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ORIGINAL ARTICLE

Phylogeography of the marbled crab Pachygrapsus marmoratus (Decapoda,
Grapsidae) along part of the African Mediterranean coast reveals genetic
homogeneity across the Siculo-Tunisian Strait versus heterogeneity across the
Gibraltar Strait
Temim Delia, Sara Fratinib, Lapo Ragionierib,c, Khaled Saida, Noureddine Chattia and Christoph D. Schubartd

aLaboratory of Genetics, Biodiversity and Enhancement of Bioresources, University of Monastir, Higher Institute of Biotechnology of
Monastir, Monastir, Tunisia; bDepartment of Biology, University of Florence, Sesto Fiorentino, Italy; cInstitute for Zoology, Functional
Peptidomics, University of Cologne, Cologne, Germany; dFaculty of Biology, Zoology and Evolution, University of Regensburg, Regensburg,
Germany

ABSTRACT
We investigate the influence of previously postulated biogeographic barriers in the
Mediterranean Sea on the population genetic structure of a highly dispersive and
continuously distributed coastal species. In particular, we examine nuclear and mitochondrial
genetic variation in the marbled crab, Pachygrapsus marmoratus, across part of the African
Mediterranean coast in order to assess the influence of the Siculo-Tunisian Strait on its
population genetic structure. Four polymorphic microsatellite loci were genotyped for 110
individuals, collected from eight locations covering parts of the Algerian, Tunisian and Libyan
coasts. In addition, mtDNA corresponding to the Cox1 gene was sequenced for 80 samples.
The corresponding results show contrasting patterns of genetic differentiation. While mtDNA
results revealed a homogeneous haplotype composition in our study area, microsatellite data
depicted genetic differentiation among populations, but not associated with any geographic
barrier. This pattern, already recorded for this species from different geographic regions, may
hint at the involvement of a complex series of abiotic and biotic factors in determining
genetic structure. Demographic history reconstruction, inferred from mtDNA data, supports
demographic and spatial expansion for the North African metapopulation dating back to the
Mid-Pleistocene and following an historical bottleneck. Comparison of these African
mitochondrial sequences with new sequences from a Turkish population and previously
published sequences revealed a weak but significant separation of Atlantic and
Mediterranean populations across the Gibraltar Strait, which was not recorded in previous
studies of this grapsid species.
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Introduction

The Mediterranean Sea is characterized by a complex
circulation system in which two main water bodies
meet, namely the Modified Atlantic Water (MAW) and
the Levantine Intermediate Water (LIW) (Astraldi et al.
1999). The hydrology is also shaped by the presence
of physical barriers such as straits and channels (Béran-
ger et al. 2004). The most important Mediterranean bar-
riers are the Almeria-Oran Oceanographic Front, the
Siculo-Tunisian Strait and the hydrographic isolation of
the Aegean-Ionian and Adriatic Seas (Astraldi et al.
1999; Patarnello et al. 2007). These barriers are known
to restrict gene flow in some species, leading to
genetic differentiation among populations (Borsa et al.
1997; Patarnello et al. 2007).

The transition zone between the Eastern and
Western Mediterranean Basins constitutes one of the
best documented biogeographic transitions in the
Mediterranean Sea (see Arnaud-Haond et al. 2007).
The Siculo-Tunisian Strait, located between Cap Bon
in Tunisia and Mazara Del Vallo in Sicily (Italy), is postu-
lated to separate these two Mediterranean basins
(Quignard 1978). On both sides of this barrier, water
bodies circulate with different hydrological, physical
and chemical characteristics (Béranger et al. 2004). It
has been documented as a geographic break, causing
population genetic differentiation in several marine
species (e.g. Quesada et al. 1995; Borsa et al. 1997;
Bahri-Sfar et al. 2000; Nikula & Vainola 2003; Arnaud-
Haond et al. 2007; Mejri et al. 2009; Zitari-Chatti et al.
2009; Kaouèche et al. 2011; Ragionieri & Schubart
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2013). Therefore, population genetic analyses across
this potential barrier may contribute to the identifi-
cation of the phylogeographic patterns and to depict
historical events that might have shaped the genetic
structure of marine species.

The African Mediterranean coast, especially the part
encompassing the Tunisian and Libyan littoral, is con-
sidered as an appropriate area to study biogeographic
processes because it harbours populations located
west and east of the well-known biogeographic
barrier of the Siculo-Tunisian Strait. Furthermore, it is
hypothesized that episodes of oceanic fluctuation
experienced within the central Mediterranean, specifi-
cally across the transition zone of the Siculo-Tunisian
Strait, during the Pleistocene, may have affected both
the genetic and demographic structure of populations
for a broad variety of marine taxa (Bahri-Sfar et al. 2000;
Stefanni & Thorley 2003; Zardoya et al. 2004; Mejri et al.
2009; Zitari-Chatti et al. 2009; Kaouèche et al. 2011).

The marbled crab Pachygrapsus marmoratus (Fabri-
cius, 1787) is one of the most widely distributed and
abundant decapod crustacean species in the Mediter-
ranean and northeastern Atlantic rocky intertidal
environment, and colonizes the whole intertidal belt
regardless of its width (Cannici et al. 1999). Despite
its high dispersal capacity, this grapsid species rep-
resents a good model to test for population subdivi-
sion, because of its local abundance and the
accumulated knowledge of its development, ecology
and genetics (Cannicci et al. 1999, 2002; Cuesta & Rodrí-
guez 2000; Ingle & Clark 2006; Fratini et al. 2008, 2011,
2013; Silva & Paula 2008; Ferreira Silva et al. 2009; Silva
et al. 2009a, 2009b). Factors expected to promote
genetic homogeneity in this species include high
fecundity (Flores & Paula 2002), a planktonic larval
period that can last more than four weeks (Cuesta &
Rodríguez 2000; Cuesta et al. 2011), and a continuous
coastal distribution throughout the Mediterranean
Sea, Black Sea and northeastern Atlantic coast from
Brittany to Morocco, including the Canary Islands, the
Azores and Madeira (Ingle 1980).

Previous studies on P. marmoratus revealed different
patterns of mitochondrial and nuclear DNA variation
and suggested relatively complex local genetic struc-
ture (Fratini et al. 2008, 2011, 2013; Silva et al. 2009b).
Indeed, population genetic investigations at macro-
to meso-geographic scales using mtDNA failed to
reveal separation among populations across known
phylogeographic barriers in the Mediterranean Sea,
such as the Gibraltar Strait and the Siculo-Tunisian
Strait (Fratini et al. 2011). However, population
genetic studies, performed on local scales and investi-
gating polymorphism at microsatellite loci, recorded

patterns of genetic differentiation among geographi-
cally close populations from the coast of Tuscany
(Fratini et al. 2008, 2011) and the Tuscan archipelago
(Fratini et al. 2013), with a genetic separation
between the Ligurian and Tyrrhenian Seas populations.
Another micro-geographic survey along the Portu-
guese coast, using the same nuclear markers, revealed
the existence of genetic patchiness among populations
of P. marmoratus, unrelated to any geographic gradient
(Silva et al. 2009b). No genetic structure was found at a
micro-geographic scale along the Tunisian coast under
the likely influence of the Siculo-Tunisian Strait, but this
study was based only on restricted fragment length
polymorphisms (RFLPs) analyses of the mitochondrial
cytochrome oxidase I (Cox1) gene (Deli et al. 2015a).
The use of more variable markers, such as nuclear
microsatellites, may allow for the detection of subtle
population structure along the African Mediterranean
coast, as these polymorphic markers provided high
genetic resolution in P. marmoratus over small geo-
graphic scales (see Fratini et al. 2008, 2011, 2013;
Silva et al. 2009b).

In light of these considerations, the main aim of the
present study was to re-investigate the influence of the
Siculo-Tunisian Strait on the genetic structure of popu-
lations of P. marmoratus along the African Mediterra-
nean coast with molecular markers having higher
resolution than those previously used by Deli et al.
(2015a). For this purpose, a set of polymorphic microsa-
tellite loci, specifically isolated and characterized for
this grapsid species by Fratini et al. (2006), were geno-
typed in samples from eight locations covering parts of
the Algerian, Tunisian and Libyan coasts.

Cox1 sequences were also obtained for all the North
African samples and for one population from southern
Turkey. Furthermore, these new sequences were com-
bined with the existing dataset by Fratini et al. (2011)
(including mainly Italian, but also Atlantic populations)
to investigate an overall mitochondrial geographic
structure within the Mediterranean Sea and in compari-
son to the adjacent Atlantic Ocean. This allowed a re-
analysis of possible genetic separation across the
Siculo-Tunisian Strait, but also a preliminary West-East
comparison with the geographic extremes, Turkey
and the Canary Islands.

Materials and methods

Sampling and DNA extraction

Specimens of Pachygrapsus marmoratus were sampled
during field missions from intertidal or shallow subtidal
locations along the African Mediterranean coast
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(Figure 1). From each crab, muscle tissue was removed
from a pereiopod and stored in absolute ethanol at
−30°C until needed. A total of 80 African crabs were
used for mtDNA sequencing and 110 for microsatellite
analyses (Table I). Total genomic DNA was extracted
from pereiopod muscle tissue, using the Wizard®
genomic DNA purification kit (Promega).

Microsatellite loci amplification and allele sizing

A total of 110 individuals of Pachygrapsus marmoratus
were screened for polymorphisms at four variable
microsatellite loci (pm-101, pm-99, pm-183 and pm-
187), specifically isolated and described for the
species (Fratini et al. 2006). DNA amplification was
carried out in 10.2 μl reactions with the following com-
ponents: ddH2O, dNTPs (0.12 mM each), PCR buffer
(1×), MgCl2 (1.23 mM), forward and reverse primers
(0.4 μM each), Taq polymerase (0.5 U; MBI Fermentas,
St Leon-Rot, Germany) and diluted DNA. PCR thermal
cycling conditions were adapted from Fratini et al.
(2006), with the following profile: 35 cycles with 30 s
for denaturation at 94°C, 45 s for annealing at 57–65°C
and 180 s for extension at 72°C, preceded by 5 min of
initial denaturation at 94°C and followed by 30 min of
final extension at 72°C. For detection of polymorph-
isms, the forward primer for each locus was 5′-labelled,
and labelled amplicons from the four loci were loaded
in three different, partly multiplexed sets (pm-101 FAM
+ pm-99 NED; pm-183 NED; and pm-187 VIC). For each
set, 1 μl of each diluted PCR product was loaded with
25 μl of formamide and 0.5 μl of TAMRA 500 size stan-
dard in a final volume of 26.5 μl for successive dimen-
sional analysis. Sizing was performed with reference to
the internal size standard TAMRA 500 in an ABI Prism
310 Genetic Analyzer (Applied Biosystems) at the

Figure 1. Sampling locations of Pachygrapsus marmoratus
from the African Mediterranean coast, with sea surface currents
of the studied region (according to Béranger et al. 2004). AC:
Algerian Current; AIS: Atlantic Ionian Stream; ATC: Atlantic
Tunisian Current.

Table I. Sampling information for the marbled crab (Pachygrapsus marmoratus), including collecting sites, countries/regions,
geographic coordinates and the number of specimens examined for mtDNA and microsatellite analyses. Note: coordinates from
Fratini et al. (2011) corrected.

Collection site Country/region Geographic coordinates

Number of examined specimens

mtDNA Microsatellite loci

Newly analysed data
Annaba Algeria 36°54′N 07°45′E 10 10
Bizerte Tunisia 37°16′N 09°52′E 8 20
Korbos Tunisia 36°49′N 10°34′E 9 10
Cap Bon Tunisia 36°51′N 11°05′E 12 20
Sahel Tunisia 36°10′N 10°49′E 11 20
Sfax Tunisia 34°44′N 10°45′E 9 10
Zarzis Tunisia 33°30′N 11°06′E 11 10
Tajura Libya 32°52′N 13°20′E 10 10
Beldibi Turkey 36°52′N 28°15′E 18 –

Previously investigated data by Fratini et al. (2011)
Calafuria Italy 43°17′N 10°12′E 15 –
Rocchette Italy 42°46′N 10°47′E 14 –
Porto Ercole Italy 42°23′N 11°12′E 15 –
Giglio Island Italy 42°21′N 10°55′E 11 –
Montecristo Italy 42°20′N 10°19′E 15 –
Gaeta Italy 41°11′N 13°35′E 15 –
Fusaro Lagoon Italy 40°48′N 14°02′E 15 –
Crotone Italy 39°04′N 17°08′E 16 –
Messina Italy 38°12′N 15°34′E 16 –
St Florent Corsica 42°41′N 09°16′E 15 –
Tarragona Spain 41°07′N 01°16′E 20 –
Valencia Spain 39°26′N 00°19′W 20 –
Cala Iris Morocco 35°09′N 04°21′W 15 –
Sesimbra Portugal 38°24′N 09°04′W 18 –
Matorral Fuerteventura 28°02′N 14°19′W 18 –
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University of Regensburg, using GENOTYPER 3.5 and
GENESCAN 3.5 (Applied Biosystems).

Mitochondrial DNA amplification and
sequencing

The mitochondrial cytochrome oxidase subunit I (Cox1)
gene, consisting of approximately 1500 basepairs (bp),
was amplified using the primers COL6a and COH16,
specifically designed for brachyuran crab species (see
Schubart 2009). The PCR reaction mix contained:
ddH2O, dNTPs (0.12 mM each), PCR buffer (1×), MgCl2
(4 mM), both primers (0.24 μM each), Taq polymerase
(0.5 U; MBI Fermentas), and diluted genomic DNA,
adding up to a final master mix volume of 25 μl. PCR
amplifications were carried out with an initial denatura-
tion phase of 4 min at 94°C, followed by 40 cycles, each
composed of 45 s of denaturation at 95°C, 60 s of
annealing at 52°C and 90 s of extension at 72°C.
These cycles were followed by 8 min of final extension
at 72°C. PCR products were loaded on 1.5% agarose gel
with GelRed staining and visualized under UV light.
Only strong products were outsourced for sequencing
with primer COL6a to LGC Genomics (Berlin). The
sequences obtained were visually corrected with
Chromas Lite 2.1.1 (Technelysium Pty Ltd 2012),
aligned with BIOEDIT (Hall 1999) and trimmed to a
739 bp fragment for subsequent analyses.

Statistical analysis of microsatellite data

Nuclear microsatellite loci were investigated in North
African populations of Pachygrapsus marmoratus from
the Algerian, Tunisian and Libyan coasts. Deviations
from Hardy–Weinberg equilibrium (HWE) in the
marbled crab populations were tested using the
Markov chain method with 5000 iterations as
implemented in GENEPOP 4.2 (Raymond & Rousset
1995). Genetic variability (Ar: allelic richness, Ho:
observed heterozygosity and He: expected heterozyg-
osity) at the typed microsatellite loci, as well as Weir &
Cockerham’s (1984) estimation of FIT, FST and FIS, were
calculated using FSTAT 9.2.3.2 (Goudet 1995). Genetic
diversity measures in each population (Ho: observed
heterozygosity, He: expected heterozygosity and FIS:
inbreeding coefficient) were estimated with GENEPOP
using the Markov chain parameter with 10,000 deme-
morizations, 20 batches and 5000 iterations per batch.
Since all populations showed highly significant hetero-
zygote deficiencies, the dataset was checked for
genotyping errors (i.e. null alleles) bymeans of Equation
2 from Brookfield (1996), as implemented in MICRO-
CHECKER 2.2.3 (van Oosterhout et al. 2004). We then

used the software FREENA to compute a genotype
dataset corrected for null alleles, following the INA
method described in Chapuis & Estoup (2007).

Genetic differentiation was estimated by means of
the exact test of population differentiation (Raymond
& Rousset 1995), as implemented in GENEPOP. This
test verifies the existence of differences in allele fre-
quencies at each locus and for each population.
Single locus P values were calculated using a Markov
chain with 10,000 dememorizations, 100 batches and
5000 iterations per batch, combined over loci, using
the Fisher exact test (Fisher 1935). The existence of
genetic differentiation was also assessed by one-level
AMOVA (Excoffier et al. 1992), using ARLEQUIN 3.1. Cor-
relations between genetic (FST values) and geographic
distances were assessed by the Mantel Test (Mantel
1967), as implemented in ARLEQUIN, with 10,000
random permutations.

An additional two-level AMOVA was performed,
grouping populations according to a specific biogeo-
graphic hypothesis: African western Mediterranean
versus African eastern Mediterranean. The exact
test (G) of genetic differentiation, implemented in
GENEPOP, was applied to the two groups of populations
already tested by the structured AMOVA in order to
assess both genic and genotypic differentiation.

The Bayesian approaches implemented in the two
software packages, STRUCTURE 2.3.4 (Pritchard et al.
2000) and BAPS 3.2 (Corander et al. 2003), were also
used to identify clusters of genetically similar popu-
lations based on the nuclear microsatellite data. BAPS
generally tends to recover more clusters than STRUC-
TURE, and it has been suggested that both approaches
should be used, particularly where levels of differen-
tiation between populations may be low (Latch et al.
2006). For STRUCTURE analysis, the admixture model
was processed using correlated allele frequencies. The
probability of the number of populations (K ) for the
pooled data was estimated by fixing prior values of K
(Kwas set fromone to eight in our study) and comparing
the Ln P (D) (the log-probability of the data) and the log-
likelihood of the data. Three replicates for each K were
independently performed, giving reproducible results.
The analysis was run for 500,000 generations with a
burn-in length of 20,000 iterations. For the BAPS analy-
sis, the number of genetically diverged groups (K )
varied from K = 1 to K = 8 in both clustering of individ-
uals and clustering of groups of individuals. In the
admixture analysis basedonmixture clustering, 200 iter-
ations were used for the number of times that individ-
uals in the data were analysed using different
simulated allele frequencies for the estimation of refer-
ence individuals, as suggested by Corander et al. (2005).
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Genotypic structure analysis was also assessed by
ordinating genotypes in multidimensional space by
principal component analysis (PCA) of gene frequency
data, using the program PCA-GEN 1.2.1 (Goudet 1999).
Individuals were plotted by scores along the two prin-
cipal axes (PC-I and PC-II), explaining the cumulative
percentage of the total genetic diversity, testing for
the existence of population groupings. Genotypic
assignment was also assessed by GENECLASS 2.0 (Piry
et al. 2004). The most probable origin of each individual
was calculated by comparing the likelihood of the
multi-locus genotype of a given individual in a set of
pre-determined populations. The Bayesian method,
proposed by Rannala & Mountain (1997), was chosen,
together with a threshold of 0.05. GENECLASS also
allowed for the detection of the number of migrants.
The frequency-based method, described by Paetkau
et al. (1995), was used and a threshold of 0.01 was
set. For both tests, the rejection probability was
obtained by simulating 10,000 individuals from allelic
frequencies based on the simulation algorithm of
Paetkau et al. (2004).

In order to test for evidence of a recent population
bottleneck in African Mediterranean populations of
P. marmoratus, we applied the BOTTLENECK test
(Cornuet & Luikart 1996), using the heterozygosity
excess method of Luikart et al. (1998), as implemented
in BOTTLENECK 1.2.02 (Piry et al. 1999). This program
generates the heterozygosity of each locus expected
under mutation-drift equilibrium, given the observed
number of alleles (Heq) under the three mutation
models: the infinite allele model (IAM), the two phase
mutation model (TPM) and the stepwise mutation
model (SMM), using 10,000 simulations. The obtained
Heq values are then averaged across loci and compared
with the observed level of heterozygosity (Ho). The
SMM and TPM are most appropriate for microsatellite
data (Luikart & Cornuet 1998), with the TPM providing
a more realistic picture of mutational events in microsa-
tellite loci (Di Rienzo et al. 1994; Piry et al. 1999). For the
TPM, 70 multi-step mutations were set, with a variance
among multi-steps of 12%, as recommended for micro-
satellites (Piry et al. 1999), and statistical significance
based on 1000 replications was obtained. In a popu-
lation at mutation-drift equilibrium (i.e. the effective
size of which has remained constant in the past),
there is approximately an equal probability that a
locus shows a heterozygosity excess or a heterozygos-
ity deficit. We then recorded the number of loci for
which Ho was greater than Heq and determined
whether the overall set of deviations was statistically
significant using the sign rank and Wilcoxon tests
(Luikart et al. 1998).

Statistical analysis of mtDNA data

Data analysis procedure
Genetic analyses were carried out using two align-
ments: (1) a long alignment of 739 base pairs (bp),
with sequences from North African populations, and
(2) a shorter alignment of 596 bp for comparison and
population genetic investigation of Pachygrapsus mar-
moratus across a wider geographic scale. The latter
included the European Atlantic and western Mediterra-
nean dataset previously investigated by Fratini et al.
(2011) and the newly examined North African and
Turkish sequences (Table I).

Genetic diversity and population structure

The nucleotide composition was assessed using MEGA
5.2 (Tamura et al. 2011). Measurements of DNA poly-
morphism, including the number of haplotypes, haplo-
type diversity (h; Nei 1987) and nucleotide diversity (π;
Tajima 1983; Nei 1987), were calculated for each popu-
lation using DNASP 5.10 (Librado & Rozas 2009). Intras-
pecific evolutionary relationships among the Cox1
haplotypes of Pachygrapsus marmoratus, for both
alignment datasets, were estimated using the software
TCS 1.21 (Clement et al. 2000).

We measured levels of population subdivision using
both unordered (GST) and ordered alleles (NST) in order
to assess the relationship between phylogeny and the
geographic distribution of haplotypes. These analyses
were carried out using a distance matrix (number of
polymorphic sites that differed between haplotypes)
that was based on the larger Cox1 data for Pachygrap-
sus marmoratus. Both population differentiation par-
ameters (GST and NST) were estimated following the
methods described by Pons & Petit (1995, 1996),
using the program PERMUT & CPSRR 2.0 (Pons & Petit
1996). GST is based solely on haplotype frequencies,
whereas NST also takes into account the genetic
relationship among haplotypes. An NST higher than
the GST usually indicates that closely related haplotypes
are more often found in the same area than less closely
related haplotypes (Pons & Petit 1996; Petit et al. 2005).
These two parameters were compared statistically
using the U-test (Pons & Petit 1996).

Evidence of population genetic differentiation
within each data alignment was assessed by one-
level AMOVAs (Excoffier et al. 1992), as implemented
in ARLEQUIN 3.1 (Excoffier et al. 2005), based on
nucleotide diversity and haplotype frequency. The
extent of genetic differentiation between populations
was estimated using the fixation indices: ΦST (based
on a Tajima-Nei model, suggested for unequal
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nucleotide frequencies, as observed in our dataset;
Tajima & Nei 1984) and FST (computed using haplotypic
frequencies). Significance levels of pairwise genetic dis-
tances, estimated among populations, were assessed
by a randomization procedure with 10,000 permu-
tations. Analyses of molecular variance (two-level
AMOVA) were also used to examine population
genetic structure of P. marmoratus along the West–
East geographic gradient, testing for the separation
across (1) the Gibraltar Strait (Atlantic vs. Mediterra-
nean) and (2) across both the Gibraltar and Siculo-Tuni-
sian Straits (Atlantic vs. Western Mediterranean vs.
Eastern Mediterranean). A test of isolation by distance,
for the whole dataset, was assessed by the Mantel test
(Mantel 1967), as implemented in the program AIS 1.0
(Alleles in Space; Miller 2005). The statistical signifi-
cance of the test was assessed assuming 10,000
random permutations.

Demographic history

Signatures of population demographic changes were
investigated in African Mediterranean Pachygrapsus
marmoratus using three neutrality tests: Tajima’s D
(Tajima 1989), Fu’s Fs (Fu, 1997), and Ramos-Onsins &
Rozas’s R2 (Ramos-Onsins & Rozas 2002). Tajima’s D
and Fu’s Fs statistics were used to determine whether
data departed from neutrality due to factors such as a
population bottleneck or sudden expansion. The exam-
ination of deviation from neutrality by both D and Fs
indices was based on 1000 coalescent simulations, as
implemented in ARLEQUIN. Significant negative D and
Fs values can be interpreted as signatures of population
expansion. The R2 statistic of Ramos-Onsins & Rozas
(2002), which has more statistical power when popu-
lation sizes are small, was calculated using a coalescent
simulation algorithm implemented inDNASP, with 1000
simulations. Demographic changes in P. marmoratus
were also examined by calculating the Harpending’s
raggedness index rg (Harpending 1994) of the observed
mismatch distribution for each of the populations,
according to the population expansion model
implemented in ARLEQUIN. The significance of this
measure, which quantifies the smoothness of the
observed mismatch distribution, was tested using para-
metric bootstrapping (10,000 replicates). Tajima’sD, Fu’s
Fs, Ramos-Onsins & Rozas’s R2 and Harpending’s rag-
gedness index rg were calculated for each population
and the whole dataset.

To provide other estimates of population size
changes, we also examined site mismatch distributions
for the whole dataset. Contrasting plots of observed
and theoretical distributions of site differences yield

insight into past population demographics. The
expectedmismatchdistributions under a suddenexpan-
sion model were computed in ARLEQUIN. The sum of
squared deviations (SSD) between observed and
expected distributions was used as a measure of fit,
and the probability of obtaining a simulated SSD
greater than or equal to the expected was computed
by randomization. If this probability was > 0.05, the
expansion model was accepted. Graphical represen-
tation was made by means of the growth-decline
model implemented in DNASP. It was investigated
whether P. marmoratus underwent a range expansion
by the spatial expansion model (Excoffier 2004) in ARLE-
QUIN. The mismatch distribution analysis also provides
an estimation for the expansion parameters Tau (τ),
Theta 0 (θ0) and Theta 1 (θ1), under a demographic or
spatial expansion hypothesis. The value of τ can be
used to calculate the time (t) at which the demographic
or spatial expansion began, using the formula t = τ/2u
(Rogers & Harpending 1992), with u defined as the
mutation rate per site per year (Li 1977). A conventional
mutation rate for theCox1 gene in brachyuran Crustacea
(1.66%permillionyears; Schubart et al. 1998)wasused in
our analysis.

The magnitude of historical demographic events for
the African Mediterranean population of P. marmoratus
was investigated using Bayesian Skyline Plots (BSP;
Drummond et al. 2005). In comparison with simple
parametric and older coalescent demographic
methods, the smoother estimates and sensitivity of
this method, together with a credibility interval,
provide a realistic population size function and
enable retrieval of more details than just summary stat-
istics. Analyses were run in BEAST 1.7.5 (Drummond
et al. 2012) using a GTR model and a strict molecular
clock. The Markov chain Monte Carlo simulations
were run with 30,000,000 iterations, while genealogies
and model parameters were sampled every 1000 iter-
ations. The first 3,000,000 iterations were discarded as
burn-in, whereas the remaining results were combined
in LogCombiner (Drummond et al. 2012) and summar-
ized as BSPs after analysing their convergence in
TRACER 1.5 (Rambaut & Drummond 2007).

Results

Micro-geographic scale

Microsatellites
Overall, a total of 85 alleles were detected at the four
genotypedmicrosatellite loci. All loci were polymorphic,
with the number of alleles per locus ranging from 17
(locus pm-183) to 25 (locus pm-101). The mean
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number of alleles per locus was 21. Based on the original
dataset, all populations strongly deviated from Hardy–
Weinberg equilibrium (HWE), with an excess of homozy-
gotes, at all examined loci. The software MICRO-
CHECKER suggested the presence of null alleles for
these loci. Therefore, we corrected the original matrix
for null alleles. Re-analysis of the reviseddataset revealed
no significant departure from HWE for each population
(Table II), as well as for the whole sample (P = 0.089).
The mean observed and expected heterozygosities
across lociwere 0.778 ± 0.128 and0.788 ± 0.123, respect-
ively. The mean allelic richness across loci was 9.170 ±
1.969. Weir & Cockerham’s (1984) estimation of F-stat-
istics showed that the highest values of FIT (0.084 ±
0.048) and FST (0.040 ± 0.016) corresponded to locus
pm-183, whereas pm-101 exhibits the highest value of
FIS (0.067 ± 0.024). Overall, FIT values were higher than
those recorded for FIS within the examined loci. The
observed and expected heterozygosities and the FIS esti-
mates within the eight studied populations are shown in
Table II. The mean observed and expected heterozygos-
ities across populations were 0.778 ± 0.028 and 0.787 ±
0.030, respectively. Heterozygosity deficit, as measured
byWright’s FIS (Table II), showed low levels inmost popu-
lations when averaged across loci, ranging from −0.035
(population at Korbos) to 0.075 (population at Bizerte).
The average value of FIS across populations was 0.012
± 0.031, indicating a low heterozygote deficiency.

Overall, our results showed highly significant
genetic differentiation among populations. Based on
the outcome of the Fisher exact test, we rejected the
hypothesis of genetic homogeneity in the distribution
of allele frequencies for the entire microsatellite
dataset (χ2 =∞, df = 8, P < 0.001). The one-level
AMOVA also confirmed the hypothesis of a partitioning
of genetic variation among populations (FST = 0.014,
df = 219, P < 0.001). No relationship was found
between genetic and geographic distances (r =

−0.095, P = 0.704) by means of the Mantel test, exclud-
ing the hypothesis of isolation by distance to explain
population separation. Population genetic structure
was examined by means of the two-level AMOVA,
grouping populations according to their geographic
origin: African western Mediterranean (Annaba,
Bizerte, Korbos and Cap Bon) versus African eastern
Mediterranean (Sahel, Sfax, Zarzis and Tajura). Our
results showed a lack of genetic subdivision across
the Siculo-Tunisian Strait (FCT =−0.001, df = 219, P =
0.659). Conversely, the exact test of genetic differen-
tiation (G) showed weak but significant genic differen-
tiation (χ2 = 16.973, df = 8, P = 0.030) between these
two groups of populations. Nevertheless, comparison
at the genotypic level did not lead to the same result
(χ2 = 15.084, df = 8, P = 0.057).

A lack of population genetic structure was revealed
based ongenotypic assignment. TheBayesian clustering
program STRUCTURE recorded a consistent decrease
in the LnP(D) (the log-probability of data) from K = 1
(LnP(D) =−2057.1) to K = 8 (LnP(D) =−2158.2), support-
ing a single population. Although BAPS analysis
yielded three clusters, specimens of the examined popu-
lations were shown to mix and it was not possible to
achieve a strong clustering pattern. However, cluster 3
seemed to differentiate the two populations of Korbos
and Tajura, based on the average admixture coefficients
for the specimens according to their clusters (Figure 2).
This result was consistent with that given by the statisti-
cal approach of PCA-GEN software. The result of the PCA
on the genotypes, ordered in the space defined by the
two main axes (PC-I and PC-II, explaining 51.04% of the
total genetic diversity), did not show significant group-
ings, even though populations like Bizerte and Tajura
were shown to be separated from the others by means
of axis I and II, respectively (Figure 3). Furthermore,
only 16.4% of individuals were assigned by GENECLASS
(with a quality index of 17.21%) to the populations
from which they were sampled. GENECLASS also

Table II. The exact test for Hardy–Weinberg equilibrium in the
marbled crab (Pachygrapsus marmoratus) and genetic diversity
measures in each population, based on the analysis of
microsatellite loci.
Population Size P Ho He FIS

Annaba 10 0.269 ns 0.800 0.818 0.022
Bizerte 20 0.056 ns 0.750 0.811 0.075
Korbos 10 0.567 ns 0.775 0.748 −0.035
Cap Bon 20 0.168 ns 0.700 0.712 0.017
Sahel 20 0.438 ns 0.775 0.794 0.024
Sfax 10 0.593 ns 0.825 0.798 −0.033
Zarzis 10 0.467 ns 0.800 0.781 −0.023
Tajura 10 0.081 ns 0.800 0.841 0.049

P: the P-value of departure from the Hardy–Weinberg equilibrium for each
population; ns: no significant departure from Hardy–Weinberg equili-
brium; Ho: observed heterozygosity; He: expected heterozygosity; FIS:
inbreeding coefficient; Corrected genotype dataset for null alleles was
computed following the INA method (Chapuis & Estoup 2007).

Figure 2. BAPS analysis depicting average coefficients of
admixture for Pachygrapsus marmoratus specimens belonging
to eight populations according to their clusters.

MARINE BIOLOGY RESEARCH 477

D
ow

nl
oa

de
d 

by
 [

D
r 

T
em

im
 D

el
i]

 a
t 0

8:
04

 2
5 

Ju
ne

 2
01

6 



revealed that eight individuals (P < 0.01) were potential
first generation migrants.

The hypothesis of a possible bottleneck in the North
African metapopulation of Pachygrapsus marmoratus
was tested. The results of bottleneck analysis using the
sign rank test and Wilcoxon test for each of three
mutationmodels are depicted in Table III. The probability
values from theWilcoxon test for the IAM, TPM and SMM
models indicated the acceptance of mutation-drift equi-
librium under all the models. Indeed, the Wilcoxon test
revealed no significant patterns of heterozygosity
excess (P = 0.968). Accordingly, these results excluded
the hypothesis of a recent genetic bottleneck.

Mitochondrial DNA

Genetic analyses of the African Mediterranean popu-
lations of Pachygrapsus marmoratus were carried out
using the longer alignment of 739 bp, generated for
the mtDNA cytochrome oxidase I (Cox1) gene from

80 individuals. In all, 31 nucleotide sites were variable,
of which 13 were parsimony-informative and 18 were
autapomorphic (singletons). Among these sequences,
32 haplotypes were identified (Figure 4a). The nucleo-
tide composition of the analysed fragment showed an
A-T bias (C = 20.29%; T = 36.80%; A = 25.37%; G =
17.54%), as previously mentioned for invertebrate
mitochondrial DNA (Simon et al. 1994). Overall,
genetic diversity analysis of the mitochondrial
dataset showed high haplotypic diversity (h = 0.812
± 0.044) and low nucleotide diversity (π = 0.0029 ±
0.000) (Table IV). The statistical parsimony procedure
yielded one network with several connections
(Figure 4a). The network had a star-like shape in
which the proposed ancestral haplotype (haplotype
19, found in the population of Korbos) occupied a
central position (Figure 4a). Most of the haplotypes
differed by few mutations. The most common haplo-
type (haplotype 1), found in 34 specimens from all
populations, was separated from the ancestral haplo-
type by one mutational step. The two most divergent
haplotypes (28 and 29) were from the population of
Tajura, being separated from the ancestral haplotype
by at least five mutational steps. The population of
Korbos was characterized by the highest genetic
variability with the existence of nine haplotypes, of
which seven were site-specific.

The one-level AMOVA showed a lack of population
genetic structure among African Mediterranean popu-
lations of P. marmoratus (ΦST = 0.014, df = 79, P =
0.215, based on Tajima–Nei distances; FST =−0.006,
df = 79, P = 0.593, based on haplotype frequency). All
pairwise comparisons, estimated from both genetic
divergence and haplotype frequencies, were not sig-
nificant (data not shown), except the one between
the population of Korbos and the population of
Sahel (ΦST = 0.149, P < 0.05).

Figure 3. Scores of microsatellite genotypes of Pachygrapsus
marmoratus populations, plotted on the first two axes (PC-I
vs. PC-II) of a principal component analysis (PCA) performed
using PCA-GEN version 1.2.1.

Table III. Genetic bottleneck analysis within the North African metapopulation of Pachygrapsus marmoratus based on three
microsatellite evolutionary models.

Locus

Under the IAM (Infinite allele model) Under the TPM (Two phase model) Under the SMM (Stepwise mutation model)

Heq S.D. DH/sd Prob Heq S.D. DH/sd Prob Heq S.D. DH/sd Prob

pm101 0.916 0.024 −2.736 0.016 0.941 0.012 −7.496 0.001 0.948 0.012 −8.138 0.003
pm99 0.904 0.029 2.014 0.000 0.935 0.013 2.172 0.000 0.943 0.012 1.619 0.000
pm183 0.860 0.046 −2.787 0.019 0.903 0.022 −7.803 0.000 0.919 0.014 −13.28 0.000
pm187 0.885 0.039 −8.177 0.000 0.922 0.015 −23.596 0.000 0.933 0.015 −23.55 0.000
Sign rank test (number of loci
with heterozygosity excess)

Expected
Observed

2.42 Expected
Observed

2.33 Expected
Observed

2.37
1 1 1

Probability 0.172 Probability 0.199 Probability 0.189
Wilcoxon test (probability) 0.968 0.968 0.968

Heq: expected heterozygosity at the mutation-drift equilibrium, generated from the number of alleles at a locus and the sample size; S.D.: the standard devi-
ation (SD) of the mutation-drift equilibrium distribution of the heterozygosity; DH/sd: the standardized differences for each locus ((Ho-He)/SD); Prob: the
distribution obtained through simulation enables also the computation of a P-value for the observed heterozygosity. Test of whether observed heterozyg-
osity deviates from that expected under mutation-drift equilibrium, using the three mutation models, was assessed by the probability of Heterozygosity
excess (P) yielded by the Wilcoxon test.

478 T. DELI ET AL.

D
ow

nl
oa

de
d 

by
 [

D
r 

T
em

im
 D

el
i]

 a
t 0

8:
04

 2
5 

Ju
ne

 2
01

6 



Population demographic history was recon-
structed using three neutrality tests, mismatch distri-
bution analysis and BSP analysis. The applied
neutrality tests revealed significant deviations from
mutation-drift equilibrium for the populations of
Annaba, Bizerte, Korbos, Cap Bon, Zarzis and Tajura,
showing mainly significant results for FS and R2

tests (Table IV) and suggesting recent population
expansion events. Moreover, the negative and signifi-
cant values of Tajima’s D and Fu’s FS tests, as well as
the significant value of Ramos-Onsins & Rozas R2,
together with the small and non-significant value of
Harpending’s raggedness index rg, revealed signifi-
cant deviations from neutrality for the whole

Figure 4. TCS haplotype network of Pachygrapsus marmoratus, based on the alignment of 739 bp (a) and 596 bp (b) of the mito-
chondrial gene Cox1, showing the relationships among the recorded haplotypes across different investigated regions. Haplotypes
19 (a) and 6 (b) correspond to the ancestral haplotype. Each line between two points represents one mutational step. Circle sizes
depict proportions of haplotypes; the smallest corresponds to 1 and the largest to 34 (a) and 182 (b) individuals. Notation: Each
network includes its own haplotype organization driven from the corresponding alignment.

Table IV. Genetic diversity and historical demographic results for Pachygrapsus marmoratus populations from the African
Mediterranean coast, based on the analysis of the mtDNA Cox1 gene.
Population N Na h π (%) D FS R2 rg

Annaba 10 7 0.86 ± 0.10 0.32 ± 0.03 −0.61 −2.67 0.12 0.12
Bizerte 8 5 0.78 ± 0.15 0.26 ± 0.02 −1.35 −1.23 0.12 0.06
Korbos 9 8 0.97 ± 0.06 0.37 ± 0.03 −0.74 −4.62 0.11 0.06
Cap Bon 12 6 0.75 ± 0.12 0.22 ± 0.02 −0.67 −1.87 0.11 0.22
Sahel 11 5 0.70 ± 0.13 0.21 ± 0.02 −1.40 −0.97 0.13 0.03
Sfax 9 6 0.88 ± 0.09 0.32 ± 0.03 −0.85 −1.71 0.14 0.32
Zarzis 11 7 0.81 ± 0.11 0.29 ± 0.02 −1.26 −2.65 0.08 0.17
Tajura 10 6 0.77 ± 0.13 0.37 ± 0.03 −1.00 −1.04 0.10 0.02
Total 80 32 0.81 ± 0.04 0.29 ± 0.00 −2.03 −27.12 0.03 0.05

Values reported for each population and for the total dataset are: sample size (N ), number of haplotypes (Na), haplotype (h) and nucleotide (π) diversity,
Tajima’s D test (D), Fu’s FS test (FS), Ramos-Onsins and Rozas’s R2 test (R2), and mismatch distribution raggedness index (rg). Nucleotide diversity (π) was
calculated in per cent. Significant values are in bold.
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dataset (Table IV and Figure 5a), consistent with a
scenario of a sudden demographic expansion. The
unimodal mismatch distribution obtained for the
North African metapopulation of P. marmoratus
(Figure 5a) also suggested a recent demographic
expansion. Statistical analysis of the mismatch distri-
bution supported both models of demographic
(SSD = 0.015; P = 0.170) and spatial expansion (SSD
= 0.009; P = 0.545, associated with a strictly positive
migration rate: M = 7.810 [2.575–99999, for a 95%
confidence interval]). Under the assumption of a
sudden demographic expansion, the value of τ for
the whole sample was 2.781 (95% confidence inter-
val: 1.111–4.494). Thus, assuming a Cox1 mutation
rate of 1.66% per million years (Schubart et al.
1998), the most recent population expansion began
at around 0.837 million years ago. Under the spatial
expansion hypothesis, the value of τ decreased to
2.619 (95% confidence interval: 0.850–4.097),
corresponding to an expansion time of 0.788
million years ago.

Historical demography of the North African
population of P. marmoratus was also inferred from

the coalescent approach in the BSP analysis. The

pattern of effective population size change over time

was shown to be a remarkably progressive increase

(Figure 5b) and invoked the possible scenario of popu-

lation demographic recovery following an historical

bottleneck (Hoffman et al. 2011).

Macro-geographic scale

The inclusion of previously published data allowed for
the analysis of 336 Cox1 sequences (Table I) with an
alignment length of 596 bp. A total of 41 variable
sites (17 informative) defined 49 haplotypes. Among
these, 16 haplotypes were newly detected in this
study. Nucleotide composition of the analysed frag-
ment was found to be unbalanced (C = 20.97%; T =
35.91%; A = 25.08%; G = 18.04%). Overall haplotype
diversity (h) and nucleotide diversity (π), calculated for
the investigated geographic range, were 0.684 ± 0.020
and 0.0024 ± 0.000, respectively. The haplotype
network had a star-like shape, centred on two main
haplotypes (2 and 4; Figure 4b). Haplotype 6, found at
the junction of the branches connecting the main hap-
lotypes, occupied a central position and was therefore
proposed to be the ancestral haplotype (Figure 4b).
Haplotype 2, found in 182 individuals, was present in
all populations. In contrast, haplotype 4, found in 44
specimens, was not recorded from the Portuguese
location of Sesimbra or the Tunisian populations of
Bizerte and Zarzis. Calculations of NST (0.015) and GST

(0.012) revealed that the NST value was not significantly
higher than the GST value (U-test = 0.70, P = 0.05), infer-
ring the lack of relationship between phylogeny and the
geographic distribution of haplotypes.

The one-level AMOVA showed weak but significant
genetic differentiation based on nucleotide divergence
(ΦST = 0.022, df = 335, P = 0.031). The general trend of

Figure 5. Mismatch distribution (a) and Bayesian skyline plot (BSP, implemented in BEAST) (b) for the North African populations of
Pachygrapsus marmoratus. (a) Observed frequencies (dotted line) were compared with the expected frequencies (continuous line),
estimated by the growth-decline model implemented in DNASP. The demographic expansion parameters used, τ and θinitial, were
calculated in ARLEQUIN (τ = 2.781 and θinitial = 0.000); θfinal value was fixed at 1000 to simulate the infinite. The two demographic
indices SSD and rg, provided for the observed mismatch distributions, were calculated under the assumption of a demographic
expansion model, implemented in ARLEQUIN. (b) BSP showing changes in effective population size (expressed as effective popu-
lation size [Ne] multiplied per generation time [μ]) over time (measured in mutations per site). The thick solid line depicts the
median estimate, and the margins of the surrounding area represent the highest 95% posterior density intervals.
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partitioning genetic variation among populations was
not confirmed based on haplotype frequency (FST =
0.016, df = 335, P = 0.058). Pairwise comparisons of
genetic differentiation, estimated from genetic diver-
gence and haplotype frequency, are presented in
Table V. Population genetic structure was investigated
grouping populations under different biogeographic
hypotheses (Table VI). Analysis of molecular variance
(two-level AMOVA) showed significant population
structure along the West-East geographic gradient,
depicting a weak but significant difference between
the Atlantic and Mediterranean based on nucleotide
divergence (ΦCT = 0.049; P < 0.05). Although a signifi-
cant result was also noted when considering three
groups (Atlantic vs. Western Mediterranean vs.
Eastern Mediterranean), partitioning the genetic var-
iance among Atlantic and Mediterranean Basins
yielded the highest ΦCT and explained most of the
population genetic structure of Pachygrapsus marmor-
atus. The Mantel test revealed no significant correlation
between genetic and geographic distances (r =−0.069,
P = 0.741), suggesting a lack of isolation by distance.

Discussion

The present investigation mainly focuses on the popu-
lation genetic structure of the intertidal marbled crab
Pachygrapsus marmoratus across the Siculo-Tunisian
Strait, investigating mtDNA and nuclear variation
among eight North African populations. Analyses of
mtDNA and microsatellite loci showed contrasting pat-
terns of population differentiation, but both markers
revealed no significant genetic structure across the
Siculo-Tunisian Strait.

Overall, our mtDNA results showed a relatively
homogeneous mtDNA haplotype composition among
populations of the African Mediterranean coast
belonging to distinct basins. The geographic distri-
bution of haplotypes also showed that the most
common haplotype (haplotype 1, Figure 4a) was
present in all populations in high frequencies. This
suggests the existence of high gene flow connecting
populations separated by hundreds of kilometres
(such as the Algerian population of Annaba and the
Libyan population of Tajura) and maintaining the
observed genetic homogeneity. This finding is in con-
trast with the genetic structure previously recorded
with the same marker in other decapod species, such
as the caramote prawn Penaeus kerathurus Forskål,
1775 (see Zitari-Chatti et al. 2009) and the green crab
Carcinus aestuarii Nardo, 1847 (see Deli et al. 2015b)
across the investigated region. This suggests that the
lack of mtDNA-based genetic structure in Pachygrapsus

marmoratus could be linked to incomplete lineage
sorting, owing to a slow mtDNA mutation rate in this
species. Although the Cox1 gene has been shown to
be variable enough in different decapod species
(Fratini & Vannini 2002; Roman & Palumbi 2004;
Darling et al. 2008; Silva et al. 2010; Laurenzano et al.
2014), it also failed to reveal genetic structuring in
other brachyuran species, like the blue crab Callinectes
bellicosus Stimpson, 1859 (see Pfeiler et al. 2005) or the
fiddler crab Uca (Leptuca) uruguayensis Nobili, 1901
(see Laurenzano et al. 2013). The absence of genetic
structure could also indicate the possible signature of
historical mixing events that took place in the investi-
gated region (i.e. through a possible bottleneck
during the glaciation periods in the Mediterranean).

The BSP estimate of the effective population size
fluctuations of the North African metapopulation
showed a gradual increase over time, characteristic of
a population in a phase of demographic recovery fol-
lowing an historical bottleneck (Hoffman et al. 2011).
However, we should caution with the fact that the
actual effective population size does not appear to be
much greater than in the past. This might be due to
the limited number of analysed specimens (less than
100), which can prevent the capture of the full extent
of a population expansion (Grant 2015). The obtained
BSP result is concordant with the ragged unimodal mis-
match distribution and the star-like haplotype network.
Furthermore, the estimated time of expansion under
both demographic (0.837 million years ago) and
spatial (0.788 million years ago) expansion models
coincides well with Pleistocene glaciation periods,
and seems to indicate that the North African metapo-
pulation of P. marmoratus might have experienced
rapid historical population growth from an ancestral
population with a small effective population size in
the Mid-Pleistocene. During this period, the Mediterra-
nean Sea experienced strong climatic changes and sea
level fluctuations, supposedly affecting the genetic
population structure of many marine species (for a
review see Hewitt 2000 and Patarnello et al. 2007).

Despite the lack of differentiated geographic groups
within P. marmoratus, both one-level AMOVA and
Fisher exact tests, based on microsatellite data,
showed significant partitioning of genetic variation
among North African populations. This result contrasts
clearly with that inferred from mtDNA analyses of the
same populations. However, the recorded population
subdivision was not in accordance with geographic
boundaries nor correlated with geographic distances,
as revealed by the Mantel test. Accordingly, the
genetic separation among populations could be attrib-
uted to the small effective size contributing to the next
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Table V. Pairwise comparisons of genetic differentiation estimated from genetic divergence (ΦST, below the diagonal) and haplotype frequency (FST, above the diagonal), based on the
mtDNA Cox1 gene. Values with P < 0.05 are reported in bold (significance levels calculated from 10,000 permutations).

Atlantic Western Mediterranean Eastern Mediterranean

MAT SSB CAI VAL TRG SFL CAL RCH PER GIG MTC GAE FUS MES ANN BIZ KOR CAP SHL SFX ZRZ TAJ CRT BLB

MAT * 0.101 −0.01 0.037 0.00 −0.01 −0.01 −0.00 0.03 0.072 0.004 0.015 −0.01 0.029 0.027 −0.0 0.131 −0.04 0.002 −0.0 0.010 −0.00 0.017 0.013
SSB 0.051 * 0.031 0.003 0.18 0.110 0.086 0.176 0.05 0.306 0.183 0.168 0.097 0.230 0.229 0.15 0.418 0.136 0.085 0.26 0.170 0.088 0.040 0.115
CAI −0.016 0.003 * −0.02 0.01 −0.02 −0.03 0.011 −0.0 0.074 0.014 0.006 −0.03 0.041 0.033 −0.0 0.164 −0.02 −0.05 0.03 0.007 −0.04 −0.03 −0.01
VAL 0.028 0.011 −0.02 * 0.07 0.02 −0.00 0.059 −0.0 0.133 0.078 0.042 −0.00 0.099 0.090 0.03 0.254 0.038 −0.02 0.13 0.060 −0.02 −0.03 0.011
TRG 0.045 0.195 0.063 0.079 * −0.00 −0.01 −0.02 0.04 −0.03 −0.01 −0.03 −0.01 −0.04 −0.01 −0.0 0.012 −0.02 −0.00 −0.0 −0.00 −0.01 0.028 −0.01
SFL 0.001 0.101 −0.00 −0.00 −0.00 * −0.02 −0.04 0.00 0.015 −0.01 −0.01 −0.02 0.005 −0.03 −0.0 0.085 −0.03 −0.02 −0.0 −0.04 −0.03 −0.01 −0.01
CAL 0.017 0.131 0.011 0.015 −0.03 −0.03 * −0.00 −0.0 0.034 0.005 −0.01 −0.04 0.013 0.012 −0.0 0.107 −0.02 −0.04 0.01 0.001 −0.04 −0.02 −0.02
RCH 0.063 0.208 0.076 0.061 −0.01 −0.03 −0.00 * 0.04 −0.02 −0.01 −0.02 −0.01 −0.01 −0.05 −0.0 0.034 −0.03 −0.01 −0.0 −0.02 −0.01 0.009 −0.02
PER 0.016 0.100 −0.02 −0.02 0.00 −0.03 −0.03 0.018 * 0.069 0.065 0.013 −0.03 0.056 0.073 0.04 0.209 0.027 −0.05 0.10 0.060 −0.02 −0.04 −0.01
GIG 0.170 0.411 0.205 0.196 −0.02 0.04 0.03 −0.02 0.11 * 0.010 −0.03 −0.00 −0.05 −0.01 0.04 −0.00 0.023 0.016 −0.0 0.022 0.015 0.058 −0.00
MTC 0.009 0.116 0.003 0.029 −0.02 −0.02 −0.03 −0.00 −0.0 0.020 * −0.01 −0.00 −0.01 −0.01 −0.0 0.036 −0.03 0.000 −0.0 −0.02 −0.01 0.020 0.000
GAE 0.016 0.158 0.026 0.047 −0.03 −0.02 −0.03 −0.00 −0.0 0.000 −0.03 * −0.03 −0.03 −0.02 −0.0 0.041 −0.02 −0.03 −0.0 −0.01 −0.03 −0.00 −0.03
FUS −0.013 0.137 0.004 0.031 −0.03 −0.03 −0.04 −0.00 −0.0 0.029 −0.04 −0.04 * −0.01 0.010 −0.0 0.113 −0.02 −0.05 0.01 0.000 −0.05 −0.04 −0.03
MES 0.077 0.249 0.098 0.110 −0.03 −0.00 −0.00 −0.02 0.03 −0.05 −0.01 −0.03 −0.02 * −0.00 0.01 0.006 −0.00 0.005 −0.0 0.000 −0.00 0.040 −0.01
ANN 0.109 0.315 0.143 0.142 −0.01 0.00 0.02 −0.05 0.08 −0.06 0.010 −0.01 0.010 −0.03 * −0.0 0.027 −0.02 0.008 −0.0 −0.03 −0.00 0.025 0.003
BIZ −0.00 0.060 −0.01 −0.01 0.02 −0.02 −0.01 0.013 −0.0 0.098 −0.01 −0.01 −0.01 0.040 0.044 * 0.067 −0.04 −0.01 −0.0 −0.03 −0.03 0.008 −0.00
KOR 0.149 0.378 0.207 0.244 0.02 0.09 0.07 0.049 0.16 0.003 0.058 0.040 0.060 0.014 −0.01 0.08 * 0.070 0.122 −0.0 0.059 0.103 0.183 0.091
CAP −0.02 0.138 −0.00 0.040 −0.02 −0.03 −0.02 −0.00 −0.0 0.039 −0.04 −0.04 −0.05 −0.01 −0.00 −0.0 0.039 * −0.03 −0.0 −0.01 −0.03 0.004 −0.01
SHL 0.013 0.046 −0.04 −0.04 0.03 −0.02 −0.02 0.033 −0.0 0.143 −0.02 0.010 −0.00 0.064 0.095 −0.0 0.171 −0.00 * 0.03 0.002 −0.05 −0.04 −0.04
SFX 0.065 0.347 0.141 0.183 −0.03 0.03 0.03 0.00 0.10 −0.00 −0.00 −0.02 −0.01 −0.03 −0.03 0.06 −0.04 −0.02 0.126 * −0.01 0.015 0.077 0.015
ZRZ 0.005 0.146 0.018 0.040 −0.03 −0.04 −0.03 −0.03 −0.0 −0.00 −0.03 −0.04 −0.05 −0.04 −0.03 −0.0 0.024 −0.04 0.003 −0.0 * −0.03 0.007 −0.00
TAJ −0.036 0.062 −0.03 −0.01 −0.00 −0.03 −0.03 0.015 −0.0 0.088 −0.04 −0.03 −0.05 0.009 0.049 −0.0 0.077 −0.04 −0.03 0.03 −0.04 * −0.05 −0.04
CRT 0.016 0.067 −0.02 −0.03 0.01 −0.04 −0.03 0.007 −0.0 0.097 −0.02 −0.00 −0.02 0.030 0.068 −0.0 0.162 −0.00 −0.04 0.10 −0.01 −0.04 * −0.02
BLB 0.019 0.075 −0.01 −0.02 0.01 −0.04 −0.02 −0.00 −0.0 0.091 −0.01 −0.00 −0.01 0.028 0.058 −0.0 0.159 −0.00 −0.03 0.09 −0.02 −0.03 −0.05 *

MAT: Matorral; SSB: Sesimbra; CAI: Cala Iris; VAL: Valencia; TRG: Tarragona; SFL: St. Florent; CAL: Calafuria; RCH: Rocchette; PER: Porto Ercole; GIG: Giglio Island; MTC: Montecristo; GAE: Gaeta; FUS: Fusaro; MES: Messina; ANN:
Annaba; BIZ: Bizerte; KOR: Korbos; CAP: Cap Bon; SHL: Sahel; SFX: Sfax; ZRZ: Zarzis; TAJ: Tajura; CRT: Crotone; BLB: Beldibi.
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generation or a ‘sweepstakes effect’ (Hedgecock 1994).
This view may be supported by the outcomes of the
BAPS and PCA analyses of genotypes, showing remark-
able genetic separation of certain populations, i.e.
Bizerte, Korbos and Tajura. This pattern of separation,
which does not seem to be associated with a clear
geographic gradient, may rather follow a ‘chaotic
genetic patchiness’ in the composition of recruits
(Christie et al. 2010), as has been suggested previously
for Portuguese (Silva et al. 2009b) and Italian (Fratini
et al. 2011, 2013) populations of P. marmoratus.

This study provides evidence for the absence of a
significant genetic structure across the Siculo-Tunisian
Strait, as inferred from mtDNA and nuclear microsatel-
lite loci analyses. The Siculo-Tunisian Strait is
considered as a well-documented genetic boundary
between African Mediterranean populations of many
marine species of fishes (Bahri-Sfar et al. 2000; Mejri
et al. 2009; Kaouèche et al. 2011), molluscs (Gharbi
et al. 2011) and shrimps (Zitari-Chatti et al. 2009), but
apparently does not seem to interrupt the connectivity
among African populations of P. marmoratus from the
Western and Eastern Mediterranean Basins. The lack
of genetic structure could be explained by the
passive dispersal of planktonic larvae, which could
limit the formation of population substructure
(Lessios et al. 2003; Waters & Roy 2004). Pachygrapsus
marmoratus planktonic larvae seem to have a high dis-
persive capacity, characteristic of many marine invert-
ebrates. Zoeae spend around one month offshore,
going through at least six development stages
(Cuesta & Rodríguez 2000). Movement of juveniles
and adults of P. marmoratus is not expected to hom-
ogenize populations. Instead, larval dispersal during a

long planktonic phase could promote the connectivity
of the local adult populations in accordance with
hydrographic patterns. In theory, drifting
P. marmoratus larvae can reach very distant locations
along the North-African littoral. The latter is character-
ized by a unidirectional surface current, called the
Algerian Current, originating from the Atlantic,
moving eastwards along the North African coast and
flowing into the Eastern Mediterranean Basin (Béranger
et al. 2004, Figure 1). This marine current along the
continuous African Mediterranean coast could have
enhanced genetic homogeneity of the studied popu-
lations according to a linear stepping stone model.
Indeed, this model is common in continuously distrib-
uted species, like P. marmoratus, in which homogeniz-
ation of distant populations is maintained by gene flow
through the exchange of individuals between adjacent
or nearby populations (Kimura & Weiss 1964; Slatkin &
Maddison 1990).

Analysis of a shorter fragment of the mitochondrial
Cox1 marker across a broader geographic scale, cover-
ing almost the entire distribution range of this species,
showed significant genetic differentiation among
populations, as revealed by the one-level AMOVA.
Based on this enlarged dataset, the results of the struc-
tured AMOVA analysis hint at the existence of signifi-
cant genetic structure along a West-East geographic
gradient, depicting weak but significant differentiation
between Atlantic and Mediterranean populations.
These results are the first to reflect such patterns of
genetic structure for P. marmoratus. Previous mtDNA
phylogeographic studies of the same species across
different geographic scales failed to detect population
differentiation and suggested the existence of overall
genetic homogeneity (Fratini et al. 2011; Deli et al.
2015a). However, the genetic heterogeneity observed
in this study is not due to isolation by distance.
Indeed, the most significant pairwise differences were
not between geographically extreme populations.
The great diversity of habitats and, therefore, selective
forces within both Mediterranean basins and the Atlan-
tic could contribute to the onset of enclosures or dis-
patched isolates (genetic separation of specific
populations that is not linked to any geographic gradi-
ent). Furthermore, the potentially random distribution
of larvae according to oceanographic currents would
be critical in the development of such isolates
(Johnson & Black 2006). Accordingly, we can attribute
the genetic differentiation among Atlantic and Medi-
terranean populations to the impact of various oceano-
graphic circulation patterns in the area of the Gibraltar
Strait, resulting in a barrier to gene flow (Quesada et al.
1995). The Almeria-Oran Oceanographic Front

Table VI. Two-level AMOVA, assessing population genetic
structure of Pachygrapsus marmoratus under different
biogeographic hypotheses, based on the mtDNA Cox1 gene.

Grouping
Nucleotide divergence

(Tajima and Nei distance)
Haplotype
frequency

Across the Gibraltar Strait:
Atlantic vs. Mediterranean

ΦSC = 0.012 * FSC = 0.009 ns
ΦST = 0.060 * FST = 0.042 ns
ΦCT = 0.049 * FCT = 0.033 ns

Across the Gibraltar and
Siculo-Tunisian Straits:
Atlantic vs. Western
Mediterranean vs. Eastern
Mediterranean

ΦSC = 0.012 ns FSC = 0.010 ns
ΦST = 0.031 * FST = 0.021 ns
ΦCT = 0.018 * FCT = 0.010 ns

Populations and grouping: Atlantic: Matorral and Sesimbra; Mediterra-
nean: Cala Iris, Valencia, Tarragona, St. Florent, Calafuria, Rocchette, Porto
Ercole, Giglio Island, Montecristo, Gaeta, Fusaro, Messina, Annaba, Bizerte,
Korbos, Cap Bon, Sahel, Sfax, Zarzis, Tajura and Beldibi; Western Medi-
terranean: Cala Iris, Valencia, Tarragona, St. Florent, Calafuria, Rocchette,
Porto Ercole, Giglio Island, Montecristo, Gaeta, Fusaro, Messina, Annaba,
Bizerte, Korbos, Cap Bon; Eastern Mediterranean: Sahel, Sfax, Zarzis,
Tajura, Crotone and Beldibi. *: P < 0.05; ns, non-significant difference
(P > 0.05).
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constitutes an important barrier for many marine
species with planktonic larval stages (Patarnello et al.
2007). Based solely on the analysis of mitochondrial
DNA and in the absence of data from nuclear
markers from this area, the exact barrier cannot be
determined. It should be noted that although the
mtDNA-derived estimates do represent female disper-
sal, it can be seen to be representative of overall disper-
sal, because sex-biased dispersal among planktonic
larvae is not expected (Barber et al. 2006). It should
be mentioned that the lack of a relationship between
phylogeography and the geographic distribution of
haplotypes, identified by the parsimony network and
supported statistically by the program PERMUT, could
be attributed to the fact that the Cox1 mitochondrial
marker can retain the ancestral polymorphisms of
P. marmoratus due to its low mutation rate.

As far as can be inferred from our results, mito-
chondrial and nuclear DNA patterns of population
structure across part of the African Mediterranean
coasts are in accordance with those previously
reported for geographically close European popu-
lations (Fratini et al. 2008, 2013; Silva et al. 2009b).
Mitochondrial DNA homogeneity vs. nuclear DNA
patchiness, detected so far in different examined geo-
graphic regions (Fratini et al. 2008, 2011, 2013; Silva
et al. 2009b; Deli et al. 2015a), probably result from
the involvement of a complex series of abiotic and
biotic factors in determining genetic structure, of
which the origin and effect should be determined in
future investigations. Furthermore, the observed
weak mtDNA heterogeneity across the Gibraltar
Strait cannot be considered a conclusive result, as
more populations from the Atlantic and Mediterra-
nean (including the Eastern Basin and Black Sea)
need to be analysed in order to verify this pattern
and to obtain a complete overview of phylogeo-
graphic structure of P. marmoratus across its distri-
bution range. This would help to shed more light on
inter-population and inter-regional differentiation
and allow understanding of the evolutionary history
of this species.
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