce the ordering. It is easy to see that the desired properties are still true.

Proposition 96. For the C space (SO(2n),T", Jsq) let n be a non zero weight of Fix(Jstq)
, i.e an element in
Agp={a-Bla<pelAl}

Then n is in the following table together with the pairs o < 3 with o — = n:
f Ui I(n) T
1 —€q +€p

Qig,p) , 1=1,..,a—1 IM—b+a—3
i, 0j) , J=b+1,.,n
Bivy Bat) s t=a+1,..,b—1
Bsbs Bsa) » 5=1,..,a—1
Bory Bar) , T =b+1,.
asa,ﬁsb),S—l ,a—1 b+a—3

2 —Eq — €p
asbaﬁsa) P s e @ — 1

Oétb,ﬁat),t—a“‘l b 1

(
(
(
(
(
(
(
(
(
—€at &bt Ec—¢d | (Qeds Qab), (Qd, Qac), (Bbes Bad)
(
(
(
(
(
(
(
(
(

3 —2¢e, Qsay,Bsa) , S=1,,a—1 a—1
4 ) 3
5 | —ateb—ectea | (Qe Qad)s (Bods Bac) 2
6 | —ca—€b+ectea | (BedsBav) 1
7T | —eatevtectea | (Beas@ab), (Bods Aac), (Bbes Xad) 3
8 | —catep—ec—ea | (e Bad)s (Abd, Bac) 2
9 | —ea—éebtéec—¢d | (Qed,Bab) 1
10 —&q + 2ep — €¢ Qlpes Qb)) 1
11 —&q + 26+ ec Bbes Qap) 1
12 —€q +€b + 2¢, Bbes Cac) 1
13| —eatep—2ec | (Qbe,Bac) 1
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Proof. The elements in the list are obviously weights and these are all of them for dimensional
reasons. In fact, from (4.1]) we only have to verify that

A1 (AF1 - 1)
: 29:4 - Z Ty
neEAy
holds. In fact, we know |[Af| = n(n — 1) and the right hand side is given by

n

z_: Z (2n+2a—6)+2(a—1)

a=1b=a+1 a=1

#4(5) 1z()

Easy calculations yield that left and right hand side coincide and therefore we found all
weights. O

In the following, we determine the curvature matrices M,. Since the indices of M,, are
pairs of roots («, 8) with a < 8 and o — 3 = 7 it makes sense to choose an ordering of these
pairs. We will do so in each M, separately. The proofs reduce to plugging in the values of
9oy Na,g and z, as determined for the classical groups in section @ into the equations of
proposition and will therefore be omitted. An exemplary calculation was made in the
proof of proposition [44]

Proposition 97 (Case #1). Let n = —e, + ¢, for 1 < a < b < n. We order the pairs
as follows v; = (ia, @ip), w; = (bt Captj), Tt = (Battps Baatt), Vi = (Bivs Bia)s 25 =

(Bo,p4j> Bapts) withi=1,.,a—1,t=1,..,.b—a—1and j=1,..,n—b. Then we have
% (VW) (VX)) (VY) (VZ)

w (WZ)
vyt wx)t X (XY) (X2)
yyr)r wy)" (xy)" v (YZ)
(VZz)

<

with the diagonal matrices being

V eSymq-1(R) Vis = 49q,, fori<s
W eSym,—p(R) Wis = 490y ., fori <s
X eSymp_q_1(R) Xis = 498,.., fori<s
Y eSyme—1(R) Yis =4gs., fori<s
Z €Sym,_p(R) Zis = 49p, 4., fori<s

and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

;e Ja a; —4 Qg
(VW) = _y9eiYen e (VX)is = g 92ia9Batsn (VY = gga’_ o
_4 ia sb
Joi by s 9Bi.ats 96,
gamg s
<VZ>is = _4¢ <WX>13 = _4g@b,b+i <WY>1'S = 4gab,b+i
9Bi b+s
oy by i 9By by
<WZ>iS = 9Pab <XY>19 = 74gﬂa+i,b <XZ>iS = 74gﬁb,b+s
4goéb,b+i

<YZ>iS = 4gﬁb,b+s

In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.
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Proposition 98 (Case 2). Letn = —e,—¢p for 1 < a < b < n. We order the pairs as follows

ZT; = (aiaaﬁib)vyi = (aibvﬁia)vzt = (aa+t,bvﬁa,a+t) with i = ]-7 . a— landt= 13 "7b —a—1
. Then we have

X (XY) (XZ)
My =1 (xY)" Y (Yz)
(X2)T (y2)T Z

with the diagonal matrices being

X eSym,—1(R) Xis = 49a., fori<s
Y eSymq—1(R) Yis = 49a., fori<s
Z €Symu,_p(R) Zis = 49000y fori<s

and the off diagonals being given by

—49a, =5 Ya;o9a
XY)is = s X7Z);, =47 aTTatsd YZ)is = —49a
< > {_4ga;1;9f¥m i#s < > 960ss < > Joatsp

Proposition 99 (Case #3). Let n = —2¢, for 1 < a < n. We order the pairs as follows
x; = (Qia, Bia) fori=1..a—1. Then we have

0 1=35
(Mﬁ)is = {4gasagﬂsa ;

1< S
gﬁis

Proposition 100 (Cases #4 — #9). Let 1 <a <b<c<d<n. We order the pairs as given
in the table from left to right. Then we have for n = —e, +€p + 6. —€q :

O _457%(19%17 49%d9(xab
Geagq 9Bac
‘2\477 — _4g"¥cdg”ab 0 _4gabd90ac
Gogq 9Bab
49acdgo¢ab _4gabdgaac 0
9Bac Gagp
Forn=—¢c,+¢ep—c.+e¢q:
O 74gabcguad
M, = 9an
n _4gabcgaad 0
9Bab
Forn=—¢c, —ep+e.+eq:
M, =0
Forn=—cq+ep+e.+eq:
0 _498ci9vab  498ca9vab
9Baa 9Bac
M, = | —49Fci9oa 0 _49Pva9ac
n 9Badq 9Bab
498ca900 g 98pa90ac 0
9Bac 9Bab
Forn=—c,+ep—¢c.—¢€q:
0 — 492 9bad
M, = 95ap
K —492bc98ad 0
9Bab
Forn=—cq—cp+e.—¢€q:

M, =0
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Since they are all one dimensional, we write the cases 10 — 13 in one matrix

Proposition 101 (Cases #10 — 413). We consider for 1 < a < b < ¢ < n the ordering
(bey @ab)s (Bbes Qab)s (Bbes ac)s (Qbe, Bac). The direct sum of the corresponding Més is given
by

_4 gag;gan’b O 0 O
0 —4 e 0 0
0 O _4 9B8pcY9aac O
ab
0 0 0 —4fopeffee
gﬁab

Proposition 102. The entries of the matriz of the trivial module are determined by the
diagonals of the matrices above :

(Mo)(aa)(88) = (Ma—p)(aB)(ap)

except for the diagonals. For o € A, the following holds
(MO)(aa)(aa) = 89(1

General modifications of SO(2n)

After completing the steps described in the beginning of the section in the case of SO(2n),
that is

1.) We move the diagonals of 10 — 13 into the matrix of the trivial module.
2.) The off diagonals of #3 to the diagonal of the (IWZ) block of #1.

3.) The off diagonals of #4 to the (VW) block of f1,the (X Z) block and the upper trian-
gular part of the (XY') block of #2.

4.) The off diagonal of #5 to the lower triangular part of the (XY") block of #2.

5.) The off diagonals of §7 to the (V' Z) block, the (VX) block and the upper triangular
part of the (VYY) block of f1.

6.) The off diagonal of 8 the lower triangular part of the (VYY) block of f1.

We remark that similarly to the modifications of SU(n + 1), in each step have a bijection
between the referenced entries of all matrices of the mentioned case fi.
Then the modified holomorphic curvature tensor is given by the following matrices

Proposition 103 (Case #1). Let n = —e4 + ¢ for 1 < a < b < n. We order the pairs

as follows v; = (Qiq, ip), w; = (Qbbt5, Qap+5), Tt = (Batt,ps Ba,atrt)sYi = (Biv, Bia)s 2 =
(Bo,p4j»> Bapts) withi=1,.,a—1,t=1,..,.b—a—1and j=1,..,n—b. Then we have

14 (VW) (VX) (VY) (VZ)
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with the diagonal matrices being

V eSymq—_1(R) Vis = 4Ga,, fori<s
W eSym,—p(R) Wis = 49ay ., fori < s
X eSymp_q_1(R) Xis =498,,., fori <s
Y eSym,—1(R) Yis =4gs,, fori<s
Z €Symu,_p(R) Zis = 498, .., fori <s

and the off diagonals being given by the following where i and s vary in the ranges determined
by the diagonals

JoiaJern b« 9oia9Bars, —49a,
(VW) = -7tk (V) = 87l (VY )i =8 o,
Gou; pys 9Bia+s - 96,
9aia9Bp, v+ s
<VZ>iS =-38 <WX>1S = _4gab,h+i <WY>ZS = 4gab,b+z‘
9Bi b s
oy b1 i98b b1+
<WZ>lS = { 9Pab <XY>iS = _4gﬂa+i,b <XZ>ZS = _4g[3b,b+s
4g(¥b,b+i

<YZ>iS = 4gﬁb,b+s
In the two case distinctions the upper case corresponds to i = s and the lower case to i # s.

Proposition 104 (Case #2). Let n = —e, — € for 1 < a < b < n. We order the pairs

as follows z; = (Qia, Biv),¥i = (b, Bia), 2t = (Qast by Baare) with i = 1,.,a — 1 and
t=1,...,b—a—1. Then we have
X (XY) (X2)
My =1 (&xY)" Y (YZ)
(X2t yz)r z
with the diagonal matrices being
X eSymg_1(R) Xis = 49a., fori<s
Y €Symq_1(R) Yis = 49a., fori<s
Z €Symp_q—1(R) Zis = 4900, fori<s

and the off diagonals being given by
—44., i=s o Ja
XY)is = e, X7 = 8707 70tsb YZ)is = —49ga
< > {_85}“.;1;9%@(; i#s < > 9Binrs < > Joatsp

Proposition 105. We give the entries of the matriz of the trivial module just for the upper
triangular part by symmetry, i.e. for the pairs («, ) with o < B.

1) Along the diagonal we have
(MO)(aa)(aa) = 89a

1) For the following pairs (o, 5) € {(®ia, ib), (b, ®aj), (B, Bak)s (Biv, Bia), (Brj, Baj),
(Qiay Biv), (b, Bia)s (Qkbs Cak)} we have

(MO)(oza)(/iB) = 4ga

i13) For the following pairs (o, B) € {(®ibs @ai)s (Biv, 0ai)s (Boj, ), (g, Baj)} we have
9a9p
Yo+

(Mo)(aa)(ps) = —8

Notice that the entries in the trivial module that have been doubled are 7).
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Chapter 8

The case of H(4)

In the following we consider the holomorphic curvature tensors for (G, T, Js4,9xr) for G
being a classical Lie group of rank 4 and show that there are four forms turning those tensors
positive definite. Afterwards, we go on to larger isotropy groups with their corresponding
Kahler Einstein metrics. By the result of section [5] the corresponding curvature matrices are
obtained from those of (G, T) via going to submatrices and plugging in different coefficients
for the metrics.

Before we continue to the calculations, we want to state the following useful

Lemma 106 (Auxiliary Lemma). Let M € Mat,(R) be given as the symmetric matriz
M;j = a; for i < j. Then we have

det(M) = ax H(CL1'+1 — ai).
i=1

In particular, if 0 < a; < a;11 holds, then M is positive semidefinite. Additionally, if strict
inequalities hold then M 1is positive definite.

Proof. The expression of the determinant is an easy exercise. The positive (semi-) definite-
ness, follows from Sylvester’s criterion for symmetric matrices once one notices that every
minor of M is again of the same type as M and hence the above determinant formula applies
also for the minors. O

8.1 The case of SU(5)

The positive roots in increasing order are
+_
Ay = {aus, aza, az5, o3, Q24, 25, 12, 13, 14, Q15 (8.1)
and we have the simple roots as follows on the Dynkin diagram:

12 Q23 Q34 Q45

O—0——C——0O

After applying the general modifications of section the matrices M,, representing the
modified holomorphic curvature tensor are indexed with n € Ay U{0}. In the case of SU(5)
this corresponds to the following:

First of all the roots —aq; with i = 2..5:

Gaszs Jazs Jaos

9@34 ga34
M*alz = ga23 ga24 ga24 M*OHS = g g
Q34 Jass
Gass Gazs Joos
M*Oé14 = (ga45) Mﬁaw - ([Z))

89
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Then the roots —aw; with ¢ = 3..5:

—9 9ais9aszy -9 Jajs9aszs

Gaiz

Goiy Jois 72904129&45
M — 99129034 M — oz Jays
—Q23 T - g Gazy Jasy —Q24 T
a1y —99a1290a45
Joqz9a: g Gauss
_99a129a35 g g 15
Jays 34 o35

M—a25 = (ga12)

and the roots —ag; with ¢ =4, 5:

Gay139ays
Gais Gazs -2 Ja
15 g g
_ gz Jays _ 13 Ja23
M*a34 - Jass Gaos —2 Jans M7a35 -
Gazs ooz
9139245 9ag3zYous
-2 -2 < Gaus

Joys LD

Last but not least —ays:
Yars Gaos Jass
Qa5 T Gazs Gozs Josy
Gazs Goss Jasa

In the increasing ordering of the basis from equation (8.1) we have that the matrix My on
the trivial module is given by:

29045 *  Gauws | O *  Gass | O 0 * ags
* 29055 Gosa | ¥ Gasa 0 | 0 % gay, O
Gaus | Gosa 20ass| * 0 Gass| O * 0 9gass
0 * * 120055 Gass GJass | *  Gass 0O 0

* ga34 0 gaZS 290(24 ga24 * 0 gOé24 O
Gass | 0 Gass | Gass Gass 29ass| * 0 0 Jass

0 0 0 * * * 120015 Yars Gars YGans
0 * S 0 | Yo12 29015 Yars Jaus
* gO¢34 0 O Yooy O Jaio ga13 29&14 Jos

ga45 0 ga35 0 0 ga25 Yoz gals Gays 29015

where * at the entry («, 3) is a place holder for 723“& for formatting reasons.

Even though the above corresponds to (SU(5), T, J;Z, g) with an arbitrary Kéhler metric,
by corollary [50] the curvature tensor with a different isotropy group K is given by minors
of the above together with the property that the metric on the simple roots of K is zero.
Hence we see that for any isotropy group the matrices (the corresponding submatrices of
them resp.) M_q,,, M_o,y M_a, M_qys, M_o, , M_,,, are positive semidefinite, by the
auxiliary lemma, which is sufficient proposition Furthermore, we have

det(M_a24) = Jai29a4s <1 - 4W>
G

which is nonnegative because ¢o,; = ga,s + Jass T Gaus iMPplies
o — 4929045 = (Jara + Jouis)* = Aar2Gous = (Gaus — Jaus)™-

Therefore, we only have to consider My,M_,,, and M_,,,. Since they are more complicated,
we consider them separately in all cases.
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Toric Isotropy

Now we consider the Kahler Einstein metric of (SU(5), T, Jstq), which is given on the simple
roots by

Q23 | (i34 | O45

g | 1 | 1 1|1

Then we have

1 -2-1 2 1 -1
M_ogy=|-21 1 Mo, 11 -2
-1 1 2 -1-2 1

4 3
2(-1 10 -3 1[0 0 —31
-1/2 1|-11 0|0 -3 10
11 4(-30 20 —2 0 2
0[-1-3/2 1 1|-11 00
4 4
Mo—_§10142_§020
1{0 2|1 2 6|-20 03
3
00 0|-1-3-3]2 1 11
0|]-3-2[1 0 0|1 4 22
-311 0]0 2 0|1 2 63
110 2(0 0 3|1 2 338

By calculating the determinants of the principal minors, we note that all of them are positive
and hence no further 4 forms are needed and we get that (SU(5), T, Jstd, g ) has positive
holomorphic curvature.

Larger Isotropy

By the previous discussion, we know that the isotropy groups we have to consider corres-
pond to painted Dynkin diagrams, which leaves us with the following groups K and the
corresponding painted Dynkin diagram. We also calculate v} from which gives us the
Kahler Einstein metric. In addition, we only consider the cases, where dim(3(K)) > 2 since
the other cases are covered by the result of Itoh and theorem

K D= (V,E) Vi | Yars | Gass | Gass | Gaus
su2) T @ —O—O—C0O |- 0| 2| 1|1
stsu@) T | O—@—O—0O|e-e| 2| 0| 2 | 1
s st | O—O—— @O |e—c| 1 | 2] 0 | 2
msue | O—O—O—@ - 1 | 1| 2| o0

By the symmetry of the Dynkin diagram of SU(5), it is sufficient to consider the first two

cases.
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Isotropy group K = SU(2) T?

By proposition A8 we consider the restriction of the holomorphic curvature tensor to m and
then plug in the coefficients of the metric given above. The act of restricting corresponds
by corollary [50] to erasing all rows and columns whose index contains ajs. Yielding

3 3 _6
2 2 7
11
_ — 3 3 6
M-—a, = Moage=1| 5 5 —%
12 o 6
—-6_6 1
7 7

which are obviously positive semi-definite by calculating the minors. The matrix of the
trivial module is given by

2 -1 1]0 -1 0 -1
6 6
=112 1 |- 1 0j—¢ 1 0
12 12
11 4|22 0 2/~ 0 2
6 _ 12 3 3| 3
O|-5-%|3 3 33 00
_ 10 3 5 5
3 5 7
110 2|35 3 770 0 3
6 12| 3 3 3
O l=5—%]2 003 35 3
10 5 3 5
-=/1 00 3 0 35 5 3
5/ 3 5
110 2|0 0 315 35 7
which is positive definite.
Isotropy group K =S!' SU(2) T?
In this case we have
3 _3 _15
2 2 78 3
- 3 3 3 M 1 =1
M*Olzs - ) 2 2 —Q34 3 3
_15 3 5 42
g 2 2

which are obviously positive semi-definite by calculating the minors. The matrix of the
trivial module is given by

[N}
|
allo
|
[Sal[e
—
(an)
o
|
ol
—

o
|
[SI[eY

o
|
=

Ut W (e O
Nl

=
t

My

I
-

piw W | O Niw
0|

O vt O | Ot Njw | =
—
[

jen) O vw [N W

o
|
[S][eY
|
ool 5
I
N
|
|

[ [O8)

w Y NWw Nw | O Nw | O Nw
(0] W Nw Nw (o O (oo O

O viw O
N N Nl W
W P W Nw | O O

—
o
vt O

= = un

= N O O

This is not positive definite. In fact, for v = (0, —3,—2,1,-1,0,0) we have

2

vMyvT = —



8.2. THE CASE OF SO(9) 93

Hence further four forms are necessary. As we saw in proposition I} we may add any
negative value symmetrically to the off diagonal entries of My, then the four form realizing
this change only improves positivity of the other matrices M,,. In the case of this K, it is
enough to add —1 to the entries (Mp)s 7 and (Mp)7,6. The resulting matrix is now positive
definite as one verifies by calculating the principal minors.

8.2 The case of SO(9)

The positive roots are

+
Ag — {OL34, Q23,0024, 0012, V13, (X14, (82)

B34,823, B4, P12, B13, P14,

€4,€3,€2,€1}
and the simple roots are placed on the Dynkin diagram as follows

a2 Q23 Q34 €4

O—O0—C=0

After applying the general modifications of section the matrices M,, representing the
modified holomorphic curvature tensor are indexed with n € Ay U{0}. In the case of SO(9)
this corresponds to the following:

We begin with the ones corresponding to —ay;.

49(123 490423 89&;:;?523 4ga23 29(123
49ass 49az, 490z, 89&;219;24 29054
M—(!n = 8% 490424 49,523 4-9324 2952
49023 ga;;gfﬂ 49524 4gﬁ24 2952
(ga )2
290t23 29a24 2982 2952 ﬁ
Aass | —4Gay, 8782 | 2g,,,
49524 49[334 72964
_490534 49323 _49534 _2983
M_q,, = s G5 M_o, = 49831 49854 | —29e,
817 _49534 49534 2963 (9ey)?
9813 72 72 Jeq
(G )? ey ey 9
2ga34 _2983 2963 . 1
9813
_QYe129a34 | _ _ Q92129834 | _ g 9x129e3
4ga12 8 Joa 4ga12 8 9814 4 geq
Joai59a 9as34 9
*Sﬁ 490z34 490434 ?T:M 290434
M_o,, = —4ga,y, 4903, 4985 49834 29e,
—8 ga;ZTfM 8 ga;zggju 4983, 4933, 29e,
9o199e (95' )2
—4% 290, 29e, 29, ﬁ
T L v e B
M . 8% 4985, | —49850| —29e,
—Q24 T
_490412 _49534 49514 2954
3
4 Gaq159ey _2954 2954 (954)

9eq 9B24
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9139 Ga139e
4ga13 4g0¢23 _490413 -8 ;21524 —4 ;21 4
490423 490423 785]&;2?514 749&23 749(1;;:2954
M*a34 = 749013 78% 49[514 49[324 2984
_8% _4ga23 49524 49/324 29e,
_pY9a139e4 g Y9a39ey (954)2
4= 4= 29e, 29, T
Those corresponding to j3;; are
49024 490
M_BIQ =0 M_/Blii = (49&23) M—/314 .
490434 490434
a159a
490112 7490412 8‘(];2T34
M_/824 = _490412 49(114 _490434
a9 9a
92271334 _4ga34 4ga34
o139
49(113 490423 _4ga13 - #
Jasz o
M - 4ga23 490423 - ﬁ 7490&23
—Bs
_4ga13 _8% 490414 490424
78% 7490423 49(124 490424
and then we have for the &;:
29&12 _29a12 4g091;1!263 49091;1‘364
2962 2953 2984
_290612 2951 _2983 _2984
M*EI = 2963 2963 2964 Mffz = Garnd
4% _2963 2963 2g64
2964 2964 2984 o 1935
4% 72964 2.964 2964
14
9aq139e Gaq139e
oss oz | ~2ens —4LE2 (402000
Jasz ge Jaos Je
29023 290(23 _4ﬁ _2ga23 4%
M_., = —29a1s 74% 29., 29., —29e,
_4% _29a23 2982 2g62 _2964
9ay139=4 GagzGey _ _
4 9814 4 9824 2984 2954 2954
Go149e Gaq49e
290614 2ga24 29!134 _290414 —4 91;122 —4 91;133
Gasy ge Gaogy e
290424 29(124 290434 _4# _290424 _4#
Gagy 9e Gazs9e
Mo — 2904, 2904, 200y, |—4 93;131 —4 93;232 —29as,
—€4
_49ag1;19;2 _29a24 _49ag3;2152 2982 2962 2963
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Ordering the basis as given in (8.2)) the matrix of the trivial module is given by

A (AB) (AC)
My=| (AB)T B (BC)
(AC)T (BC)T C

with
80ass| * AGas,| 0 *  4gag, 8985449851 49854 0 4985, 498,
*  8Gass 49ass| *  4gass O 49854 |89825 4984|4985 49825 O
Ao 49054 |49ass 89ass| * 0 4gay, B 49854(49824 8984|4980 0 498,
0 * *  |8Ga1s 4901 4901, 0 1498,, 498489812 498.5 49814
* |49ass 0 |49a1s 8Yars 49ars 49854 498,50 |498,5 89815 49814
49ass| 0 490z, (4901 49ars 89ars 49621 O 4904|4964 49514 89514
0 |49a,, * 0 4gns, *
N T o B P PP
¢= zﬁj <g’f>2 o Eﬁi \4B) = ; 49:24 2 49524 4 O A *
G)? (g (i?f . ot
G G 0na Jey x| % 0 |49a:s 0  4gaqs
x| 0 * 400, 490y, O

#* 2005, 0 0 20e, 29e5 0 0
0 *x 2¢4,, O 0 2¢c 29, O
% 0 2g, 0 2 0 2 0
<AC> _ g 24 <BC> _ 954 gEQ
0 O ®k 200, 0 0 2¢., 29,
0 *x 0 294, 0 2¢9., 0 2g¢.,
xk 0 0 294, 2ge, 0 0 2g¢.,
where we used *( respectively *x ) at the entry («,) as place holder for 78%
(respectively — 43“—%). In the following, we present the full modification for the toric

isotropy.

Toric Isotropy

Now we consider the Kahler Einstein metric of (SO(9), T, Js:q), which is given on the simple
roots by

« Q12 | (23 | (i34 | €4

| 2 | 2] 2 |1

First of all, we notice that we do not have to consider the matrices M_,, for n being one of
{12, P13, P14, P23}, since they are positive semi definite by the auxiliary lemma. We remark
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here that also M_., is positive definite but we will need it to compensate

matrices. The matrix of the trivial module is given by

for the other

16 -8 8 0 -2 8]0 8 —-120 8 -%/-3 4 0 0
-8 16 8 -8 8 0 |-2 0 8 8-2 0|0 -2 4 0
8 8 32 -2 0 16|-16 16 0 16 0 -5{-% 0 8 0
0 8-216 8 8|0 -%-120 8 38 0 -2 4
-2 8 0 8 32 16|-16-% 0 16 0 16 2 0 8
8 0 16 8 16 48 (-3 0 -2424 24 0 -2 0 0 12
0 —32-16 0 —16-9/32 16 16 0 16 162 6 0 0
My — 8 0 16 -9 -8 0|16 64 243232 0|0 6 10 0
-12 8 0 —-12 0 —24/16 24 48 24 0 242 0 10 0
0 8 16 0 16 24| 0 32 24 96 40 32/ 0 0 10 14
8 -4 0 8 0 24(16 32 0 408 32[0 6 0 14
- 0 -% 8 16 0|16 0 243232 642 0 0 14
-5 0 -¥ 90 o0o-%22 0 200 2|1 § & &
4 -2 0 0 -%90|6 6 006 01 3 2 2
0 4 8 -2 0 0|0 10 10100 0|+ 2 5 2
0 0 0 4 8 12/0 0 0 1414 14|45 & B 7

It is not positive definite and hence further four forms are necessary. The other matrices are

@12 T

8 838 4
8 16 16 16 8
32163224 10
8 1624 24 10
4 8101033

24 16 —2
16 16 —2
-2-2 4

@13 T

32

8 —8 2 4
-8 32 —16 —6

2 16 16 6

9

4 -6 6 %

16 24

8§ —1&-g8-8-2

16

S 8 8 8 4

-8 8 40 16 6

-8 8 16 16 6

24 9

24 6 6 ¢
16 8 —16 —16 —1¢
32 8
8 8 -2 -8 -3
—-16 =32 32 24 2
~16 —8 24 24 2
16 8 1
-7 75 2 2 g
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The remaining matrices are

6 16 8 —16 -2
8 8 8 -8 -8
Mopu=]-824-8 Mopou = 16 -8 24 16
16 U
e —32 .8 16 16
and
10 6 2 1og
414 —6 -2
M—Elz 662 M—EQZ 192
Y 9o 2 66 2
1 22 2
12 8 4 —12-10-38
8§ 4 -8 —20 9 >
° 8 8 4 -2 8 -6
14 -5 4 4 4 -2 4
_28 _ 5 _
M_,=| -8 -1 14 10 2| M,= ’
-12-2 -2 14 10 6
-2 -4 10 10 -2
, ~10 -8 -5 10 10 6
S 3§ 4 6 6 6

5

One observes that in the «;; matrices positive definiteness is prevented by the relatively
small last entry on the diagonal. Not using the actual criteria of diagonal dominance for
positive definiteness but inspired by its idea , we will use four forms to increase that diagonal
entry and decrease the absolute values of the entries in the last column and row of these
matrices. Increasing the diagonal will modify M, and changing off diagonal entries modifies
the other M,. We represent all elementary operations in the following table, where we use
the same notation as in the modifications of (G2, T, Jgq) in section

Exemplary, we explain how we obtain the first forced modification from the first intended
modification:

Example 107. The entry (1,5) of M_,,, corresponds by proposition to the pair of
pairs of roots (a3, a13), (£2,€1). By equation the other entry we are forced to change
corresponds to the pair (o3, €2), (c13,€1) which is an entry of the matriz M, with n =
—a1g + (a3 —e3) = —e3. By proposition the pair corresponds to the entry (2,1) of said
matriz. By symmetry that is the same as (1,2).
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Value| Intended Forced Value| Intended Forced
=2 | (Moan)as | (Mo)a2) || =15 |(Moas)@a)| (M—c,)3)
—% (M*QIZ)(2,5) (M 64) 1,2) % (M,a24)(4’4) (M )(13 15)
=3 | (M_a)@s) | (M) || =25 |(Moas)@s)| (M—c,)(23)
_% (Mfa12)(4,5) (M- 54) _% (Mfa34)(4,5) (M- 52) (3,4)

§ | (M) (Mo)(15 16) || 1 |((Moag)s.5)| (Mo)s g
1| (M_ayy)aa | Mc)as) || =7 | Mo)sas) | (Mc,)@2
5l (Moo | (M—c)es) || =3 | (Mo)@e) | (M—cy)@n

T (Moa)sa) | (Moc)we || By | (Mo)as) | (M_cy) 5.5
5| (M—ayy) @ | (Mo)aaae) || =15 | (Mo)saa) | (M—c,)(3.,3)
S (Moa)as) | M—cy)@a || 25 | (Mo)@as) | (M—cy) .1
| (Moa)@s) | (M_)@s) || =5 | (Mo)eas) | (M—c,)(s.5
2| (M—ay)33) | (Mo)as,e) || =25 | (Mo)o,1s) | (M—c,)(1,1)
1| (M_ays)@s) | (M—c)23) || =2 | (Mo)aoae) | (M-c,)(2.2)
=53 | (Moo)3s) | (M—c))a2) || =% | (Mo)a112) |(M-ay4)(3.3)
_% (Mfazg)(4,5) (M 64) 5,6) % (MO)(11,14) (M—sl)(2,2)

9| (M_ayy)s5) | (Mo)aansy || =35 | (Mo)aie) | (M—c,)(3,3)
S| (M—as) @) | (M—cy) (4 51 (Mo)azas) | (M—cy)@3.3)

By calculating the determinants of the minors of the resulting matrices, we see that all of

them are positive except for My. In fact, the modified matrices are:

@12 T

32
8 8323

8 16 16 16

8 16 24 24

17 34 17 17

3216 32 24 4

I~ 5|5 25 il

[
(S

@23

32
8§ -8 % 3
-8 32 —16 —3
o
o2 16 16 &
9 31 9
3 -3 % 3
g8 —-Y-8g-8-
-8 8 8 8 3
=| -8 8 40 16 %
-8 8 16 16 3
24 9 9 9
-7 3 3 3 1
16 8 —16 —16 —1°
32 8
8 8 —%F -8 —%
-16 -3 8 24 2
—-16 -8 24 24 2
_16 _8 123 3 1
7 5 80 2 2
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The remaining matrices are

25 _ 4 12 1
2051 15 23 4 5
200 2 10 _4 43 _15 23
— 15 65 197 _ 2 2 10
Ma=| % 5w Ma=lb e s
23 197 3 5 2 10 2
10 80 4 1 -2 5 8
10 2 80
12 % 5 -12-10-38
g8 2 -8 -2 2
5 3 46 28
B 8 5 -2 -8 —6
23 4 14 _4 4
5 3 3 28
5 5 4 -8 5 —4
M*E = —8 _ 14 641 23 _ 23 M7€ =
3 3 40 2 10 4 _19 28 _28 14 23 65
—20 _4 23 109 _—23 3 5 ]
3 2 10 23 15
~-10 -8 -5 2 10 ¥
2 % _% _% % 36 65 15
16 -8 8 0 -2 8|0 8 -12 0 8 -%-8 4 0 0
-8 16 8 -8 8 0[-2 0 8 8 -2 0|0 -2 4 0
32 64 16 27
8 8 32 -2 0 16[-16 16 0 16 0 %= 0 20 0
32 64 40 7
0 8-216 8 8|0 -%-120 8 8|0 0 -4 7
-2 8 0 8 32 16|-16-% 0 16 0 160 -2 0 8
8 0 16 8 16 48|-% 0 —24 24 24 0 -2 0 0 12
32 96 267
0 —-%2-16 0 —16-9/32 16 16 0 16 16|23 6 0 0
8 0 16 -%-% 016 64 24 32 32 0|0 35 10 0
M(]:
~12 8 0 —12 0 —24/16 24 48 24 0 24 (2T o0 B o
0 8 16 0 16 24| 0 32 24 96 40 32| 0 0 14913
40 39 31 479
8 -2 0 8 0 24|16 32 0 40 8 2|0 3 0 42
-0 -% 8 16 0|16 0 24 32 32 64|83 0 0 14
8 16 24| 267 237 13 1 1
24 48 57 31
4 -2 0 0 -2 0|6 5 0 0 3% 0]0 3 0 0
27 40 35 1949 1 5
0 4 2L -4 0 o0 10 Y o o|L 0 5 2
7 13 479 1 5
0 0 0 % 8 12{0 0 0 ¥4 4 L o 2 7

Now all M,, are positive definite and the following argument turns also My positive definite
and therefore finishes the proof for (SO(9), T, Jsa4). The rows and columns 10 and 16 of
My have nonnegative entries. Hence, by the same argument as in the example of G5 we
erase all off diagonal entries of rows and columns 10 and 16. Then the new M is a block
matrix consisting of a positive definite two dimensional diagonal block and a 14 x 14 block.
Calculating the minors of that block proves that it is positive definite and hence we a have

positive modified holomorphic curvature tensor.

Larger Isotropy

We will not present the above for all K in the same detail. In fact, we will present here the dif-
ferent possible K and their K&hler Einstein metrics. By corollary [50] the curvature matrices
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are then obtained by considering the correct submatrices of the matrices of (SO(9), T, Jstq)
with the new metric coefficients. The difficulty lies in determining suitable four forms to
turn these matrices positive definite. Even though the four forms are essential to prove
positive holomorphic curvature, it does not seem to be very relevant to see the actual values
at this point. Therefore we present them in the appendix for the interested reader. For each
K, we will give the indices of the rows and columns of the curvature matrices that have to
be erased to obtain the restriction and give a detailed table of the used four forms. We only
consider the case dim(3(k)) > 1, since the other cases are covered by Itoh.

K D:(VvE) 7;{ Yarz | Gazs | Yass | ey

SU(2) T3 ® O O>0| apn 0 3|21
stsue) 2 |O—@—O==0|  ay 310 3|1
T su@ s |O—O—@0O| a 2| 3| 0|2

T3 SU(2) O—0O—C>@ - 2 2] 3o

SU(3) T2 ® @ 0O 2 |00 41

su@) st su@) s' | @O @O |ap—amn| 0| 4| 0|2
su) 12 su@2) @ O—C=@| ap+ea | 0| 3] 3 |0
stsu@) st |O—@—@O| 200 | 4] 0] 03

st su@) st su@) | O—@—C@| ans+es | 3| 0| 4|0

T2 SO(5) O—C—@—@|3,+c, | 2|5 |00

8.3 The case of Sp(4)

The positive roots are

AF = {4, as3,004, 12, 013, 14, (8.3)
B34,523, B24, P12, F13, P14,
V4,735 72, ’Yl}

and the simple roots are placed on the Dynkin diagram as follows

Q12 Q23 (i34 Y4

O—0O0—C=0O

After applying the general modifications of section the matrices M,, representing the
modified holomorphic curvature tensor are indexed with n € Ay U{0}. In the case of Sp(4)
this corresponds to the following:
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We begin with the ones corresponding to —ay;.

Goo3(Jar1319615)
Gass Gass 98 Yazs Jaszs|Yass
12
Jagy (Jay4+9p15)
Gas oy Gazs 9515 Goza|GJoay
gagg(gcx13+g/312)
M o 9614 Gazs 9823 9824 9B23 |9B2s
—Q12 T
Jorgy (G140 +9815)
Yaos 9B24 9B24 9B24 |9B24
9812
Gass Gazs 9Ba2s3 9B24 9B12| 92
Yas Yooy 9Bas 9Bas G2 | G2
Goza (9a14+9813)
Jasa Jasa 95, Jass |Jaza
13
Yasa 9823 9B34 9B2s | 9vs
— Jozq (9o14+9813)
M-y, 95 9834 9834 9834 |9B3a
13
Gosa 9823 9834 9813 | Gvs
Gaszy 9’73 9/834 g’Ys g’Ys
9B24 B34 |9B24|9va
M 9834 B34 |9B34|9va
—Q14 T
9B24 9B34 |9B14 |94
g’Y4 g"/4 g’Y4 g’m
g _ 99139034 __ 912973 992129834 99212983 | 9Y9ay29vs
12 Jaig 9vq 9814 9812 9813
Joyo Ja: Goga (Gaoss +9803)
-2 51711434 Gasza Gasza 4 g;; 2 Yasa Gasza
_ 9a129v3
M - 91 Jaszy 9pB13 9B3a 9B2s s
—Q23 T
990129834 | Joza (Goos +9823)
2 9514 9503 9834 9834 9B3a 9Bsa
__ 992129823
2 9512 Yasza 9823 9834 9823 s
_ 99212973
2 9613 Goza s 9Bsa s s
g 72-‘7&129534 _ 91294 72-‘70‘129524 _ 99212974
12 9813 9v 9812 9814
__ 992129834
2 9513 9B3a 9Bsa 9Bsa Gva
_ _9a129v4
M—a24 - 9y 9834 9B14 9B24 Gva
9o129824
—2 9510 9B3a 9B24 9B24 s
912974
—2 9814 9va 9va 9va 94
_ 91394 _29u13gﬁ24 _29(1139/334 _29a139’v4
Gous Yoz 971 9812 9813 9814
Gas3 98 Jao3 9y Gas3 98 Jaoss 9y
_ 992239814 _ Y3974 | 99239634 | 9Yen39vs
Jazs Jazs 9812 9o 9823 9Bos4
_Ya139v4 992239814
M N 9y 2 961a 9B14 9B24 9834 G4
Tosa _290139/324 __9oao3Yvs
9512 9y 9824 9Bas 9B3a Iva
_ 992139834 _ 99239834
2 9513 2 9523 9834 9834 9B3a va
_992139v4  _9YGaa39v4
2 9514 2 9P s 9va 9va 94
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Those corresponding to f3;; are

Gass |Jass

M—ﬁu = (gau) M—ﬁls =
gocgg galg
_Ya159v3 Jaj29as3
Yazs Gazs|Gas Joz 9v1 2 9812
— 9ay1297v3
M*ﬁm = | Yaszs Gasza|Gasa M*ﬁ23 = T o Jos Gaos
Gai109ass
Gazs Gazs|Gony Gass Gaos
9812
Jors 9212974 |9 912934 |9 Jaiz g
971 9813 9812
Gai159vy
M N - g+, oy Gaszy Gaoy
—Pau = GoyGogy
2 9815 Yaza Yaszy Gaszy
Ja109any
2 9510 Yaza Yaza Yas
_ 9a13974 29a139a24 29a13ga34
ga13 gagg 9v1 9812 9813
y ) 29a23!]a14 _ Yag3 vy 2ga239u34
Yoras Yoras 9812 9vo 9823
_ Ja139v4 o YGaszJais
M*B34 - - 91 2 9819 gOé14 ga24 goz34
Goyg ooy ooz 94
2 9819 - 9o YJoza Gaoy Gasz,y
Gay139asy GagzGagy
2 9813 2 9Bo3 Gaszs Jaszy Jaszy
and then we have for the ~;:
2
( )2 2(-‘7&13) G253 (29815 =98s3)
M_. =0 M. . = 29@;2 M . = 9v1 9pr2
n 72 g’Yl RE Joaogs (29512 _9523) 2(9&23)
9812 92
2
2(9<!14) 94 (29815 =9834) Ga34(29813—9634)
9v1 9812 ) 9813
M7 — Googy (291312 _gﬁ24) 2 (9&24) Jasy (29323 _9ﬁ34)
R 9812 AP 9823 )
Gagy (29[113 79[134) Gagy (29[323 79[*34) 9 (9034)
9813 9823 9y

Ordering the basis as given in (8.2)) the matrix of the trivial module is given by
A (AB) (AC)
My=|(AB)T B (BC)
(AC\T (BC)T ©

with
20054 *  Gasa| O * Gau 29834 | 9Bsa 9Bsa | O 9Bas 9Paa
* 20025 Gass | *  Gass O 9834|2982 924 | 9Bos 9B2s O
g | e | Gozs 29as,| * 0 Yas g | 9|96 20624 9821 0 9B
0 * * 120015 Yars Yars 0 | 9823 9824 29812 9815 YBra
* | Gass 0 | Gars 29015 Gars 9Bsa [ 9B2s O | 9815 29815 YBua
Josa | 0 Gass [Garz Gars 29ans 98sa | O 982 | 981s 9B1s 2981
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el | g, o« 0 oy
2(9(123)2 O
g"Y‘L 0 0 0 * g_y2 ga23 ga23 *
(grvz )2
C— 0 9vs 0 0 <AB> _ * Jaoy Qﬁ Yooy _ 0 *
0 0 g’Y2 0 0 * * 2% Jois Gais
2
0 0 0 g, * . 0 | gay 2985 g,
2
* 0 * 9(114 g(l14 2%
* oy 0 0 G4 9Bs4 0 0
0 * Gan; O 0 gys 9pos O
x* 0 o 0 0 0
<AC> _ Gz <BC> _ G4 9B24
00 * Gais 0 0 g’YQ gﬁm
0 = 0 Gais 0 Gvs 0 9p13
* 0 0 Gaia G4 0 0 914

where we used * at the entry («, 8) as place holder for
Similar to the case of SO(9), we notice that the matrices M_g,,, M_g,, and M_g,, are
positive semidefinite by the auxiliary lemma for any kind of metric with go43 > ga, which
is true for the Kihler Einstein metrics for all isotropy groups K. However, in some cases
we might need the matrices for —n = P12, S13, f14 to compensate for other matrices. In the
following, we do the full modification for the toric isotropy.

Toric Isotropy

-2 9o gs
o ’

Now we consider the Kahler Einstein metric of (Sp(4), T, Jstq), which is given on the simple

roots by

12

Q23

34

Y4

Yo
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The matrix of the trivial module is given by

2 -1 1 0 -3 1|4 1 =20 1 -3/-32 1 00
-12 1 -1 1 0|-% 5 1 1-20/[0 -2 10
1 1 4 -3 0 21-22 2 2 0 -%2/-20 20
0 -1 -3 2 1 1]0 -3 -84+ 1 1|0 0—-21
-1 0 1 4 2|-2-290 2 1 2|0 —-% 0 2
1 0 2 1 2 6[-3 0 -%23 3 2|-20 0 3
;3 —3-2 0 -2-3/6 3 303 3[2 3 00
My — 1 2 2 -2-% 0|3 10 455 0[]0 4 50
-1 3 -2 0 -%/3 4 8 4 0 42 0 40
o 1 2 %+ 2 3|0 2 4146 5|0 0 67
1 -2 0 1 1 3[3 2 0612 5|0 4 06
-2 0 -2 1 2 2|3 0 455 102 0 065
-0 -2 0 0 22 0 2 00 2{2 0 00
1 -2 0 0 -3 03 4 004 0|0 4 00
01 2 -290 0[0 5 46 0 0[0 0 60
o0 0 1 2 3[0 0 076 5[0 0 038

It is not positive definite and hence further four forms are necessary. The other matrices are

M_,, =

Q24

—_

[SHFNEN | [N

112111
122222
225455
1204444
125476
125466

4342

3332

4352

2222

SR

33 3 2

35 4 2

3.4 4 2

2 2 2 2

Q34

3
11311
15354
33333
15364
14344

aiz —

=
(=)

—_

|
ol

gloy NI WIN

|
wis NS

— = ol = e

=N

L
;N\»—A

~

[\

otjco

e =~

N

= ot W O

I
o

[y

|
silo

W W W w uiN
~

N|=

=
o

~

N W e Ot

= ot W ot =

o= \1‘

N W e

—
[}

ol

I

[Si{[= N ]

N W W W

|
= oo

NN
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The remaining matrices are

11
12

M_p,, = (

M*ﬁm = (1)

—
Q- -
—N

| [a\} —
I
— | o~
N~ —
Il
]
Al
Q.

212
111
213

M-_p,,

oo~ | [a\} N —
—le
i oI~ ™M [ —
=™
— — Rell oy _ [a\]}Te)
|
oI~ aen

M*ﬁ:m =

—
<~ AN — (o]
=M o= =
<
1,_ o — (o]
I
— | e <~
/|\
I
<
Al
T

and

0

—

M Mo~
Q= s o

ol - mic
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Now we have to modify these as follows:

My

Value| Intended Forced Value| Intended Forced
31 (Moan)ae | (M—ag)a2) 5 [(M_a.,)3.3)| (Mo)(10,12)
26 | Moai)as) | (Mosg)2) =8 |{(M_as)1,3)|(M-py,) (1,3)
1| (Moo | (Mop)az) —3 |(M_ag)2.0)|(M-py.) (2.9
T (Moo | (Mopi)ao i |(Moas)an| (Mo)ise)
1| Moa)ae) | (Mogay)23) 5 |((M_ag)e2)| (Mo)wes)

5 | Moo | (M—y)a2) B M _ay)i.3)| (Mo)a1,12)
1| (Moan)ee) | (Mg e T |(Moag)@e| (Mo)s)
g | (Moo | (Mo)es) 8 |(Moas) )| (Mo
3 (Meap)o) | (Mo E N (M_as))66)| (Mo)(7.13)
3 | (Moa)@s | (Mo)sa 1 | (M) | (Mo) o)
1| (Moa)@ay | (Mo)o2) Lo (M) | (Mo)es,in
5 | (M_a)as) | (M—y)as) 5| (Moy)@a) | (Mo)s)
75 | (Moo | (Moay,)s.6) T M)y | (Mo

15 | (M-azy) 20y | (M) (2,) 3 | (M)@a | (Mo)se
T | Moazy)@s) | (Mo)aon 5 | (M)@s) | (Mo)a
3 | (M_az)ee) | (Mo)sa 1 | M)y |[(Mop)e)

The modified matrix of the trivial module is given by
2 -1 1 0 -3 10 1 =80 & -2|-21 00
-1 2 I -1 % 0|-%2 0 1 1-2 00 -% 10
1 I 4 -2 0 1-22 02 0 -2-20 20
0 -1 -3 2 1 1]0 -3 -%20 1 1[0 0-%1
-2 2 0 1 4 I|-2-Z o0 20 2|0 -%302
1 0o 8 1 I 6|-3 0 -233 0|[-20 03
0 -3-2 90 -2-36 3 3 03 3[4 2 00
o 2 52 o0|3 10 4§ 5% 0[]0 § 50
-5 1 0 =% o0 -3 4L 84 0 L2 0 40
01 2 0 2 3|0 5 4142 0/0 0 697
;-2 0 1 0 3|3 2 0212 20 4 06
-2 0 -2 1 2 03 0 Lo 2 102 0 035
-2 0 -2 0 o0 -2Y 0 200 2(2 0 00
1 -2 0 0 -5 0% I 004 00 4 00
01 2 -0 0/0 5 46 0 0[0 0 60
0 0 0 1 3/0 0 07 6 5[0 0 038
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It is not positive definite and hence further four forms are necessary. The other matrices are

17 8 o 77
8 1 756 11 11
710 g g 11511
4 8 1z =4 15354
82 2 455
M_q, = M_n,., = %3333
2 288 4 1T 44
12 4 15364
T2 5 476
o 14344
7 1 O 466
2 1 _6 _10 _4
I =3-35-5-7 3
4342 -3 1 15 11
33 1 29
M 33345 M -zt F 3 5 4
" —Q23
4352 -$ 8 3 3 3 3
33 10
23822 -= 1 5 3 5 4
4 9
-3 1 4 3 4 3
9 1 _13_16 _9 _8
L _1_1_8 4 1 1 8 ~ 7 5
4775 1 9 _10 _3 _6 4
1 8 7 24 5
-13 3 3 2 L1310 51 4 g 31
Mooy =] -3 3 10 4 2 M-ag, = 186 375 ) 21 N
. -= -5 4 T 3 2
-23 4 4 2 6 27
—%2 2 2 2 s 31 13
—= -1 16 2 2 G
The remaining matrices are
L
M_p,, = (1) M-p,, 1
12
212 1 —357%
M_g,=11 % 1 M_p,, _% 2 %
213 Pl
5 8 2
L 114 20873
1437 01 8192
131 7245
1
M*524 1 ! Mﬁﬁ“ % g 321
5 1 11 8199 9 1
% 212 7 24
%%111
and
1
M—"/l_() M-, 9
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These are all positive definite, except for My but as in the previous chapters we can
discard rows and columns 10 and 16 since all entries are nonnegative. The resulting 14 x 14
matrix is positive definite, which finishes the proof for K = T.

Larger Isotropy

As in the case of SO(9), we will not present the above for all K in the same detail. In
fact, we will present here the different possible K and their Kdhler Einstein metrics. By
corollary [50] the curvature matrices are then obtained by considering the correct submatrices
of the matrices of (Sp(4), T, Jstq) with the new metric coefficients. As before, we present the
details in the appendix for the interested reader. For each K, we will give the indices of the
rows and columns of the curvature matrices that have to be erased to obtain the restriction
and give a detailed table of the used four forms. We only consider the case dim(3(k)) > 1,
since the other cases are covered by Itoh. Note, that we scaled the metric by 2 in order to
avoid unnecessary fractions.

K D= (V,E) Vi Jors | Gass | Gosa | Gea

SU(2) T ® O OO ap 03| 2|4
stsu) 2 |O—@ OO ay 3101 3|4
7 su@2) s |O—O—@O| auy 2 3| 0|6

T3 SU(2) O—O—C=<@®| -, 2 2|40

SU(3) T2 ® O <O 2 |00 4|4

su@ st su@) s | @—O—@<O|aptau| 0| 4| 0|6
su2) 12 su@2) @ O—C<@ aptn| 0| 3] 4]0
stsu@) st |O— @@ 20, | 4] 0] 08

st su@) st su@) | O—@—C<@| aps+vw| 3| 0| 5|0

T2 Sp(2) O—CO—@<@ 45124 2| 6|0 |0

8.4 The case of SO(8)

The positive roots are

+
Ay = {ass, a23,004, 012, 13, 114, (8.4)

ﬁ347ﬁ237 5247 512; BlSa 514}

and the simple roots are placed on the Dynkin diagram as follows

Q12 Qi Q34

Bsa
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After applying the general modifications of section @ the matrices M,, representing the
modified holomorphic curvature tensor are indexed with n € Ay U{0}. In the case of SO(8)

this corresponds to the following:

We begin with the ones corresponding to —av;;.

oo Aasy |[3TRI Ag,,,
v _ 49ass 49az, 490z, Sgazjif%
—Q12 T
8% 4ga24 49,323 49324
Gaoa 9,
490423 2271524 4gﬁ24 49[324
49(134 *49(134 849@3449534
9813 495 4gﬁ
24 34
M_q,; = —49as, 49523 749534 M_q,, = 4 4
490,495 9B3s *Y9B3a
#3[364 _49,534 49534
_ Q92129234 | _ Q9129834
490512 8 -‘17a14 4ga12 8 981,
_ Q9212934 Ya349B34
M_q,, = 8 Goyg A9ass A9ass | 8 9823
7490412 490434 4gﬁ13 49[334
9ay109 Gagzas 9
sl s g, | aga,
Jaq29
490412 8;2T:34 _490412
M—0¢24 = % 4gﬁ34 _4.9[334
_4ga12 _49534 49514
9aq139
4ga13 4ga23 _4ga13 -8 51;21524
Goaoss 9
M,a34 _ 49(123 4ga23 _8;271514 _4ga23
Gao3 9,
_490413 _8!2;;71514 4gﬁ14 4gﬁ24
_8% _490423 4gﬁ24 49524
Those corresponding to j3;; are
4905, 490
M—Blz =0 M—ﬂw = (4.9&23) M—ﬁm = 24 .
490634 490434
4ga12 7490412 8%
M—524 = 7490412 4ga14 7490434
89&;2?:34 _4ga34 490634
Ja139a
4ga13 4-9@23 _4ga13 -8 ;212 “
JaszGa
M 4ga23 490623 -8 ;:;12 1 _491123
~Paa = Gogz 9oy
_490113 _SW 4ga14 4ga24
Ja139a
- W _490423 49024 490424
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Ordering the basis as given in (8.4)) the matrix of the trivial module is given by

o [ A AP
(ABYT B
with
80ass| * AGass| 0 *  4gag, 8985449851 49854| 0 4985, 4985,
*  |8Gans 4900s| *  4Gass 0O 498,, 189825 49824149825 498, 0
Ao 49as4|490ss 89ass| * 0 4Gas, B 4985449824 89824 49820 0 49p,,
0 | * o [8Gar> 49012 49ass 0 (49855 4984 |89815 49815 49814
* (4900 0 149015 8Gans 49ays 498,,1498,, 0 49,5 898.5 498..
49ass| 0 49ass|49a1s 49as5 89asy 49854 0 498.,|495.4 49814 8951

0 4905, * 0 4ga,, *

* 0 49a55|490,5 * 0
* 400,, 0 1494,, O *

0 * * 0 4941, 4904,
Lok 0 (490 0 4gay,

* [ 0 * 490y, 490, O
where we used * at the entry («, 3) as place holder for —8%. In the following, we do

the full modification for the toric isotropy.

Toric Isotropy

Now we consider the Kahler Einstein metric of (SO(8), T, Jstq4), which is given on the simple
roots by

a | a1z | a3 | aza | Paa

g | 1| 1| 1|1

First of all, we notice that we do not have to consider the matrices M_,, for n being one

of {14, P12, P13, P14, P23}, since they are positive definite by the auxiliary lemma. The
remaining matrices are

4424
4 —4 2
4 8 8 2
M_q,, = 24 M_g,=|-412 —4
= 812 8
39 2 —4 4
4 = 8 8
4 -8 _4_8
’ 3 4 2 —4
_8 4 4 8
M*a23 = ° ° M*a24 = 2 4 -4
—4 4 16 4
s s —4 —4 12
33 44
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32
8 4 -8 -

24
4 4 B 4

M-,
Tl 8 -2 12 08
32
-2 4 8 38
Those corresponding to 3;; are
8§ 4 -8 -
4 —4 2 o
4 4 - 4
M*ﬁu = —4 12 -4 M*BM = 24
-8 -2 12 8
2 —4 4
2 4 8 8
and the matrix of the trivial module is given by
8 —4 4 0 -% 4]0 4 -0 4 -6
-4 8 4 -4 4 0|-4 0 4 4-2 0
16 16 48
4 4 16 - 0 8 |- 8 0 8 0 -2
16 16
0 —4-% 8 4 4]0 —6-%0 4 4
16 16 48
-5 4 0 4 16 8 |--% 0 8 0 38
4 0 8 4 8 24|-6 0 —-%1212 0
M, = 2
0 -4 -4 0 - -6/8 4 4 0 4 4
4 0 8 —6-2 0]4 24 8 1212 0
16 16 48
~ 4 0 -8 0 -84 8 16 8 0 8
0 4 8 0 8 12/0 12 8 40 16 12
4 -2 0 4 0 124 12 0 16 32 12
-6 0 —% 4 8 04 0 8 1212 24

It turns out that no further changes are necessary, since all of these matrices are positive
definite by Sylvester’s criterion.

Larger Isotropy

We will not present the above for all K in the same detail. In fact, we will present here the dif-
ferent possible K and their K&hler Einstein metrics. By corollary [50] the curvature matrices
are then obtained by considering the correct submatrices of the matrices of (SO(8), T, Jsta)
with the new metric coefficients. As before, we present the details in the appendix for the
interested reader. For each K, we will give the indices of the rows and columns of the
curvature matrices that have to be erased to obtain the restriction and give a detailed table
of the used four forms. We can reduce the different cases for K to the following three using
the trialtrian symmetry of Dy and theorem [22| together with the result of Itoh.
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K D:(ME) 7;{ Gaiz | Gazs | Yasa | 9Bsa
vsor | O—@T s 3|01

T2 SU(2) SU(2) Q—Q<: 25 1 | 2010




Chapter 9
Appendix

We use the appendix to present the remaining part of the proof of conjecture H(4), proving
that the holomorphic curvature tensor can be modified into a positive tensor via four forms
in all C spaces (G, K, Jstd,9xE), where G is a simple classical group of rank 4 and K is
the centralizer of a torus leaving Jg;q invariant. That means in detail, that we describe the
needed T invariant four forms and the submatrices of the curvature matrices of (G, T, Jstq)
corresponding to the curvature tensor with isotropy K as presented in corollary Notice,
that we are allowed to use T invariant four forms by lemma

The larger isotropy groups of SU(5) are already completely covered in section which
is why we begin with By.

113
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Larger isotropy of SO(9)
We treat each case in the table of possible isotropy groups K in section separately. In

order to keep the indices understandable, we add first the four forms to the matrices from
the beginning of section and cancel rows and columns afterwards.

Isotropy group K = SU(2) T3

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
—4 |(M—a)a5)|(M—cy) 1,2 — 2 (M) (a,5)| (M) 5.6)
=2 |(M_ap) @25 |(M_c,) 1.2 5 |(M_an)@a)| (M_cy)(a,5)
=8 |[(M—a1,)3,5)|(M—cy) (3,0 =5 |(M_a,)).0)| (M—c,)(1,3)
=8 [(M—a15)5)|(M—c,)(a5) =2 |(M—as0)1,3)|(M-p5,)(1,3)
4 |(M_ay,)2,2)| (Mo)s,6) =2 |(M_as,)(2,0)|(M_p5,) 2,9)
(M_o15)(3.3)| (Mo)s,11) 1 Moy 55| (Mo)(13,10)

3 |(M—a15)5.5)| (Mo)(15,16) 6 | (M—cy)a,1) | (Mo)s,16)
=3 {(M_ays) 1,0 (M—c)) @3 6 | (M_c;)22) | (Mo),15)
2 (M) 2 |(M-c,)(2,3) 12 | (M-c3)3,3) | (Mo)(11,16)
=8 W(M_ayy) 3,9 (M—c,)(a6) 12 | (M_cy)(a,) | (Mo)s,is)
L [(M_ay3) @] (Mo)14,16) 10 | (M—c)a,1y | (Mo)s,e)
7 |(M_ay)@,3)| (Mo)asae 10 | (M-c,)22) | (Mo),15)
=8 {(M_ass)2,5)|(M—c,) 2,3 12 [ (M_c,) ) | (Mo)z2,16)
=2 |(M_055) 3.5 |(M—c, ) 1,2) 12 [ (M—c)),5) | (Mo)o,s)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

-n Q12 | 13 | (14 | Q23 | Qg4 | (X34 512 513 514 523 524 534

fof My | x | x | x 1 1 X | x| x| x |1 1 | x

and

—n €1|€2|€3]€4]0

fof My | x| 1| x|x|4

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10, 15 and 16 (enumerated prior to erasing the fourth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 x 12 block is now positive definite and hence we have a modified positive
holomorphic curvature tensor.
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Isotropy group K =S!' SU(2) T?

In this case the desired modifications are:

Value| Intended Forced Val » e - p
alue| Intende orce
=15 [(M_ay) @25 |(M-c,)
160 12/(2,5) 4)(1,2) 1 (Mfazg)u ) (Mo)(4,5)
— 5 (M—a12)(3,5) (M—sg)(374) (M ) (M )
X —a23)(5,5) 0)(14,15)
=8 M—ayy)@a5)|(M—c,) (a5 :
6 5 |{(M_ay,)4,4)|(Mo)(13,15)
17 |(M—a)5,5) | (Mo)as,ie) nY: ) (o)
5 —as4)(5,5) 0)(13,14)
— 15 [(M_a) ) [(M_c,)13) L o) )
—e4)(1,1) 0)(6,16)
g (M*a13)(2,4) (Mfag)(Q 3) o7
6 |(as IY; 300 | M—c)2,2) | (Mo)3,15)
-5 ( *a13)(3,4) ( *84)(4,6) o7 v
16 (M ) M 800 ( —64)(3,3) ( )(1 14)
11 —ans)(4,4)| (Mo) (14,16) L o) o)
—e4)(4,4) 0)(12,16)
% (M_0,,)3,3)| (Mo)13,16) -

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

-n Q12 | Q13 | Q1 | Qg | Qog | azq | B12 | P13 | Bra | P23 | Baa | Baa
fof My | 1 X | X | x| X 2 | x| 1| x| x| x| 2
and
—n €1|€2|€e3leq|0
fof My | x| x|2]|x|2

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10, 11 and 16 (enumerated prior to erasing the second row and
column) have only positive entries and can be discarded as in the example of Go. The
remaining 12 x 12 block is now positive definite and hence we have a modified positive

holomorphic curvature tensor.

Isotropy group K = T? SU(2) S!

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
2 (M—a)a)|(M—p,) @2 2 (M_yy)(5.5)| (Mo) (14,15)
2 |(M_aps)@2,3)[(M_p5,)(3,4) 2 H(M_ay) a0y | (Mo)(13,15)
B |(M_a)e.5)| (Mo)as,ie T (M) 3,5 |(M—c,)(2.3)
8 |(Moay)en| (M), B0 |(M_a)@s)|(M-c;) @)
=2 (M_q,s),0)| (M- 54)(46) 9 Moy 22)| (Mo)2,3)
5 (M) | (Mo) e 5 |(M_ag)@ay| (Mo)s.o)
S (M_aw) s | (M—c,)e, 8 H(M_ay)) (55| (Mo)(13,14)
3 (M_ay,)(23)| (M- 63)(3 5) =2 1 (M_.,)@22) | (Mo)1,14)
3 |(M_ar) i3] (Mo)ase) =2 | (M—c))3,3) | (Mo)(12,13)




116 CHAPTER 9. APPENDIX

Now all matrices are positive semidefinite except for My. We need further changes, but
since they all correspond to adding negative off diagonal entries to My by the arguments in
the proof of proposition [31|this does not worsen the M,,. Therefore, we do not have to keep
track of the forced modifications of the following:

Entry of Mo |(4,11)|(6,11)|(2,15)((3, 15)((8, 15)|(9, 15)

87 87 11 11
Value —2 -2 —20 —20 —30 —30

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

—n  |ai2 | oz | ong | o3 | asg | asq | Bi2 | Biz | Bia | Bos | Boa | Baa

fof My | x | 1 | x| 2 | x| x| x| x| 2|x]3]X

and

—n €1]e2l€ezleq |0

fof My | x | x| x]|3]1

As in the case of the toric isotropy, we see that column and row 10 and 16 (enumerated
prior to erasing the first row and column) have only positive entries and can discarded as in
the example of G5. The remaining 13 x 13 block is now positive definite and hence we have
a modified positive holomorphic curvature tensor.

Isotropy group K = T3 SU(2)

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
=5 [(M—ay,)(15)|(M-c)(1,2) 3 (M) (25| (M) (2,)
=2 |[(M—ay,)(2,5)|(M—c)(1,2) — 1 |(M_azy)3.5)|(M—c,)(1.2)
=2 |(M-a12) 3,5 |(M-cy) 3,0 =3 |[(M_any) (4,5 | (M_2,) 5.6
=2 |(M_qyz) a5 |(M—c,) 4, 8 |(Mo0y3)(5.5 | (Mo)(14,15)
22 N(M-a1s) 5.5 | (Mo) s 16) (M) @3 | (Mo) 16
— 2 |(M-ay) .0 |(M-c,) 1) (M) | (Mo)@sas)
2 (M_oyy) ) |(M_zy) 2, S (M) @s) | (Mo),14)
—2 (M_a,,)(3,0) | (M- 54)(46) 14 | (M_c,)(,4) |(Mo)2,16)
5 |(M_ays)@ay| (Mo) 14,16 s | (M) | (Mo)(r14

We need further changes, but since they all correspond to adding negative off diagonal
entries to My by the arguments in the proof of proposition [31| this does not worsen the M,,.
Therefore, we do not have to keep track of the forced modifications of the following:

Entry of Mo|(8,15)|(9, 15)

Value - g -

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:
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—n  |aig | s | g | o3 | oy | asq | Biz | Biz | Bia | Bos | Boa | Baa
fof My | x | x | 3 | x| 4 X | x| x| x| x| X
and
—n |€1|g2|e3|€eq| O
tof My| 3|4 |5 |x|13

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and

column) have only positive entries and can be discarded as in the example of Gs.

The

remaining 13 x 13 block is now positive definite and hence we have a modified positive
holomorphic curvature tensor.

Isotropy group K = SU(3) T?

In this case the desired modifications are:

Value| Intended Forced
5 (Mo 5.5 | (Mo)(15,16)
5 (M—ay) a0y |(Mo) (14,16)
& (M_a)) 3.3 | (Mo)(13,16)
% (M,a23)(575) (MO)(14 15)
N (M_y0) a0y |(Mo) (13,15
% (Mfa34)(5,5) (MO) 13,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following

rows and columns:

-n Q12 | 13 | (g | (23 | (24 | (N34 ﬂ12 ﬁls 514 523 /824 534
fof My | 1 | x | x [ 1 |1 |L,2] x| 1]x|L,2]1 |12
and
-n E11€2| €3 | &4 0
fof My | x| 1]1,2]x (24,5

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10, 11,14,15 and 16 (enumerated prior to erasing the second
fourth and fifth row and column) have only positive entries and can be discarded as in the
example of G3. The remaining 8 x 8 block is now positive definite and hence we have a

positive modified holomorphic curvature tensor.
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Isotropy group K = SU(2) St SU(2) S!

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
8 |(M—ais)@.4)|(M-ps),2) 3 |(M_asy) 55| (Mo)(14,15)
8 (M—CX12)(2,3) (M—534)(3,4) % (M—a24)(4,4) (MO)(13,15)
% (M—Délz)(l,l) (MO)(2,5) —8 (M—a34)(1,3) (M—BM)(I,S)
T I(M_ayy) 2| (Mo)se =8 [(M—ag,)2,4) |(M—py,) (2,0)
L (M) 33| (Mo)san 8 |(M_as)1,n| (Mo)s.e)
% (M*a12>(4,4) (MO)(9,12) 8 (M*a34)(2.,2) (MO)(2,3)
3 |(M-a1,)5.5)| (Mo)1s,16) LM _ay)i3.3)| (Mo)1,12)
3 |(M_ay)aa)| (Mo) a6 LMoz @ay| (Mo) s,
3 |(M_ay,)3.3)| (Mo)as,ie) L [(M_as)5,5)| (Mo)(13,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

—n |12 | oag | g | o3 | aog | asa | Bi2 | Biz | Bia | Baz | Boa | Paa

gof M| x 1 x |1,2] 1 X | x| x| 2 1 ]1,3] x

and

—-n |e1|e2|ez|es| O

gof My | x| 1|x|3]|14

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10, 15 and 16 (enumerated prior to erasing the first and fourth
row and column) have only positive entries and can be discarded as in the example of Gs.
The remaining 11 x 11 block is now positive definite and hence we have a modified positive
holomorphic curvature tensor.
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Isotropy group K = SU(2) T? SU(2)

In this case the desired modifications are:

Value| Intended Forced
3 |(M_—a1,)5,5) | (Mo)as,ie)
=2 (M_ays)1,0)|(M—cy)1,3)
% (M*a13)(2,4) (M*62)(2,3)
7% (M—Otls)(3,4) (M—64)(476)
1 [(M_a,5) 0| (Mo)a,16)
_% (M*a23)(2,5) (M*&L)(Q,B)
7% (M—a23)(3,5) (M—sl)(l,Q)

Value| Intended Forced

—5 |(M_as5)(a,5)|(M—c,)(5.6)
L |(M-az3)(5,5)| (Mo)(14,15)
B 1 (M_c,)a,) | (Mo)s,6)
% (M*64)(2,2) (Mo)(s,ls)
B (M_)@33) | (Mo)a 14
B (M—c,)a,1) | (Mo)2,16)
| (M_c))ss) | (Mo).1s)
% (M—84)(6,6) (Mo)(7,14)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

and

-n Q2 | (13 | (4 | Q23 | Q24 | (34 512 513 514 523 ﬁ24 534
gof M| x X 3 1 [1,4] 5 X | x| X 1 1 X
—-n E1| €2 | €3 | €4 0
f of M77 311,45 | x (4,13

Now all matrices are positive semidefinite except for My. We add f% to the symmetrically
to the entry (9,12) of My. For the resulting M, we see as in the case of the toric isotropy
that column and row 10, 15 and 16 (enumerated prior to erasing the fourth and thirteenth
row and column) have only positive entries and can be discarded as in the example of Gs.
The remaining 11 x 11 block is now positive definite and hence we have a positive modified

holomorphic curvature tensor.
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Isotropy group K =S!' SU(3) S!

In this case the desired modifications are:

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following

rows and columns:

Value| Intended Forced val Irended —
b [0nloa|0uel T T
Tgo (M_a,5)(4,4)|(Mo)(14,16) Z Y 24) o 7
& |(M_a.) 3,3 |(Mo)as,i6) ; (M_024)(4)4) (]; ;13’15)
B |(M_as) )| (Mo)as) Z (Ma“)(l 1) (M(; (5.,6)
3 | (Meas) )| (Mo)aas) PO e

=N a2 |13 | aia | o3 | o4 | asa | Pr2 | P13 | Bia | B2z | Baa | Baa
fof M, |1,2| 1 X 2 X 2 X 1 11,2 x| 3 (2,4
and
—n €1 €2 €3]| €4 0
fof My | x| x|2]2,3|12,3

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10,11,12 and 16 (enumerated prior to erasing the first , second
and third row and column) have only positive entries and can be discarded as in the example
of G3. The remaining 9 x 9 block is now positive definite and hence we have a modified

positive holomorphic curvature tensor.

Isotropy group K =S!' SU(2) St SU(2)

In this case the desired modifications are:

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following

rows and columns:

Value| Intended Forced
( : 1 ) Value| Intended Forced

—2 M—0¢12 (2,5) 1,2)

2 |[(M_ay5)(5,5)|(Mo)(14,15)
-2 (Mfouz)(B 5) (M 53) 21 (M ) M

80 €4)(1,1) ( 0)(6,16)
=2 |(M-qy,) 45| (M- 54)(4 5) T Y o)
16 80 €4)(2,2) 0)(3,15)
11 (M—alz)(5,5) (MO) 21

5 | (M—c,)s,3) | (Mo)a,14)
-2 (M*a13)(1,4) (M 54) 1,3) 21 (M ) (M )
2 [(M_oy5)2.4)|(M_c,) 2,3 20 UL

—Q13 y €2

% | (M_c)s5) | (Mo) o)
-2 (M—a13)(3,4) (M 54) 21 (M ) v )
16 80 €4)(6,6) ( 0)(7,14)
7 |(M_ars) @, (Mo)(14 16)
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—n  |aig | s | g | o3 | oy | asq | Biz | Biz | Bia | Bos | Boa | Baa

of M, | 1 | x | 3 | x| 4 |25 x| 1] x|x]|x/]2
n

and

-n E11€2| €3 | &4 0

fof M, |3 |4][25|x[213

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second and
thirteenth row and column) have only positive entries and can be discarded as in the example
of G3. The remaining 11 x 11 block is now positive definite and hence we have a positive
modified holomorphic curvature tensor.

Isotropy group K = T? SO(5)

In this case the desired modifications are:

Value| Intended Forced
(o ) ) Value| Intended Forced
-1 —a12)(1,5) €3)(1,2)
- 2 (M_g,0) 1,1y | (Mo) 5,12
-1 (M 0412) (2,5) (M 64)(1,2) o7
T [(M_p,.)2,2)| (Mo)(2,9
-1 (M 0412) (3,5) (M 65)(3,4) 27 Y
8 (M 634)(3,3) ( 0)(6,11)
=1 |{(M_ay,)@5)|(M_c,)@p5) 2 (0 )en| (Moas
B 34 ) (4,4 0)(3,8
2 (M_a)@y| (Mo)zs) 5
27 T (M) | (Mo)s,16)
L (M _ayy)(2,2)| (Mo)s, 3
27 4 (M—ss)(2,2) (MO)(2,15)
T |((M_01,)3.3) (Mo)(s 11) 3
27 T [ (M_c) 3,3 [(Mo)(11,16)
T |(M_ay,)@a)| (Mo)(9,12) 5
25 T | (M_cy) @,y | (Mo)s,15)
12 (M_ a12)55) (Mo)(15,16) 3 (M) (M)( )
1 —ea) (1,1 0)(6,16
% (M 0434) 1,1) (MO)(S,G) 3 (M ) (M )
1 —e4)(2,2) 0)(3,15)
T (M_agy)2,2)| (Mo)@2,3) 3
e S (M_z,) a0y |(Mo)(12,16)
8 (M a34) 3,3) (MO)(11,12) 3 (M ) (M )
1 —£4)(5,5) 0)(9,15)
T (M_agy) @2y (Mo) s, -

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

-n Q2 | (13 | (g4 | Q23 | Q24 | (34 512 /313 ﬂ14 ﬁ23 524 534

fof My | x | x | 3 x | 4 5 | X | X | X | X | x| X

and

—n €1 |€2|€3| €4 0

tof My | 3|45 |x][1,7,13,14

Now all matrices are positive semidefinite except for M. As in the case of the toric iso-
tropy, we see that column and row 10 and 16 (enumerated prior to erasing the first, sev-
enth,thirteenth and fourteenth row and column) have only positive entries and can discarded
as in the example of G5. The remaining 10 x 10 block is now positive definite and hence we
have a positive modified holomorphic curvature tensor.
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Larger isotropy of Sp(4)

We treat each case in the table of possible isotropy groups K in section separately. In
order to keep the indices understandable, we add first the four forms to the matrices from
the beginning of section and cancel rows and columns afterwards.

Isotropy group SU(2) T3

In this case the desired modifications are:

Value| Intended Forced
Value| Intended Forced ( : ( :
=3 (M) 1,3) | (M—g54)(1,3)
% (M—a12)(1,3) (M—V3)(1,2) 3 (M )( ) (M 5 )( )
- —a34/)(2,4 —pB34)(2,4
% (Mfalg)(l,l) (MO)(275) 9 (M ) (M )
9 7 —v3/(1,1) 0)(5,11)
s Mg Hhlag 7 (Moy)ee | (Mo)es)
7 —v3)(2, ,
8 |(M_qy,)@3| (Mo)san 5 | () (o)
a —va)(1,1) 0)(6,12)
G LS| AL DICAE) B (M) | (Mo)@se)
7 —74)(2, ;
14 |(M-a,) 55| (Mo)o,16)
L | (M—y)@3y | (Mo)a,r
14 |(M_a15)6,6)| (Mo)(10,15) 1 (Mo) M )
-1 0)(7,14) —as4)(5,5)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

—n  |ai2 | oz | g | aos | asg | asq | Biz | Biz | Bia | Bas | Boa | Baa

fof My | x | x | x| 1 | 1 | x| x| x|x|[1]1]x

and

=1 |71 |v2|v3|7a|0
fof My | x | 1| x| x |4

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth row and
column) have only positive entries and can be discarded as in the example of G2. The
remaining 12 x 12 block is now positive definite and hence we have a positive modified
holomorphic curvature tensor.
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Isotropy group S' SU(2) T?

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
—1 | (Ma) @y | (My)a2 3 (M _asy)6.6)| (Mo)(s 1)
—5 | (M_a)as) | (M) 10 |(M—ay,)(3,3)|(Mo)0,12)
3| (Moasg)@ay | (M) 23) 10 [(M—qs4)3,3)|(Mo)(11,12)
5l (Moas)any | (Mo)as) (M) | (Mo)a,0)
5l (Meas)22) | (Mo)a s S (M) | (Mo)s11)
% (M- azs) 3,3) (M0>(10,11) % (M,%)(l 1) (M0> 6,12)
3 (Masg) @y | (Mo)(r0) 2 (M) 22 | (Mo)@se)
T | (Meass)ss) | (Mo)s,is) 3 | (M) @) | (Mo)q,

Now we restrict the tensor, i.e.

following rows and columns:

and

-n Q2 | (13 | (g4 | Q23 | Q24 | (34 [312 513 ﬂ14 523 524 B34
fof My | 1 X | X | x| X 2 | x| 1| x| 3| x]2
=0 |7 |v2|73 |74 |0
fof My | x| x|2|x]|2

we consider the submatrices obtained by erasing the

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second row and

column) have only positive entries and can be discarded as in the example of Gs.

The

remaining 12 x 12 block is now positive definite and hence we have a positive modified

holomorphic curvature tensor.
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Isotropy group T? SU(2) S!

In this case the desired modifications are:

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the

following rows and columns:

Value| Intended Forced
Value| Intended Forced ; o ) o)
Z —Q34 (1,1) 0 (5,6)
_i (Mfoz12)(1,3) (M*’Ys)(l,Q) - (M ) (M)
g —Q34 (2,2) 0 (2,3)
— 2 (M_ars) @0 (M—y) a2 5 (0 Naa | (o)
g —a34/(3,3) 0)(11,12)
5 |(M_ayn)an| (Mo)es) s () %)
B —asa)(4,4) 0)(8,9)
% (M—alz)(2,2) (MO)(B,G) -
3 s |(M_0y,) 55| (Mo) (7,14
5 |(M_ay,)@)| (Mo)si s o 00| (Mo)rms
B —a34 /(6,6 0)(7,13
3 |(M—aw) | (Mo)9.12) ) )
3 —y2)(1,1) 0)(4,10)
5 |(M—as)3.3)| (Mo)(10.11) 5 | (1) o)
B —v3/(1,1) 0)(5,11)
& (M_a)i3.3)| (Mo)o,12) 5
15 2 (M*'YB)(Q 2) (MO)(2,8)
1 (M*Oé34)(1,3) (M*ﬁ34)(1,3) 25
s = (M) | (Mo)s,12)
7 |(Moag) )| (M-p,.) 20) .
5| (M_y)@22) | (M),

-n Q2 | 13 | 14 | (23 | (24 | (i34 512 513 ﬁ14 523 524 534
fof M| x 1 X 2 | X | x| x| x |2 |x|3]|65
and
=0 72|73 |7a|0
fof My | x | x| x|3|1

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the first row and column)
have only positive entries and can be discarded as in the example of G>. The remaining
13 x 13 block is now positive definite and hence we have a positive modified holomorphic
curvature tensor.
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Isotropy group T3 SU(2)

In this case the desired modifications are:

Value| Intended Forced P B —
—7 |(Moai)ag)| (M) o) alue (]\r; e’i)z 1) (M(()))r((jlelo)
72774 (M_a12)(2’4) - 74)(1,2) ; (M- )(11 (Mo)(5711)
_% (M_am)(l’d) (M 74)(1}3) 3 (M %)(22 (Mo)(27 8)
_%5 ey de ; (M- Z)(l 1| (Mo)s ;2)
g (M_a%)(g’?)) (MO)“O’”) 6 [(M- 74)(22 (Mo)(:; 9)
=2 (M—a50)(1,3)|(M—ps0) 1,3) or) , o ,
=3 (M_ay.)2,0)| (M_g,,) 2,) 4 74/)(3:3) 0)(1,7)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

-n Q12 | (13 | (14 | Q23 | Qg4 | (X34 512 Bis | Bia | Bos 524 534

fof My | x | x | 4 | x | 5] 6 | x| x| x| x| Xx|Xx

and

= M2 |74l 0
fof M, | x| x| x| x |13

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the thirteenth row and
column) have only positive entries and can be discarded as in the example of Go. The
remaining 13 x 13 block is now positive definite and hence we have a positive modified
holomorphic curvature tensor.

Isotropy group SU(3) T?

In this case the desired modifications are:

Value| Intended | Forced
(M_3,)1,0)|(Mo) 6,12)
(M—r,)(2,2)| (Mo)3,9)
(M_+,)3,3)| (Mo)a,7)

wloo |wloo [wloo

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

—n |12 | g | g | o3 | g | asa | Bi2 | Bis | Bia | B2z | Baa | Baa

fof My | 1 X | x 1 1 (1,2 x | x| x| x| 1]1,2

and
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- M |v|v|m| O
fof My | x| 1]|2]|x|24,5

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10,11,14,15 and 16 (enumerated prior to erasing the second,
fourth and fifth row and column) have only positive entries and can be discarded as in the
example of G3. The remaining 8 x 8 block is now positive definite and hence we have a
positive modified holomorphic curvature tensor.

Isotropy group SU(2) S! SU(2) St

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
7 |(Moai)a,s)| (Mons)a2) =4 [(M_az) 2,0 |(M—p) 2,0)
7 Moo @a| (M) 2 (M_ay)an| (Mo)s.e)
T Moy an| (Mo)es) 3 (M) | (Mo)s,g
% (M*Oé12)(2,2) (MO) (3,6) % (M,a34)(5,5) (MO)(7,14)
T (M_ay) @] (Mo)s i 3 (M—asa)66)| (Mo)(7,13)
% (Mfam)(4 4) (MO)(Q 12) 1*76 (M*’Ys)(l,l) (M0>(5,11)
T 1(M_ay) 55| (Mo)o,16) L (M_y) @22 | (Mo)s)
T |(M_ay,)6.6)| (Mo)ao,s) LMoy | (Mo)s,12)
=4 |(M_as,)(1,3) |[(M—_g5.) (1,3) 7| (M2 | (Mo)s)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

—n |12 | oag | ana | o3 | aog | asa | Bi2 | Biz | Bia | B2z | Boa | Paa

gof M| x 1 x |1,2] 1 X | x| x| 2 1 (1,3 5

and

-n Y |v2 |3 |val O
fof M, | x | 1|x|3]|1,4

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the first and fourth
row and column) have only positive entries and can be discarded as in the example of Gs.
The remaining 11 x 11 block is now positive definite and hence we have a positive modified
holomorphic curvature tensor.
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Isotropy group SU(2) T? SU(2)

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
11 |(Moa)as)| (M) 7 (M y)an| (Mo)e.a
—5 |(Moap)@a| (Moq,)a.2) 7 |(M_sy)e| (Mo)es)
2 |(Moayy)as | (M—y,)q, 7 |(M_,)a,n| (Mo)e,i2)
— 5 (M) 2,0 | (M- 74)(2 3) T M) @] (Mo)se)
=3 |(M—as0)1,3) |[(M—p,0) (1,3) 4 |[(M-v,)iz3)| (Mo)ar
=3 |(M_as)2,0) |(M=gai) (2,0 —1 | (Mo)o2) |(M-ay,)(.4)

Now we restrict the tensor, i.e.

following rows and columns:

—1n  |aig | s | g | o3 | oy | asq | Bi2 | Biz | Bia | Boz | Boa | Baa
fof My | x | x | 4 | 1 [1,5] 6 | x | x| x| 1]1]|x
and
-0 (7|2 |3 |va| O
fof My | x| 1] x|x]|4,13

we consider the submatrices obtained by erasing the

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10,15 and 16 (enumerated prior to erasing the fourth and
thirteenth row and column) have only positive entries and can be discarded as in the example

of GQ.

modified holomorphic curvature tensor.

The remaining 11 x 11 block is now positive definite and hence we have a positive
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Isotropy group S! SU(3) S!

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
M*a24)(5,5) (MO)(9,13)
M_os)a,1)| (Mo)s,e)

<

*azz)(l.,l) (MO)(4,5)
M_y5)(3.3)|(Mo)(10,11)

—a23)(4,4) (MO)(719)

=

(

( )
(M_0y,)3,3)|(Mo)a1,12)
(M—a5,)4,4)| (Mo)(s,9)
( )
( )

<

7&23)(5,5) (M())(8,15)

—023)(6,6)| (Mo)(3,14) Mo) (7,14

S

My

(Mo)
asa)(1,1)| (Mo)(a,6) (Mo)
M) 1) | (Mo)4,10)

(Mo)
(Mo)

(7,13)

<

=

My
My

—a4)(3,3)|(Mo) (10,12) (5,11)

WO O [ OT [ O [ i[O [0 [ ]OT | i[Ot | ]t
—~ |~ [~ E —~ |~~~
[\ [\ [ NI NS I N [0 IS S N T NS I PN ]

)
)
a24)(2,2)| (Mo)(7,8)
)
)

<

—asa) (4,2)| (Mo) 9,15 (6,12)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the
following rows and columns:

—n |12 | oug | oana | o3 | s | asa | Bi2 | Biz | Bia | Bos | Boa | Baa

fof My 1,2 1 | x | 2 | x| 2| x| 1|1,2]3[34[245

and

- |7 |Y2 |73 V4 0
fof My | x | x|22,3]1,2,3

Now all matrices are positive semidefinite except for My. As in the case of the toric isotropy,
we see that column and row 10,11,12 and 16 (enumerated prior to erasing the first three
rows and columns) have only positive entries and can be discarded as in the example of Gs.
The remaining 9 x 9 block is now positive definite and hence we have a positive modified
holomorphic curvature tensor.
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Isotropy groups S' SU(2) S! SU(2)

In this case the desired modifications are:

Value| Intended Forced

=2 |(M—ay,) 2.) [(M—r,) (1,2)
=2 (M_a.3)(1,3) (M) 3)
5 (M) | (Mo)as)
S (M_ays)22)| (Mo)(1,3)

13 |(M-ay5)(3,3) (Mo)(lo,n)
S (M) @ay| (Mo)(z,0)
S (M—ag) 55| (Mo)s 15

Now we restrict the tensor, i.e.

following rows an

Value| Intended Forced
S (M_ags)6,6)|(Mo)(s,14)
(M) |(Mo)(4,10)
(M) [(Mo)(sa)
8 | (M_,)a,1) |(Mo)es,12)
5 | (M_,)@2z2) | (Mo)3,9
5 [(M_y,)@33) | (Mo)a,r

and

d columns:

-n a1g |03 | Qg | Qo3 | ooy | ass | Prz2 | Bis | Bia | Bz | Boa | P34
fof My | 1 X |4 | x| 5|26 x| 1| x |3 |x]|2
-0 7|y |va| O
fof My | x| x| 2|x]213

we consider the submatrices obtained by erasing the

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10,11 and 16 (enumerated prior to erasing the second and
thirteenth row and column) have only positive entries and can be discarded as in the example

of GQ.

modified holomorphic curvature tensor.

Isotropy group

T? Sp(2)

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
=2 (M_ay,) 1.3 | (M) .2 2 |(M—agi)(aa)| (Mo)s,9)
2 (M_ay) | (M—y) 0,2 8 | (M_y;)1,1) |(Mo)(5,11)
— (M) 1.3) [(Mp5,) (1.9) 6 | (M—vy)22) | (Mo)(2.8)
B (M_ay)@a)|(M-py,)(2,9) 8 | (M—v,)1,1) |(Mo)(6,12)
2 |(M—osi)22)| (Mo)23) 6 | (M—v,)22) | (Mo)3,9

Now we restrict the tensor, i.e.

following rows and columns:

-n

Q12 | (13

Q14 | Q23

Qg4

Qi34

P12

P23

Boa

Bsa

i of M,

x 11,3,5

2,412,4,6

2,5

5,6

X 3

5

The remaining 11 x 11 block is now positive definite and hence we have a positive

we consider the submatrices obtained by erasing the
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and

=N |72 |3 | V4 0
fof My | x| 1|x|3|1,71314

Now all matrices are positive semidefinite except for M. As in the case of the toric isotropy,
we see that column and row 10 and 16 (enumerated prior to erasing the first, seventh,
thirteenth and fourteenth row and column) have only positive entries and can be discarded
as in the example of G5. The remaining 10 x 10 block is now positive definite and hence we
have a positive modified holomorphic curvature tensor.

Larger isotropy SO(8)
We treat each case in the table of possible isotropy groups K in section separately. In

order to keep the indices understandable, we add first the four forms to the matrices from
the beginning of section [8:4] and cancel rows and columns afterwards.

Isotropy group SU(2) T3

In this case the desired modifications are:

Value| Intended Forced
=1 |(Mo)9,12)|(M—a,,) (4,4)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

-n Qp2 | 13 | 14 | 23 | (24 | (i34 512 513 ﬁ14 523 /324 534 0

fof M| x X X 1 1 X | X | x| X 1 1 X |4

Now all matrices are positive semidefinite and M is positive definite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition [31]and hence we have
positive holomorphic curvature.

Isotropy group S' SU(2) T?

In this case the desired modifications are:

Value|Intended Forced
-1 (MO)(4,5) (M—aza)(l,l)
=1 |(Mo)(7,0) | (M—as5) (4,4)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

—n  |ai2 | s | g | o3 | asg | sq | Bi2 | Biz | Bia | B2z | Baa | B34 | O

fof My | 1 | x | x | x| x| 2 | x| 1| x| x|x]2]2

Now all matrices are positive semidefinite and M is positive definite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition [3I]and hence we have
positive holomorphic curvature.
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Isotropy group T? SU(2) SU(2)

In this case the desired modifications are:

Value| Intended Forced Value| Intended Forced
2 |(M-ai)an)| (Mo)2s) 2 |(M—ay)3.3)|(Mo)11,12)
2 |(M_ay,)@22)| (Mo)3,6) 2 [(M_as,) 44y (Mo)s,9)
2 |(M_ay,) 33| (Mo)s,11) 2 |(M_gy,)1,1)| (Mo) (5,12
2 |(M—ay,) )| (Mo)9,12) 2 |((M-psi)(2,2)| (Mo)(2,9)
2 [(M_ay)a,1)| (Mo)s,e6) 2 |((M_p,,)(3,3)| (Mo)e,11)
2 |(M-osi)22)| (Mo)(2,3) 2 [(M_pyy) )| (Mo)@ag)

Now we restrict the tensor, i.e. we consider the submatrices obtained by erasing the following
rows and columns:

- Q12 | (13 | (g | (23 | (24 | (k34 /812 513 514 523 ﬁ24 ﬁ34 0

fof My, | x |1,3]| 2 |2,4] 2 X | x| x| 2| x| 3| x |17

Now all matrices are positive semidefinite and M is positive definite. Hence we can modify
the holomorphic curvature tensor into a positive tensor by proposition [31]and hence we have
positive holomorphic curvature.
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