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Abstract

The occasional ambiguity of traditional mathematical notations, and the increasing com-
plexity of proofs, has led to the situation that the use of a proof-veri�cation system is de-
sirable if not, in some situations, unavoidable. Moreover, by merging calculation techniques
and proofs, theorem provers also allow a deep interconnection of the three basic mathematical
activities, that is, de�ning, calculating and reasoning.

In this thesis we explore such activities from di�erent points of view, dealing with complex
and hypercomplex analysis and computability theory using the HOL Light theorem prover.

More precisely, the work is divided into four parts, each independent from the others. In the
�rst part (I) we report on a formal development of quaternions and their algebraic structure,
and we discuss automatic and certi�ed procedures to perform calculations on them.

The second part (II) is dedicated to investigate the formalization of possible applications
of our framework about quaternions. They are interesting theories on their own and, at the
same time, a test for our work. In particular, we formalize basics de�nitions and theorems
about two of the most recent and stimulating theories based on quaternions, that is, Slice
regular quaternionic functions and Pythagorean-Hodograph curves. Slice regular functions
extend, in a suitable way, the notion of complex holomorphic function to the quaternionic
case whereas, PH-curves are a class of polynomial functions with many theoretical properties
and several signi�cant computational advantages in many �elds like Computer-Aided Design
(CAD), digital motion control, path planning, robotics applications and animation. The main
points of the work presented in the �rst two parts has been published in proceedings of the
8th International Conference on Interactive Theorem Proving in Brasilia 2017 [Gabrielli and
Maggesi, 2017].

In part three and four (III - IV) we consider computability as a theory on its own. In
particular, we focus on two radically di�erent models of computation (but equally important),
namely Turing Machines and quantum computing. We give the basic de�nitions and we develop
two certi�ed systems to simulate computations in such models. Moreover, by implementing
the concepts of Turing machines and quantum circuits in HOL Light, we explore these di�erent
approaches formalizing some simple di�erent problems they can solve.
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Preface

Why should mathematics be formalized in a proof-veri�cation system?
In order to give an answer, we can explore the evolution of mathematics from the beginning of
its creation process. Barendregt, in his beautiful work [Barendregt, 2013], describes it as fol-
lows. At the starting point, the human beings created the subjects of arithmetic and geometry
by looking around and abstracting from the nature. Subsequently, many theories above these
two, in order to solve basic questions, was created. Every mathematical contribution can be
divided into three basic activities: de�ning, calculating and reasoning (Fig. 1). They started
in this order indeed, as example, before doing arithmetic we must have (de�ne) numbers (in
order to perform operations on them) then we can develop methods to compute (calculating)
complex expressions and, �nally, we can prove (reasoning) the correctness of calculations and
constructions. However, gradually over time, this schema became increasingly ephemeral and
such basic activities became more and more intertwined.

Over the centuries, the focus has shifted periodically on one of the sides of the Barendregt's
triangle. In the Egyptian-Chinese-Babylonian tradition emphasis was put on calculation (they
could solve linear and quadratic equations correctly but they didn't have a structured notion
of proof) whereas in Greek tradition the emphasis was on proofs (they could prove properties
that could not be shown by mere computation alone as, for example, the irrationality of

√
2).

Moreover, at the dawn of the modern calculus, Newton and Leibniz used di�erent ap-
proaches. The �rst had a proving style, he wanted to convince others of the correctness of
what he did using geometrical proofs to arrive at his conclusions. The second had a style fo-
cused on computation, his method worked so well, from a computational point of view, that it
did not matter if its foundation (the in�nitesimals) wasn't completely clear. Only two hundred
years later, by the work of Cauchy and Weierstrass, the computational and proving styles of
doing calculus were uni�ed.

Now, it is clear that a proof-veri�cation system (a theorem prover) allows a full integration
of de�ning, calculating and reasoning unifying the previous di�erent approaches. In an interac-
tive theorem prover, the user de�nes concepts, constructs calculation procedures and provides
proofs that show their correctness. During the process, the machine checks that de�nitions are
well-formed and that the proofs and computations are correct. The result of a computation
is not only a mere manipulation of symbols (as in case of a Computer Algebra Systems that

Math

Calculating Reasoning

De�ning

(Computability) (Logic)

(Ontology)

Figure 1: Barendregt's triangle of mathematical activities.
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8 Preface

performs calculation from a syntactical point of view), but it is a theorem that states that,
given the base assumptions and following the underlying logic, such computation is correct.
These considerations partially answer the initial question, but there is something else.

During the history, mathematical proofs have become increasingly complex, so much that,
in some cases, their correctness can no longer be controlled by humans. In these cases, a
veri�cation system that is able to check the correctness of a proof, following a few simple rules
that humans can easily control, is needed if not essential. Two very famous examples are the
proofs of the Kepler's Conjecture by Hales [Hales et al., 2017] and of the Four-Color Theorem
by Gonthier [Gonthier, 2005] that have been formalized, respectively, in a combination of the
HOL Light and Isabelle theorem provers and in the Coq proof assistant.

Furthermore, over the centuries, mathematical theories (from simplest to more advanced
and complex ones) have often been able to model part of reality and have applications. The
power of mathematics in giving quantitative, or even more qualitative, description of reality has
led to the fact that, nowadays, every science needs mathematics. The latter, on the one hand
provides them the right language to formulate statements, on the other hand, it guarantees
the logical rigour and correctness of results.

Since this pervasive role played by mathematics, it would be convenient that mathematical
notations are always clear and unambiguous. Unfortunately, sometimes it is not the case. For
example, as observed by Spivak in his book Calculus on Manifolds [Spivak, 1965], the symbols
used in traditional mathematical notation of di�erential geometry have ambiguous meanings,
which depend on context, and often even change within a given context. Contrary to what one
expects, it is very easy to learn to well manipulate symbols, often getting the right answer with
fallacious reasoning or without real understanding. This implies that, in many cases, problems
related with learning disciplines like physics, as instance, or similar, depends on the di�culties
to understand the underlying mathematical language. Indeed, a student must simultaneously
learn the mathematical language used and the content that is expressed in that language.

However, also this time, a theorem prover can be a possible instrument to address, at least
partially, this problem.

When we express mathematical notions in a formal language, we are forced to de�ne them
in an unambiguous and computationally e�ective way. When the computer interprets our
formulas, we quickly realize if they are correct or not. In case that a formula is not clear, it
will not be interpretable by the computer. This process necessarily constrains us to improve
our understanding.

Moreover, the correctness of all the calculations rules and algorithms used to manipulate
mathematical objects is automatically certi�ed by the system. Once formalized as a procedure,
a mathematical idea becomes a certi�ed tool that can be used directly to compute (prove)
further results.

In our work, we explore de�ning, calculating and reasoning from di�erent points of view
by using the HOL Light theorem prover (authored and maintained by Harrison), that is, a
descendant of the original HOL (Higher-Order Logic) system written by Gordon in 1980s.

We specify mathematical objects in the HOL Light formal language (de�ning), we provide
procedures to manipulate them and we prove formal theorems (calculating and reasoning).
It is obvious that, since the correctness of every computation is guaranteed by the system,
reasoning and calculating are strictly interconnected.

Next, we explore computability as theory on its own. We implement in HOL Light two
mathematical models of computation (based on di�erent paradigms) and we provide certi�ed
formal methods to perform computations in these models. Such methods don't produce mere
manipulations of symbols, they produce theorems that prove the correctness of the calculations
done.

More precisely, in this thesis we give a formalization in HOL Light of a basic, but signi�cant,
part of complex and hypercomplex analysis and some of their applications (parts I and II), and
of the abstract models of computation given by Turing machines and quantum computing
(parts III and IV). The main points of the work presented in the �rst two parts has been
published in proceedings of the 8th International Conference on Interactive Theorem Proving
in Brasilia 2017 [Gabrielli and Maggesi, 2017].
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As regards to hypercomplex analysis, we focus particularly on quaternions. They are
a well-known and elegant mathematical structure which lies at the intersection of algebra,
analysis and geometry. They have a wide range of theoretical and practical applications
from mathematics and physics to CAD, computer animations, robotics, signal processing and
avionics. Arguably, a computer formalization of quaternions can be useful, or even essential, for
further developments in pure mathematics or for a wide class of applications in formal methods.
For these reasons, we develop a basic formal theory about them in our library. Moreover, two
recently developed mathematical theories which are based on quaternions are considered, we
give the formal de�nition and some basic theorems about Slice regular quaternionic functions
and Pythagorean-Hodograph curves. Slice regular functions extend, in a suitable way, the
notion of complex holomorphic function to the quaternionic case whereas, PH-curves are a class
of polynomial functions with many theoretical properties and several signi�cant computational
advantages.

As regards to computation models, Turing machines are one of the referring models of
our idea of computation (in the classical sense). A physical realization of the abstract Turing
machine is a mechanical computing device (with a potentially in�nite memory) that obeys
the laws of classical physics. However, due to the constant decrease of the dimensions of
the calculation devices, we must consider an alternative because, at the microscopic level,
classical physics fails and we have to use quantum mechanics. For this reason, but not only,
quantum computing is born as an alternative paradigm (to the classical one) based on the
principles of quantum mechanics. Furthermore, quantum computing is a connection point
between computability and complex numbers because the underlying mathematical theory on
which it is based (like quantum mechanics) is complex linear algebra.

So, by implementing the concepts of Turing machines and of quantum circuits in HOL
Light, we explore these di�erent approaches to computation formalizing some simple problems
they can solve. Moreover, as results of our work, we develop two certi�ed calculation systems
about Turing machines and quantum circuits.

As a �nal observation, even if during our work we did not �nd any signi�cant error in the
underlying informal theories, we realized that, in the light of the formalization developed here,
sometimes informal statements or proofs needed considerable rewriting e�orts to be rendered
in a theorem prover.

For example, in the case of Slice regular functions, the implicit isomorphism between the set
of complex numbers and appropriate subsets of quaternions can simplify informal statements
and proofs but, in our formal context, it has to be always explicit. Moreover, our formal
de�nition (equivalent to the informal one) of regularity clarify and simplify the representation
in HOL Light of such class of functions.

Similarly, tedious and obvious steps (for example simple properties that can be be proved
easily by induction) in informal proofs about Turing machines are often omitted but, again,
they have to be written explicitly to produce formal theorems.





Part I

FORMALIZING QUATERNION

ALGEBRA - THE CORE

LIBRARY
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Introduction

In the �rst part of this thesis we present all the background, already available in the HOL
Light standard library, that has been developed by several authors before the beginning of our
work. In the �rst chapter (1), after giving a very brief overview of the basic notions (types,
terms, theorems etc.), and notations, of the HOL Light theorem prover, we focus on all the
formal mathematical structures which are needed to deal with quaternions. More precisely,
we recall the HOL Light formalization of:

• univariate and multivariate analysis:

• cartesian products and vector analysis,

• limits,

• series,

• continuity and di�erentiability,

• automatic procedures to perform calculations over real numbers.

In the next chapters (2 - 3) we show in details the library about quaternions. The highlights
are:

• basic de�nitions of the algebra of quaternions, that is:

• de�nition of quaternions,

• de�nition of the arithmetic operations over quaternions,

• conversions to compute with quaternions,

• properties of the arithmetic operations,

• analytic and geometrical results about quaternions, that is:

• limits, continuity and derivatives of the arithmetic operations,

• space isometries via quaternions.

So, the goal of this part is twofold. On the one hand, we recall quickly all the HOL Light
formal theories which are needed to understand and develop the library about quaternions, on
the other hand, we give an exhaustive explanation of the library itself.

Outline of the code

The code about quaternions presented in this part of the thesis is already available in the
standard HOL Light distribution in the directory hol-light/Quaternions, at the link

https://github.com/jrh13/hol-light/tree/master/Quaternions

and it is organized as follows.

• misc.hl -Miscellanea

13
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14 Introduction

• quaternion.hl - Basic de�nitions about quaternions

• qcalc.hl - Computing with literal quaternions

• qnormalizer.hl - Normalization of quaternionic polynomials

• qanal.hl - Elementary quaternionic analysis

• qderivative.hl - Derivative of quaternionic functions (in particular arithmetic opera-
tions)

• qisom.hl - Space isometries via quaternions (embedding of real numbers in the set of
quaternions and the geometry of quaternions).

Moreover, the code can be loaded by the command needs "Qauternions/make.ml";;.



Chapter 1

HOL Light background

This chapter is dedicated to give a brief introduction of the basic concepts of Higher-Order
Logic and the most common pattern usage of the HOL Light theorem prover, as far as it is
useful for the material presented in this work. Even if this thesis is not the place to present
them extensively, we propose a quick summary to recall the highlights and to �x terminology
and notations. Hopefully, this will make able also the readers that are unfamiliar with the
HOL Light theorem prover to read and understand the code presented in this work.

1.1 Basic HOL Light notation

• Basic type system: the types most frequently used are the following:

• `:num` for natural numbers.

• `:real` for real numbers. Natural numbers are embedded in the real �eld by the
operator `&`, for example `&1` and `&0` are the unit and zero of reals.

• `:complex` for complex numbers. Real numbers are embedded in the complex �eld
by the operator `Cx`, for example `Cx(&1)` is the unit of complex numbers.

• `:bool` for booleans, `T:bool` and `F:bool` represent true and false respectively.

• `:(A)list` for lists of elements of type `:A`.

• `:A->B` for functions from the type `:A` to the type `:B`. An element `f:A->B`
is such that `f a` has type `:B`, for every element `a:A`.

• Terms: Ocaml objects of type :term. They are purely symbolic mathematical expres-
sions or logical assertions and are represented between backquotes. Every term has a
well-de�ned type, for example `0 = 1` is a term and its type is `:bool`. We recall that
HOL Light uses simple polymorphic types.

• Theorems: Ocaml objects of type :thm. They are formulas that have been proved using
the accepted methods of proof starting from a set of assumptions. They are denoted
following the standard notation p1, . . . , pn ` p that means that the boolean p is provable
starting from hypothesis p1, . . . , pn. Moreover, a name can be associate to every formal
theorem to identify and use it. For example, the writing

THEOREM

|- p

means that the boolean `p:bool` has been proved, with an empty set of assumptions,
and the name associated to the theorem is THEOREM.

15
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• Functions: a function x 7→ t is denoted, in the lambda calculus notation, as (λx. t) that
is, formally, the HOL term `(\x. t)`. For example, the function f : R→ R, such that
f(x) = x + 1, is formally represented by `(\x. x + &1):real->real`. Moreover, the
evaluation (and so the representation) of functions f : A × B → C with two arguments
is translated in this context by using the currying technique, as an alternative to the
more traditional paired approach. In fact, we observe that, given an element a ∈ A, the
function g(x) = fa(x) = f(a, x) : B → C is a function with only one argument x ∈ B.
So, the type of the formal counterpart of f is `:A->(B->C)` that, since the convention
to associate on the right, is written simply `:A->B->C`. The same representation is
extended for functions with an arbitrary number of arguments.

• Logical operators: ~, /\, \/, ==>, <=> represent logical negation (¬), conjunction (∧),
disjunction (∨), implication (→) and biconditional (↔) respectively.

• Quanti�ers: the universal and the existential quanti�ers ∀, ∃ are denoted by `!` and
`?` respectively.

• Hilbert choice operator: it is de�ned by `@:(A->bool)->A` that, given a predicate
`P:A->bool`, returns the element `a:A` when `P a` is true and an unknown element
of type `:A` otherwise. The function `\x. (@a. P a)` is total but, in practice, we can
prove non-trivial properties for its image only in the case that `P` is satis�ed by at least
one element.

• De�nitions: the simplest instruction that allows us to de�ne new constant is the com-
mand new_definition. Typing

let thm = new_definition

`const_name = form`

we obtain essentially two results:

1. the system expands with a new constant named `const_name`,

2. the system produces a new theorem

|- const_name = form

that de�nes, by the formulas `form`, the new constant.

In order to avoid possible inconsistencies, the command `new_definition` has some
limitations on what it can de�nes. However, much more general forms of de�nition,
using recursion and sophisticated pattern-matching, can be given by using the commands
`new_recursive_definition` and `define` in a similar way.

1.2 HOL Light internal representation of natural numbers

Many formal objects in this work will be developed coherently with the HOL Light internal
representation of natural numbers. For this reason, we quickly show the latter in details.
HOL Light represents numerals with a binary encoding with the following four constants:

1. `_0:num` that encodes the number 0 ∈ N,

2. `BIT0:num->num` that for every natural number n returns the double 2n,

3. `BIT1:num->num` that for every natural number n returns the successor of the double
2n+ 1,

4. `NUMERAL:num->num` that is the identity function, it is de�ned only for technical reasons.
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Therefore, every numeral is represented by a term of the form `NUMERAL (f (_0))`, where
`f:num->num` represents a function that is an arbitrary composition of `BIT0` and `BIT1`.
Since `NUMERAL` is the identity function, we can avoid to consider it in our informal reasoning
thinking a numerals simply as an iteration of `BIT0` and `BIT1`.

Intuitively, having in mind the binary representation of a natural number as a string of
zeros and ones, the functions `BIT0` and `BIT1` replace every occurrence, of zero and one
respectively, in such a string. For example, the binary representation of 5 is 101 so, replac-
ing every zero with `BIT0` and every one with `BIT1`, we obtain the HOL Light internal
representation of the term `5`, i.e.,

`NUMERAL (BIT1 (BIT0 (BIT1 _0))`

that, as said before, can be rewritten as `BIT1 (BIT0 (BIT1 _0)`.
The binary encoding makes very easy to recognize easily if a number is even or odd. In

fact, `n:num` is even if and only if it is of the form `BIT0 k` and, conversely, it is odd if
and only if it is of the form `BIT1 k`, for some `k:num` (obviously, `_0` is even because
`_0 = BIT0 _0`). This is a feature that comes handy in several situations as, for example, in
our formal representation of vectors presented in chapter 9 (section 9.3).

1.3 Vector analysis in HOL Light

Given a set A, that is the universe of some type `:A`, it is convenient to have a corre-
sponding type for the Cartesian product An. If n is �xed we can easily repeat the product
type `(#)` n-times to construct the type `:A#A#...#A` of the cartesian product An.

However, if n is large this becomes unwieldy and it does not extend to the case where n
is a variable, because HOL's type theory doesn't support dependent types. More precisely, a
type may only be parametrized by another type and not by a term. Therefore, HOL provides
an indexed Cartesian product constructor written as an in�x `(^)`, as in `:A^N`. The second
argument of `(^)` is also a type and it is used to specify the size of the universe set of that
type that represents the parameter n.

The type `:A^N` is designed for �nite Cartesian products, when the (universe of) type
`:N` is �nite, the type `:A^N` is isomorphic to the function space `:N->A`, otherwise it just
collapses to being equivalent to `:A`. The size of `:N` is indicated with `dimindex(:N)`.
For example, the type `:1`, that has only one element, has size equal to one so it holds
that `dimindex(:1) = 1`. Moreover, if a type `:X` is in�nite then, by the de�nition of
`dimindex`, its size collapses to one, that is, it holds that `dimindex(:X) = 1`.

The operator `($):A^N->num->A` is the indexing operator so `x$i:A` (xi ∈ A) denotes
the i-th component of the vector `x:A^N` (x ∈ An).

Since `:A^N` is isomorphic to the type `:N->A` (when `:N` is �nite), HOL Light provides
a general constructor `lambda` such that, given a function `f:N->A`, returns the vector
`lambda i. f` with the property that `(lambda i. f)$i = f i` for every natural number
`i:num` between one and the size of the type `:N`.

However, a handy notation is desirable for denoting vectors by enumerating their elements.
So, HOL Light provides another general notion `vector:(A)list->A^N` that, for every in-
dexing type `:N` and list `l:(A)list`, returns the element `vector l:A^N`.

Notice that the HOL type system cannot infer that `length l = dimindex(:N)` from
the element `vector l:A^N`. For example, given a list `l:(A)list` with length three, we
can declare and create any element `vector l:A^N` even if `dimindex(:N)` is di�erent from
three. However, in the following we will never use this counterintuitive construction.

In principle, every concrete indexing �nite type can be constructed, by hand, by iterating
the type constructor finite_sum starting from `:1`. In fact, given two types `:A` and `:B`, it
holds that `dimindex(:(A,B)finite_sum) = dimindex(:A) + dimindex(:B)`. If `:A` and
`:B` are �nite types it is obvious whereas, if `:A` (`:B`) is in�nite, the �nite sum collapses,
by de�nition, to `:(1,B)finite_sum` (`:(A,1)finite_sum`) and the previous property still
holds since the properties of `dimindex`. For example, the type `:3`, with three elements,
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can be de�ned as `:((1,1)finite_sum),1)finite_sum` and it can be proved that its size
is three, that is, the formal theorem |- dimindex(:3) = 3. HOL Light standard library
provides type constants, already de�ned, only for �nite types up to size four, they are `:1`,
`:2`, `:3` and `:4`. An example of a theorem about their size is the following, in the case
of the type `:2`.

DIMINDEX_2

|- dimindex(:2) = 2

Moreover, an automatic procedure to compute directly components of a concrete vector
`vector l:A^N`, that is, terms of the form `vector l $ i`, is not de�ned. HOL Light pro-
vides ad hoc theorems to rewrite components of a concrete vector only for up to 4-dimensional
real vector spaces. For example, in case of a 2-dimensional vector `vector[w;x]:real^2`, we
have the following theorem.

VECTOR_2

|- vector [w; x]$1 = w /\

vector [w; x]$2 = x

Similar theorems are given for `:real^1`, `:real^3` and `:real^4`. However, dealing with
concrete real vector spaces with any other dimension greater than four, we have to do, each
time, some extra work. Firstly, we have to de�ne the relative �nite indexing type (and prove a
theorem about its size). Secondly, we have to prove a theorem, in the same way of VECTOR_2,
to be able to rewrite components of a concrete vector expressed, by enumerating its elements,
in the form `vector l`. In chapter 9 (section 9.3) we re�ne this approach providing a concrete
representation of �nite types that allows us both to de�ne them with an uniform mechanism
and to prove, automatically, theorems about their size.

However, with the formal instruments provided by HOL Light, we can pro�tably work
with general real vector spaces Rn using the related type `:real^N`. In fact, the system
allows us to de�ne general structures and operators as, for example, the addition of vectors
`(+):real^N->real^N->real^N`, that don't depend directly on a particular dimension. In
the HOL Light standard library we can found an exhaustive theory of real vector spaces.

Finally, note that, by construction, the types `:real` and `:real^1` are isomorphic
(that is, there exists a bijection) but they are not the same. For this reason, the functions
`lift:real->real^1 and `drop:real^1->real`, that connect them, are de�ned. The fol-
lowing theorem shows the interaction between `lift` and `drop`.

LIFT_DROP

|- (!x. lift (drop x) = x) /\ (!x. drop (lift x) = x)

The use of `:real^1` or `:real` depends on the context, the usual HOL conventions and
the local usefulness (for example a curve is represented in HOL Light as a function of type
`:real^1->real^N` instead of `:real->real^N`).

1.4 Multivariate analysis in HOL Light

1.4.1 Limits

Classically, when we work with limits, we have in mind many di�erent de�nitions of limit.
For example, given a function f : A→ B or a sequence an ∈ A, the symbols

lim
x→x0

f(x), lim
x→x+

0

f(x), lim
x→+∞

f(x), lim
n→+∞

an (1.4.1)

are de�nend di�erently and have di�erent meanings depending on the topology structure of A
and B. Moreover, for example, the notation

lim
x→x0

f(x) = l

can be ambiguous or even misleading. The latter can have two possible interpretations:
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• the limit exists and is equal to l, considering lim as a ternary relation where the arguments
are, in this case, the limit considered (x→ x0), the given function (f : A→ B) and the
value of the limit (l ∈ B),

• knowing that the limit exists its value is l, considering lim as an operator, i.e. a functional
(higher-order function), that takes two arguments, the given function (f : A → B) and
the limit considered (x→ x0), and returns the value of the limit l ∈ B.

Mathematicians often consider lim in the second way, i.e. as an operator, implicitly implying
that it is well de�ned only in case that the function considered admits the limit required.

However, the natural way to formalize the concept of limit, in a HOL formal theory, is to
consider it as a predicate, so to codify the existence and the value of the limit at the same
time. Thus, the highlights of the HOL Light standard implementation of the notion of limit
are essentially two.

1. Limit is introduced as a ternary predicate and not as an operator. Contrarily, the
existence of the limit should be explicitly expressed separately and, since functions are
total in HOL, a value should be assigned also to functions that don't admit the limit
considered.

2. HOL Light has a general notion that let us represent a variety of limits in a compositional
way. This is achieved using the mathematical notion of net (whose discussion is far from
the aim of this work for reasons of time and space) that is implemented by a polymorphic
dedicated type `:(A)net`. The elements of such type specify, each time, what is the
limit considered over the type `:A`. So, in order to represent a speci�c limit we have
only to istantiate the generic element `net:(A)net` in the general de�nition of limit.

Obviously, since derivatives and series are de�ned as limits, all these considerations can be
repeated for them, so they are formalized in HOL light following the same style of limits.

Concretely, the ternary predicates `((f --> l) net)` and `((f ---> l) net)` are used
to say that the function f admits limit and its value is l, with respect to the limit de�ned
by `net:(A)net`, in the vector- or real-valued case respectively. In this setting, limits of
sequences are represented considering functions `a:num->real` or `a:num->real^N`.
The most common limits are

lim
n→+∞

an = l (1.4.2)

for sequences {an}n∈N and
lim
x→x0

f(x) = l (1.4.3)

for functions f : Rm → Rn so we brie�y report their representations.

Limits of sequences. The limit (1.4.2) is formalized using the net

`sequentially:(num)net`

by the term `(a --> l) sequentially`. The following theorem allows us to use its usual de�-
nition, where `dist:real^N#real^N->real` represents the standard distance over `:real^N`.

LIM_SEQUENTIALLY

|- !s l. (s --> l) sequentially <=>

(!e. &0 < e ==> (?N. !n. N <= n ==> dist (s n,l) < e))

Limits of functions. The limit (1.4.3) is formalized using the operator

at:real^M->(real^M)net`

that, given the limit point x0 ∈ Rm, returns the net `at x:(real^M)net` (representing the
limit x → x0). So, the resulting formal representation is the term `(f --> l) (at x)`. We
have the usual de�nition of (1.4.3) in the following theorem.
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LIM_AT

|- !f l a. (f --> l) (at a) <=>

(!e. &0 < e

==> (?d. &0 < d /\

(!x. &0 < dist (x,a) /\ dist (x,a) < d

==> dist (f x,l) < e)))

In case of functions `f:real->real^N`, we have to use `atreal:real->(real)net` to repre-
sent the limit at a certain point `x:real`. In HOL Light, this distinction is necessary because
`:real` is di�erent from all types `:real^N`. As above, the corresponding theorem is the
following.

LIM_ATREAL

|- !f l a. (f --> l) (atreal a) <=>

(!e. &0 < e

==> (?d. &0 < d /\

(!x. &0 < abs (x - a) /\ abs (x - a) < d

==> dist (f x,l) < e))).

Moreover, by using the Hilbert choice operator `@`, two functions are de�ned to allow to use
the limit as an operator in fact, given a function and a net, they return the appropriate limit,
if it exists, in the vector- and real-valued case respectively.

lim

|- !f net. lim net f = (@l. (f --> l) net)

reallim

|- !f net. reallim net f = (@l. (f ---> l) net)

The operator `within`. In many cases, we want to consider limits with some restrictions.
For example, when we consider subsequencies, or left- and right-hand limits of real-valued
functions, we want to evaluate the limit within a speci�c set. For this purpose, HOL provides
the in�x operator

`within :(A)net->(A->bool)->(A)net`

that, given a net `n:(A)net` and a subset `s:A->bool` of the universe of the type `:A`,
returns the net `n within s :(A)net`. Intuitively, the latter is the net `n:(A)net` where
we consider only elements of `s:A->bool`. In this way, we can formalize, for example, the
limit

lim
n→+∞

a2n = lim
n∈{n∈N | ∃m s.t. n=2m}→+∞

an

of the even terms of a sequence. It can be done by using the net

`sequentially within EVEN :(num)net`

where `EVEN:num->bool` represents the set of even numbers.

Eventually. When we talk about limits, we usually say that a predicate holds from a certain
point on approaching the limit point. In HOL Light we can do this with the general notion

`eventually :(A->bool)->(A)net->bool`.

For every predicate `P:A->bool` and every net `net:(A)net`, the latter returns the boolean

`eventually P net :bool`

which is true if and only if `P` holds from a certain point on approaching the limit point of
the limit de�ned by `net`.

Very common cases are that of the nets `sequentially` and `at x` where `eventually`
works as we expect as shown by the following theorems.



1.4 Multivariate analysis in HOL Light 21

EVENTUALLY_SEQUENTIALLY

|- !p. eventually p sequentially <=> (?N. !n. N <= n ==> p n)

EVENTUALLY_AT

|- !a p. eventually p (at a) <=>

(?d. &0 < d /\ (!x. &0 < dist (x,a) /\ dist (x,a) < d ==> p x))

EVENTUALLY_ATREAL

|- !a p. eventually p (atreal a) <=>

(?d. &0 < d /\ (!x. &0 < abs (x - a) /\ abs (x - a) < d ==> p x))

Trivial limit. Not every net `n:(A)net` de�nes a limit that makes sense. For example,
given a �nite set `k:num->bool` we can construct the net

`sequentially within k :(num)net`

but it is trivial because we are considering the limit to in�nity within a �nite set. Therefore,
HOL Light provides a predicate

`trivial_limit :(A)net->bool`

to characterize the set of trivial limits. Clearly, if the predicate `trivial_limit net` holds
for a net `net:(A)net`, then it implies that:

• `(f --> l) net` holds for every function `f:real^M->real^N` and limit `l:real^N`,

• `eventually P net` holds for every predicate `P:A->bool`.

For the most common nets `sequentially`, `at x` and `atreal x`, it is proved, in the
following theorems, that they are not trivial limits.

TRIVIAL_LIMIT_SEQUENTIALLY

|- ~trivial_limit sequentially

TRIVIAL_LIMIT_AT

|- !a. ~trivial_limit (at a)

TRIVIAL_LIMIT_ATREAL

|- !a. ~trivial_limit (atreal a).

1.4.2 Series

In order to talk about real-valued or vector-valued series, depending on the type `:real`
or `:real^N` that we consider, we have to use di�erent operators. Using the HOL Light
functions

`sum:(A->bool)->(A->real)->real`

`vsum:(A->bool)->(A->real^N)->real^N`

we can represent sums of the form
∑
n∈S

an with the terms `sum k a` and `vsum k a` for the

real or vector case respectively. If S ⊆ N is an in�nite set, we can consider the notion of
convergence of the series above. As always, it is implemented in HOL Light by two predicates,
involving `sum` and `vsum` respectively, that make sense only in case that `:A` is the type
of natural numbers `:num`.

Given a vector-valued sequence f : N → Rn, a vector l ∈ Rn and a subset of natural
numbers S ⊆ N, the predicate `(f sums l) s` is used to say, formally, that the series∑

n∈S
f(n)
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is convergent and its value is l. In case of a real-valued sequence f : N→ R, we must use the
predicate `(f real_sums l) s` to express the same concept.

De�nitions are given in the usual way in fact, the following theorems state that, as one can
expect, a function f : N→ Rn (f : N→ R) has sum l ∈ Rn (l ∈ R), over S ⊆ N, if and only if∑
n∈S∩{0..n}

f(n) tends to l for n→ +∞.

sums

|- !s f l. (f sums l) s <=>

((\n. vsum (s INTER (0..n)) f) --> l) sequentially

real_sums

|- !s f l. (f real_sums l) s <=>

((\n. sum (s INTER (0..n)) f) ---> l) sequentially

More concisely, we can use `real_summable` or `summable` de�ned by

real_summable

|- !f s. real_summable s f <=> (?l. (f real_sums l) s)

summable

|- !f s. summable s f <=> (?l. (f sums l) s)

to express only the convergence of a series without considering the right value of the sum. As
for limits, two functions are de�ned to formalize the in�nite sum, if it is de�ned, for vector-
and real-valued series respectively

infsum

|- !f s. infsum s f = (@l. (f sums l) s)

real_infsum

|- !f s. real_infsum s f = (@l. (f real_sums l) s)

1.4.3 Continuity and Di�erentiability

Given a function f : Rn → Rm, we can express in the HOL Light formalism the continuity
of f , in a point of its domain x0 ∈ Df ⊆ Rn, by using the following predicate.

`f continuous at x0`

Furthermore, the (Fréchet) derivative of f in x0, if it exists, is the linear function from Rn to
Rm that �best� approximates the variation of f in a neighborhood of x0, i.e,

f(x)− f(x0) ≈ Dfx0
(x− x0)

and it is denoted by Dfx0 or d
dxf(x)|x0 . In HOL Light, the ternary predicate

`(f has_derivative f') (at x0)`

is used to assert that f is di�erentiable at x0 and f ′ = Dfx0 . We can also generalize these
notions considering a generic net `net:(real^N)net` instead of `at x0`. For functions f :
R→ R the above predicates are replaced by

`f real_continuous atreal x0`

`(f has_real_derivative f') (atreal x0)`

where now the real number f ′ is the real derivative of f . In these cases, the linear function
that best approximates the variation of f in a neighborhood of x0 is the multiplication by f ′.

We can use `differentiable` or `real_differentiable` to express the di�erentiability
of a vector- or real-valued function respectively. They are de�ned by the following theorems.
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differentiable

|- !f net. f differentiable net <=>

(?f'. (f has_derivative f') net)

real_differentiable

|- !f net. f real_differentiable net <=>

(?f'. (f has_real_derivative f') net)

Given a curve f : R → Rn, it can be expressed by its components fi : R → R with
i ∈ {0...n} as f(x) = (f1(x), ..., fn(x)) ∈ Rn. The tangent vector to f(x) in x0 ∈ R, if it exists,
is

f ′(x0) = (f ′1(x0), ..., f ′n(x0)) ∈ Rn

and it is represented in HOL Light by following predicate.

`(f has_vector_derivative f') (at x0)`

Since complex numbers are implemented in HOL Light as element of R2, we can consider
complex holomorphic functions as functions f : R2 → R2 such that their (Fréchet) derivative
is C-linear. From this point of view, such functions can be described using `has_derivative`
but, considering the relevance of this class of functions, they have a dedicated predicate. This
is

`(f has_complex_derivative f') (at z0)`

that means that the function f : C→ C is holomorphic in z0 and its complex derivative is the
complex number f ′. Once again, we can use the following functions to represent the di�erent
kinds of derivatives as operators instead of relations.

frechet_derivative

|- !f net. frechet_derivative f net =

(@f'. (f has_derivative f') net)

real_derivative

|- !f x. real_derivative f x =

(@f'. (f has_real_derivative f') (atreal x))

vector_derivative

|- !f net. vector_derivative f net =

(@f'. (f has_vector_derivative f') net)

complex_derivative

|- !f x. complex_derivative f x =

(@f'. (f has_complex_derivative f') (at x))

1.5 Conversions in HOL Light

1.5.1 Basic conversions and conversionals

In a proof we often want to show that one term is equal to another using a systematic
process of transformation, perhaps passing through several intermediate stages. In order to do
this easily, e�ciently and mechanically as much as possible, HOL Light provides a systematic
framework for conversions.

A conversion is simply an inference rule of type :term → thm that, given a term t, always
returns (assuming it doesn't fail) an equational theorem of the form ` t = t′ that is, it
proves that the term t that was given is equal to some other term, possibly the same as the
original. For example, the theorem |- 2 + 2 = 4 can be produced automatically, from the
term `2 + 2`, by a conversion.
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For each type of numbers (for example `:num` or `:real` or `:complex`) there is a whole
family of conversions performing `evaluation' of expressions involving arithmetic operations,
one for each arithmetic operator.

Another kind of very useful conversions are those which perform rewrites that originate
in the Paulson's paper [Paulson, 1983]. The basic is `REWR_CONV` that takes an equational
theorem ` s = t and produces a conversion that, when applied to a term s′ which s can
be matched to, returns the corresponding theorem ` s′ = t′ or fails otherwise. Since the
biconditional in HOL is equality of booleans, such a conversion can also be used for theorems
of the form ` p⇔ q.

Equally important are functions, called conversionals, that take one or more conversions
and return a new conversion. The most important are:

• THENC takes two conversions and returns the new conversion resulting from the conse-
quential application of them; it is used as an in�x operator,

• ORELSEC takes two conversions, tries to apply the �rst and, if it fails, tries to apply the
second,

• TRY_CONV tries a conversion but happily return a re�exive theorem if it fails,

• RAND_CONV applies a conversion to the rand of a combination (e.g. x in f(x)),

• RATOR_CONV applies a conversion to the rator of a combination (e.g. f in f(x)),

• LAND_CONV applies a conversion to the left-hand argument of a binary operator,

• BINDER_CONV applies a conversion to the body of a binder (for example a quanti�er),

• BINOP_CONV applies a conversion to both arguments of a binary operator,

• DEPTH_CONV applies a conversion at every level of a term,

• TOP_DEPTH_CONV applies a conversion as long as possible all over the term.

Combining REWR_CONV with the functions above, HOL provides more sophisticated conversions
to perform rewrites. The most general is

GEN_REWRITE_CONV conv1 [th1;...;thn]

that takes a conversional and a list of equational theorems. It is basically as

conv1(REWR_CONV th1 ORELSEC ... ORELSEC thn).

A signi�cant generalization is REWRITE_CONV that do rewrites as long as possible all over the
term. Essentially it has the same basic strategy as

GEN_REWRITE_CONV TOP_DEPTH_CONV

except that a suite of standard rewrite rules are always included in the rewrites in addition to
the theorems list supplied to it.

1.5.2 Arithmetic conversion for the type `:real`

As said before, for every type of numbers, we have a speci�c conversion for every rela-
tional and arithmetic operator. For example, to compute terms of the form `x + y`, were
`x` and `y` are concrete rational real numbers (e.g. `&1 / &2`), we can use the conversion
REAL_RAT_ADD_CONV as in the following example.

REAL_RAT_ADD_CONV `&2 / &5 + &1`;;

val it = |- &2 / &5 + &1 = &7 / &5
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We underline the fact that REAL_RAT_ADD_CONV works only for this particular class of terms.
For example, it fails if the real numbers `x`, `y` are variables (or expressions of real numbers)
or if the operator that has to be computed is not the addition. We show an example.

REAL_RAT_ADD_CONV `&2 / &5 * &1`;;

Exception: Failure "dest_binop".

For each other arithmetic and relational operator over real numbers (subtraction, negation,
multiplication, power etc.), the corresponding conversion is de�ned. Such conversions are:

• REAL_RAT_LE_CONV and REAL_RAT_LT_CONV to compute terms of the form `x < y`

(x < y) and `x <= y` (x ≤ y) respectively,

• REAL_RAT_EQ_CONV to compute terms of the form `x = y` (x = y),

• REAL_RAT_NEG_CONV to compute terms of the form `-- x` (−x),

• REAL_RAT_ABS_CONV to compute terms of the form `abs x` (|x|),

• REAL_RAT_INV_CONV to compute terms of the form ` inv x` ( 1
x ),

• REAL_RAT_SUB_CONV to compute terms of the form ` x - y` (x− y),

• REAL_RAT_MUL_CONV to compute terms of the form `x * y` (xy),

• REAL_RAT_DIV_CONV to compute terms of the form `x / y` (xy ),

• REAL_RAT_POW_CONV to compute terms of the form `x pow y` (xy).

As before, the real numbers `x` and `y` must be concrete rational real numbers, otherwise
the conversions fail. As examples, we show some simple cases.

REAL_RAT_LE_CONV `&2 / &5 < &1`;;

val it = |- &2 / &5 < &1 <=> T

REAL_RAT_MUL_CONV `&2 / &5 + &1`;;

val it = |- &2 / &5 * &1 / &3 = &2 / &15

Moreover, the conversion REAL_RAT_RED_CONV is able to apply the appropriate conversion
depending on the form of the term that must be computed. Finally, the conversion

REAL_RAT_REDUCE_CONV = DEPTH_CONV REAL_RAT_RED_CONV

can be used to perform calculations, repeatedly, on every level of a term (that is, on every
subterm) as shown by the following example.

REAL_RAT_REDUCE_CONV `&1 / &4 + &5 * (&7 / &3 pow 2)`;;

val it = |- &1 / &4 + &5 * &7 / &3 pow 2 = &149 / &36





Chapter 2

Quaternion algebra in HOL Light

Quaternions are an elegant mathematical structure which lies at the intersection of algebra,
analysis and geometry. They have a wide range of theoretical and practical applications from
mathematics and physics to Computer-Aided Design, computer animations, robotics, signal
processing and avionics. Arguably, a computer formalization of quaternions can be useful, or
even essential, for further developments in pure mathematics or for a wide class of applications
in formal methods.

For example, quaternions are very useful to describe spatial rotations. A formalization
of basics about them has been developed by A�eldt and Cohen [A�eldt and Cohen, 2017] in
order to deal with the mathematics of rigid body transformations in the Coq proof assistant.

Our task is to contribute to the development of the HOL Light library that formalizes the
basics of the theory of quaternions (started by M. Maggesi at the University of Florence) that
we found at the beginning of our work. Such implementation is presented in details in this
chapter and, in the second part of this thesis, it will be needed as a formal support theory when
we will deal with our development of two of the most recent and interesting theories based on
quaternions, that is, Slice regular functions [Gentili et al., 2013] and Pythagorean-Hodograph
curves [Farouki, 2009].

In the �rst section 2.1, we give an informal summary about the highlights of the theory of
quaternions. More precisely, we recall, �rstly, the de�nition of quaternions and, secondly, the
de�nitions and the main properties of the arithmetic operations.

Next, in section 2.2 we show how the set of quaternions can be coded in HOL Light by the
dedicated type `:quat` and its associated basic operations like constructors and destructors.

Finally, in the last section 2.3 we show how the type `:quat` is equipped with the non-
commutative �eld structure by de�ning formally the algebraic operations.

2.1 Quaternion algebra

We begin the chapter with an informal introduction to the theory of quaternions. More
precisely, we recall notations and arithmetic de�nitions. In this section, we limit ourselves of
the basic algebraic structure but, further theoretical developments will be exposed in sections
3.4 and 3.5, where we discuss analytic and geometric results. A modern account of the theory
of quaternions can be found in [Conway and Smith, 2003].

Quaternions are �four-dimensional numbers� of the form

q = q0 + q1i + q2j + q3k (2.1.1)

where qi ∈ R for i = 0 . . . 3 are called the real components of the quaternion q, and the basis
elements 1, i, j, k satisfy the relations

i2 = j2 = k2 = ijk = −1 (2.1.2)

27
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where 1 is the usual real unit (its product with i, j, k leaves them unchanged). Furthermore,
the real number q0 ∈ R is called the real part of q and is denoted by Re(q), whereas the
3-dimensional vector (q1, q2, q3) ∈ R3 is called the imaginary part of q and is denoted by
Im(q). The set of quaternions is denoted by H and by the above construction it's clear that
H = R⊕ R3 ' R4, thus R and R3 are proper subsets of H.

As in the complex case (�two-dimensional numbers� over R) the main operations de�ned
over H are addition, product (Hamilton product), conjugation, norm, negation and inverse.
Let be q = q0 + q1i + q2j + q3k and p = p0 + p1i + p2j + p3k two elements of H, we have:

• addition:
q + p = (q0 + p0) + (q1 + p1)i + (q2 + p2)j + (q3 + p3)k (2.1.3)

de�ned componetwise with neutral element the usual zero 0 of reals,

• product:

qp = (q0p0 − q1p1 − q2p2 − q3p3) +

(q0p1 + q1p0 + q2p3 − q3p2)i +

(q0p2 − q1p3 + q2p0 + q3p1)j +

(q0p3 + q1p2 − q2p1 + q3p0)k

(2.1.4)

determined by the the products of the basis elements and the distributive law with
nuetral element the usual unit 1 of reals,

• conjugation:
q̄ = q0 − q1i− q2j− q3k (2.1.5)

• norm:
‖q‖ =

√
qq̄ =

√
q2
0 + q2

1 + q2
2 + q2

3 (2.1.6)

• negation:
−q = −q0 − q1i− q2j− q3k (2.1.7)

since q + (−q) = (q0 − q0) + (q1 − q1)i + (q2 − q2)j + (q3 − q3)k = 0,

• inverse: if q 6= 0 then

q−1 =
q̄

|q|2
(2.1.8)

since qq−1 = q q̄
‖q‖2 = qq̄

‖q‖2 = ‖q‖
2

‖q‖2 = 1.

From these de�nitions, and the properties of real addition and product, we can easily check
the main properties of the quaternionic operations:

• addition is associative and commutative,

• product is associative but not commutative, in general qp 6= pq as in the case of

ij = k 6= −k = ji

(commutativity holds only in special cases as, for example, when at least one of q and p
is an element of R or when they both belong to a substet of H that is isomorphic to C),

• product is left- and right-distributive over addition,

• conjugation is an involution because (q̄) = q and, moreover, it holds that q = q̄ if and
only if q is an element of R,

• ‖q‖ ∈ R≥0 and it holds that ‖q‖ = 0 if and only if q = 0,

• the elements −q and q−1 are unique and such that q = −q is equivalent to q = 0 and,
for every q 6= 0, q = q−1 is equivalent to q = 1.
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2.2 Formalization of quaternions

Complex numbers, together with a consistent part of the theory of holomorphic functions,
are implemented in HOL Light by Harrison [Harrison, 2007] following a speci�c style. More
precisely, they are formally considered as elements of R2 and the dedicated type `:complex`
is de�ned as an alternative name of the type `:real^2`. The implementation of quaternions
closely follows this style. Therefore, H is identi�ed with R4 and the type `:real^4` is used
to represent it formally. As in the complex case, this choice is the most convenient because
in `:real^4` (as in `:real^2`) it is already de�ned the appropriate topology and normed
vector space structure. Again, the type `:quat` is de�ned as an alternative name of the type
`:real^4`.

2.2.1 The type `:real^4`

As we discussed in chapter 1 (section 1.3), the �nite type `:4` is already de�ned and it is
proved, in the next theorem, that its size is four.

DIMINDEX_4

|- dimindex (:4) = 4

Moreover, HOL Light standard library provides ad hoc theorems that prove handy rewrites,
about components, equality and universal and existential quanti�cation, for 4-dimensional
real vectors written in the explicit enumerated form `vector[w;x;y;z]:real^4`. Let be
`P:real^4->bool` a generic predicate about 4-dimensional real vectors, such theorems are
the following.

• VECTOR_4

|- vector [w; x; y; z]$1 = w /\

vector [w; x; y; z]$2 = x /\

vector [w; x; y; z]$3 = y /\

vector [w; x; y; z]$4 = z

• VECTOR_EQ_4

|- !u v. u = v <=> u$1 = v$1 /\ u$2 = v$2 /\ u$3 = v$3 /\ u$4 = v$4

• FORALL_VECTOR_4

|- (!v. P v) <=> (!w x y z. P (vector [w; x; y; z]))

• EXISTS_VECTOR_4

|- (?v. P v) <=> (?w x y z. P (vector [w; x; y; z]))

The usual structure of normed vector space is already de�ned over the type `:real^4`. There-
fore, we don't have to re-de�ne operations like addition, negation, subtraction, multiplication
by a scalar and norm. As usual, in this formal setting, negation and subtraction are di�erent
operations (negation is unary whereas subtraction is binary) and they need di�erent symbols
to be denoted. The HOL Light standard formalism use `(--) :real^4->real^4` for negation
and `(-) :real^4->real^4->real^4` for subtraction.

2.2.2 The type `:quat`

Even if `:quat` is only an alternative name for the type `:real^4` that is, quaternions
are formally 4-real vectors, a set of constants for constructing and destructing quaternions
is de�ned in order to setup a suitable abstraction barrier. Following the informal theory,
every time it's possible, the same constant names already de�ned for complex numbers are
used. For example `Re` for the real part of a quaternion, `cnj` for the conjugate operator,
`ii` for the imaginary unit i and so on. The same holds for the operation symbols, for
example `(+):complex->complex` and `(+):quat->quat` are formally di�erent operators
but the same constant symbol is overloaded to represent both of them. The whole set of such
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constants is summarized in table 2.1 when we report, for every constant, the name, the type
and a brief informal mathematical description.

Table 2.1: Basic notations for the `:quat` datatype

Constant name Type Description

Hx :real->quat Embedding R→ H
ii, jj, kk :quat Imaginary units i, j,k
quat :real#real#real#real->quat Generic constructor
Hv :real^3->quat Embedding R3 → H
Re :quat->real Real component
Im1, Im2, Im3 :quat->real Imaginary components
HIm :quat->real^3 Imaginary part
cnj :quat->quat Conjugation
real :quat->bool Whether a quaternion

is real

The general constructor `quat` is de�ned using the constructor `vector` as follows.

let quat = new_definition

`quat(x,y,z,w) = vector[x;y;z;w]:quat`;;

The real components `Re`, `Im1`, `Im2`, `Im3` (of type `:quat->real`) are de�ned, as one
expects, by using the usual indexing operator `($):real^4->num->real` for vectors.

let QUAT_RE_DEF = new_definition `Re(x:quat) = x$1`;;

let QUAT_IM1_DEF = new_definition `Im1(x:quat) = x$2`;;

let QUAT_IM2_DEF = new_definition `Im2(x:quat) = x$3`;;

let QUAT_IM3_DEF = new_definition `Im3(x:quat) = x$4`;;

With these de�nitions, and the theorems of the previous paragraph about `:real^4`, the
following useful results are proved:

• QUAT_COMPONENTS

|- Re (quat (x,y,z,w)) = x /\

Im1 (quat (x,y,z,w)) = y /\

Im2 (quat (x,y,z,w)) = z /\

Im3 (quat (x,y,z,w)) = w

describes the obvious interaction of `Re`, `Im1`, `Im2` and `Im3` with `quat`,

• QUAT_EQ

|- !p q. p = q <=> Re p = Re q /\ Im1 p = Im1 q /\

Im2 p = Im2 q /\ Im3 p = Im3 q

states that two quaternions are equal if and only if they are equal componentwise,

• FORALL_QUAT

|- (!q. P q) <=> (!x y z w. P (quat (x,y,z,w)))

states that a predicate `P:quat->bool` is true for every quaternion if and only if it
holds for every 4-tupla of real numbers,

• EXISTS_QUAT

|- (?q. P q) <=> (?x y z w. P (quat (x,y,z,w)))

states that a predicate `P:quat->bool` is true for some quaternion if and only if it holds
for some 4-tupla of real numbers.
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In this context, the basis - elements i, j, k are respectively the vectors
0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


so the related formal de�nition are given.

let quat_ii = new_definition `ii = quat(&0,&1,&0,&0)`;;

let quat_jj = new_definition `jj = quat(&0,&0,&1,&0)`;;

let quat_kk = new_definition `kk = quat(&0,&0,&0,&1)`;;

The standard representation of a quaternion (2.1.1) is formalized in the following theorems.

QUAT_EXPAND

|- !q. q = Hx (Re q) + ii * Hx (Im1 q) + jj * Hx (Im2 q) + kk * Hx (Im3 q)

QUAT_TRAD

|- !x y z w. quat (x,y,z,w) = Hx x + ii * Hx y + jj * Hx z + kk * Hx w

Note that, with respect to the traditional representation of a quaternion (2.1.1), the real com-
ponents qi ∈ R with i = 0 . . . 3, represented formally by `Re q`, `Im1 q`, `Im2 q`, `Im3 q`

(everyone of type `:real`), must be injected in `:quat` with the function `Hx:real->quat`

to make the type agree in the multiplication with the basis vectors.
In fact, from an informal point of view, a real number can be considered also a quaternion,

i.e. R can be considered as a proper subset of H. Unfortunately, HOL Light is a polymorphic
system with simple types and doesn't have subtypes. It means that an element `x:real`

can't be of type `:quat` at the same time. Formally, a quaternion that is a real number
is represented in this formalism by `quat(x,&0,&0,&0)` but, a special notation to clearly
identify and use them is more convenient. For these reasons, as it happens in the case of
complex numbers, real numbers are injected inside quaternions using the dedicated function
`Hx:real->quat` de�ned as follows.

let HX_DEF = new_definition

`Hx(a) = quat(a,&0,&0,&0)`;;

The following theorems show that the function `Hx` is an injection and allow us to rewrite
the components of a quaternion that is a �real number� respectively.

HX_INJ

|- !x y. (Hx(x) = Hx(y)) <=> (x = y)

HX_COMPONENTS

|- (!a. Re (Hx a) = a) /\

(!a. Im1 (Hx a) = &0) /\

(!a. Im2 (Hx a) = &0) /\

(!a. Im3 (Hx a) = &0)

Thus, the zero and the unit of quaternions can be represented respectively by `Hx(&0)` and
`Hx(&1)` instead of `quat(&0,&0,&0,&0)` and `quat(&1,&0,&0,&0)`.

Obviously, a quaternion is a real number if and only its imaginary projections are zero, so
the set of �real numbers� is identi�ed by the predicate `real:quat->bool`1 de�ned as follows.

let quat_real = new_definition

`real(q:quat) <=> Im1 q = &0 /\ Im2 q = &0 /\ Im3 q = &0`;;

1Every set S of elements of type `:A` is represented in HOL Light as a predicate of type `:A->bool` that
is true for every elements s ∈ S and is false otherwise.
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The following theorem shows that `real:quat->bool` is, in fact, the image of the universe
`:real` through the function `Hx`.

QUAT_REAL_EXISTS

|- !q. real q <=> (?x. q = Hx x)

The embedding R3 → H and the projection H→ R3 are formalized in the same way with the
constants `Hv:real^3->real^4` and `HIm:real^4->real^3` de�ned as usual.

let HV = new_definition

`Hv(x:real^3) = quat(&0,x$1,x$2,x$3)`;;

let HIM_DEF = new_definition

`HIm(q:quat) : real^3 = vector[q$2;q$3;q$4]`;;

The rules to rewrite their components are explicit in the following theorems.

HIM_COMPONENT

|- (!q. HIm q$1 = Im1 q) /\

(!q. HIm q$2 = Im2 q) /\

(!q. HIm q$3 = Im3 q)

HV_COMPONENTS

|- (!x. Re (Hv x) = &0) /\

(!x. Im1 (Hv x) = x$1) /\

(!x. Im2 (Hv x) = x$2) /\

(!x. Im3 (Hv x) = x$3)

The obvious interaction between `Hx`, `HIm` and `Hv` is described below where `vec 0`

represents, for every type `:real^N`, the zero vector (0, . . . , 0) ∈ Rn.

HV_HIM

|- !q. Hv (HIm q) = quat (&0,Im1 q,Im2 q,Im3 q)

HIM_HV

|- !x. HIm (Hv x) = x

HIM_HX

|- !a. HIm (Hx a) = vec 0

2.3 Formalizing quaternionic operations

As mentioned in the previous subsection, over every type `:real^N`, the normed vector
space structure is already de�ned. Thus, addition, negation, subtraction and norm

`(+) :real^N->real^N->real^N`

`(--) :real^N->real^N`

`(-) :real^N->real^N->real^N`

`norm :real^N->real`

are de�ned. Where they are istantiated over `:quat` (i.e. `:real^4`), they act compatibly
with de�nitions (2.1.3), (2.1.7) and (2.1.6). This implies that such operations don't need to be
rede�ned. However, to be consistent with the formalism introduced, they are expressed using
the projections `Re`, `Im1`, `Im2` and `Im3` through the following theorems.

quat_add

|- p + q = quat (Re p + Re q,Im1 p + Im1 q, Im2 p + Im2 q,Im3 p + Im3 q)
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quat_neg

|- --q = quat (--Re q,--Im1 q,--Im2 q,--Im3 q)

quat_norm

|- norm q = sqrt (Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2)

Moreover, the linear behaviour of the projections over addition, negation and subtraction is
formally proved. Here we report, as example, the formal theorem in the case of addition, the
others are similar.

QUAT_ADD_COMPONENTS

|- (!x y. Re (x + y) = Re x + Re y) /\

(!x y. Im1 (x + y) = Im1 x + Im1 y) /\

(!x y. Im2 (x + y) = Im2 x + Im2 y) /\

(!x y. Im3 (x + y) = Im3 x + Im3 y)

Finally, the fact that q = 0 if and only if |q|2 = 0, for all q ∈ H, is formalized in the theorem

QUAT_EQ_0

|- !q. q = Hx (&0) <=> Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2 = &0

where the squared norm is written explicitly.
As regards to the product, the situation is very di�erent because it is not a concept de�nable

over all types `:real^N`. Since it is speci�c for the type `:quat`, no more general de�nition
can be istantiated and it must be de�ned from scratch following de�nition (2.1.4). The resulting
formalization is the following.

let quat_mul = new_definition

`p * q =

quat(Re p * Re q - Im1 p * Im1 q - Im2 p * Im2 q - Im3 p * Im3 q,

Re p * Im1 q + Im1 p * Re q + Im2 p * Im3 q - Im3 p * Im2 q,

Re p * Im2 q - Im1 p * Im3 q + Im2 p * Re q + Im3 p * Im1 q,

Re p * Im3 q + Im1 p * Im2 q - Im2 p * Im1 q + Im3 p * Re q)`;;

From the latter, the power `pow :quat->num->quat` can be inductively de�ned .

let quat_pow = define

`(q pow 0 = Hx(&1)) /\

(!n. q pow (SUC n) = q * q pow n)`;;

It's the same for conjugate and inverse, the respective formal de�nitions, compatibly with the
informal ones (2.1.5) and (2.1.8), are the following.

let quat_cnj = new_definition

`cnj(q:quat) = quat(Re(q),--Im1(q),--Im2(q),--Im3(q))`;;

let quat_inv = new_definition

`inv q =

quat(Re q / (Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2),

--(Im1 q) / (Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2),

--(Im2 q) / (Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2),

--(Im3 q) / (Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2))`;;

Note that, the de�nition of the inverse is equivalent to the informal one (2.1.8) where the norm
and the conjugate are made explicit. A theorem that follows closely the standard notation is
proved.
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QUAT_INV_CNJ

|- !q. inv q = inv (Hx (norm q pow 2)) * cnj q

At this point, only the basic algebraic de�nitions are implemented. In the next chapter
we will show how to automate calculations about quaternions by using speci�c conversions.
Thanks to these, many of the main properties of arithmetic operations (e.g. associativity,
commutativity etc.), as well as more advanced analytic and geometric results, are proved.



Chapter 3

Computing with quaternions

In this chapter we present a set of theorems and conversions to perform calculations with
quaternions and quaternionic functions from an algebraic and analytic point of view. In
the spirit of a deep interconnection of de�ning, calculating and reasoning, that is one of the
guidelines of this work, a simple certi�ed and automatic calculation procedure that allows to
prove a set of basic arithmetic theorems is presented. Then, such theorems will be used to
develop more advanced conversions and to prove more complex theorems.

More precisely, in section 3.1 we present a very elementary tactic used to prove the main
properties of the algebraic operations, whereas sections 3.2 and 3.3 are dedicated to more
advanced conversions: one for arithmetic calculations with rational quaternions and one for
normalization of quaternionic polynomials.

After, these tools are used to prove results about quaternions from an analytic and ge-
ometric point of view. More precisely, in section 3.4 we show how limits and derivatives of
quaternionic functions are formally computed. The last section 3.5 is dedicated to an investi-
gation of the geometric nature of quaternions and a brief formal overview on the link between
quaternions and spatial orthogonal transformations is given.

3.1 Proving basic quaternionic algebraic identities

3.1.1 A simple decision procedure for quaternionic algebraic identi-

ties

After the formalization of quaternions and their basic algebraic operations, a procedure to
automate, as much as possible, easy and tedious calculations is needed. A very crude tactic
to prove simple algebraic equivalences over `:quat`, and its related rule, are de�ned.

let SIMPLE_QUAT_ARITH_TAC =

REWRITE_TAC[QUAT_EQ; QUAT_COMPONENTS; HX_DEF;

quat_add; quat_neg; quat_sub; quat_mul;

quat_inv] THEN

CONV_TAC REAL_FIELD;;

let SIMPLE_QUAT_ARITH tm = prove(tm,SIMPLE_QUAT_ARITH_TAC);;

However, more advanced conversions to automate calculations will be presented in sections 3.2
and 3.3 when we deal with polynomial normalization.

The basic idea behind SIMPLE_QUAT_ARITH is very simple. Everything is rewritten com-
ponentwise in order to reduce the goal over `:quat` into four subgoals over `:real`. Then,
such subgoals can be proved by the decision procedure REAL_FIELD that can automatically
prove statements over `:real` which are true due to the �eld structure of R. Now, we show
an example for more details.

35
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Example. If we have the goal over `:quat`

val it : goalstack = 1 subgoal (1 total)

`!q. ~(q = Hx (&0)) ==> q * (inv q + H(&1)) = Hx (&1) + q`

we can do the �rst rewrite with

REWRITE_TAC[QUAT_EQ_0]

to obtain

val it : goalstack = 1 subgoal (1 total)

`!q. ~(Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2 = &0)

==> q * (inv q + Hx (&1)) = Hx (&1) + q`

and then we can use SIMPLE_QUATH_ARITH_TAC to automate the computation.
The �rst part of the tactic

REWRITE_TAC[QUAT_EQ; QUAT_COMPONENTS; HX_DEF;

quat_add; quat_neg; quat_sub; quat_mul;

quat_inv]

reduces the goal in the conjunction of four subgoals over `:real` as follows

val it : goalstack = 1 subgoal (1 total)

`!q. ~(Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2 = &0)

==> Re q * (Re q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &1) -

Im1 q * (--Im1 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) -

Im2 q * (--Im2 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) -

Im3 q * (--Im3 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) =

&1 + Re q /\

Re q * (--Im1 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) +

Im1 q * (Re q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &1) +

Im2 q * (--Im3 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) -

Im3 q * (--Im2 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) =

&0 + Im1 q /\

Re q * (--Im2 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) -

Im1 q * (--Im3 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) +

Im2 q * (Re q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &1) +

Im3 q * (--Im1 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) =

&0 + Im2 q /\

Re q * (--Im3 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) +
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Im1 q * (--Im2 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) -

Im2 q * (--Im1 q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &0) +

Im3 q * (Re q / (Re q pow 2 + Im1 q pow 2 +

Im2 q pow 2 + Im3 q pow 2) + &1) =

&0 + Im3 q`

and the second part (CONV_TAC REAL_FIELD) can prove them automatically because they are
true due to the �eld structure of R. Much more concisely, we can use the code

let THEOREM = prove

(`!q. ~(q = Hx (&0)) ==> q * (inv q + Hx (&1)) = Hx (&1) + q`,

REWRITE_TAC[QUAT_EQ_0] THEN SIMPLE_QUAT_ARITH_TAC);;

to produce the same theorem in one shot.

THEOREM

|- !q. ~(q = Hx (&0)) ==> q * (inv q + Hx (&1)) = Hx (&1) + q.

3.1.2 Proving basic arithmetical properties

This approach, although very crude, can prove directly nearly 60 basic identities, as, for
example, many of the basic properties of algebraic operations like associativity or commuta-
tivity. Moreover, it is also occasionally useful to prove ad hoc identities in the middle of more
complex proofs. In this way, a small library with the essential algebraic results, which are
needed for building more complex procedures and theorems, is quickly developed.

The following list contains the formal theorems about the main properties of arithmetic
operations, it can be used as basic guidelines for the interested users that start to use the HOL
Light library about quaternions.

QUAT_ADD_ASSOC |- !x y z. x + y + z = (x + y) + z

QUAT_ADD_SYM |- !x y. x + y = y + x

QUAT_ADD_LID |- !x. Hx (&0) + x = x

QUAT_ADD_RID |- !x. x + Hx (&0) = x.

QUAT_MUL_ASSOC |- !x y z. x * y * z = (x * y) * z

QUAT_MUL_LID |- !x. Hx (&1) * x = x

QUAT_MUL_RID |- !x. x * Hx (&1) = x

QUAT_MUL_HX_SYM |- !q a. q * Hx a = Hx a * q

QUAT_ADD_LDISTRIB |- !x y z. x * (y + z) = x * y + x * z

QUAT_ADD_RDISTRIB |- !x y z. (y + z) * x = y * x + z * x

QUAT_SUB_LDISTRIB |- !x y z. x * (y - z) = x * y - x * z

QUAT_SUB_RDISTRIB |- !x y z. (x - y) * z = x * z - y * z.

QUAT_NORM_MUL |- !p q. norm(p * q) = norm(p) * norm(q)
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QUAT_NEG_0 |- --Hx (&0) = Hx (&0))

QUAT_NEG_NEG |- !x. -- --x = x)

QUAT_SUB_REFL |- !x. x - x = Hx (&0)

QUAT_SUB_RZERO |- !x. x - Hx (&0) = x

QUAT_SUB_LZERO |- !x. Hx (&0) - x = --x

QUAT_CNJ_CNJ |- !q. cnj (cnj q) = q

QUAT_CNJ_INJ |- !p q. cnj p = cnj q <=> p = q

QUAT_REAL_CNJ |- !q. real q <=> cnj q = q

CNJ_HX |- !x. cnj (Hx x) = Hx x.

QUAT_INV_1 |- inv (Hx (&1)) = Hx (&1)

QUAT_INV_INV |- !q. inv (inv q) = q

QUAT_MUL_LINV |- !q. ~(q = Hx (&0)) ==> inv q * q = Hx (&1)

QUAT_MUL_RINV |- !q. ~(q = Hx (&0)) ==> q * inv q = Hx (&1).

QUAT_POW_ADD |- !x m n. x pow (m + n) = x pow m * x pow n

QUAT_POW_POW |- !x m n. x pow m pow n = x pow (m * n)

QUAT_POW_UNITS_2 |- ii pow 2 = --Hx (&1) /\

jj pow 2 = --Hx (&1) /\

kk pow 2 = --Hx (&1)

QUAT_NORM_POW |- !q n. norm(q pow n) = norm(q) pow n

QUAT_REAL_ADD |- !p q. real p /\ real q ==> real (p + q)

QUAT_REAL_NEG |- !q. real q ==> real (--q)

QUAT_REAL_SUB |- !p q. real p /\ real q ==> real (p - q)

QUAT_REAL_MUL |- !p q. real p /\ real q ==> real (p * q)

QUAT_REAL_POW |- !q n. real q ==> real (q pow n)

QUAT_REAL_INV |- !q. real q ==> real (inv q)

Hx_ADD |- !x y. Hx(x + y) = Hx(x) + Hx(y)

HX_NEG |- !x. Hx(--x) = --(Hx(x))

HX_SUB |- !x y. Hx(x - y) = Hx(x) - Hx(y)

HX_MUL |- !x y. Hx(x * y) = Hx(x) * Hx(y)
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HX_POW |- !x n. Hx(x pow n) = Hx(x) pow n

HX_INV |- !x. Hx(inv x) = inv(Hx x).

Moreover, in addition to these simple, but signi�cant, theorems, we proved a property for the
inverse function that looks �strange�. In fact, contrarily to what one expects by the informal
theory, it holds that the inverse of zero is zero itself as shown by the following HOL theorem.

QUAT_INV_0 |- inv (Hx (&0)) = Hx (&0)

This happens because the constant `inv:quat->quat` (as `inv:complex->complex`) inher-
its its properties from the constant `inv:real->real`. It is known that, in the theory of real
numbers, the inverse of zero is not de�ned. However, since HOL Light admits only total func-
tions, also the element `inv (&0)` must be formally de�ned. In the HOL Light construction
of real numbers, the latter is proved to be equal to `&0`

REAL_INV_0 |- inv (&0) = &0

and thus, as we have seen before, the same is proved for quaternions .
Now, even if SIMPLE_QUAT_ARITH_TAC enables us to prove basic quaternionic algebraic

identities, more advanced automatic procedures are needed to perform calculations involving
rational quaternions and polynomial normalization. We present them in details in the next
two sections.

3.2 Arithmetic conversion for rational quaternions

In the HOL Light standard library, a conversion to compute with concrete literal quater-
nions with rational components, i.e. terms of the form `quat(x,y,z,w)` where `x`,`y`,`z`,`w`
are concrete rational real numbers (e.g. `&2 / &3`), is available. It is constructed by com-
posing di�erent conversions, one for every arithmetic operator. The name convention used is
RAT_QUAT_op_CONV (with op = ADD, MUL, NEG, etc.) to represent each of them.

Working with concrete literal quaternions, conversions for real numbers can be used on each
component of them. In order to do that, the conversion has to get down �rstly, in the rand of
the operator `quat` and secondly, in both sides of the constructor for pairs `(,)` recursively
(`(x,y,z,w)` is an iteration of the binary operator `(,)`). Hence, the following conversional,
that applies a conversion to each component of a quaternion of the form `quat(x,y,z,w`), is
de�ned as follows.

let QUAT_COMPONENTS_CONV conv =

RAND_CONV (LAND_CONV conv THENC

RAND_CONV (LAND_CONV conv THENC

RAND_CONV (BINOP_CONV conv)));;

Subsequently, conversions to prove automatically statements about equality and all arithmetic
operators are given. In case of equality the theorem

qth_eq

|- !x1 x2 x3 x4 y1 y2 y3 y4.

quat (x1,x2,x3,x4) = quat (y1,y2,y3,y4) <=>

x1 = y1 /\ x2 = y2 /\ x3 = y3 /\ x4 = y4

is used to convert an equality between quaternions into four equalities between real numbers.
At this point, the conversion REAL_RAT_EQ_CONV is applied to each of them. Since the output
of rewriting `qth_eq` is a conjunction, the process can be optimized by rewriting at every
step one of the following theorems.



40 3. Computing with quaternions

th1 |- F /\ p <=> F

th2 |- T /\ p <=> p

In this way, when the �rst equality is examined there are two possibilities:

• `x1 = y1` is false so the conversion returns false without considering the next compo-
nents,

• `x1 = y1` is true so the process is repeated for the second equality and so on.

Formally, the above reasoning is implemented with RAT_QUAT_EQ_CONV that is de�ned essen-
tially as follows.

let RAT_QUAT_EQ_CONV : conv =

let c1,c2 = REWR_CONV th1, REWR_CONV th2 in

REWR_CONV qth_eq THENC LAND_CONV REAL_RAT_EQ_CONV THENC

(c1 ORELSEC

(c2 THENC LAND_CONV REAL_RAT_EQ_CONV THENC

(c1 ORELSEC

(c2 THENC LAND_CONV REAL_RAT_EQ_CONV THENC

(c1 ORELSEC

(c2 THENC

REAL_RAT_EQ_CONV))))));;

Obviously, the latter works only with terms in the right form, that is, it fails if the term is not
an equality between quaternions or if the quaternions aren't in explicit form. Here there are
some examples.

RAT_QUAT_EQ_CONV `quat(&1, &2, &3, &34) = quat(&1, &2, &3, &34)`;;

val it = |- quat (&1,&2,&3,&34) = quat (&1,&2,&3,&34) <=> T

RAT_QUAT_EQ_CONV `quat(&1, &2, &3, &34) = quat(&1, &2, &3, &4)`;;

val it = |- quat (&1,&2,&3,&34) = quat (&1,&2,&3,&4) <=> F

RAT_QUAT_EQ_CONV `quat(&1, &2, &3, &34) + quat(&1, &2, &3, &4)`;;

Exception: Failure "term_pmatch".

RAT_QUAT_EQ_CONV `(x:quat) = (y:quat)`;;

Exception: Failure "dest_comb: not a combination".

As in the real case, the corresponding conversions for all the arithmetic operators are de-
�ned. Now, the basic strategy is to rewrite the output of an operation in explicit form and
then use, when it's possible, the conversion `QUAT_COMPONENTS_CONV REAL_RAT_op_CONV` (for
op = ADD, MUL, NEG, etc) that applies the right conversion for real numbers componentwise.
For example, in the case of addition, the related conversion is de�ned as follows.

let RAT_QUAT_ADD_CONV : conv =

let qth_add = prove

(`!x1 x2 x3 x4 y1 y2 y3 y4.

quat(x1,x2,x3,x4) + quat(y1,y2,y3,y4) =

quat(x1+y1,x2+y2,x3+y3,x4+y4)`,

REWRITE_TAC[quat_add; QUAT_EQ; QUAT_COMPONENTS]) in

REWR_CONV qth_add THENC

QUAT_COMPONENTS_CONV REAL_RAT_ADD_CONV;;

The same construction works also for negation and substraction so, RAT_QUAT_NEG_CONV and
RAT_QUAT_SUB_CONV can be de�ned in the same way. Unfortunately, it fails with multiplication
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and inverse. This happens because the real components of a product or an inverse doesn't in-
volve only real product or real inverse. In these cases, the conversion REAL_RAT_REDUCE_CONV,
instead of REAL_RAT_MUL_CONV or REAL_RAT_INV_CONV, has to be used since it can com-
putes every expression involving real rational numbers. With this tweak, the conversion
RAT_QUAT_MUL_CONV is de�ned as follows.

let RAT_QUAT_MUL_CONV : conv =

let qth_mul = prove

(`!x1 x2 x3 x4 y1 y2 y3 y4.

quat(x1,x2,x3,x4) * quat(y1,y2,y3,y4) =

quat(x1 * y1 - x2 * y2 - x3 * y3 - x4 * y4,

x1 * y2 + x2 * y1 + x3 * y4 - x4 * y3,

x1 * y3 - x2 * y4 + x3 * y1 + x4 * y2,

x1 * y4 + x2 * y3 - x3 * y2 + x4 * y1)`,

REWRITE_TAC[quat_mul; QUAT_EQ; QUAT_COMPONENTS]) in

REWR_CONV qth_mul THENC

QUAT_COMPONENTS_CONV REAL_RAT_REDUCE_CONV;;

Similarly, also the conversion RAT_QUAT_INV_CONV is de�ned.
In case of powers, things are bit more complicated. If the exponent `n:num` of the power

`quat(x,y,z,w) pow n` is large, the multiplication rule of quaternions can't be rewritten
n-times. However, we can use the well known technique exponentiation by squaring in order
to simplify the computation. The strategy on which it is based is to exploit the binary
representation of natural numbers. The fundamental observation is that the computation of a
power, of the form qn, can involve two cases:

• n = 2m is even then, setting p = qm, it holds that qn = q2m = p ∗ p,

• n = 2m+ 1 is odd then, setting p = qm and y = p ∗ p, it holds that qn = q ∗ y.

Therefore, following this style, the related conversion for powers `RAT_QUAT_POW_CONV` is
de�ned.

Finally, the following global conversion is de�ned by using the procedure REWRITES_CONV

which implements a net rewriting strategy.

let RAT_QUAT_RED_CONV =

let gconv_net = itlist (uncurry net_of_conv)

[`quat x = quat y`,RAT_QUAT_EQ_CONV;

`quat x + quat y`,RAT_QUAT_ADD_CONV;

`quat x - quat y`,RAT_QUAT_SUB_CONV;

`quat x * quat y`,RAT_QUAT_MUL_CONV;

`inv (quat x)`,RAT_QUAT_INV_CONV;

`quat x pow n`,RAT_QUAT_POW_CONV;

`cnj(quat x)`,RAT_QUAT_CNJ_CONV;

`-- (quat x)`,RAT_QUAT_NEG_CONV]

(basic_net()) in

REWRITES_CONV gconv_net;;

The latter has to be applied all over the term, so it is de�ned the �nal conversion

let RAT_QUAT_REDUCE_CONV = DEPTH_CONV RAT_QUAT_RED_CONV;;

that is able to compute every expression involving rational quaternions.
We show some examples.

RAT_QUAT_REDUCE_CONV

`cnj (quat (&3 / &5,&1,&4 / &3,&0)) * inv (quat (&7 / &3,&0,&0,&0)) pow 3 -

quat (-- &1,&0,&0,&0)`;;

val it =
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|- cnj (quat (&3 / &5,&1,&4 / &3,&0)) * inv (quat (&7 / &3,&0,&0,&0)) pow 3 -

quat (-- &1,&0,&0,&0) =

quat (&1796 / &1715,-- &27 / &343,-- &36 / &343,&0)

RAT_QUAT_REDUCE_CONV

`(quat (&3 / &2, &2,&6 / &7,&1) + quat (&0,-- &2,-- &6 / &7,-- &1)) *

cnj (quat (&2,&0,&0,&0) pow 3)`;;

val it =

|- (quat (&3 / &2,&2,&6 / &7,&1) + quat (&0,-- &2,-- &6 / &7,-- &1)) *

cnj (quat (&2,&0,&0,&0) pow 3) =

quat (&12,&0,&0,&0)

Moreover, in order to work with quaternions written in traditional form x+ yi+ zj+wk, that
is formally `Hx x + ii * Hx y + jj * Hx z + kk * Hx w`, also the following conversions
are de�ned.

let QUAT_TRAD_CONV : conv =

REWR_CONV QUAT_TRAD THENC

GEN_REWRITE_CONV DEPTH_CONV [QUAT_MUL_RID; QUAT_MUL_RZERO;

QUAT_ADD_LID; QUAT_ADD_RID]) tm);;

let RATIONAL_QUAT_CONV : conv =

GEN_REWRITE_CONV DEPTH_CONV [HX_DEF; quat_ii;

quat_jj; quat_kk] THENC

RAT_QUAT_REDUCE_CONV THENC QUAT_TRAD_CONV;;

The �rst rewrites quaternions of the form `quat(x,y,z,w)` in the traditional form and simpli-
�es the components that are zero. The second, given an arithmetic expression with quaternions
in traditional form, acts essentially in three steps:

1. converts the input term in another involving only the constructor `quat`, rewriting the
de�nition of `Hx` and of the basis-elements `ii`, `jj`, `kk`,

2. applies the arithmetic conversion with RAT_QUAT_REDUCE_CONV,

3. converts the output in traditional form using QUAT_TRAD_CONV.

We show an example.

RATIONAL_QUAT_CONV

`(Hx(&1) + Hx(&2) * ii - jj) * cnj (Hx(&4) + Hx(&3) * kk)`;;

val it =

|- (Hx(&1) + Hx(&2) * ii - jj) * cnj (Hx(&4) + Hx(&3) * kk) =

Hx(&4) + Hx(&11) * ii + Hx(&2) * jj - Hx(&3) * k

3.3 Quaternionic polynomial normalization

HOL Light provides a general procedure for polynomial normalization, which unfortunately
works only for commutative rings, so it can't be used in the quaternionic case. Hence, a new
approach must be developed.

The goal of this section is to explain in details the construction of a speci�c conversion
to perform calculations with quaternionic polynomials. Speci�cally, such a procedure will
transform any algebraic quaternionic expression into an sum of terms

t1 + · · ·+ tn

where:
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1. each term ti is a normalized product of a numeric coe�cient and a quaternionic mono-
mial;

2. the terms are listed according to a lexicographic order.

In principle, such a procedure can be generalized to work with arbitrary (non-commutative)
rings (by abstracting over the constant and the characterizing theorems of an arbitrary ring),
but, at the present stage, it is hardwired to the speci�c case of quaternions. The procedure
is naive, in the sense that it does not use advanced optimization techniques (such as caching
of subterms), however, it has been proven of practical usefulness in several occasions in our
work.

Firstly, the simplest entities like monomials, terms and the rules to multiply them are
considered. Monomials are products of literal powers as, for example, q5p2w while terms are
monomials with numeric coe�cient as 3q5p2w.

Secondly, the methods that permit to compute addition and multiplication between ordered
sums of terms are shown.

3.3.1 Syntax for binary and unary operators on quaternions

First of all, some OCaml functions (acting over HOL terms) to recognize the syntactic form
of a given quaternionic expression are de�ned. The function is_quat_real returns true only
if it is applied to a HOL term of the form `Hx x`. In the same way, the functions is_quat_op
(one for every binary arithmetic operator op = add, mul, pow) return true if they are applied
to a term of the form `q op p` and false otherwise. Here, we report some examples.

is_quat_real`Hx x`;;

val it : bool = true

is_quat_pow `q:quat pow 3`;;

val it : bool = true

is_quat_mul `Hx x + q`;;

val it : bool = false

is_quat_add `x + y:real`;;

val it : bool = false

Note that, in the fourth case, the function is_quat_add returns false because the term
`x + y`, even if is an addition, is not of type `:quat`.

Contextually, the functions dest_quat_op, that destruct additions, products and powers
in their fundamental components as addends, factors and base and exponent respectively, are
de�ned. Take a look to the following examples.

dest_quat_mul `q:quat * t`;;

val it : term * term = (`q`, `t`)

dest_quat_pow `q:quat pow 4`;;

val it : term * term = (`q`, `4`)

dest_quat_add `q:quat + t`;;

val it : term * term = (`q`, `t`)

3.3.2 Monomials and terms

The conversion POW_MUL_FUSE_CONV rewrites the usual exponent rules for multiplication of
powers with the same base.
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POW_MUL_FUSE_CONV `x:quat pow 3 * x pow 2`;;

val it = |- x pow 3 * x pow 2 = x pow 5

POW_MUL_FUSE_CONV `x:quat * x`;;

val it = |- x * x = x pow 2

Then, the case of a multiplication between a variable, with power, and a monomial is consid-
ered. The strategy consists to associate to the left and then to try to apply POW_MUL_FUSE_CONV
on the left side. For example, let be `x pow 3 * (x pow 2 * y)` the term to be computed.
Associating on the left, the output term `(x pow 3 * x pow 2) * y` is obtained. Then, the
conversion POW_MUL_FUSE_CONV can be applied on the left side that is, `(x pow 3 * x pow 2)`.

Moreover, note that this strategy is successful only if the �rst variable of the monomial is
equal to that which is multiplied. For example, it produces no e�ects in case of the product
`x pow 3 * (y * x pow 2)`. In fact, since the lack of commutativity for the quaternionic
product, the last term can't be rewritten as `x pow 3 * (x pow 2 * y)`. So, associating on
the left, the term `(x pow 3 * y) * x pow 2` is obtained and POW_MUL_FUSE_CONV leaves it
unchanged. The conversion POW_MONOMIAL_MUL_FUSE_CONV implements such a strategy.

POW_MONOMIAL_MUL_FUSE_CONV `x pow 3 * (x pow 2 * y)`;;

val it = |- x pow 3 * x pow 2 * y = x pow 5 * y

POW_MONOMIAL_MUL_FUSE_CONV `x pow 3 * (y * x pow 2)`;;

val it = |- x pow 3 * y * x pow 2 = x pow 3 * y * x pow 2

The conversion MONOMIAL_MUL_CONV performs multiplication between two monomials. Given
two monomials `m1` and `m2`, the strategy used to compute `m1 * m2` is to control if the
last conversion POW_MONOMIAL_FUSE_CONV can be applied to the last variable on the right of
`m1` and the monomial `m2`. Otherwise, nothing has to be done. So, MONOMIAL_MUL_CONV
acts as follows.

MONOMIAL_MUL_CONV `(x:quat pow 2 * y pow 3) * (y pow 3 * w)`;;

val it = |- (x pow 2 * y pow 3) * y pow 3 * w = x pow 2 * y pow 6 * w

MONOMIAL_MUL_CONV `(x:quat pow 2 * y pow 3) * (z pow 3 * w)`;;

val it = |- (x pow 2 * y pow 3) * z pow 3 * w =

x pow 2 * y pow 3 * z pow 3 * w

Let's take a step forward considering multiplication between terms, instead of only monomi-
als. Things are now more complicated because, working with numerical coe�cients `Hx a`,
calculations over them must be performed. The following theorems

th1 |- !a b x y. (Hx a * x) * Hx b * y = Hx (a * b) * x * y

th2 |- !a b x. (Hx a * x) * Hx b = Hx (a * b) * x

th3 |- !a b x. Hx a * Hx b * x = Hx (a * b) * x

th4 |- !a x y. (Hx a * x) * y = Hx a * x * y

th5 |- !a x y. x * Hx a * y = Hx a * x * y

are used to operate with numerical coe�cients.
Given two terms `Hx a1 * m1` and `Hx a2 * m2` (with `m1` and `m2` monomials),

the conversion TERMS_MUL_CONV acts on `(Hx a1 * m1) * (Hx a2 * m2)` essentially in two
steps:

1. it tries to apply arithmetic simpli�cations about multiplication by `Hx(&0)` or `Hx(&1)`,

2. if the product to compute is of the form `Hx a * Hx b` (i.e. if `m1` and `m2` are equal
to unit), it rewrites the theorem HX_MUL. Otherwise, it tries to rewrites, one by one,
the previous theorems th1, th2, th3, th4, th5. After, it applies, when it is possible,
the conversions REAL_POLY_CONV on the rand of `Hx` and MONOMIAL_MUL_CONV to the
multiplication of the related monomial `m1 * m2`.
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In practice, we observe the following behaviour.

TERM_MUL_CONV `(Hx (&2) * x pow 2 * y pow 3) * (Hx (&0))`;;

val it = |- (Hx (&2) * x pow 2 * y pow 3) * Hx (&0) = Hx (&0)

TERM_MUL_CONV `(Hx (&2) * x pow 2 * y pow 3) * (Hx (&3) * y pow 2 * w)`;;

val it =

|- (Hx (&2) * x pow 2 * y pow 3) * Hx (&3) * y pow 2 * w =

Hx (&6) * x pow 2 * y pow 5 * w

Then, another common operation in normalization of polynomials is considered: the sum of
similar terms `Hx a * m + Hx b * m`. It is well know that, in case of two terms with the
same literal part, they can be added simply adding their numerical coe�cients. As before, in
order to do this, the following theorems are proved

th1 |- !x y q. Hx x * q + Hx y * q = Hx (x + y) * q

th2 |- !x q. Hx x * q + q = Hx (x + &1) * q

th3 |- !x q. q + Hx x * q = Hx (&1 + x) * q

and then the conversion TERMS_FUSE_ADD_CONV is de�ned. The latter acts in three steps:

1. it tries to apply arithmetic simpli�cations about addition by `Hx(&0)`,

2. if the addition to compute is of the form `Hx a + Hx b` it rewrites HX_ADD. Otherwise,
it tries to rewrites, one by one, the theorems th1 th2 th3. Then, it applies, when it is
possible, the conversion REAL_POLY_CONV to the rand of `Hx`,

3. it tries to apply arithmetic simpli�cations about the left-multiplication by `Hx(&0)`

or `Hx(&1)`, since the addition of the numerical coe�cients can produce `Hx(&1)` or
`Hx(&0)`.

Take a look to the following examples.

TERMS_FUSE_ADD_CONV `(Hx(&2) * x pow 2 * w) + (Hx(&3) * x pow 2 * w)`;;

val it =

|- Hx (&2) * x pow 2 * w + Hx (&3) * x pow 2 * w = Hx (&5) * x pow 2 * w

TERMS_FUSE_ADD_CONV `(Hx(&2) * x pow 2 * w) + ((Hx(-- &2)) * x pow 2 * w)`;;

val it =

|- Hx (&2) * x pow 2 * w + Hx (-- &2) * x pow 2 * w = Hx (&0)

TERMS_FUSE_ADD_CONV `(Hx(&2) * x pow 2 * w) + (Hx(-- &1) * x pow 2 * w)`;;

val it =

|- Hx (&2) * x pow 2 * w + Hx (-- &1) * x pow 2 * w = x pow 2 * w

TERMS_FUSE_ADD_CONV `(Hx(&2) * x pow 2 * y) + (Hx(-- &1) * x pow 2 * w)`;;

Exception: Failure "safe_inserta".

Notice that, when the terms aren't similar like in the fourth example, the conversion fails and
returns an error instead of leaves the expression unchanged.

3.3.3 Monomials and terms comparison

In order to manipulate and normalize polynomials, it is important to be able to compare
and order terms. For this purpose, the OCaml function compare: A -> A -> int is used.
Given an order relation ≤ over the universe A (of the type :A) and two elements a, b ∈ A, the
integer number compare(a, b) is:

• −1 if a < b,
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• 0 if a = b,

• 1 if b < a.

The compare function acts over integer numbers and strings according to the standard order
and the lexicographical order, respectively, as shown by the following examples.

compare 3 4;;

val it : int = -1

compare "x" "z";;

val it : int = 1

compare "x" "x";;

val it : int = 0

Now, some functions to compare literal powers, monomials and terms are de�ned using the
compare function. The strategy, in case of literal powers `x pow n` and `y pow m`, is to
compare �rstly the bases `x`,`y` according to the lexicographical order and then, only in case
that they are equal, compare the exponents `n` and `m` according to the standard order of
natural numbers. Formally, the following function is de�ned to do that.

let pow_compare tm1 tm2 =

let b1,e1 = dest_literal_quat_pow tm1

and b2,e2 = dest_literal_quat_pow tm2 in

let c = compare b1 b2 in

if c <> 0 then c else compare e1 e2;;

In such de�nition, dest_literal_quat_pow is the function that, given a power `q pow n`

returns the couple (`q`, n). We show some examples.

dest_literal_quat_pow `x pow 5`;;

val it : term * int = (`x`, 5)

pow_compare `x pow 3` `y pow 1`;;

val it : int = -1

pow_compare `x pow 3` `x pow 1`;;

val it : int = 1

pow_compare `x pow 3` `x pow 3`;;

val it : int = 0

As regards to monomials, the function mon_compare is given and it is de�ned by cases. Let
`m1` and `m1` be two monomials, then:

• if both `m1` and `m2` are of the form `p1 * n1` and `p2 * n2` with `p1`, `p2` literal
powers and `n1`, `n2` monomials respectively, then it returns the value of

pow_compare `p1` `p2`

if it is not zero, otherwise mon_compare is applied recursively to `n1` and `n2`,

• if exactly one of `m1` and `m2` is of the form `p * n` it returns 1 or -1 in case of `m1`
or `m2` respectively,

• if neither `m1` or `m2` are of the previous form then the function pow_compare is applied
to `m1` and `m2`.

The formal recursive de�nition of mon_compare is the following and we report some examples.
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let rec mon_compare m1 m2 =

match is_quat_mul m1, is_quat_mul m2 with

| true,true ->

let c = pow_compare (lhand m1) (lhand m2) in

if c <> 0 then c else

mon_compare (rand m1) (rand m2)

| true,false -> 1

| false,true -> -1

| false,false -> pow_compare m1 m2;;

mon_compare `x pow 3 * y pow 4` `z pow 2 * w`;;

val it : int = -1

mon_compare `x pow 3 * y pow 4` `z pow 2`;;

val it : int = 1

Since comparison between two terms, `t1` and `t2`, is essentially a comparison between their
literal parts, it can be easily obtained from comparison between monomials distinguishing the
following cases:

• if both `t1` and `t2` are of the form `Hx x * m1` and `Hx y * m2`, with `m1`, `m2`
monomials, then it returns mon_compare `m1` `m2`,

• if exactly one of `t1` and `t2` has no literal part (i.e. is of the form `Hx x`) then it
returns -1 or 1 if `t1 = Hx x` or `t2 = Hx x` respectively,

• if both `t1` or `t2` have no literal part then they are considered equal so it returns 0.

The formal function that compares terms is term_compare and it is de�ned as follows.

let term_compare t1 t2 =

match is_quat_real t1, is_quat_real t2 with

| true, false -> -1

| false, true -> 1

| true, true -> 0

| false,false -> mon_compare (mon_of_term t1) (mon_of_term t2);;

Here, mon_of_term is an auxiliary function that, given a term `t1` of the form `Hx x * m1`,
returns its literal part (i.e. the monomial) `m1`. We show some examples.

mon_of_term `Hx(&5) * x pow 2 * y pow 3`;;

val it : term = `x pow 2 * y pow 3`

term_compare `x pow 2` `x pow 3`;;

val it : int = -1

term_compare `x pow 2 * y pow 2` `x pow 2 * y pow 3`;;

val it : int = -1

3.3.4 Term insertion, addition, multiplication and power of polyno-

mials

In the following, we will work with polynomials encoded in a normalized form as an ordered
(with respect to the lexicographic order de�ned by term_compare) sum of terms

t1 + t2 + ...+ tn

with the convention that the addition is associated to the right t1 + (t2 + (. . . )). Informally, t1
and t2 + ...+ tn can be thought as the head and the tail of p respectively. Note that the head



48 3. Computing with quaternions

is always well de�nend whereas tail can be empty. In this case, the polynomial p is reduced
to its head, that is, the single term t1. So, from now on, every time we will write `p + q`, we
have in mind a polynomial with head `p` and tail `q`.

Term insertion. At this point, the recursive conversion INSERT_TERM that, given a normal-
ized and ordered sum of terms, inserts another term in the right position, according to the
order, is de�ned. Let `q + r` be an ordered and normalized polynomial, with leading term
`q`, and `p` a new term. Then, the conversion INSERT_TERM p (q + r) acts essentially by
cases:

1. if `p` is `Hx(&0)` then it makes the appropriate rewrites,

2. it computes term_compare `p` `q` and this calculation produces three subcases:

2.1. term_compare `p` `q` = 0 means that `p` and `q` have the same literal part so
they can be added using TERMS_FUSE_ADD_CONV,

2.2. term_compare `p` `q` > 0 means that `p` is �greater� than `q` so the theorem

insert_term_th

|- !p q r. p + (q + r) = q + (p + r)

can be used to swap them and, subsequently, INSERT_TERM is applied recursively
on `p` and `r` considering `r` as the sum of its head and tail,

2.3. term_compare `p` `q` < 0 means that `p` is �less� than `q` (hence than each
terms of `r` since `q + r` is ordered) so there is nothing to do.

In practice, we have the following examples.

INSERT_TERM `x pow 3` `x pow 2 + x pow 4`;;

val it = |- x pow 3 + x pow 2 + x pow 4 = x pow 2 + x pow 3 + x pow 4

INSERT_TERM `y:quat` `x:quat pow 2`;;

val it = |- y + x pow 2 = x pow 2 + y

Polynomial addition. Let `p + q` and `r + s` be two polynomials. The conversion
PRE_ADD_CONV that computes, orders and normalizes the addition `(p + q) + (r + s)` is
provided. Also this time, such a conversion is de�ned by a case analysis:

1. if `q` or `s` are empty then INSERT_TERM `p` `r + s`, or INSERT_TERM `r` `p + q`

respectively, are returned,

2. if both `q` or `s` are not empty then there are three possible subcases:

2.1 if term_compare `p` `r` = 0 then the theorem

th_add1 =

|- !p q r. (p + q) + (r + s) = (p + r) + (q + s)

is rewritten to join togheter `p` and `r`.

Then, TERM_FUSE_ADD_CONV is applied to `p + r` and PRE_ADD_CONV is applied
recursively to `q + s`, considering `q` and `s` as sums of their heads and tails
respectively,

2.2 if term_compare `p` `r` < 0 the theorem

th_add2

|- !p q r. (p + q) + (r + s) = p + (q + (r + s))

is rewritten to isolate the smaller term `p` and then `PRE_ADD_CONV` is applied
recursively to `(q + (r + s))`, considering `q` as sum of its head and tail re-
spectively,
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2.3 if term_compare `p` `r` > 0 the theorem

th_add3

|- !p q r. (p + q) + (r + s) = r + ((p + q) + s)

is rewritten to isolate the smaller term `r` and then PRE_ADD_CONV is applied
recursively to `(p + q) + s`, considering `s` as sum of its head and tail.

We show an example.

PRE_ADD_CONV

`(x pow 3 + Hx (&4) * x pow 5) + (x pow 2 + Hx(-- &5) * x pow 5)`;;

val it =

|- (x pow 3 + Hx (&4) * x pow 5) + x pow 2 + Hx (-- &5) * x pow 5 =

x pow 2 + x pow 3 + Hx (-- &1) * x pow 5

Polynomial multiplication. Multiplication of polynomials is slightly more di�cult than
addition since it is not enough to add similar terms and then reorder them. The computation
must be performed using the distributive law and the multiplication of terms.

In order to do this, two conversions LDISTRIB and RDISTRIB are provided. Given as
input the product of two polynomials of the form `(p + r) * (q + s)`, they rewrite re-
cursively the left- and right-distributive law obtaining `(p + r) * q + (p + r) * s` and
p * (q + s) + r * (q + s)` respectively. The latter two conversions do the appropriate
simpli�cations, using TERM_MUL_CONV, in cases that `r` or `s` is the empty tail. Here, there
are some examples.

LDISTRIB_CONV `(x pow 2 + x pow 3) * (x pow 5 + x pow 6)`;;

val it =

|- (x pow 2 + x pow 3) * (x pow 5 + x pow 6) =

(x pow 2 + x pow 3) * x pow 5 + (x pow 2 + x pow 3) * x pow 6

RDISTRIB_CONV `(x pow 2 + x pow 3) * (x pow 5 + x pow 6)`;;

val it =

|- (x pow 2 + x pow 3) * (x pow 5 + x pow 6) =

x pow 2 * (x pow 5 + x pow 6) + x pow 3 * (x pow 5 + x pow 6)

LDISTRIB_CONV `(x pow 2) * (x pow 5 + x pow 6)`;;

val it =

|- x pow 2 * (x pow 5 + x pow 6) = x pow 7 + x pow 8

At this point, the main conversion PRE_MUL_CONV, that computes `(p + r) * (q + s)`, is
de�ned by another case analysis:

1. if `r` or `s` is an empty tail then LDISTRIB_CONV, or RDISTRIB_CONV respectively, is
applied,

2. if both `r` and `s` are not the empty tail the theorem

th_mul

|- !p q r s. (p + q) * (r + s) = p * r + (p * s + q * r) + q * s

is rewritten to divide the di�culties. In fact, remembering that `p` and `r` are terms
whereas `q` and `s` are sums of terms, it is possible to apply:

• TERM_MUL_CONV to `p * r`,

• LDISTRIB_CONV to `p * s` and RDISTRIB_CONV to `q * r`, then, PRE_ADD_CONV
is applied to the result,

• PRE_MUL_CONV recursively to `q * s` and then PRE_ADD_CONV to the result.
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Note that, even if `p * r` is certainly the head of the polynomial product, the terms produced
by the multiplication have to be added with PRE_ADD_CONV to normalize the result. We show
an example.

PRE_MUL_CONV

`(Hx (&8) * x pow 2 + Hx(-- &2) * x pow 3) * (Hx(&4) * x pow 4 + x pow 5)`;;

val it =

|- (Hx (&8) * x pow 2 + Hx (-- &2) * x pow 3) *

(Hx (&4) * x pow 4 + x pow 5) =

Hx (&32) * x pow 6 + Hx (-- &2) * x pow 8

Polynomial powers. As said in the previous section (3.2), powers can't be computed naively
by iteration because it would be too expensive. In fact, if the exponent `n:num` of the power
`x pow n` is large, the multiplication rule of quaternions can't be rewritten n-times. Again, we
use the exponentiation by squaring technique to perform calculations by proving the following
formal theorems

QUAT_POW_DENUMERAL

|- x pow NUMERAL n = x pow n

QUAT_POW_0

|- !x. x pow _0 = Hx (&1)

QUAT_POW_BIT0

|- !x n. x pow BIT0 n = (x * x) pow n

QUAT_POW_BIT1

|- !x n. x pow BIT1 n = x * (x * x) pow n

where we use the internal HOL Light binary representation of natural numbers explained in
chapter 1 (section 1.2).

Therefore, given a power `q pow n` to be computed, the conversion PRE_POW_CONV acts
essentially in two steps:

1. it rewrites QUAT_POW_DENUMERAL,

2. it tries to rewrite one of QUAT_POW_0, QUAT_POW_BIT0 or QUAT_POW_BIT1 then applies
PRE_MUL_CONV and itself, recursively, on the appropriate subterms.

For example, computing `q pow 5`, the action of PRE_POW_CONV is described step by step:

• it rewrites QUAT_POW_DENUMERAL and QUAT_POW_BIT1 obtaining the term
`q * ((q * q) pow 4)`,

• it computes `q * q` with PRE_MUL_CONV and `(q * q) pow 4` with PRE_POW_CONV

recursively,

• �nally, it �nishes the computation using again PRE_MUL_CONV on the whole term
`q * (q * q) pow 4`.

We give a concrete example.

PRE_POW_CONV `(p + Hx(&2)) pow 5`;;

val it =

|- (p + Hx (&2)) pow 5 =

p pow 5 +

Hx (&32) +

Hx (&80) * p +

Hx (&80) * p pow 2 +

Hx (&40) * p pow 3 +

Hx (&10) * p pow 4
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3.3.5 Glue all together and the main call

All the previous conversions, one for each basic operation, are glued in the following recur-
sive de�nition.

let rec POLY_CONV tm =

if is_quat_add tm then ADD_CONV tm else

if is_quat_mul tm then MUL_CONV tm else

if is_quat_pow tm then POW_CONV tm else

ALL_CONV tm

and ADD_CONV tm = (BINOP_CONV POLY_CONV THENC PRE_ADD_CONV) tm

and MUL_CONV tm = (BINOP_CONV POLY_CONV THENC PRE_MUL_CONV) tm

and POW_CONV tm = (LAND_CONV POLY_CONV THENC

RAND_CONV NUM_NORMALIZE_CONV THENC

TRY_CONV PRE_POW_CONV) tm;;

As we can see by the explicit de�nition, a structural analysis, on the term `tm` that must
be computed, is made. It divides three cases:

1. if `tm` is an addition `tm1 + tm2` then, �rstly, POLY_CONV is applied recursively to
`tm1` and `tm2`, secondly, PRE_ADD_CONV is applied to `tm`,

2. if `tm` is a multiplication `tm1 * tm2` then, �rstly, POLY_CONV is applied recursively to
`tm1` and `tm2`, secondly, PRE_MUL_CONV is applied to `tm`,

3. if `tm` is a power `tm1 pow tm2` then, �rstly, POLY_CONV is applied recursively to `tm1`,
secondly, PRE_POW_CONV is applied to `tm`.

Now, the main conversion QUAT_POLY_CONV is de�ned.

let QUAT_POLY_CONV : conv =

QUAT_DESUGAR_CONV THENC POLY_CONV;;

The conversion QUAT_DESUGAR_CONV performs an initial normalization rewriting some easy
identities proved in the following theorem.

QUAT_DESUGAR_CLAUSES

|- (!x. Hx (&0) + x = x) /\

(!x. --x = Hx (-- &1) * x) /\

(!x y. x - y = x + Hx (-- &1) * y) /\

(!x. Hx (&1) * x = x) /\

(!x. x * Hx (&1) = x) /\

(!x. Hx (&0) * x = Hx (&0)) /\

(!x. x * Hx (&0) = Hx (&0)) /\

(!x. x pow 0 = Hx (&1)) /\

(!x y. cnj (x + y) = cnj x + cnj y) /\

(!x y. cnj (x * y) = cnj y * cnj x) /\

(!x. cnj (inv x) = inv (cnj x)) /\

(!x n. cnj (x pow n) = cnj x pow n) /\

(!a. cnj (Hx a) = Hx a) /\

cnj ii = Hx (-- &1) * ii /\

cnj jj = Hx (-- &1) * jj /\

cnj kk = Hx (-- &1) * kk

As for example we can compute the term

`q - Hx(&5)) pow 3 + (q - Hx(&2)) * (q + Hx(&2))`

with QUAT_POLY_CONV. In fact, the command
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QUAT_POLY_CONV`(q - Hx(&5)) pow 3 + (q - Hx(&2)) * q`;;

produces automatically the following theorem.

val it =

|- (q - Hx (&5)) pow 3 + (q - Hx (&2)) * q =

Hx (-- &125) + Hx (&73) * q + Hx (-- &14) * q pow 2 + q pow 3

A simple conversion to prove equality between quaternionic polynomials is derived from
QUAT_POLY_CONV. The idea is basic: in case of a polynomial equality `p = q`, both `p` and
`q` are normalized with `QUAT_POLY_CONV`and then they are compared. Such a conversion
and the corresponding rule are de�ne as follows.

let QUAT_EQ_CONV : conv =

BINOP_CONV QUAT_POLY_CONV THENC REWR_CONV REFL_CLAUSE;;

let QUAT_POLY tm = prove(tm, REPEAT GEN_TAC THEN CONV_TAC QUAT_EQ_CONV);;

We show an example.

QUAT_POLY`(p + Hx (&3)) pow 2 - (p + Hx (&3)) * (p - Hx (&3)) =

Hx (&18) + Hx (&6) * p`;;

val it =

|- (p + Hx (&3)) pow 2 - (p + Hx (&3)) * (p - Hx (&3)) =

Hx (&18) + Hx (&6) * p

Finally, the conversions presented in the last two sections (3.2 and 3.3) enable us to auto-
mate a very large number of long and tedious calculations about quaternions (see for instance
the examples about PH-curves shown in Part II of this thesis). They has been very useful
in the formalization of the analytic and geometric results that we will show in the next two
sections.

3.4 Elementary quaternion analysis

Passing from algebra to analysis, a series of technical theorems about the analytical be-
haviour of the algebraic operations are proved. A systematic formalization of such results,
from the point of view of limits, continuity and derivatives, is conducted and it brought to the
formalization of more than �fty theorems overall. Some of them are indeed trivial, some are
less immediate and forced to dive into a technical εδ-reasoning.

Limits and continuity. A set of composition theorems that link the notion of limit and
continuity with the algebraic quaternionic operations are proved.

It is well known that for every pair of functions f, g : Rn → Rm the limit operator (hence
also continuity) distributes over addition, subtraction and negation. The HOL Light Multi-
variate library already provides some theorems that formalize these properties. For example
we report the following theorems about addition.

LIM_ADD

|- !net f g l m. (f --> l) net /\ (g --> m) net

==> ((\x. f x + g x) --> l + m) net

CONTINUOUS_ADD

|- !f g net. f continuous net /\ g continuous net

==> (\x. f x + g x) continuous net

The same results are proved for the other quaternionic operations like product, power and
inverse as shown by the following formal theorems:
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• Product:

LIM_QUAT_MUL

|- !net f g l m. (f --> l) net /\ (g --> m) net

==> ((\x. f x * g x) --> l * m) net

CONTINUOUS_QUAT_MUL

|- !net f g. f continuous net /\ g continuous net

==> (\x. f x * g x) continuous net

• Power:

LIM_QUAT_POW

|- !net f l n. (f --> l) net

==> ((\x. f x pow n) --> l pow n) net

CONTINUOUS_QUAT_POW

|- !net f n. f continuous net

==> (\x. f x pow n) continuous net

• Inverse:

LIM_QUAT_INV

|- !net f l. (f --> l) net /\ ~(l = Hx (&0))

==> ((\x. inv (f x)) --> inv l) net

CONTINUOUS_QUAT_INV

|- !net f. f continuous net /\ ~(f (netlimit net) = Hx (&0))

==> (\x. inv (f x)) continuous net

Di�erentiability. Next, the di�erential structure is considered and the derivative of the
basic quaternionic operations is computed. Notice that, if f is a quaternionic valued function,
the derivative Dfq0(x) is a quaternion (natural identi�cation of the tangent space Tf(q0)H ' H).
As in the case of limits, for addition, subtraction and negation the situation is easy. Such
theorems are special instance of more general ones about functions f : Rn → Rm that are
already proved in the Multivariate library of HOL Light.

HAS_DERIVATIVE_ADD

|- !f f' g g' net.

(f has_derivative f') net /\ (g has_derivative g') net

==> ((\x. f x + g x) has_derivative (\h. f' h + g' h)) net

HAS_DERIVATIVE_SUB

|- !f f' g g' net.

(f has_derivative f') net /\ (g has_derivative g') net

==> ((\x. f x - g x) has_derivative (\h. f' h - g' h)) net

HAS_DERIVATIVE_NEG

|- !f f' net.

(f has_derivative f') net

==> ((\x. --f x) has_derivative (\h. --f' h)) net

As regards the product, given two di�erentiable quaternionic functions f(q) and g(q), the
derivative of their product in q0 ∈ H is

d
(
f(q)g(q)

)
dq

|q0(x) = f(q0) Dgq0(x) + Dfq0(x)g(q0).

In our formalism, the previous formula becomes the following theorem.
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QUAT_HAS_DERIVATIVE_MUL

|- !f f' g g' q.

(f has_derivative f') (at q) /\ (g has_derivative g') (at q)

==> ((\x. f x * g x) has_derivative

(\x. f q * g' x + f' x * g q)) (at q)

A direct consequence is the following formula for the power

dqn

dq
|q0(x) =

n∑
i=1

qn−i0 xqi−1
0 ,

that is the HOL theorem

QUAT_HAS_DERIVATIVE_POW

|- !q0 n. ((\q. q pow n) has_derivative

(\h. vsum (1..n) (\i. q0 pow (n - i) * h * q0 pow (i - 1))))

(at q0)

which is easily proved by induction using the derivative of the product. Note the di�erence
from the usual formula of derivative of a power due to the lack of commutativity for the
quaternionic product.

Finally, a straightforward but important observation is the next. Let Rp : H → H be the
right multiplication by the quaternion p, i.e., Rp(x) = xp. Since Rp is R-linear, it holds that
DRp = Rp, that is, formally, the following theorem.

|- !net p. ((\q. q * p) has_derivative (\q. q * p)) net

3.5 The geometry of quaternions

As regards to geometry, it is very useful to consider a number of di�erent possible decom-
positions for a quaternion q, as brie�y sketched in the following schema (here I = R3 can be
interpreted, depending on the context, as the imaginary part of H or the 3-dimensional space):

q = a0︸︷︷︸
Re q

+ a1 i + a2 j + a3 k︸ ︷︷ ︸
Im q

∈ H = R⊕ I

= a0︸︷︷︸
scalar

+ a1 i + a2 j + a3 k︸ ︷︷ ︸
3d-vector

∈ R4 = R⊕ R3

= a0 + a1 i︸ ︷︷ ︸
z∈C

+ (a3 + a4 i)︸ ︷︷ ︸
w∈C

j ∈ H ' C⊕ C

Regarding a quaternion a0 + a as an element of R⊕ R3, the projections

a0 ∈ R, a = a1i + a2j + a3k ∈ R3

are called pure scalar and pure vector respectively. Since HOL Light doesn't have subtypes
a ∈ R and a ∈ R3 can't be considered, from a formal point of view, as elements of H at the
same time as mathematicians usually do. Hence, in our formalism, a pure scalar is represented
by `Hx a` (with `a:real`) and a pure vector by `Hv a` (with `a:real^3`). A unit vector
is a pure vector u such that ‖u‖ = 1 and by direct computation can be proved that u2 = −1
if and only if u = u is a pure unit vector, for every u ∈ H.

It easy to show, again by direct computation, that the quaternionic product encodes both
the scalar and vector products of R3 in fact, let a0 +a and b0 +b be two quaternions, we have
that

(a0 + a)(b0 + b) = (a0b0 − a · b) + (a0b + b0a + a× b). (3.5.1)
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If we consider pure vectors, that is, vectors such that a0 = b0 = 0, the previous formula
becomes

ab = (−a · b) + (a× b) (3.5.2)

that is, the HOL Light following formal theorem.

MUL_HV_EQ_CROSS_DOT

|- !a b. Hv a * Hv b = Hv (a cross b) - Hx (a dot b)

Moreover, quaternions can be used to encode orthogonal transformations. For q 6= 0, the
conjugation map is de�ned as

cq : H −→ H
cq(x) := q−1 x q

and we have
cq1 ◦ cq2 = cq1q2 , c−1

q = cq−1 .

One important special case is when q unitary, i.e., ‖q‖ = 1 for which we have q−1 = q̄ (the
conjugate) and thus

cq(x) = q̄ x q.

It holds the following proposition

Proposition 3.5.1. If q2 = −1 then −cq : R3 → R3 is the re�ection w.r.t. the orthogonal
space of the quaternion q, that is q⊥ = {w ∈ H | 〈q, w〉 = 0} where 〈, 〉 is the Euclidean inner
product of R4.

that has a corresponding statement proved in HOL Light.

REFLECT_ALONG_EQ_QUAT_CONJUGATION

|- !v. ~(v = vec 0)

==> reflect_along v = \x. --HIm (inv (Hv v) * Hv x * Hv v)

The Cartan-Dieudonné theorem asserts that any orthogonal transformation f : Rn −→ Rn
is the composition of at most n re�ections. Using this and the previous proposition, we get
the following result.

Proposition 3.5.2. Any orthogonal transformation f : R3 −→ R3 is of the form

f = cq or f = −cq, ‖q‖ = 1.

The corresponding formalization is the following.

ORTHOGONAL_TRANSFORMATION_AS_QUAT_CONJUGATION

|- !f. orthogonal_transformation f

==> (?q. norm q = &1 /\

((!x. f x = HIm (inv q * Hv x * q)) \/

(!x. f x = --HIm (inv q * Hv x * q))))





Part II

APPLICATIONS OF

QUATERNIONS

57





Introduction

The main goal of this part of the work is to explain in details the formalization of the basics
of two of the most recent theories which are based on quaternions. More precisely, we give the
de�nition and some basic theorems about Slice regular functions [Gentili and Struppa, 2006]
(Chapters 4 and 5) and Pythagorean-Hodograph curves [Farouki, 2009] (Chapter 6).

Slice regular functions play a central role in quaternionic analysis because they generalize,
in a very suitable way, the concept of complex holomorphic functions to the quaternionic case.

As regards to PH-curves, they are polynomial curves that present many theoretical prop-
erties an practical advantages from a computational point of view. Therefore, they are very
useful in Computer-Aided Design (also known as CAD), digital motion control, path planning,
robotics applications and animation.

Since the relevance of such theories, their formalizations are interesting on their own but,
at the same time, they are good tests for the formal framework about quaternions presented
in the �rst part of this thesis.

Outline of the code

The source code of this part of the work is reachable at the url

https://bitbucket.org/gabra/phdthesis/src/master/Application%20of%20Quaternions/

and it is divided in three subdirectories.

• Complex - Prerequisites about real and complex analysis which are needed for our
purposes but that are not strictly related to quaternions (Included in HOL Light on
Mon. 10th April 2017).

• limsup.hl - Limit superior, limit inferior.

• root_test.hl - Root test for series.
• cauchy_hadamard.hl - Cauchy-Hadamard radius of convergence.

• Slice_Regular - Gentili and Struppa's de�nition of slice regular functions and proof of
the existence of series expansion centred in the origin.

• misc.hl - Miscellanea.

• slice.hl - Slice regular functions.
• analytic.hl - Power series expansion of slice regular functions centred in the origin.

• cauchy_hadamard.hl - Copy of the previous �le in the directory Complex (here it
serves to made the code about slice regular functions independent, that is, loadable
without loading the directory Complex.)

• PH_Curve - De�nition of Farouki's Pythagorean-Hodograph curves.

• ph_curves.hl - Quaternionic representation of spacial PH-curves, cubic and quin-
tic PH Hermite interpolation curves.

59

https://bitbucket.org/gabra/phdthesis/src/master/Application%20of%20Quaternions/




Chapter 4

Slice regular functions

4.1 Historical overview about regularity for quaternionic

functions

Complex holomorphic functions have a central role in mathematics, so, given the deep link
and the evident analogy between complex numbers and quaternions, it is natural to seek for
a theory of quaternionic holomorphic functions. Unfortunately, a more careful investigation
shows that the situation is less simple than expected. Naive attempts to generalize the complex
case to the quaternionic case fail, because they lead to conditions which are either too strong
or too weak and do not produce interesting classes of functions. For instance, asking for a
function f : H→ H to be quaternion-di�erentiable, i.e., imposing that, for h ∈ H,

lim
h→0

h−1(f(q + h)− f(q))

exists for all q ∈ H1, implies that f is an a�ne function of the form f(q) = a + qb for some
a, b ∈ H. This result de�nitively shows that a naive approach is inadequate to replicate the
richness of the theory of holomorphic functions of one complex variable.

Fueter, in the 1920s, proposed a de�nition of regular quaternionic function generalizing the
Cauchy-Riemann operator. He de�ned a function to be regular if it solves the equation

∂f

∂q̄
=

1

4

(
∂

∂q0
+ i

∂

∂q1
+ j

∂

∂q2
+ k

∂

∂q3

)
f ≡ 0.

It turns out that the operator ∂f
∂q̄ is a very good analog of the Cauchy-Riemann operator in

the sense that functions, which are solutions of the above equation, enjoy many of the key
properties of the holomorphic functions. A full theory of such functions has been extensively
studied and developed also in several variables. Although Fueter's regular functions have
signi�cant applications to physics and engineering, they present also some undesirables aspects.
For example, the identity function and the polynomials P (q) = a0 +a1q+ ...+anq

n, ai ∈ H are
not Fueter-regular. Even if a more detailed discussion on this subject is far beyond the goal of
this work, what we have said so far is enough to motivate the search of an alternative de�nition
of regularity. To the interested reader we recommend Sudbery's excellent survey [Sudbery,
1979].

A di�erent de�nition of regularity in the quaternionic context was given by Cullen in the
1960s [Cullen, 1965], considering the solution of the equation(

∂

∂q0
+

Im(q)

r

∂

∂r

)
f ≡ 0

1Remember that, since the lack of commutativity both right and left quotient can be de�ned inducing
di�erent de�nitions, even if specular, of di�erentiability.
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where Im(q) = q1i + q2j + q3k and r =
∥∥Im(q)

∥∥ =
√
q2
1 + q2

2 + q2
3 .

Gentili and Struppa recently restated and developed Cullen's de�nition and, in their sem-
inal paper in 2006 [Gentili and Struppa, 2006], they introduced the de�nition of slice regular
function. Moreover, they proved that such functions can be expansed in series in an ap-
propriate open ball centred in the origin. Slice regular functions are now a stimulating and
active subject of research for several mathematicians world-wide. A comprehensive introduc-
tion on the foundations of this new theory can be found in the book of Gentili, Stoppato and
Struppa [Gentili et al., 2013].

In this chapter, we will use the framework about quaternions presented in the previous
part to formalize in HOL Light the basics of the theory of slice regular functions, essentially
the main results of the already cited seminal paper of Gentili and Struppa.

4.2 Imaginary unit ball and Cullen slices

A real 2-dimensional subspace L ⊂ H containing the real line is called a slice (or Cullen
slice) of H. The key fact is that the quaternionic product becomes commutative when it is
restricted on a slice, that is, if p, q are in the same slice L, then pq = qp. In other words, each
slice L can be seen as a copy of the complex �eld C. More precisely, for every quaternionic
imaginary unit (i.e., a unitary imaginary quaternion) I ∈ S = {q ∈ H | q2 = −1}, the set

LI = Span{1, I} = R⊕ RI

is a slice and the injection jI : C→ LI ⊂ H, de�ned by

jI : x+ yi 7→ x+ yI,

is a �eld homomorphism. It is easy to show that, for every quaternion q, there exists I ∈ S
such that q ∈ LI . If q ∈ R it is trivial because, by de�nition, it holds that R ⊂ LI for all

I ∈ S. Otherwise, if q /∈ R, and thus ‖Im q‖ 6= 0, the unitary quaternion Im(q)

‖Im(q)‖ ∈ S does the

job so, we have that H =
⋃
I∈S LI .

The formal counterparts of LI and jI , that we de�ned in HOL Light, are the following.

let cullen_slice = new_definition

`cullen_slice (i:quat) = span{Hx(&1),i}`;;

let cullen_inc = new_definition

`cullen_inc i z = Hx(Re z) + Hx(Im z) * i`;;

Notice that, since HOL Light admits only total functions, the latter two are de�ned also when
`i:quat` is real. In this case, the set `cullen_slice i` is not a Cullen slice since it coincides
with the real line. We will use the function `cullen_slice` always under the appropriate
assumption that I ∈ S that is, formally, `i pow 2 = --Hx(&1)`.

4.2.1 Imaginary unit ball S ⊂ H
Now, we focus the attention on the properties of S and, more precisely, we study orthogonal

imaginary units.
The set S is de�ned through the quaternionic product as the set of the elements whose

square is equal to −1. Alternatively, it can be characterized, from a more geometrical point of
view, trough the real component and the norm. In fact, for every quaternion I ∈ H, it holds
that it has square equal to minus one if and only if it is unitary (i.e. has norm equal to one)
and its real part is equal to zero, that is,

I2 = −1 if and only if Re(I) = 0 and ‖I‖ = 1. (4.2.1)

This implies that S = {I ∈ H | Re(I) = 0 and ‖I‖ = 1} thus, it is isomorphic to the usual
2-sphere in R3. The equivalence (4.2.1) becomes the following HOL theorem.
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QUAT_IMG_UNIT_IFF_IMG_SPHERE

|- !i. i pow 2 = --Hx(&1) <=> norm i = &1 /\ Re i = &0

Another useful property of imaginary units is that, given I, J ∈ S such that I ⊥ J (i.e.
〈I, J〉 = 0), their product IJ is still an imaginary unit orthogonal to both I and J . Since the
facts that all imaginary units are naturally orthogonal to 1 ∈ H, and orthogonal vectors are
independent, we have that, for every I, J ∈ S such that I ⊥ J , the set

{1, I, J, IJ}

is an orthogonal basis of H ' R4. In HOL Light, we have the following theorems where the
predicates `orthogonal:real^N->real^N->bool` refers to the canonical dot product in Rn
(R4 in the speci�c case of quaternions).

QUAT_IMG_UNIT_ORTHOGONAL_PRODUCT_UNIT

|- !i j. i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\ orthogonal i j

==> (i * j) pow 2 = --Hx(&1)

QUAT_IMG_UNIT_ORTHOGONAL_PRODUCT_ORTHOGONAL

|- !i j. i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1)

==> orthogonal i (i * j) /\ orthogonal j (i * j)

QUAT_ORTHONORMAL_BASIS_ORTHOGONAL

|- !i j. i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\ orthogonal i j

==> pairwise orthogonal {Hx(&1), i, j, i * j}`,

QUAT_ORTHONORMAL_BASIS_INDEPENDENT

|- !i j. i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\ orthogonal i j

==> independent {Hx (&1), i, j, i * j}`,

QUAT_IM_UNIT_ORTHOGAL_BASIS

|- !i j. i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\ orthogonal i j

==> span {Hx (&1), i, j, i * j} = (:real^4)

4.2.2 Cullen slices

As said before, a Cullen slice is a real 2-dimensional subspace of H containing the real line
(more precisely it is enough to require that it contains 1). Since every I ∈ S is orthogonal
(hence independent) to 1 we have that LI is a Cullen slice for all I ∈ S. Moreover, it turns
out that for every slice L, there exists I ∈ S such that L = LI . Such an imaginary unit
is not unique since for instance LI = L−I . The �rst assertion is proved observing that, for
every Cullen slice L, there exists q ∈ L such that q /∈ R since dimL = 2, by de�nition, and

dimR = 1. Since q /∈ R we have that ‖Im q‖ 6= 0. So, let be I = Im(q)

‖Im(q)‖ then, by equivalence

(4.2.1), it is an element of S and it holds that q = Re(q) +
∥∥Im(q)

∥∥ I ∈ LI . Therefore, LI
is a 2-dimensional subspace of H containing the real line such that LI ∩ (L − R) 6= ∅, this
implies that L = LI . The second statement is proved easily from the de�nition of LI by direct
computation. All these simple results are formalized in the following theorems.

SUBSPACE_CULLEN_SLICE

|- !i. subspace (cullen_slice i)

DIM_CULLEN_SLICE

|- !i. i pow 2 = --Hx(&1) ==> dim (cullen_slice i) = 2

REAL_IN_CULLEN_SLICE

|- !i q. real q ==> q IN cullen_slice i
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CULLEN_SLICE_NEG

|- !i. cullen_slice i = cullen_slice (--i)

CULLEN_SLICE_SPAN

|- !l. subspace l /\ dim l = 2 /\ Hx(&1) IN l

==> (?i. i pow 2 = --Hx(&1) /\ l = cullen_slice i)

With similar arguments, it is shown that, for every quaternion q ∈ H, there exists a Cullen
slice LI such that q ∈ LI . Such a slice is unique if q /∈ R, otherwise it holds that q ∈ LI for
every I ∈ S. In any case, there exist I ∈ S and unique x, y ∈ R such that q = x + yI ∈ LI .
Note that, the real numbers x, y are unique depending on the choice of I (since LI = L−I) in
fact, they are uniquely determined only if we �x I or −I.
Formally, we prove the following theorems.

QUAT_IN_SLICE

|- !q. ?i. i pow 2 = --Hx(&1) /\ q IN cullen_slice i

CULLEN_DECOMPOSITION

|- !q. ?j x y. j pow 2 = --Hx(&1) /\ q = Hx(x) + Hx(y) * j

CULLEN_SLICE_DECOMPOSITION

|- !l. subspace l /\ dim l = 2 /\ Hx(&1) IN l

==> (?i. i pow 2 = --Hx(&1) /\

(!q. q IN l

==> (?x y. q = Hx x + Hx y * i /\

(!x' y'. q = Hx x' + Hx y' * i

==> x' = x /\ y' = y))))

As mentioned in the introduction, the key properties of the Cullen slices is that if we restrict
the quaternionic product to a single slice L, it becomes commutative, inducing the complex
structure on L. In fact, the following formal statement is proved.

QUAT_MUL_SYM

|- !l. subspace l /\ dim l = 2 /\ Hx(&1) IN l /\ p IN l /\ q IN l

==> p * q = q * p

4.2.3 Embedding of the complex plane into a Cullen slice

An easy but important observation is that every Cullen slices LI is a sub�eld of H which is
naturally isomorphic to C trough the �eld isomorphism jI , denoted `cullen_inc i` in HOL
Light.

So, let be I ∈ S an imaginary unit, the main properties of jI : C→ LI are the following.

• It is injective and surjective that is, for all z1, z2 ∈ C it holds that

jI(z) = jI(z
′)⇔ z = z′

and, for all q ∈ LI , there exists z ∈ C such that

q = jI(z)

hence, we have that jI(C) = LI . In HOL Light we have the following three theorems.

IM_UNIT_CULLEN_INC_INJ

|- !i z z'. i pow 2 = --Hx (&1)

==> (cullen_inc i z = cullen_inc i z' <=> z = z')
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CULLEN_INC_SURJ

|- !i q. q IN span{Hx(&1),i} ==> ?z. cullen_inc i z = q

IMAGE_CULLEN_INC

|- !i. IMAGE (cullen_inc i) (:real^2) = cullen_slice i

• It maps the real line to itself, that is, jI(z) ∈ R if and only if z ∈ R. More precisely, it
is the identity map over R, that is, jI(x) = x for all x ∈ R. In HOL Light, they are the
following theorems.

REAL_CULLEN_INC_ALT

|- !z i. i pow 2 = --Hx(&1)

==> (real (cullen_inc i z) <=> real z)

CULLEN_INC_REAL_ID

|- !i x. cullen_inc i (Cx x) = Hx x

• It is a linear map, that is, for all z, z′ ∈ C and a, b ∈ R

jI(az + bz′) = ajI(z) + bjI(z
′).

In HOL Light, it becomes the formal theorem

LINEAR_CULLEN_INC

|- !i. linear (cullen_inc i)

where the constant `linear` is de�ned as one expects by the following theorem.

linear

|- !f. linear f <=> (!x y. f (x + y) = f x + f y) /\

(!c x. f (c % x) = c % f x)

Here, the function `%:real->real^N->real^N` denotes the multiplication of a vector
by a scalar.

• It respects the product, in fact, for all z, z′ ∈ C it holds that

jI(zz
′) = jI(z)jI(z

′)

and consequently jI(z
n) = jI(z)

n for every n ∈ N. The following HOL Light theorems
formalize these properties.

CULLEN_INC_MUL

|- !i x y. i pow 2 = -- Hx (&1)

==> cullen_inc i (x * y) = cullen_inc i x * cullen_inc i y

CULLEN_INC_POW

|- !i z n. i pow 2 = -- Hx(&1)

==> cullen_inc i (z pow n) = (cullen_inc i z) pow n

The last important property that we formalize, which will be very useful in the following, is
about the decomposition of the ball BH(0, R) ⊆ H (with center 0 ∈ H and radius R > 0) by
the isomorphism jI . Let be z = x + yi ∈ C a complex number and I ∈ S then, it is clearly
true that

‖z‖ =
∥∥jI(z)∥∥ (4.2.2)
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since jI(z) = x+ yI and ‖I‖ = 1. From this, let be R ∈ R≥0 and I ∈ S, we have immediately
that jI(BC(0, R)) ⊆ BH(0, R) ∩ LI . Conversely, let be q ∈ BH(0, R) ∩ LI then, since jI is
surjective, q = jI(z) for some z ∈ C. From equation (4.2.2), we deduce that

‖z‖ =
∥∥jI(z)∥∥ =‖q‖ < R

hence z ∈ BC(0, R). This means that BH(0, R) ∩ LI ⊆ jI(BC(0, R)). Therefore, we have
de�nitively proved that, for every R ∈ R≥0 and I ∈ S,

BH(0, R) ∩ LI = jI(BC(0, R)) (4.2.3)

that is, the following HOL Light formal theorem.

CULLEN_INC_BALL_IN_CULLEN_SLICE

|- !r i. i pow 2 = --Hx(&1)

==> ball(Hx(&0), r) INTER (cullen_slice i) =

IMAGE (cullen_inc i) (ball(Cx(&0),r))

Finally, we have that, for all R ∈ R≥0,

BH(0, R) =
⋃
I∈S

jI(BC(0, R)) (4.2.4)

with jI(BC(0, R)) ∩ jJ(BC(0, R)) = (−R,R) ⊆ R for every J ∈ S such that J 6= ±I.

4.3 The de�nition of slice regular functions

Now, we can introduce the de�nition of Gentili and Struppa of regular functions [Gentili
et al., 2013].

De�nition 4.3.1 (Slice regular function). Given a domain (i.e., an open, connected set)
Ω ∈ H a function f : Ω → H is slice regular if it is holomorphic (in the complex sense) on
each slice, that is, the restricted function fI : Ω ∩ LI → H has continuous partial derivatives
and satis�es the condition

∂̄If(x+ yI) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0 (4.3.1)

for each q = x + yI in Ω ∩ LI , for every imaginary unit I ∈ S. In that case, we de�ne the
I-derivative of f at q to be the quaternion

∂If(x+ yI) =
1

2

(
∂

∂x
− I ∂

∂y

)
fI(x+ yI). (4.3.2)

The slice derivative of f is the function f ′ = ∂cf : Ω → H de�ned by ∂If on Ω ∩ LI , for all
I ∈ S.

Note that the de�nition of slice derivative is well posed because it is applied only to
regular functions. In fact, when q = x+yI /∈ R, the slice LI containing q is unique so the slice
derivative of f at q is uniquely determined and it coincides with the I-derivative ∂If related
to LI . Conversely, if q ∈ R, we have that it belongs to every slice LI (for all I ∈ S) thus,
we can compute the I-derivative of f at q using di�erent slices (i.e. di�erent imaginary units)
and, a priori, there is no reason why the values which one obtains should coincide. However,
di�erentiability (and thus regularity since, by de�nition, regularity implies di�erentiability)
constraints the slice derivative to be uniquely determined also in the real case, not depending
on the slice that we use to compute it. For these reasons, in the following, we will use I-
derivative and slice derivative indi�erently when we talk about regular functions.

Our �rst goal is to code the previous de�nition in our formalism. One problem is the
notation for partial derivatives, which is notorious for being occasionally opaque and potentially
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misleading. When it has to be rendered in a formal language, its translation might be tricky
or at least cumbersome. This is essentially due to the fact that it is a convention that induces
us to use the same name for di�erent functions, depending on the name of the arguments.2

We decided that the best way to avoid potential problems in our development was to sys-
tematically replace partial derivatives with (Fréchet) derivatives. This leads to an alternative,
and equivalent, de�nition of slice regular function which could be interesting in its own right.

The basic idea is the following. A complex function f is holomorphic in z0 precisely when its
derivative Dfz0 is C-linear. Hence, by analogy, a quaternionic function should be slice regular
if its derivative is H-linear on slices in a suitable sense. This is indeed the case: consider
f : Ω → H as before and a quaternion q0 ∈ Ω. Let L be a slice containing q0 and denote by
f|L the restriction of f to Ω ∩ L then we have

Proposition 4.3.1. The function f is slice regular in q0 if and only if the derivative of f|L
is right-H-linear, that is, there exists a quaternion c such that

Df|Lq0(p) = pc. (4.3.3)

for every L that contains q0. In that case, c is the slice derivative f ′(q0).

Proof. Note that the hypothesis of regularity in one verse, and the existence of the derivative
(as right-H-linear function) in the other, ensure that, in both directions, f is di�erentiable.
So, the slice derivative is well de�ned in both cases, also for q ∈ R, and not depends on the
slice used to compute it.

Let L be a slice such that q0 ∈ L, then there exist two imaginary units I, J ∈ S such that
L = LI and I ⊥ J . Therefore, we have that {1, I, J, IJ} is an orthogonal basis of H so, the
restricted function to the slice L = LI can be written as

f|L(x+ yI) = fI(x+ yI) = u(x, y) + v(x, y)I + r(x, y)J + s(x, y)IJ (4.3.4)

and thus, omitting the dependence on x and y, the partial derivatives are

∂fI
∂x

=
∂u

∂x
+
∂v

∂x
I +

∂r

∂x
J +

∂s

∂x
IJ (4.3.5)

I
∂fI
∂y

= −∂v
∂y

+
∂u

∂y
I − ∂s

∂y
J +

∂r

∂y
IJ. (4.3.6)

It is easy to check, by direct computation, that fI satis�es condition (4.3.1) if and only if
the functions F (x + yI) = u(x, y) + v(x, y)I and G(x + yI) = r(x, y) + s(x, y)I are complex
holomorphic, that is, satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y

∂r

∂x
=
∂s

∂y

∂s

∂x
= −∂r

∂y
(4.3.7)

On the other hand we have that the derivative of fI , at a point q0 = x+ yI ∈ LI , is expressed
by the Jacobian as

DfI q0 =


∂u
∂x

∂u
∂y 0 0

∂v
∂x

∂v
∂y 0 0

∂r
∂x

∂r
∂y 0 0

∂s
∂x

∂s
∂y 0 0

 (4.3.8)

2Spivak, in his book Calculus on manifolds ( [Spivak, 1965], p.65), notices that if f(u, v) is a function and
u = g(x, y) and v = h(x, y), then the chain rule is often written

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
,

where f denotes two di�erent functions on the left- and right-hand of the equation.
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so, given a quaternion p = p0 + p1I ∈ LI , we have that

DfI q0(p) =

(
∂u

∂x
p0 +

∂u

∂y
p1

)
+

(
∂v

∂x
p0 +

∂v

∂y
p1

)
I+(

∂r

∂x
p0 +

∂r

∂y
p1

)
J +

(
∂s

∂x
p0 +

∂s

∂y
p1

)
IJ

(4.3.9)

Now, since the right multiplication of p by a quaternion c = c0 + c1I + c2J + c3IJ is
computed by the formula

pc = (p0c0 − p1c1) + (c1p0 + p1c0)I + (c2p0 − p1c3)J + (p0c3 + p1c2)IJ (4.3.10)

we have that the derivative of fI at q0 (4.3.9) is right-H-linear if and only if

∂u

∂x
= c0 =

∂v

∂y
− ∂u

∂y
= c1 =

∂v

∂x

∂r

∂x
= c2 =

∂s

∂y
− ∂r

∂y
= c3 =

∂s

∂x

(4.3.11)

that is, if and only if conditions (4.3.7) hold. In this case, the quaternion

c =
∂fI
∂x

=
∂u

∂x
+
∂v

∂x
I +

∂r

∂x
J +

∂s

∂x
IJ

is the slice derivative f ′(q0) and it easy to check that

c = f ′(q0) =
1

2

(
∂

∂x
− I ∂

∂y

)
fI(x+ yI)

completing the proof.

Proposition 4.3.1 shows that a more e�cient, for our purposes, way to render these notions
in a formal language is to use derivatives and vector subspaces, instead of partial derivatives
and imaginary units, for primitive de�nitions. Therefore, we take the alternative formulation
given by Proposition 4.3.1 as the de�nition of slice regular function in our development. The
resulting formalization in HOL Light is the following.

let has_slice_derivative = new_definition

`!f (f':quat) net.

(f has_slice_derivative f') net <=>

(!l. subspace l /\ dim l = 2 /\ Hx(&1) IN l /\ netlimit net IN l

==> (f has_derivative (\q. q * f')) (net within l))`;;

In the case of the more familiar net `at` it becomes the next theorem.

HAS_SLICE_DERIVATIVE_AT

|- !f f' q0. (f has_slice_derivative f') (at q0) <=>

(!l. subspace l /\ dim l = 2 /\ Hx(&1) IN l /\ q0 IN l

==> (f has_derivative (\q. q * f')) (at q0 within l))

Notice that the predicate `has_slice_derivative`, as `has_derivative`, formalizes at the
same time the notion of slice regular function and the notion of slice derivative. The domain
Ω does not appear in the de�nition because functions in HOL are total and, in any case, the
notion of slice derivative is local. For the same reason, we can't consider the restricted function
f|L, so we use the net operator `within` to represent its derivative Df|L. The use of HOL
nets makes our formalization slightly more general than the informal de�nition of Proposition
4.3.1.

A special case is when the point q0 that we are considering is real. In fact, if the function
f is di�erentiable in q0 ∈ R, we have that it is regular if and only if the derivative of the whole
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function Dfq0 in q0 is right-H-linear. It depends essentially on the fact that a real number
belongs to every slice L so, if the function is di�erentiable in q0, it doesn't matter what slice
we use to compute the derivative because it has to give the same result on everyone of them.
Practically, we have that if f is di�erentiable in q0 ∈ R, then the condition

Df|Lq0(p) = pc for all L such that q0 ∈ L

is equivalent to Dfq0(p) = pc. In HOL Light, this means that in the real case, considering a
di�erentiable function, we can forget the restriction to a speci�c slice given by the net`within`.
The formal theorem is the following.

HAS_SLICE_DERIVATIVE_AT_REAL

|- !f f' q0. real q0 /\ f differentiable (at q0)

==> ((f has_slice_derivative f') (at q0) <=>

(f has_derivative (\q. q * f')) (at q0))

Then, we can prove formally Proposition 4.3.1 in the non-real case (i.e. with q ∈ L \ R).
Proving this theorem, which seems a mere change of notation, is a non-negligeable e�ort which
requires a formal proof that spans more than 200 lines of code.

HAS_SLICE_DERIVATIVE

|- !f f' i x y.

i pow 2 = -- Hx(&1) /\ ~(y = &0) /\

f differentiable at (Hx x + Hx y * i)

==> ((f has_slice_derivative f') (at (Hx x + Hx y * i)) <=>

(?fx fy.

((\a. f(Hx(drop a) + Hx y*i)) has_vector_derivative fx)

(at(lift x)) /\

((\b. f(Hx x + Hx(drop b)*i)) has_vector_derivative fy)

(at(lift y)) /\

fx + i * fy = Hx(&0) /\ f' = fx /\ f' = --(i * fy)))

Alternatively, we can characterize regular functions using imaginary units. Again, since we
can't consider restricted functions, we have to represent fI , for all I ∈ S, as f ◦ jI : C 7→ H.
So, given a function `f:quat->quat`, we study the composition

`(f o cullen_inc i):complex->quat`

for every imaginary units `i:quat`. Note that, from a formal point of view, we always have
to explicit the function `cullen_inc i` because the identi�cation of LI with C is only an
abuse of notation that can't be done formally. This implies that LI has to be represented as
jI(C) and, for all q = jI(z) ∈ LI , the restricted function fI(q) is f(jI(z)).

The isomorphism jI is a linear function so its derivative, in every point z ∈ C, is jI itself,
that is, DjI z = jI . With this property and the chain rule we can compute the derivative of
f ◦ jI in a point z0 ∈ C as

D(f ◦ jI)z0(z) = (DfjI(z0) ◦DjI z0)(z) = DfjI(z0)(jI(z)). (4.3.12)

From this point of view, and following Proposition 4.3.1, we can prove that a function is slice
regular and has slice derivative c ∈ H, in a point q0 ∈ H, if and only if, for every I ∈ S, it
holds that

D(f ◦ jI)j−1
I (q0)(z) = Dfq0(jI(z)) = jI(z)c. (4.3.13)

In HOL Light, we have the following formal theorem.

HAS_SLICE_DERIVATIVE_IFF_HAS_DERIVATIVE_CULLEN_INC

|- !f f' q0. ((f has_slice_derivative f') (at q0) <=>

(!i z0. i pow 2 = -- Hx(&1) /\ q0 = cullen_inc i z0

==> (f o cullen_inc i has_derivative

(\z. cullen_inc i z * f')) (at z0)))`
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Note that, we reformulated the statement in a way that avoids the use of the inverse j−1
I

writing explicitly the condition q0 = jI(z0). Indeed, since jI is an isomorphism between the
sets C and LI but not an isomorphism of their ambient types, we prefer to don't make use of
its inverse.

An useful reformulation, that allows us to compute the slice derivative on a �xed slice, is
the following.

CULLEN_SLICE_DERIVATIVE_IFF_SLICE_DERIVATIVE

|- !i f f' z0.

i pow 2 = --Hx(&1)

==> ((f has_slice_derivative f')

(at (cullen_inc i z0) within cullen_slice i) <=>

(f o cullen_inc i has_derivative (\z. cullen_inc i z * f'))

(at z0))

The further restriction to the slice `cullen_slice i` serves to �x the slice that we are
considering for the calculation. Notice that, in the non-real case, it is not necessary. In fact,
removing this constrain, the theorem is still true in the non-real case because, if z0 ∈ C \ R,
then jI(z0) ∈ H \R and LI is the unique slice that contains jI(z0). Thus, only LI can be used
to compute the derivative and the slice derivative of f in q0 = jI(z0).

However, in the real case things are di�erent. If z0 ∈ R, then jI(z0) ∈ R, so jI(z0) ∈ LJ ,
for all J ∈ S. In one verse things are already trivial, in fact, if there exists c ∈ H such that

DfJ jI(z0)(p) = pc for all J ∈ S (4.3.14)

then we have that

DfI jI(z0)(p) = pc. (4.3.15)

Conversely, we have already observed that, without the hypothesis that f is di�erentiable, a
priori, there is no reason why that equation (4.3.14) implies equation (4.3.15), so, in this case,
it is important to restrict to the slice LI .

Following the HOL Light style for multivariate analysis, we de�ne the slice derivative w.r.t.
a Cullen slice LI using the Hilbert choice operator as

let slice_derivative = new_definition

`slice_derivative i f q =

@f'. (f has_slice_derivative f') (at q within cullen_slice i)`;;

where, again, the further restriction to LI is necessary to be able to manage also the case in
which q is real.

Moreover, it is easy to check that, for every I ∈ S, the operators ∂̄I and ∂I de�ned by
4.3.1 and 4.3.2 commute, so we have that the slice derivative of every slice regular function is
again a regular function in the same domain. This allows us to iterate the derivation process
de�ning, recursively over N, the n-th slice derivative f (n) for every n ∈ N. Formally, we have
the following de�nition.

let higher_slice_derivative =

new_recursive_definition num_RECURSION

`(!i f. higher_slice_derivative i 0 f = f) /\

(!i f n. higher_slice_derivative i (SUC n) f =

slice_derivative i (higher_slice_derivative i n f))`;;

Now, we de�ne a predicate to express regularity over a subset of H. For technical reasons,
speci�cally to make the types agree, and to avoid a problematic use of j−1

I , we have chosen to
de�ne the formal predicate `slice_regular_on` as follows.
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let slice_regular_on = new_definition

`(f slice_regular_on s) i <=>

(!z. z IN s ==> (?f'. (f o cullen_inc i has_derivative

(\z. cullen_inc i z * f')) (at z)))`;;

This de�nition has the merit to make explicit the dependence on the chosen imaginary unit
I and the complex (instead of quaternionic) domain S ⊆ C that identi�es the related domain
jI(S) ⊆ LI . Letting the unit I varying on S, we get the already introduced notion of regularity
on a quaternionic domain of the form

⋃
I∈S jI(S). A classical example of such a domain is the

ball centred in the origin with radius R that is, BH(0, R) =
⋃
I∈S jI(BC(0, R)).

Finally, we prove the consistency of the function `slice_derivative` with the predicate
`has_slice_derivative` in the following theorem.

HAS_SLICE_DERIVATIVE_SLICE_DERIVATIVE

|- ! f f' z i. i pow 2 = --Hx(&1)

==> (f has_slice_derivative f')

(at (cullen_inc i z) within cullen_slice i)

==> slice_derivative i f (cullen_inc i z) = f'

4.4 Slice derivative of algebraic expressions

After the de�nition of slice regular function, we provide a series of lemmas that allow
us to compute the slice derivative of algebraic expressions. In particular, constant functions
and the powers qn are slice regular and, if f(q) and g(q) are slice regular functions and c
is a quaternion, then f(q) ± g(q), −f(q) and f(q)c are slice regular. It follows that right
polynomials (i.e., polynomials with coe�cients on the right)

c0 + qc1 + q2c2 + · · ·+ qncn

are all slice regular functions. Most of these results are easy consequences of those discussed in
Section 3.4. However, we should stress that the product of two slice regular functions f(q)g(q),
including left multiplication by a constant cf(q) and arbitrary polynomials of the form

c0 + c1,1q + c2,0qc2,1qc2,2 + c3,0qc3,1qc3,2qc3,3 + · · · ,

are not slice regular in general. The formal results are the following.

HAS_SLICE_DERIVATIVE_CONST

|- !p q. ((\q. p) has_slice_derivative Hx(&0)) (at q)

HAS_SLICE_DERIVATIVE_ADD

|- !net f g. (f has_slice_derivative f') net /\

(g has_slice_derivative g') net

==> ((\q. f q + g q) has_slice_derivative f' + g') net

HAS_SLICE_DERIVATIVE_NEG

|- !net f. (f has_slice_derivative f') net

==> ((\q. --f q) has_slice_derivative --f') net`,

let HAS_SLICE_DERIVATIVE_SUB

|- !net f g. (f has_slice_derivative f') net /\

(g has_slice_derivative g') net

==> ((\q. f q - g q) has_slice_derivative f' - g') net

HAS_SLICE_DERIVATIVE_RMUL

|- !net p. ((\q. q * p) has_slice_derivative p) net
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RLINEAR_HAS_SLICE_DERIVATIVE

|- !net f f' p. (f has_slice_derivative f') net

==> ((\q. f q * p) has_slice_derivative f' * p) net

HAS_SLICE_DERIVATIVE_POW

|- !q0 n.

((\q. q pow n) has_slice_derivative Hx(&n) * q0 pow (n - 1)) (at q0)

Note that, in the last theorem, we have the usual formula for the derivative of a power as
opposed to section 3.4. This depends on the fact that the quaternionic product is commutative
if it is restricted to a Cullen slice.

4.5 Splitting Lemma

As we have already seen in the proof of proposition 4.3.1, there exists a deep link between
slice regular functions and complex holomorphic functions. More precisely, the following split-
ting lemma links them explicitly and, at the same time, is a fundamental tool to prove several
subsequent results. Given two imaginary units I and J , orthogonal to one other, we know
from section 4.2 that the set {1, I, J, IJ} is an orthonormal basis of H. This implies that every
quaternion can be split, in an unique way, into a sum

q = a+ bI + cJ + dIJ

= a+ bI + (c+ dI)J

= z + wJ

(4.5.1)

with z = a+ bI, w = c+ dI ∈ LI . Now, given a function f : Ω→ H, we can obviously split its
restriction fI as

fI(z) = F (z) +G(z)J (4.5.2)

with F,G : Ω ∩ LI → LI . Then, the following lemma holds [Gentili and Struppa, 2006].

Lemma 4.1 (Splitting Lemma). The function f is slice regular at q0 ∈ LI if and only if the
functions F and G are holomorphic at q0.

Notice that, in the above statement, the two functions F,G are `complex holomorphic' with
respect to the implicit identi�cation C ' LI given by jI . Unfortunately, from a formal point
of view, this identi�cation must be made explicit. So, using functions F,G : C→ C, equation
(4.5.2) must be rewritten as

f(jI(z)) = jI(F (z)) + jI(G(z))J. (4.5.3)

Such functions can be computed explicitly using the change basis operator from {1, i, j,k} to
{1, I, J, IJ} combined with the projections on the complex component of a quaternion. In
practice we have that

fI(z) = f(jI(z)) = jI(Q
1
IJ(f(jI(z)))) + jI(Q

2
IJ(f(jI(z))))J (4.5.4)

with Q1
IJ = P1 ◦MIJ : H→ C and Q2

IJ = P2 ◦MIJ : H→ C where:

• MIJ is the linear operator over H such that MIJ(1) = 1, MIJ(i) = I, MIJ(j) = J and
MIJ(k) = IJ ,

• P1, P2 : H→ C are the projections on the complex components of a quaternion, that is,
given q = z1 + z2k ∈ H ' C⊕ C we have

P1(q) = z1, P2(q) = z2 ∈ C.
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Essentially, Q1
IJ and Q2

IJ rewrite a quaternion q in the base {1, I, J, IJ} as

q = x1 + y1I + x2J + y2IJ

and then returns the complex numbers z1 = x1 + y1i and z2 = x2 + y2i respectively.
Since in HOL Light the set of quaternions H is represented as R4 (and C as R2), we have

that MIJ is the multiplication by the matrix (1 I J IJ) and, given q = (q0, q1, q2, q3) ∈ H, it
holds that

P1(q) =

(
q0

q1

)
, P2(q) =

(
q2

q3

)
∈ C.

From this more geometrical point of view, the functions Q1
IJ and Q2

IJ rewrite the vector q in
the basis {1, I, J, IJ} and then return the �rst and the last two components respectively.

ObviouslyMIJ , P1 and P2 are linear functions so, also Q
1
IJ and Q2

IJ are linear. The formal
counterpart of MIJ , P1 and P2, respectively, are the following.

• The matrix associated to MIJ is formally a vector of quaternions so, an element of type
`:quat^4` (i.e. `:real^4^4`). It is formalized by the constant `slice_matrix` de�ned
as follows.

let slice_matrix = new_definition

`slice_matrix i j:quat^4 = vector[Hx(&1); i; j; i * j]`;;

• In order to formalize the projections P1 and P2 we de�ne a more general constant that,
given a function f : N→ N and a vector v ∈ Rm, returns the vector w ∈ Rn such that ,

wi =

{
vf(i), if 1 ≤ f(i) ≤ n
0, if f(i) = 0 or f(i) > n

(4.5.5)

for all i ∈ {1, . . . n}. The formal de�nition is the following.

let reindex = new_definition

`reindex f (v:real^M):real^N =

lambda i. if 1 <= f i /\ f i <= dimindex(:M) then v$f i else &0`;;

The reindex function can be used to de�ne two general functions

`vecfst:real^M->real^N`

`vecsnd:real^M->real^N`

that, given a m-vector (a vector in Rm), return a n-vector by the following rules:

• if m = n, they are the identity function,

• if m < n, then `vecfst` �lls the tail (last n−m elements) of the vector with zeros
whereas `vecsnd` �lls the head (�rst n−m elements) of the vector with zeros,

• if m > n, then `vecfst` drops the last m − n components of the vector whereas
`vecsnd` drops the �rst m− n components of the vector.

In our context, the formal functions `vecfst` and `vecsnd`, instantiated with type
`:quat->complex` (that is `:real^4->real^2`), work as P1 and P2 in fact, the follow-
ing formal theorems are proved.

QUAT_VECFST_COMPLEX

|- !q. vecfst q = complex(Re q, Im1 q)

QUAT_VECSND_COMPLEX

|- !q. vecsnd q = complex(Im2 q, Im3 q)
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Therefore, the functions F,G : C → C in equation (4.5.2) can be written explicitly, using
equation (4.5.4), as

F = Q1
IJ ◦ f ◦ jI G = Q2

IJ ◦ f ◦ jI (4.5.6)

and they are formalized by the constants `quat_split1` and `quat_split2` de�ned as fol-
lows.

let quat_split1 = new_definition

`quat_split1 i j (f:quat->quat) z:complex =

vecfst (slice_matrix i j ** f (cullen_inc i z))`;;

let quat_split2 = new_definition

`quat_split2 i j (f:quat->quat) z:complex =

vecsnd (slice_matrix i j ** f (cullen_inc i z))`;;

Now, we are able to prove formally the Splitting Lemma.

Proof. (Splitting Lemma). Let be q0 = jI(z0) ∈ LI . Suppose that F,G are complex holomor-
phic functions at z0. Thus, the derivative of F and G at z0 is the multiplication for a complex
number F ′(z0), G′(z0) ∈ C respectively, that is,

DFz0(z) = zF ′(z0) DGz0(z) = zG′(z0).

Then, using equation (4.5.3) and reminding that the right multiplication for a quaternion and
jI are linear functions

3, we compute the derivative of fI at jI(z0). By the above observations
and the chain rule we have that, for every q = jI(z) ∈ LI , it holds that

DfI q0(q) = D(f ◦ jI)z0(z) = jI(DFz0(z)) + jI(DGz0(z))J

= jI(zF
′(z0)) + jI(zG

′(z0))J

= jI(z)(jI(F
′(z0)) + jI(G

′(z0))J)

(4.5.7)

where the last equality depends on the algebraic properties of jI . This proves that, for the
proposition 4.3.1, f is regular in q0 = jI(z0) ∈ LI and the slice derivative of f at q0 is the
quaternion jI(F

′(z0)) + jI(G
′(z0))J .

Conversely, suppose that f is regular at q0. Then we have that, for proposition 4.3.1, the
derivative of fI at q0, for all q = jI(z) ∈ LI , is of the form

DfI q0(q) = D(f ◦ jI)z0(z) = DfjI(z0)(jI(z)) = jI(z)c (4.5.8)

where the quaternion c is the slice derivative. It holds that c can be uniquely splitted as
c = q1 + q2J with q1, q2 ∈ LI . This implies that there exist two complex numbers z1, z2 ∈ C
such that

c = jI(z1) + jI(z2)J.

Again, by equation (4.5.6) and the chain rule, we compute the derivative of F

DFz0(z) = D(Q1
IJ ◦ f ◦ jI)z0(z) = Q1

IJ(DfjI(z0)(jI(z))

= Q1
IJ(jI(z)c) = Q1

IJ(jI(z)(jI(z1) + jI(z2)J)

= Q1
IJ(jI(zz1) + jI(zz2)J) = zz1

(4.5.9)

and, analogously we obtain that DGz0(z) = zz2. Therefore, F,G are di�erentiable at z0

and their derivatives are C-linear. This implies that they are complex holomorphic and their
complex derivatives are the complex components of the slice derivative of fI at q0. This
concludes the proof.

We formalize the previous proof in HOL Light and we obtain the formal version of the
Splitting Lemma in its existential version

3For every linear function h we have that Dhq0 = h for all q0 in the domain of h.
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QUAT_SPLITTING_LEMMA

|- !f s i j.

open s /\

i pow 2 = --Hx (&1) /\

j pow 2 = --Hx (&1) /\

orthogonal i j

==> (?g h.

(!z. f (cullen_inc i z) = cullen_inc i (g z) +

cullen_inc i (h z) * j) /\

(!g' h' z.

z IN s

==> ((g has_complex_derivative g') (at z) /\

(h has_complex_derivative h') (at z) <=>

(f o cullen_inc i has_derivative

(\z. cullen_inc i z *

(cullen_inc i g' +

cullen_inc i h' * j))) (at z))) /\

(g holomorphic_on s /\ h holomorphic_on s

<=> (f slice_regular_on s) i))

and in its explicit form.

EXPLICIT_QUAT_SPLITTING_LEMMA

|- !f s i j.

open s /\

i pow 2 = --Hx (&1) /\

j pow 2 = --Hx (&1) /\

orthogonal i j

==> (!z. f (cullen_inc i z) = cullen_inc i (quat_split1 i j f z) +

cullen_inc i (quat_split2 i j f z) * j) /\

(!g' h' z.

z IN s

==> ((quat_split1 i j f has_complex_derivative g') (at z) /\

(quat_split2 i j f has_complex_derivative h') (at z) <=>

(f o cullen_inc i has_derivative

(\z. cullen_inc i z * (cullen_inc i g' +

cullen_inc i h' * j))) (at z))) /\

(quat_split1 i j f holomorphic_on s /\

quat_split2 i j f holomorphic_on s

<=> (f slice_regular_on s) i)

As we have seen in the proof of the Splitting Lemma, also the slice derivative of f can
be split as f ′(q0) = jI(F

′(z0)) + jI(G
′(z0))J using the complex derivative of F and G. The

process can be iterated to obtain the split of the higher slice derivatives of f using higher
complex derivatives of F and G. In fact, it holds that

f (n)(q0) = jI(F
(n)(z0)) + jI(G

(n)(z0))J (4.5.10)

for every n ∈ N.
Equation (4.5.10) will be central in the proof of the existence of the series expansion

of regular functions in a neighborhood of the origin. The corresponding HOL Light formal
theorems, about the split of slice derivatives and higher slice derivatives, are the following.

SLICE_DERIVATIVE_SPLITTING

|- !i j f s.

open s /\ i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\

orthogonal i j /\ (f slice_regular_on s) i
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==> (!z. z IN s

==> slice_derivative i f (cullen_inc i z) =

cullen_inc i (complex_derivative (quat_split1 i j f) z) +

cullen_inc i (complex_derivative (quat_split2 i j f) z) * j)

HIGHER_SLICE_DERIVATIVE_SPLIT

|- !i j f s.

open s /\ i pow 2 = --Hx(&1) /\ j pow 2 = --Hx(&1) /\

orthogonal i j /\ (f slice_regular_on s) i

==> (!n z. z IN s

==> higher_slice_derivative i n f (cullen_inc i z) =

cullen_inc i (higher_complex_derivative n

(quat_split1 i j f) z) +

cullen_inc i (higher_complex_derivative n

(quat_split2 i j f) z) * j)`,



Chapter 5

Power expansion of slice regular

functions

In this chapter we approach power series expansion of slice regular functions at the origin,
which is one of the corner stone for the development of the whole theory. First of all, we prove
formally that, with the Gentili and Struppa's de�nition of regularity, right power series are
regular functions. Secondly, we formalize the key fact that any regular function has a series
expansion in an appropriate open ball centred in the origin. With these results, we completely
formalize the Gentili and Struppa's seminal paper [Gentili and Struppa, 2006].

Therefore, the goal of this chapter is the formalization of the following two theorems.

Theorem 5.1 (Abel's Theorem for quaternionic power series). The quaternionic power series∑
n∈N

qnan (5.0.1)

is absolutely convergent in the ball B = BH
(
0, 1/ lim sup

n→+∞
n
√
|an|

)
and uniformly convergent on

any compact subset of B. Moreover, its sum de�nes a slice regular function on B.

Theorem 5.2 (Series expansion of regular functions). Any regular function f : BH(0, R)→ H
has a series expansion of the form

f(q) =
∑
n∈N

qn
1

n!
f (n)(0). (5.0.2)

Unfortunately, while the HOL Light library has a rather complete support for sequences
and series in general, at the beginning of our work it was still lacking the proof of various
theorems that were important prerequisites for our task. Hence, we undertake a systematic
formalization of the missing theory, including

1. the de�nition of limit superior and inferior and their basic properties;

2. the root test for series;

3. the Cauchy-Hadamard formula for the radius of convergence.

All these preliminaries, that we present in the next sections, have been recently included in
the HOL Light standard library.1

1Commit on Apr 10, 2017, HOL Light GitHub repository.
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5.1 Limit superior and Limit inferior formal theory

Classically the limit superior and inferior, of a sequence of real numbers, are de�ned as

lim sup
n→∞

an = lim
n→∞

( sup
m≥n

am)

lim inf
n→∞

an = lim
n→∞

( inf
m≥n

am)
(5.1.1)

or equivalently as

lim sup
n→∞

an = ( inf
n≥0

sup
m≥n

am)

lim inf
n→∞

an = (sup
n≥0

inf
m≥n

am)
(5.1.2)

and they are, obviously, closely linked to standard limit. In our formalization we choose to
follow de�nitions (5.1.2), so we develop a little framework about the sup and inf of a set.

5.1.1 The predicates has_sup and has_inf

HOL Light provides the functions `sup` and `inf`, of type `:(real->bool)->real`,
such that, given a subset S ⊆ R, allow us to deal formally with supS and inf S. As always,
functions in HOL are total, so `sup` and `inf` have to be de�ned also for those sets that do
not admit in�mum or supremum in R. The formal de�nitions for `sup` and `inf` are given,
using the Hilbert choice operator, in the next theorems.

sup

|- !s. sup s =

(@a. (!x. x IN s ==> x <= a) /\

(!b. (!x. x IN s ==> x <= b) ==> a <= b))

inf

|- !s. inf s =

(@a. (!x. x IN s ==> a <= x) /\

(!b. (!x. x IN s ==> b <= x) ==> b <= a))

In case of non-empty bounded sets, we have the following usual theorems.

SUP

|- !s. ~(s = {}) /\ (?b. !x. x IN s ==> x <= b)

==> (!x. x IN s ==> x <= sup s) /\

(!b. (!x. x IN s ==> x <= b) ==> sup s <= b)

INF

|- !s. ~(s = {}) /\ (?b. !x. x IN s ==> b <= x)

==> (!x. x IN s ==> inf s <= x) /\

(!b. (!x. x IN s ==> b <= x) ==> b <= inf s).

With this tools, following de�nitions (5.1.1), we could de�ne a predicate

`has_limsup:(num->real)->real->(num)net->bool`

as follows.

let has_limsup = new_definition

`((a:num->real) has_limsup l) sequentially within k <=>

(?b. eventually (\n. a n <= b) sequentially within k) /\

((\n. sup {a k | k >= n}) ---> l) sequentially within k`;;

However, this de�nition has two main problems:
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1. it is speci�c to sequences, while we would like to have a general de�nition as for other
kind of limits,

2. it uses the function `sup` that, as we already noticed, has a subtle semantics because it
is de�ned also for unbounded sets.

In order to have a compositional general notion of limit superior (not speci�c to sequences),
we will use the HOL nets in its formal de�nition. Moreover, to address the second issue we
de�ne two predicates (instead of functions)

`has_sup:(real->bool)->real->bool`

`has_inf:(real->bool)->real->bool`

that, given a subset `s:real->bool` of reals, code at the same time the existence and the
value of the supremum (in�mum), because their semantic is clearer than that of `sup` and
`inf`.

It is true that a set `s:real->bool` has supremum (in�mum) `b:real` if and only if each
of its upper (lower) bound is grater (less) or equal then `b`. Therefore, formal de�nitions of
`has_sup` and `has_inf` are the following.

let has_sup = new_definition

`s has_sup b <=> (!c. (!x. x IN s ==> x <= c) <=> b <= c)`;;

let has_inf = new_definition

`s has_inf b <=> (!c. (!x. x IN s ==> c <= x) <=> c <= b)`;;

Now, we can prove that, in case of non-empty bounded sets, our de�nitions are coherent with
the functions `sup` and `inf`. The HOL theorems are the following.

HAS_SUP_SUP

|- !s l. s has_sup l <=>

~(s = {}) /\ (?b. !x. x IN s ==> x <= b) /\ sup s = l

HAS_INF_INF

|- !s l. s has_inf l <=>

~(s = {}) /\ (?b. !x. x IN s ==> b <= x) /\ inf s = l

Alternatively, we can characterize the existence of the supremum (in�mum) as follows. A
subset of real numbers S ⊂ R has supremum (in�mum), and its value is l ∈ R, if and only if
the following properties hold:

1. S is not empty,

2. l is an upper (lower) bound of S, that is, x ≤ l (x ≥ l) for all x ∈ S,

3. for every real number c < l (c > l) we have that there exists an element x ∈ S such that
c < x (c > x).

The resulting formal theorems are the following.

HAS_SUP

|- !s l. s has_sup l <=>

~(s = {}) /\

(!x. x IN s ==> x <= l) /\

(!c. c < l ==> (?x. x IN s /\ c < x))

HAS_INF

|- !s l. s has_inf l <=>

~(s = {}) /\

(!x. x IN s ==> l <= x) /\

(!c. l < c ==> (?x. x IN s /\ x < c))
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5.1.2 The predicates `has_limsup` and `has_liminf`

Now, following de�nitions (5.1.2) we can formalize the lim sup with the predicate

`has_limsup:(A->real)->real->(A)net->bool`

polymorphic on the domain type `:A` by the following de�nition.

let has_limsup = new_definition

`(f:A->real has_limsup l) net <=>

trivial_limit net \/ {b | eventually (\x. f x <= b) net} has_inf l`;;

The latter is more general than de�nition (5.1.2) because allows us to encode not only the limit
superior of sequences of real numbers, but also of real-valued functions at a speci�c point. It
depends on the type `:A` considered and on the element `net:(A)net` that speci�es the limit.
If the element `net:(A)net` is a trivial limit then `(f has_limsup l) net` is trivially true
else, it holds when the set of real numbers such that are upper bound for `f`, from a certain
point onwards over the net, has in�mum `l`.
Dually, we de�ne the predicate `has_liminf`, with the same type and in the same way of
`has_limsup`, by the following de�nition.

let has_liminf = new_definition

`(f:A->real has_liminf l) net <=>

trivial_limit net \/ {b | eventually (\x. b <= f x ) net} has_sup l`;;

The notion of limit superior (and, of course, of limit inferior) is weaker than that of limit. If we
have in mind a sequence of real numbers, it holds that lim

n→+∞
an = l ∈ R implies lim sup

n→+∞
an = l

(the same holds for lim inf). This is clear because, if for every measure of closeness ε > 0 there
exists N ∈ N such that an ∈ (l − ε, l + ε) for every n ≥ N , then it will be the same for the
sequence bn = supm≥n am.

In our formalization, this is a general property and it doesn't depend on the speci�c kind
of function or limit that we are considering, so we can prove the useful following theorem.

REALLIM_IMP_HAS_LIMSUP

|- !net f l. (f ---> l) net ==> (f has_limsup l) net

From the de�nition of `has_limsup` and the previous theorem HAS_INF, we can prove some
�boundedness theorems� for those functions that admits limit superior, and then we can use
them to characterize `has_limsup`.

HAS_LIMSUP_EVENTUALLY_UBOUND

|- !net f l b. ~trivial_limit net /\ (f has_limsup l) net /\ l < b

==> eventually (\x. f x < b) net

HAS_LIMSUP_NOT_UBOUND

|- !net f l c. ~trivial_limit net /\ (f has_limsup l) net /\ c < l

==> ~eventually (\x. f x <= c) net

HAS_LIMSUP

|- !net f l. (f has_limsup l) net <=>

trivial_limit net \/

((!c. l < c ==> eventually (\x. f x <= c) net) /\

(!c. c < l ==> ~eventually (\x. f x <= c) net))

The last theorem HAS_LIMSUP states that a function f : A → R admits limit superior l ∈ R,
in the case of a non-trivial limit, if and only if the following properties hold:

• every c ∈ R, such that l < c, is upper bound for f from a certain point onwards,



5.1 Limit superior and Limit inferior formal theory 81

• for every c ∈ R such that c < l, the set of the elements of Im f that is bounded superiorly
by c is �nite.

Another good property of limit superior is that it respects the order of R. Let be f, g :
A→ R two functions and l,m ∈ R their respective limits superior with respect to a non-trivial
limit. If it holds that eventually f(x) ≤ g(x) then l ≤ m. This is shown in the next formal
theorem.

HAS_LIMSUP_LE

|- !net f g l m. (f has_limsup l) net /\

(g has_limsup m) net /\

~trivial_limit net /\

eventually (\x. f x <= g x) net

==> l <= m

Finally, in the speci�c case of sequences an, we show formally, with the next HOL theorem,
that our de�nition implies de�nition (5.1.1).

HAS_LIMSUP_SEQUENTIALLY_IMP_REALLIM_SUP

|- !f l. (f has_limsup l) sequentially

==> ((\n. sup {f m | m >= n}) ---> l) sequentially

Moreover, if we add a boundedness condition over an to ensure the good de�nition of the
supremum for every set {ak | k ≥ n}, we get the equivalence.

HAS_LIMSUP_SEQUENTIALLY_REALLIM_SUP

|- !a l. (a has_limsup l) sequentially <=>

(?b. !n. a n <= b) /\

((\n. sup {a k | k >= n}) ---> l) sequentially

Furthermore, we can show that, if we consider non-negative functions, i.e. such that f(x) ≥ 0
for every x ∈ Df , the limit superior, if it exists in the case of a non trivial limit, is necessary
non-negative too.

HAS_LIMSUP_SEQUENTIALLY_WITHIN_LBOUND_ZERO

|- !f b k. (f has_limsup b) (sequentially within k) /\

(!x. &0 <= f x) /\ ~FINITE k

==> &0 <= b

Dually, we proved every theorems presented in this subsection also for `has_liminf` but we
omit to show them because they aren't in the focus of this work. However, now we have the
right tools to formalize the root test and �nally, prove theorem 5.1.

5.1.3 Root test

The classic Cauchy's root test is a criterion to control the convergence or divergence of a
series.

Theorem 5.3 (Root test.). Let be
∑
n∈N

an a series and

L = lim sup
n→+∞

n
√
|an|

its limit superior (possibly in�nity), then

1. if L < 1 the series is absolutely convergent (and so convergent),

2. if L > 1 the series is divergent,

3. if L = 1 the series may be divergent, conditionally convergent, or absolutely convergent.
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Our goal is to develop a tool to check in HOL Light the convergence of a series (in particular
we will be interested in power series) using the root test. In order to do that, it's enough to
formalize only the su�cient condition, the one that implies the convergence, given by point
(1) of theorem 5.3. Moreover, we decide to consider every subset K ⊆ N as the set of the
indexes of an, in order to have the most general theorem. In this way, we are able to prove the
convergence of a series also when we consider only terms with particular set of indexes (for
example a2n or a2n+1). If the set K ⊆ N is �nite, then the convergence of

∑
n∈K

an is trivial for

every sequence an, so the following formal theorems are proved.

SUMMABLE_FINITE

|- !k a. FINITE k ==> summable k a

REAL_SUMMABLE_FINITE

|- !k a. FINITE k ==> real_summable k a

In the HOL Light standard library, the theorem that allows to infer convergence from absolute
convergence is available only for real-valued series, so we prove the analogous for vector-valued
series.

SERIES_ABSCONV_IMP_CONV

|- !k a. real_summable k (\n. norm (a n)) ==> summable k a

Now, we can prove the part of the root test that ensure the convergence of a real-valued series.

REAL_SERIES_ROOT_TEST

|- !a b k. (!n. n IN k ==> &0 <= a n) /\

b < &1 /\

((\n. root n (a n)) has_limsup b) (sequentially within k)

==> real_summable k a

The formal proof is divided into two cases. First, when K ⊆ N is �nite, it is trivial and we
can prove it directly as consequence of the previous theorem REAL_SUMMABLE_FINITE. Second
case closely follows the informal proof using the boundedness theorems for `has_limsup` and
the theorems, available in the HOL Light standard library, about the direct comparison test
and the convergence of the geometric series.

Finally, from the root test for real-valued series and the fact that absolute convergence
implies convergence, we can easily obtain the root test also for vector-valued series.

SERIES_ROOT_TEST

|- !a b k.

((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\

b < &1

==> summable k a

5.1.4 Uniform convergence of functions series

In the last subsection we have developed some formal tools to check if a series is convergent.
Now, we want to be able to check the uniform convergence of a series. In order to do that, we
can use the following Weiestrass M-test.

Theorem 5.4 (Weiestrass M-test.). Let be {fn} a sequence of real- or vector-valued functions
de�ned on a set E and {Mn} a sequence of real numbers such that:

1. for all n ∈ N and x ∈ E, it holds that |fn(x)| ≤Mn,

2.
∑
n∈N

Mn is convergent,

then
∑
n∈N

fn is uniformly convergent on E.
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In the HOL Light standard library, the following theorem, that formalizes the Weistrass
M-test, is already available.

SERIES_COMPARISON_UNIFORM

|- !f g P s.

(?l. (lift o g sums l) s) /\

(?N. !n x. N <= n /\ n IN s /\ P x ==> norm (f x n) <= g n)

==> (?l. !e. &0 < e

==> (?N. !n x.

N <= n /\ P x

==> dist (vsum (s INTER (0..n)) (f x), l x) < e))

However, in such theorem the uniform convergence is written explicitly, so it is very di�cult
to read. Therefore, we de�ne the formal predicates

`uniformly_convergent_on:(A->B->real^N)->(B->bool)->(A)net->bool`

`sums_uniformly_on:(num->B->real^N)->(B->bool)->(num->bool)->bool`

to express the uniform convergence of a sequence, or of a series of functions respectively, in
order to improve readability. The formal de�nitions are the following.

let uniformly_convergent_on = new_definition

`((f:A->B->real^N) uniformly_convergent_on (s:B->bool)) net <=>

?l:A->real^N.

!e. &0 < e

==> eventually (\n:B. !x. x IN s ==> dist (f n x,l x) < e) net`;;

let sums_uniformly_on = new_definition

`((f:num->B->real^N) sums_uniformly_on (s:B->bool)) k <=>

((\n x. vsum (k INTER (0..n)) (\i. f i x))

uniformly_convergent_on s) (sequentially)`;;

Note that the predicate `uniformly_convergent_on`, that express the uniform convergence
of a functions sequence, is polymorphic over two types `:A` (the type of the indexes) and
`:B` (the type of the domain of the functions) and can be used with a generic `net:(A)net`.
Contrarily, the notion of uniform convergence of a functions series makes sense only in case of
type `:num` and net `sequentially`.

We can check that `sums_uniformly_on` is well de�ned in fact, if we rewrite the de�nition
of `uniformly_convergent_on` and the theorem `EVENTUALLY_SEQUENTIALLY` in its formal
de�nition, then we obtain the theorem

|- !k f s.

(f sums_uniformly_on s) k <=>

(?l.

!e. &0 < e

==> (?N.

!n. N <= n

==> (!x.

x IN s

==> dist (vsum (k INTER (0..n)) (\i. f i x),l x)

< e)))

that is the usual de�nition of uniform convergence of a functions series (logically equivalent to
that of the theorem `SERIES_COMPARISON_UNIFORM`).

Using these new de�nitions, and the theorem SERIES_COMPARISON_UNIFORM, we formalized
the M-test, in a more readable form, in the next HOL theorem.
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WEIESTRASS_SERIES_COMPARISON_UNIFORM

|- !f M s k. (!x. x IN s ==> (!n. norm (f n x) <= M n)) /\

(?l. (M real_sums l) k)

==> (f sums_uniformly_on s) k

5.2 The Abel theorem

Finally, we have everything we need to formalize theorem 5.1. The corresponding formal-
ization is split into several theorems.

5.2.1 Convergence of a power series

First of all, as regards to the convergence we have three statements, one for each kind of
convergence (pointwise, absolute and uniform). In fact, let be

∑
n∈N

qnan a quaternionic power

series and b = lim sup
n→+∞

n
√
|an|, then by the root test and Weiestrass M-test the following formal

theorems are proved.

• Absolute convergence. It holds in the whole open ball B(0, 1
b ) ⊆ H and not only in

its compact subsets. The resulting formalization is the following.

QUAT_ABSCONV_POWER_SERIES

|- !q a k b.

((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\

b * norm q < &1

==> real_summable k (\n. norm (q pow n * a n))

• Simple convergence. It follows easily from absolute convergence and has the same set
of convergence. The corresponding HOL theorem is the next.

QUAT_CONV_POWER_SERIES

|- !q a k b.

((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\

b * norm q < &1

==> summable k (\n. q pow n * a n)

• Uniform convergence. It holds only in compact subsets of the open ball B(0, 1
b ) ⊆ H.

The following formal theorem is the related formalization.

QUAT_UNIFORM_CONV_POWER_SERIES

|- !a b s k.

((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\

compact s /\

(!q. q IN s ==> b * norm q < &1)

==> ((\i q. q pow i * a i) sums_uniformly_on s) k

Note that the hypothesis `b * norm q < &1` allows a correct representation of the domain
of convergence also in the case of in�nite radius (case b = 0). Note also that we use the net
`sequentially within k`, instead of `sequentially`, to encode the limit superior. The
reason why we make such a choice is to have a more general formal theorems that consider
also power series that have coe�cients with indexes belonging to a speci�c subset of natural
numbers. For example, let be {an}n∈N a sequence in H and K ⊆ N a subset of natural
numbers. In case that K is in�nite, let be

lim sup
n∈K→+∞

n
√
|an| (5.2.1)
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the limit obtained considering only terms am such that m ∈ K. We can consider the power
series ∑

n∈K
qnan (5.2.2)

and we can prove, with similar arguments to those of the standard proof of theorem 5.1, that
it is convergent in:

1. the whole H if K is �nite or if K is in�nite and lim sup
n∈K→+∞

n
√
|an| = 0,

2. the open ball B(0, 1
b ) ⊆ H if K is in�nite and lim sup

n∈K→+∞

n
√
|an| = b.

In HOL Light, we always have to make explicit the set `k:num->bool` on which we want
to consider power series, in fact, the convergence of (5.2.2) is expressed by the predicate
`summable k (\n. q pow n * a n)`.

If we use the net `sequentially` to encode the limit superior we are making an assump-
tion that is unnecessarily too strong since, as shown in (1.) and (2.), the weaker condition
on such limit superior along K (5.2.1) is enough to infer the convergence of the power se-
ries. Limit superior (5.2.1) is naturally encoded, in the HOL Light formalism, trough the
net `sequentially within k` and, in case that `k = (:num)`, we have exactly the same
situation of theorem 5.1.

5.2.2 Slice derivative of a power series

In order to prove that the power series (5.0.1) de�nes a regular functions, we prove that
its slice derivative is its formal derivative∑

n∈N+

qn−1nan. (5.2.3)

Before doing this, we have to prove that power series (5.2.3) has exactly the same radious of
convergence of the original power series (5.0.1).

It follows essentially from the observation that

lim sup
n→+∞

n
√
|nan| = lim sup

n→+∞

n
√
|an| (5.2.4)

since the formal derivative (5.2.3) is also a power series with coe�cients bn = nan. At �rst
glance, we could think that equation (5.2.4) is a consequence of a more general conservation
property of limit superior under multiplication, that is,

lim sup
n→+∞

an = l

lim sup
n→+∞

bn = m
imply that lim sup

n→+∞
(an · bn) = l ·m (5.2.5)

but, we realize quickly that it is false since we can give a counterexample. Let be an = (−1)n

and bn = (−1)n+1 we have trivially that

lim sup
n→+∞

an = lim sup
n→+∞

bn = 1

but the sequence cn = an · bn = (−1)2n+1 is the constant sequence −1 that has limit superior
equal to −1 that is di�erent from the product of the limits superior of an and bn.

The right assumptions to be taken, in order to prove the implication (5.2.5), are that an
and bn are non-negative sequences (or more weakly non-negative from a certain point onward)
and that l or m is the limit (instead of the limit superior), if it exists, of an or bn. Thus, we
have that, given two eventually non-negative sequence an and bn, it holds that

lim
n→+∞

an = l

lim sup
n→+∞

bn = m
imply that lim sup

n→+∞
(an · bn) = l ·m (5.2.6)
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and 
lim sup
n→+∞

an = l

lim
n→+∞

bn = m
imply that lim sup

n→+∞
(an · bn) = l ·m. (5.2.7)

Using the latter implications (5.2.6) and (5.2.7), together with the following observations that

n
√
|nan| = n

√
|n| · n

√
|an| lim

n→+∞
n
√
|n| = 1

we can easily prove equality (5.2.4). In our formal setting, these results are proved in the
following theorems.

HAS_LIMSUP_MUL_REALLIM_RIGHT

|- `!net a b l m. (a has_limsup l) net /\ (b ---> m) net /\

eventually (\x:A. &0 <= a x) net /\

eventually (\x:A. &0 <= b x) net

==> ((\x. a x * b x) has_limsup l * m) net`

HAS_LIMSUP_MUL_REALLIM_LEFT

|- !net a b l m. (a ---> l) net /\ (b has_limsup m) net /\

eventually (\x. &0 <= a x) net /\

eventually (\x. &0 <= b x) net

==> ((\x. a x * b x) has_limsup l * m) net

REALLIM_ROOT_REFL

|- ((\n. root n (&n)) ---> &1) sequentially

Note that, the theorems about the limit superior of a product is true for every general net and
not only for `sequentially`.

Now, we are able to prove again the same formal theorems about convergence of the
previous paragraph, also for the formal derivative power series (5.2.3).

• Absolute convergence.

QUAT_ABSCONV_POWER_SERIES_DERIVATIVE

|- !q a k b.

((\n. root n (norm (a n))) has_limsup b (sequentially within k) /\

b * norm q < &1

==> real_summable k (\n. norm (q pow (n - 1) * Hx (&n) * a n))

• Simple convergence.

QUAT_CONV_POWER_SERIES_DERIVATIVE

|- !q a k b.

((\n. root n (norm (a n))) has_limsup b (sequentially within k) /\

b * norm q < &1

==> summable k (\n. q pow (n - 1) * Hx (&n) * a n)

• Uniform convergence.

QUAT_UNIFORM_CONV_POWER_SERIES_DERIVATIVE

|- !a b s k.

((\n. root n (norm (a n))) has_limsup b (sequentially within k) /\

compact s /\

(!q. q IN s ==> b * norm q < &1)

==> ((\i q. q pow (i - 1) * Hx (&i) * a i) sums_uniformly_on s) k
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Finally, from the previous results, and the fact that derivative distributes over uniformly
convergent series, we prove formally, in the next theorem, that right quaternionic power series
are slice regular functions on any compact subsets of their domain of convergence.

QUAT_HAS_SLICE_DERIVATIVE_POWER_SERIES_COMPACT

|- !a b k q0 s.

((\n. root n (norm (a n))) has_limsup b (sequentially within k) /\

compact s /\ s SUBSET {q | b * norm q < &1} /\

~(s = {}) /\

q0 IN s

==> ((\q. infsum k (\n. q pow n * a n)) has_slice_derivative

infsum k (\n. q0 pow (n - 1) * Hx (&n) * a n))

(at q0)

This completes the formalization of theorem 5.1.

5.3 Power series expansion of slice regular function

The existence of the series expansion of a regular function is an easy consequence of the
Splitting Lemma and the theory of complex holomorphic functions. In the following we show
a guideline of the proof of theorem 5.2.

Proof. (Series expansion of regular functions). Let be R > 0, q ∈ B = BH(0, R) and f : B →
H a regular function. Then, there exist I, J ∈ S such that q ∈ LI and I ⊥ J . Note that
q = jI(z) for some z ∈ BC(0, R).

For the Splitting Lemma, there exist two complex holomorphic functions F,G : BC(0, R)→
C such that

f(q) = f(jI(z)) = jI(F (z)) + jI(G(z))J.

From the theory of complex holomorphic functions, we have that F,G are analytic in BC(0, R),
so they can be written as power series in the following way.

F (z) =
∑
n∈N

zn
1

n!
F (n)(0) G(z) =

∑
n∈N

zn
1

n!
G(n)(0)

The last two equalities imply that

f(q) = f(jI(z)) = jI(
∑
n∈N

zn
1

n!
F (n)(0)) + jI(

∑
n∈N

zn
1

n!
G(n)(0))J

and, by the algebraic properties of jI
2, this becomes

f(q) = f(jI(z)) =
∑
n∈N

jI(z)
n 1

n!
(jI(F

(n)(0)) + jI(G
(n)(0))J).

Then, from equation (4.5.10) it holds that

f (n)(0) = f (n)(jI(0)) = jI(F
(n)(0)) + jI(G

(n)(0))J

so we obtain the desired equality

f(q) = f(jI(z)) =
∑
n∈N

jI(z)
n 1

n!
f (n)(0) =

∑
n∈N

qn
1

n!
f (n)(0)

completing the proof.

2jI is the identity function on the real line hence jI(
1
n!
) = 1

n!
and jI(0) = 0
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The corresponding HOL Light formal theorem is the following.

SLICE_REGULAR_SERIES_EXPANTION

|- !r q f.

&0 < r /\ q IN ball(Hx(&0), r) /\

(!i. (f slice_regular_on ball(Cx(&0), r)) i)

==> ?z i. i pow 2 = --Hx(&1) /\

q = cullen_inc i z /\

f q = infsum (:num)

(\n. (cullen_inc i z) pow n * inv (Hx (&(FACT n))) *

higher_slice_derivative i n f (Hx(&0)) )

As mentioned in section 4.3, because of the type of `slice_regular_on`, the hypothesis
about regularity of f in BH(0, R) is represented by the equivalent assertion that f is regular
in jI(BC(0, R)) for every I ∈ S in fact, it holds that

⋃
I∈S jI(BC(0, R)) = BH(0, R).



Chapter 6

Pythagorean-Hodograph curves

6.1 PH-curves and the �rst-order Hermite interpolation

problem

The hodograph of a parametric curve r(t) in Rn is just its derivative r′(t), regarded as
a parametric curve in its own right. A parametric polynomial curve r(t) is said to be a
Pythagorean-Hodograph (PH) curve if it satis�es the Pythagorean condition, i.e., there exists
a polynomial σ(t) such that∥∥r′(t)∥∥2

= x′21 (t) + · · ·+ x′2n (t) = σ2(t) (6.1.1)

that is, the parametric speed
∥∥r′(t)∥∥ is polynomial. In general, for a polynomial curve r(t),

the irrational nature of
∥∥r′(t)∥∥ has unfortunate computational implications:

• arc length must be computed approximately by numerical quadrature,

• unit tangent t, normal n, curvature k, etc, are not rational functions of t,

• o�set curve, i.e. of the form rd(t) = r(t) + dn(t), at distance d must be approximated,

• approximate real-time CNC (Computer Numerical Control) interpolator algorithms, for
motion along r(t) with given speed (feedrate) V = ds

dt , are required.

However, in the case of a PH-curve r(t), we achieve some advantages:

• rational o�set curves rd(t) = r(t) + dn(t),

• polynomial arc-length function s(t) =
∫ t

0

∥∥r′(τ)
∥∥ dτ that permits an exact arch-length

computation,

• closed-form evaluation of energy integral,

• real�time CNC interpolators, rotation-minimizing frames.

For these reasons, Pythagorean-Hodograph curves, introduced by Farouki and Sakkalis
in 1990, are used for computer-aided design (CAD), digital motion control, path planning,
robotics applications and animation. Farouki's book [Farouki, 2009] o�ers a fairly complete
and self-contained exposition of this theory.

Therefore, since the practical relevance of PH-curve cited above, their computer formal-
ization, as for quaternions, can be useful, or even essential, for a wide class of applications in
formal methods. In particular, we are interested about one basic problem, with many obvious
practical applications, that is whether there exists a PH-curve with prescribed conditions on
its endpoints.

89
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Problem 6.1 (First-order Hermite Interpolation Problem). Given the initial and �nal point
{Pi,Pf} and derivatives {di,df}, �nd a PH interpolation for this data set.

It turns out that planar (r(t) ∈ R2) and spatial (r(t) ∈ R3) Pythagorean�Hodograph curves
are characterized by di�erent approaches since Pythagorean polynomial triples and quadruples
involve disparate algebraic structures. A convenient algebraic model for planar PH-curves is
based on the properties of the complex numbers while, spatial PH-curves can be succinctly
and pro�tably described by quaternions [Farouki, 2009]. In this work, we deal with spatial
PH-curves as a natural application of our formalization of quaternionic algebra.

We recall that, in the HOL Light style, a curve r : R → Rn is represented by an element
`r:real^1->real^N`. Therefore, with this speci�cation in mind, the formal de�nition of a
generic PH-curve is straightforward

let pythagorean_hodograph = new_definition

`pythagorean_hodograph r <=>

vector_polynomial_function r /\

real_polynomial_function (\t. norm (vector_derivative r (at t)))`;;

where the predicate `real_polynomial_function` is the HOL Light formal characterization
of real polynomial functions, while `vector_polynomial_function r` means that the curve
r(t) ∈ Rn is polynomial componentwise.

In the following, we will focus on spatial PH-curves, we will characterize them using quater-
nions and, �nally, we will certify the solutions (of lowest degree) of the problem 6.1.

However, before doing this, we have to prove a series of formal theorems, about Bernstein
polynomials and real polynomial functions, that we need to deal with PH-curves expressed
as Bézier curves, that is, the canonical style in which curves are represented in this �eld of
research. The main motivation is that curves, expressed in this style, can be easily displayed
and graphically manipulated as we show in the next section.

6.2 Bézier curves and Bernstein basis polynomials

6.2.1 Bézier Curves

A Bézier curve of degree n, with control points (or Bézier points) P0,P1, . . . ,Pn ∈ Rm, is
a parametric polynomial curve de�ned by the formula

B(t) =

n∑
k=0

bnk (t)Pk t ∈ [0, 1] (6.2.1)

where bnk (t) =
(
n
k

)
(1− t)n−ktk are the Bernstein basis polynomials.

The polygon formed by connecting the Bézier points with lines, starting with P0 and
�nishing with Pn, is called the Bézier polygon (or control polygon). The convex hull of the
Bézier polygon contains the Bézier curve. For example, for n = 3 we obtain the cubic

B(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3 t ∈ [0, 1] (6.2.2)

as shown in �gure 6.1.
The main properties of a Bézier curve are:

• the curve begins at P0 and ends at Pn, this is the so-called endpoint interpolation
property,

• the curve is a straight line if and only if all the control points are collinear,

• the start and the end of the curve is tangent to the �rst and last section of the Bézier
polygon, respectively,
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Figure 6.1: Cubic Bézier curve with control points P0,P1,P2,P3 ∈ R2.

• there is a numerically stable method, the de Casteljau's algorithm, to evaluate Bézier
curves.

Bézier curves are frequently used in computer graphics and related �elds as, for example,
animation and robotics, to model smooth curves. Since the curve is completely contained in
the convex hull of its control points, they can be graphically displayed and used to manipulate
the curve intuitively. Geometric transformations such as translation, homothety and rotation
can be applied to the curve by applying the respective transformations to its control points.

Bézier curves are also used in the solution of the problem 6.1 founded by Farouki, Giannelli
et al. in [Farouki et al., 2008]. In this context, such a problem is reduced to �nd the appropriate
control points such that the Bézier curves related on them is a PH-curve. For example, if we
want a cubic interpolant, we have to �nd, if they exist, four points P0,P1,P2,P3 such that the
Bézier cubic (6.2.2) is PH and interpolates the initial points {Pi,Pf} and derivatives {di,df}.

6.2.2 Bernstein polynomial basis

The algebraic and analytic properties of Bézier curves depend on the properties of the
Bernstein polynomial basis. As said before, given n ∈ N and i ≤ n, the Bernstein basis
polynomials (or simply Bernstein basis) on [0, 1] are de�ned by

bnk (t) =

(
n

k

)
(1− t)n−ktk (6.2.3)

and a polynomial of degree at most n in the Bernstein form is written as

P (t) =

n∑
k=0

ckb
n
k (t)

with ck ∈ R.
However, the Bernstein basis can be calculated inductively on k and n. More precisely, from
de�nition (6.2.3) it follows that, for all k,n ∈ N, the following properties hold.

b00(t) ≡ 1

b0k(t) ≡ 0

bn+1
0 = (1− t)n+1

bn+1
k+1(t) = tbnk (t) + (1− t)bnk+1(t)

(6.2.4)

The HOL Light standard library provides de�nition (6.2.3) with the following theorem.
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bernstein

|- !x n k.

bernstein n k x = &(binom (n,k)) * x pow k * (&1 - x) pow (n - k)

Therefore, we prove formally equations (6.2.4).

BERNSTEIN_RECUR

|- (!t. bernstein 0 0 t = &1) /\

(!n t. bernstein (SUC n) 0 t = (&1 - t) pow (SUC n)) /\

(!k t. bernstein 0 (SUC k) t = &0) /\

(!n k t. bernstein (SUC n) (SUC k) t =

t * bernstein n k t + (&1 - t) * bernstein n (SUC k) t)

In our formal setting, the inductive representation given by equations (6.2.4) is often more
useful then that given by de�nition (6.2.3) because the inductive structure simpli�es the proof
of some easier properties. First of all, we compute bnk (t) in t = 0 and t = 1 (it will be useful
to evaluate a Bézier curve in its endpoints) giving the following theorems.

BERNSTEIN_0

|- !k n. bernstein n k (&0) = if k = 0 then &1 else &0

BERNSTEIN_1 = prove

|- !k n. bernstein n k (&1) = if k = n then &1 else &0

Secondly, we prove that bnk (t) ≡ 0 if n < k.

BERNSTEIN_EQ_ZERO

|- !n k t. n < k ==> bernstein n k t = &0

Also the derivative of the Bernstein basis polynomials has an inductive representation.
From equations (6.2.4) we can easily check, by direct computation, that, for all k,n ∈ N the
following properties hold.

d

dt
b00(t) ≡ 0

d

dt
b0k(t) ≡ 0

d

dt
bn+1
0 (t) = −(n+ 1)bn0 (t)

d

dt
bn+1
k+1(t) = (n+ 1)(bnk (t)− bnk+1(t))

(6.2.5)

The corresponding formalization is the next HOL Light theorem.

HAS_REAL_DERIVATIVE_BERNSTEIN

|- (!t. (bernstein 0 0 has_real_derivative &0) (atreal t)) /\

(!t n. (bernstein (SUC n) 0 has_real_derivative

(-- &(SUC n) * bernstein n 0 t))

(atreal t))/\

(!t k. (bernstein 0 (SUC k) has_real_derivative &0) (atreal t)) /\

(!t k n. (bernstein (SUC n) (SUC k) has_real_derivative

(&(SUC n) * (bernstein n k t - bernstein n (SUC k) t)))

(atreal t))

From the latter theorem HAS_REAL_DERIVATIVE_BERNSTEIN, the same result about the func-
tion `real_derivative` easily follows.

BERNSTEIN_REAL_DERIVATIVE

|- (!t. real_derivative (bernstein 0 0) t = &0) /\
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(!t n. real_derivative (bernstein (SUC n) 0) t =

(-- &(SUC n) * bernstein n 0 t))/\

(!t k. real_derivative (bernstein 0 (SUC k)) t = &0) /\

(!t k n. real_derivative (bernstein (SUC n) (SUC k)) t =

&(SUC n) * (bernstein n k t - bernstein n (SUC k) t)

In the following sections we will certify the solution of the �rst-order Hermite interpolation
problem by a PH cubic or quintic (Farouki, Giannelli et al. [Farouki et al., 2008]), where all
the curve will be expressed in the Bernstein form.

But, before this, we prove in the next section, some missing theorems about polynomial
functions and their derivatives.

6.3 Formal polynomial functions and derivatives

HOL Light provides three constants to deal with formal real polynomial functions.

• The constant `polynomial_function:(real->real)->bool` characterizes real polyno-

mial functions of one variable (f : R→ R), that is, functions de�ned as f(x) =
n∑
i=0

aix
i.

• The constant `real_polynomial_function:(real^N->real)->bool` characterizes poly-
nomial functions of several variables (f : Rn → R) and it is de�ned inductively by the
following rules:

• x→ xi is polynomial, for all i ∈ {1, . . . , n},
• x→ c is polynomial, for all c ∈ R,
• if f and g are polynomial functions then x→ f(x) + g(x) is polynomial

• if f and g are polynomial functions then x→ f(x)g(x) is polynomial.

• The constant `vector_polynomial_function:(real^1->real^N)->bool` is used to
represent formally polynomial curves, that is, functions t 7→ r(t) = (r1(t), . . . , rn(t)) ∈
Rn that are polynomial componentwise (i.e. t 7→ ri(t) is polynomial, for all i ∈ {1 . . . n}).

It's clear that `real_polynomial_function` is more general then `polynomial_function`
because allows to consider polynomial functions in several variables. However, when we con-
sider functions f : R→ R, they are equivalent up to the use of `lift` or `drop` to makes the
types agree. The formal HOL Light statement is the following.

REAL_POLYNOMIAL_FUNCTION_IFF_POLYNOMIAL_FUNCTION_1

|- !f. real_polynomial_function f <=>

polynomial_function (f o lift)`,

In the following, we will often prove, formally, that the Bézier curve (6.2.1) is a polynomial
function, for every n-upla of control points P0, . . . ,Pn ∈ Rm. In order to do that, we have
to prove formally both various support theorems about vector polynomial functions, as, for
instance,

VECTOR_POLYNOMIAL_FUNCTION_ADD

|- !f g. vector_polynomial_function f /\

vector_polynomial_function g

==> vector_polynomial_function (\x. f x + g x));

and that Bernstein basis polynomials are actually polynomial functions.

POLYNOMIAL_FUNCTION_BERNSTEIN

|- !n k. polynomial_function (\t. bernstein n k t)
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Moreover, we prove a theorem that makes coherent the languages in case of a quaternion
polynomial A(t) (a function A : R→ H such that Ai : R→ R is polynomial, for all i = 0 . . . 3)
since the real functions t → Ai(t), for i = 0 . . . 3, can be expressed by the quaternionic
projections.

REAL_POLYNOMIAL_FUNCTIONS_QUAT_COMPONENTS

|- !A. vector_polynomial_function A <=>

real_polynomial_function (Re o A) /\

real_polynomial_function (Im1 o A) /\

real_polynomial_function (Im2 o A) /\

real_polynomial_function (Im3 o A)

As regards derivative of a polynomial function, it is well know that it is also polynomial.
More precisely, we have that f : R→ R is a polynomial function if and only if its derivative is
a polynomial function. This simple theorem was missing in the HOL Light standard library,
so we have proved it.

HAS_REAL_DERIVATIVE_POLYNOMIAL_FUNCTION_IFF

|- !f f'. (!t. (f has_real_derivative f' t) (atreal t))

==> (polynomial_function f' <=> polynomial_function f)

Moreover, an analogous result is formalized in case of a curve r : R→ Rn.

HAS_VECTOR_DERIVATIVE_VECTOR_POLYNOMIAL_FUNCTION_IFF

|- !r r'. (!t. (r has_vector_derivative r' t) (at t))

==> (vector_polynomial_function r' <=>

vector_polynomial_function r)

The formal theorems above are necessary to prove, in HOL Light, the quaternionic repre-
sentation of a PH-curve that we will present in the next section.

6.4 Quaternionic representation of spatial PH-curves

Following the style and the notations used by Farouki in his book [Farouki, 2009], we recall
that, regarding i, j, k as unit vectors in spatial Cartesian coordinates, we may consider a
quaternion A = a0 + a1i + a2j + a3k as comprising �scalar� and �vector� parts a0 = scal(A)
and a = a1i + a2j + a3k = vect(A). In this setting, we can use di�erent notations as

A = scal(A) + vect(A) = a0 + a = (a0,a). (6.4.1)

All real numbers, and three-dimensional vectors, are subsumed as �pure scalar� and �pure
vector� quaternions of the form (a0,0) and (0,a) respectively. For brevity, we denote such
quaternions by simply a0 and a.

Also the sum and product can be rewritten in these notations as follows.

A+B = (a0 + b0,a + b)

AB = (ab− a · b, ab + ba + a× b)
(6.4.2)

In our formalization, the scalar and the vector part of a quaternion are `Re a` and `HIm a`

while, �pure scalar� and �pure vector� quaternions are represented by `Hx a0` and `Hv a` re-
spectively. Therefore, equations 6.4.1 and 6.4.2 are formalized in the following HOL theorems.

QUAT_HX_HIM_SPLIT

|- !q. q = Hx (Re q) + Hv (HIm q)

QUAT_ADD_ALT

|- !p q. p + q = Hx(Re p + Re q) + Hv(HIm p + HIm q)
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QUAT_MUL_ALT

|- !p q. p * q = Hx (Re p * Re q - HIm p dot HIm q) +

Hv (Re p % HIm q + Re q % HIm p + HIm p cross HIm q)

If ‖A‖ = 1 then A is called a unit quaternion. Moreover, every unit quaternion is necessarily
of the form A = (cos 1

2θ, sin
1
2θu), for some angle θ and unit pure vector u ∈ R3. We recall

also that a �pure vector� quaternion u is unitary (i.e. ‖u‖ = 1) if and only if its square is equal
to minus 1, that is, u2 = −1. Therefore the set of unitary �pure vector� coincides with the set
S = {q ∈ H | q2 = −1}.

It is well known that Pythagorean quadruples of relatively primes polynomials can be
characterized by the following theorem [Farouki, 2009].

Theorem 6.1 (Polynomial Pythagorean quadruples). Let be a(t), b(t), c(t), d(t) four relatively
prime real polynomials, then they satisfy the Pythagorean condition

a(t)2 + b(t)2 + c(t)2 = d(t)2 (6.4.3)

if an only if they are expressible in terms of other real polynomials u(t), v(t), p(t), q(t) in the
form

a(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2

b(t) = 2[u(t)q(t) + v(t)p(t))]

c(t) = 2[v(t)q(t)− u(t)p(t)]

d(t) = u(t)2 + v(t)2 + p(t)2 + q(t)2.

(6.4.4)

This implies that r(t) = (x(t), y(t), z(t)) ∈ R3 is a PH-curve if and only if there exist four
real polynomials such that

x′(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2

y′(t) = 2[u(t)q(t) + v(t)p(t))]

z′(t) = 2[v(t)q(t)− u(t)p(t)].

(6.4.5)

In these cases, the norm of r′(t) is the polynomial σ(t) = u(t)2 + v(t)2 + p(t)2 + q(t)2.
It turns out [Farouki, 2009] that this is equivalent to the requirement that the hodograph

r′(t) can be expressed as a quaternion product of the form

r′(t) = A(t)iĀ(t) =(u(t)2 + v(t)2 − p(t)2 − q(t)2)i+

2[u(t)q(t) + v(t)p(t))]j+

2[v(t)q(t)− u(t)p(t)]k

(6.4.6)

where A(t) = u(t) + v(t)i+ p(t)j+ q(t)k is a quaternion polynomial (i.e. a function A : R→ H
such that Ai : R→ R is polynomial, for all i = 0 . . . 3) and Ā(t) = u(t)− v(t)i− p(t)j− q(t)k
is its conjugate. Equation (6.4.6) can be checked by direct computation and, moreover, it
holds that the choice of i as reference vector is merely conventional. It is in fact a general
properties that a quaternionic product of the form AuĀ represents a �pure vector� for every
A ∈ H and u ∈ S. The latter property can be reformulated stating that, for every u ∈ H
such that u2 = −1, the real part Re(AuĀ) is equal to zero. This is proved formally by direct
computation, producing the following HOL theorem.

QUAT_RE_ROTATION

|- !A u. u pow 2 = -- Hx(&1)

==> Re (A * u * cnj A) = &0`,

Finally, we have the following proposition.

Proposition 6.4.1 (PH-curves). A curve r(t) is PH if and only if its hodograph can be
expressed on the form

r′(t) = A(t)uĀ(t) (6.4.7)

for some quaternion polynomial A(t) and some unitary �pure vector� u ∈ S.
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The function A(t) is polynomial, so the same holds for A(t)uĀ(t). Moreover, their com-
ponents are elements of a Pythagorean quadruples, hence

∥∥r′(t)∥∥ =
∥∥A(t)uĀ(t)

∥∥ is a real
polynomial function. Finally, since r′(t) = A(t)uĀ(t) is a vector polynomial function, it is
obvious that also r(t) is a vector polynomial function hence, the curve r(t) is PH. This con-
siderations are formalized in the following formal statement.

QUAT_PH_CURVE

|- !r A u. u pow 2 = -- Hx(&1) /\

vector_polynomial_function A /\

(!t. (r has_vector_derivative (A t * u * cnj (A t))) (at t))

==> pythagorean_hodograph r

The latter theorem formalizes only one verse of proposition 6.4.1 but, it provides a su�cient
condition to show that a given spatial curve is PH. The other implication is proved using
the properties of polynomials as syntactic objects (for example polynomial division with quo-
tient and remainder) but such a theory is still lacking in HOL Light standard library and
its development was out of the goal of this work. However, it could be interesting for fur-
ther developments because, it would allow us to prove formally both the two implications of
proposition 6.4.1 in order to use quaternions to characterize completely spatial PH-curves.

In this setting, the �rst-order Hermite interpolation problem can be reduced to �nd a

quaternion polynomial, in the Bernstein form A(t) =
n∑
k=0

Akb
n
k (t) with Ak ∈ H, such that the

curve r(t) obtained by integrating (6.4.7) satis�es the following conditions

r(0) = P0

r(1) = P1

r′(0) = A(0)uĀ(0) = d0

r′(1) = A(1)uĀ(1) = d1.

(6.4.8)

From proposition 6.4.7, we have immediately that the degree of a PH-curve is odd and it
depends on the degree of A(t). More precisely, if deg(A(t)) = n, then the degree of r(t) is
m = 2n + 1. This implies that PH-curves of lowest degree, that solve the �rst-order Hermite
interpolation problem, if they exist, are cubic or quintic. They are related on the choice of
A(t) of the form (linear)

A(t) = A0(1− t) +A1t (6.4.9)

or of the form (quadratic)

A(t) = A0(1− t)2 +A12t(1− t) +A2t
2 (6.4.10)

for the cubic and quintic case respectively.

6.5 PH cubic and PH quintic interpolants

6.5.1 Solutions of the equation AuĀ = d

From equations (6.4.8), we have that the problem of Hermite interpolation by spatial PH-
curves requires the quaternionic solutions of equations of the form

AuĀ = d (6.5.1)

where u ∈ S and d = dxi + dyj + dzk is a given vector. This equation de�nes a mapping of
the unit vector u to a general vector d ∈ R3, through a spatial rotation and a scaling by the
factor ‖d‖ =‖A‖2.

The quaternionic solutions of (6.5.1) comprise a one-parameter family [Farouki et al., 2002],
which can be conveniently described in terms of the unit vectors

δ =
d

‖d‖
n =

u + δ

‖u + δ‖
(6.5.2)
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as

A =
√
‖d‖n(cosφ+ sinφu) (6.5.3)

where φ is a free angular variable. We remark that solution (6.5.3) is well de�ned only in the
case that d is not aligned with −u. The free angular variable φ is due to the fact that

QuQ̄ = u (6.5.4)

for every quaternion Q = cosφ + sinφu, with φ ∈ R. In general, the map u 7→ QuQ̄ de�nes
the spatial rotation of angle φ and rotation axis the span of u. The formalization of equation
(6.5.4) is the following.

QUAT_IMG_UNIT_SIN_COS

|- !i t. i pow 2 = --Hx (&1)

==> (Hx (cos t) + Hx (sin t) * i) * i *

cnj (Hx (cos t) + Hx (sin t) * i) = i

Now, we formally certify that quaternions of the form (6.5.3) are solution of equation (6.5.1).
First of all, we prove that A = n(cosφ+ sinφu) is solution of equation (6.5.1) for every d ∈ S
such that it is di�erent form −u. From this, we easily check that equation (6.5.3) de�nes a
solution of (6.5.1) since, de�ning d0 = d

‖d‖ ∈ S and A0 = n(cosφ+ sinφu), we have that

AuĀ =
√
‖d‖A0uĀ0

√
‖d‖ =

√
‖d‖

2
d0 = d.

The corresponding formal theorems are the following.

QUAT_UNIT_ROTATION_QUAT_SOLUTIONS

|- !u d A t.

u pow 2 = --Hx(&1) /\

d pow 2 = --Hx(&1) /\ ~(u = -- d) /\

A = inv (norm (u + d)) % (u + d) * (Hx(cos t) + Hx(sin t) * u)

==> A * u * (cnj A) = d`,

QUAT_ROTATION_QUAT_SOLUTIONS

!- !u d A t.

u pow 2 = -- Hx(&1) /\ (!a. ~(u = Hx(a) * d)) /\

~(d = Hx(&0)) /\ Re d = &0 /\

A = Hx (sqrt (norm d)) * (inv (norm (u + (inv (norm d) % d))) %

(u + inv (norm d) % d) ) * (Hx(cos t) + Hx(sin t)* u)

==> A * u * (cnj A) = d

We recall that, since in our formalization quaternions are element of R4, we have that, given a ∈
R and q = q0+q1i+q2j+q3k ∈ H, the quaternionic product aq is equivalent to the multiplication
of the vector q = (q0, q1, q2, q3) by the scalar a, that is, a(q0, q1, q2, q3) = (aq0, aq1, aq2, aq3).
Formally, the writings `Hx a * q` (quaternionic product) and `a % q` (multiplication of a
vector by a scalar) have the same meaning, that is, they can be converted into one another
just by rewriting.

6.5.2 Existence of PH cubic interpolant

Given four control points P0,P1,P2,P3, the related cubic Bézier curve is de�ned as

r(t) = b30(t)P0 + b31(t)P1 + b32(t)P2 + b33(t)P3 (6.5.5)

and by equations (6.2.5) its hodograph is

r′(t) = 3b20(t)(P1 −P0) + 3b21(t)(P2 −P1) + b22(t)(P3 −P2). (6.5.6)
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Given initial conditions

r(0) = Pi, r(1) = Pf , r′(0) = di, r′(1) = df ,

since by (6.5.5) and (6.5.6) it holds that

r(0) = P0 = Pi r′(0) = 3(P1 −P0) = di

r(1) = P3 = Pf r′(1) = 3(P3 −P2) = df

we have that the control points must be expressed as follows:

• P0 = Pi

• P1 = Pi + 1
3di

• P2 = Pf − 1
3df

• P3 = Pf .

Thus, the �ordinary� cubic interpolant of the dataset {Pi,Pf ,di,df} is

r(t) = b30(t)Pi + b31(t)(Pi +
1

3
di) + b32(t)(Pf −

1

3
df ) + b33(t)Pf (6.5.7)

and its hodograph is
r′(t) = b20(t)di + b21(t)w + b22(t)df (6.5.8)

with w = 3(Pf −Pi)− (di + df ).
Now, the question is: under which conditions on the initial dataset the curve de�ned by

(6.5.7) is a PH-curve?
From equation (6.4.7), the �ordinary� cubic interpolant r(t) is PH if and only if exists a

quaternion polynomial A(t) = A0(1− t) +A1t such that

r′(t) = A(t)uĀ(t) = A0uĀ0b
2
0(t) +

1

2
(A0uĀ1 +A1uĀ0)b21(t) +A1uĀ1b

2
2(t) (6.5.9)

for some u ∈ S.
Assuming (without loss of generality) that u = δi = di

‖di‖ , the above hodograph agrees

with that in equation (6.5.8) if

A0δiĀ0 = di

A1δiĀ1 = df

A0δiĀ1 +A1δiĀ0 = 2w

(6.5.10)

It turns out [Farouki et al., 2008] that conditions (6.5.10) are satis�able if and only if the
initial data set satis�es some particular constraints, as shown in the next proposition.

Proposition 6.5.1. The cubic Hermite interpolant to the data points {Pi,Pf} and derivatives
{di,df} is a PH-curve if and only if

w · (δi − δf ) = 0,

(
w · δi + δf∥∥δi + δf

∥∥
)2

+
(w · z)2

‖z‖4
=‖di‖

∥∥df∥∥ (6.5.11)

with δi, w de�ned as above and δf =
df

‖df‖ , z =
δi×δf
‖δi×δf‖ .

We certify formally that the ordinary cubic interpolant, with a dataset that satisfy con-
ditions (6.5.11), is e�ectively a PH-curve. The formal proof is about 500 lines of code and
involves essentially algebraic properties of quaternions and spatial vectors also that solutions
of equation (6.5.1). However, many parts of it can be automated thanks to the automatic
procedures as the conversion QUAT_POLY_CONV and the rule QUAT_POLY presented in section
3.3. The HOL Light formal statement that we proved is the following.
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PH_CUBIC_ITERPOLANT_EXISTS

|- !Pf Pi di df.

let w = Hx(&3) * (Pf - Pi) - (di + df) in

let n = \v. Hx(inv(norm v)) * v in

let z = Hx(inv (norm (n di + n df))) *

Hv (HIm (n di) cross HIm (n df)) in

let r = (\t. bernstein 3 0 (drop t) % Pi +

bernstein 3 1 (drop t) % (Pi + Hx(&1 / &3) * di) +

bernstein 3 2 (drop t) % (Pf - Hx(&1 / &3) * df) +

bernstein 3 3 (drop t) % Pf) in

Re Pf = &0 /\ Re Pi = &0 /\ Re di = &0 /\ Re df = &0 /\

~(Hx(&0) = di) /\ ~(Hx(&0) = df) /\

(!a. ~(n di = Hx a * df)) ==>

pathstart r = Pi /\

pathfinish r = Pf /\

pathstart (\t. vector_derivative r (at t)) = di /\

pathfinish (\t. vector_derivative r (at t)) = df /\

(w dot (n di - n df) = &0 /\

(w dot (n (n di + n df))) pow 2 + inv(norm z) pow 4 * (w dot z) pow 2 =

norm di * norm df

==> pythagorean_hodograph r)

In the above statement, `pathstart r` and `pathfinish r` represent r(0) and r(1) respec-
tively. Note also that we decide to represent formally every �pure vector� quaternion as an
element of type `:quat` such that its real part is zero instead of an element of the form `Hv v`.
This choice allows us to avoid element of type `:real^3` so to perform all calculations inside
the type `:quat`.

6.5.3 PH quintic Hermite interpolants

We have seen in the previous subsection that the lack of an appropriate number of degrees
of freedom, on the choices of the coe�cients of A(t), doesn't permit to �nd a PH cubic
interpolant for every initial data set. To increase the degrees of freedom, Farouki et al., seek
for the existence of quintic interpolants using a quadratic quaternion polynomial

A(t) = A0(1− t)2 + 2A1t(1− t) +A2t
2 (6.5.12)

instead of a linear polynomial. It turns out [Farouki et al., 2008] that for quintic interpolants
things are very di�erent. In fact, a PH quintic interpolant can be found for every initial data
points {Pi,Pf}, and derivatives {di,df}, by the right choice of its control points depending
on the coe�cients of the polynomial (6.5.12). Actually, there is a two-parameter family of such
interpolants and the algebraic expression of r(t) is substantially more complex with respect
to the case of cubics. Following strictly the work of Farouki, Giannelli et al., we certify these
results about PH quintics.

The use of A(t) in the form (6.5.12) to de�ne the hodograph r′(t) = A(t)uĀ(t) produces,
by integration, the associated PH-curve

r(t) =

5∑
i=0

b5i (t)Pi

with control points

• P1 = P0 + 1
5A0uĀ0

• P2 = P1 + 1
10 (A0uĀ1 +A1uĀ0)

• P3 = P2 + 1
30 (A0uĀ2 +A1uĀ1 +A2uĀ0)
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• P4 = P3 + 1
10 (A1uĀ2 +A2uĀ1)

• P5 = P4 + 1
5A2uĀ2.

Now, interpolation of the end-derivatives yields the equations

r′(0) = A0uĀ0 = di

r′(0) = A2uĀ2 = df
(6.5.13)

for A0 and A1 that are of the form (6.5.1). Thus, they give solutions

A0 =
√
‖di‖ni(cosφ0 + sinφ0u)

A2 =
√∥∥df∥∥nf (cosφ2 + sinφ2u)

(6.5.14)

with φ0, φ2 free angular parameters and ni, nf de�ned as in equations (6.5.2). Moreover,
interpolation of the end points r(0) = P0 = Pi and r(1) = Pf gives the condition∫ 1

0

r′(t) =

∫ 1

0

A(t)uĀ(t) = Pf −Pi =
1

5
A0uĀ0 +

1

10
(A0uĀ1 +A1uĀ0)

+
1

30
(A0uĀ2 +A1uĀ1 +A2uĀ0)

+
1

10
(A1uĀ2 +A2uĀ1) +

1

5
A2uĀ2

that can be reduced to
BuB̄ = d (6.5.15)

with
B = 3A0 + 4A1 + 3A2 d = c+ 5(A0uĀ2 +A2uĀ0)

where c = 120(Pf −Pi)− 15(di + df ), by using conditions (6.5.13).
The latter equation is again of the form (6.5.1) so, its general solution is

B =
√
‖d‖n(cosφ1 + sinφ1u) (6.5.16)

where φ1 is another free angular parameter and n is de�ned as in equations (6.5.2). Finally,
we can compute A1 = 1

4B −
3
4 (A0 +A2).

Note that A1 depends on φ0, φ2 as well as φ1. However, one can show [Farouki et al.,
2002] that the hodograph r′(t) = A(t)uĀ(t) depends only on the di�erences of φ0,φ1,φ2.
Thus, without loss of generality, we can take φ1 = 0 and regard the PH quintic interpolant as
dependent on just the two angular parameters de�ned by

α =
1

2
(φ0 + φ2) β = φ2 − φ0.

Finally, the three quaternions A0,A1,A2, that de�ne a PH quintic Hermite interpolant, can be
expressed in terms of α and β as

• A0 =
√
‖di‖ni(cos(α− 1

2β) + sin(α− 1
2β)u)

• A2 =
√∥∥df∥∥nf (cos(α+ 1

2β) + sin(α+ 1
2β)u)

• A1 = 1
4

√
‖d‖n− 3

4 (A0 +A2).

We certify that the curve, obtained by integrating the hodograph r′(t) = A(t)uĀ(t), with A(t)
de�ned (as in equation (6.5.12)) by the quaternionic coe�cients A0,A1,A2 de�ned as above, is
e�ectively a PH-curve interpolating the initial data points {Pi,Pf} and derivatives {di,df}.
The formal theorem is the following.
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PH_QUINTIC_INTERPOLANT

|- !Pi Pf di df u p q.

let w = \v. Hx(inv(norm v)) * v in

let e = \a. Hx(cos a) + Hx(sin a) * u in

let a = (p + q) / &2 in

let b = q - p in

let ni = w(u + w di) in

let nf = w(u + w df) in

let A0 = Hx(sqrt(norm di)) * ni * e (a - b / &2) in

let A2 = Hx(sqrt(norm df)) * nf * e (a + b / &2) in

let c = Hx(&120) * (Pf - Pi) - Hx(&15) * (di + df) in

let d = c + Hx(&5) * (A2 * u * cnj A0 + A0 * u * cnj A2) in

let n = w (u + w d) in

let A1 = if d = Hx(&0) then -- Hx(&3 / &4) * (A0 + A2)

else Hx(&1 / &4 * sqrt(norm d)) * n -

Hx(&3 / &4) * (A0 + A2) in

let P0 = Pi in

let P1 = P0 + Hx(&1 / &5) * (A0 * u * cnj A0) in

let P2 = P1 + Hx(&1 / &10) * (A0 * u * cnj A1 +

A1 * u * cnj A0) in

let P3 = P2 + Hx(&1 / &30) * (A0 * u * cnj A2 +

Hx(&4) * A1 * u * cnj A1 +

A2 * u * cnj A0) in

let P4 = P3 + Hx(&1 / &10) * (A1 * u * cnj A2 +

A2 * u * cnj A1) in

let P5 = P4 + Hx(&1 / &5) * (A2 * u * cnj A2) in

let r = \t. bernstein 5 0 (drop t) % P0 +

bernstein 5 1 (drop t) % P1 +

bernstein 5 2 (drop t) % P2 +

bernstein 5 3 (drop t) % P3 +

bernstein 5 4 (drop t) % P4 +

bernstein 5 5 (drop t) % P5 in

Re Pi = &0 /\ Re Pf = &0 /\ Re di = &0 /\ Re df = &0 /\

u pow 2 = -- Hx(&1) /\ ~(di = Hx(&0)) /\ ~(df = Hx(&0)) /\

(!c. ~(u = Hx (c) * di)) /\ (!c. ~(u = Hx(c) * df)) /\

(!a. ~(u = Hx a * d))

==>

pythagorean_hodograph r /\

pathstart r = Pi /\

pathfinish r = Pf /\

pathstart (\t. vector_derivative r (at t)) = di /\

pathfinish (\t. vector_derivative r (at t)) = df

Again, the formal proof is about 500 lines of code and involves essentially algebraic manipu-
lations of quaternions that can be automated, at least partly, using the rule QUAT_POLY and
the conversion QUAT_POLY_CONV.





Conclusions

In conclusion we presented two applications: a formalization of quaternionic analysis, with
focus on the theory of slice regular functions, and the computer veri�ed solutions to the Hermite
interpolation problem for cubic and quintic PH-curves.

Along the way, we provided a few extensions of the HOL Light library about multivariate
and complex analysis, comprising limit superior and inferior, root test for series, Cauchy-
Hadamard formula for the radius of convergence and some basic theorems about derivatives.

Overall, our contribution takes about 10,000 lines of code and consists in about 600 theo-
rems, of which more than 350 have been included in the HOL Light standard library.

This work is certainly open to a wide range of possible improvements and extensions. The
most obvious line of developement would be to formalize further mathematical results about
quaternions; there is an endless list of potential interesting candidates within reach from the
present state of art.

As regards to the core formalization of quaternions, only basic procedures for algebraic
simpli�cation are provided. They were somehow su�cient for automating several computations
occurring in our applications, but it surely would be interesting to implement more powerful
decision procedures. Some of them would probably involve advanced techniques from non-
commutative algebra. Moreover, having more automation would be very useful to simplify
formal proofs about slice regular functions and PH-curves.
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Part III

FORMALIZING BASIC

COMPUTABILITY THEORY -

THE TURING MACHINE
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Introduction

In this part we formalize the basics of a very classical presentation of the theory of Turing
machines in the HOL Light theorem prover. Moreover, we prove some basic results about
computability. The formalization includes:

• the very de�nition of Turing machine, execution and halt;

• a few examples of simple Turing machines, the most signi�cant of which is the machine
that compute the successor function;

• two HOL conversions to run (i.e., to simulate a certi�ed execution of) a Turing machine
(one for the nondeterministic case and another specialised for the deterministic one);

• the de�nition of Turing computable function (only for the special case of univariate
functions);

• the proof that the zero function and the successor function are Turing computable;

• the proof that the composition of computable functions is computable.

At the present stage, the work presented in the next chapters, far from being a complete
formalisation of the theory, is the outcome of my �rst experience of using a theorem prover
and has been written as part of an assignment for one of my PhD exams. It is more a proof-
of-concept or an extended exercise than a full featured framework.

However, it turns out to be very useful for a deeper understanding of computability theory
because it made me aware of how also simple things (e.g. the Turing computability of the
successor function) require a lot of work to be proved formally.

For de�nitions and theorems we follow the textbook [Mundici, 2013] by Mundici, more
precisely, the �rst two chapters.

Outline of the code

The source code of this part of the thesis is reachable at url

https://bitbucket.org/gabra/phdthesis/src/master/Turing%20Machines/

and is written in collaboration with M. Maggesi.
It is composed by the following �les:

• misc.hl - miscellanea,

• turing.hl - de�nition of Turing machine (including the notions of instructions, con�gu-
rations, computation step etc.) and simulation of its execution,

• numtape.hl - various theorems speci�c for numeric tapes, that is, tapes that represent
a single natural number in unary notation,

• computability.hl - de�nition of Turing computability and veri�cation that the zero
function, the identity function and the successor function are Turing computable.
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• composition.hl - theorem about preservation of Turing computability under composi-
tion,

• examples.hl - simulation of the execution of some easy Turing machines,

• run.hl - de�nition of a conversion that computes automatically the certi�ed (the output
of this process is a theorem) execution of a Turing machine initialized on a concrete
con�guration,

• �xprinter.hl - printer for terms.

• compute.hl - Conversion COMPUT_CONV by M. Maggesi (University of Florence).



Chapter 7

Turing Machines in HOL Light

This chapter is dedicated to the formalization of one of the most classical topics in Com-
puter Science: Turing Machines and Computability Theory. Our work is directed both to
the general theory and to the implementation of a mechanism for a certi�ed execution of a
machine.

We are not the �rst who dealt with the mechanization of basic computability theory and
Turing Machines. For example, Norrish [Norrish, 2011] has formalized, in the HOL4 system,
results like the Recursion Theorem and the existence of a universal machine using two compu-
tational models: the recursive functions and the λ-calculus. He also proved that such models
have equivalent computational power.

Moreover, as regarding Turing Machines, Asperti and Ricciotti [Asperti and Ricciotti, 2012]
describe a complete formalisation of Turing machines in theMatita theorem prover, including a
universal Turing machine, but they do not formalize the undecidability of the halting problem
since their main focus is complexity, rather than computability theory. However, their setup
is very di�erent from ours, since the foundation of Matita is based on intuitionistic dependent
type theory.

Similarly, Cia�aglione [Cia�aglione, 2016] uses the Coq proof assistant to formalize Turing
Machines and their operational semantics by using corecursion and coinduction. His approach
allows both to certify the correctness of concrete Turing Machines and, as an immediate
application, to prove the undecidability of the halting problem. However, also this time, his
setup is very di�erent from ours because of the signi�cant di�erences between the HOL Light
theorem prover and the Coq proof assistant foundation.

Again, Xu, Zhang and Urban [Xu et al., 2013] have given a formalization of Turing machines
in the Isabelle/HOL theorem prover. This time, the underlying type theory of the theorem
prover used is the same of HOL Light but, the main di�erence from our formalization is that
they use the approach by Boolos et. al [Boolos et. al., 2007] as informal guideline whereas we
use the textbook by Mundici [Mundici, 2013].

Generally speaking, the textbook of Mundici -and our realization- is much closer to the
original Turing's presentation than the implementation given by Xu, Zhang and Urban. More
precisely, they use some particular representations and conventions that made the formalization
easier so, their basic de�nitions are slightly di�erent from ours. We give some examples. Turing
machines are thought of as having a head, �gliding� over a potentially in�nite tape. Both of
us and Xu, Zhang and Urban, consider tapes with cells being either blank or occupied but,
the e�ective representation of such tapes are di�erent. In fact, following Mundici's book, we
represent tapes as functions f : N→ A from natural numbers to the alphabet (set of symbols)
A whereas Xu, Zhang and Urban represent tapes as pairs of list (l, r) where l stands for the
tape on the left-hand side of the head and r for the tape on the right-hand side. Furthermore,
they accept the Nop (do-nothing) operator but we don't consider this possibility. Again, in
their formalization, instructions of a Turing machine are pairs consisting of an action and a
state of the machine (speci�c conventions allow us to interpret them in the usual way that is,
as quintuples) whereas, in our formal setting, instructions are explicitly quintuples. These are
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only simple examples but they give a good idea of how the same concepts can be formalized
in many di�erent way in order to make the formalization easier.

7.1 Basic de�nitions

In this section we present the main implementation choices regarding the de�nition of
Turing machines.

7.1.1 Turing Machines

A Turing Machine is presented classically as a triple M = (A,S, I) where:

- A is a �nite set of symbols called the alphabet whose elements a0 = �, a1, . . . , an are
called symbols,

- S is a subset of natural numbers, called the set of states of M , and between its elements
there is one called initial state,

- I is a �nite set of quintuples of the form

sq ai aj ⇒ sp or sq ai aj ⇐ sp

where ai, aj ∈ A and sq, sp ∈ S; every quintuple of I is called instruction and I is
deterministic if it doesn't contain two instructions with the same beginning sqai.

In our implementation, the sets A and S are formalized as types. Hence, several of our type
constructions will be polymorphic on two parameters `:A` and `:S`, which will be often implicit,
since they are automatically inferred by the HOL Light type checking mechanism.

We de�ne a new type `:(A,S)instr` for the instructions, polymorphic in A and S. HOL
Light does not provide a mechanism for de�ning record types, thus we manually introduce the
type `:(A,S)instr` as an inductive type, with only one constructor `Instr`, by the following
de�nition.

let instr_INDUCT,instr_RECUR = define_type

"instr = Instr S A A bool S ";;

We derive the various projections from the recursive. principle

INSTR_PROJS

|- init (Instr s u v m t) = s /\

read (Instr s u v m t) = u /\

write (Instr s u v m t) = v /\

move (Instr s u v m t) = m /\

final (Instr s u v m t) = t

Here, `s:S` is the initial state of the instruction, `u:A` and `v:A` are symbols, `m:bool`
represents the move to do and `t:S` is the �nal state.

Therefore, in our formalism, a Turing machine is speci�ed by providing its own set of
instructions I, i.e. a predicate `:(A,S)instr->bool`1.

The triple (A,S, I), although it is not made explicit, is uniquely determined by the types
and the elements in the set of instructions I, thus it will be frequently denoted formally by
`m:(A,S)instr->bool`, as mnemonic for �machine".

We remark that, in principle, the above types allows us to consider Turing machines with
an in�nite set of instructions but, both in the theorems and in the worked examples, we will
restrict ourselves only to the usual �nite case.

One other possible implementation would be to employ lists of instructions, which are
necessarily �nite, instead of sets. However, beside the fact that one may want to explore
the theoretical setting of in�nite sets of instructions, lists carry information on order and
repetitions which are not meaningful in this context.

1HOL Light does not have a dedicated type for sets, they are represented as predicates.
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7.1.2 Con�gurations

A con�guration is a triple C = (s, x, f) where s ∈ S is a state, x ∈ N is a natural number
and f : N −→ A is a function that represents the tape. We will assume that f(y) = �
except for a �nite number of exceptions. It would be possible to code in HOL Light the set of
con�gurations with the type `:S#num#(num->A)` 2. However, for convenience and clarity, we
decide to establish a dedicated type `:(A,S)conf` (also polymorphic in A and S) isomorphic
to the previous Cartesian product

let conf_INDUCT,conf_RECUR = define_type

"conf = Conf S num (num->B)";;

with projections

CONF_PROJS

|- status (Conf s x f) = s /\

cursor (Conf s x f) = x /\

tape (Conf s x f) = f

where `s:S` is a state, `x:num` the cursor and `f:num->B` the tape. In principle, our
de�nitions allow maximum �exibility, thanks to polymorphism of HOL Light, on the choice
of the type of states `:S` and alphabet `:A`. However, in our development we didn't exploit
this generality since we will use natural numbers `:num` for the states and, following Mundici,
the alphabet alph = {|, �, M} for the symbols.

We de�ne a new �nite type

let alph_INDUCT,alph_RECUR = define_type

"alph = One | Blank | Mark";;

which has three constructors, `One`, `Blank` and `Mark`, that represent respectively the sym-
bols |, � andM . Therefore, from our formal point of view, Turing machines and con�gurations
are represented simply by terms of type `:(alph,num)instr->bool` and `:(alph num)conf`

respectively. In the following, we will write simply `:conf` and `:instr->bool` to indicate
the types `:(alph,num)conf` and `:(alph,num)instr->bool` respectively, but in the at-
tached code it is always speci�ed.

We think that the decision to de�ne the types in a polymorphic way needs more careful
reconsideration. In retrospect, it might have been easier not to use polymorphism, which
was super�uous for what we formalized, �xing once and for all the types of the alphabet and
machine states. Conversely, it might have been useful to make our de�nition polymorphic to the
set of indexes for the cursor of the tape. In this way, the de�nition would include, for example,
the case of Turing machines whose tape is indexed by Z instead of N (taking `:int` instead
of `:num` as the type of indexes). Since this is a preliminary exercise, we have maintained
the de�nitions initially chosen without further thoughts but, for a future development of this
code, these implementation choices should de�nitely be revised more carefully.

7.2 Execution of Turing Machines in HOL Light

Our next task is to specify the execution of a Turing machine in HOL. Subsequently, we
will show how the execution can be simulated in concrete examples inside HOL Light.

An instruction i ∈ I is called relevant for a con�guration C = (s, x, f), if it is of the form

s f(x) aj ⇒ t or s f(x) aj ⇐ t .

Assuming C = (s, x, f) to be a con�guration, we have two possibilities:

1. no instruction of M is relevant for C, then M halts and the con�guration C is called
�nal,

2The symbol # represents in HOL Light the Cartesian product between types.
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2. there exists at least one (exactly one in the deterministic case) quintuple i, ofM , relevant

for C = (s, x, f); then i will be of the form s f(x) aj ⇒ t or s f(x) aj ⇐ t and,

starting from C, it yields the following next con�guration C ′ = (x′, s′, f ′) where:

- s′ = t;

- x′ = x + 1 if i is of the form s f(x) aj ⇒ t or x′ = x − 1 if i is of the form

s f(x) aj ⇐ t ;

- f ′ = f everywhere except in the box x where f ′(x) = aj .
In a non deterministic case, we obtain a computation tree with a branch for every
instruction relevant for C.

Let's de�ne a computation step of M as a couple of con�gurations (C,C ′) where C ′ is the
next con�guration of C. The forthcoming subsection illustrate in details the implementation
of these concepts.

7.2.1 Relevant instructions

We start with the formal predicate `RELEVANT:conf->instr->bool` that selects relevant
instructions for a given con�guration. This is de�ned as an inductive predicate with just one
deduction rule by the command

let RELEVANT_RULES,RELEVANT_INDUCT,RELEVANT_CASES =

new_inductive_definition `!s x f v m t.

RELEVANT (Conf s x f) (Instr s (f x) v m t)`;;

that produces three theorems:

• RELEVANT_RULES

|- !s x f v m t. RELEVANT (Conf s x f) (Instr s (f x) v m t)

that de�nes the rules of `RELEVANT`,

• RELEVANT_INDUCT

|- !RELEVANT'.

(!s x f v m t. RELEVANT' (Conf s x f) (Instr s (f x) v m t))

==> (!a0 a1. RELEVANT a0 a1 ==> RELEVANT' a0 a1)

that ensures that `RELEVANT` is the smallest predicate that satis�es the previous rules,

• RELEVANT_CASES

|- !a0 a1. RELEVANT a0 a1 <=>

(?s x f v m t. a0 = Conf s x f /\ a1 = Instr s (f x) v m t)

that establishes in which cases `RELEVANT` is true.

Using these theorems, we can immediately prove a theorem that shows `RELEVANT` in a more
familiar way, in which we �nd the informal de�nition. Such a theorem

RELEVANT

|- !s x f s' u v m t. RELEVANT (Conf s x f) (Instr s' u v m t) <=>

s = s' /\ u = f x

shows that instruction `Instr s' u v m t` is relevant for a con�guration `Conf s x f` if
and only if `s = s'` and `u = f x` as prescribed by informal theory.

7.2.2 Next con�gurations and computation step

Now, we focus on the formalization of next con�guration and computation step. In order
to de�ne the next con�guration we need a function that �update� the tape f and a function
that �move� the cursor x when a relevant instruction acts.
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UPDATE. We de�ne formally the update function as

let UPDATE = new_definition

`UPDATE f (x:A) (v:B) = (\y. if y = x then v else f y)`;;

that prints the symbol `v:B` in the box of abscissa `x:A` on the tape `f`. The following
theorem shows the characterizing property of `UPDATE`, that is, the updated tape di�ers from
the older only in position `x:A` where it presents the symbol `v:B`.

UPDATE_CLAUSES

|- (!f x v. UPDATE f x v x = v) /\

(!f x v y. ~(y = x) ==> UPDATE f x v y = f y)

NEXT. Using the update function `UPDATE`, we can de�ne the function `NEXT` that com-
putes the next con�guration. The formal de�nition is the following.

let NEXT = new_definition

`NEXT c i = Conf (final i) (MOVE (move i) (cursor c))

(UPDATE (tape c) (cursor c) (write i))`;;

We observe that the function `NEXT:conf->instr->conf` always produces the next con�gu-
ration, also when the instruction `i` is not relevant for the con�guration `c`. Furthermore,
the auxiliary function `MOVE:bool-> num-> num` updates the position of the cursor of `c`
by incrementing its value if the boolean `(move i)` is true or decrementing it otherwise. The
following theorem de�nes the constant `MOVE`.

MOVE

|- MOVE T = SUC /\ MOVE F = PRE

Note that, in this implementation, moving the cursor on the left when it sits at the origin,
results in no motion at all, since `PRE` is the truncated predecessor on natural numbers.
Following classical theory presented in the book of Mundici, we should ensure to not have left-
hand instructions that act where the cursor is in the origin, because this can create problems
with functions of arity greater than 1. In our case, we will work always with function of arity
1 and with well-formed Turing machines that doesn't have left-hand instructions acting when
the cursor is in abscissa zero.

Now, we consider the de�nition of computation step that is formalized by our HOL constant
`STEP`.

STEP. We can combine the predicate `RELEVANT` and the function `NEXT` to obtain a
de�nition of computation step by the predicate `STEP`. Such a predicate, `STEP m c c'`,
holds when `c'` is the next con�guration of `c` according to a relevant instruction `i`. The
formal de�nition is the following.

let STEP_RULES,STEP_INDUCT,STEP_CASES =

new_inductive_definition

`!i c. i IN m /\ RELEVANT c i ==> STEP m c (NEXT c i)`;;

Since every �nite set can be represented in HOL Light as iteration of `INSERT` starting from
the empty set `{}`,3 for our purposes it is useful to prove the following theorem

STEP

|- (!c c. ~STEP {} c c') /\

(!i m c c'. STEP (i INSERT m) c c' <=>

RELEVANT c i /\ c' = NEXT c i \/ STEP m c c')

3For example, the set {1, 2, 3} is represented in HOL Light as `1 INSERT (2 INSERT (3 INSERT {}))`.
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in order to have an operative tool (in the case of �nite set of instructions) to calculate `STEP`
recursively on `INSERT`. This theorem reduces the computation to a case analysis on the set
of instructions formalizing two basic ideas. First of all, we cannot go from a con�guration `c`

to `c'` if the set of instructions is empty (`{}`). Secondly, if the set of instructions is of the
form `i INSERT m`, we can realize a computation step only in two cases:

• `i` is relevant for `c` and `c'` is the next con�guration of `c` with respect to `i`,

• the computation step can be realized using an instruction of the set of instructions `m`
that we obtain by eliminating `i` from the original set.

This approach works both in the case of a deterministic and non deterministic Turing machine.
Finally, we show how `STEP` works on subsets or unions of set of instructions. Let be

`m` a formal Turing machine and suppose that it can performs a computation step from a
con�guration `c` to a con�guration `c'`. Then, it is obvious that the same holds for every
machine `m'` that is a superset of `m`. Two di�erent formal reformulations of this properties
are given by the following theorems.

STEP_MONO

|- !m m' c c'. m SUBSET m' /\ STEP m c c' ==> STEP m' c c'

STEP_UNION

|- !m m' c c'. STEP m c c' ==> STEP (m UNION m') c c'

7.2.3 Execution of a Turing machine

In this paragraph we de�ne the predicate `EXEC` that implements the notion of execution
of a machine. Let `m:instr->bool` be a machine and let `c`, `c'` be two con�gurations,
then `EXEC m c c'` holds if and only if we can make one or more computation steps from `c`

to `c'`, using only the instructions of the machine `m`. The formal de�nition is the following

let EXEC = new_definition

`EXEC m = RTC (STEP m)`;;

where `RTC` is the transitive-re�exive closure of a binary relation.
As for the predicate `STEP`, we show some basic proprieties of `EXEC`:

• `EXEC m c c'` holds when the con�gurations `c` and `c'` are the same,

EXEC_REFL

|- !m c c. EXEC m c c

• if the set of instructions is empty then `EXEC {} c c'` holds if and only if the con�gu-
rations are the same,

EXEC_EMPTY

|- !c c'. EXEC {} c c' <=> c = c'

• `EXEC m c c'` holds if and only if the con�gurations are equal or if an intermediate
con�guration `b` exists such that:

• a computation step from `c` to `b` can be realized,

• the machine execution brings from `b` to `c'`.

EXEC_STEP_LEFT

|- !m c c'. EXEC m c c' <=>

c = c' \/ (?b. STEP m c b /\ EXEC m b c').
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An other easy, but very important, propriety of `EXEC` is the transitivity over con�gura-
tions, namely:

EXEC_TRANS

|- !m c1 c2 c3. EXEC m c1 c2 /\ EXEC m c2 c3 ==> EXEC m c1 c3

that ensures that if we can execute the machine from `c1` to `c2` and from `c2` to `c3`,
then we can execute it from `c1` to `c3`.

Now, we need an evaluation strategy to simulate in HOL Light the execution of a Turing
machine. We de�ne it with the following constant `RUN`.

let RUN_DEF = new_definition

`!m a c c'. RUN m a c c' <=>

c = c' \/ (?b. STEP a c b /\ EXEC m b c')`;;

The relation `RUN` takes as arguments two sets of instructions `m` and `a`, both of type
`:(alph,num)instr->bool`. The �rst is the whole machine (i.e. the whole set of instructions
of the machine), whereas the second contains the instructions, that has yet to be processed,
in order to �nd the ones that are relevant for the current con�guration.

The intended usage is to take `a` to be equal to `m` in the initial invocation and, in that
case, the computation invariant is that `a` will be a subset of `m` in its calculation.

Therefore, `RUN m a c c'` holds if and only if the con�gurations `c` and `c'` are equal
or there exists a con�guration `b`, reachable with a single computation step from `c` using
only the instructions in `a`, such that we can execute the machine from it to `c'`.

A very important property is the equivalence between `EXEC` and `RUN`, when `a = m`,
proved in the following formal theorem.

EXEC_EQ_RUN

|- !m c c'. EXEC m c c' <=> RUN m m c c'

The above equivalence follows from the following result (the other implication is obvious).

RUN_IMP_EXEC

|- !m a c c'. a SUBSET m /\ RUN m a c c' ==> EXEC m c c'.

Note the speci�c hypothesis that `a` is a subset of `m`.

Then, we need a theorem that, in case of a �nite set of instructions `m`4, allows us to
calculate, in a recursive way, the predicate `RUN` over the quintuples of the machine. The
following theorem proved in HOL Light

RUN_CLAUSES

|- (!m c c'. RUN m {} c c' <=> c = c') /\

(!i m a c c'. RUN m (i INSERT a) c c' <=>

(RELEVANT c i /\ RUN m m (NEXT c i) c') \/ RUN m a c c')

describes, by case analysis on `a'`, when `RUN m a' c c'` holds:

• when `a' = {}` it holds if and only if the con�gurations `c` and `c'` are equal,

• when `a' = (i INSERT a)` it holds if and only if one of the next properties hold:

1. `i` is relevant for `c` and we can execute the machine `m`, using all its instructions,
from the next con�guration of `c` to `c'`,

2. we can execute the machine, from `c` to `c'`, with only the instructions of `a`
(i.e. the set `a'` without the instruction `i`).

4We recall that every �nite set in HOL Light is represented as iteration of INSERT
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In practice, during the simulation of the execution of a machine, the recursive rewriting of the
previous theorems implements the following informal idea. If the instruction `i` is relevant
for the current con�guration `c`, then we compute the next con�guration `NEXT c i` and
we restart the research of the relevant instruction for the latter, if it exists, on the whole set of
instructions of the machine `m`. Contrarily, if the instruction `i` is not relevant for `c`, then
we discard it and we continue the research of the relevant instruction for `c` on the remaining
instructions of `m`.

Therefore, our strategy to prove a statement of the form `EXEC m c c'`, where `m`, `c`
and `c'` are a concrete Turing machine and con�gurations, will be in two steps:

1. put the statement in the equivalent form `RUN m m c c'` thanks to the previous theorem
`EXEC_EQ_RUN`;

2. compute recursively `RUN` by using the theorem `RUN_CLAUSES` which performs the
step-by-step/instruction-by-instruction calculation.

7.2.4 Execution of �nite and deterministic Turing machines

We note that the evaluation strategy presented in the last section can be used to simulate
in HOL Light the execution of any Turing machine, including non deterministic machines and
machines that are de�ned by an in�nite set of instructions.

However, in case of deterministic Turing machines, our strategy can't capture the bene�ts,
from a computational point of view, of determinism. In fact, in these cases, at each step of
the computation there is an unique relevant instruction (i.e., the computation tree is uniquely
determined by the initial con�guration) so, once it is found, there is no need to look further
in the instruction set.

For this reason, we decide to de�ne an alternative evaluation strategy, equivalent to the
previous for a deterministic machine, that allow us to obtain, in this case, a reduction of the
computational costs during the simulation of the execution.

First of all, we de�ne when a Turing machine is deterministic

let DETERMINISTIC = new_definition

`DETERMINISTIC m <=> (!i j. i IN m /\

j IN m /\

init i = init j /\

read i = read j

==> i = j)`;;

and then we prove a few basic results which allow us to easily prove when a given (�nite)
machine is deterministic:

DETERMINISTIC_EMPTY

|- DETERMINISTIC {}

DETERMINISTIC_INSERT

|- !m a. DETERMINISTIC (a INSERT m) <=>

DETERMINISTIC m /\

(!y. y IN m /\ ~(y = a)

==> ~(init a = init y) \/ ~(read a = read y))

Since we have in mind to simulate the execution of �nite and deterministic Turing machines,
we decided, in this special case, to code them as lists (of their instructions), instead of as sets,
since their �nite and ordered structure. From now on, any Turing machine to which we will
refer in this subsection will be an element of type `m:(instr)list` and the corresponding
�nite set of instructions will be given by `set_of_list m:instr->bool`.

So, we de�ne an alternative notion of computational step and execution for deterministic
Turing machines as follows.
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let FSTEP = new_recursive_definition list_RECURSION

`(!c. FSTEP [] c = NONE) /\

(!i m c. FSTEP (CONS i m) c =

if RELEVANT c i then SOME (NEXT c i) else FSTEP m c)`;;

let FEXEC_RULES,FEXEC_INDUCT,FEXEC_CASE = new_inductive_definition

`(!m c. FEXEC m c c) /\

(!m c b c'. FSTEP m c = SOME b /\ FEXEC m b c'

==> FEXEC m c c')`;;

Note that `FSTEP` is now a function (the pre�x F can be taken as mnemonic of function)
instead of a predicate (`STEP`) as in the non-deterministic case.

In the �rst place, we prove the relation between `STEP`, `EXEC` and `FSTEP`,`FEXEC` and
we obtain good rules of calculation for `FEXEC` with the theorem FEXEC_CLAUSES.

• FSTEP_IMP_STEP

|- !m c c'. FSTEP m c = SOME c' ==> STEP (set_of_list m) c c'

The �deterministic� computation step always implies the �not deterministic� computation
step. If we work with a deterministic Turing machine we have an if and only if.

FSTEP_EQ_STEP

|- !m c c'. DETERMINISTIC (set_of_list m)

==> (FSTEP m c = SOME c' <=>

STEP (set_of_list m) c c')

• The same holds for `FEXEC`.

FEXEC_IMP_EXEC

|- !m c c'. FEXEC m c c' ==> EXEC (set_of_list m) c c'

FEXEC_EQ_EXEC

|- !m c c'. DETERMINISTIC (set_of_list m)

==> (FEXEC m c c' <=>

EXEC (set_of_list m) c c')

• Finally, the calculation rules for `FEXEC` are the following.

FEXEC_CLAUSES

|- !m c c'. FEXEC m c c' <=>

c = c' \/ FROM_OPTION (\b. FEXEC m b c') F (FSTEP m c)

In each of the examples that we will show in the next section, given a Turing machine
through the �nite set of his quintuples (i.e. an element of type `:(alph,num)instr->bool`),
we used the deterministic strategy in the following way:

• we converted the set of the quintuples of the machine into a list (obviously it can be
done if and only if the set of quintuples is �nite),

• using FEXEC_IMP_EXEC we prove `EXEC m c c'` by proving `FEXEC m c c'` through
recursive rewritings of the theorem FEXEC_CLAUSES.

All the examples of simulation, of which we report in section 8.3 only some cases, are fully
presented in the online code in the �le examples.hl.
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7.2.5 Final con�guration and Halt

Now we have to implement the ��nal con�guration� and the concept of �halt�. We formally
de�ne them in the following way.

let FINAL = new_definition

`FINAL m c <=> ~(?i. i IN m /\ RELEVANT c i)`;;

let HALT = new_definition

`HALT m c c' <=> EXEC m c c' /\ FINAL m c'`;;

A con�guration `c` is �nal for a machine `m` if and only if every instructions of the machine
is not relevant for it, whereas a machine `m` halts in a con�guration `c'`, starting from a
con�guration `c`, if and only if we can execute the machine from `c` to `c'` and `c'` is a
�nal con�guration for the machine.

For practical reasons of calculation, we proved the theorem

FINAL_CLAUSES

|- (!c. FINAL {} c) /\

(!i m c. FINAL (i INSERT m) c <=> ~RELEVANT c i /\ FINAL m c)

so to have a recursive technique of calculation over the set of instructions of a machine.

7.3 Tape

As already said, in our formalization the tape of a machine is simply a function over natural
numbers. However, to simulate the behaviour of a given machine is appropriate to provide a
representation which is easily treatable by a computational point of view. Therefore, thinking
of the tape as to a conductive type (speci�cally to an in�nite sequence), we develop a generic
library for the representation of in�nite sequences.

Again, de�nitions are made in a polymorphic way although, as before, from a practical
point of view we always use the types `:alph` and `:num`. We de�ne:

• let CONST = new_definition

`CONST (a:A) (x:B) = a`;;

so `CONST Blank` represents a blank tape,

• let INS = new_recursive_definition num_RECURSION

`(!a:A f. INS a f 0 = a) /\

(!a f x. INS a f (SUC x) = f x)`;;

so the function `INS a f` represents the tape obtained from `f` by shifting its elements
to the right by one and placing a new element `a:A` at its origin.

We can now write every numeric tape as an iteration of `INS` on the base function `CONST`.

We recall that a �numeric tape� is a blank tape where, starting from the abscissa x = 1, is
printed a natural number in asticolar notation. A natural number n is expressed in asticolar
notation by n + 1 bars (0 must be represented by one bar). For example � || �...� that is,
the numeric tape where is printed the number 1, is expressed in its normal form by the HOL
term `INS Blank (INS One (INS One (CONST Blank)))`. This writing allows us to easily
compare if two tapes are the same or not.

Since during the execution of a machine the tape have to be �updated� that is, the function
`UPDATE` acts over it, we had to proved some theorems that described the behaviour of
`UPDATE` acting on `INS` or `COST`, so to have good rules of calculation. The theorems that
regulate the interaction of `UPDATE` with `INS` and `CONST` are the following.
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UPDATE_CONST

|- (!a n. UPDATE (CONST a) n a = CONST a) /\

(!a b. UPDATE (CONST a) 0 b = INS b (CONST a)) /\

(!a b n. UPDATE (CONST a) (SUC n) b = INS a (UPDATE (CONST a) n b))

UPDATE_INS

|- (!f a b. UPDATE (INS a f) 0 b = INS b f) /\

(!f a b n. UPDATE (INS a f) (SUC n) b = INS a (UPDATE f n b))

Now, we are able, through successive rewrites, to update the old tape into the new tape
that will be in normal form too.

As you note, the previous theorems assume the Peano's representation of natural numbers
through the constant `0:num` and the successor function `SUC:num->num`. This means that
these theorems can be used to manipulate formal terms of the form, for example,

`UPDATE f (SUC (SUC (SUC 0))) One`

where we want to update the tape `f` printing `One` in the abscissa `(SUC (SUC (SUC 0)))`,
that is, the abscissa x = 3.

However, in concrete situations, we write natural numbers by digits (instead of iterations
of the successor function), so, in the previous example, we need to be able to compute the
term in the form `UPDATE f 3 One`.

We recall that, as explained in chapter 1 (section 1.2), HOL Light uses a binary encoding of
natural numbers so, even if de�nitions of `INS` and `UPDATE` are more natural using Peano's
representation, it is convenient to prove again theorems about them in their binary version.
In this way, we obtain that they take account of the HOL Light internal representation of
numerals. Such theorems are the following.

INS_BINARY

|- (!a f n. INS a f (NUMERAL n) = INS a f n) /\

(!a f n. INS a f (BIT1 n) = f (BIT0 n)) /\

(!a f. INS a f _0 = a) /\

(!a f n. INS a f (BIT0 n) =

(if n = _0 then a else f (BIT1 (PRE n))))

UPDATE_BINARY

|- (!f b n. UPDATE f (NUMERAL n) b = UPDATE f n b) /\

(!a b. UPDATE (CONST a) _0 b = INS b (CONST a)) /\

(!a b n. UPDATE (CONST a) (BIT1 n) b =

INS a (UPDATE (CONST a) (BIT0 n) b)) /\

(!a b n. UPDATE (CONST a) (BIT0 n) b =

(if n = _0 then INS b (CONST a)

else INS a (UPDATE (CONST a) (PRE (BIT0 n)) b))) /\

(!f a b. UPDATE (INS a f) _0 b = INS b f) /\

(!f a b n. UPDATE (INS a f) (BIT1 n) b =

INS a (UPDATE f (BIT0 n) b)) /\

(!f a b n. UPDATE (INS a f) (BIT0 n) b =

(if n = _0 then INS b f

else INS a (UPDATE f (PRE (BIT0 n)) b)))

Numeric tape. Now, de�ning the function

let TAPE_OF_NUM = new_definition

`TAPE_OF_NUM n = INS Blank (ITER n (INS One)(INS One (CONST Blank)))`;;
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we can quickly create a numeric tape. The function `ITER n f` is the n-th iteration

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

of a function f . So, given a natural number n ∈ N, the HOL term `TAPE_OF_NUM n` represents
the informal tape

� || · · · |︸ ︷︷ ︸
n+1 times

� . . .

where the number n is printed, in asticular notation (n + 1 bars), starting from the abscissa
x = 1.

Finally, we prove a trivial property of `TAPE_OF_NUM n` that allows us to evaluate it in a
speci�c abscissa `x:num`.

TAPE_OF_NUM_EVAL

|- !n x. TAPE_OF_NUM n x = (if 0 < x /\ x <= n + 1 then One else Blank)

In the next chapter we formalize the concept of Turing-computability, we prove that some
simple functions are Turing-computable and, at the end, we simulate the execution of the
related machines.



Chapter 8

Turing computability

In this chapter we develop a �rst attempt to the formalization in HOL Light of the basics
of computability theory. At the present stage, our code is at the level of proof-of-concept to
show the feasibility of our approach to encoding the theory in Higher-Order Logic. The main
restriction of our formalization is that it is, for now, limited to consider computable functions
on natural numbers of arity 1.

In such restricted setting, we show some examples of computable functions and a simple
theoretical result. More precisely, we show that computability is preserved under composition.

8.1 De�nition and examples

A function f : N → N is said to be Turing computable if and only if a Turing machine M
exists such that, when it is initialized in the con�guration (si, 1, n), it halts in the con�guration
(sf , 1, f(n)), for every input n ∈ N. Here si and sf are the initial and �nal states of the machine
M respectively. Therefore, the formal de�nition is the following

let TURING_COMPUTABLE = new_definition

`TURING_COMPUTABLE f <=>

?m si sf. (!n. HALT m (Conf si 1 (TAPE_OF_NUM n))

(Conf sf 1 (TAPE_OF_NUM (f n))))`;;

where `(m:(alph,num)instr->bool)`, `si:num`, `sf:num` are the formal counterpart of
the machine M and the states si and sf respectively. All the polymorphic de�nitions of the
previous chapter are type istantiated with A = alph and S = num.

The easier example of a computable function is the identity function `\x. x` that is
computed trivially by the machine MID that does nothing. Starting in the initial state and in
abscissa x = 1 on the beginning of the input n it performs two simple steps:

• moves the cursor on the left in the blank box of abscissa x = 0 remaining in the initial
state,

• moves again the cursor on the right on the beginning of n in abscissa x = 1 going in the
�nal state.

The quintuples of MID are
{0 ||⇐ 0, 0��⇒ 1}

that is, formally,

`M_ID = {Instr 0 One One F 0,

Instr 0 Blank Blank T 1}`

Using our formal framework to simulate the action of a Turing machine we can prove the
theorem

123
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TURING_COMPUTABLE_ID

|- TURING_COMPUTABLE (\x. x)

where the proof consists essentially in the running of two computation steps from the initial
con�guration `Conf 0 1 (TAPE_OF_NUM n)` to the �nal `Conf 1 1 (TAPE_OF_NUM n)`.

Another example, not so easy, is the case of the zero function (i.e. f(n) = 0 for all n ∈ N).
The machine M0 that computes this function acts in 3 steps:

1. starting from the initial con�guration it jumps all the bars of the input n (remember
that we consider n expressed in asticular notation) until it �nds the �rst blank box in
the abscissa x = n+ 2,

2. it comes back in abscissa x = 0 deleting all the bars,

3. it goes in abscissa x = 1 printing the bar that represent the output 0.

The quintuples are:

M0 = {0 ||⇒ 0, 0��⇐ 1, 1 | �⇐ 1, 1��⇒ 22� |⇐ 3, 3��⇒ 3}

and in our formalization

`M_0 = {Instr 0 One One T 0,

Instr 0 Blank Blank F 1,

Instr 1 One Blank F 1,

Instr 1 Blank Blank T 2,

Instr 2 Blank One F 3,

Instr 3 Blank Blank T 3}`

Now, the formal proof of the theorem

TURING_COMPUTABLE_ZERO

|- TURING_COMPUTABLE (\x. 0)

is less easy than the identity function case. This happens because the jumping and deleting
phases (1 and 2) depend on the input n, so we have to prove that they produce the right
con�guration by induction.

In the case of the successor function, the situation is similar. After the �rst jumping phase
of the previous example, we simply add another bar in the box of abscissa x = n+ 2 and then
we came back to the abscissa x = 1 jumping again all the bars. The quintuples that perform
this calculation are

MSUC = {0 ||⇒ 0, 0� |⇐ 1, 1 ||⇐ 1, 1��⇒ 2}

that can be translated in our formalization as

`M_SUC = {Instr 0 One One T 0,

Instr 0 Blank One F 1,

Instr 1 One One F 1,

Instr 1 Blank Blank T 2}`

where 0 is the initial state and 2 is the �nal state.
As before, even if the statement is rather easy, the formal proof is not trivial and the basic

idea behind it1 is to use the transitivity of `EXEC`, so to divide the execution in �ve distinct
processes:

0. prove that the con�guration (2, 1, n+ 1) is �nal for MSUC,

1. simulate the execution from con�guration (0, 1, n) to con�guration (0, n+ 2, n),

1Look the attached code in the �le computability.hl for the formal proof.
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2. from con�guration (0, n+ 2, n) to con�guration (0, n+ 1, n+ 1),

3. simulate the execution from con�guration (1, n+ 1, n+ 1) to con�guration (1, 0, n+ 1)

4. simulate the execution from con�guration (1, 0, n+1)to the �nal con�guration (2, 1, n+1).

We proved easily the phases 0, 2 and 4 only using de�nition of `FINAL` and simulating the
execution of the machine, but for the phases 1 and 3 we have to use the induction principle.

We can note that an intuitive propriety like the computability of the zero or the successor
function requires considerable e�orts to be formally proved.

8.2 Conservation of Turing computability under composi-

tion

With the restriction to unary functions in mind, we formally prove in HOL Light the
following theorem.

Theorem 8.1. Turing computability is preserved under composition.

This means that if two functions f : N→ N and g : N→ N, both of arity 1, are respectively
calculated by two Turing machines M1 and M2, then there exists a Turing machine M that
calculates the function h(n) = g(f(n)).

The informal proof is very easy, it is enough to considerM as the union of all the quintuples
of M1 and M2. If the �nal state of M1 and the initial state of M2 are equal and all the other
states are di�erent, we can easily prove that M compute the function h. Otherwise, we have
�rst to rename appropriately all the states ofM1 andM2, and then we can prove the theorem.
Again, the formalization of this simple idea is not trivial.

Statement. The statement of the theorem 8.1 can be expressed in HOL Light with the term

`!f g. TURING_COMPUTABLE f /\ TURING_COMPUTABLE g

==> TURING_COMPUTABLE (g o f)`.

Idea of the formal proof. We call respectively:

• M1, si, sf1 the machine that computes f and its initial and �nal states,

• M2, si1 , sf the machine that computes g and its initial and �nal states.

We construct formally the machine M in the following way:

`m = (({Instr (2 * s) u v m (2 * t) | Instr s u v m t IN m1} UNION

{Instr (2 * s + 1) u v m (2 * t + 1) | Instr s u v m t IN m2}) UNION

{Instr (2*sf1) One One F (2*sf1),

Instr (2*sf1) Blank Blank T (2*si1 +1)})`

So, M is the machine that we obtain from the union of the quintuples of the machinesM1 and
M2 with the states appropriately renamed and two auxiliary quintuples. The latter two are
used to simplify the transition of the execution control between the two machines.

We will callM∗1 andM∗2 the machines that we obtain after the renaming. Let S1 and S2 be
the sets of states of M1 and M2, then for the states of M∗1 we take the set S∗1 = {2s | s ∈ S1}
and for M∗2 the set S∗2 = {2s + 1 | s ∈ S2} 2. After the de�nition of M , we prove that it
computes the composed function f ◦ g in four phases:

1. execution of M∗1 that halts in con�guration (2sf1 , 1, f(n)),

2In this way we are sure that S∗1 ∩ S∗2 = ∅.
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2. phase �transition of the execution control� from M∗1 to M∗2 , it leads from con�guration
(2sf1 , 1, f(n)) to (2si1 + 1, 1, f(n)) and is realized by the two quintuples that we added
to M in addition to those of M∗1 and M∗2 ,

3. execution of M∗2 that halts in con�guration (2sf + 1, 1, g(f(n))),

4. proof that (2sf + 1, 1, g(f(n))) is �nal for M .

To complete this proof we need some complementary theorems about `EXEC`, `STEP` and
`FINAL` that we present in the next paragraph.

Complementary theorems. We need to prove some theorems that we call �conservation
theorems� because they show that a given property is preserved after a renaming of the states.
Here we discuss only the case of the predicate `STEP`. The cases of the other two predicates
`EXEC` and `FINAL` are analogous and can be found in the source code. Such conservation
theorems formalize the idea that if we can make a computation step from a con�guration `c`

to a con�guration `c'` with a machine `m`, then we can do it both with a machine that is the
union of `m` with an another machine `m'` and with a machine that has the same instructions
of `m` appropriately renamed. They are the following.

• STEP_UNION_L

|- !m m' c c'. STEP m c c' ==> STEP (m UNION m') c c'

STEP_UNION_R

|- !m m' c c'. STEP m' c c' ==> STEP (m UNION m') c c'

• STEP_IMP_STEP2

|- !m si sf x f g.

STEP m (Conf si x f) (Conf sf x g)

==>

STEP {Instr (2 * s) u v m (2 * t) | Instr s u v m t IN m}

(Conf (2 * si) x f)

(Conf (2 * sf) x g)

STEP_IMP_STEP2PLUS_1

|- !m c1 c2.

STEP m c1 c2

==>

STEP {Instr (2 * s + 1) u v m (2 * t + 1) | Instr s u v m t IN m}

(Conf (2 * status c1 + 1) (cursor c1) (tape c1))

(Conf (2 * status c2 + 1) (cursor c2) (tape c2))

Conclusions and examples. After the proof of similar results for `EXEC` and `FINAL`, we
are able to conclude the original demonstration taking the theorem:

COMPOSE_TURING_COMPUTABLE

|- !f g. TURING_COMPUTABLE f /\ TURING_COMPUTABLE g

==> TURING_COMPUTABLE (g o f)

that represents the goal of this chapter. From this result, we could easily prove that if a
function is composition of two Turing computable functions, then it is Turing computable.
The corresponding HOL Light theorem is the following.

TURING_COMPUTABLE_COMPOSE_SUFFICIENT_CONDITION

|- !f. (?g h. TURING_COMPUTABLE h /\ TURING_COMPUTABLE g /\ f = g o h)

==> TURING_COMPUTABLE f
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We can conclude with two easy examples where we use this corollary to prove that the
constant function, and the function n → n + m (the same holds for n → m + n), for every
m ∈ N, are Turing computable. The related formal theorems, proved by induction on m, are
the following.

TURING_COMPUTABLE_CONST

|- !m. TURING_COMPUTABLE (\n. m)

TURING_COMPUTABLE_RADD

|- !m. TURING_COMPUTABLE (\n. n + m)

8.3 Simulation of execution

In this section we test, with some examples, our formal framework certifying the execution
of the machines presented previously. In fact, we prove that such machines initialized on a
speci�c input produce the expected output. More precisely, the machines that we address are:

• the machine MID that computes the identity function f(n) = n,

• the machine M0 that computes the zero function f(n) = 0,

• the machine MSUC that computes the successor function f(n) = n+ 1,

• the machine �move to the left� MLEFT,

• the machine that computes the characteristic function of even number MEVEN.
3

In order to improve the readability we install a pretty printer for the numeric tape that
represent the element of type `:alph` as

One -> 1

Blank -> .

Mark -> M

and a tape with the syntax <|.....|>. In this context, for example, a tape where is printed
the number 2 starting from the box with abscissa x = 1, that is,

`INS Blank (INS One (INS One (INS One (CONST Blank))))`

is printed as <|.111|> . We will use the same convention for informal tapes so � ||| � . . .�
becomes 〈|.111|〉. In the �rst three cases, we start from a standard con�guration 〈|.111|〉
and then, we apply MID, M0 and MSUC obtaining 〈|.111|〉, 〈|.1|〉 and 〈|.1111|〉 respectively.
We certify these simple examples using both non-deterministic and deterministic strategy of
execution. Moreover, we performed some informal benchmarks to compare the execution time
of the two approach using the time function available in HOL Light. The results are the
following theorems.

1. MID

val it : thm =

|- HALT

{Instr 0 One One F 0,

Instr 0 Blank Blank T 1}

(Conf 0 1 <|.111|>)

(Conf 1 1 <|.111|>)

3The quintuple of this machine have been obtained from an exercise left to the students in the class of
Mundici.
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with time 0.0 seconds in both cases (note that in this simple case we don't appreciate
the bene�t of the deterministic evaluation),

2. M0

val it : thm =

|- HALT

{Instr 0 One One T 0,

Instr 0 Blank Blank F 1,

Instr 1 One Blank F 1,

Instr 1 Blank Blank T 2,

Instr 2 Blank One F 3,

Instr 3 Blank Blank T 3}

(Conf 0 1 <|.111|>)

(Conf 3 1 <|.1|>)

with times 0.990562 seconds and 0.533745 seconds in the not-deterministic and deter-
ministic case respectively,

3. MSUC

val it : thm =

|- HALT

{Instr 0 One One T 0,

Instr 0 Blank One F 1,

Instr 1 One One F 1,

Instr 1 Blank Blank T 2}

(Conf 0 1 <|.111|>)

(Conf 2 1 <|.1111|>)

with times 0.523782 seconds and 0.299519 seconds in the not-deterministic and deter-
ministic case respectively.

Note that, even if calculations are very simple (times are in general very small) the working
time of the processor is approximately half for the deterministic strategy.

We repeat these tests also for the other machines and we �nd that this is, more or less, a
general relation between calculation times.

For example, themove to the left machine, initialized in the con�guration (0, 5, 〈|M....111|〉),
halts in the �nal con�guration (0, 1, 〈|.111|〉) and the related theorem needs about 20 s with
the not-deterministic strategy, and about 8 seconds in the deterministic case, to be proved.

Finally, we de�ne the conversion HALT_CONV that, given a Turing machine M and a initial
con�guration ci, computes the set Cf (M, ci) of all the possible �nal con�gurations resulting
from the execution of M initialized on ci. In fact, it returns the theorem

` HALT m ci = Cf (M, ci).

Note that ifM is deterministic, then Cf (M, ci) is the singleton {cf} where cf is the unique
�nal con�guration, resulting from the execution of M initialized on ci. Furthermore, if M
loops when it is initialized on ci, so does HALT_CONV that continues to run without producing
any theorem.

We test HALT_CONV with the deterministic machine MSUC

HALT_CONV `HALT {Instr 0 One One T 0,

Instr 0 Blank One F 1,

Instr 1 One One F 1,

Instr 1 Blank Blank T 2}

(Conf 0 1 <|.111|>)` =
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|- HALT

{Instr 0 One One T 0,

Instr 0 Blank One F 1,

Instr 1 One One F 1,

Instr 1 Blank Blank T 2}

(Conf 0 1 <|.111|>) =

{Conf 2 1 <|.1111|>}

and with a generic non deterministic machine obtaining the following result.

HALT_CONV `HALT {Instr 1 Blank Blank T 0,

Instr 1 Blank One T 0}

(Conf 1 1 <||>)` =

|- HALT

{Instr 1 Blank Blank T 0,

Instr 1 Blank One T 0}

(Conf 1 1 <||>) =

{Conf 0 2 <||>, Conf 0 2 <|.1|>}

Such a conversion is based on a more sophisticated one, COMPUTE_CONV, due to Maggesi (Uni-
versity of Florence).





Conclusions

We presented a computer formalization of the basic concepts needed for specifying and
reasoning on Turing machines and computable functions in HOL. Moreover, we provided an
automatic procedure to simulate, in a certi�ed way, the execution of Turing machines. More
precisely, given a Turing machine and an initial con�guration on which the machine halts, we
can automatically prove a theorems that computes the set of all the possible halt con�gurations
of the machine.

A general problem, also observed in the works cited in the introduction, is that, often,
the underlying informal proofs, found in most textbooks, are not su�ciently accurate to be
directly usable as a guideline for formalization. In our case, even if the description of the
Mundici's book is very detailed, some obvious and tedious steps in the middle of a proof, or
simple generalizations, are left to the readers but, unfortunately, they have to be made explicit
in a computer formalization.

A concrete and more ambitious plan for further developments would be to demonstrate, in
our setting, that primitive recursive functions are Turing computable.

Since we have already formally proved that the zero function and the successor function are
Turing computable and that Turing computability is preserved under composition (in the case
of arity 1) the fundamental missing ingredients for reaching this goal are the formalization of
the computability of projector functions and the conservation theorem of Turing computability
under recursion. Moreover, we should also generalize the already formalized results to the case
of functions of any arity.
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Introduction

A calculation process is essentially a physical process that is performed on a machine whose
operations obey certain physical laws.

Classical computation is based on an abstract machine model (as, for instance, Turing
machine) that works according to a set of rules and principles enunciated by Alan Turing in
1936 and elaborated subsequently by John von Neumann in the 1940s. Even if today we can
construct devices very more powerful of those we could create in the �rst half of the 20th
century, these principles remained essentially unchanged. The implicit assumption on which
such principles are based is that a Turing machine idealizes a mechanical computing device
(with a potentially in�nite memory) that obeys the laws of classical physics.

Due to the constant decrease of the dimensions of the calculation devices, we must consider
an alternative because, at the microscopic level, classical physics fails. At such level, for
example inside an atom, the theory that describes and justi�es successfully physical phenomena
is quantum mechanics. Today, quantum e�ects has already started to interfere with the
functioning of electronic devices as their dimensions became smaller. For these reasons, but
not only, quantum computing is born as an alternative paradigm based on the principles of
quantum mechanics.

The idea to realize a model of computation as a quantum isolated system began to appear
at the beginning of the 80s and in 1985 Deutsch formalized these concepts [Deutsch, 1985]
leading to the modern conception of quantum computing.

Moreover, the introduction of the new calculation model causes important e�ects also in
the �eld of computational complexity, in fact, it changes the notion of �tractability�. As shown
by P. Shor in 1994, the problem of integer factorization (classically considered intractable) can
be solved e�ciently (that is, in polynomial time) with a quantum algorithm.

These considerations, together with the technological ones mentioned above, brought to
the success of a research �eld known today as information theory and quantum computing.

What is quantum computing?

Quantum computing is, essentially, computing using quantum-mechanical phenomena. The
fundamental di�erences with the classic paradigm derive from the principles of quantum me-
chanics that regulate the world of the in�nitely small.

More precisely, quantum computing is based on three quantum phenomena, which are as
fundamental as not intuitive, that determine its huge calculation potential. These phenomena
are: the principle of superposition of states, the principle of measurement and the phenomenon
of entanglement.

The modern mathematical formulation of quantum mechanics is axiomatic, so, forgetting
any physical interpretation, it can be treated as a formal system and it can be explored using
the mathematical tools of complex linear algebra like, for instance, vectors of complex numbers
and Hermitian operators. This allows us to implement in HOL Light the principal concepts
of quantum computing (objects and operations) and, in the end, to certify some fundamental
quantum protocols and algorithms.

However, at the starting point of our work, HOL Light provided a comprehensive theory
only of real linear algebra. We started from the formalization of complex vectors, due to Afshar
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et al. [Afshar et al., 2014], adding further results about complex linear algebra (e.g. de�nition
of the standard basis vectors and theorems about the extension of complex linear functions
de�ned on such basis vectors) adapting the code, when it was possible, from the real case to the
complex case. This has produced a new small library about basics of complex linear algebra. In
particular, we formalized the main properties of complex vector spaces (independent complex
vectors and their properties) and of complex linear functions (properties of linear and adjoint
operators). Since such a theory is well known and serves essentially as a formal support theory
for our purposes, we decided, for reasons of time and space, to not report it in this thesis and
to consider it as background. Anyway, the related code is reachable in the online repository
linked below in the directory Complex vector.

A compositional approach

As in the classic case, quantum computations are displayed by quantum circuits. In the
following example we report the diagram of the circuit that implements the famous quantum
teleportation protocol.

|φ〉 • H
m

X
n

|β00〉

Xn Zm |φ〉



(8.3.1)

Even if the precise meaning of the symbols used in this picture will be introduced in chapter
11, we can still make three very basic remarks.

• From an abstract point of view, a circuit can be thought as a function C that, given an
input I, returns the output O = C(I).

• The input and the output are indicated on the left and on the right respectively, so the
computation is performed from left to right.

• The circuit is constructed assembling basic components, the so called quantum logic
gates, represented by the boxes in the picture, that are the simplest operations that can
be made on the basic entities of information that is transformed.

The main goal of this part of the thesis is to model and compute, in a certi�ed way, quantum
circuits as the one in diagram (8.3.1) using the HOL Light theorem prover. It is clear that such
formalization needs a compositional approach. In fact, we have to de�ne a formal framework
to express and compute quantum circuits from small (quantum gates) to complex ones.

More precisely, we develop �rstly a compositional formal language to express quantum
circuits assembling quantum gates until the circuit is built. Secondly, we de�ne automatic and
certi�ed procedures to simulate the running of quantum circuits. Given a circuit C and an
input I, such procedures produce automatically a formal theorem of the form ` C(I) = O.
The latter are also developed in a compositional way, by systematically exploiting the HOL
framework of conversions and conversionals. We thus proceed in two steps: �rst we de�ne the
basic conversions for the elementary quantum gates, then we provide a mean to compose them
in order to compute arbitrary circuits.

With this formal tools (a suitable language and appropriated automatic procedures), we
can formally state and verify (with formal proofs) properties of circuits. For example, we can
prove that, if the input of a certain circuit has a speci�c property, the same holds also for the
output (in the spirit of Operational Semantics).

In the next chapters we present our formalization of basics about quantum computing. In
chapter 9 we give, �rstly, a brief summary of the postulates of quantum mechanics that set the
mathematical context on which quantum computing is developed and, secondly, we formalize
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the basic entities, that is, states of Qbits (quantum bits) and quantum registers. A Qbit is the
quantum counterpart of the classical bit (the basic unit of information in classical computing)
and a quantum register is a set of Qbits. The latter can be thought as the memory available
to perform calculations.

Moreover, along the way, dealing with arbitrary concrete quantum states, we are confronted
with some di�culties in using the HOL Light vector algebra (in particular the representation
of concrete vectors of arbitrary dimension and the calculation of the components of a vector).
Therefore, we have developed a formal theory about types with �nite cardinality (�ntypes)
and vectors indexed by such types (�nvec). This work is discussed in this part of the thesis
in chapter 9 (section 9.3) because it is not used elsewhere in this work but, potentially, it has
more general applications.

Chapter 10 is dedicated to the main quantum logic gates. We de�ne them formally and
we provide, for each of them, a related conversion to compute it. At this point, we are able
both to express formally quantum circuits, assembling quantum gates, and to simulate their
running, using composed conversions. More precisely, we have an automatic and certi�ed
formal calculation system about quantum circuits in which we can specify them and verify
their functioning with formal proofs.

Finally, in the last chapter, we compute the certi�ed execution of three fundamental circuits
that solve some signi�cant, even if very simple, problems in quantum computing. They are:
the already cited Quantum teleportation protocol, the Deutsch's problem and the Superdense
coding protocol.

Outline of the code

The source code of this part of the work is reachable at the url

https://bitbucket.org/gabra/phdthesis/src/master/Quantum%20Computing/

and is divided in three subdirectories:

• Fintypes and Finvec:

• misc.hl - Miscellanea,

• �ntype.hl - introduces a new way to encode �nite types,

• �nvec.hl - introduces a new way to encode vectors (arrays),

• Complex Vector:

• matrices.hl - furter results on real matrices,

• misc.hl - miscellanea,

• cvectors.hl - complex vectors (developed by Sanaz Khan Afshar & Vincent Ara-
vantinos, 2011-13 [Afshar et al., 2014]),

• cvectors_more.hl - further results about cvectors, in particular, theorems about
complex linear algebra,

• Quantum:

• qvectors.hl - formalization of states of quantum registers, basic de�nitions and
properties of qvectors (quantum vectors) and the standard computational basis,

• quantum.hl - further properties of �nvec and qvectors needed to deal with formal
quantum registers,

• quantum_gates.hl - de�nition of the main quantum logic gates,

• quantum_teleportation_deutsch_problem_superdense_coding.hl - for-
mal examples of quantum computing, the Teleportation and Superdense coding pro-
tocols and the Deutsch's algorithm.

We recall that the code about complex vectors, �nite types and vectors indexed by such
types has to be loaded to deal with formal quantum computing.

https://bitbucket.org/gabra/phdthesis/src/master/Quantum%20Computing/




Chapter 9

Basics of quantum computing:

Qbits and quantum registers

9.1 Postulates of quantum mechanics

Even if a deep discussion on quantum mechanics is very far from the aim of this work,
we recall the axioms on which the formal structure of the whole theory is constructed. We
remind that, as usual in quantum mechanics, the Dirac notation bra-ket for vectors |ψ〉, and
Hermitian product 〈ψ|φ〉, is used.

Postulate 1. At each instant the state of an isolated physical system is represented by a unit
vector (or ket) |ψ〉 in the space of states associated with such a system.

The space of states associated to the system is a vector space H over complex numbers (a
separable Hilbert space) equipped with an Hermitian product 〈·|·〉 : H×H → C. Every vector
|ψ〉 that represents a possible state of the system is unitary, that is, 〈ψ|ψ〉 = 1. Moreover, the
Hilbert space of a composite system is the Hilbert space tensor product of the state spaces
associated with the component systems. The states of a composite system that can't be written
as the product of the individuals component systems are said to be entangled.

Postulate 2. Every observable A (a dynamical variable as for instance position, transla-
tional momentum, orbital angular momentum, spin, total angular momentum, energy, etc.) of
a quantum system is associated with a linear Hermitian operator A whose eigenstates form a
complete orthonormal basis for the space of states.

Since the eigenstates (|a〉) of A form an orthonormal basis, every state |ψ〉 of the system
can be written in such basis as

|ψ〉 =
∑
a

ψa |a〉 with ψa ∈ C,
∑
a

|ψa|2 = 1. (9.1.1)

Postulate 3. The only value which can be obtained as the result of an attempt to measure
an observable A of a quantum system in the state |ψ〉 is one of the eigenvalues (a) of the
Hermitian operator A associated with it.

Exactly which eigenvalue will be measured cannot generally predicted, but the squared
modulus |ψa|2 of the coe�cient of the eigenstate |a〉 (associated to the eigenvalue a) in equation
(9.1.1) represents the probability that the measurement will yield the result a. This is known as
the Born rule. Immediately after a measurement, that yields the result a, the state |ψ〉 of the
system collapses in the eigenstate |a〉. Equivalently, we can interpret |ψa|2 as the probability
that the system will be in state |a〉 after the measurement.
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Postulate 4. Between measurements, the state vector |ψ(t)〉 of a quantum system evolves
deterministically according to the equation

i}
d

dt
|ψ(t)〉 = H |ψ(t)〉 (9.1.2)

in which the Hamiltonian operator H is the observable associated with the total energy of the
system.

Hence, by the �rst postulate, it is natural to generalize the classical bit (Cbit), i.e. an
abstract mathematical object that can have value 0 or 1, with the quantum bit (Qbit) that can
be described by all the possible unitary states in the Hilbert space spanned by two orthonormal
vector |0〉 and |1〉. We will see it better in the next sections.

9.2 Formalizing quantum registers

9.2.1 Qbits

A classical computer operates on strings of zeros and ones, such as 100011, converting them
into other such strings. Every position of a given string is called bit, and it contains either
a 0 or a 1. To represent such collection of bits, the computer must contain a corresponding
collection of physical systems, each of which can exists in two unambiguously distinguishable
physical states.

Therefore, a Cbit is an abstract mathematical model for such physical systems that could
be in only two di�erent states. For example, a switch that could be open (0) or shut (1), or a
magnet whose magnetization could be oriented in two di�erent directions, �up� (0) or �down�
(1).

Since a Cbit can have only one of the distinct values 0 or 1, a classical register with n
Cbits has value one of the 2n possible con�gurations b0b1 . . . bn−1, where bi ∈ {0, 1} for all
i = 0 . . . n − 1. For example, a register of �ve Cbits can have value 10110. It means that the
�rst Cbit has value 1, the second has value 0 and so on.

However, nature provided us with physical systems whose possible states don't su�er from
this limitation. For example, if we consider the Hilbert space of the states of an electron
spanned by the orthonormal vectors |0〉 and |1〉 (interpreted as spin oriented �up� (|0〉) or
�down� (|1〉) in an uniform magnetic �eld), we have that, for the �rst postulate of quantum
mechanics, every superposed state

|ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers such that |α|2 + |β|2 = 1, is a possible state for this
system.

At this point, it is natural to extend the concept of Cbits to that of Qbits (quantum bits). A
Qbit (or equivalently its state) is described by any unit vector in the two-dimensional complex
vector space spanned by the orthonormal vectors |0〉 and |1〉, that is,

|ψ〉 = α0 |0〉+ α1 |1〉 =

(
α0

α1

)
∈ C2 (9.2.1)

with the only constrain that |α0|2 + |α1|2 = 1.
The basis {|0〉 , |1〉}, called standard computational basis, is orthonormal, that is,

〈i|j〉 = δij i, j = 0, 1 (9.2.2)

and |ψ〉 is said to be a superposition of |0〉 and |1〉 with amplitudes α0 and α1.
For example, physical systems that can represent a Qbit are the electron with oriented spin

cited before or a photon with polarization horizontal (|0〉) or vertical (|1〉).
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From an abstract point of view, the main di�erence between a Cbit and a Qbit is that a
Cbit have value only 0 or 1 whereas every unit vectors |ψ〉 of the form (9.2.1) is an admissible
state for a Qbit.

If we consider n Qbits, things are similar. For the �rst postulate, the space of states
associated to a set of n Qbits is the vector space tensor product H of the spaces C2 associated
to every Qbit

H =

n times︷ ︸︸ ︷
C2︸︷︷︸

1-Qbit states

⊗ · · · ⊗ C2 = ⊗nC2 ∼= C2n

. (9.2.3)

Since we do not have an explicit de�nition of the tensor product in HOL Light, we use the
representation as C2n

for the space of states of a quantum register H. So, any unit vector of
the 2n-dimensional vector space H = C2n

|ψ〉 =
∑
bs

αbs |bs〉 (9.2.4)

∑
bs

|αbs|2 = 1 (9.2.5)

is a possible state for a quantum register with n Qbit.
In equation (9.2.4) the vectors |bs〉 = |b0b1 . . . bn−1〉, with bi ∈ {0, 1} for all i = 0 . . . n− 1,

are all the possible classical states of a register with n Cbits. The number of all the possible
strings with n bits is |{0, 1}n| = 2n, that is, the dimension of H so, the set

{|bs〉 = |b0, b1, · · · , bn−1〉 | bi ∈ {0, 1} for all i = 0, · · ·n− 1}

has cardinality 2n and is an orthonormal basis of H. Such a basis is called again standard
computational basis and, analogously to the case of a single Qbit in equation (9.2.2), the
Hermitian product 〈bs|bs′〉 is 1 if bs = bs′ and 0 otherwise.

Therefore, to specify in practice the state of a classical register we have to give n bits (digits
in {0, 1}), whereas to describe the state of a quantum register we have to provide 2n complex
numbers (that satisfy the normalization condition (9.2.5)).

For example, considering two Qbits, we have that the general state of a 2-Qbit quantum
register, written in the standard computational basis, is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =


α00

α01

α10

α11

 ∈ C22

= C4

with the normalization condition |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

9.2.2 Formalizing quantum registers: qvectors

As already observed in equation (9.2.3), the tensor power ⊗nC2 is isomorphic, as a vector
space, to C2n

. In our formalism, as explained in section 1.3, the exponent of a cartesian
power is encoded by a type, so we need to express the exponentiation 2n in the language of
types. Fortunately, this problem has already been addressed in HOL Light by Harrison for
the implementation of Geometric Algebra (�le Multivariate/clifford.ml of the HOL Light
distribution), so we reuse as much as possible the work already done in that context for our
purpose. In particular, HOL Light provides the type constructor `multivector` that, given a
type `:N` with universe of cardinality n, returns the type `(:N)multivector` with universe
of cardinality 2n. Formally, this property is expressed by the following theorem.

DIMINDEX_MULTIVECTOR

|- dimindex(:(N)multivector) = 2 EXP dimindex(:N)
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Thus, the vector space formalized by the type `:complex^(N)multivector` has dimension
2n so it is the right type to use for our purposes. Because of the original intended application
in Geometric Algebra, we call its elements multivectors.

However, even if `:complex^(N)multivector` is suitable to encode the states of a quan-
tum register we have to do some extra work for two main reasons. First of all, the results
about multivectors provided by the HOL Light library are stated only in the real case, while
we need to work with complex coe�cients. Secondly, we need to develop a di�erent way to
index the components of a multivector. More precisely, in Geometric Algebra, multivectors are
indexed by �nite sets of natural numbers. On the other hand, as seen in formula 9.2.4, the
components of quantum register, are usually indexed by strings of bits.

The HOL Light indexing operators for multivectors is

`$$:real^(N)multivector->(num->bool)->real`

and it uses the power set P(n) = {S | S ⊆ {1, . . . , n}} (since it has cardinality 2n) to index
components of a multivector. More precisely, for all S ∈ P(n), Harrison has de�ned the S-th
component xS , of a multivector x, as

xS = xsetcode(S) (9.2.6)

where setcode is the bijection

setcode: P(n)→ {1, . . . , 2n} (9.2.7)

that has inverse codeset : {1, . . . , 2n} → P(n).
Therefore, following equation 9.2.6, the formal de�nition of the operator `$$` is

let sindex = new_definition

`(x:real^(N)multivector)$$s = x$(setcode s)`;;

where `setcode:(num->bool)->num` is the formal counterpart of the function (9.2.7), the
operator `$:A^(N)->num->real` is the standard operator for vectors (presented in section
1.3) and `s:num->bool` represents an element S ∈ P(n).

In quantum computing, it is a common practice to denote the standard computational basis
vectors |bs〉 using natural numbers. More precisely, let |ψ〉 be a generic state of a quantum
register with n Qbits (9.2.4) then it can be written as

|ψ〉 =

n−1∑
i=0

αi |i〉

where |i〉 denotes the basis vector |bs〉 considering bs = binn(i) as the binary representation
(with n bits) of i for every i ∈ {0, . . . , n− 1}.

In principle, given this convention, we could think to use natural numbers to index our
formal multivectors. However, such a choice doesn't allow us to identify and operate easily and
directly on the state of a speci�c Qbit when the register is in the basis state |i〉. For this reason,
we want to index the components of the state of a register `x:complex^(N)multivector` using
the set of all strings of bits with length n that has again cardinality 2n. In this way, given a
basis vector |bs〉 = |b0b1 · · · bn−1〉, we can immediately visualize and operate on the state |bi〉
of the i-th Qbit in |bs〉, for all i in {0, . . . , n − 1}. Thus, we have to de�ne a new indexing
operator, of type `:A^(N)multivector->bool^N->A`, possibly using the existing code. More
precisely, representing the set of string with n bits as {0, 1}n, the problem is reduced to �nd
a bijection f : {0, 1}n → {1, . . . , 2n} to de�ne the bs-th components of a multivector x as

xbs = xf(bs) (9.2.8)

for every string of n bits bs.
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In order to do that, it is very easy to de�ne the bijection bvecset : {0, 1} → P(n) and then
consider the following commutative diagram.

P(n)

{0, 1}n {1, . . . , 2n}

setcodebvecset

bitscode

(9.2.9)

where the searched bijection f : {0, 1}n → {1, . . . , 2n} is called bitscode and it is de�ned as
setcode ◦ bvecset.

Therefore, given a string of n bits bs = b0, b1 . . . bn−1 ∈ {0, 1}n, we de�ne the function
bvecset by

bvecset(b1b2 . . . bn) = {i ∈ {1 . . . n} | bi = 1} ∈ P(n). (9.2.10)

It is clear that, for every S ∈ P(n), its inverse is

setbvec(S) = b1b2 . . . bn (9.2.11)

where, for all i ∈ {1, . . . , n}, bi = 1 if i ∈ S and bi = 0 otherwise.
Coding the set {0, 1} with the type `:bool` and the set of strings of n bits {0, 1}n with

the type of boolean vectors `:bool^N`, we formalize functions (9.2.11) and (9.2.10) with the
following de�nitions.

let setbvec = new_definition

`setbvec (s:num->bool) = (lambda i. i IN s):bool^N`;;

let bvecset = new_definition

`bvecset(bs:bool^N) =

{i | 1 <= i /\ i <= dimindex(:N) /\ bs$i}:num->bool`;;

The next theorems show formally that they are one the inverse of the other (with the appro-
priate conditions since every HOL Light function is total).

BVECSET_SETBVEC

|- !s. bvecset (setbvec s) = s INTER (1..dimindex (:N))

SETBVEC_BVECSET

|- !bs. setbvec (bvecset bs) = bs

Making the previous diagram (9.2.9) commutative, we combine setcode and bvecset getting
the function

bitscode(b1b2 . . . bn) = setcode(bvecset(b1b2 . . . bn)) (9.2.12)

that, for every string of n bits, returns a number in {1, . . . , 2n}. Essentially, given a string of
n bits we use bvecset to construct the associated subset of {1, . . . n} and then we transform
it in a number in {1, . . . 2n} using setcode. Also the function bitscode is a bijection and its
inverse is, for all n ∈ {1, . . . , 2n},

codebits(n) = setbvec(codeset(n)). (9.2.13)

Finally, the function (9.2.12), and its inverse (9.2.13), are formalized by the following de�nitions

let bitscode = new_definition

`bitscode (bs:bool^N) = setcode (bvecset bs):num`;;

let codebits = new_definition

`codebits (n:num) = setbvec (codeset n):bool^N`;;
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and their properties are proved in the next theorems.

BITSCODE_BOUNDS

|- !bs. 1 <= bitscode bs /\ bitscode bs <= 2 EXP dimindex (:N)

BITSCODE_CODEBITS

|- !n. 1 <= n /\ n <= 2 EXP dimindex (:N) ==> bitscode (codebits n) = n

CODEBITS_BITSCODE

|- !bs. codebits (bitscode bs) = bs

Therefore, following the Harrison style, we use the function `bitscode` to de�ne our
indexing operator (denoted again by the overloaded symbol `$$`) as follows.

let qindex = new_definition

`(x:A^(N)multivector)$$bs = x$bitscode bs`;;

From now on, complex multivectors (elements of type `:complex^(N)multivector`) indexed
by boolean vectors will be called qvectors (as mnemonic of quantum vectors). The related
constructor for qvectors `(qlambda):(bool^N->A)->A^(N)multivector` is given, using the
standard one `(lambda)` for plain vectors, in the following de�nition.

let qlambda = new_definition

`(qlambda) (g:bool^N->A) =

(lambda i. g(codebits i)):A^(N)multivector`;;

At this point, we prove again the main theorems that allows us to reduce algebraic operations
on quantum registers on componentwise calculations expressed with our indexing operator.
Essentially, we adapt the existing code about multivectors to qvectors (that is, to the new
de�nitions of `$$` and `(qlambda)`). Let `bs:bool^N` be represent a vector of booleans,
then such theorems are the following.

QVECTOR_EQ

|- !u v. u = v <=> (!bs. u $$ bs = v $$ bs)

QLAMBDA_BETA

|- !f bs. (qlambda) f $$ bs = f bs

QVECTOR_ADD_COMPONENT

|- !x y bs. (x + y)$$bs = x$$bs + y$$bs

QVECTOR_SUB_COMPONENT

|- !x y bs. (x - y)$$bs = x$$bs - y$$bs

QVECTOR_NEG_COMPONENT

|- !x bs. (--x)$$bs = --(x$$bs)

QVECTOR_MUL_COMPONENT

|- !c x bs. (c % x)$$bs = c * x$$bs

9.2.3 Standard computational basis: `qbasis`

Now, we have the right background theory to use the unitary qvectors to represent the
states of a quantum register with n Qbits. Such qvectors `x` are indexed by boolean vectors
`bs` that indicate to which basis vector |bs〉 the formal component `x $$ bs` is related. In
fact, every component `x $$ bs` represents formally the coe�cient αbs with respect to the
basis-element |bs〉 in equation (9.2.4). The basis-elements |bs〉 are also themselves vectors in
C2n

so they can't be formalized by elements of type `:bool^N`. We de�ne a new constant
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that, given a string of bits bs (an element `bs:bool^N`), returns the related basis vector |bs〉
(an element of type `:complex^(N)multivector`). In order to do this, we adapt again the
existing code about multivectors.

HOL Light provides a constant ``mbasis:(num->bool)->real^(N)multivector` that for-
malizes the standard 2n-dimensional basis vectors of R2n


1
0
...
0

 ,


0
1
...
0

 , · · · ,


0
0
...
1

 (9.2.14)

indexed by the subsets of {1, . . . , n} instead of natural numbers in {1, . . . , 2n}. Essentially,
given a subset S ⊆ {1, . . . , n}, `mbasis s` is the multivector that has the component indexed
by S equal to 1 and 0 all the others.

MBASIS_COMPONENT;;

|- !s t. s SUBSET 1..dimindex (:N)

==> mbasis t $$ s = (if s = t then &1 else &0)

Every multivector can be written as linear combination of such vectors.

MBASIS_EXPANSION

|- !x. vsum {s | s SUBSET 1..dimindex (:N)} (\s. x $$ s % mbasis s) = x

Correspondingly, for quantum registers, we de�ne a new constant

`qbasis:bool^N->complex^(N)multivector`

that, for every boolean vector `bs:bool^N`, returns an element of the basis in (9.2.14) (seen
as a vector in C2n

) by embedding in `:complex^(N)multivector` the related basis vector
`mbasis (bvecset bs)` (we recall that bvecset is the bijection {0, 1}n → P(n)). The formal
de�nition is the following.

let qbasis = new_definition

`qbasis (bs:bool^N):complex^(N)multivector =

vector_to_cvector (mbasis (bvecset bs))`;;

Therefore, in our formal context, the basis vectors |bs〉 are formalized by the qvectors `qbasis bs`.
At this point, we formalize all the main properties of |bs〉.

• For each basis vector |bs〉 the decomposition

|bs〉 =
∑
bs′

αbs′ |bs′〉

is such that abs′ = 1 if bs = bs′ and 0 otherwise.

QBASIS_COMPONENT

|- !bs bs'. qbasis bs $$ bs' = (if bs = bs' then Cx (&1) else Cx (&0))

• The vectors |bs〉 are a basis of C2n

that is, they are independent and their span is the
whole space.

CINDEPENDENT_QBASIS

|- cindependent {qbasis bs | bs IN (:bool^N)}

CSPAN_QBASIS

|- cspan {qbasis bs | bs IN (:bool^N)} = (:complex^(N)multivector)
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The constant `cspan` and `cindependent` represents formally the span and the inde-
pendence of a set of complex vectors respectively.

• The basis vectors |bs〉 are orthonormal, that is 〈bs|bs′〉 = 1 if bs = bs′ and 0 otherwise.

QBASIS_CDOT

|- !bs bs'. qbasis bs cdot qbasis bs' =

(if bs = bs' then Cx (&1) else Cx (&0))

The constant `cdot` represents the Hermitian product 〈·|·〉.

Then, we prove, as a consequence, that every qvector can be written as a linear combination
of such basis vectors formalizing, �nally, equation (9.2.4).

QBASIS_EXPANSION

|- !x. msum (:bool^N) (\bs. x $$ bs % qbasis bs) = x

Here, the constant `msum` encodes sums of complex vectors.1

In these formal settings, for example, the elements of the standard computational basis of
a register with 2 Qbits

|00〉 , |01〉 , |10〉 , |11〉

are represented respectively by the following formal qvectors.

`qbasis (vector[F;F]:bool^2)`, `qbasis (vector[F;T]:bool^2)`,

`qbasis (vector[T;F]:bool^2)`, `qbasis (vector[T;T]:bool^2)`

However, this implementation, although theoretically adequate, has some practical incon-
veniences.

1. It is cumbersome, at the present stage, to write registers of arbitrary �xed dimension
grater than four because, in HOL Light, only the �nite types with at most four elements
are de�ned. For example, if we wanted to express the basis state |10011〉, of a register
with �ve Qbits, we should use the term `qbasis (vector[T;F;F;T;T]:bool^5)` but,
unfortunately, HOL Light interprets the type `:5` as a type variable (in the same way
of `:N`) because the �nite type with �ve elements is not de�ned. Hence, the previous
term can't represent what we have in mind. As we have seen in section 1.3, we could
de�ne the type `:5` and prove the related theorem about its size by it but, if we change
the number of Qbits considered (for instance, six Qbits), we have to re-do the job. For
this reason, a systematic approach is needed.

2. Even if a concrete �nite type is already de�ned, we haven't a general method to enumer-
ate, automatically, the elements of the �nite type of boolean vectors indexed by such type.
This turns out to be useful in practice to expand the statement of QBASIS_EXPANSION in
an explicit sum when we deal with a speci�c qvector (i.e. a concrete state of a quantum
register). For example, let |x〉 be a generic state of a 2-Qbit register. We are able to
write |x〉 as a sum of the basis vectors

|x〉 =
∑

bs∈{0,1}2
xbs |bs〉

in fact, instantiating QBASIS_EXPANSION with the term `x:complex^(N)multivector`,
we obtain the following theorem

|- msum (:bool^2) (\bs. x $$ bs % qbasis bs) = x

1Complex vectors, in HOL Light, are element of type :complex^N`, that is `:real^2^N`. This implies that
they are, in fact, real matrices so the pre�x m in `msum` is mnemonic for matrix.
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but, we do not have a mean to rewrite it, automatically, in its explicit form

|x〉 = x00 |00〉+ x01 |01〉+ x10 |10〉+ x11 |11〉 .

3. When we write explicitly a basis-vector `qbasis (vector l:bool^N)` we have always
to specify the type `:bool^N` of the term `vector l` because, as we have seen in
section 1.3, it is not inferred by the length of the list `l`. So, it would be much more
practical if we give a concrete representation of boolean vectors `bs` such that their
type, and also the type of `qbasis bs`, is inferred by their form.

4. We need an automatic procedure to compute components of a concrete vector of type
`:A^N`. HOL Light o�ers ad hoc theorems for the real cases of dimension up to four. Of
course, this can be extend case by case to higher dimensions, but for an extensive use a
more systematic approach becomes necessary.

For example, after de�ning the �nite type with seven elements `:7`, the basis state
|1000110〉 would be formalized by `qbasis (vector[T;F;F;F;T;T;F]:bool^7)`. How-
ever, it would be cumbersome to compute that, in such state, the �rst Qbit (the same
holds for all the other Qbits) is in state |1〉. This happens because there is not an auto-
matic procedure to prove the HOL term `(vector[T;F;F;F;T;T;F]:bool^7)$1 = T`.

Moreover, such a procedure is necessary to deal with quantum logical gates because they
works only on a single Qbit (at most on a couple) of the register at time.

For these reasons, before implementing the main quantum logical gates, we develop a formal
theory about types with speci�ed �nite cardinality and vectors over such types. From now on,
we will call them �ntypes and �nvec respectively.

9.3 Fintypes and �nvec formal theory

9.3.1 Fintypes

It is well known that HOL Light does not have dependent types. However, for small
fragments of language, it is possible to create ad hoc structures that simulate, to a certain
extent, the paradigm of dependent types. In chapter 1 (section 1.3) we have seen a possible
solution to get around the problem in case of vectors. In fact, Harrison used this approach to
construct a vector theory (lists with assigned length) encoding positive natural numbers in the
type language. This coding is very simple and consists in taking the cardinality of the type.
More generally, a fragment of dependent types can be obtained whenever you specify a way
to encode a data type in the type language.

In this work, we re�ne the Harrison technique by coding a slightly more structured language
that is, the inductive data type of binary natural numbers. More precisely, we represent every
positive natural number into the language of HOL types using a binary encoding. In principle,
we could have chosen a di�erent encoding, like the unary notation (using the zero and the
successor function), in order to associate a type to each natural number. However, it would
have been less adapted when, for instance, we want to compute the component of a vector,
because it is not coherent with the HOL Light internal representation of natural numbers that
is binary, as explained in chapter 1 (section 1.2).

The basic idea is to build �nite types following such representation, so our encoding of
binary numerals in the language of types has the same structure. We de�ne two polymorphic
types:

• `:(A)tybit0` as the �nite sum `:(A,A)finite_sum`,

• `:(A)tybit1` as the �nite sum `:((A,A)finite_sum),1)finite_sum` where `:1` is
the �nite type with one element.

The formal de�nitions are the following.
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let tybit0_INDUCT,tybit0_RECUR = define_type

"tybit0 = mktybit0((A,A)finite_sum)";;

let tybit1_INDUCT,tybit1_RECUR = define_type

"tybit1 = mktybit1(((A,A)finite_sum,1)finite_sum)";;

Here, `mktybit0` and `mktybit1` are the constructors of `:(A)tybit0` and `:(A)tybit1`

respectively. So, by the previous de�nitions it holds that if `:A` is a type with cardinality n,
then the types `:(A)tybit0` and `:(A)tybit1` have cardinality 2n and 2n+ 1 respectively.
It is shown in the following theorems.

DIMINDEX_TYBIT0

|- dimindex (:(A)tybit0) = 2 * dimindex (:A)

DIMINDEX_TYBIT1

|- dimindex (:(A)tybit1) = 2 * dimindex (:A) + 1

As we have seen in chapter 1 (section 1.3), this is a general result indeed, by the de�nition of
`dimindex`, it holds also in the case that `:A` is an in�nite type.

In this setting, for every natural number n, the related �ntype with n elements is de�ned
by subsequent applications of `tybit0` or `tybit1` starting form the basic type `:1`. For
example, the type `:3`, with three elements, is constructed as `:(1)tybit1`.

It is clear that the form of a �ntype is strictly related with the binary representation of its
cardinality. More precisely, let be `:N` a �ntype written explicitly as subsequent applications
of `tybit0` or `tybit1`. Replacing every `tybit0` with `BIT0`, `tybit1` with `BIT1` and
`:1` with `BIT1 _0` (we recall that `dimindex(:1) = 1`) we obtain the HOL Light formal
representation of the natural number `dimindex(:N)`. Hence, proving these following simple
properties

pth_num |- dimindex (:A) = n <=> dimindex s = NUMERAL n

pth0 |- dimindex (:A) = n <=> dimindex (:(A)tybit0) = BIT0 n

pth1 |- dimindex (:A) = n <=> dimindex (:(A)tybit1) = BIT1 n

pth_one |- dimindex (:1) = BIT1 _0

we can de�ne the conversion DIMINDEX_CONV that computes, by a simple recursive case anal-
ysis on the form of the type `:N`, the size of its universe ,that is, `dimindex(:N)`. For
example, DIMINDEX_CONV `dimindex(:7)` returns the theorem |- dimindex(:7) = 7 since
`:7 = :((1)tybit1)tybit1` and, hence, the size of its universe is `BIT1 (BIT1 (BIT1 _0))`,
that is, the natural number `7`.

We have extended the parser and the printer of HOL Light so that type identi�er that
are numerals, are internally encoded as �ntypes. For example, the type of complex vectors
of dimension three is still denoted by `:complex^3` but, in our settings, it is internally rep-
resented by `:complex^(1)tybit1`. This representation is very useful dealing with vectors.
For example, the computation of a component of a vector can be automated instead of being
performed by providing ad hoc theorems as we will show in the next section.

9.3.2 Finvec

Working in a theorem prover that has dependent types, it is easy to de�ne a type of
binary natural numbers and then a type of vectors with �xed length dependent on "num". For
example, in the Coq's standard library are available the type positive

Inductive positive : Set :=

| xI : positive -> positive

| xO : positive -> positive

| xH : positive.

for binary natural numbers and we could easily de�ne the type vector by th following code.
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Inductive vector (A : Set) : positive -> Set :=

| Vecx (a : A) : vector A xH

| Vec0 (n: positive) (u v : vector A n) : vector A (x0 n)

| Vec1 (a : A) (n : positive) (u v : vector A n) : vector A (xI n).

In HOL Light, our development of �nvec corresponds ideally to this setting. Since in our
framework binary positive natural numbers are encoded in the language of types by �ntypes
`:N`, we construct vectors of type `:A^1`, `:A^(N)tybit0` and `:A^(N)tybit1` in the same
style, that is, de�ning three di�erent constructors as shown in the following.

• The base case.
Given an element a ∈ A, the function

vecx : A→ A1

returns the vector vecx(a) ∈ A1 such that vecx(a)0 = a. The formal de�nition is the
following.

let VECX_DEF = new_definition

`vecx a:A^1 = lambda0 i. a`;;

Note that, the the types `:A` and `:A^1`, although are commonly identi�ed by an abuse
of notation, are formally distinct.

• The tybit0 case.
Given two vectors x = (x0, x1, . . . xn−1) ∈ An and y = (y0, y1, . . . yn−1) ∈ An, the
function

vec0 : An ×An → A2n

returns the 2n-dimensional vector

vec0(x, y) = (y0, x0, y1, x1 . . . yn−1, xn−1) ∈ A2n

where the odd components are those of x and the even components are those of y, that
is, vec0(x, y)2i+1 = xi and vec0(x, y)2i = yi for all i ∈ {0, . . . n−1}. The formal de�nition
is the following.

let VEC0_DEF = new_definition

`vec0 (x:A^N) (y:A^N) : A^N tybit0 =

lambda0 i. (if ODD i then x else y)$.(i DIV 2)`;;

• The tybit1 case.
Given two vectors x = (x0, x1, . . . xn−1) ∈ An, y = (y0, y1, . . . yn−1) ∈ An and an element
a ∈ A, the function

vec1 : An ×An ×A→ A2n+1

returns the 2n+ 1-dimensional vector

vec1(x, y, a) = (y0, x0, y1, x1 . . . yn−1, xn−1, a) ∈ A2n+1

where the odd components are those of x, the even components are those of y and the last
component is a, that is, vec1(x, y, a)2i+1 = xi, vec1(x, y, a)2i = yi for all i ∈ {0, . . . n−1}
and vec1(x, y, a)2n = a. The formal de�nition is the following.

let VEC1_DEF = new_definition

`vec1 (x:A^N) (y:A^N) (a:A) : A^N tybit1 =

lambda0 i. if i = BIT0 (dimindex(:N)) then a

else (if ODD i then x else y)$.(i DIV 2)`;;
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Usually, the representation of vectors is �sequential�, that is, their elements are listed one after
the other as, for example, in v = (v0, v1, . . . , vn). In contrast, our encoding uses a representa-
tion of vectors constructed as trees splitting, at each step, even and odd components. As an
example, consider a vector v = (v0, v1, v2, v3, v4) ∈ A5 with �ve elements. It is represented, in
our setting, as

vec1(vec0(v3, v1), vec0(v2, v0), v4)

and its construction can be visualized by the following tree.

v = vec1(vec0(v3, v1), vec0(v2, v0), v4) ∈ A5

vec0(v3, v1) ∈ A2

v3 ∈ A v1 ∈ A

vec0(v2, v0) ∈ A2

v2 ∈ A v0 ∈ A

v4 ∈ A

In this way, the computation of th i-th component of v, for all i ∈ {0, 1, 2, 3, 4}, can be
easily made by visiting the proper branch of the tree depending on the parity of i. More
precisely, starting from the root of the tree, we have two possibilities:

• if i is even, that is, i = 2n for some n ∈ {0, 1, 2}, then we have two subcases:

• if n = 2, then the 4-th component of v is v4,

• if n ∈ {0, 1}, then we select the central branch of the three and we compute recur-
sively the n-th component of vec0(v2, v0);

• if i is odd, that is, i = 2n + 1 for some n ∈ {0, 1}, then we select the left branch of the
three and we compute, recursively, the n-th component of vec0(v3, v1).

This is only an informal idea of the calculation and we will show the formal procedure in details
later, but it seems obvious that our approach should allow us to calculate the components of
a vector faster then the classical one that scans all the components until the current one.

Even if the HOL Light standard library uses a 1-based indexing for vectors, we choose a
more convenient 0-based indexing. We make such a choice for two main reasons. The �rst
is that, often, in quantum computing we refer to the �rst Qbit, of a certain register, as q0

or the 0-th Qbit. Secondly, with a 0-based indexing, we can perform e�ciently the above
computation of the components of a �nvec depending on the fact that the index is odd or
even. So, we de�ne the 0-based indexing operator `$.` by

let index0 = new_definition

`v:A^N $. i = v$(i+1) `;;

and, consequently, the related constructor `(lambda0)`.

let lambda0 = new_definition

`(lambda0) g:A^N = (lambda) (\i. g (i - 1))`;;

Then, we prove technical theorems, about β-reduction and equality, with respect to them.

LAMBDA0_BETA

|- !i. i < dimindex (:B) ==> (lambda0) g $. i = g i

CART_EQ0

|- !x y. x = y <=> (!i. i < dimindex (:N) ==> x $. i = y $. i)

Note that, the standard requirement that 1 ≤ i ≤ n is replaced by i < n because, in this
context, we use 0-based indexes.

Now, we want to formalize the previous procedure to compute the components of a �nvec.
As said before, the computation is performed depending on the parity of the index considered.
Recalling the de�nitions of the �nvec constructors we have that:



9.3 Fintypes and �nvec formal theory 153

• considering an element a ∈ A, then

vecx(a)0 = a (9.3.1)

• considering the vectors x ∈ An, y ∈ An and an index i < n, then the components of
vec0(x, y) ∈ A2n satis�es the conditions

vec0(x, y)2i = yi

vec0(x, y)2n+1 = xi
(9.3.2)

• considering the vectors x ∈ An, y ∈ An, an element a ∈ A and an index i < n, then the
components of vec1(x, y, a) ∈ A2n+1 satis�es the conditions

vec1(x, y, a)2i = yi

vec1(x, y, a)2i+1 = xi

vec1(x, y, a)2n = a

(9.3.3)

Since even and odd numbers are characterized by the constant `BIT0` and `BIT1` respec-
tively (the previous informal indexes 2i and 2i+1 are formalized by `BIT0 i` and `BIT1 i`),
we must describe the interaction of `$.` with such constants, for all the constructors `vecx`,
`vec0` and `vec1` formalizing equations (9.3.1), (9.3.2), (9.3.3). The following formal theo-
rems present these results in a suitable form that can be technically used in the development
of our automatic procedure that we will present later.

VECX_COMPONENT0

|- !a. vecx a $. 0 = a

VEC0_COMPONENTS_ARITH

|- (!x y i. vec0 x y $. NUMERAL i = vec0 x y $. i) /\

(!x y b i.

i < dimindex (:N) /\ y $. i = b

==> BIT0 i < dimindex (:(N)tybit0) /\ vec0 x y $. BIT0 i = b) /\

(!x y b i.

i < dimindex (:N) /\ x $. i = b

==> BIT1 i < dimindex (:(N)tybit0) /\ vec0 x y $. BIT1 i = b)

VEC1_COMPONENTS_ARITH

|- (!a x y i. vec1 x y a $. NUMERAL i = vec1 x y a $. i) /\

(!a x y i. dimindex (:N) = i

==> BIT0 i < dimindex (:(N)tybit1) /\

vec1 x y a $. BIT0 (dimindex (:N)) = a) /\

(!a x y b i.

i < dimindex (:N) /\ y $. i = b

==> BIT0 i < dimindex (:(N)tybit1) /\ vec1 x y a $. BIT0 i = b) /\

(!a x y b i.

i < dimindex (:N) /\ x $. i = b

==> BIT1 i < dimindex (:(N)tybit1) /\ vec1 x y a $. BIT1 i = b)

Such theorems, with CART_EQ0, allows us to prove two important formal theorems. The �rst
is that the constructors `vecx`, `vec0` and `vec1` are surjective as shown in the following
theorem.

FINVEC_SURJ

|- (!v. ?x. v = vecx x) /\

(!v. ?x y. v = vec0 x y) /\

(!v. ?x y a. v = vec1 x y a)
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Therefore, for every �ntype `:N`, every �nvec `v:A^N` is constructed by subsequent applica-
tions of `vecx`, `vec0` and `vec1` depending only on the form of the type `:N`. It implies
that two �nvec, with the same type `:A^N`, have necessarily the same decomposition. More-
over, the �nvec constructors are injective, that is, their images are equal if and only if are
equal their arguments. Formally, it is the next theorem.

FINVEC_EQ;;

|- (!a b. vecx a = vecx b <=> a = b) /\

(!x1 x2 y1 y2. vec0 x1 y1 = vec0 x2 y2 <=> x1 = x2 /\ y1 = y2) /\

(!x1 x2 y1 y2 c1 c2.

vec1 x1 y1 c1 = vec1 x2 y2 c2 <=> x1 = x2 /\ y1 = y2 /\ c1 = c2)

This implies that, in practice, two �nvec are equal if and only if their decomposition in the
constructors `vecx`, `vec0` and `vec1` (it is the same for both the vectors) has exactly the
same arguments.

Using the previous theorems, we can implement the automatic recursive procedure to
compute the components of a concrete �nvec. Let's show in details the formal calculation
following the informal one presented before.

Let be `v:A^N` a �nvec and suppose we want to calculate its i-th component `(v $. i):A`

with `i < dimindex(:N)`. Since `:N` is a �ntype, it is constructed, starting from the basic
type `:1`, by subsequent applications of `tybit0` or `tybit1`. Suppose that the last appli-
cation is `tybit1` (for `tybit0` things are similar). Therefore, the type `:N` is of the form
`:(M)tybit1` and it implies that `v:A^(M)tybit1` is of the form `vec1 x y a` for some
`x:A^M`, `y:A^M` and `a:A`. Now, we study the form of `i:num`. We have two possible
cases:

1. `i` is odd, so it is of the form `BIT1 k` with `k < dimindex(:M)`. As shown before,
the odd components of `v` are those of `x` so we restart recursively the procedure on
the term `x $. k`;

2. `i` is even, so it is of the form BIT0 k with `k <= dimindex(:M)`. This produces two
subcases:

2.1 `k = dimindex(:M)`, so it is true that `i = BIT0 (dimindex(:M))` hence, by
VEC1_COMPONENTS_ARITH, we can prove the term

`vec1 x y a $. BIT0 (dimindex(:M)) = a`

concluding the calculation,

2.2 `k < dimindex(:M)` and, for the previous results, the even components of `v` are
those of `y` so, we restart recursively the procedure on the term `y $. k`.

Note that, in case that `:N` is of the form `:(M)tybit0`, we haven't subcase 2.1 while
everything else remains unchanged.

Repeating recursively this procedure we obtain, at the �nal step, necessarily a term of
the form `vecx x $. _0` and it is easily proved to be equal to `x:A`. The procedure just
described is implemented by the conversion `VEC_COMPONENT_CONV`.

As example of a concrete situation, we resume the �nvec v = (v0, v1, v2, v3, v4) ∈ A5. Its
formal representation is

`(vec1 (vec0 (vecx v3) (vecx v1)) (vec0 (vecx v2) (vecx v0)) v4):A^5`

and suppose we want to calculate the term `v $. 3`, that is, the 3-th component of `v`.
First of all, note that this is a well de�ned computation because `3 < dimindex(:5)`. Then,
the �ntype `(:5)` is constructed as `((:1)tybit0)tybit1` and we can consider the index
`3` as `BIT1 (BIT1 _0)`. Hence, following the procedure, we have to calculate the term
`vec0 (vecx v3) (vecx v1) $. BIT1 _0`. Repeating the procedure recursively on the lat-
ter term we obtain the term `vecx v3 $. _0` and, by the theorem VECX_COMPONENT0, it is
proved to be equal to `v3`. Hence, it is proved the term `v $. 3 = v3`, as we expected.
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In order to improve readability, we dedicate a speci�c syntax `<|v0;v1;...;vn|>` for
�nvec, nearest to the informal one. For example, the previous term

`vec1 ((vec0 (vecx v3) (vecx v1)) (vec0 (vecx v2) (vecx v0)) v4)`

is printed, in a more familiar form, as `<|v0; v1; v2; v3; v4|>`. Moreover, as said before,
its components are computed by the conversion VEC_COMPONENT_CONV and we show some
examples.

VEC_COMPONENT_CONV`<|v0; v1; v2; v3; v4|> $. 0`;;

val it : thm = |- <|v0; v1; v2; v3; v4|> $. 0 = v0

VEC_COMPONENT_CONV`<|v0; v1; v2; v3; v4|> $. 2`;;

val it : thm = |- <|v0; v1; v2; v3; v4|> $. 2 = v2

VEC_COMPONENT_CONV`<|v0; v1; v2; v3; v4|> $. 5`;;

Exception: Failure "MP: theorems do not agree".

Note that, if the index of the component that we want to compute is not in the right range
(i.e. it is not less then the dimension of the vector), the conversion fails.

9.4 Finvec and quantum registers

Finally, in the context of quantum registers, the formal �ntype theory allows us to consider
concrete vectors with an arbitrary number of elements, that is, quantum registers with an
arbitrary number of Qbits. Moreover, the �nvec formal theory provides some useful tools to
represent concrete vectors and to calculate their components. Practically, this allows us both to
represent concrete boolean vectors `bs` that characterize the formal basis-states `qbasis bs`

and to compute the state of the i-th Qbit in such states, that is, terms of the form `bs $. i`.
In conclusion, in our formalization of quantum computing, we use the vector datatype at

two di�erent levels, one to specify formally the basis vectors |bs〉, and the other to represent
general states of quantum registers. We remind, in a brief summary, the notations used.

• Bit-strings: elements of type `:bool^N` (�nvec) constructed by subsequent applica-
tions of the constructors `vecx`, `vec0` and `vec1`, depending on the form of the
�ntype `:N`. Such �nvec are written with a special notation `<|b0;b1;...;bn|>, their
(0-based) indexing operator is `$.` and their components are computed automatically
by the conversion VEC_COMPONENT_CONV.

They are used to de�ne the standard computational basis vectors `qbasis bs`. For
example, in our formal setting, the basis vector (of a 2-Qbit register) |01〉 is represented
by `qbasis <|F;T|>`.

This representation is better then that of subsection 9.2.3, involving `vector` to write
concrete boolean vectors, essentially for two reasons. The �rst is that the type `:bool^2`
of the term `<|F;T|>` is inferred, by the HOL Light typechecker, from the form of the
term itself.

The second is that, in this representation, the components of <|F;T|>, that represent the
states of the Qbits of the register in the basis state `qbasis <|F;T|>`, can be computed
automatically by VEC_COMPONENT_CONV. In fact, the theorem

VEC_COMPONENT_CONV `<|F;T|> $. 0`

val it : thm = |- <|F;T|> $. 0 = F

is interpreted informally as: the �rst (0-th) Qbit of a 2-Qbit register, in state |01〉, is in
state |0〉.
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• Quantum registers: elements of type `:complex^(N)multivector`, that is, complex
multivectors indexed by boolean vectors (qvectors). The indexing operator is represented
by the overloaded symbol `$$`. In our setting, the quantum state

|x〉 =
∑
bs

xbs |bs〉

is formalized by an element `x:complex^(N)multivector` and the above formulas is
given by the following theorem

QBASIS_EXPANSION

|- !x. msum (:bool^N) (\bs. x $$ bs % qbasis bs) = x

where `x $$ bs` and `qbasis bs` formalize xbs and |bs〉 respectively.

9.4.1 Enumeration of boolean vectors and linear expansion of quan-

tum registers

In case of sums over �nite types of boolean vectors `:bool^N`, it is important to have
speci�c rewrites to expand them explicitly.

For example, if we specialize the theorem QBASIS_EXPANSION with a normalized vector
x:complex^(2)multivector`, (i.e. we consider a possible state of a register with 2 Qbits) we
obtain the following theorem.

|- msum (:bool^2) (\bs. x $$ bs % qbasis bs) = x

However, we would be able to rewrite, automatically, this linear combination as

x $$ <|F; F|> % qbasis <|F; F|> +

x $$ <|F; T|> % qbasis <|T; F|>) +

x $$ <|T; F|> % qbasis <|F; T|> +

x $$ <|T; T|> % qbasis <|T; T|>.

Since every �ntype is constructed, starting from the base type `:1`, by subsequent applica-
tions of `tybit0` or `tybit1`, it is su�cient to prove a theorem that describes the interaction
of `msum` in these cases.

We give an informal idea. Let be {0, 1}2n+1 an odd-dimensional vector space of boolean
vectors. Following our formal style we can write that 2n + 1 = (n)tybit1, so every vector
v ∈ {0, 1}2n+1 is of the form v = vec1(x, y, a) with x, y ∈ {0, 1}n and a ∈ {0, 1}. Then, for
every function f : {0, 1}2n+1 → Cn, the sum∑

v∈{0,1}2n+1

f(v)

can be split in the following triple sum.∑
x∈{0,1}n

∑
y∈{0,1}n

∑
a∈{0,1}

f(vec1(x, y, a)) (9.4.1)

A similar split holds for even-dimensional vector spaces of boolean vectors, in fact,∑
v∈{0,1}2n

f(v) =
∑

x∈{0,1}n

∑
y∈{0,1}n

f(vec0(x, y)) (9.4.2)

and, �nally, it's clear that∑
v∈{0,1}1

f(v) = f(vecx(0)) + f(vecx(1)) = f(0) + f(1) =
∑

v∈{0,1}

f(v) (9.4.3)

where, with an abuse of notation, we consider {0, 1} and {0, 1}1 as the same.
The previous equations (9.4.2), (9.4.1) and (9.4.3) are proved formally in the following

theorem.
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BOOL_MSUM_FINVEC;;

|- (!f. msum (:bool) f = f F + f T) /\

(!f. msum (:bool^1) f = f <|F|> + f <|T|>) /\

(!f. msum (:bool^(N)tybit0) f =

msum (:bool^N) (\x. msum (:bool^N) (\y. f (vec0 x y)))) /\

(!f. msum (:bool^(N)tybit1) f =

msum (:bool) (\a. msum (:bool^N)

(\x. msum (:bool^N) (\y. f (vec1 x y a)))))

Note that, di�erently from the informal situation, the base cases with the types `:bool`

and `:bool^1` must be considered separately because, from a formal point of view, they are
di�erent types.

Now, simply rewriting BOOL_MSUM_FINVEC, it is possible to expand the previous sum.

REWRITE_CONV[BOOL_MSUM_FINVEC]

`msum (:bool^2) (\bs. x $$ bs % qbasis bs)`;;

val it : thm =

|- msum (:bool^2) (\bs. x $$ bs % qbasis bs) =

(x $$ <|F; F|> % qbasis <|F; F|> +

x $$ <|T; F|> % qbasis <|T; F|>) +

x $$ <|F; T|> % qbasis <|F; T|> +

x $$ <|T; T|> % qbasis <|T; T|>

The conversion QUANTUM_REGISTER_CONV performs automatically such a rewriting as shown
by the following example.

QUANTUM_REGISTER_CONV `x:complex^(3)multivector`;;

val it : thm =

|- x =

x $$ <|F; F; F|> % qbasis <|F; F; F|> +

x $$ <|T; F; F|> % qbasis <|T; F; F|> +

x $$ <|F; T; F|> % qbasis <|F; T; F|> +

x $$ <|T; T; F|> % qbasis <|T; T; F|> +

x $$ <|F; F; T|> % qbasis <|F; F; T|> +

x $$ <|T; F; T|> % qbasis <|T; F; T|> +

x $$ <|F; T; T|> % qbasis <|F; T; T|> +

x $$ <|T; T; T|> % qbasis <|T; T; T|>

The same result is proved for the constants `sum` and `vsum`

BOOL_SUM_FINVEC;;

|- (!f. sum (:bool) f = f F + f T) /\

(!f. sum (:bool^1) f = f <|F|> + f <|T|>) /\

(!f. sum (:bool^(N)tybit0) f =

sum (:bool^N) (\x. sum (:bool^N) (\y. f (vec0 x y)))) /\

(!f. sum (:bool^(N)tybit1) f =

sum (:bool) (\a. sum (:bool^N)

(\x. sum (:bool^N) (\y. f (vec1 x y a)))))

BOOL_VSUM_FINVEC;;

|- (!f. vsum (:bool) f = f F + f T) /\

(!f. vsum (:bool^1) f = f <|F|> + f <|T|>) /\

(!f. vsum (:bool^(N)tybit0) f =

vsum (:bool^N) (\x. sum (:bool^N) (\y. f (vec0 x y)))) /\

(!f. vsum (:bool^(N)tybit1) f =

vsum (:bool) (\a. vsum (:bool^N)

(\x. vsum (:bool^N) (\y. f (vec1 x y a)))))
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because it is necessary to rewrite explicitly the Hermitian product (or likewise the squared
norm). The Hermitian product is a sum of complex numbers whereas the squared norm of a
complex vector is a sum of real numbers, so they are represented formally using the operator
`vsum` and `sum` respectively as shown by the following theorems.

QVECTOR_CDOT

|- !x y. x cdot y =

vsum (:bool^N) (\bs. x $$ bs * cnj (y $$ bs))

QUANTUM_SQUARED_NORM;;

|- !v. norm v pow 2 =

sum (:bool^N) (\bs. norm (v $$ bs) pow 2)

The conversion QUANTUM_CDOT_CONV performs calculations about the Hermitian product in
concrete situations. Firstly, it expands the theorem QVECTOR_CDOT using the previous theorem
BOOL_VSUM_FINVEC and, secondly, it makes the appropriate arithmetic simpli�cations.

For example, we can rewrite explicitly the Hermitian product of two general 2-dimensional
qvectors `x`,`y` of type `:complex^(2)multivector`

QUANTUM_CDOT_CONV `x cdot y`;;

val it : thm =

|- x cdot y = x $$ <|F;F|> * cnj (y $$ <|F;F|>) +

x $$ <|F;T|> * cnj (y $$ <|F;T|>) +

x $$ <|T;F|> * cnj (y $$ <|T;F|>) +

x $$ <|T;T|> * cnj (y $$ <|T;T|>)

or, analogously, we can compute the Hermitian product of two concrete qvectors.

QUANTUM_CDOT_CONV

`(a % qbasis <|F;F|> + b % qbasis <|T;F|>) cdot

(a % qbasis <|F;F|> + b % qbasis <|T;T|>)`;;

val it : thm =

|- (a % qbasis <|F; F|> + b % qbasis <|T; F|>) cdot

(a % qbasis <|F; F|> + b % qbasis <|T; T|>) =

Cx (norm a) pow 2

Now, we have the background to de�ne, in our formal framework, the main logical quantum
gates and then to certify some simple, but signi�cant, quantum algorithms and protocols.



Chapter 10

Quantum logic gates

We have seen the quantum description of the states of a register with n Qbits, let's see
now how these states evolve, giving rise to a quantum computation.

Like a classical computer, a quantum computer is formed from quantum circuits made up of
elementary quantum logic gates. A quantum gate (or quantum logic gate) is a basic quantum
circuit operating on a small number of Qbits. They are the building blocks of quantum
circuits, like classical logic gates are for conventional digital circuits. Unlike many classical
logic gates, quantum logic gates are reversible (the computational process can be performed
in both verses).

In the classical case there is a single logical (non trivial) one bit port, the NOT gate, which
implements the logical negation operation de�ned by a table of truth where 1→ 0 and 0→ 1.
To de�ne a similar operation on a Qbit, we cannot limit ourselves to establish its action on
the basis states |0〉 and |1〉, but we must specify also how a superposition of states |0〉 and |1〉
must be transformed.

Reversible operations that a quantum computer can perform upon a single Qbit (1-Qbit
gates) are represented by the action on the state of the Qbit of any unitary linear operator of the
space of states spanned by {|0〉 , |1〉}. Therefore, a 1-Qbit gate is, in fact, an Hermitian operator
f : C2 → C2. By the identi�cation of ⊗nC with C2n

, in case of a quantum register with n Qbits,
a quantum gate is an Hermitian operator f : C2n → C2n

, that is, in our formal framework, a lin-
ear and unitary function of type `:complex^(N)multivector->complex^(N)multivector`.

Moreover, every quantum gates can be de�ned on the basis states and then extended, by
linearity, to the whole space of states. For example theX (Quantum NOT) gate can be de�ned
as

X |0〉 = |1〉 X |1〉 = |0〉

and then can be extended to C2 by linearity

X(α |0〉+ β |1〉) = αX |0〉+ βX |1〉 = α |1〉+ β |0〉 .

Analogously, in the case of a register, we can de�ne logical gates on the standard computational
basis (|bs〉) and then extend it, by linearity, on the whole space C2n

. Such an extension result
is a basic fact in the theory of linear algebra, but here we consider the form specialized for
our computational basis. In particular, since this basis is identi�ed by the set of strings of n
bits, that is {0, 1}n, given any function f : {0, 1}n → C2n

we can extend it, by linearity, to a
function g : C2n → C2n

de�ned on the standard computational basis as

g(|bs〉) = f(bs) for all bs ∈ {0, 1}n.

This fundamental property is formalized in the following theorem.

CLINEAR_QBASIS_EXTEND

|- !f. ?g. clinear g /\ (!bs. g (qbasis bs) = f bs)

159
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Thanks to this, we can de�ne quantum gates simply giving their action on the computational
basis and then proving the existence of the related linear function de�ned on the whole space
of states.

Although there are many possible quantum gates (every Hermitian operator over the space
of states of a quantum register is an admissible quantum gate), we decided to formalize only
the following gates:

• the quantum NOT gate X (1-Qbit gate),

• the quantum controlled NOT gate cX (2-Qbit gate),

• the quantum SHIFT gate Z (1-Qbit gate),

• the quantum HADAMARD gate H (1-Qbit gate),

• the quantum PHASE-SHIFT gate Rφ (1-Qbit gate)

because they are a simple set of gates that form a set of universal quantum gates, that
is, a set of gates to which any operation possible on a quantum computer can be reduced
( [Nielsen and Chuang, 2000]). In other words, any other unitary operation can be expressed
as a sequence of gates from this set.

10.1 Quantum NOT gate

As said before, the quantum NOT gate (X) is the quantum generalization of the classical
1-Cbit gate NOT. Thus, it is the linear function, over the space of states of a single Qbit, that
acts on the computational basis as

X |i〉 = |¬i〉 for all i ∈ {0, 1} (10.1.1)

where ¬ is the classical negation over booleans that is, ¬0 = 1 and ¬1 = 0.
In the case of a quantum register, with n Qbits, we de�ned the function Xi as the linear

function that applies the X gate on the i-th Qbit of the register (i < n). Practically, it acts
on the computational basis by the following rule

Xi |bs〉 = Xi |b0b1 . . . bi . . . bn−1〉 = |b0b1 . . .¬bi . . . bn−1〉 . (10.1.2)

First of all, we de�ne the auxiliary function `BITS_NOT:num->bool^N->bool^N`

let BITS_NOT = define

`BITS_NOT i (x:bool^N):bool^N =

lambda0 j. if i = j then ~(x$.j) else x$.j`;;

that performs negation on the i-th components of a boolean vector. Since `BITS_NOT` acts on
a boolean �nvec (`bs:bool^N`) depending on a natural number (the index of the component
on which is applied the negation), we can compute its action, with a strategy similar to
that of VEC_COMPONENT_CONV, looking at the parity of the index considered. In fact, by the
construction of �nvec presented in the previous chapter (section 9.3), the following computation
rules holds, for all x, y ∈ {0, 1}n and a ∈ {0, 1}.

BITS_NOT0(vecx(a)) = vecx(¬a)

BITS_NOTi(vec1(x, y, a)) =


vec1(x,BITS_NOT i

2
(y), a), if i is even

vec1(BITS_NOT i−1
2

(x), y, a), if i is odd

vec1(x, y,¬a), if i = 2n

BITS_NOTi(vec0(x, y)) =

vec0(x,BITS_NOT i
2
(y)), if i is even

vec0(BITS_NOT i−1
2

(x), y), if i is odd
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We recall that, in the HOL Light formalism, a natural number i is even (odd) if and only if it is
of the form `BIT0 n` (`BIT1 n`) and, in this case, the numeral `n` is the formal counterpart
of i

2 ( i−1
2 ). Therefore, the latter equations are summarized in the next formal theorem.

ARITH_BITS_NOT_BIN

|- (!x v. BITS_NOT (NUMERAL x) v = BITS_NOT x v) /\

(!x. BITS_NOT _0 (vec x) = vecx (~x)) /\

(!x y. BITS_NOT _0 (vec0 x y) = vec0 x (BITS_NOT _0 y)) /\

(!x y a. BITS_NOT _0 (vec1 x y a) = vec1 x (BITS_NOT _0 y) a) /\

(!i x y.

BITS_NOT (BIT1 i) (vec0 x y) = vec0 (BITS_NOT i x) y /\

BITS_NOT (BIT0 i) (vec0 x y) = vec0 x (BITS_NOT i y)) /\

(!i x y a.

BITS_NOT (BIT1 i) (vec1 x y a) = vec1 (BITS_NOT i x) y a /\

BITS_NOT (BIT0 i) (vec1 x y a) =

(if i = dimindex (:N) then vec1 x y (~a)

else vec1 x (BITS_NOT i y) a))

The function `BITS_NOT` is an involution, that is, if it is applied twice on the same Qbit of
the register, then it works as the identity function as shown by the following HOL theorem.

BITS_NOT_BITS_NOT

|- !bs i. BITS_NOT i (BITS_NOT i bs) = bs

The conversion BITS_NOT_CONV, de�ned essentially by rewriting ARITH_BITS_NOT, computes
terms of the form `BITS_NOT i x` as shown in the following example.

BITS_NOT_CONV `BITS_NOT 1 <|T;T;T;T|>`;;

val it : thm = |- BITS_NOT 1 <|T; T; T; T|> = <|T; F; T; T|>

At this point, the generalized gate Xi is the linear function `QNOT`, if it exists, of type

`:num->complex^(N)multivector->complex^(N)multivector`

such that acts on the standard computational basis as

`QNOT i (qbasis bs) = qbasis (BITS_NOT i bs)`

Using the theorem CLINEAR_QBASIS_EXTEND specialized with the function

`\bs:bool^N. qbasis (BITS_NOT i bs)`

we can easily prove that such a function exists and we can call it `QNOT`. The next statement,
proved in HOL Light, de�nes formally the gate Xi.

QNOT

|- (!i. clinear (QNOT i)) /\

(!i bs:bool^N. QNOT i (qbasis bs) = qbasis(BITS_NOT i bs))

The quantum NOT gate is an involution, in fact it holds that

Xi(Xi(v)) = v for all v ∈ C2n

and, as required by quantum mechanics, it is unitary (i.e. it preserves the Hermitian product)

〈v|w〉 = 〈Xi(v)|Xi(w)〉 .

The related formal theorems proved in HOL Light are the following.

QNOT_QNOT

|- !v i. QNOT i (QNOT i v) = v

UNITARY_QNOT

|- !i w v. v cdot w = QNOT i v cdot QNOT i w
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In order to compute automatically terms of the form `QNOT i x` we write the conversion
QNOT_CONV that acts, essentially, by following this simple strategy:

• the state `x:complex^(N)multivector` is rewritten as linear combination of the stan-
dard computational basis using QUANTUM_REGISTER_CONV,

• the function `QNOT` is computed by linearity on the basis vectors and all the necessary
arithmetic simpli�cations are done,

• the conversion BITS_NOT_CONV is used inside the term to compute all the subterms
`BITS_NOT bs` resulting from the application of `QNOT` on the basis states `qbasis bs`.

We show some examples.

QNOT_CONV `QNOT 0 (x:complex^(4)multivector)`;;

val it : thm =

|- QNOT 0 x =

x $$ <|F; F; F; F|> % qbasis <|T; F; F; F|> +

x $$ <|T; F; F; F|> % qbasis <|F; F; F; F|> +

x $$ <|F; F; T; F|> % qbasis <|T; F; T; F|> +

x $$ <|T; F; T; F|> % qbasis <|F; F; T; F|> +

x $$ <|F; T; F; F|> % qbasis <|T; T; F; F|> +

x $$ <|T; T; F; F|> % qbasis <|F; T; F; F|> +

x $$ <|F; T; T; F|> % qbasis <|T; T; T; F|> +

x $$ <|T; T; T; F|> % qbasis <|F; T; T; F|> +

x $$ <|F; F; F; T|> % qbasis <|T; F; F; T|> +

x $$ <|T; F; F; T|> % qbasis <|F; F; F; T|> +

x $$ <|F; F; T; T|> % qbasis <|T; F; T; T|> +

x $$ <|T; F; T; T|> % qbasis <|F; F; T; T|> +

x $$ <|F; T; F; T|> % qbasis <|T; T; F; T|> +

x $$ <|T; T; F; T|> % qbasis <|F; T; F; T|> +

x $$ <|F; T; T; T|> % qbasis <|T; T; T; T|> +

x $$ <|T; T; T; T|> % qbasis <|F; T; T; T|>

QNOT_CONV `QNOT 1 (a % qbasis <|T;F;T|> + b % qbasis <|T;T;T|>)`;;

val it : thm =

|- QNOT 1 (a % qbasis <|T; F; T|> + b % qbasis <|T; T; T|>) =

a % qbasis <|T; T; T|> + b % qbasis <|T; F; T|>

10.1.1 Quantum Controlled NOT gate

The quantum controlled NOT gate (cX) derives from the X gate but di�ers from this
because it is a 2-Qbit port instead of a 1-Qbit port. The cX gate applies the X gate on a
Qbit (called target) depending on the state of another Qbit (called control). If the state of
the control is |1〉, then the NOT operation is performed on the target. Otherwise, nothing is
done. Obviously, cX is a linear operator and, by this de�nition, acts on the 2-Qbits standard
computational basis as follows (we consider the �rst Qbit as the control and the second as the
target)

cX |ij〉 =

{
|ij〉 , if i = 0

|i¬j〉 , if i = 1
∀i, j ∈ {0, 1}

therefore

cX |00〉 = |00〉 cX |01〉 = |01〉
cX |10〉 = |11〉 cX |11〉 = |10〉

Generalizing to an arbitrary quantum register with n Qbits, the gate cXij (with i, j < n and
i 6= j) applies the cX gate to the couple of the i-th (control) and j-th (target) Qbit of the
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register. Hence, we have that cXij acts on the standard computational basis (supposing i < j)
as follows.

cXij |bs〉 = cXij |b0 . . . bi . . . bj . . . bn−1〉 =

{
|b0 . . . bi . . . bj . . . bn−1〉 , if bi = 0

|b0 . . . bi . . .¬bj . . . bn−1〉 , if bi = 1
(10.1.3)

Things are similar if j < i. Again using CLINEAR_QBASIS_EXPAND, we prove the existence of
a linear function, that we call `QCNOT`, that acts on the standard basis vectors according to
equation (10.1.3).

QCNOT

|- (!i j. clinear (QCNOT i j)) /\

(!i j bs. QCNOT i j (qbasis bs) =

qbasis (if bs $. i then BITS_NOT j bs else bs))

Also `QCNOT` is a unitary transformation, that is, 〈v|w〉 = 〈cXij(v)|cXij(w)〉 for all i 6= j ∈
{0, · · · , n− 1} and v,w ∈ C2n

.

UNITARY_QCNOT : thm =

|- !i j v w. i < dimindex (:N) /\ j < dimindex (:N) /\ ~(i = j)

==> v cdot w = QCNOT i j v cdot QCNOT i j w

The related conversion QCNOT_CONV performs calculations about it, that is, computes term of
the form `QNOT i j v`. We give some examples.

QCNOT_CONV `QCNOT 2 4 (qbasis <|F;T;T;F;T|>)`;;

val it : thm =

|- QCNOT 2 4 (qbasis <|F; T; T; F; T|>) = qbasis <|F; T; T; F; F|>

QCNOT_CONV `QCNOT 2 1 (a % qbasis <|F;T;T|> + b % qbasis <|T;T;F|>)`;;

val it : thm =

|- QCNOT 2 1 (a % qbasis <|F; T; T|> + b % qbasis <|T; T; F|>) =

b % qbasis <|T; T; F|> + a % qbasis <|F; F; T|>

10.2 Quantum SHIFT gate

The quantum SHIFT gate (Z), or Pauli-Z gate, is a 1-Qbit gate that maps the base state
|1〉 to − |1〉 and leaves the base state |0〉 unchanged. Therefore, by linearity, it acts on a general
1-Qbit state as

Z(α |0〉+ β |1〉) = α |0〉 − β |1〉 .

The generalized gate Zi performs, again by linearity, the Z gate on the i-th Qbit of a quantum
register with n > i Qbits. Hence, on the standard computational basis it acts as follows.

Zi |bs〉 = Zi |b0 . . . bi . . . bn−1〉 =

{
|bs〉 , if bi = 0

− |bs〉 , if bi = 1
(10.2.1)

Following the latter equation, the related formalization can be easily given, without any aux-
iliary function, proving the following theorem.

QSHIFT

|- (!i. clinear (QSHIFT i)) /\

(!i bs. QSHIFT i (qbasis bs) =

(if bs $. i then --qbasis bs else qbasis bs))

The existence of the linear function `QSHIFT` of the latter theorem is proved again by spe-
cializing CLINEAR_QBASIS_EXTEND with the following function over boolean vectors.
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`\bs:bool^N. if bs $. i then --qbasis bs else qbasis bs`

As before, the Zi gate is unitary in fact, it holds that

〈v|w〉 = 〈Zi(v)|Zi(w)〉 for alli ∈ {0, · · · , n− 1} and v, w ∈ C2n

and it is an involution, that is,

Zi(Zi(v)) = v for all v ∈ C2n

.

The related formal theorems are the following.

UNITARY_QSHIFT

|- !i w v. v cdot w = QSHIFT i v cdot QSHIFT i w

QSHIFT_QSHIFT

|- !i v. QSHIFT i (QSHIFT i v) = v

The conversion QSHIFT_CONV performs calculations about `QSHIFT` by following a strategy
very similar to that explained for QNOT_CONV, except for the use of BITS_NOT_CONV since
`BITS_NOT` doesn't appear in the de�nition of `QSHIFT`. We give some examples.

QSHIFT_CONV `QSHIFT 0 (x:complex^(2)multivector)`;;

val it : thm =

|- QSHIFT 0 x = x $$ <|F; F|> % qbasis <|F; F|> +

--(x $$ <|T; F|>) % qbasis <|T; F|> +

x $$ <|F; T|> % qbasis <|F; T|> +

--(x $$ <|T; T|>) % qbasis <|T; T|>

QSHIFT_CONV `QSHIFT 2 (a % qbasis <|F;T;T|> - b % qbasis <|T;T;T|>)`;;

val it : thm =

|- QSHIFT 2 (a % qbasis <|F; T; T|> - b % qbasis <|T; T; T|>) =

--a % qbasis <|F; T; T|> + b % qbasis <|T; T; T|>

The Z gate is a particular case of a more general gate, the quantum phase SHIFT gate
(Rφ), that, given a real number φ, maps again |0〉 in |0〉 and |1〉 in eiφ |1〉. On a general 1-Qbit
state we have that

Rφ(α |0〉+ β |1〉) = α |0〉+ βeiφ |1〉

and, in the case of a register with n Qbits, it acts on the basis vectors by the following rule.

R(i,φ) |bs〉 = R(i,φ) |b0 . . . bi . . . bn−1〉 =

{
|bs〉 , if bi = 0

eiφ |bs〉 , if bi = 1
(10.2.2)

Note that Zi = R(i,π) for all i ∈ {0, . . . n− 1, }.
We de�ne formally a more general function

`QPHASE_SHIFT:num->complex->complex^(N)multivector->complex^(N)multivector`

as before

QPHASE_SHIFT

|- (!i z. clinear (QPHASE_SHIFT i z)) /\

(!i z bs. QPHASE_SHIFT i z (qbasis bs) =

(if bs $. i then cexp (ii * z) % qbasis bs else qbasis bs))

and then we prove that it is e�ectively an admissible quantum gate (i.e. a unitary transforma-
tion) in the case that `z:complex` is real, that is, it is of the form `Cx x` for some `x:real`.
The HOL theorem is the following.
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UNITARY_QPHASE_SHIFT

|- !i x w v.

v cdot w = QPHASE_SHIFT i (Cx x) v cdot QPHASE_SHIFT i (Cx x) w

Again, the conversion QPHASE_SHIFT_CONV performs calculations automatically as follows.

QPHASE_SHIFT_CONV `QPHASE_SHIFT 2 (Cx(&2))

(qbasis <|T;T;F|> + qbasis <|T;F;T|>)`;;

val it : thm =

|- QPHASE_SHIFT 2 (Cx (&2)) (qbasis <|T; T; F|> + qbasis <|T; F; T|>) =

qbasis <|T; T; F|> + cexp (ii * Cx (&2)) % qbasis <|T; F; T|>

QPHASE_SHIFT_CONV `QPHASE_SHIFT 2 (Cx(pi))

(qbasis <|T;T;F|> + qbasis <|T;F;T|>)`;;

val it : thm =

|- QPHASE_SHIFT 2 (Cx pi) (qbasis <|T; T; F|> + qbasis <|T; F; T|>) =

qbasis <|T; T; F|> + --qbasis <|T; F; T|>

10.3 Quantum HADAMARD gate

The quantum HADAMARD gate (H) is a 1-Qbit linear transformation that maps the base
states |0〉 and |1〉 in superposed states with equal coe�cients. More precisely, it acts on the
1-Qbit basis states by the following rules

H |0〉 =
1√
2

(|0〉+ |1〉)

H |1〉 =
1√
2

(|0〉 − |1〉)

and its generalization Hi, to a quantum register with n Qbits, performs the H gate on the
i-th Qbit (for all i < n). Thus, for the standard computational basis |bs〉, we have that

Hi |bs〉 = Hi |b0 . . . bi . . . bn−1〉 =

 1√
2
(|b0 . . . 0 . . . bn−1〉+ |b0 . . . 1 . . . bn−1〉), if bi = 0

1√
2
(|b0 . . . 0 . . . bn−1〉 − |b0 . . . 1 . . . bn−1〉), if bi = 1

(10.3.1)
De�ning the auxiliary function QSET(i,c) : {0, 1}n → {0, 1}n, that sets to c ∈ {0, 1} the value
of the i-th bit of a string with n bits, that is,

QSET(i,c)(b0 . . . bi . . . bn−1) = b0 . . . c . . . bn−1 for all c ∈ {0, 1}, i < n (10.3.2)

we can rewrite equation (10.3.1) as

Hi |bs〉 = Hi |b0 . . . bi . . . bn−1〉 =

 1√
2
(|QSET(i,0)(bs)〉+ |QSET(i,1)(bs)〉), if bi = 0

1√
2
(|QSET(i,0)(bs)〉 − |QSET(i,1)(bs)〉), if bi = 1

(10.3.3)
First of all, we formalize the auxiliary function QSET giving the following formal de�nition.

let QSET = define

`QSET i (c:bool) (x:bool^N):bool^N =

lambda0 j. if i = j then c else x$.j`;;

As in the case of BITS_NOT, the function QSET acts on boolean �nvec depending on the
index i ∈ N, thus the computation is performed looking at the parity of such index. This
implies that, for all x, y ∈ {0, 1}n and a ∈ {0, 1}, properties similar to those of BITS_NOT in
section 10.1 hold.
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QSET(0,c)(vecx(c)) = vecx(c)

QSET(0,c)(vec1(x, y, a)) =


vec1(x,QSET( i

2 ,c)
(y), a), if i is even

vec1(QSET( i−1
2 ,c)(x), y, a), if i is odd

vec1(x, y, c), if i = 2n

QSET(0,c)(vec0(x, y)) =

vec0(x,QSET( i
2 ,c)

(y)), if i is even

vec0(QSET( i−1
2 ,c)(x), y), if i is odd

As in the case of `BITS_NOT`, the latter equations are formalized in the following HOL theorem,
in the same way of the previous ARITH_BITS_NOT_BIN.

ARITH_QSET_BIN : thm =

|- (!x c v. QSET (NUMERAL x) c v = QSET x c v) /\

(!x c. QSET _0 c (vecx x) = vecx c) /\

(!x y c. QSET _0 c (vec0 x y) = vec0 x (QSET _0 c y)) /\

(!c x y a.

QSET _0 c (vec1 x y a) = vec1 x (QSET _0 c y) a) /\

(!i c x y.

QSET (BIT1 i) c (vec0 x y) = vec0 (QSET i c x) y /\

QSET (BIT0 i) c (vec0 x y) = vec0 x (QSET i c y)) /\

(!i c x y a.

QSET (BIT1 i) c (vec1 x y a) = vec1 (QSET i c x) y a /\

QSET (BIT0 i) c (vec1 x y a) =

(if i = dimindex (:N) then vec1 x y c else vec1 x (QSET i c y) a))

The conversion QSET_CONV is de�ned to compute terms of the form `QSET i v` and the
strategy that it follows is similarly to that of BITS_NOT_CONV, it rewrites essentially the theorem
ARITH_QSET_BIN. We show an example.

QSET_CONV `QSET 3 F <|T;T;T;T|>`;;

val it : thm = |- QSET 3 F <|T; T; T; T|> = <|T; T; T; F|>

Using the function `QSET`, we can formalize the HADAMARD gate proving, by specializing
again CLINEAR_QBASIS_EXTEND, the existence of a linear function `QHADAMARD` that satisfy
de�nition (10.3.3). The formal statement, proved in HOL Light, is the following.

QHADAMARD

|- (!i. clinear (QHADAMARD i)) /\

(!i bs. QHADAMARD i (qbasis bs) =

inv (Cx (sqrt (&2))) %

(if bs $. i then qbasis (QSET i F bs) - qbasis (QSET i T bs)

else qbasis (QSET i F bs) + qbasis (QSET i T bs)))

By the properties of `QSET`, we can prove formally that the latter is a unitary involution.

QHADAMARD_QHADAMARD

|- !i v. i < dimindex (:N)

==> QHADAMARD i (QHADAMARD i v) = v

UNITARY_QHADAMARD

|- !i w v. i < dimindex (:N)

==> v cdot w = QHADAMARD i v cdot QHADAMARD i w

Moreover, the conversion QHADAMARD_CONV performs calculations about theH gate by following
a strategy very similar to that explained for QNOT_CONV, except for the use of QSET_CONV,
instead of BITS_NOT_CONV, at the last step of the procedure. We show some examples of
computations.
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QHADAMARD_CONV `QHADAMARD 0 (qbasis <|F;T|>)`;;

val it : thm =

|- QHADAMARD 0 (qbasis <|F; T|>) =

inv (Cx (sqrt (&2))) % qbasis <|F; T|> +

inv (Cx (sqrt (&2))) % qbasis <|T; T|>

QHADAMARD_CONV `QHADAMARD 0 (qbasis <|F;T|> + qbasis <|T;T|>)`;;

val it : thm =

|- QHADAMARD 0 (qbasis <|F; T|> + qbasis <|T; T|>) =

inv (Cx (sqrt (&2))) % qbasis <|F; T|> +

inv (Cx (sqrt (&2))) % qbasis <|T; T|> +

inv (Cx (sqrt (&2))) % qbasis <|F; T|> -

inv (Cx (sqrt (&2))) % qbasis <|T; T|>

10.4 Collapsed states and the quantum BORN RULE

The last operation that we deal with is measurement. This is the only one that can't be
represented by an Hermitian operator because it involves the collapse of the state subjected
to measurement.

From the third postulate of quantum mechanics we have that, given an arbitrary 1-Qbit
state

|ψ〉 = α |0〉+ β |1〉
with |α|2 + |β|2 = 1, the probabilities that, after a measurement, the Qbit is in state |0〉 or
|1〉 are given by |α|2 and |β|2 respectively. In other words, we can say that the state of the
Qbit collapses, after the measurement, in state |0〉 with probability |α|2 and in state |1〉 with
probability |β|2.

The same holds in case of a quantum register with n Qbits. Given an arbitrary state of
the register

|ψ〉 =
∑
bs

αbs |bs〉

with the normalization condition ∑
bs

|αbs|2 = 1

we have that, for every basis state |bs〉 = |b0 . . . bn−1〉, the squared modulus |αbs|2 represents
the probability that the register is in state |bs〉 (i.e. the i-th Qbit of the register is in state |bi〉
for all i = 0 . . . n− 1) after a measurement on the whole register.

Moreover, given a register in the previous state |ψ〉, we can make a measurement only on a
single Qbit. Clearly, if the result of such a measurement is b ∈ {0, 1} then the whole register,
immediately after the measurement, collapses in the renormalized state

|ψ〉bi=b =

∑
bs∈{b0...bi...bn−1 | bi=b}

αbs |bs〉√ ∑
bs∈{b0...bi...bn−1 | bi=b}

|αbs|2
. (10.4.1)

that is a superposition of the basis states in which the i-th Qbit is in state |b〉. The question
arises: which is the probability that it happens?

In this case, referring to the formalism of the density operator of quantum mechanics
(whose presentation is far from the goal of this thesis) we can consider the event that after the
measurement on the i-th Qbit, such a Qbit is in state |b〉, as the union of all the incompatible
events that after a measurement on the whole register, it is in state |bs〉 such that bi = b. Each
of the latter have probability equal to |αbs|2 so, by basic probability theory1, the probability

1The probability of an union of incompatible events is the sum of the related probabilities P (∪a∈A) =∑
a∈A

P (a).
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considered is
P (|ψ〉 , bi = b) =

∑
bs∈{b0...bi...bn−1 | bi=b}

|αbs|2. (10.4.2)

Since the normalization condition of quantum states and the fact that bi = b or bi = ¬b, it is
obvious that

P (|ψ〉 , bi = b) + P (|ψ〉 , bi = ¬b) =
∑
bs

|αbs|2 = 1. (10.4.3)

As example, for a generic 2-Qbits state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

the probability that, after a measurement on the �rst Qbit (0-th Qbit), it is in state |0〉 is

P (|ψ〉 , b0 = 0) = |α00|2 + |α01|2

since only the basis states |00〉 and |01〉 satisfy the condition b0 = 0. If the result of the
measurement on the �rst Qbit is 0 , then, immediately after the measurement, the whole
system collapses in the state

|ψ〉b0=0 =
α00 |00〉+ α01 |01〉√
|α00|2 + |α01|2

.

In our formal framework, the functions

`QUANTUM_COLLAPSE:num->bool->complex^(N)multivector->complex^(N)multivector`

`BORN_RULE:num->bool->complex^(N)multivector->real`

are de�ned such that, for every state of a quantum register `v:complex^(N)multivector`,
index `i:num` and boolean `c:bool`, the term

`QUANTUM_COLLAPSE i c v:complex^(N)multivector`

represents the collapsed state of the register after that the measurement, on the Qbit indexed
by `i:num`, has given the result `c:bool`, whereas the term

`BORN_RULE i c v:real`

is the probability that the state `v` collapses in the state `QUANTUM_COLLAPSE i c v` after the
measurement. Therefore, following equations (10.4.1) and (10.4.2) respectively, their formal
de�nitions are given as follows. The constant `mat 0` represents the zero vector of a complex
vector space.

let QUANTUM_COLLAPSE = new_definition

`QUANTUM_COLLAPSE i c (v:complex^(N)multivector) =

msum (:bool^N) (\bs. if bs $. i = c then v$$bs % qbasis bs else mat 0)`;;

let BORN_RULE = define

`BORN_RULE i c (v:complex^(N)multivector) =

sum (:bool^N) (\bs. if bs$.i = c then norm (v$$bs) pow 2 else &0)`;;

Property (10.4.3) is formalized by the following theorem.

BORN_RULE_CASES

|- !i c v.

norm v pow 2 = &1 ==> BORN_RULE i c v + BORN_RULE i (~c) v = &1

Note that the collapsed state `QUANTUM_COLLAPSE i c v` is not normalized. It is convenient
because, if we have to simulate formally subsequent collapses (i.e. subsequent measurements on
di�erent Qbits), we can normalize directly at the end of the process simplifying calculations.
In order to do this, we de�ne a service function `quantum_normalizer` that we use to re-
normalize states.
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let quantum_normalizer = new_definition

`quantum_normalizer (v:complex^(N)multivector) =

inv(Cx(norm(v))) % v`;;

The conversions QUANTUM_COLLAPSE_CONV and BORN_RULE_CONV are de�ned to compute
automatically the collapsed states and their relative probabilities. The previous example about
a 2-Qbit register can be easily formalized, without re-normalization, in one shot.

QUANTUM_COLLAPSE_CONV `QUANTUM_COLLAPSE 0 F (x:complex^(2)multivector)`;;

val it : thm =

|- QUANTUM_COLLAPSE 0 F x =

x $$ <|F; F|> % qbasis <|F; F|> +

x $$ <|F; T|> % qbasis <|F; T|>

BORN_RULE_CONV `BORN_RULE 0 F (x:complex^(2)multivector)`;;

val it : thm =

|- BORN_RULE 0 F x =

norm (x $$ <|F; F|>) pow 2 + norm (x $$ <|F; T|>) pow 2

Finally, the renormalized collapsed state, in this example, is represented by the following term.

`quantum_normalizer (QUANTUM_COLLAPSE 0 F (x:complex^(2)multivector))`

Note that we can compute also the collapsed state of a register after a measurement on
more then one Qbit by iterating the function `QUANTUM_COLLAPSE`. For instance, the term

`QUANTUM_COLLAPSE 0 F (QUANTUM_COLLAPSE 1 T (x:complex^(N)multivector))`

formalizes the collapsed state of a register with n (grater than 2) Qbits after two measure-
ments, the �rst on the 1-th Qbit and the second on the 0-th Qbit, that yield the results
|1〉 and |0〉 respectively. Again, such a state must be renormalized by using the function
`quantum_normalizer`. In the previous case of a generic state `x:complex^(2)multivector`
of a 2-Qbit register, the latter can be proved to be equal to the basis state |01〉, that is, formally,
`qbasis <|F;T|>`. However, if the number of the Qbits subjected to the measurements is
large this representation becomes cumbersome, so we have to develop a more general one.

Generalizing equations (10.4.1) and (10.4.2) to the case of a measurement on an arbitrary
subset A ⊂ {0, . . . , n − 1} of the n Qbits of the register (i.e. a measurement on all the Qbits
indexed by the element of A) it holds that the initial state |ψ〉 =

∑
bs

αbs |bs〉 collapses in the

�nal state

|ψ〉(∧a∈A ba=ma) =

∑
bs∈{b0...bi...bn−1 | ba=ma ∀a∈A}

αbs |bs〉√ ∑
bs∈{b0...bi...bn−1 | ba=ma ∀a∈A}

|αbs|2
(10.4.4)

with probability

P (|ψ〉 ,
∧
a∈A

ba = ma) =
∑

bs∈{b0...bi...bn−1 | ba=ma ∀a∈A}

|αbs|2 (10.4.5)

where ma ∈ {0, 1} is the result of the measurement, on the a-th Qbits of the register, for all
a ∈ A. Formally we de�ne

let MULTI_QUANTUM_COLLAPSE = define

`MULTI_QUANTUM_COLLAPSE (n:num^(M)) (m:bool^M) (v:complex^(N)multivector) =

msum (:bool^N) (\bs. if (P_NUMSEG (dimindex(:M) - 1)

(\i. bs $.(n$.i) = m $.i)) then v$$bs % qbasis bs

else mat 0)`;;
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let MULTI_BORN_RULE = define

`MULTI_BORN_RULE (n:num^(M)) (m:bool^M) (v:complex^(N)multivector) =

sum (:bool^N) (\bs. if (P_NUMSEG (dimindex(:M) - 1)

(\i. bs $.(n$.i) = m $.i)) then norm(v$$bs) pow 2

else &0)`;;

where `v` is the initial state of the register (before the measurement) and the vectors `n:num^M,
`m:bool^M` formalize the subset A and the vector of the results ma ∈ {0, 1} respectively. The
function P_NUMSEG is a function over predicates on natural numbers. Given a predicate P : N→
{0, 1} and a natural number n ∈ N it returns the conjunction P (n) ∧ P (n − 1) ∧ · · · ∧ P (0).
Formally it has the following de�nition.

let P_NUMSEG = define

`(!P:num->bool. P_NUMSEG 0 P = P 0) /\

(!P n. P_NUMSEG (SUC n) P = (P (SUC n) /\ (P_NUMSEG n P)))`;;

Therefore, the selection condition

`(P_NUMSEG (dimindex(:M) - 1) (\i. bs $.(n$.i) = m $.i))`

in the formal de�nition of MULTI_QUANTUM_COLLAPSE and MULTI_BORN_RULE, means that every
component of `bs`, indexed by the i-th element of `n:num^M`, is equal to the i-th element of
the vector of the results of the measurements `m:bool^M`. In fact, such a condition selects
the elements of the set {b0 . . . bi . . . bn−1 | ba = ma ∀a ∈ A} where the set of the indexes A is
represented by `n:num^M` and {ma}a∈A is coded by `m:bool^M`. Obviously, it doesn't make
sense in case that the size of `:M` is greater then the size of `:N`. Moreover, note again that
the collapsed state is not renormalized. It happens, essentially, for the same reasons explained
above in case of a measurement on a single Qbit.

As before, two conversions are de�ned to perform, automatically, computations of term
like `MULTI_QUANTUM_COLLAPSE n m v` or `MULTI_BORN_RULE n m v`. For example, in case
of a 3-Qibit register in a generic state

|ψ〉 =α000 |000〉+ α001 |001〉+ α010 |010〉+ α011 |011〉+
α100 |100〉+ α101 |101〉+ α110 |110〉+ α111 |111〉

we have that the probability that a measurement on the �rst two Qbits (0-th and 1-th Qbits)
gives the results 0 and 1 respectively is

P (|ψ〉 , b0 = 0 ∧ b1 = 1) = |α010|2 + |α011|2

and the related collapsed state is

|ψ〉(b0=0∧b1=1) =
α010 |010〉+ α011 |011〉√
|α010|2 + |α011|2

.

Using our conversions on a formal state `x:complex^(3)multivector`, we get automatically
the HOL theorems that formalize, less then normalization, the latter two equations.

MULTI_BORN_RULE_CONV `MULTI_BORN_RULE <|0;1|> <|F;T|> x`;;

val it : thm =

|- MULTI_BORN_RULE <|0; 1|> <|F; T|> x =

norm (x $$ <|F; T; F|>) pow 2 + norm (x $$ <|F; T; T|>) pow 2

MULTI_QUANTUM_COLLAPSE_CONV `MULTI_QUANTUM_COLLAPSE <|0;1|> <|F;T|> x`;;

val it : thm =

|- MULTI_QUANTUM_COLLAPSE <|0; 1|> <|F; T|> x =

x $$ <|F; T; F|> % qbasis <|F; T; F|> +

x $$ <|F; T; T|> % qbasis <|F; T; T|>



Chapter 11

Formalizing some fundamental

quantum protocols and algorithms

As said in the introduction of this part of the thesis, quantum computations are imple-
mented by quantum circuits. Ultimately, a quantum circuit is an operator C that transforms
the input state |ψi〉 ∈ C2n

, of a quantum register, in the output state C(|ψi〉) = |ψf 〉 ∈ C2n

. If
C doesn't involve measurements, it is an Hermitian operator C2n → C2n

and can be formally
represented by a Hermitian matrix. Otherwise, if we want to deal also with measurement,
we have to consider also operators that are not Hermitian, since it is the only one operation,
among those presented in the previous chapter, that is not unitary.

However, this is not a convenient representation because it hides the compositional nature
of the circuit. In fact, in quantum computing, circuits are represented by diagrams where the
basic logic gates are assembled until the whole circuit is created as shown in the example of
teleportation (8.3.1) presented previously.

In our formal setting, a circuit C is represented by a HOL term of type

`:complex^(N)multivector->complex^(N)multivector`

and, following the informal style it is constructed, compositionally, by subsequent applications
of the formal logic gates (including the measurement operator, that is, our formal collapse
operator) de�ned in the previous chapter.

In the next section, we explain the symbolism used drawing informal quantum circuit
diagrams and, after, we focus on three fundamental quantum circuits and the related formal-
izations.

11.1 Circuit diagrams

It is the practice in quantum computer science to represent the action of a sequence of
gates on n Qbits by a circuit diagram. The initial state of the register appears on the left, the
�nal state on the right, and the gates themselves in the central part of the �gure. For example,
a circuit diagram representing the action, on a single Qbit, of the 1-Qbit gate u is drawn as

|ψ〉 u u |ψ〉 (11.1.1)

where |ψ〉 is the initial state of the Qbit, u is the gate and u |ψ〉 is the resulting �nal state.
If the register has more than one Qbit, we can apply di�erent gates to di�erent Qbits. For
example, in the simple case of a register with 2 Qbits we can apply the u gate to the �rst and
the v gate to the second. The corresponding diagram is the following.

|q0〉 u u |q0〉

|q1〉 v v |q1〉

(11.1.2)

171
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Moreover, we represent the action of a 2-Qbit gate W, applied to the previous register, by the
diagram

|q0〉

W |ψf 〉

|q1〉


(11.1.3)

where |ψf 〉 = W(|q0〉 |q1〉) is the �nal state of the 2-Qbit register after the application of
the gate W. However, it is well known that, in the case of an input with two Qbits in an
entangled state, we can neither operate on the states of the individual Qbits as in (11.1.2), nor
represent the action of a 2 Qbits port as in (11.1.3). This happens because such states must
be considered as one, in fact, they cannot be written as the tensor product of the states of the
single Qbits. In these cases, we �x representation (11.1.3) in this way

W|ψi〉 |ψf 〉




(11.1.4)

where |ψi〉 is the initial entangled state in input and, as before, |ψf 〉 = W |ψi〉 is the output
state. The generalization to registers with n Qbits is analogous to diagram (11.1.4).

The gates formalized in the previous chapter are all 1-Qbit gate except the Quantum
controlled NOT gate. In the standard quantum computing theory, they are represented as
follows.

• Quantum NOT is represented by the symbol X

|ψ〉 X X |ψ〉 (11.1.5)

• Quantum SHIFT is represented by the symbol Z

|ψ〉 Z Z |ψ〉 (11.1.6)

• Quantum HADAMARD is represented by the symbol H

|ψ〉 H H |ψ〉 (11.1.7)

• Quantum controlled NOT is represented as cX by the diagram

|q0i
〉 X |q0f

〉

|q1〉 • |q1〉

(11.1.8)

where |q0i
〉 and |q0f

〉 are the initial and �nal state of the target Qbit (q0). The �nal
states |q0f

〉 depends on the state |q1〉 of the control Qbit (q1).

• Measurement is represented by the symbol in the following diagram

|q〉
m

(11.1.9)

where m ∈ {0, 1} is the result of the measurement and the double line means that, after
the measurement, the Qbits is collapsed in the classical state |m〉.
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In this settings, for example, the circuit diagram

|q0〉 H •

|q1〉 X

represents the subsequent action of the quantum HADAMARD gate (on the �rst Qbit q0)
and the quantum controlled NOT gate (with target q1 and control q0) on a register with
2 Qbits. Such a circuit is very used in quantum computer science because it generates the
four maximally entangled states of two Qbits, called Bell's states, depending on the value of
q0, q1 ∈ {0, 1}. In fact, given two Qbits |qo〉,|q1〉 in one of the basis states (i.e. q0, q1 ∈ {0, 1}),
then we have that

|q0〉 H •
|βq0q1〉

|q1〉 X


(11.1.10)

where βq0q1 is one of the four Bell's states.

β00 =
|00〉+ |11〉√

2
β01 =

|01〉+ |10〉√
2

β10 =
|00〉 − |11〉√

2
β11 =

|01〉 − |10〉√
2

(11.1.11)

The function `bell_state:bool->bool->complex^(N)multivector` formalizes the previous
states.

let bell_state = define

`bell_state F F = Cx(inv(sqrt(&2))) % (qbasis <|F;F|> + qbasis <|T;T|>) /\

bell_state F T = Cx(inv(sqrt(&2))) % (qbasis <|T;F|> + qbasis <|F;T|>) /\

bell_state T F = Cx(inv(sqrt(&2))) % (qbasis <|F;F|> - qbasis <|T;T|>) /\

bell_state T T = Cx(inv(sqrt(&2))) % (qbasis <|F;T|> - qbasis <|T;F|>)`;;

Such a computational states doesn't have any classical counterpart, so they are used to give
rise to phenomena which are paradoxical from a classical point of view, but which express the
full potential of quantum computing.

Now, we have the right background to present our formalization of some fundamental
quantum algorithms and protocols. More precisely, the Quantum teleportation and Superdense
coding protocols and the Deutsch's algorithm.

11.2 Quantum teleportation protocol

The quantum teleportation protocol is a protocol that permits one to transmit quantum
information (i.e. the exact state of a Qbit) from one location to another, with the help of
classical communication. More precisely, it is not a form of transportation, as one can image
by the name teleportation, but of communication: it provides a way of transporting a Qbit
from one location to another without having to move a physical particle along with it.

To understand the kind of problems that teleportation can solve, we can imagine the
following situation. A person, that we will call Alice, has to let know the state of a Qbit

|φ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1 (11.2.1)

to another person that we will call Bob. Alice does not know the amplitudes α and β and
for the no-cloning theorem1 she can't make a copy of the state |φ〉. In addition, Alice can

1The no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown
quantum state
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send to Bob only classical information, that is, the values 0 and 1 of a classic bit. In this
situation, from a classical point of view, it would seem impossible to transmit the Qbit to Bob.
However, it is possible using the properties of the entangled states, in particular the Bell's
state presented before. The fundamental hypothesis are:

• Alice and Bob share an entangled couple of Qbits, in state |β00〉, generated previously,

• Alice and Bob can operate on their respective Qbits of such a couple.

The following circuit, where the �rst two lines represent the Qbits used by Alice (the �rst
is the Qbit that has to be transmitted, the second is the Alice's Qbit entangled with the Bob's
one) and the third represent the Qbit of Bob, describes the protocol.

|φ〉 • H
m

X
n

|β00〉

Xn Zm |φ〉



(11.2.2)

Given the state (11.2.1) that Alice wants to transmit, the input of the circuit is the 3-Qbit
register in state |ψ0〉 = |φ〉 |β00〉 that is, in computational basis,

|ψ0〉 =
1√
2

(α |000〉+ α |011〉+ β |100〉+ β |111〉).

Alice combines |φ〉 with her half of the entangled pair and then she measures her two Qbits
after applying the quantum CNOT and HADAMARD gates. She sends to Bob, via a classical
communication channel, the two classical values (m,n ∈ {0, 1}) obtained after the measure-
ments. At this point, Bob will be able to rebuilt the original state |φ〉, using the properties of
entangled states.

More in details, after that Alice has applied the CNOT gate to her Qbits the whole register
is in state

|ψ1〉 = cX01 |ψ0〉 =
1√
2

(α |000〉+ α |011〉+ β |110〉+ β |101〉)

and then, the application of the HADAMARD gate on the �rst Qbit leads to the state

|ψ2〉 = H0 |ψ1〉 =
1

2
(α |000〉+ α |100〉+ α |011〉+ α |111〉+

β |010〉 − β |110〉+ β |001〉 − β |101〉).
(11.2.3)

At this point, after the Alice's measurements on her Qbits, the state of the whole register
could collapse in one of the four following states:

• α |000〉+ β |001〉 if the results are n = m = 0,

• α |100〉 − β |101〉 if the results are m = 1 and n = 0,

• α |011〉 − β |010〉 if the results are m = 0 and n = 1,

• α |110〉 − β |110〉 if the results are m = 1 and n = 1.

Now, it easy to check that if Bob applies to his Qbit the appropriate transformation XnZm,
depending on the classical bits n,m ∈ {0, 1} received from Alice, then he gets the �nal state

|ψ〉 = α |nm0〉+ β |nm1〉 (11.2.4)

that can be easily rewritten as |nm〉 (α |0〉+ β |1〉). It proves the theoretical correctness of the
teleportation protocol because the state of the third Qbit (Bob's Qbit) is, in any case, equal
to that of the original Alice's Qbit, that is, |ψ〉 = α |0〉+ β |1〉.

In our context, let be `psi0:complex^(3)multivector` the formal counterpart of the
input state |ψ0〉
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let psi0 = inv (Cx (sqrt (&2))) %

(a % qbasis <|F; F; F|> + a % qbasis <|F; T; T|> +

b % qbasis <|T; F; F|> + b % qbasis <|T; T; T|>)

then the �rst part of the circuit

|φ〉 • H
m

X
n

|β00〉

Xn Zm |φ〉


can be formalized as

let psi1 = QHADAMARD 0 (QCNOT 0 1 psi0)

and can be easily computed by QCNOT_CONV and QHADAMARD_CONV. We recall that we use a
0-based indexing so, in our formal framework, the �rst Qbit is the 0-th and so on.
The central part of the protocol, that is the measurements on the Alice's Qbits,

|φ〉 • H
m

X
n

|β00〉

Xn Zm |φ〉


is formalized by the function `QUANTUM_COLLAPSE` that leads to the state

`quantum_normalizer (QUANTUM_COLLAPSE 1 n (QUANTUM_COLLAPSE 0 m psi1))`

where `quantum_normalizer` is needed to re-normalize the collapsed state. Since in such a
state the Alice's Qbits (0-th and 1-th) are surely in state |m〉, |n〉 (m,n ∈ {0, 1}) respectively,
we de�ne the linear function

QNOT_OR_SHIFT

|- (!i. clinear (QNOT_OR_SHIFT i)) /\

(!i bs. QNOT_OR_SHIFT i (qbasis bs) =

(if bs $. (i - 2) then QSHIFT i (if bs $. (i - 1)

then QNOT i (qbasis bs)

else qbasis bs)

else (if bs $. (i - 1) then QNOT i (qbasis bs)

else qbasis bs)))

that, given a basis vector `qbasis bs` and an index `i`, applies on the i-th Qbit the trans-
formation ZmXn depending on the values m,n ∈ {0, 1} of the (i− 2)-th and (i− 1)-th Qbits
respectively. Thus, the function `QNOT_OR_SHIFT 2` formalizes the last part of the circuit

|φ〉 • H
m

X
n

|β00〉

Xn Zm |φ〉


applying the appropriate transformation on the Bob's Qbit. Therefore, the �nal state |ψ〉 is
formally represented by the following HOL term.
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let psi = QNOT_OR_SHIFT 2

(quantum_normalizer

(QUANTUM_COLLAPSE 1 n

(QUANTUM_COLLAPSE 0 m psi1)))

Finally, we certify the theoretical correctness of the teleportation protocol proving that,
in any case, the initial state of the �rst Qbit has been teleported on the third Qbit. More
precisely, we prove formally that, for every possible collapse (i.e. for all possible results of the
measurements m,n ∈ {0, 1}), the �nal state |ψ〉 is always of the form (11.2.4), that is, it is
provable the following HOL term.

`psi = a % qbasis <|m; n; F|> + b % qbasis <|m; n; T|>

Therefore, having in mind the previous formalizations of the intermediate states of the com-
putation, the resulting formal statement that we proved in HOL Light is the following.

QUANTUM_TELEPORTATION

|- !a b m n.

norm a pow 2 + norm b pow 2 = &1

==> (let psi0 = inv (Cx (sqrt (&2))) %

(a % qbasis <|F; F; F|> +

a % qbasis <|F; T; T|> +

b % qbasis <|T; F; F|> +

b % qbasis <|T; T; T|>) in

let psi1 = QHADAMARD 0 (QCNOT 0 1 psi0) in

let psi = QNOT_OR_SHIFT 2

(quantum_normalizer

(QUANTUM_COLLAPSE 1 n

(QUANTUM_COLLAPSE 0 m psi1))) in

psi = a % qbasis <|m; n; F|> + b % qbasis <|m; n; T|>)

11.3 Deutsch's problem

In 1992, David Deutsch discovered a problem, solved by the related Deutsch's algorithm,
that is one of the �rst examples of a problem that can be solved, by a quantum algorithm,
faster then by any possible deterministic classical algorithm. Deutsch's algorithm is also a
deterministic algorithm, that is, it always produces an answer, and that answer is always
correct.

The Problem. Suppose to have a function f : {0, 1} → {0, 1}, we wish to know if the func-
tion is balanced (f(0) 6= f(1)) or constant (f(0) = f(1)).

Classically, the problem could be solved by evaluating f(0) ⊕ f(1) where ⊕ is the logical
sum XOR. The latter will be equal to 1 if the function is balanced and equal to 0 otherwise.
Using this strategy, we need to evaluate the function twice in order to determine whether it is
balanced or not and, depending on the cost of the function f , it can be very expensive from a
computational point of view.

However, it is very easy to check that there exist only four functions that maps {0, 1} into
{0, 1}. Using the lambda calculus notation they are:

• the constant functions λx.0 and λx.1,

• the balanced functions λx.x and λx.¬x.

In HOL Light, these facts are summarized in the following theorems.
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BOOL_FUN_CASES

|- !f. f = (\x. x) \/ f = (\x. ~x) \/

f = (\x. T) \/ f = (\x. F)

BOOL_CONSTANT_EXPLICIT

|- !f. bool_constant f <=> f = (\x. T) \/ f = (\x. F)

BOOL_BALANCED_EXPLICIT

|- !f. bool_balanced f <=> f = (\x. x) \/ f = (\x. ~x)

where `bool_balanced` and `bool_constant` are de�ned in the standard way.

let bool_constant = new_definition

`bool_constant (f:bool->bool) <=> f T = f F`;;

let bool_balanced = new_definition

`bool_balanced (f:bool->bool) <=> ~(f T = f F)`;;

The Deutsch's algorithm. Let be f a function that maps {0, 1} into {0, 1}. Deutsch's
algorithm is described by the following circuit diagram

|0〉 H

Uf

H

|1〉 H H

(11.3.1)

where Uf is the 2-Qbit gate de�ned on the computational basis by

Uf |i〉 |j〉 = |i〉 |j ⊕ f(i)〉 (11.3.2)

with i, j ∈ {0, 1}. Note that, if j = 0 the output state of equation (11.3.2) is |i〉 |f(i)〉. As we
see from the diagram, Deutsch's algorithm consists essentially in four steps.

1. Preparing two Qbits , one in state |0〉 and the other in state |1〉. Therefore, the initial
state of the circuit is |ψ0〉 = |01〉.

2. Apply the HADAMARD gate to both Qbits.

3. Apply the Uf gate to the whole register.

4. Apply, again, the HADAMARD gate to both Qbits.

We show the case of the identity function f = λx. x more in details. Applying the �rst
HADAMARD gates to the initial state we obtain the state

|ψ1〉 = H1H0 |ψ0〉 =
1

2
(|00〉 − |01〉+ |10〉 − |11〉)

and the consequent application of the Uf gate produces the state

|ψ2〉 = Uf |ψ1〉 =
1

2
(|00〉 − |01〉+ |11〉 − |10〉).

Finally, the last HADAMARD gates lead to the �nal state

|ψf 〉 = H1H0 |ψ2〉 =
1

4
( |00〉+ |01〉+ |10〉+ |11〉 − |00〉+ |01〉 − |10〉+ |11〉+

|00〉 − |01〉 − |10〉+ |11〉 − |00〉 − |01〉+ |10〉+ |11〉)

that, by direct computation, becomes |ψf 〉 = |11〉.
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This implies that, making a measurement on the �rst Qbit (for the second is the same), we
obtain the result |1〉 with probability 1 and the related collapsed state is again |ψf 〉, that is

P (|ψf 〉 , b0 = 1) = 1 |ψf 〉b0=1 = |ψf 〉
P (|ψf 〉 , b1 = 1) = 1 |ψf 〉b1=1 = |ψf 〉

It easy to check the other three cases by direct computation. It turns out that, in the
case of a balanced function (λx.x or λx.¬x) the circuit (11.3.1) produces the output states
|11〉 or − |11〉 whereas, with a constant function (λx.1 or λx.¬0), the possible output state
are |01〉 and − |01〉. Therefore, we have that the �rst Qbit is in state |0〉 with probability 1 in
the case of a constant function and is in state |1〉, again with probability 1, in the case of a
balanced function. Thus, making a measurement on the �rst Qbit, after the computation, we
can determine whether the function is balanced or not. Moreover, a very relevant fact is that
the function f was only evaluated once during the algorithm, while the classical algorithm
evaluates it twice. This could make signi�cant di�erence if such a function is very complicated
and takes a great deal of time to compute.

In our formal setting, the gate Uf is formalized proving the following theorem.

QUANTUM_UGATE

|- (!f. clinear (QUANTUM_UGATE f)) /\

(!f bs. QUANTUM_UGATE f (qbasis bs) =

qbasis <|bs $. 0; bs $. 1 + f (bs $. 0)|>)

Here, the symbol `+` is overloaded to represent also the logical sum. As for the logic gates of the
previous chapter, we de�ne the conversion QUANTUM_UGATE_CONV that computes automatically
terms of the form `QUANTUM_UGATE f x`.

The circuit (11.3.1) is formally represented, depending on the function `f:bool->bool`,
by the constant `deutsch_algorithm` de�ned as follows.

let deutsch_algorithm = new_definition

`deutsch_algorithm (f:bool->bool) =

QHADAMARD 1

(QHADAMARD 0

(QUANTUM_UGATE f

(QHADAMARD 1

(QHADAMARD 0 (qbasis <|F;T|>)))))`;;

Joining togheter QHADAMARD_CONV, QUANTUM_UGATE_CONV and some appropriate arithmetic
simpli�cations, we can de�ne a further conversion DEUTSCH_CONV that is able to compute auto-
matically terms as `deutsch_algorith f` and `BORN_RULE i b (deutsch_algorithm f)`.
Essentially, it analyses the form of the input term and, after rewriting the `deutsch_algorithm`
de�nition and computing circuit (11.3.1) with QHADAMARD_CONV and QUANTUM_UGATE_CONV, it
applies the conversion BORN_RULE_CONV if it is necessary.

For all the four possible functions of type `:bool->bool`, we can produce the related
theorems in one shot.

• Balanced functions.

DEUTSCH_CONV `deutsch_algorithm (\x. x)`;;

val it : thm =

|- deutsch_algorithm (\x. x) = qbasis <|T; T|>

DEUTSCH_CONV `BORN_RULE 0 T (deutsch_algorithm (\x. x))`;;

val it : thm =

|- BORN_RULE 0 T (deutsch_algorithm (\x. x)) = &1
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DEUTSCH_CONV `deutsch_algorithm (\x. ~x)`;;

val it : thm =

|- deutsch_algorithm (\x. ~x) = Cx (-- &1) % qbasis <|T; T|>

DEUTSCH_CONV `BORN_RULE 0 T (deutsch_algorithm (\x. ~x))`;;

val it : thm =

|- BORN_RULE 0 T (deutsch_algorithm (\x. ~x)) = &1

• Constant functions.

DEUTSCH_CONV `deutsch_algorithm (\x. T)`;;

val it : thm =

|- deutsch_algorithm (\x. T) = Cx (-- &1) % qbasis <|F; T|>

DEUTSCH_CONV `BORN_RULE 0 F (deutsch_algorithm (\x. T))`;;

val it : thm =

|- BORN_RULE 0 F (deutsch_algorithm (\x. T)) = &1

DEUTSCH_CONV `deutsch_algorithm (\x. F)`;;

val it : thm =

|- deutsch_algorithm (\x. F) = qbasis <|F; T|>

DEUTSCH_CONV `BORN_RULE 0 F (deutsch_algorithm (\x. F))`;;

val it : thm =

|- BORN_RULE 0 F (deutsch_algorithm (\x. F)) = &1

At this point, we can easily prove the theorem that formalizes the Deutsch's problem. It
consists of a conjunction of three statements.

DEUTSCH_PROBLEM

|- (!f b. BORN_RULE 0 b (deutsch_algorithm f) = &1 \/

BORN_RULE 0 b (deutsch_algorithm f) = &0) /\

(!f. bool_constant f <=>

BORN_RULE 0 F (deutsch_algorithm f) = &1) /\

(!f. bool_balanced f <=>

BORN_RULE 0 T (deutsch_algorithm f) = &1)

The �rst statement means that the �rst Qbit of the output state of the Deutsch's algorithm
is in state |0〉 or |1〉 (depending on the form of the function f) with probability 1. The second
and the third state that such a Qbit is in state |0〉 if and only if the function f is constant and,
it is in state |1〉 if and only if f is balanced. This proves de�nitely, in our formal context, that
the circuit represented by the function `deutsch_algorithm` solves the Deutsch's problem.

11.4 Superdense coding protocol

Another signi�cant example, in which quantum computing is able to solve a problem that
doesn't have a classical solution, is the Superdense coding protocol.

Imagine a situation where two people (named Alice and Bob) are in di�erent parts of the
world. Alice has two bits b0, b1 ∈ {0, 1} and she would like to communicate them to Bob by
sending him just a single Qbit. It turns out that there is no way they can accomplish this
task without additional resources (see [Nielsen and Chuang, 2000] for more details). This is
not obvious, but it is true, Alice cannot encode two classical bits into a single Qbit in any way
that would give Bob more than just one bit of information about the pair b0, b1. However, let
us imaging that Alice and Bob share an entangled pair of Qbits generated previously in the
Bell's state

|β0A0B
〉 =

1√
2

(|0A0B〉+ |1A1B〉) (11.4.1)
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where the subscripts A and B indicate the Qbit of Alice and Bob respectively. So, after
generating the input state |β0A0B

〉 with the circuit

|0A〉 H •
|β0A0B

〉
|0B〉 X


(11.4.2)

the protocol, called Superdense coding, can start. It consists in four steps.

1. Alice applies to her Qbit (of the entangled pair) a transformation depending on the value
of the bits that she want to send to Bob:

• if b0 = 0 and b1 = 0 then she does nothing,

• if b0 = 0 and b1 = 1 then she applies the quantum NOT gate X,

• if b0 = 1 and b1 = 0 then she applies the quantum SHIFT gate Z,

• if b0 = 1 and b1 = 1 then she applies �rst the X gate and then the Z gate.

2. Alice sends her Qbit to Bob (this is the only Qbit that is sent during the protocol).

3. Bob applies a quantum controlled NOT operation to the pair of Qbits (A,B) where
A (the Qbits received by Alice) is the control and B (the Bob's Qbit) is the target.
Consecutively, Bob applies the HADAMARD gate H to the Qbit A.

4. Bob measures both Qbits A and B. The result will be (b0, b1) with certainty because
the output state of the register at the end of the protocol is surely |b0b1〉.

All these steps are summarized in the following diagram

Alice Xb0 Zb1

• H |b0〉

Bob

X |b1〉



(11.4.3)

and we recall that the input state is |β0A0B
〉 generated, for example, with the circuit (11.4.2).

As example, we show more in details the case of b0 = 0 and b1 = 1, the others (three) cases
are very similar, so we avoid to report them explicitly.

If b0 = 0 and b1 = 1, then the �rst step of the protocol produces the state

|ψ1〉 = XA |β0A0B
〉 =

1√
2

(|1A0B〉+ |0A1B〉).

At this point, Bob receives the Qbit from Alice and applies the controlled -NOT gate obtaining
the intermediate state

|ψ2〉 = cXAB |ψ1〉 =
1√
2

(|1A1B〉+ |0A1B〉).

Finally, with the application of the last HADAMARD gate, he gets the �nal state

|ψf 〉 = HA |ψ2〉 =
1

2
(|0A1B〉 − |1A1B〉+ |0A1B〉+ |1A1B〉) = |0A1B〉 .

Note that, for every gate V, the notation VA or VB means that the transformation is applied
on the Alice's or Bob's Qbit respectively. Thus, at the end of the protocol, if Bob measures
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both the Qbits he gets the results b0 = 1 for the �rst and b1 = 0 for the second with certainty
(i.e. with probability 1). In this way, he can know the values of the two classic bits that Alice
wanted to send him.

In our formalization the �rst part of the protocol (i.e. Alice's action)

Alice Xb0 Zb1

• H |b0〉

Bob

X |b1〉



(11.4.4)

is encoded by the constant

`ALICE_SUPERDENSE_CONDING_PROTOCOL:bool->bool->complex^(2)multivector`

de�ned case by case by the following HOL terms.

let ALICE_SUPERDENSE_CONDING_PROTOCOL = define

`ALICE_SUPERDENSE_CODING_PROTOCOL F F = bell_state F F /\

ALICE_SUPERDENSE_CODING_PROTOCOL F T = QNOT 0 (bell_state F F) /\

ALICE_SUPERDENSE_CODING_PROTOCOL T F = QSHIFT 0 (bell_state F F) /\

ALICE_SUPERDENSE_CODING_PROTOCOL T T = QSHIFT 0

(QNOT 0 (bell_state F F))`;;

In the latter de�nition, the booleans arguments represent the values of the two classical bits b0
and b1 that Alice wants to send. Furthermore, the second part of the protocol (Bob's action)

Alice Xb0 Zb1

• H |b0〉

Bob

X |b1〉



(11.4.5)

doesn't depend on the value of b0 and b1 and it is formalized by

let BOB_SUPERDENSE_CODING_PROTOCOL = new_definition

`BOB_SUPERDENSE_CODING_PROTOCOL (v:complex^(2)multivector) =

QHADAMARD 0 (QCNOT 0 1 v)`;;

where `v:complex^(2)multivector` is a generic state of a 2-Qbit register.
Finally, the whole protocol (11.4.3) is represented by the term

`BOB_SUPERDENSE_CODING_PROTOCOL (ALICE_SUPERDENSE_CODING_PROTOCOL b0 b1)`

with `b0:bool` and `b1:bool`. We can certify, in our formal framework, that the output of
such a protocol is always |b0b1〉 that is, we can prove formally that the previous HOL term
is equal to the term `qbasis <|b0;b1|>`. The resulting theorem, that we proved in HOL
Light, is the following.

SUPERDENSE_CODING_OUTPUT

|- !b0 b1. BOB_SUPERDENSE_CODING_PROTOCOL

(ALICE_SUPERDENSE_CODING_PROTOCOL b0 b1) =

qbasis <|b0; b1|>
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This implies that, after a measurement on the �rst (second) Qbit, it will be in state |b0〉 (|b1〉)
with probability equal to one. The following theorem formalizes this result.

SUPERDENSE_CODING

|- !b0 b1. BORN_RULE 0 b0

(BOB_SUPERDENSE_CODING_PROTOCOL

(ALICE_SUPERDENSE_CODING_PROTOCOL b0 b1)) = &1 /\

BORN_RULE 1 b1

(BOB_SUPERDENSE_CODING_PROTOCOL

(ALICE_SUPERDENSE_CODING_PROTOCOL b0 b1)) = &1

The latter two formal theorems de�nitively certify the validity and the theoretical correctness
of the Superdense coding protocol.



Conclusions

We developed a formal automatic and certi�ed calculation system about quantum circuits.
More precisely, we can specify, in our language, any quantum circuits (written using the set of
universal quantum gates X, cX, Z, H, Rφ) certifying, with formal proofs, their functioning
and their properties. As examples, or better as tests for our framework, we formalized some of
the basics quantum algorithms and protocols, more precisely, the Teleportation protocol, the
Superdense coding protocol and the Deutsch's algporithm.

Moreover, since the theory relies in a fundamental way on the algebra of complex vectors,
we worked to improve the current implementation of vectors in HOL Light in two ways. On
one hand, we extended the standard library with new basic results about complex vectors,
including the case of complex multivectors. On the other hand, we provided a new way to
represent types with �nite cardinality (Fintypes) and to encode concrete vectors indexed by
such types (Finvec), which accommodate for working with arbitrary �xed �nite dimension and
for writing procedures for automatic calculations. In fact, we also de�ned a conversion that
calculates automatically components of a concrete vector.

Afterall, this part of the work takes about 4,000 lines of code and consists in about 350
theorems without considering the background material about complex vectors and complex
linear algebra.

A possible line of improvement for this work is to formalize further mathematical results in
complex linear algebra, in particular, properties of Hermitian operators. De�nitively, dealing
with quantum computing is easier if a considerable part of complex linear algebra is available
in HOL Light. For example, we could prove formally the theoretical result that the gates that
we have formalized form a set of universal quantum gates, that is, any other unitary operation
can be expressed as a sequence of gates from this set.

Moreover, it could be convenient to �nd a method to de�ne explicitly the tensor product in
HOL Light. Simulating the action of a circuit, it is not strictly necessary because every state,
during a computation, can be written as a linear combination of the standard computational
basis. However, it would allow us to reason on the metatheory, for example, we could de�ne
formally the entanglement and make reasoning about it.

Last but not least, our code can be used to certify new algorithms or circuits when it is
tedious to do by hand. An interesting problem could be the following. Let C be a circuit that,
with input I, produces an output O = C(I). How does O vary if I varies slightly?

In principle, formalizing C in our settings we can perform calculations automatically pro-
ducing certi�ed tests for this problem. The latter is a practical interesting problem because
often, even if a protocol or an algorithm is well designed and produces a deterministic result,
it is physically very di�cult to prepare exactly the needed input state. Therefore, a formal
method that investigates and checks the e�ects on the result of an algorithm (or protocol) of
an error, even if small, in such preparation could be very useful.
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