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Abstract

We introduce an extension of the multi-instance learning problem where
examples are organized as nested bags of instances (e.g., a document could be
represented as a bag of sentences, which in turn are bags of words). This frame-
work can be useful in various scenarios, such as text and image classification,
but also supervised learning over graphs. As a further advantage, multi-multi
instance learning enables a particular way of interpreting predictions and the
decision function. Our approach is based on a special neural network layer,
called bag-layer, whose units aggregate bags of inputs of arbitrary size. We
prove theoretically that the associated class of functions contains all Boolean
functions over sets of sets of instances and we provide empirical evidence that
functions of this kind can be actually learned on semi-synthetic datasets. We fi-
nally present experiments on text classification and on citation graphs and social
graph data, showing that our model obtains competitive results with respect to
other approaches such as convolutional networks on graphs.
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Chapter 1

Introduction

The growth of computer science allowed, among other things, to make available to
everyone knowledge and discoveries that before only a few people had access to,
and therefore they remained almost unknown. This fact has definitely contributed
to accelerating the progress of what was being discovered by students, researchers,
and all those people interested in the subject who studied, deepened and further de-
veloped such discoveries, in any part of the world. Therefore, in a few years, it took
place a real revolution which has affected all fields of science, knowledge and hu-
manity. Today, from the smallest and most remote country of any continent to the
most populous metropolis, data, news, knowledge, new discoveries and informa-
tion are available to anyone who is interested in. Huge amounts of data of any kind
are created and widespread every day. This allows, and at the same time requires,
that technology also evolves. The evolution of technology is also aimed at creating
algorithms able to analyze and extract information from the data that allows us to
increase the knowledge itself.

In this respect, an interesting and exciting sector, which has already reached a
great stage of evolution but it still has a potential expansion of research, is repre-
sented by artificial intelligence. This field will certainly represent a big step forward,
I would say a real epochal leap, for man and for the organization of life on earth.
In the last few years, thanks to the large amount of data which are created every
day, and the development of technology, great progress has been made in this area.
Machine Learning (a branch of artificial intelligence) is the reference of the research
which this thesis is based on. Currently, machine learning is able to solve a number
of problems including the classification of images (e.g. dogs vs cats), face recogni-
tion (given an image to recognize a person), the analysis of the opinion expressed
by a review (positive or negative). From all these examples we understand that the
data are treated as individual objects.

Our first challenge is to adapt machine learning models to handle data that are
linked to each other through a well-defined part-of relationship, for example, im-
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4 Introduction

ages can be viewed as bags of pixels, molecules as bags of atoms. Although in the
literature there have been proposed several approaches to manage this kind of data,
we will provide a generalization of the methods so far defined, by considering the
data organized in deeper levels of nesting and by relaxing the underlying assump-
tions. For example, images can be viewed as bags of patches and patches can be
viewed as bags of pixels; molecules can be viewed as bags of atoms and atoms can
be viewed as bags of neutrons, protons, and electrons.

One of the biggest limitations, in the considered state-of-the-art machine learn-
ing models, i.e. neural networks, is that they can not provide an explanation which
justifies the decision: for example, given a trained neural network on radiograph im-
ages, the model is “only” able to say whether the patients are sick or not. As second
challenge, we will show in this thesis how to learn an interpretable representation
of our model for human beings.

1.1 Contribution and Organization

We present in this thesis the multi-multi instance learning (MMIL) problem, a gen-
eralization of multi-instance learning (MIL) framework. In MMIL framework, data
are organized as labeled nested bags of instances. Only top-level bag labels are
observed, while lower level bag and instance labels are latent. The MMIL frame-
work can be useful in various scenarios, where problems are naturally described as
bags-of-bags, such as graph classification, image classification, and text classifica-
tion. Data, organized as nested bags of instances, can be learnt with special neural
networks layers, called bag-layers. We propose a solution of the MMIL problem
based on neural network in which we used a special layer called bag-layer. Bag-
layers aggregate internal representations of instances (or bag of instances) and can
be intermixed with other common neural network layers. We will also show and
prove some theoretical results concerning the expressiveness of our model.

Furthermore, we show that MMIL leads to a particular form of interpretability
for which we propose a framework, based on rules extraction, able to explain the
MMILmodels. Indeed, by leveraging the specific structure of ourmodel, we are able
to explain the prediction for a particular data point, and to describe the structure of
the decision function in terms of symbolic rules. This latter property is a major
contribution, as we provide a global interpretation of MMIL model rather than a
local and domain-specific interpretation approaches, used in many related works
(for more details see Chapter 4).

The thesis is organized as follows: we start in Chapter 2 with a survey of related
works concerning multi-instance learning (MIL), the state-of-the-art works related
to neural networks for graphs, and some related works about the interpretability
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of machine learning models. Then, we introduce our main contributions which are
threefold:

• in Chapter 3 we introduce the multi-multi instance learning (MMIL) model;

• in Chapter 4 we propose a framework for interpreting multi-multi-instance
learning networks;

• in Chapter 5 we show how to use MMIL model for machine learning graph
tasks.

Finally in Chapter 6, we report all the outcomes of the thesis.
Although this thesis reports the research on MMIL, other works, not directly re-

lated to MMIL, were studied during my Ph.D. study. The reader can find all the
other research materials in Appendix E, in which we report the list of all the sub-
mitted and published papers.





Chapter 2

Background

This chapter provides a comprehensive survey of some related works to
the thesis. First, we will start with multi-instance learning, introducing
the problem, the relative notation, and some techniques for solving multi-
instance learning problems. Then, we give a brief survey of the state-of-the-
art related works on neural networks capable to learn graphs. Finally, we
briefly list the current state-of-the-art interpretable approaches for machine
learning models.

2.1 Multi-instance learning
In the standard multi-instance learning (MIL) setting, data consists of labelled bags
of instances. Supervision is provided only for the bags, and the instance labels are
not provided. A real application of MIL may consist of medical images for which
only patient diagnoses are available instead of local annotations (within images)
provided by experts. Furthermore, several problems can be naturally formulated in
the MIL setting. For example, in the drug activity prediction problem (Dietterich
et al., 1997), the goal is to predict whether a molecule induces a given effect by one
(or more) of its conformations. Observing the effect of individual conformations is
unfeasible, while treating molecules as bags of conformations (MIL formulation) is
viable.

In the following, X denotes the instance space (it can be any set), Y the bag label
space for the observed labels of example bags, and Y I the instance label space for the
unobserved (latent) instance labels. For any setA,M(A) denotes the set of all mul-
tisets of A. An example in MIL is a pair (S, y) ∈ M(X ) × Y , which we interpret
as the observed part of an instance-labelled example (SI , y) ∈ M(X × Y I) × Y .
S = {x1, . . . , x|S|} is thus a multiset of instances, and

Sl = {(x1, y1), . . . , (x|S|, y|S|)}

7
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a multiset of labeled instances.
Examples are drawn from a fixed and unknown distribution p(Sl, y). Further-

more, it is typically assumed that the label of an example is conditionally indepen-
dent of the individual instances given their labels, i.e. p(y|(x1, y1), . . . , (x|S|, y|S|)) =
p(y|y1, . . . , y|S|). In the classic setting, introduced in (Dietterich, 2000) and used in
several subsequent works (Maron and Lozano-Pérez, 1998; Wang and Zucker, 2000;
Andrews et al., 2003), the focus is on binary classification (Y I = Y = {0, 1}) and
it is postulated that y = 1

{
0 < ∑j yj

}
, (i.e., an example is positive iff at least one

of its instances is positive). We refer to this setup, as standard MIL problems. More
complex assumptions are possible and thoroughly reviewed in (Foulds and Frank,
2010). Supervised learning in this setting can be formulated in two ways: (1) learn
a function F : M(X ) 7→ Y that classifies whole examples, or (2) learn a function
f : X 7→ Y I that classifies instances and then use some aggregation function de-
fined on the multiset of predicted instance labels to obtain the example label.

Axis-parallel Hyper-rectangle

Dietterich et al. (1997) were the first to propose an algorithm, called axis-parallel
hyper-rectangle (APR), for solving standard MIL problems. The key idea of APR is to
find an axis-parallel hyper-rectangle in the instance space X which at the same time
maximizes the inclusion of instances belonging to positive bags, and minimizes the
inclusion of instances belonging to negative bags. Dietterich (2000) proposed three
approaches for finding such hyper-rectangle:

• a standard algorithmwhich finds the smallestAPR that bounds all the instances
belonging to positive bags;

• an outside-in algorithmwhich first constructs the smallest APR that bounds all
the instances belonging to positive bags, and then shrinks the APR in order to
exclude false positives;

• an inside-out algorithm that, starting from a random seed point, grows the
smallest APR which covers at least one instance belonging to a positive bag
and no instance belonging to negative bags.

Note that all algorithms belong to the formulation (1). This approach intrinsically as-
sumes that it exists an hyper-rectangle which correctly includes all the positive bags
and excludes all the negative bags. In real application this assumption can easily
fail, and in this respect several approaches that tried to find a collection of hyper-
rectangles, hyper-spheres, or hyper-ellipses were proposed in (Maron and Lozano-
Pérez, 1998; Xiao et al., 2017; Zhang and Goldman, 2002; Tax and Duin, 2008).
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Diverse Density
Diverse Density (DD)was proposed in (Maron and Lozano-Pérez, 1998) as a general
framework for solving standard MIL problems. The main idea of DD approach is to
find a point in the instance space that is close to at least one instance from each posi-
tive bag, and is far from instances in negative bags. The optimal point x∗d is obtained
by maximizing the diversity density which measures how many positive bags are
close to x∗d , and how many negative bags are far from x∗d . We briefly show a prob-
abilist approach for deriving the Diverse Density. Given a multi-instance learning
dataset D = {(Si, yi) ∈ M(X )× {0, 1}}N

i=1, by convention we denote with D+ the
set of positive bags and with D− the set of negatives bags. The diversity density
point xd ∈ X is defined as x∗d = arg max

xd
p(xd|S ∈ D), where p is the probabil-

ity of xd to be the diverse density point given the bags in the dataset. By using
the Bayes rule and by assuming uniform prior over xd location, this is equivalent to
x∗d = arg max

xd
p(S ∈ D|xd). By making the additional assumption that the bags are

conditionally independent given xd we can write

x∗d = arg max
xd

∏
S+∈D+

p(S+|xd) ∏
S−∈D−

p(S−|xd). (2.1)

Using the Bayes rule once more (and again assuming a uniform prior over concept
location), Equation 2.1 equivalent to

x∗d = arg max
xd

∏
S+∈D+

p(xd|S+) ∏
S−∈D−

p(xd|S−). (2.2)

Equation 2.2 represents the definition of diverse density. Finally

p(S+|xd) = 1− ∏
x∈S+

p(x|xd), p(S−|xd) = 1− ∏
x∈S−

p(x|xd).

A possibility for estimating p(x|xd) is a gaussian-like distribution as, p(x|xd) =

e−‖x−xd‖2 . Intuitively, if one of the instances in a positive bag is close to xd, p(x|xd)

is high. Likewise, if each positive bag contains an instance close to xd and no nega-
tive bags close to xd, then xd will have high diverse density. The above optimization
problem is solved by using gradient descent. Usually the search is repeated using
the instances from each positive bag as starting points. Several extension of DD
have been proposed (Yang and Lozano-Perez, 2000; Zhang and Goldman, 2002), in
which different assumptions were made on the relations between instance and bag
labels. Note that with this approach is always possible to retrieve the latent labels
attached with the instances as well as the labels attached with the bags by using the
estimated distribution probabilities. As a major drawback of this approach, we can
observe that the distribution p(x|xd) has to be guessed.
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Citation kNN
The popular k Nearest Neighbor (k-NN) approach can be also adapted for solving
standardMIL problems by defining a proper distance between bags. Wang andZucker
(2000) proposed the minimum Hausdorff distance as distance metric

D(S1, S2) = min
x∈S1

min
z∈S2
‖x− z‖.

By using D, it is always possible to label the unlabelled bags, even though it could
happen that the majority of the labels of K nearest neighbors do not correspond to
the true label of unlabelled bags. The main reason lies on the underlying prediction
generation scheme of kNN, majority voting which can be easily fooled by the false
positive instances in positive bags. The algorithm can be regularized by considering
not only the nearest bags of a bag S, but also the bags that count S as their neighbors.
Note that contrarily to the DD approach (see Section 2.1), kNNmethods are unable
to predict the instances labels.

MI-SVM and mi-SVM
Andrews et al. (2003) proposed two generalizations of SVM (Vapnik, 1963) for solv-
ing standard MIL problems. As for the case of SVM by convention, we denote positive
labels with 1 and negative labels with −1. Given a MIL dataset D = {(Si, yi) ∈
M(X )×{−1, 1}}N

i=1, the two approaches, calledmi-SVM andMI-SVM are defined
as follows:

mi-SVM min
{yij}

min
w,b,ξ

1
2
‖w|‖2 + C ∑

i,j
ξij

subject to yij(wTxij + b) ≥ 1− ξi

ξij ≥ 0

yij ∈ {−1, 1}

∑
j

yij + 1
2
≥ 1 ∀i s.t. yi = 1

yij = −1 ∀i s.t. yi = −1 (2.3)

MI-SVM min
w,b,ξ

1
2
‖w|‖2 + C

N

∑
i=1

ξi

subject to ∀i : yi max
j

(wTxij + b) ≥ 1− ξi

ξi ≥ 0 (2.4)
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Note that with xij we denote the jth instance in the bag Si, while with yij we denote
the label associated with xij. mi-SVM explicitly treats the instance labels yij as unob-
served hidden variables subject to constraints defined by their bag labels yi. On the
other hand,MI-SVM maximizes the bag margin, which is defined by the margin of
the “most positive” instance in case of positive bags, or the margin of the “least neg-
ative” instance in case of negative bags. In the mi-SVM formulation, the margin of
each instance in a positive bag matters, although the instance labels can be assigned
arbitrarily in order to to maximize the margin. On the other hand, in the MI-SVM
formulation only one instance for positive bag matters, since that it will determine
the margin of the bag. Both mi-SVM and MI-SVM formulations leads to a mixed
integer programming problem in which the optimal labelling and the optimal hy-
perplane has to be found. Although this problem cannot be solved efficiently even
for small size datasets, in Andrews et al. (2003) is proposed an heuristic approach
for finding a sub-optimal solution.

Multi-instance Neural Networks
As for the SVM case, also a generalization of neural networks for multi-instance
learning problems were proposed by Ramon and De Raedt (2000). Given a neural
network, f parametrized by θ, and a MIL dataset

D = {(Si, yi) ∈ M(X )× {0, 1}}N
i=1,

each instance xij ∈ Si is first processed by a replica of a neural network f with pa-
rameters θ. In thisway, a bag of output values { f (x1i; θ), . . . , f (x|Si|i; θ)} is computed
for each bag of instances. These values are then aggregated by a smooth version of
the max function:

F(Si) =
1
M

log

(
∑

j
eM f (xij;θ)

)
where M is a constant controlling the sharpness of the aggregation (the exact max-
imum is computed when M→ ∞).

2.2 Neural Networks for Graphs
Graphs are data structure, which can be found in several application contexts: social
networks, molecules, citation networks, and many more real data can be modelled
as graphs. Several machine learning tasks can be defined on graphs. For example
we may want to recommend new friends to user in a social dataset, classify the role
of a molecule, or predict the class of a paper given its citing and cited papers.

As we will see in Chapter 5, the proposed framework, which this thesis is based
on, is also suitable for supervised learning over graphs, i.e., tasks such as graph
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classification, node classification, and edge prediction. In this chapter we will sum-
marize the state-of-art methods capable of learning on graphs.

Weisfeiler-Lehman Algorithm
Although the Weisfeiler-Lehman (WL) algorithm (Weisfeiler and Lehman, 1968)
may not appear so related with the neural networks, we will see in the next Sec-
tions that all the presented neural network approaches for graphs are inspired by
WL.

Given a graph G = (V , E), where V is the set of nodes and E is the set of edges,
and L = {h0

1, . . . , h0
|V|} is a set of labels (node coloring) associated with v1, . . . , v|V|,

vi ∈ V , the Weisfeiler-Lehman (Algorithm 1) produces an unique assignment of
node labels for G. In the Algorithm 1, Ni denotes the neighbors of vi, and hash(·)
is an hash function. The key idea of the algorithm is to augment the node labels by
the sorted set of node labels of neighbouring nodes, and compress these augmented
labels into new, short labels. By applying the Algorithm 1 in turn on two graphs
G1 and G2, we are able to tell if G1 and G2 are isomorphic. If the sets of the node
coloring are not identical for G1 and G2, it means that G1 and G2 are not isomorphic.
Contrarily, if the sets of the node coloring are identical after n iterations, it means
that either G1 and G2 are isomorphic, or the algorithmhas not been able to determine
that they are not isomorphic.

Algorithm 1:WL algorithm (Weisfeiler & Lehmann, 1968)
1 Input: A graph G = (V , E), initial node coloring (h0

1, . . . , h0
|V|)

2 Output: Final node coloring (hT
1 , . . . , hT

|V|)
3 t← 0
4 while stable node coloring is reached do
5 for vi ∈ V do
6 h(t+1)

i ← hash(∑j∈Ni
ht

j)

7 end
8 end

The graph neural network model
Scarselli et al. (2009) proposed a neural networkmodel, called graph neural network
(GNN)model, that extends existing neural networkmethods for processing the data
represented in the graph domain. This approach is suitable for both node and graph
classification tasks. We will introduce more notation for better explaining this ap-
proach. Let G = (V , E) be a graph, L and X be a set of labels and a set of attributes,
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respectively, associated with the nodes of G. With Ni we denote the neighborhood
for a node vi ∈ V . In the GNN framework two networks xi = f (li, xNi , lNi ; w f ),
o = g( f ; wg), with parameters w f and wg are trained, where xi ∈ X represents the
attributes associated with vi, xNi are the attributes associated with neighborhood of
xi, li ∈ L is the label associated with vi, lNi are the labels associated with xNi , and
o ∈ Rm is a generic output value. f aims to learn a representation for each node
v ∈ V , and a g aims to learn how to map a representation of each node into some
output values. For example g may learn how to classify nodes for a node classi-
fication task. According to the Banach Theorem if f is a contraction, i.e. it exists
0 ≤ µ < 1 such that ∀ xi, xj ∈ X, ‖ f (li, xNi , lNi) − f (lj, xNj − lNj)‖ ≤ µ‖xi − xj‖,
then xi = f (li, xNi , lNi ; w f ) has an unique solution. In practices the Jacobi iterative
method for solving non-linear equations is used for all x ∈ X

x(t+1)
i = f (li, x(t)Ni

, lNi ; w f ) (2.5)

oi = g(x(t)i ; wg). (2.6)

Note the relation between Equation 2.5 and Algorithm 1 is immediate. Indeed it is
sufficient to replace the hash(·) with f , and the node coloring with the attributes X
and the label L. Note that Equation 2.5 is more general as it can handle continuous
data, rather than only integer number, since that f is a neural network and x ∈ X
are continuous attributes in general. f and g are trained according to the back prop-
agation through time algorithm. Furthermore by adding a constraint on the norm
of the gradient of f , the contraction propriety of f is guaranteed for any structure of
f , in terms of layers and activation functions.

Deep graph kernels
Deep graph kernels (DGK) (Yanardag and Vishwanathan, 2015) learn latent repre-
sentations of sub-structures for graphs. This approach has been used by the authors
for graph classification tasks. DGKs are defined by recursively decompose a graph
into subgraphs. Many techniques can be used for decomposing a graph:

• R-decomposition strategy (Haussler, 1999). A graph G is decomposed according
to a relation R(G, a) which holds true if a is “part” of G and forms R−1(G) =

{a : R(G, a)}, the bag of all parts of G1;

• Graphets. A graph is decomposed into all the unique sub-graphs of size k;

• Weisfeiler-Lehman kernel see Section 2.2 ;
1It is worthwhile to mention that this strategy is adapted for many graph kernels in which

given two graph G and G′, a kernel k(G, G′) is expressed in terms of substructured kernels kp, i.e.
k(G, G′) = ∑s,s′ kp(G, G′), s ∈ R−1(G), s′ ∈ R−1(G′).
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• Shortest-Path kernel. A graphs is decomposed into shortest-paths.

Then, vectors embeddings are trained on the sub-structures with CBOW (Mikolov
et al., 2013a) or Skip-gram (Mikolov et al., 2013b) models. Each graph-kernel feature
is the normalized vector of frequencies where each entry of the vector represents the
occurrences of each sub-structure in the graph. Finally, the Euclidean space or some
other domain-specific Reproducing Kernel Hilbert Space (RKHS) is used to define
the dot product between the vectors of frequencies.

Patchy-SAN
Patchy-SAN (Niepert et al., 2016) is another suitable approach for graphs classifica-
tion. The idea is to construct features from each graph, which are suitable for learn-
ing convolutional neural networks (CNNs). Given a set of graphs, a receptive field
size k, a number of receptive fields w, and a stride s, Patchy-SAN (Select-Assemble-
Normalize) applies the following steps to each graph:

1. a fixed-length sequence of nodes is selected from each graph. For each graph
G this step identifies a sequence of nodes forwhich receptive fields are created.
First, the vertices of the input graph are sorted with respect to a given graph
labelling (e.g. WL algorithm in Section 1). Then, the resulting node sequence
is traversed using a given stride s and for each visited node, a receptive field is
constructed (steps 2 and 3), until exactly w receptive fields have been created.
The stride s determines the distance, relative to the selected node sequence,
between two consecutive nodes for which a receptive field is created;

2. a fixed-size neighborhood is assembled for each node in the selected sequence.
The nodes of the neighborhood are the candidates for the receptive field. By
performing a breadth-first search on each node of the selected sequence, the
nodes are collected into a set N until at least k nodes are in N, or until there
are no more neighbors to add;

3. the extracted neighborhood graph are ordered according to a normalization
algorithm. The normalization imposes an order on the nodes of the neighbor-
hood graph so as to map from the unordered graph space to a vector space
with a linear order. The basic idea is to leverage graph labelling procedures
that assigns nodes of two different graphs to a similar relative position in the
respective adjacency matrices if and only if their structural roles within the
graphs are similar. We remand the reader to see (Niepert et al., 2016) for fur-
ther details on this step;

4. learn neighborhood representations with convolutional neural networks from
the resulting sequence of patches.
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Graph Convolutional Network (GCN)

GCN (Kipf and Welling, 2017) proposed a method based on an efficient variant of
convolutional neural networks which operate directly on graphs. Given a undirected
graph G = (V , E), a set X = {x1, . . . , x|V|, xi ∈ Rm} of nodes attributes, a GCN
convolutional layer is defined as follows

h(t+1) = σ(Âh(t)W(t)), (2.7)

where W(t) are trainable weights, h(t) is a tensor of size |V| ×m (h(0)i = xi ∀i), which
represents the nodes, σ is an activation function e.g. sigmoid, ReLU, tanh, and Â is
the normalized adjacency matrix. Â is defined as follows

Â = D̃−
1
2 (A + I|V|)D̃−

1
2 , (2.8)

where A is adjacency matrix, I the identity matrix, and D̃ii = ∑j(A + I|V|)ij. Note
that I forces the self-loops for all the nodes in the graph. Furthermore the assump-
tion of G to be undirected is crucial, as this guarantied that D is invertible. Again the
relation with Algorithm 1 is immediate. Indeed it is sufficient to replace the hash(·)
function with Equation 2.7.

GraphSAGE

GraphSAGE (Hamilton et al., 2017) learns embeddings for nodes of graphs by also
using an algorithm inspired on the Weisfeiler-Lehman isomorphism test. The em-
beddings are generated by sampling and aggregating features from local neighbor-
hoods of nodes. The initial representation h0

v for each node v corresponds to the
attribute vector associated with v. For a fixed number K of times, a neural network
f (v; W1, W2) = ( f2 ◦ f1)(v), where f1, f2 are the layers, learns iteratively first the k-th
neighborhood N (v) representation as

hk
N (v) = f1({hk−1

u ; ∀ u ∈ N (v)}; W1), (2.9)

and then the node representation as

hk
v = f2(CONCAT(hk−1

v , hk
N (v)); W2). (2.10)

CONCAT represent the concatenation between the two vectors hk−1
v , hk

N (v). f1 repre-
sents a special case of neural networks in which a set of representations of its input
is aggregated by using max, mean, or LSTM. Once again the connection with Al-
gorithm 1 is immediate. Indeed it is sufficient to replace the hash(·) function with
Equations 2.9, and 2.10.
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2.3 Interpretability

Neural networks have achieved state-of-the-art results in several important tasks
such as image classification (Krizhevsky et al., 2012), object detection (Ren et al.,
2015) and text classification (Conneau et al., 2017). In spite of their ability to learn
powerful representations from data, leading to high prediction accuracy, neural net-
work decisions are largely opaque, making it difficult to explain and understand the
prediction associated with a new data point. In many applications such as medical
context, providing an explanation of the decision of the model is crucial. In de-
tection of cancer cells for example is very important to have the reasoning of the
decision in order to make a decision valuable.

Decision Trees

Decision trees (Breiman, 2017) aremachine learningmodels commonly used to solve
classification problems. Although decision trees suffer of several drawbacks such
as poor accuracy and instability, i.e. a small change in the data can lead to a large
change in the structure of the optimal decision tree, they have the advantage to be
easy to understand and to interpret. Indeed decision tree can be visualized and can
be represented as a set of “if-then” rules. This property leads decision trees to be
still used in all the situations where decisions must be made effectively and reliably,
e.g. medical diagnosing.

The problem of learning the optimal decision tree is NP-complete (Laurent and
Rivest, 1976). Consequently, practical decision-tree learning algorithms are based
on heuristic algorithms such as greedy algorithms where locally optimal decisions
are made at each node, and hence cannot guarantee to return the globally optimal
decision tree.

Several algorithms were proposed to learn decision trees, such as ID3 (Quinlan,
1986), C4.5 (Quinlan, 1993), C5.0 (an improved version ofC4.5), andCART (Breiman,
2017). In this thesis we will briefly show the idea behind CART.

Let us consider the dataset D = {(xi, yi), xi ∈ Rn, yi ∈ {1, . . . , K}}N
i=1. A de-

cision tree partitions the instance space recursively into regions which contain ex-
amples with the same labels. Let Q = D be the initial set. For each possible split
s = (j, t), where j ∈ {1, . . . , n} corresponds to an entry of the instance vector xi j, and
t is a threshold, the set Q is partitioned into two subsets, Ql(s) = {(xi, yi); xi j ≤ t},
Qr(s) = {(xi, yi); xi j > t}. The split s is chosen in order to minimize the average of
the Gini impurity function H over Ql(s) and Qr(s)

s∗ = arg min
s

|Ql(s)|
|Q| H(Ql(s)) +

|Qr(s)|
|Q| H(Qr(s)).
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If pk is the fraction of the instances labeled with class k in the set Q, H(Q) is defined
as

H(Q) = 1−
K

∑
k=1

p2
k.

The partitioning strategy is applied recursively on Ql(s∗) and Qr(s∗) until the maxi-
mum depth is reached, the minimum allowable number of instances within the leaf
is reached or there is only one instance within the leaf.

Layer-wise Relevance Propagation (LRP)

Lapuschkin et al. (2016); Samek et al. (2016) formalize a framework for a specific do-
main scenario: image classification. Let us assume to have a trained neural network
f : Rm 7→ R, on dataset D = {(xi, yi) xi ∈ Rm, yi ∈ R}N

i=1. In this context xi rep-
resents an image, and each of its entry represents a pixel. Each pixel of each image,
xij, is associated with a relevance score Rij, such that ∑j Rij = f (xi). If f consist of L
layers, the relevance score it is defines as follows:

R(`+1)
ij =

α
(xijw

(`)
ij )+

(∑i xijw
(`)
ij )+

− β
(xijw

(`)
ij )−

(∑i xijw
(`)
ij )−

 R(`)
ij , ` = 1, . . . , L, (2.11)

where ()+, and ()− denote the positive and the negative contributions, respectively.
w(l)

ij is the weight that connects the neuron i to neuron j at the layer l. If α− β = 1

the layer-wise conservation property holds for each layer, i.e. ∑j R(`+1)
j = ∑j R(`)

j .
Under this assumptions, it follows

f (xi) = ∑
j

RL
ij. (2.12)

For learning the interpretablemodel in this specific domain is then sufficient to train
a linearmodel for each xi. Note that this approach explains single instances (images)
and it does not provide a global explanation for the whole neural network.

Local Interpretable Model-agnostic Explanations (LIME)

Ribeiro et al. (2016) provides explanations for individual predictions as a solution
to the “trusting a prediction” by approximating a machine learning model with an
interpretablemodel. The authors assume that instances are given in a representation
which is understandable to humans, regardless of the actual features used by the
model. For example for text classification an interpretable representation may be
the binary vector indicating the presence or absence of a word.
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An “interpretable” model is defined as a model that can be readily presented to
the user with visual or textual artefacts (linear models, decision trees, or falling rule
lists), which locally approximates the original machine learning model.

Given a machine learning model f , an interpretable model g is trained for each
instance. For each instance xi, a set of instances Xi is generated around xi by drop-
ping out randomly some nonzero entries from xi. Given a similarity measure D, e.g.
scalar product, gaussian kernel, cosine distance, g is trained by minimizing

min
xv∈Xi

D(xi, xv)( f (xv)− g(xv))
2.

Similarly to LRP, also for this framework an “interpretable”model is trained for each
instance, i.e. explanations are given instance by instance.

Interpreting multi-instance learning models
Some of themodels, seen in Chapter 3, provide by definition a natural interpretation
of themselves. In particular, all the methods which label the instances, i.e. Diverse
Density, mi-SVM, and multi-instance neural networks, are immediately interpretable.
The only rule which globally explains the model is intrinsically defined by the MIL
assumption, i.e. a bag is positive iff at least one of its instances is positive. Moreover
by inspecting the instance labels, we can immediately understand which instance is
responsible for the class of the bag.

For better clarifying the benefits of MIL interpretation let us consider a real ex-
ample inwhichwe have access to a biological dataset consisting of images of tissues.
Each image is associate with a binary label: 1 if the tissue is unhealthy, and 0 other-
wise. Let also assume, that a tissue is unhealthy if it contains at least a sick cell. In
this respect, it is reasonable to treat this problem as MIL task in which each image
can be decomposed into a set of patches. By training a MIL model which label the
instances, we are able to interpret each image. Indeed for each image we can show
which patches are responsible for the image labels.



Chapter 3

Multi-multi instance learning

We introduce an extension of the multi-instance learning problem where
examples are organized as nested bags of instances (e.g., a document could
be represented as a bag of sentences, which in turn are bags of words).
This framework can be useful in various scenarios, such as text and image
classification. Our approach is based on a special neural network layer,
called bag-layer, whose units aggregate bags of inputs of arbitrary size.
We prove theoretically that the associated class of functions contains all
Boolean functions over sets of sets of instances andwe provide empirical ev-
idence that functions of this kind can be actually learned on semi-synthetic
datasets.1

Relational learning takes several different forms ranging from purely symbolic (log-
ical) representations, to a wide collection of statistical approaches (De Raedt et al.,
2008) based on tools such as probabilistic graphical models (Jaeger, 1997; De Raedt
et al., 2008; Richardson and Domingos, 2006; Getoor and Taskar, 2007), kernel ma-
chines (Landwehr et al., 2010), and neural networks (Frasconi et al., 1998; Scarselli
et al., 2009; Niepert et al., 2016).

Multi-instance learning (MIL) is perhaps the simplest form of relational learning
where data consists of labeled bags of instances. Introduced in (Dietterich et al.,
1997), MIL has attracted the attention of several researchers during the last two
decades and has been successfully applied to problems such as image and scene
classification (Maron and Ratan, 1998; Zha et al., 2008; Zhou et al., 2012), image
annotation (Yang et al., 2006), image retrieval (Yang and Lozano-Perez, 2000; Rah-
mani et al., 2005), Web mining (Zhou et al., 2005), text categorization (Zhou et al.,
2012) and diagnostic medical imaging (Hou et al., 2015; Yan et al., 2016). In clas-
sic MIL, labels are binary and bags are positive iff they contain at least one positive

1 Part of the content of this chapter has been published as “A network architecture for multi-
multi-instance learning” in Joint European Conference on Machine Learning and Knowledge Discovery in
Database, Skopje, 2017 (Tibo et al., 2017).
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instance (existential semantics). For example, a visual scene with animals could be
labeled as positive iff it contains at least one tiger. Various families of algorithms
have been proposed for MIL, including axis parallel rectangles (Dietterich et al.,
1997), diverse density (Maron and Lozano-Pérez, 1998), nearest neighbors (Wang
and Zucker, 2000), neural networks (Ramon and De Raedt, 2000), and variants of
support vector machines (Andrews et al., 2003).

In this chapter, we extend the MIL setting (see Section 2.1) by considering exam-
ples consisting of labeled nested bags of instances. Labels are observed for top-level
bags, while instances and lower level bags have associated latent labels. For ex-
ample, a potential offside situation in a soccer match can be represented by a bag
of images showing the scene from different camera perspectives. Each image, in
turn, can be interpreted as a bag of players with latent labels for their teammember-
ship and/or position on the field. We call this setting multi-multi-instance learning
(MMIL), referring specifically to the case of bags-of-bags2. In our framework, we
also relax the classic MIL assumption of binary instance labels, allowing categor-
ical labels lying in a generic alphabet. This is important since MMIL with binary
labels under the existential semantics would reduce to classic MIL after flattening
the bag-of-bags.

We propose a solution to the MMIL problem based on neural networks with a
special layer called bag-layer. Unlike previous neural network approaches to MIL
learning (Ramon and De Raedt, 2000), where predicted instance labels are aggre-
gated by (a soft version of) the maximum operator, bag-layers aggregate internal
representations of instances (or bags of instances) and can be naturally intermixed
with other layers commonly used in deep learning. Bag-layers can be in fact inter-
preted as a generalization of convolutional layers followed by pooling, as commonly
used in deep learning.

The MMIL framework can be immediately applied to solve problems where ex-
amples are naturally described as bags-of-bags. For example, a text document can
be described as a bag of sentences, where in turn each sentence is a bag of words.
The range of possible applications of the framework is however larger. In fact, every
structured data object can be recursively decomposed into parts, a strategy that has
been widely applied in the context of graph kernels (see e.g., (Haussler, 1999; Gärt-
ner et al., 2004; Passerini et al., 2006; Shervashidze et al., 2009; Costa and De Grave,
2010; Orsini et al., 2015)). Hence, MMIL is also applicable to supervised graph clas-
sification. Experiments on bibliographical and social network datasets confirm the
practical viability of MMIL for these forms of relational learning (see Chapter 5).

This chapter is organized as follows. In Section 3.1 we formally introduce the
MMIL setting. In Section 3.2 we formalize bag layers and the resulting neural net-

2 the generalization to deeper levels of nesting is straightforward but not explicitly formalized in
the chapter for the sake of simplicity.
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work architecture for MMIL. In Section 3.3 we discuss some related works. extract-
ing rules from trained networks of bag-layers. In Section 3.4 we report experimental
results on a semi-synthentic dataset.

3.1 Multi-multi-instance learning framework
We show in this Section an extension of the standard multi-instance learning frame-
work seen in Section 2.1: the multi-multi instance learning framework (MMIL). In
the MMIL setting, we call the elements of M(M(X )) and M(X ) top-bags and sub-
bags, respectively.

Now postulating unobserved labels for both the instances and the sub-bags, we
interpret examples (X, y) as the observed part of fully labeled data points (Xl, y) ∈
M(M(X × Y I)× YS)× Y , where YS is the space of sub-bag labels. Fully labeled
data points are drawn from a distribution p(Xl, y).

As in MIL, we make some conditional independence assumptions. Specifically,
we assume that instance and sub-bag labels only depend on properties of the respec-
tive instances or sub-bags, and not on other elements in the nestedmultiset structure
Xl (thus excluding models for contagion or homophily, where, e.g., a specific label
for an instance could become more likely, if many other instances contained in the
same sub-bag also have that label). Furthermore, we assume that labels of sub-bags
and top-bags only depend on the labels of their constituent elements. Thus, for
y ∈ YS, and a bag of labeled instances Sl = {(x1, y1), . . . , (x|S|, y|S|)} we have:

p(y|Sl) = p(y|y1, . . . , y|S|). (3.1)

Similarly for the probability distribution of top-bag labels given the constituent la-
beled sub-bags.

Example 3.1.1. In this example we consider bags-of-bags of handwritten digits (as in the
MNIST dataset). Each instance (a digit) has attached its own latent class label in {0, . . . , 9}
whereas sub-bag (latent) and top-bag labels (observed) are binary. In particular, a sub-bag
is positive iff it contains an instance of class 7 and does not contain an instance of class 3.
A top-bag is positive iff it contains at least one positive sub-bag. Figure 3.1 shows a positive
and a negative example.

Example 3.1.2. A top-bag can consist of a set of images showing a potential offside situ-
ation in soccer from different camera perspectives. The label of the bag corresponds to the
referee decision Y ∈ {offside,not offside}. Each individual image can either settle the off-
side question one way or another, or be inconclusive. Thus, there are (latent) image labels
YS ∈ {offside,not offside, inconclusive}. Since no offside should be called when in doubt,
the top-bag is labeled as ’not offside’ if and only if it either contains at least one image labeled
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Figure 3.1: A positive (left) and a negative (right) top-bag for Example 3.1.1. Solid
green lines represent positive bags while dashed red lines represent negative bags.

’not offside’, or all the images are labeled ’inconclusive’. Images, in turn, can be seen as bags
of player instances that have a label Y I ∈ {behind, in front, inconclusive} according to their
relative position with respect to the potentially offside player of the other team. An image
then is labeled ’offside’ if all the players in the image are labeled ’behind’; it is labeled ’not
offside’ if it contains at least one player labeled ’in front’, and is labeled ’inconclusive’ if it
only contains players labeled ’inconclusive’ or ’behind’.

Example 3.1.3. In text categorization, the bag-of-word representation is often used to feed
documents to classifiers. Each instance in this case consists of the indicator vector of words
in the document (or a weighted variant such as TF-IDF). TheMIL approach has been applied
in some cases (Andrews et al., 2003) where instances consist of chunks of consecutive words
and each instance is an indicator vector. A bag-of-bags representation could instead describe
a document as a bag of sentences, and each sentence as a bag of word vectors (constructed for
example using Word2vec or GloVe).

3.2 A network architecture for MMIL

Bag layers

We model the conditional distribution p(y|X) with a neural network architecture
that handles bags-of-bags of variable sizes by aggregating intermediate internal rep-
resentations. For this purpose, we introduce a new layer called bag-layer. A bag-
layer takes as input a bag of m-dimensional vectors {φ1, . . . , φn}, and first computes
k-dimensional representations

ρi = α (wφi + b) (3.2)
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using a weight matrix w ∈ Rk×m, a bias vector b ∈ Rk, and an activation function α

(such as ReLU, tanh, or linear). The bag layer then computes its output as:

g({φ1, . . . , φn}; w, b) =
n
Ξ

i=1
ρi (3.3)

where Ξ is element-wise aggregation operator (such as max or average). Both w
and b are tunable parameters. Note that Equation 3.3 works with bags of arbitrary
cardinality. A bag-layer is illustrated in Figure 3.2.

⌅

w w w

�1 �2 �3

⇢3⇢2⇢1

g({�1,�2,�3}; w, b)

Figure 3.2: A bag-layer receiving a bag of cardinality n = 3. In this example k = 4
and m = 5.

Networkswith a single bag-layer can process bags of instances (as in the standard
MIL setting). To solve the MMIL problem, two bag-layers are required. The bottom
bag-layer aggregates over internal representations of instances; the top bag-layer ag-
gregates over internal representations of sub-bags, yielding a representation for the
entire top-bag. In this case, the representation of each sub-bag Sj = {xj,1, . . . , xj,|Sj|}
would be obtained as

φj = g(xj,1, . . . , xj,|Sj|; ws, bs) j = 1, . . . , |X| (3.4)

and the representation of a top-bag X = {S1, . . . , S|X|} would be obtained as

φ = g(φ1, . . . , φ|X|; wt, bt) (3.5)

where (ws, bs) and (wt, bt) denote the parameters used to construct sub-bag and
top-bag representations. Furthermore, different aggregation functions can be also
evaluated in parallel.

Note that nothing prevents us from intermixing bag-layers with standard neural
network layers, thereby forming networks of arbitrary depth. In this case, each xj,`
in Eq. (3.4) would be simply replaced by the last layer activation of a deep network
taking xj,` as input. Denoting by θs the parameters of such network and by Ns(x; θs)

its last layer activation when fed with instance x, Eq. (3.4) becomes

φj = g(Ns(xj,1; θs), . . . , N(xj,|Sj|; θs); ws, bs) j = 1, . . . , |X|. (3.6)
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Similarly, we may use a network Nt, with parameters θt, to transform sub-bag rep-
resentations. As a result, Eq. (3.5) becomes

φ = g(Nt(φ1; θt), . . . , Nt(φ|X|; θt); wt, bt). (3.7)

Of course the top-bag representation can be itself further processed by other layers.
An example of the overall architecture is shown in Figure 3.3, while the detailed
Python implementation is provided in Appendix, A.
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Figure 3.3: Network for multi-multi instance learning applied to the bag-of-bags
{{x1,1, x1,2}, {x2,1, x2,2, x2,2}, {x3,1, x3,2}}. Bag-layers are depicted in redwith dashed
borders. Blue boxes are standard (e.g., dense) neural network layers. Note that pa-
rameters θs in each of the seven bottom vertical columns are shared, as well param-
eters θt in the middle three columns.

Expressiveness of networks of bag-layers
We focus here on a deterministic (noiseless) version of the MMIL setting described
in Section 3.1 where labels are deterministically assigned and no form of counting is
involved. We show that under these assumptions, the architecture of Section 3.2 has
enough expressivity to represent the solution to the MMIL problem. Our approach
relies on classic universal interpolation results for neural networks (Hornik et al.,
1989). Note that existing results hold for vector data, and this section shows that
they can be leveraged to bag-of-bag data when using the architecture of Section 3.2.

Definition 3.2.1. Wesay that data is generatedunder the deterministicMMIL setting
if the following conditions hold true:
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1. instance labels are generated by an unknown function f̂ : X 7→ Y I , i.e., yj,` =

f̂ (xj,`), for j = 1, . . . , |X|, ` = 1, . . . |Sj|;

2. sub-bag labels are generated by an unknown function ĝ : M(Y I) 7→ YS, i.e.,
yj = ĝ({yj,1, . . . , yj,|Sj|});

3. the top-bag label is generated by an unknown function ĥ : M(YS) 7→ {0, 1},
i.e., y = ĥ({y1, . . . , y|X|}).

When data is generated in the deterministic setting, then the label of a bag-of-
bags

X = {{x1,1, . . . , x1,S1}, . . . , {x|X|,1, . . . , x|X|,|S|X||}},
would be produced as

y = ĥ
({

ĝ
(
{ f̂ (x1,1), . . . , f̂ (x1,|S1|)}

)
, . . . , ĝ

(
{ f̂ (x|X|,1), . . . , f̂ (x|X|,|S|X||)}

)})
Note that the classic MIL formulation (Maron and Lozano-Pérez, 1998) is recov-

eredwhen examples are sub-bags,Y I = {0, 1}, and ĝ({y1, . . . , y|S|}) = 1

{
0 <

|S|
∑
`=1

y`

}
.

Other generalizedMIL formulations (Foulds and Frank, 2010; Scott et al., 2005; Wei-
dmann et al., 2003) can be similarly captured in this deterministic setting.

For amultiset s let set(s)denote the set of elements occurring in s. E.g. set({0, 0, 1}) =
{0, 1}.

Definition 3.2.2. Wesay that data is generated under the non-counting deterministic
MMIL setting if, in addition to the conditions of Definition 3.2.1, both ĝ(s) and ĥ(s)
only depend on set(s).

The following result indicates that a network containing a bag-layer with max
aggregation is sufficient to compute the functions that label both sub-bags and top-
bags.

Lemma 3.2.1. Let C = {c1, . . . , cM}, D = {d1, . . . , dL} be sets of labels, and let ĝ :
M(C) 7→ D be a labeling function for which ĝ(s) = ĝ(s′) whenever set(s) = set(s′).
Then there exist a network with one bag-layer that computes ĝ.

Proof. We construct a network N where first a bag-layer maps the multiset input s
to a bit-vector representation of set(s), on top of which we can then compute ĝ(s)
using a standard architecture for Boolean functions.

In detail, N is constructed as follows: the input s = {y1, . . . , y|s|} is encoded by
|s| M-dimensional vectors φi containing the one-hot representations of the yi. We
construct a bag-layer with k = m = M, w is the M × M identity matrix, b is zero,
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α is the identity function, and Ξ is max. The output of the bag-layer then is an M-
dimensional vector ψ whose i’th component is the indicator function 1{ci ∈ s}.

For each j ∈ {1, . . . , L} we can write the indicator function 1
{

ĝ(set(s)) = dj
}
as

a Boolean function of the indicator functions 1{ci ∈ s}. Using standard universal
approximation results (see, e.g., (Hornik et al., 1989), Theorem 2.5) we can construct
a network that on input ψ computes 1

{
ĝ(set(s)) = dj

}
. L such networks in parallel

then produce an L-dimensional output vector containing the one-hot representation
of ĝ(s).

Theorem 3.2.2. Given a dataset of examples generated under the non-counting determin-
istic MMIL setting, there exist a network with two bag-layers that can correctly label all
examples in the dataset.

Proof. We first note that the universal interpolation result of (Hornik et al., 1989)
can be applied to a network taking as input an instance x which appears in any data
example, and generating the desired label f̂ (x). We then use Lemma 1 twice, first
to form a network that computes the sub-bag labeling function ĝ, and then to form
a network that computes the top-bag labeling function ĥ.

3.3 Related Works

Multi-instance neural networks
Ramon and De Raedt (2000) proposed a neural network solution to MIL where each
instance xj in a bag X = {x1, . . . , x|X|} is first processed by a replica of a neural net-
work f with weights w. In this way, a bag of output values { f (x1; w), . . . , f (x|X|; w)}
computed for each bag of instances. These values are then aggregated by a smooth
version of the max function:

F(X) =
1
M

log

(
∑

j
eM f (xj;w)

)

where M is a constant controlling the sharpness of the aggregation (the exact max-
imum is computed when M → ∞). Recall that a single bag-layer (as defined in
Section 3.2) can used to solve the MIL problem. Still, a major difference compared
to the work of (Ramon and De Raedt, 2000) is that bag-layers perform aggregation
at the representation level rather than at the output level. In this way, more layers can
be added on the top of the aggregated representation, allowing for more expres-
siveness. In the classic MIL setting (where a bag is positive iff at least one instance
is positive) this additional expressiveness is not required. However, it allows us to
solve slightly more complicatedMIL problems. For example, suppose each instance
has a latent variable yj ∈ 0, 1, 2, and suppose that a bag is positive iff it contains at
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least one instance with label 0 and no instance with label 2. In this case, a bag-layer
with two units can distinguish positive and negative bags, provided that instance
representations can separate instances belonging to the classes 0, 1 and 2. The net-
work proposed in (Ramon andDeRaedt, 2000)would not be able to separate positive
from negative bags. Indeed, as proved in Section 3.2, networks with bag-layers can
represent any Boolean function over sets of instances.

Convolutional neural networks

Convolutional neural networks (CNN) (Fukushima, 1980; LeCun et al., 1989) are
the state-of-the-art method for image classification (see, e.g., (Szegedy et al., 2016)).
It is easy to see that the representation computed by one convolutional layer fol-
lowed by max-pooling can be emulated with one bag-layer by just creating bags of
adjacent image patches. The representation size k corresponds to the number of
convolutional filters. The major difference is that a convolutional layer outputs spa-
tially ordered vectors of size k, whereas a bag-layer outputs a set of vectors (without
any ordering). This difference may become significant when two or more layers
are sequentially stacked. Figure 3.4 illustrates the relationship between a convolu-

Figure 3.4: One convolutional layer with subsampling (left) and the corresponding
bag-layer (right). Note that the convolutional layer outputs [φ1, φ2, φ3, φ4] whereas
the bag-layer outputs {φ1, φ2, φ3, φ4}.

tional layer and a bag-layer, for simplicity assuming a one-dimensional signal (i.e.,
a sequence). When applied to signals, a bag-layer essentially correspond to a disor-
dered convolutional layer and its output needs further aggregation before it can be
fed into a classifier. The simplest option would be to stack one additional bag-layer
before the classification layer. Interestingly, a network of this kind would be able
to detect the presence of a short subsequence regardless of its position within the
whole sequence, achieving invariance to arbitrarily large translations

We finally note that it is possible to emulate a CNN with two layers by properly
defining the structure of bags-of-bags. For example, a second layer with filter size 3
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on the top of the CNN shown in Figure 3.4 could be emulated with two bag-layers
fed by the bag-of-bags

{{{x1,1, x1,2}, {x2,1, x2,2}, {x3,1, x3,2}}, {{x2,1, x2,2}, {x3,1, x3,2}, {x4,1, x4,2}}}.

A bag-layer, however, is not limited to pooling adjacent elements in a feature map.
One could for example segment the imagefirst (e.g., using a hierarchical strategy (Ar-
beláez et al., 2011)) and then create bags-of-bags by following the segmented re-
gions.

Nested SRL Models
In Statistical Relational Learning (SRL) a great number of approaches have been
proposed for constructing probabilistic models for relational data. Relational data
has an inherent bag-of-bag structure: each object o in a relational domain can be in-
terpreted as a bag whose elements are all the other objects linked to o via a specific
relation. These linked objects, in turn, also are bags containing the objects linked via
some relation. A key component of SRLmodels are the tools employed for aggregat-
ing (or combining) information from the bag of linked objects. Inmany types of SRL
models, such an aggregation only is defined for a single level. However, a few pro-
posals have included models for nested combination (Jaeger, 1997; Natarajan and
Van der Ven, 2018). Like most SRL approaches, these models employ concepts from
first-order predicate logic for syntax and semantics, and (Jaeger, 1997) contains an
expressivity result similar in spirit to the onewe present in the following section 3.2.

A key difference between SRL models with nested combination constructs and
our MMIL network models is that the former build models based on rules for con-
ditional dependencies which are expressed in first-order logic and typically only
contain a very small number of numerical parameters (such as a single parameter
quantifying a noisy-or combination function for modelling multiple causal influ-
ences). MMIL network models, in contrast, make use of the high-dimensional pa-
rameter spaces of (deep) neural network architectures. Roughly speaking, MMIL
network models combine the flexibility of SRLmodels to recursively aggregate over
sets of arbitrary cardinalitieswith the power derived fromhigh-dimensional param-
eterisations of neural networks.

3.4 Experiments
We evaluated our model on two experimental setups:

1. we constructed a multi-multi instance learning semi-synthetic dataset from
MNIST, inwhich digitswere organized in bags-of-bags of arbitrary cardinality.
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This setup follows the Example 3.1.1 shown in Section 3.1. The aim of this
experiment is to show the ability of the network to learn functions that have
generated the data according to Theorem 3.2.2 in Section 3.2;

2. we constructed semi-synthetic dataset from MNIST, placing digits randomly
into a background images of black pixels. The aim of this experiment is to
show the disordered convolution property discussed in Section 3.3;

MNIST
Results of Section 3.2 show that networkswith bag layers can represent any labelling
function in the non-counting deterministic MMIL setting. We show here that these
networks trained by gradient descent can actually learn such functions fromMMIL
data.

In this section we show two results concerning the ability of the MMIL networks
of learning the rules that generated the data. By considering digit images extracted
fromMNIST dataset as instances, we constructed two different setups: a “logic sce-
nario” and an “algebraic scenario”. For both the scenarios, we constructed two
MMIL datasets, Dl and Da, for the logic and the algebraic scenarios, respectively.
Each top-bag X, in both Dl and Da, is a bag-of-bags of images. For each sub-bag Sj,
we denote by Yj = {yj,1 . . . , yj,|Sj|} the set of instance labels in sub-bag Sj, where yj,`
are derived from the MNIST dataset labels.

Logic Scenario The setup is similar to Example 3.1.1 in Section 3.1, but the classifi-
cation rule ismore complicated. We labeled each sub-bag according to the following
rules:

• sub-bag Sj has label 0 iff one of the following conditions is satisfied: {1, 3, 5, 7} ⊂
Yj, {2, 1, 3} ⊂ Yj, {3, 2, 7, 9} ⊂ Yj;

• sub-bag Sj has label 1 iff Sj has not label 0 and one of the following conditions
is satisfied: {8, 9} ⊂ Yj, {4, 5, 6} ⊂ Yj, {7, 2, 1} ⊂ Yj;

• sub-bag Sj has label 2 iff Sj has not label 0 and Sj has not label 1.

Finally each top-bag is positive if and only if it contains at least a sub-bag of class
1. Observe that data generated according to those rules satisfied the conditions of
Definitions 3.2.1 and 3.2.2. Using these rules, we generated a balanced training set
of 5, 000 top-bags and a balanced test set of 5, 000 top-bags. Sub-bag and top-bag
cardinalities were uniformly sampled in the interval [2, 6]. Instances in the training
set were randomly sampled with replacement from the 60,000 MNIST training im-
ages, while instances in the test set were randomly sampled with replacement from
the 10,000 MNIST test images. The model we used for training Dl has the following
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structure: two stacked convolutional layers (the first with 32 channels, while the sec-
ondwith 64 channels) with kernel size 5× 5, batch normalization, max pooling 2× 2
and ReLU activations. Following the convolutional layers, the MMIL network has a
dense layer with 1,024 units with ReLU activation and dropout with probability 0.5,
two stacked bag-layers with 100 units, ReLU activations, and max as a aggregation
function, and finally a dense layer with 1 unit with sigmoid activation.

The model was trained by minimizing the L2-regularized binary cross-entropy
loss (with L2 penalty 5 · 10−4). We stress the fact that instance and sub-bag labels
were not used to form the training objective. We ran 200 epochs of the Adam op-
timizer (Kingma and Ba, 2014) with learning rate 0.001. The model reached an ac-
curacy equals to 96.44% on the test set which confirms that the network is able to
recover the latent logic function that was used in the data generation process with
a reasonably high accuracy.

Algebraic Scenario For the MMIL dataset Da, we labelled each sub-bag Sj with
the product of the instance labels, yj,`, which belongs to it. Each top-bag is then
labelled with the summation of the labels associated to the sub-bags contained in
it. For example, let us consider a top-bag X = {S1, S2, S3} in which each sub-bag S1

and S2 contain 3 instances, and S3 contains 2 instances. The labels associated with
the instances are {1, 3, 5}, {7, 2, 3}, and {8, 0} for S1, S2, and S3, respectively. Hence
the labels attached to the sub-bags are 15, 42 and 0. Finally, the label attached to X
is 57. By using these rules, we generated in turn training and test sets containing
500k top-bags. Sub-bag and top-bag cardinalities were uniformly sampled in the
interval [1, 3]. Instances in the training set and in the test set were randomly sampled
with replacement from the 60,000MNIST training images and the 10,000MNIST test
images, respectively.

The model we used for trainingDa has the following structure: two stacked con-
volutional layers (the first with 6 channels, while the second with 16 channels) with
kernel size 5 × 5, batch normalization, max pooling 2 × 2 and ReLU activations.
Following the convolutional layers, the MMIL network has a two stacked bag-layers
with 1, 000 units, ReLU activations and summation as aggregation function, a dense
layer with 1, 000 units and ReLU activation, and finally a dense layer with 12 units
with sigmoid activation. We represented the top-bag labels as base 2 numbers. Since
that the top-bag labels range from 0 to 2,187, the number of bits for representing the
top-bag labels is, hence, 12.

In this experiment, we also trained a standard convolutional network, i.e. with-
out bag-layers, which has the same structure as the MMIL network (with the ex-
ception of the bag-layers). Starting from the MMIL dataset Da, we constructed a
compatible dataset for the standard convolutional network by concatenating all the
digits within a top-bag into one image. MNIST dataset consists of 28 × 28 pixels
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images of digits. The final image, of size 28× 252, contains at most 9 MNIST digits,
in which the first 3 blocks of 28× 28 pixels are reserved for the first sub-bag, the
second 3 blocks of 28× 28 pixels are reserved for the second sub-bag, and the last 3
blocks of 28× 28 pixels are reserved for the last sub-bag. Whereas the cardinalities
of sub-bags and instances are lower than 3, we used an empty image (in place of a
MNIST image), i.e. with all the pixels equal to 0. Figure 3.5 depicts an example of
how a top-bag X ∈ Da is transformed into a compatible input image for the standard
convolutional network.

S1

S2

S3

X
Figure 3.5: A top-bag X is transformed into a CNN input data.

Both the models were trained by minimizing the binary cross-entropy loss. We
ran 200 epochs of the Adam optimizer (Kingma and Ba, 2014) with learning rate
0.001. The MMIL model reached an accuracy equals to 91.23%, while the standard
convolutional network model reached an accuracy equals to 79.52%. These results
confirm that our model is able to exploit the unordering property of the bag-layers
described in Section 3.3. While for the MMIL network two sub-bags containing for
example {1, 2, 3} and {3, 2, 1} are equivalent, for the standard convolutional network
those sets differ. We will deepen this bag-layer property in the next experiment.

As a last experiment, we compared our model against DeepProbLog (Manhaeve
et al., 2018) in which the authors proposed a simpler experiment on MNIST where
the cardinalities of the sub-bags and instances are fixed to 2 and 1, respectively. In
this respect we constructed a MIL (multi-instance learning) dataset in which bags
contain exactly two digits. Hence, we trained an MIL network which has the same
structure of the CNN network used in (Manhaeve et al., 2018) (with the exception
for the bag-layer). We obtained an accuracy on the test set equals to 98.52% which
is comparable with the accuracy (≈ 98%) obtained in (Manhaeve et al., 2018). We
would like to point out that in (Manhaeve et al., 2018) the summation functionwhich
labels a bag is part of the background knowledge, while for our approach the label
function is assumed to be latent.
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Multi-multi instance learning as Disordered Pooling

As discussed in Section 3.3, bag-layers can be used as disordered convolutional lay-
ers. The aim of the following experiment is to show this property on a simple sce-
nario, and to compare results with a standard convolutional approach. We first con-
structed a dataset MNISTEXT by placing the 28× 28 pixels MNIST digit images on
a black background of size w×w (we generated datasets for several values of w, i.e.
w ∈ {105, 135, 165, 195}). MNISTEXT images are labelled with the digit they con-
tain. The goal is to classify digits regardless of their location within the images. Our
purpose here is to show how the location-invariance of the bag-layer function can be
exploited to obtain robust classification results for raw image data without center-
ing or cropping preprocessing. As MNIST, the MNISTEXT dataset, is split in train-
ing and test sets containing respectively 60,000 images and 10,000 images. Digits of
training and test images are placed in the top and bottom half of the background,
respectively. On the same datasets we trained a MMIL network and a standard con-
volutional network.

Concerning the MMIL network we constructed MMIL data as follows: each top-
bag X represents an image in MNISTEXT. For each we extracted macro-patches of
size 15× 15 and consecutive macro-patches are overlapped by 5 pixels. Eachmacro-
patch represents a sub-bag Sj ∈ X. For each macro-patch we extractedmicro-patches
of size 5× 5 and consecutive micro-patches are overlapped by 3 pixels. Each micro-
patch represents an instance xj,` ∈ Sj. Note that the choice of the micro-patches,
macro-patches and w sizes is in general arbitrary. Here we chose those specific val-
ues for avoiding, as far as possibile, the zero padding for adapting the sizes and
then waste of computational resources. Furthermore choosing w fixed for each ex-
periment is crucial in order to compare the MMIL network with the convolutional
neural network. Indeed while our approach can handle bags of different size the
convolutional model requires that input images have fixed size. The structure of the
MMIL network we used in this experiment consists of two stacked bag-layers (of
size 100, and 200 respectively), with max aggregation functions followed by ReLU
activation, a dense layer with 1,024 units with ReLU activation, a Dropout layer with
probability 0.5, and a dense layer with Softmax activation with 10 units. The model
was trained by minimizing the categorical cross-entropy loss. We ran 20 epochs of
the Adam optimizer with learning rate 0.0001.

Concerning the convolutional network, we used a model composed of 4 convo-
lutional blocks, a dense layer of 1024 units with ReLU activation, a Dropout layer
with probability 0.5 and a Softmax Layer of 10 units. The first convolutional block
contains a convolutional layer with a kernel of size 7× 7 and 32 channels while the
other blocks contain convolutional layers of size 5× 5 and 64 channels. Each con-
volutional layer is followed by a ReLU activation, MaxPooling of size 2× 2 and a
Dropout layer with probability 0.5. The model was trained by minimizing the cat-
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egorical cross-entropy loss. We ran 20 epochs of the Adam optimizer with learning
rate 0.001.

In Figure 3.6we report the accuracy ofMMIL network andCNNs as a function of
w. We note that the accuracy of the CNNdecreases as w grows large, while accuracy
theMMIL network remains stable. Those results confirm thatMMIL network is able
to learn location-invariant features.
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Figure 3.6: Accuracies of MMIL network (blue) and convolutional neural network
(green) in function of window size w.





Chapter 4

Interpreting MMIL networks

As a further advantage, multi-multi instance learning enables a partic-
ular way of interpreting predictions and the decision function. We pro-
pose a framework, based on rule extractions, able to explain our model. We
present empirical results on semi-synthetic data showing that such class of
functions can be actually learned from data. We also present experiments
on text classification.1

Recently, the question of interpretability has become particularly prominent in the
neural network context. Lapuschkin et al. (2016); Samek et al. (2016) explain predic-
tions of a classifier f for each instance x ∈ Rn, by attributing scores to each entry of x.
A positive Ri > 0 or negative Ri < 0 score is then assigned to xi, dependingwhether
xi contributes for predicting the target or not. Ribeiro et al. (2016) also provided ex-
planations for individual predictions as a solution to the “trusting a prediction” by
approximating a machine learningmodel with an interpretable model. The authors
assumed that instances are given in a representation which is understandable to
humans, regardless of the actual features used by the model. For example for text
classification an interpretable representationmay be the binary vector indicating the
presence or absence of a word. An “interpretable” model is defined as a model that
can be readily presented to the user with visual or textual artefacts (linear models,
decision trees, or falling rule lists), which locally approximates the original machine
learning model.

Multi-multi instance learning enables a particularway of interpreting themodels
by reconstructing instance and sub-bag latent variables. This allows to explain the
prediction for a particular data point, and to describe the structure of the decision
function in terms of symbolic rules. Suppose we could recover the latent labels as-
sociated with instances or inner bags. These labels would provide useful additional

1 Part of the content of this chapter has been submitted as “Learning and Interpreting Multi-
Multi-Instance Learning Networks” in Journal of Machine Learning Research, 2018. http://arxiv.
org/abs/1810.11514
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information about the data sincewe could group instances (or inner bags) that share
the same latent label and attach some semantics to these groups by inspection. For
example, in the case of textual data, grouping words or sentences with the same
latent label effectively discovers topics and the decision of a MMIL text document
classifier can be interpreted in terms of the discovered topics. In practice, even if
we cannot recover the true latent labels, we may still derive pseudo-labels from pat-
terns of hidden units activations in the bag-layers. The major differences between
all thosemethods and our interpretation framework, described in Section 4.1, is that
with the latter we are able to provide a global interpretation for the whole MMIL
network, as well as to explain individual example.

4.1 Interpreting networks of Bag-layers
Interpreting the predictions in the supervised learning setting amounts to provide a
human understandable explanation of the prediction. Transparent techniques such
as rules or trees retainmuch of the symbolic structure of the data and arewell suited
in this respect. On the contrary, predictions produced by methods based on numer-
ical representations are often opaque, i.e., difficult to explain to humans. In partic-
ular, representations in neural networks are highly distributed, making it hard to
disentangle a clear semantic interpretation of any specific hidden unit. Although
many works exist that attempt to interpret neural networks, they mostly focus on
specific application domains such as vision (Lapuschkin et al., 2016; Samek et al.,
2016).

The MMIL settings offers some advantages in this respect. Indeed, if instance or
sub-bag labels were observed, they would provide more information about bag-of-
bags than mere predictions. Latent variables are indeed associated with each indi-
vidual “part” of the top-bag, as opposite to the prediction which is associated with
the whole. To clarify our vision, MIL approaches like mi-SVM andMI-SVM in (An-
drews et al., 2003) are not equally interpretable: the former is more interpretable
than the latter since it also provides individual instance labels rather than simply
providing a prediction about the whole bag. These standard MIL approaches make
two assumptions: first all labels are binary, second the relationship between the in-
stance labels and the bag label is predefined to be the existential quantifier. In our
case we relax these assumptions by allowing labels in a categorical alphabet and
by allowing more complex mappings between bags of instance labels and sub-bag
labels. Our approach may also provide a richer explanation due to the nested struc-
ture of the data as bags-of-bags. We follow the standard MIL approaches in that we
also assume a deterministic mapping from component to bag labels, i.e., we assume
the data can be modelled in the deterministic MMIL setting according to Defini-
tion 3.2.1.
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The idea we propose in the following is based on four steps. First, we employ
clustering at the level of instance and sub-bag representations to construct pseudo-
labels as surrogates for hypothesized actual latent labels. Pseudo-labels obtained in
this way are abstract symbols without any specific semantics. Hence, in the second
stepwe provide semantic interpretations of the pseudo-labels for human inspection.
Third, we apply a transparent learner to extract a human-readable representation of
the mappings between pseudo-labels at the different levels of a bag-of-bags struc-
ture. Finally, we explain predictions for individual top-bag examples by exhibiting
the relevant components and their pseudo-labels which determine the predicted
top-bag label. We stress the fact that our interpreting framework provides a global
interpretation for an MMIL model as well as local explanations for individual pre-
dictions.

We now describe each of these steps in detail. As before, for ease of exposition
we assume in the following a two-level bag-of-bags structure. The method directly
applies also to other nesting depths.

Clustering and pseudo-label construction. Given labeled top-bag data
{(X(i), y(i)), i = 1, . . . , m} and a trained MMIL network we consider the multi-sets
of sub-bag and instance representations computed by the bag layers:

SS = {ρ(i)j | i = 1, . . . , m, j = 1, . . . , n(i)}.

S I = {ρ(i)j,k | i = 1, . . . , m, j = 1, . . . , n(i), k = 1, . . . , l(i)j }

where the ρ
(i)
j and ρ

(i)
j,k are the representations according to (3.2).

Given the number of clusters kS and kI we run a clustering procedure on SS

and on S I (separately), obtaining clusters {CS
` , ` = 1, . . . kS} and {C I

` , ` = 1, . . . kI}.
We finally associate each sub-bag and each instance with the cluster index of their
representation, and use them as pseudo-labels ŷ(i)j ∈ ŶS := {v1, . . . , vkS} and ŷ(i)j,k ∈
Ŷ I := {u1, . . . , ukI}.

Interpreting pseudo-labels. Clusters can be directly inspected in the attempt to
attach some meaning to pseudo-labels. For example in the case of textual data, a
human could inspect word clusters, similarly to what has been suggested in the
area of topic modelling (Blei et al., 2003; Griffiths and Steyvers, 2004).

To facilitate inspection, we propose an approach to characterize clusters in terms
of their most characteristic elements. To this end, we define a ranking of the ele-
ments in each cluster according to a score function based on intra-cluster distances.
Consider a sub-bag S(i)

j whose bag-layer representation ρ
(i)
j belongs to cluster CS

` .
We define the score

s(ρ(i)j ) = min
p=1,...,kS,p 6=`

‖ρ(i)j − µp‖, (4.1)
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where µp is the centroid of the pth cluster. Thus, a point ρ
(i)
j obtains a high score

when it is well separated from the means of all the clusters it does not belong to.
The procedure for ranking instances is analogous. We use the cluster elements with
maximal score to illustrate and interpret the semantic nature of a cluster. Note that
this is different from the more common approach of interpreting clusters by way of
their centroids.

In some cases the cluster elements may be equipped with some true, latent label.
In such cases we can alternatively characterize pseudo-labels in terms of their cor-
respondence with these actual labels. An example of this will be seen in Section 4.2
below.

Learning interpretable rules. We next describe how we construct interpretable
functions that approximate the actual (potentially noisy) relationships betweenpseudo-
labels in the MMIL network.

Let us denote a bag of pseudo-labels as {ŷl : cl | l = 1, . . . , |Ŷ |}, where cl
is the multiplicity of label ŷl. An attribute-value representation of the bag can be
immediately obtained in the form of a label frequency vector ( fc1 , . . . , fc|Ŷ |), where

fcl = cl/ ∑|Ŷ |p=1 cp is the frequency of the label in the bag. Alternatively, we can also
use a 0/1-valued label occurrence vector (oc1 , . . . , oc|Ŷ |)with ocl = 1{cl > 0}. Jointly
with an output label y, this attribute-value representation provides one supervised
example for a propositional learner such as a decision tree.

In the two level MMIL case, we learn in this way functions ĝ, ĥ mapping mul-
tisets of instance pseudo-labels to sub-bag pseudo-labels, and multisets of sub-bag
pseudo-labels to top-bag labels, respectively (cf. Definition 3.2.1). In the second
case, our target labels are the predicted labels of the original MMIL network, not
the actual labels of the training examples. Thus, the objective is to construct rules
that best explain the MMIL model, not the rules that provide the highest accuracy
themselves.

The instance-level clustering {C I
` , ` = 1, . . . kI} defines a labeling function f̂ :

X 7→ Ŷ I by associating any (test) instance with the index of its nearest centroid.
Taken together, the three functions f̂ , ĝ, ĥ provide a complete classification model
for a top-bag based on the input features of its instances. We refer to the accuracy of
this model with regard to the predictions of the original MMIL model as its fidelity.

We use fidelity on a validation set as the criterion to select the cardinalities for
ŶS and Ŷ I by performing a grid search over kS, kI value combinations.

Explaining individual classifications. The classification provided by f̂ , ĝ, ĥ for an
input top-bag X will often rely only on small subsets of sub-bags and instances con-
tained in X (cf. the classic multi-instance setting, where a positive classification can
rely only on a single positive instance). We can therefore explain classifications for



4.2 Experiments 39

individual examples by exhibiting the critical substructures of X that support the
prediction. The details of this step are typically quite domain specific, and we will
illustrate one version of it in the experimental section.

4.2 Experiments
1. we constructed a multi-multi instance semi-synthetic dataset from MNIST, in

which digits were organized in bags-of-bags of varying cardinality. This setup
follows the example 3.1.1 shown in Section 3.1. The aim of this experiment is to
show the ability of the network to learn functions that satisfy the assumptions
of Theorem 3.2.2 in Section 3.2. Furthermore we interpreted the network by
using the approach described in Section 4.1;

2. we decomposed a sentiment-analysis text dataset into MMIL data and MIL
data. The goal is to show the differences between the interpretation of the two
models.

MNIST
The data is structured exactly as in Example 3.1.1. We formed a balanced training
set and validation set of 4,000 and 1,000 top-bags respectively, using MNIST digits.
Both sub-bag and top-bag cardinalities were uniformly sampled in [2, 6]. Instances
were sampled with replacement from the MNIST training set (60,000 digits). A test
set of 5,000 top-bags was similarly constructed but instances were sampled from the
MNIST test set (10,000 digits). Details on the network architecture and the training
procedure are reported in Appendix B in Table B.1. We stress the fact that instance
and sub-bag labels were not used for training. The learned network achieved an
accuracy on the test set of 98.42%, confirming that the network is able to recover
the latent logic function that was used in the data generation process with a high
accuracy.

We show next how the general approach of Section 4.1 for constructing inter-
pretable rules recovers the latent labels and logical rules used in the data gener-
ating process. Note that this experiments is similar to the one reported in Section
3.4, but with simpler rules, in order to provide the reader easier results to follow
for what concerns the interpretation. Pseudo-labels and rules are learnt with the
procedure described in Section 4.1. Clustering was performed with K-Means, and
decision trees were used as propositional learners. As described in Section 4.1, we
determined the number of instance and sub-bag pseudo-labels by maximizing the
fidelity of the interpretable model on the validation data via grid search, and in
this way found kI = 6, and kS = 2, respectively. Full results of the grid search are
depicted as a heat-map in Appendix B (Figure B.1).
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Figure 4.1: Correspondence between pseudo-labels ui and actual digit class labels

We can interpret the instance pseudo labels by analysing their correspondence
with the actual digit labels. It is then immediate to recognize that pseudo-label u1

corresponds to the digit 7, u3, u5, and u6 all correspond to digit 3, and u2 and u4 cor-
respond to digits other than 7 and 3. All correspondences are shown by histograms
in Figure 4.1. From a decision tree trained to predict pseudo labels of sub-bags S
from instance pseudo label occurrence vectors (ou1 , . . . , ou6) we then extract the fol-
lowing rules defining the function ĝ:

1 ĝ = v1 ← ou1=1, ou3=0, ou5=0, ou6=0.
2 ĝ = v2 ← ou1=0.
3 ĝ = v2 ← ou3=1.
4 ĝ = v2 ← ou5=1.
5 ĝ = v2 ← ou6=1.

(4.2)

Based on the already established interpretation of the instance pseudo-labels u1, u3, u5, u6

we thus find that the sub-bag pseudo-label v1 gets attached to the sub-bags that
contain a seven and not a thre, i.e., it corresponds to the latent ’positive’ label for
sub-bags.

Similarly, we extracted the following rule that predict the class label of a top-bag
X based on the occurrence vector (ov1 , ov2) of sub-bag pseudo-labels.

1 ĥ = positive← ov1=1
2 ĥ = negative← ov1=0

(4.3)



4.2 Experiments 41

Hence, in this example, the true rules behind the data generation process were per-
fectly recovered. Note that perfect recovery does not necessarily imply perfect accu-
racy of the resulting rule-based classification model f̂ , ĝ, ĥ, since the initial instance
pseudo labels f̂ (x) do not correspond with the digit labels with 100% accuracy.
Nonetheless, in this experiment the classification accuracy of the interpretable rule
model on the test set was 98.18%, only 0.24% less than the accuracy of the original
model, which it approximated with a fidelity of 99.16%.

IMDB
In this section we apply our approach to a real-world dataset for sentiment analysis.
The main objective of this experiment is to demonstrate the feasibility of our model
interpretation framework on real-world data, and to explore the trade-offs between
an MMIL and MIL approach. We use the IMDB (Maas et al., 2011) dataset, which is
a standard benchmark movie review dataset for binary sentiment classification. We
remark that this IMDB dataset differs from the IMDB graph datasets described in
Section 5.1. IMDB consists of 25,000 training reviews, 25,000 test reviews and 50,000
unlabelled reviews. Positive and negative labels are balanced within the training
and test sets. Text data exhibits a natural bags-of-bags structure by viewing a text
as a bag of sentences, and each sentence as a bag of words. Moreover, for the IMDB
data it is reasonable to associate with each sentence a (latent) sentiment label (pos-
itive/negative, or maybe something more nuanced), and to assume that the overall
sentiment of the review is a (noisy) function of the sentiments of its sentences. Sim-
ilarly, sentence sentiments can be explained by latent sentiment labels of the words
it contains.

AMMILdatasetwas constructed from the reviews, where then each review (top-
bag) is a bag of sentences. However, instead of modeling each sentence (sub-bag) as
a bag of words, we represented sentences as bags of trigrams in order to take into
account possible negations, e.g. “not very good”, “not so bad”. Figure 4.2 depicts
an example of the decomposition of a two sentence review X into MMIL data. Each
word is represented with Glove word vectors (Pennington et al., 2014) of size 100,
trained on the dataset. The concatenation of its three Glove word vectors then is the
feature vector we use to represent a trigram. We here use Glove word vectors for
a more pertinent comparison of our model with the state-of-the-art (Miyato et al.,
2017). Nothing prevents us from using a one-hot representation even for this sce-
nario. In order to compareMMIL againstmulti-instance (MIL)we also constructed a
multi-instance dataset in which a review is simply represented as a bag of trigrams.

We trained two neural networks for MMIL and MIL data respectively, which
have the following structure:

• MMIL network: a Conv1D layer with 300 filters, ReLU activations and ker-



42 Interpreting MMIL networks

I watched this movie last year. I did not like it.

x0 : [ , I, did]

x1 : [I, did, not]

x2 : [did, not, like]

x3 : [not, like, it]

x4 : [like, it, ]

x0 : [ , I, watched]

x1 : [I, watched, this]

x2 : [watched, this, movie]

x3 : [this, movie, last]

x4 : [movie, last, year]

x5 : [last, year, ]

S1
S2

X

Figure 4.2: A review transformed into MMIL data. The word “_” represents the
padding.

nel size of 100, two stacked bag-layers (with ReLU activations) with 500 units
each (250 max-aggregation, 250 mean-aggregation) and an output layer with
sigmoid activation;

• MIL network: a Conv1D layer with 300 filters, ReLU activations and kernel
size of 100, one bag-layers (with ReLU activations) with 500 units (250 max-
aggregation, 250 mean-aggregation) and an output layer with sigmoid activa-
tion;

Themodels were trained byminimizing the binary cross-entropy loss. We ran 20
epochs of the Adam optimizer with learning rate 0.001, on mini-batches of size 128.
We used also virtual adversarial training (Miyato et al., 2017) for regularizing the
network and exploiting the unlabelled reviews during the training phase. Although
ourmodel does not outperform the state-of-the-art (94.04%, Miyato et al. (2017)), we
obtained a final accuracy of 92.26% for the MMIL network and 91.73% for the MIL
network. Those results show that the MMIL representation here leads to a slightly
higher accuracy than the MIL representation.

When accuracy is not the only concern, our models have the advantage that we
can distill them into interpretable sets of rules following our general strategy. As in
Section 4.2, we learnt pseudo-labels and rules for both the MMIL model and MIL
model. Using 2,500 reviews as a validation set, we obtained in the MMIL case 4
and 5 pseudo-labels for sub-bags and instances, respectively, and in the MIL case 6
pseudo labels for instances. Full grid search results on the validation set are reported
in Appendix C (Figure C.1).

We now focus on the interpretation of pseudo-labels, following the approach de-
scribed in Section 4.1 and using intra-cluster distances (Eq. 4.1) to compute scores.
In Tables 4.1 and 4.2 we report the top-scoring sentences and trigrams, respectively,
sorted by decreasing score. It can be seen that sentences labeled by v1 or v4 express
negative judgments, sentences labeled by v2 are either descriptive, neutral or am-
biguous, while sentences labeled by v3 express a positive judgment. Similarly, we
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see that trigrams labeled by u1 express positive judgments while trigrams labeled
by u2 or u4 express negative judgments. Columns printed in grey correspond to
pseudo-labels that do not actually appear in the extracted rules (see below), and
they do not generally correspond to a clearly identifiable sentiment. Percentages in
parenthesis in the headers of these tables refer to fraction of sentences or trigrams
associated with each pseudo-label (the total number of sentences in the dataset is
approximately 250 thousandwhile the total number of trigrams is approximately 4.5
million). A similar analysis was performed in the MIL setting (results in Table 4.3).

MMIL rules. Using a decision tree learner taking pseudo-label frequency vectors
( fu1 , . . . , fu5) as inputs, we obtained the rules reported in Table 4.4 for mapping a
bag S of instance pseudo-labels to a sub-bag pseudo-label. Even though these rules
are somewhat more difficult to parse than the ones we obtained in Section 4.2, they
still express relatively simple relationships between the triplet and sentence pseudo-
labels. Especially the single sentence pseudo-label v3 that corresponds to a clearly
positive sentiment has a very succinct explanation given by the rule of line 6. Rules
related to sentence pseudo-label v2 are printed in grey. Since v2 is not used by any
of the rules shown in Table 4.5 that map sub-bag (sentence) pseudo-labels to the
top-bag (review) class labels, the rules for v2 will never be required to explain a
particular classification.

MIL rules. For theMILmodel, rulesmap a bag S, described by its instance pseudo-
label frequency vector ( fu1 , . . . , fu5), to the bag class label. They are reported in
Table 4.6. Note that only two out of the six instance pseudo-labels are actually used
in these rules.

By classifying IMDB using the rules and pseudo-labels, we achieved an accuracy
of 87.49% on the test set for the MMIL case and 86.37% for the MIL case. Fidelities
forMMIL andMIL cases were 90.40% and 88.10%, respectively. We thus see that the
somewhat higher complexity of the rule-based explanation of theMMILmodel also
corresponds to a somewhat higher preservation of accuracy. As we demonstrate by
the following example, themulti-level explanations derived fromMMILmodels can
also lead to more transparent explanations for individual predictions.

An example of prediction explanation. As an example we consider a positive
test-set review for the movie Bloody Birthday, which was classified correctly by the
MMIL rules and incorrectly by the MIL rules. Its full text is reported in Table 4.7.
Classification in the MMIL setting was positive due to applicability of rule 2 in Ta-
ble 4.5. This rule only is based on sentences with pseudo-labels v1 and v3, and there-
fore sentences assigned any other pseudo-labels do not actively contribute to this
classification. These irrelevant sentences are dimmed in the printed text (Table 4.7,
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v1 (11.37%) v2 (41.32%) v3 (15.80%) v4 (31.51%)

overrated poorly
written badly
acted

I highly recom-
mend you to NOT
waste your time
on this movie as I
have

I loved this movie
and I give it an 8/
10

It’s not a total
waste

It is badly written
badly directed
badly scored
badly filmed

This movie is
poorly done but
that is whatmakes
it great

Overall I give this
movie an 8/ 10

horrible god awful

This movie was
poorly acted
poorly filmed
poorly written
and overall horri-
bly executed

Although most
reviews say that
it isn’t that bad i
think that if you
are a true disney
fan you shouldn’t
waste your time
with...

final rating for
These Girls is an
8/ 10

Awful awful aw-
ful

Poorly acted
poorly written
and poorly di-
rected

I’ve always liked
Madsen and his
character was a
bit predictable but
this movie was
definitely a waste
of time both to
watch and make...

overall because of
all these factors
this film deserves
an 8/ 10 and
stands as my
favourite of all the
batman films

junk forget it don’t
waste your time
etc etc

This was poorly
written poorly
acted and just
overall boring

If you want me
to be sincere The
Slumber Party
Massacre Part 1 is
the best one and
all the others are a
waste of...

for me Cold
Mountain is an 8/
10

Just plain god aw-
ful

Table 4.1: Interpreting sentence (sub-bag) pseudo-labels in the MMIL setting.
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u1 (5.73%) u2 (8.68%) u3 (28.86%) u4 (2.82%) u5 (53.91%)

_ 8/ 10 trash 2 out had read online it’s pretty poorly give this a
an 8/ 10 to 2 out had read user save this poorly like this a
for 8/ 10 _ 2 out on IMDb reading for this poorly film is 7
HBK 8/ 10 a 2 out I’ve read innumerable just so poorly it an 11
Score 8/ 10 3/5 2 out who read IMDb is so poorly the movie an
to 8/ 10 2002 2 out to read IMDb were so poorly this movie an
verdict 8/ 10 garbage 2 out had read the was so poorly 40 somethings an
Obscura 8/ 10 Cavern 2 out I’ve read the movie amazingly poorly of 5 8
Rating 8/ 10 Overall 2 out movie read the written poorly directed gave it a
it 8/ 10 rating 2 out Having read the was poorly directed give it a
fans 8/ 10 film 2 out to read the is very poorly rating it a
Hero 8/ 10 it 2 out I read the It’s very poorly rated it a
except 8/ 10 score 2 out film reviews and was very poorly scored it a
Tracks 8/ 10 Grade 2 out will read scathing a very poorly giving it a
vote 8/ 10 Just 2 out _ After reading very very poorly voting it a
as 8/ 10 as 2 out about 3 months Poorly acted poorly are reasons 1
strong 8/ 10 and 2 out didn’t read the are just poorly it a 8
rating 8/ 10 rated 2 out even read the shown how poorly vote a 8
example 8/ 10 Rating 2 out have read the of how poorly a Vol 1
... 8/ 10 conclusion 2 out the other posted watching this awful this story an

Table 4.2: Interpreting trigram (instance) pseudo-labels in the MMIL setting.

u1 (13.53%) u2 (41.53%) u3 (3.03%) u4 (5.47%) u5 (31.58%) u6 (4.85%)

production costs _ give it a only 4/10 _ is time well-spent ... 4/10 ... _ Recommended _
all costs _ gave it a score 4/10 _ two weeks hairdressing .. 1/10 for Highly Recommended _
its costs _ rated it a a 4/10 _ 2 hours _ rate this a Well Recommended _
ALL costs _ rating it a _ 4/10 _ two hours _ gave this a _ 7/10 _
possible costs _ scored it a average 4/10 _ finest hours _ give this a 13 7/10 _
some costs _ giving it a vote 4/10 _ off hours _ rated this a rate 7/10 _
cut costs _ voting it a Rating 4/10 _ few hours _ _ Not really .. 7/10 _
rate this a gave this a .. 4/10 _ slow hours _ 4/10 Not really this 7/10 _
gave this a give this a is 4/10 _ three hours _ a 4/10 or Score 7/10 _
rating this a rate this a this 4/10 _ final hours _ of 4/10 saying solid 7/10 _
give this a giving this a of 4/10 _ early hours _ rate it a a 7/10 _
and this an gives this a movie 4/10 _ six hours _ give it a rating 7/10 _
give this an like this a verdict 4/10 _ 48 hours _ gave it a to 7/10 _
given this an film merits a gave 4/10 _ 4 hours _ given it a viewing 7/10 _
gave this an Stupid Stupid Stupid 13 4/10 _ 6 hours _ giving it a it 7/10 _
rating this an _ Stupid Stupid disappointment 4/10 _ five hours _ scored it a score 7/10 _
rate this an award it a at 4/10 _ nocturnal hours _ award it a movie 7/10 _
all costs ... given it a rating 4/10 _ 17 hours _ Cheesiness 0/10 Crappiness is 7/10 _
all costs .. makes it a ... 4/10 _ for hours _ without it a drama 7/10 _
_ Avoid _ Give it a rate 4/10 _ wasted hours _ deserves 4/10 from Recommended 7/10 _

Table 4.3: Interpreting trigram (instance) pseudo-labels in the MIL setting.
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1 ĝ = v1 ← fu1≤6.03, fu2>10.04, fu4 ∈ (2.77, 12.59].
2 ĝ = v1 ← fu1≤16.90, fu4>12.59.
3 ĝ = v2 ← fu1≤8.43, fu2≤8.88, fu4≤2.77.
4 ĝ = v2 ← fu1>3.20, fu2 ∈ (8.88, 20.39], fu4≤2.77.
5 ĝ = v2 ← fu1>6.03, fu2≤6.03, fu4 ∈ (2.77, 12.59].
6 ĝ = v3 ← fu1>8.43, fu2≤8.88, fu4≤2.77.
7 ĝ = v4 ← fu1≤3.20, fu2>8.88, fu4≤2.77.
8 ĝ = v4 ← fu1>3.20, fu2>20.39, fu4≤2.77.
9 ĝ = v4 ← fu1≤6.03, fu2≤10.04, fu4 ∈ (2.77, 12.59].
10 ĝ = v4 ← fu1>6.03, fu2>6.03, fu4 ∈ (2.77, 12.59].
11 ĝ = v4 ← fu1>16.90, fu4>12.59.

Table 4.4: Rules extracted from the MMIL network for mapping instance pseudo-
labels into a sub-bag pseudo-label. Numbers express percentages, i.e. the literal
fu1≤6.03 means that the frequency of instance pseudo-label u1 is less than 6.03% in
the sub-bag. For readability, rules are written as definite clauses with a Prolog-like
syntax where← is the implication and conjuncted literals are joined by a comma.

1 ĥ = positive← fv1≤4.04, fv3≤12.63, fv4≤39.17.
2 ĥ = positive← fv1≤12.97, fv3>12.63.
3 ĥ = positive← fv1>12.97, fv3>25.66.
4 ĥ = negative← fv1≤4.04, fv3≤12.63, fv4>39.17.
5 ĥ = negative← fv1>4.04, fv3≤12.63.
6 ĥ = negative← fv1>12.97, fv3 ∈ (12.63, 25.66].

Table 4.5: Rules mapping sentence pseudo-labels into review sentiment labels. See
the caption of Table 4.4 for details on the syntax.

1 ĥ = positive← fu3≤1.11, fu6≤3.42.
2 ĥ = positive← fu3≤2.21, fu6>3.42.
3 ĥ = positive← fu3 ∈ (2.21, 5.81], fu6>6.30.
4 ĥ = negative← fu3 ∈ (1.11, 2.21], fu6≤3.42.
5 ĥ = negative← fu3>2.21, fu6≤6.30.
6 ĥ = negative← fu3>5.81, fu6>6.30.

Table 4.6: Classification rules for the MIL model. See the caption of Table 4.4 for
details on the syntax.
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top part). A first, high-level explanation of the prediction is thus obtained by simply
using the sentences that are active for the classification as a short summary of the
most pertinent parts of the review.

This sentence-level explanation can be refined by also explaining the pseudo-
labels for the individual sentences. For example, sentence “Bloody Birthday a . . . ”
was assigned pseudo-label v1 using rule 2 of Table 4.4. This rule is based on fre-
quencies of the trigram pseudo-labels u1 and u4. Occurrences of trigramswith these
labels are highlighted in boldface and superscripted with the trigram pseudo-label
index in the text, thus exhibiting the sub-structures in the sentence that are pertinent
for the classification. Similarly, the other three relevant sentences were all assigned
label v3 because of rule 6 in Table 4.4, which is based on the pseudo-labels u1, u2, u4.
These formal, logical explanations for the classifications are complemented by the
semantic insight into the pseudo-labels provided by Tables 4.2 and 4.1.

The reviewwas classified as negative in theMIL setting. The applicable rule here
was rule 5 in Table 4.6 which involved triplet pseudo-labels u3, and u6. The relevant
triplets are highlighted in boldface in the lower part of Table 4.7.

A second example of prediction explanation is reported in Appendix C.

4.3 Empirical optimization analysis
Large (and hard to interpret) bag-layers are necessary to allow gradient descent to
find a good solution to the optimization problem. For example, in Section 4.2, the
multi-multi instance learning network, used in the MNIST “logic scenario” experi-
ment, had two bag-layers with 100 units each. For that specific problem the mini-
mum number of units for the first bag-layer is 2: 1 unit for recognizing a 7 and 1 unit
for recognizing a 3. On the other hand the minimum number of units for the second
bag-layer is 1, activated, for example, if it exists a sub-bag with at least a 7 and no
3. Unfortunately if we choose the minimum number of units (or even a “too small
number”), we empirically noticed that the gradient descent will find a poor solution
for the optimization problem. Contrarily if we train a model for which the number
of units is oversized, and then we use some compression techniques, e.g. (Buciluǎ
et al., 2006), we are able to obtain a model in which the number of the units for the
bag-layers tends to the minimum required, and with low loss in terms of accuracy.

Although at themomentwe are unable to formally provewhat previously claimed,
we will provide empirical evidences for the IMDB experiment (see Section 4.2). For
this purpose we propose a two-steps strategy: first, we train a MMIL network, M,
with a large number of nodes per layer, on the IMDB dataset (decomposed asMMIL
dataset), and second, we train another MMIL network, Mc to mimic M. Mc has the
same structure as M, but less nodes per layer than M. We will refer to the second
step as the compression step. The compression step is related to (Buciluǎ et al., 2006)
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Story about three eclipse (maybe even Indigo, ha) children beginning their love for
murder. Oh, and the people who are “hot” on their trail.
[v1] Bloody Birthday, a pretty mediocre title4 for the film, was a nice lil1 surprise. I
was in no way expecting a film that dealt with blood-thirsty psychopath kids.
[v3] And I may say it’s also one of the best flicks1 I’ve seen with kids as the villains.
By the end of the movie I seriously wanted these kids to die in horrible fashion.
[v3] It’s a really solid 80s1 horror flick, but how these kids are getting away with all
this mayhem and murder is just something that you can’t not2 think about. Even
the slightest bit of investigation would easily uncover these lil sh!ts as the murderers.
But there seems to be only a couple police in town, well by the end, only one, and he
seemed like a dimwit, so I suppose they could have gotten away with it. Haha, yeah,
and I’m a Chinese jet-pilot.
Nevertheless, this movie delivered some evilass kids who were more than entertain-
ing, a lot of premarital sex and a decent amount of boobage. No kiddin! If you’re put
off by the less than stellar title, dash it from your mind and give this flick a shot. [v3]
It’s a very recommendable and underrated 80s1 horror flick.

Story about three eclipse (maybe even Indigo, ha) children beginning their love for
murder. Oh, and the people who are “hot” on their trail.
Bloody Birthday, a pretty mediocre title3 for the film, was a nice lil surprise. I was in
no way expecting a film that dealt with blood-thirsty psychopath kids. And I may say
it’s also one of the best flicks6 I’ve seen with kids as the villains. By the end of the
movie I seriously wanted these kids to die in horrible fashion3.
It’s a really solid6 80s horror flick, but how these kids are getting away with all this
mayhem andmurder is just something that you can’t not think about. Even the slight-
est bit of investigation would easily uncover these lil sh!ts as the murderers. But there
seems to be only a couple police in town, well by the end, only one, and he seemed
like a dimwit, so I suppose they could have gotten away with it. Haha, yeah, and I’m
a Chinese jet-pilot.
Nevertheless, this movie delivered some evilass kids who were more than entertain-
ing, a lot of premarital sex and a decent amount of boobage. No kiddin! If you’re put
off by the less than6 stellar title, dash it from your mind and give this flick a shot. It’s
a very recommendable and underrated 80s6 horror flick.

Table 4.7: A sample positive review. Top: MMIL labeling. Bottom: MIL labeling.
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with the difference that we preserve the overall structure of the network rather than
train a shallow network to mimic a deep network. For further information about
compression, the reader is referred to (Buciluǎ et al., 2006). Given a top-bag X
we denote with M(Xi), Mc(Xi) the output of M and Mc, respectively. We trained
Mc(Xi) in order to minimize the mean squared error loss

L(M(X), Mc(X)) = ∑
X
‖Mc(X;Wc, bc)−M(X)‖2, (4.4)

where Wc and bc represent the weights and the biases of Mc, respectively. Note that
the parameters of M are kept frozen during the training of Mc.

The experimental setup for IMDB remained exactly the same as that described in
the respective section, with the exceptions of the number of units. Starting from the
trained MMIL network, M, (with 92.26% of accuracy) we trained 2 different MMIL
compressed models for several different number of nodes:

• A compressed MMIL model, Mc1 , using both supervised and unsupervised
data;

• A compressed MMIL model, Mc2 , using only supervised data.

Furthermore we trained also a new MMIL model, Mn, (on IMDB, decomposed as
MMIL dataset) for several different number of nodes using only supervised data.

Mc1 and Mc2 were trained byminimizing the mean squared error loss (see Equa-
tion 4.4) on the output of M. Contrarily, Mn was trained by minimizing the binary
cross entropy on the true labels. For all themodelswe ran 20 epochs of theAdamop-
timizer for 10 times with learning rate 0.001, clipping the norm to 1, onmini-batches
of size 200.

Results are depicted in Figure 4.3. For all the models we chose several values for
the filters of the 1D Convolution layer, the units of the first bag-layer, and the units
of the second bag-layer. We draw the following conclusions:

1. Mc1 outperforms Mn (on average);

2. Mc2 outperforms Mc1 (on average), i.e. exploiting unsupersived data for mim-
icking M seemed to help the optimizer to reach a better solution.
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Figure 4.3: On x-axis is reported the size of the model (filters of Conv1D layer, units
of first bag-layer, units of second bag-layer). On y-axis is reported the accuracy on
the test set. The dashed line represents the accuracy of M.



Chapter 5

MMIL for graph learning

The multi-multi instance learning framework can be also useful on su-
pervised learning over graphs. We present in this Chapter experiments
on citation graphs and social graph data, showing that our model obtains
competitive results with respect to other approaches such as convolutional
networks on graphs.1

The convolutional approach has been also recently employed for learningwith graph
data. The idea is to reinterpret the convolution operator as a message passing al-
gorithm on a graph where each node is a signal sample (e.g., a pixel) and edges
connect a sample to all samples covered by the filter when centered around its posi-
tion (including a self-loop). The major difference between graphs and signals is that
no obvious ordering can be defined on neighbors. This message passing strategy
over graphs was originally proposed in (Gori et al., 2005; Scarselli et al., 2009) and
reused with variants in several later works. Kipf and Welling (2017) for example,
propose to address the ordering issue by sharing the same weights for each neigh-
bor (keeping them distinct from the self-loop weight). They show that message-
passing is closely related to the 1-dimensional Weisfeiler-Lehman (WL) method for
isomorphism testing (one convolutional layer corresponding to one iteration of the
WL-test) and can be also motivated in terms of spectral convolutions on graphs.
On a side note, similar message-passing strategies were used before in the context
of graph kernels (Shervashidze et al., 2011; Neumann et al., 2012). Niepert et al.
(2016) proposed ordering via a “normalization” procedure that extends the classic
canonicalization problem in graph isomorphism. Hamilton et al. (2017) propose an
extension of the approach in (Kipf and Welling, 2017) where representations of the
neighbors are aggregated by a general differentiable function that can be as simple
as an average or as complex as a recurrent neural network. Additional relatedworks

1 Part of the content of this chapter has been submitted as “Learning and Interpreting Multi-
Multi-Instance Learning Networks” in Journal of Machine Learning Research, 2018. http://arxiv.
org/abs/1810.11514
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include (Duvenaud et al., 2015), where CNNs are applied to molecular fingerprint
vectors, and (Atwood and Towsley, 2016) where a diffusion process across general
graph structures generalizes the CNN strategy of scanning a regular grid of pixels.

The MMIL perspective can also be used to derive algorithms suitable for super-
vised learning over graphs, i.e., tasks such as graph classification, node classifica-
tion, and edge prediction. In all these cases, one first need to construct a representa-
tion for the object of interest (awhole graph, a node, a pair of nodes) and then apply a
classifier. A suitable representation can be obtained in our framework by first form-
ing a bag-of-bags associated with the object of interest (a graph, a node, or an edge)
and then feeding it to a network with bag-layers. In order to construct bags-of-bags,
we follow the classic R-decomposition strategy introduced by Haussler (1999). In
the present context, it simply requires us to introduce a relation R(A, a)which holds
true if a is a “part” of A and to form R−1(A) = {a : R(A, a)}, the bag of all parts of A.
Parts can in turn be decomposed in a similar fashion, yielding bags-of-bags. In the
following, we focus on undirected graphs G = (V, E) where V is the set of nodes
and E = {{u, v} : u, v ∈ V} is the set of edges. We also assume that a labelling
function x : V 7→ X attaches attributes to vertices. Variants with directed graphs or
labeled edges are straightforward and omitted here in the interest of brevity.

Graph classification A simple solution is to define the part-of relation R(G, g) be-
tween graphs to hold true iff g is a subgraph of G and to introduce a second part-of
relation S(g, v) that holds true iff v is a node in g. The bag-of-bags associated with
G is then constructed as X = {µ(x, S−1(g)) : g ∈ R−1(G)} where µ( f , A) maps
all elements of A through function f . In general, considering all subgraphs is not
practical but suitable feasible choices for R can be derived borrowing approaches
already introduced in the graph kernel literature, for example decomposing G into
cycles and trees (Horváh et al., 2004), or into neighbors or neighbor pairs (Costa and
De Grave, 2010) (some of these choices may require three levels of bag nesting, e.g.,
for grouping cycles and trees separately).

Node classification In some domains, the node labelling function itself is bag-
valued. For example in a citation network, x(v) could be the bag of words in the ab-
stract of the paper associated with node v. A bag-of-bags in this case may be formed
by considering a paper v together all papers in its neighborhood N(v) (i.e., its cites
and citations): X(v) = {x(u), u ∈ {v} ∪ N(v)}. A slightly more rich description
with three layers of nesting could be used to set apart a node and its neighborhood:
X(v) = {{x(v)}, {x(u), u ∈ N(v)}}.
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5.1 Experiments
We tested our model on two different graph tasks:

1. a node classification task inwhichwe focused on real citation network datasets
where data can be naturally decomposed into bags-of-bags (MMIL data) or
bags (MIL data). The goal is to understand whether MMIL and MIL decom-
positions are reasonable representations for citation networks and whether
MMIL representation is more suitable than MIL representation. Finally we
compared our approachwith the state-of-art architectures, andwe interpreted
our results;

2. a graph classification task in which we tested our model on real social net-
work graphs, where the data can be easily decomposed into bags-of-bags. We
compared our approach against the state-of-art architectures.

Citation Datasets

In the following experiments, we apply MMIL to graph learning according to the
general strategy described above. We also present a (generalized) MIL approach
to graph learning in which latent instance labels need not be binary, and need not
be related to the bag label according to the conventional MIL rule. We considered
three citation datasets from (Sen et al., 2008): Citeseer, Cora, and PubMed. Finally,
the MMIL network trained on PubMed will be mapped into an interpretable model
using the procedure described in Section 4.1.

We view the datasets as graphs where nodes represent papers described by ti-
tles and abstracts, and edges are citation links. We treat the citation links as undi-
rected edges, in order to have a setup as close as possible to earlier works, (Kipf and
Welling, 2017; Hamilton et al., 2017). The goal is to classify papers according to their
subject area.

We collected the years of publication for all the papers of each dataset, and for
each dataset determined two thresholds y1 < y2, so that papers with publication
year y ≤ y1 amount to approximately 40% of the data and are used as the training
set, papers with publication year y1 < y ≤ y2 formed a validation set of about 20%,
and papers with publication year y > y2 are the test set of 40% of the data. Table 5.1
reports the statistics for each dataset. More details on the temporal distributions in
the three datasets are given in Appendix D (Figure D.1).

MMIL data was constructed from citation networks in which a top-bag X cor-
responds to a paper represented as the bag of nodes Sj containing the paper itself
and all its neighbors. The nodes Sj ∈ X are further decomposed as (sub-) bags of
the words contained in the text (i.e. title and abstract) attached to the node. An
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Dataset # Classes # Nodes # Edges # Training # Validation # Test

Citeseer 6 3,327 4,732 1,560 779 988
(y ≤ ‘99) (‘99 < y ≤ ‘00) (y > ‘00)

Cora 7 2,708 5,429 1,040 447 1,221
(y ≤ ‘94) (‘94 < y ≤ ‘95) (y > ‘95)

PubMed 3 19,717 44,338 8,289 3,087 8,341
(y ≤ ‘97) (‘97 < y ≤ ‘01) (y > ‘01)

Table 5.1: Structure of the citation graphs. With y we denote the year of publica-
tion. Citeseer classes are 6 amongAgents, Artificial Intelligence (AI), Database (DB),
Human-computer Interaction (HCI), Information Retrieval (IR), Machine Learning
(ML). Cora classes are 7 among Case Based, Genetic Algorithms, Neural Networks,
Probabilist Methods, Reinforcement Learning, Rule Learning, Theory. PubMed
classes are 3 among Diabetes Mellitus Experimental (DME), Diabetes Mellitus Type
1 (DMT1), Diabetes Mellitus Type 2 (DMT2).

instance xj,l ∈ Sj is a word. Similarly, MIL data was constructed in which each pa-
per is simply represented as the bag of all words appearing in the text of the paper
or its neighbors. Figure 5.1 shows an example of MMIL and MIL decompositions
starting from a node and its neighborhood of a citation graph. Words are encoded
as one-hot vectors, in order to evaluate the capability of our model to learn relevant
intermediate representations of bags from scratch.

We used anMMILnetworkmodelwith two stacked bag-layerswith ReLU activa-
tions with 250 units. The MIL model has one bag-layer with ReLU activations with
250 units. For both MMIL and MIL we proposed two versions which differ only
for the aggregation functions for the bag-layers: one version uses max, the other
uses mean aggregation. All models were trained by minimizing the softmax cross-
entropy loss. We ran 100 epochs of the Adam optimizer with learning rate 0.001 and
we early stopped the training according to the loss on the validation set.

As baselines, we considered näive Bayes and logistic regression. For these two
models we reduced the task to a standard classification problem in which papers
are represented by bag of words feature vectors (only for the words associated with
the papers themselves, not considering citation neighbors). We also compared our
models against GCN (Kipf and Welling, 2017) and GraphSAGE (Hamilton et al.,
2017), which are briefly described in Section 3.3. GCN represents nodes as bags
of words, while GraphSAGE exploits the sentence embedding approach described
by (Arora et al., 2017). For comparison reasons and given that bag ofwords represent
the most challenging and standalone approach which does not rely in any embed-
ding representation of words, we encoded the nodes as bag of words for both GCN
and GraphSAGE. As GraphSAGE allows to use both max and mean as aggregation
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Figure 5.1: Given node an its neighborhood of a citation graph (left picture) we
decomposed it as MMIL data (upper right picture) and MIL data (bottom right pic-
ture).

functions, we compared our models against both versions.
Results in Table 5.2 report the accuracy for all models. The MMIL networks out-

perform the other methods. MIL networks show a similar performance to GCN and
GraphSage on Cora and Citeseer, and are close to MMIL on PubMed. It is note-
worthy that the quite generic MMIL framework which here only is instantiated for
graph data as a special case outperforms the methods that are specifically designed
for graphs.

Model Cora Citeseer PubMed
Naive Bayes (Bernoulli) 71.34% 63.77% 75.47%
Logistic Regression 74.94% 64.37% 73.67%
GCN (Kipf and Welling, 2017) 82.23% 66.50% 78.66%
GraphSage (Hamilton et al., 2017) MeanPool 80.18% 66.19% 75.59%
GraphSage (Hamilton et al., 2017) MaxPool 80.43% 67.61% 76.60%
MI-Mean 79.93% 62.96% 81.15%
MI-Max 81.08% 67.41% 80.22%
MMI-Mean 82.80% 70.75% 81.27%
MMI-Max 84.03% 69.64% 80.65%

Table 5.2: Accuracies on the test sets. Best results highlighted in bold.
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Our general interpretability approach can also be applied to the MIL andMMIL
models for the citation graphs, similarly to the MNIST and IMDB experiments in
Section 4.2. We show here interpretability results for the PubMed citation dataset
from in Section 5.1. Our interpretability study is for the MMI-Mean and MI-Mean
models.

We first learn and interpret pseudo-labels. The optimal number of pseudo-labels
for the MMIL model turned to be 3 (v1, . . . , v3) and 5 (u1, . . . , u5) for sub-bags and
instances, respectively. On the other hand, the optimal number of pseudo-labels for
theMILmodel turned to be 3 (u1, . . . , u3) for the instances. FigureD.2 inAppendixD
depicts an heat-map which shows the fidelities on the validation set in function of
the number of pseudo-labels for both instances and sub-bags for the MMIL model.
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Figure 5.2: Correspondence between pseudo-labels and actual paper class labels.

Sub-bags in the MMIL decomposition also are papers, and therefore also are la-
beled with the actual class label. The number of inferred sub-bag pseudo-labels
matches the number of actual classes, and Figure 5.2 shows that there is a clear
correspondence between pseudo-labels and actual labels. Pseudo-labels for the In-
stances (words) are interpreted using the same approach as in Section 4.2. The result
is shown in Table 5.7 and allows us to quite clearly recognize certain “topics” that
correspond to the pseudo-labels. A similar interpretation for the instance (word)
pseudo-labels in MIL case is given in Table 5.6.

Next we present the rules learned by a decision tree learner based on pseudo-
label frequency feature vectors. For the MMIL model, Table 5.3 reports the rules
mapping a bag of instance pseudo-labels to a sub-bag pseudo-label. Note that u1

is not used in these rules. Similarly, Table 5.4 reports the rules mapping a bag of
sub-bag pseudo-labels to a top-bag label. For the MIL model, Table 5.5 reports the
rules mapping a bag of instance pseudo-labels into the corresponding top-bag label.

By classifying PubMed using the rules and pseudo-labels, we achieved an accu-
racy on the test set equals to 76.88% for the MMIL case and 79.25% for the MIL case.
Fidelities forMMIL andMIL caseswere 84.75% and 87.99%, respectively. Both of the
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1 ĝ = v1 ← fu2≤44.53, fu3≤22.70, fu5≤6.47.
2 ĝ = v1 ← fu2≤44.53, fu3≤31.31, fu5>6.47.
3 ĝ = v1 ← fu2>44.53, fu4≤14.22, fu5>14.83.
4 ĝ = v2 ← fu2>44.53, fu3≤22.60, fu4>14.22.
5 ĝ = v2 ← fu2>44.53, fu4≤14.22, fu5≤14.83.
6 ĝ = v3 ← fu2≤44.53, fu3>22.70, fu5≤6.47.
7 ĝ = v3 ← fu2≤44.53, fu3>31.31, fu5>6.47.
8 ĝ = v3 ← fu2>44.53, fu3>22.60, fu4>14.22.

Table 5.3: Rules extracted from the MMIL network for mapping instance pseudo-
labels into a sub-bag pseudo-label. See the caption of Table 4.4 for details on the
syntax.

1 ĥ = DME ← fv1≤8.51, fv2>63.96.
2 ĥ = DMT1← fv1 ∈ (8.51, 20.26], fv2>63.96.
3 ĥ = DMT1← fv1>20.26, fv3≤55.49.
4 ĥ = DMT2← fv1≤20.26, fv2≤63.96.
5 ĥ = DMT2← fv1>20.26, fv3>55.49.

Table 5.4: Rulesmapping sub-bag pseudo-labels into top-bag labels. See the caption
of Table 4.4 for details on the syntax.

1 ĥ = DME ← fu1>49.80.
2 ĥ = DMT1← fu1≤49.80, fu2≤30.60, fu3≤30.65.
3 ĥ = DMT1← fu1≤49.80, fu2>30.60, fu3≤35.66.
4 ĥ = DMT1← fu1≤49.80, fu2≤30.60, fu3>30.65.
5 ĥ = DMT1← fu1≤49.80, fu2>30.60, fu3>35.66.

Table 5.5: Classification rules for the MIL model. See the caption of Table 4.4 for
details on the syntax.
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results are still comparable and competitivewith themethods described in Table 5.2.
Thus, in this case the interpretable MILmodel outperforms the interpretable MMIL
model in terms of accuracy. However, for explaining individual classifications, the
MMIL model can still have advantages due to the multi-level explanations it sup-
ports. Similarly aswas done for text in Section 4.2, one can first explain the predicted
label of a paper in terms of the citing/cited papers with relevant pseudo-labels, and
then refine this explanation by tracing the pseudo-label assignments of papers to the
pseudo-labels of their words. In the MIL model, on the other hand, one is limited
to explanations at the word level.

u1 - 48.33% u2 - 60.09% u3 - 41.92%

animals children non
induction juvenile subjects
induced multiplex patients

experimental hla indians
rats childhood fasting
rat adolescents obesity
dogs conventional pima
caused girls american
days ascertainment mexican
strains autoimmune indian

bl dr mody
experiment infusion oral
untreated child bmi

wk siblings obese
sz intensive men

restored healthy prevalence
sciatic paediatric resistance

experimentally spk tolerance
sprague boys mutations
partially sharing igt

Table 5.6: MIL case. Each column represents words belonging to the associated
pseudo-labels. The percentage next to the pseudo-label names refers to the number
of of words associated with the pseudo-labels (≈ 15k). The words are ranked by the
intra-cluster distance in descending order.



5.1 Experiments 59

u1 - 21.28% u2 - 28.76% u3 - 27.25% u4 - 12.84% u5 - 9.87%

normalization animals non subjects children
greatly experimental indians patients multiplex

susceptibility induced pima patient ascertainment
lymphocytes induction obesity individuals conventional
pregnant rats oral type juvenile
always dogs fasting analysis girls
organ made mexican sample night

destruction rat obese cascade childhood
tx strains medication otsuka pittsburgh

contraction bl bmi forearm adolescents
antibodies caused mody gdr infusion
sequential wk indian reported denmark

tract counteracted tolerance mmol intensified
decarboxylase partially look age child
recipients rabbits index gox beef
livers days agents dependent sharing
mt conscious resistance isoforms knowing

cyclosporin sciatic maturity meals paediatric
lv tubules gk score unawareness

laboratories myo ii affinities pubert

Table 5.7: MMIL case. Each column represents words belonging to the associated
pseudo-labels. The percentage next to the pseudo-label names refers to the number
of of words associated with the pseudo-labels (≈ 15k). Pseudo-label u1 is colored
in grey since it is not used for constructing the rules. The words are ranked by the
intra-cluster distance in descending order.
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Social Network Datasets
We finally test our model on a slightly different type of prediction problems for
graph data, where the task is graph classification, rather than node classification as
in the previous section. For this we use the following six publicly available datasets
first proposed by Yanardag and Vishwanathan (2015).

• COLLAB is a dataset where each graph represent the ego-network of a re-
searcher, and the task is to determine the field of study of the researcher, which
is one of High Energy Physics, Condensed Matter Physics, or Astro Physics.

• IMDB-BINARY, IMDB-MULTI are datasets derived from IMDB. First, genre-
specific collaboration networks are constructed where nodes represent actors
/ actresses who are connected by an edge if they have appeared together in a
movie of a given genre. Collaboration networks are generated for the genres
Action and Romance for IMDB-BINARY and Comedy, Romance, and Sci-Fi for
IMDB-MULTI. The data then consists of the ego-graphs for all actors/actresses
in all genre networks, and the task is to identify the genre from which an ego-
graph has been extracted.

• REDDIT-BINARY,REDDIT-MULTI5K, REDDIT-MULTI12K are datasetswhere
each graph is derived from a discussion thread from Reddit. In those graphs
each vertex represent a distinct user and two users are connected by an edge
if one of them has responded to a post of the other in that discussion. The
task in REDDIT-BINARY is to discriminate between threads originating from
a discussion-based subreddit (TrollXChromosomes, atheism) or from a ques-
tion / answers-based subreddit (IAmA, AskReddit).
The task in REDDIT-MULTI5K and REDDIT-MULTI12K is a multiclass classi-
fication problem where each graph is labeled with the subreddit where it has
originated (worldnews, videos, AdviceAnimals, aww,mildlyinteresting for REDDIT-
MULTI5K and AskReddit, AdviceAnimals, atheism, aww, IAmA, mildlyinteresting,
Showerthoughts, videos, todayilearned, worldnews, TrollXChromosomes for REDDIT-
MULTI12K).

We transformed each dataset intoMMIL data by treating each graph as a top-bag
X. Each node of the graph with its neighborhood, is a sub-bag Sj ∈ X, while each
node xj,l ∈ Sj is an instance.

In these six datasets no features are attached to the nodes. We therefore defined
a node feature vector based on the degrees deg(xj,l) of the nodes as follows: let deg∗

be the maximum degree of any node. For i = 1, . . . , deg∗ we then define

xi
j,l =


1√

deg(xj,l)
i f i < deg(xj,l)

0 otherwise,
(5.1)
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By using this representation the scalar product of two node feature vectors will be
high if the nodes have similar degrees, and it will be low for nodes with very differ-
ent degrees.

The MMIL networks have the same structure for all the datasets: a dense layer
with 500 nodes and ReLU activation, two stacked bag-layers with 500 units (250max
units and 250 mean units), and a dense layer with dimout nodes and linear activa-
tion, where dimout is 3 for COLLAB, 2 for IMDB-Binary, and 3 for IMDB-MULTI, 2 for
REDDIT-BINARY, 5 for REDDIT-MULTI5K, and 11 for REDDIT-MULTI12K.We per-
formed a 10 times 10 fold cross-validation, training theMMIL networks byminimiz-
ing the binary cross-entropy loss (for REDDIT-BINARY and IMDB-BINARY) and
the softmax cross-entropy loss (for COLLAB, IMDB-MULTI, REDDIT-5K, REDDIT-
12K). We ran 100 epochs of the Adam optimizer with learning rate 0.001 on mini-
batches of size 20.

We compared our method against DGK (Yanardag and Vishwanathan, 2015),
Patchy-SAN (Niepert et al., 2016), and SAEN (Orsini et al., 2018).

Dataset DGK Patchy-SAN SAEN MMIL
COLLAB 73.09 ± 0.25 72.60 ± 2.15 78.50 ± 0.69 79.46 ± 0.31
IMDB-BINARY 66.96 ± 0.56 71.00 ± 2.29 71.59 ± 1.20 72.62 ± 1.04
IMDB-MULTI 44.55 ± 0.52 45.23 ± 2.84 48.53 ± 0.76 49.42 ± 0.68
REDDIT-BINARY 78.04 ± 0.39 86.30 ± 1.58 87.22 ± 0.80 86.54 ± 0.64
REDDIT-MULTI5K 41.27 ± 0.18 49.10 ± 0.70 53.63 ± 0.51 53.42 ± 0.67
REDDIT-MULTI12K 32.22 ± 0.10 41.32 ± 0.42 47.27 ± 0.42 45.25 ± 0.48

Table 5.8: Accuracies with standard deviations in graph classification. Best results
are highlighted in bold.

Results in Table 5.8 show that MMIL networks and SAEN perform comparably,
with some advantages of these twomethods over Patch-SAN, andmore pronounced
advantages over DGK.
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5.2 Relation with Neural Network for Graphs
The MMIL models and the related graph decomposition used in the citation net-
work experiments have similarities with GCN (Kipf and Welling, 2017) and Graph-
SAGE (Hamilton et al., 2017). It can be proved (see Kipf and Welling (2017) for fur-
ther details) that the GCN aggregation function is equivalent up to a constant to

h(t+1)
v = MEAN({h(t)v } ∪ {h(t)u ∀u ∈ N(v)}) t = 1, . . . , K,

where v represents a node, N(v) its neighborhood, h(t)v the feature vector associated
to the node v at the time step t, and K represents the maximum number of itera-
tions. MMIL can actually simulate GCN models by decomposing the graph in the
appropriate manner and by using K bag-layers. For example, a neural network with
one bag-layer with mean as aggregation function is, hence, equivalent to the GCN
aggregation function for K = 1. Figure 5.3 depicts two examples of the appropriate
decompositions of a graph in order to simulate GCN for K = 1 and K = 2.

A

B C
(a) Graph

AB
A B
CB C

(b) Dataset for K = 1

AB
A B
C

AB
A B
CB C

A B
CB C

(c) Dataset for K = 2

Figure 5.3: Example of graph (left) decompositions for simulating GCN for K = 1
(middle) and K = 2 (right).

Compared to GraphSAGE our approach has another difference. By recalling the
equation 2.10 in Chapter 2, i.e. hk

v = f2(CONCAT(hk−1
v , hk

N (v)); W2), it is immediate
to notice that we can not directly use our approach to simulate GraphSAGE. Indeed
in theGraphSAGEaggregation function there is an asymmetry due to the concatena-
tion operator which allows, by construction, to treat the node and its neighborhood
separately. With our approach this is not immediately possibile, even though by us-
ing a description of the dataset with three layer of nesting (and three bag-layers in
the models) we would obtain a scenario in which a node and its neighborhood are
set apart, i.e.

X(v) = {{x(v)}, {x(u), u ∈ N (v)}},
where x(v) is the feature vector associated with the node v, and N (v) is the neigh-
borhood of v. However this represenation does not allow to distinguish between the
node and its neighbors as they are treated symmetrically. To overcome this problem
a possible solution is briefly explained in Section 6.1.



Chapter 6

Conclusions

We have introduced the MMIL framework for handling data organized in nested
bags. TheMMIL setting allows for a natural hierarchical organization of data, where
components at different levels of the hierarchy are unconstrained in their cardinal-
ity. We have identified several learning problems that can be naturally expressed
as MMIL problems. For instance, image, text or graph classification are promising
application areas, because here the examples can be objects of varying structure and
size, for which a bag-of-bag data representation is quite suitable, and can provide a
natural alternative to graph kernels or convolutional network for graphs. The fact
that bags do not impose an order on their elements directly leads to useful spatial
invariance properties when applied to image data. Furthermore we proposed new
way of thinking in terms of interpretability. Although someMILmodels can be eas-
ily interpreted by exploiting the learnt instance labels and the assumed rule, MMIL
networks can be interpreted in a finer level: by removing the common assumptions
of the standard MIL, we are more flexible and we can first associate labels to in-
stances and sub-bags and then combine them in order to extract new rules. Finally,
we proposed a different perspective to see convolutions on graphs. In most of the
neural network for graphs approaches convolutions can be interpreted as message
passing schema, while in our approach we provided a decomposition schema.

We proposed a neural network architecture involving the new construct of bag-
layers for learning in the MMIL setting. Theoretical results show the expressivity
of this type of model. In the empirical results we have shown that learning MMIL
models from data is feasible, and the theoretical capabilities of MMIL networks can
be exploited in practice, e.g., to learn accurate models for noiseless data, or location
invariant models for image classification. Furthermore MMIL networks can be ap-
plied in awide spectrum of scenarios, such as text, image, and graphs. For this latter
we showed that MMIL is competitive with the state-of-the-art models on node and
graph classification tasks, and, in many cases, MMILmodels outperform the others.

In this thesis, we have focused on the setting where whole bags-of-bags are to
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be classified. In conventional MIL learning, it is also possible to define a task where
individual instances are to be classified. Such a task is however less clearly defined
in our setup sincewe do not assume to know the label spaces at the instance and sub-
bag level, nor the functional relationship between the labels at the different levels.

6.1 Future works
A possible direction for future work would be to extend the architecture proposed
in Chapter 3 for addressing graph problems in a more general fashion. In Section
5.2 of Chapter 5 we presented the differences between our framework and some
state-of-the-art models for graph learning. In particular we showed that Graph-
SAGE (Hamilton et al., 2017) allows to treat nodes and their neighbors separately.
With our model this is not directly feasible and a possible way to overcome this
limitation (and hence an extension of our framework) would be to combine a MIL
and MMIL models by concatenating the bag-layer of the MIL and second bag-layer
of the MMIL model. The bag-layer of the MIL model would output a representa-
tion for the node while the second bag-layer of the MMIL model would output a
representation for its neighborhood.



Appendix A

Bag-layer implementation

In this Chapterwe report the Python 3.6 implementation of the bag-layer (see Section
3.2). The code depends only on TensorFlow1 (version 1.8 or above).

Bag-Layer implementation in Python
import tensorf low as t f

c l a s s BagLayer :
def __ in i t _ _ ( s e l f , input_dim , output_dim , name , aggregation ,\

a c t i va t i on_ fn= t f . nn . re lu ) :
"""Bag−Layer c o n t r u c t o r

Pa rame t e r s :
input_dim : i n t

s i z e o f t h e p r e v i o u s l a y e r . In c a s e t h e r e
t h i s i s t h e f i r s t l a y e r , ‘ input_dim ‘ c o r r e s p on d s
t o t h e inpu t s i z e .

output_dim : i n t
number o f bag−l a y e r un i t s .

name : s t r
name o f t h e t e n s o r s .

a g g r e g a t i o n : s t r
a s t r i n g which r e p r e s e n t s t h e a g g r e g a t i o n f u n c t i o n
among ‘mean ‘ , ‘ sum ‘ , ‘max ‘ .

a c t i v a t i o n _ f n : c a l l a b l e
t h e e l ement−wise f u n c t i o n t o p e r f o rm b e f o r e
t h e a gg r e g a t i on , e . g . lambda x : x ,
t f . s igmoid , t f . nn . r e l u . D e f au l t : t f . nn . r e l u .

"""

i f aggregat ion . lower ( ) not in [ ’mean ’ , ’max ’ , ’sum ’ ] :
r a i s e ValueError ( "Wrong aggregat ion funct ion .\

Please use one among : mean , max , sum" )
i f aggregat ion == ’mean ’ :

s e l f . aggregat ion_fn = t f . segment_mean
i f aggregat ion == ’max ’ :

s e l f . aggregat ion_fn = t f . segment_max
i f aggregat ion == ’sum ’ :

s e l f . aggregat ion_fn = t f . segment_sum
s e l f . name = name

1https://www.tensorflow.org
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s e l f .W = t f . ge t _va r i ab l e ( ’ {}−W’ . format ( s e l f . name) ,\
shape=( input_dim , output_dim ) ,\
i n i t i a l i z e r = t f . g l o r o t _no rma l _ i n i t i a l i z e r ( ) )

s e l f . b = t f . ge t _va r i ab l e ( ’ {}−b ’ . format ( s e l f . name) ,\
shape=(output_dim , ) , \
i n i t i a l i z e r = t f . c o n s t a n t _ i n i t i a l i z e r ( 0 . ) )

s e l f . a c t i v a t i on_ fn = ac t i v a t i on_ fn

def __ca l l _ _ ( s e l f , x , idx ) :
""" App l i e s t h e bag−l a y e r a g g r e g a t i o n f u n c t i o n t o

a b a t c h o f s e t s .

Pa r ame t e r s :
x : 2 da r r ay ( t f . f l o a t 3 2 )

a 2d a r r a y which r e p r e s e n t s a l l t h e i n s t a n c e f e a t u r e s
o f a l l t h e s e t s in t h e b a t c h .

i dx : 1 da r r ay ( t f . i n t 32 )
a 1d a r r a y whose e n t r i e s a r e
t h e i d s o f t h e s e t s where t h e i n s t a n c e s b e l ong t o .
The l e n g t h o f i dx must be e qu a l t o l e n g t h o f x .
i dx must be inpu t in not d e c r e a s i n g o r d e r .
For example i dx = [ 0 , 0 , 1 ] , means t h a t
t h e f i r s t two rows o f x r e p r e s e n t f e a t u r e s
b e l o ng i ng
t o t h e same s e t , and t h e l a s t row o f x
r e p r e s e n t f e a t u r e b e l o n g i n t o an o t h e r s e t .

Returns :
a g g r e g a t i o n s : ndar ray ( t f . f l o a t 3 2 )

"""

a c t i v a t i on s = s e l f . a c t i v a t i on_ fn ( t f . matmul ( x , s e l f .W) + s e l f . b )
aggregat ions = s e l f . aggregat ion_fn ( a c t i va t i ons , idx )

return aggregat ions

For better understanding how the Bag-Layer works let us consider a toy example.
Let X1 = {{2, 5}, {1, 3, 5}} and X2 = {{2, 4}} be two top-bags containing digits
ranging from 1 to 5. In the following we consider a MMIL network, N, consisting
of only two stacked bag-layers, bl − 1 and bl − 2. Each bag-layer has exactly 1 unit,
their correspondingweights are equal to 1, and their corresponding biases are equal
to 0. Finally, let us assume that the aggregation functions are the max and sum for
bl − 1 and bl − 2, respectively. This simple network will return for each top-bag the
sum of the max number containing in each sub-bag. In the example N(X1) = 10,
N(X2) = 4. Figure A.1 depicts how the top-bags are processed through the MMIL
network N step by step.
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Figure A.1: A MMIL network consisting of two-stacked bag-layers, processes two
top-bags.





Appendix B

Details for the Experiments on
Semi-Synthetic Data (Section 4.2)

Layer Parameters
Convolutional Layer kernel size 5× 5 with 32 channels
Batch Normalization
ReLU
Max Pooling kernel size 2× 2
Dropout probability 0.5
Convolutional Layer kernel size 5× 5 with 64 channels
Batch Normalization
ReLU
Max Pooling kernel size 2× 2
Dropout probability 0.5
Dense 1024 units
ReLU
Dropout probability 0.5
BagLayer (ReLU activation) 200 units
ReLU
BagLayer (ReLU activation) 200 units
ReLU
Dense 1 unit

Table B.1: Neural network structure forMMIMNISTdataset. Themodelwas trained
by minimizing the binary cross entropy loss. We ran 200 epochs of the Adam opti-
mizer (Kingma and Ba, 2014) with learning rate 0.001 and mini-batch size of 20.
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70 Details for the Experiments on Semi-Synthetic Data (Section 4.2)
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Figure B.1: Fidelities on the validation set forMNIST.Weused 20% of the training set
as validation set. On the x-axis are reported the number of instance pseudo-labels,
while on the y-axis are reported the number of sub-bag pseduo-labels. Due to the
fact there are several combinations whichmaximize the validation fidelity, we chose
the one which has less pseudo-labels. Hence, the best fidelity on the validation set
is obtained by choosing 6 pseudo-labels for instances and 2 pseudo-labels for sub-
bags.



Appendix C

Details for the Experiments on
Sentiment Analysis (Section 4.2)

We report here a second example of classification explanation. Here we are con-
sidering a positive review that was mis-classified as negative by the MMIL rules,
and correctly classified by the MIL model. Following the same typesetting conven-
tions as used in Table 4.7, the review and the labeling of the prediction-relevant
parts are shown in Table C.1. In the MMIL case, classification was due to rule 6
in Table 4.5. The sentence “The storyline is . . . ” was assigned label v1 by rule 1 in
Table 4.4, whereas the sentence “The mental patients. . . ” was assigned label v3 by
rule 6 in Table 4.4. The positive classification in the MIL case was due to rule 2 in
Table 4.6, which is based on pseudo-labels u3 and u6.
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72 Details for the Experiments on Sentiment Analysis (Section 4.2)

Young, ambitious nurse Ms. Charlotee (Rosie Holotik) is sent to work at a mental
asylum out in the middle of nowhere. During the course of 3 days, she encounters
strange happenings, even a patient in her bedroom watching her, yet she still stays.
[v3] The mental patients are all a little eye rolling (espically by the Judge), but my
favorite was1 the old crazy biddy (Rhea MacAdams).
[v1] The storyline is4 okay at best2 , and1 the acting is surprisingly alright, but2 after
awhile it’s gets to be a little much2. But, still it’s fun, quirky, strange, and original.
xNote: The thing inside the basement is hardly horrifying, so the title is a little ba-
nanas.

Young, ambitious nurse Ms. Charlotee (Rosie Holotik) is sent to work at a mental
asylum out in the middle of nowhere. During the course of 3 days, she encounters
strange happenings, even a patient in her bedroom watching her, yet she still stays.
The mental patients are all a little eye rolling (espically by the Judge), but my favorite
was6 the old crazy biddy (Rhea MacAdams).
The storyline is okay3 at best, and6 the acting is surprisingly6 alright, but after
awhile it’s gets to be a little much. But, still it’s fun, quirky, strange6, and origi-
nal. xNote: The thing inside the basement is hardly horrifying, so the title is a little
bananas.

Table C.1: A sample positive review. Top: MMIL labeling. Bottom: MIL labeling.
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Figure C.1: Fidelities on the validation set for IMDB. On the x-axis are reported the
number of instance pseudo-labels, while on the y-axis are reported the number of
sub-bag pseduo-labels. The best fidelity on the validation set is obtained by choos-
ing 10 pseudo-labels for instances and 3 pseudo-labels for sub-bags.





Appendix D

Details for the Experiments on
Citation Datasets (Section 5.1)

Years

Co
un

ts

Citeseer Year Distribution 
 on 3327 papers

Training set:
1560 (46.89%)
Validation set:
779 (23.41%)
Test set:
988 (29.70%)

Years

Co
un

ts

Cora Year Distribution 
 on 2708 papers

Training set:
1040 (38.40%)
Validation set:
447 (16.51%)
Test set:
1221 (45.09%)

Years

Co
un

ts

Pubmed Year Distribution 
 on 19717 papers

Training set:
8289 (42.04%)
Validation set:
3087 (15.66%)
Test set:
8341 (42.30%)

Figure D.1: Distribution of papers over years for Citaseer, Cora, and PubMed.
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76 Details for the Experiments on Citation Datasets (Section 5.1)
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Figure D.2: Fidelities on the validation set for PubMed. On the x-axis are reported
the number of instance pseudo-labels, while on the y-axis are reported the num-
ber of sub-bag pseduo-labels. The best fidelity on the validation set is obtained by
choosing 5 pseudo-labels for instances and 3 pseudo-labels for sub-bags.



Appendix E

Publications

Journal papers

1. AP. Di Giovanna, Alessandro Tibo, L. Silvestri, MC. Müllenbroich, I. Costan-
tini, ALA. Mascaro, L. Sacconi, P. Frasconi, FS. Pavone, “Whole-brain vascula-
ture reconstruction at the single capillary level”, Scientific reports, 2018. Candi-
date’s contributions: designed and carried out the segmentation experiments.

Peer reviewed conference papers

1. Alessandro Tibo, P. Frasconi, M. Jaeger, “A network architecture for multi-
multi-instance learning”, Joint EuropeanConference onMachine Learning andKnowl-
edge Discovery in Databases, pages: 737–752, 2017. Candidate’s contributions:
designed algorithms, carried out theoretical analyses, conceived and planned
the experiments, wrote the manuscript

2. AP. Di Giovanna, Alessandro Tibo, L. Silvestri, MC. Müllenbroich, I. Costan-
tini, L. Sacconi, P. Frasconi, FS. Pavone, “Optimal staining and clearing proto-
col for whole mouse brain vasculature imaging with light-sheet microscopy”,
European Conference on Biomedical Optics, 2017. Candidate’s contributions: de-
signed and carried out the segmentation experiments.

Workshop papers

1. T. Raissi,AlessandroTibo, P. Bientinesi, “ExtendedPipeline forContent-Based
Feature Engineering in Music Genre Recognition”, IEEE International Confer-
ence onAcoustics, Speech and Signal Processing (ICASSP), pages: 2661–2665, 2018.
Candidate’s contributions: helped supervise the project, contributed to the fi-
nal version of the manuscript
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78 Publications

Papers under review
1. Alessandro Tibo, M. Jaeger, P. Frasconi “Learning and Interpreting Multi-

Multi-Instance LearningNetworks”, Journal ofMachine LearningResearch, 2018.http:
//arxiv.org/abs/1810.11514Candidate’s contributions: designed algorithms,
carried out theoretical analyses, conceived andplanned the experiments, wrote
the manuscript

2. T. Borghuis, Alessandro Tibo, S. Conforti, L. Canciello, L. Brusci, P. Frasconi,
“Off the Beaten Track: Using Deep Learning to Interpolate Between Music
Genres”, IEEE MultiMedia, 2018. https://arxiv.org/pdf/1804.09808 Can-
didate’s contributions: designed algorithms, conceived and planned the ex-
periments

http://arxiv.org/abs/1810.11514
http://arxiv.org/abs/1810.11514
https://arxiv.org/pdf/1804.09808
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