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Landslide deformations involve approximately all geological materials (natural rocks, soil, artificial fill, or combinations of these
materials) and can occur and develop in a large variety of volumes and shapes. The characterization of the material inhomogeneities
and their properties, the study of the deformation processes, and the delimitation of boundaries and potential slip surfaces are not
simple goals. Since the 70s, the international community (mainly geophysicists and lower geologists and geological engineers) has
begun to employ, together with other techniques, geophysical methods to characterize and monitor landslides. Both the associated
advantages and limitations have been highlighted over the years, and some drawbacks are still open. This review is focused on
works of the last twelve years (2007-2018), and the main goal is to analyse the geophysical community efforts toward overcoming
the geophysical technique limitations highlighted in the 2007 geophysics and landslide review. To achieve this aim, contrary to
previous reviews that analysed the advantages and limitations of each technique using a “technique approach,” the analysis was

carried out using a “material landslide approach” on the basis of the more recent landslides classification.

1. Introduction

Large landslides and smaller-scale mass movements are
natural widespread processes that result in the downward and
outward movement of slope-forming materials, significantly
sculpting the landscape and redistributing sediment and
debris to gentler terrain. The rapid population growth and the
pressure from human activities have strongly influenced their
extension and occurrence so that they have become disasters
causing vast direct and indirect socioeconomic consequences
[1]. These deformations involve approximately all geological
materials (natural rocks, soil, artificial fill, or combinations
of these materials) and can occur and develop in a large
variety of volumes and shapes [2]. Artificial fills are usually
composed of excavated, transported, and placed soil or rock,
but they can also contain demolition debris, ash, slag, and
solid trash. The term rock refers to hard or firm bedrock that
was intact and in place prior to slope movement. Soil, either
residual or transported material, is used for unconsolidated
particles or poorly cemented rock or aggregates. Soil is
usually further distinguished on the basis of texture as debris
(coarse fragments) or earth (fine fragments) according to
the well-established Varnes Classification [3]. Following the

recent updating of [4], more reasonable use of geotechnical
material terminology (clay, silt, sand, gravel, and boulders)
is starting to spread, although some classical terminologies
(mud, debris, earthflow, peat, and ice) are maintained after a
recalibration of their definitions, because they have acquired
a recognized status in landslide science by now. The Hungr
classification includes aggregations of different materials that
have been mixed by geomorphic processes such as weather-
ing, mass wasting, glacier transport, explosive volcanism, or
human activity. The use of geotechnical terminology is indeed
most useful, as it relates best to the mechanical behaviour
of the landslide as stated by [4] and even to most common
investigation methods. In any case, the distinction between
different materials is usually based on interpretation of the
main geomorphic characteristics within landslide deposits
but can also be inferred from the geological attributes of
the involved parent material. The type of material is one
of the most important factors influencing the movement of
landslides, which can be categorized as falls, topples, spreads,
slides, or flows according to their behaviour from the source
area to the final deposit through distinctive kinematics [2, 3,
5]. Actually, the most common criterion used in landslides
classification is based on the combination of the materials
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with the type of movement, but it is possible to find many
other classification criteria, including velocities, volumes,
water content, geotechnical parameters, and processes related
to the formation of the mobilized material, among others.
This is because, as stated by [5], engineering geology literature
on landslides is affected by inconsistent terminology and
ambiguous definitions from older classifications and current
key terms for both specialists and the public. Currently, the
most widely accepted and used classification is that of [2],
which enhances the previous system devised by D.J. Varnes
[3, 6]. Since then, only small improvements for specific cate-
gories have occurred, such as that for flow-like landslides by
[5]. In 2014 Hungr et al. [4], by maintaining the consolidated
concepts introduced by [2], redefined some basic elements
(basically typology and material) that still refer to the original
characterization of [3] and, consequently, updated the total
amount of categories (from 29 to 32), along with revisiting
some of their descriptions. This new landslides classification
version (Table 1), which was proposed to simplify landslides
studies, is increasingly circulating in the academic world, and
for this reason, it is used as the reference in the present paper.
Characterizing landslide material inhomogeneities and
their properties, studying the deformation processes, and
delimiting boundaries and potential slip surfaces are not sim-
ple goals. They require the availability of a wide range of data,
observations, and measurements (e.g., kinematic, geomor-
phologic, geological, geotechnical, and petro-physical data
[7]) and the evaluation of geologic and hydrologic conditions
related to phenomena occurrences [8]. To obtain the needed
information, many techniques including both traditional
methods (detailed geomorphological surveys, geotechnical
investigations, local instrumentation, and meteorological
parameters analyses) and more recent methods (remote-
sensing satellite data, aerial techniques, and synthetic aper-
ture radar interferometry) can be employed [[9, 10] and
references within]. Among the latter, geophysical techniques
are also included, since they are very useful in detecting
the petro-physical properties of the subsoil (e.g., seismic
wave velocity, electrical resistivity, dielectric permittivity, and
gravitational acceleration [7]). Even though linking geophysi-
cal parameters and geological/geotechnical properties should
always be supported with direct information (e.g., data
from drillings), geophysical methods can provide the layered
structure of the soil and certain mechanical parameters [11].
Therefore, because almost all of the advantages of geophysical
methods correspond to disadvantages of geotechnical tech-
niques and vice versa, the two investigation techniques can be
considered complementary. Finally, the geophysical inversion
data, and, therefore, the creation of a reliable subsoil model,
is a complex and nonlinear problem that must be evaluated
by taking into account all the available data on the site [11].
It is to be noted that the success of geophysical methods
is mostly dependent on the presence of a significant and
detectable contrast in the physical properties of different
lithological units. However, in landslide characterization,
geophysical contrast (i.e., differences in mechanical and phys-
ical properties) cannot be associated only with a boundary
in mechanical properties (i.e., landslide boundaries) and
therefore be of interest relative to the slope stability. These
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measured variations, in fact, could be local anomalies within
the landslide or caused by the rough topography, and as a
result, they could be of no or little interest [12]. This is why
according to [11], the references for landslide investigation
purposes are relatively few, and according to [13], there have
been few landslides in which geophysical techniques were
very useful. Nevertheless, the application of these techniques
has changed over the years thanks to technological progress,
the availability of cheaper computer electronic parts, and
the development of more portable and faster equipment and
new software for data processing [12], allowing the adequate
investigation of 3D structures, which addresses one of the
most ancient geophysical method limitations according to
[11].

This review work, which starts from [11], is focused
on the last twelve years of works (2007-2018) published in
international journals and available online. The main goal
was to analyse the geophysical community efforts in over-
coming the geophysical technique limitations highlighted in
the conclusion section of [11]. The drawbacks pointed out
were as follows: (i) geophysicists have to make an effort
in the presentation of their results; (ii) the resolution and
penetration depth of each method are not systematically
discussed in an understandable way; (iii) the geological
interpretation of geophysical data should be more clearly and
critically explained; (iv) the challenge for geophysicists is to
convince geologists and engineers that 3D and 4D geophysi-
cal imaging techniques can be valuable tools for investigating
and monitoring landslides; and finally, (v) efforts should
also be made towards achieving quantitative information
from geophysics in terms of geotechnical parameters and
hydrological properties. To reach the aim, contrary to the
four geophysics and landslide reviews discussed in section
number 2 [8, 11, 12, 14] that analysed the advantages and
limitations of each technique using a “technique approach,”
the analysis in this paper was carried out on the basis
of a “material landslide approach” according to the recent
landslide classification discussed above [4]. Finally, since it is
beyond the aim of the work, we do not discuss the theoretical
principles of the different geophysical techniques nor how to
perform field surveys in this paper.

2. Geophysical Techniques and Landslides:
The State of the Art of Review Papers

One of the first papers related to the application of geophys-
ical techniques for the investigation of landslides, defined
as a pioneering work by [11], is [8]. Herein, “landslides” are
defined as a sudden or gradual rupture of rocks and their
movement downslope by the force of gravity. In this paper,
the main advantages of applying geophysical methods are as
follows: (a) the rapid investigation of vast areas, collecting
a larger number of sample points than those acquired by
geologic engineering techniques; (b) the determination of
the mechanical properties of wet and dry soils based on the
measurements of large rock volumes directly involved in the
processes; (c) the measured parameters reflect the combined
geological and hydrological characteristics, which sometimes
cannot be identified separately; and (d) the measurements
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TaBLE 1: Nomenclature of the newly proposed landslide classification version according to [4] based on the Varnes classification system.
Words divided by / (slash symbol) have to be used alternatively. In italic movement types that usually reach extremely rapid velocities as
defined by [2], while for the others, the velocity varies between extremely slow to very rapid (for details, refer to [4]).

;YOP\I;EC;/I;ENT ROCK SOIL
Fall Rock/ice fall Boulder/debris/silt fall
Topple Rock block topple Gravel/sand/silt topple
Rock flexural topple
Rock rotational slide Clay/silt rotational slide
Rock planar slide Clay/silt planar slide
Slide Rock wedge slide Gravel/sand/debris slide
Rock compound slide Clay/silt compound slide
Rock irregular slide
Spread Rock slope spread Sand/silt liquefaction spread
Sensitive clay spread
Sand/silt/debris dry flow
Sand/silt/debris flowslide
Sensitive clay flowslide
Debris flow
Flow Rock/ice avalanche Mud flow
Debris flood
Debris avalanche
Earthflow
Peat flow

Mountain slope

) deformation
Slope Deformation

Rock slope deformation

Soil slope deformation

Soil creep

Solifluction

can be repeated any number of times without disturbing the
environment. Four main goals can be reached by applying
vertical electric sounding (VES), seismic refraction (SR),
self-potential (SP), and electromagnetic measurements (EM),
listed as follows: (i) the investigation of the landslide geo-
logic configuration, (ii) the investigation of the groundwater
(determining the level and its fluctuation with time) as aland-
slide formation factor, (iii) the study of the physical properties
and status of the landslide deposits and their changes with
time, and (iv) the investigation of the landslide displacement
process. Reference [8] also showed how electrical resistivity
values and seismic waves velocities decrease between the
bedrock and the rocks in the landslide body. Finally, in the
conclusion section of [8], microseismic noise (SN) analysis is
mentioned as a valuable method by which to characterize the
slope soil strata.

Reference [14] conducted a review of the geophysical
methods employed in landslide investigations. They high-
lighted that the selection of the method/s to be applied
depends on its/their suitability for solving the problem. To
estimate this adequacy, there are four main control factors:
(i) the definition/understanding of the geophysical contrasts
that have to be investigated, (ii) the evaluation of the charac-
teristics (penetration depth and resolution) of the geophysical

methods, (iii) the calibration of the acquired data by means
of geological/geotechnical data, and finally, (iv) the signal-
to-noise ratio. In the paper, several case studies are shown
wherein the SR was successfully employed to determine the
lower landslide boundary.

Ten years later, the SR, seismic reflection (SRe), electrical
resistivity (ER), SP, EM, and gravimetry were discussed by
[12] as the most frequently used methods in landslide charac-
terization. For each method, the author gives (i) the theoreti-
cal principles, (ii) how to perform the measurements, (iii) the
sources for those which are active techniques, and, finally, (iv)
some expected results. Moreover, he presents some summary
tables with the physical property ranges (e.g., those of the P-
wave velocity, density, and electrical resistivity) of the most
common soil and rock masses in their crude form (without
taking into account variations caused by different clay con-
tents, weathering, saturation, etc.). Finally, for each discussed
method, [12] synthesizes in one table its suitability for use
in landslide characterization, human artefact (like pipes and
foundations) identification, and physical properties determi-
nation for geotechnical purposes. Overall, the SP method
results are not or only marginally suitable in all fields. Never-
theless, in the same year, [15] and, later, [16-18] showed how
the SP method could be helpfully employed. From the table



in [12], the seismic tomography and 2D and 3D geo-electric
results correspond to the best methods for use in landslide
characterization.

Reference [11] presents the state of the art of the geophys-
ical techniques applied in landslide characterization based
on papers after 1990. According to this review, the methods
could be divided into seldom, widely, and increasingly used
categories. Among the first methods they enumerate are
SRe, ground penetrating radar (GPR), and gravimetry, while
among the second group are SR, ER VES, or tomographies
(ERT), and SP, and, finally, among the third group are SN,
surface waves (SW), and EM. Moreover, they indicate seismic
tomography (ST) as method useful only for limited site con-
ditions (rock slides). They synthetize in a table (a) the main
geophysical methods used, (b) the measured geophysical
parameters and information type, (c) the geological context,
(d) the landslide classification following [2], (e) the geomor-
phology, and (f) the applications (targets). According to the
review in [11], there are three main advantages and three main
limitations in employing geophysics for the subsurface map-
ping of landslides. As benefits of the geophysical methods, the
author enumerates (i) the flexibility and the relative efficiency
on slopes; (ii) the noninvasiveness and the generation of
information on the internal structures of soil or rock masses;
and (iii) the allowance of examining large volumes of soil.
As drawbacks, he highlights that (i) the resolution, which is
dependent on the signal-to-noise ratio, decreases with depth;
(ii) the solution for a set of data is nonunique, and the results
must be calibrated; and (iii) these methods yield indirect
information on the subsoil, such as physical parameters
rather than geological or geotechnical properties. One of the
main conclusions of the review is that in landslide char-
acterization, the geophysical survey design is still a much-
debated question, and no unique strategy has arisen from the
literature.

Reference [11] is the last review published in an interna-
tional journal and available online that focused on the advan-
tages and limitations of the geophysical methods applied in
landslides characterization. Reference [19], in fact, discusses,
by means of case studies, benefits and drawbacks of the
most common geophysical techniques (GPR, ER, and SR)
in geomorphological applications. Therefore, in this paper
landslides are just one of the possible fields of application.
Two more recent reviews about geophysics and landslides
are [20, 21]. The first is focused only on the ERT tech-
nique applied in landslide investigations and analyses the
advantages and limitations of 2D-, 3D-, and 4D-ERT (or
time-lapse ERT: tI-ERT) surveys based on papers of the
period from 2000 to 2013. The second is a review of the
current state of the art and the future prospects of the
near surface geophysical characterization of areas prone to
natural hazards (e.g., landslides, rockfalls, avalanches and
rock glaciers, floods, sinkholes and subsidences, earthquakes,
and volcanos) published in a book series (and, therefore,
not freely available online for download), wherein the anal-
ysis of the geophysical techniques applied in landslides
characterization is limited to subsections of the case study
section.
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3. Geophysical Techniques and Landslides:
A “Landslide Approach” Analysis

As mentioned in Introduction, this review work is based
on a “material landslide approach” analysis on the basis of
the more recent landslide classification presented by [4] and
discussed in Introduction. Even though this classification is
not widely employed (only 20% of the analysed papers from
the years 2015-2018 adopted it, and these papers are marked
with # in Tables 2 and 3), we decided to use it considering
that the same landslide could assume different names from
paper to paper, though the authors could be more or less the
same. Among the analysed papers, examples are the Super
Sauze landslide and the La Vallette landslides (marked in
Table 2 with () and (™), respectively) or the Randa landslide
(marked with (°) in Table 3). This means that the analysed
works are clustered and discussed in two groups, “soil” and
“rock,” respectively, on the basis of the material landslide type
(columns 2 and 3 of Table 1).

Moreover, we decided to analyse the works starting from
2007 because the review in [20] is focused only on the
ERT technique application; nevertheless, we do not analyse
in detail all references already discussed therein, but we
synthetize the results. The results of the review analysis are
summarized in Tables 2 and 3, where for each work, we
specify: (a) the landslide typology according the authors of
the paper (i.e., how they refer to the landslide in the text) and
(b) according to the classification from [4] (where possible,
since sometimes it is not easy to identify the landslide classes
from [4] on the basis of only the text); (c) the materials
involved in the landslides; (d) which geophysical methods
and (e) which other traditional techniques were employed;
and (f)-(1) how many efforts were performed to overcome the
five drawbacks highlighted by [11] and listed in Introduction.
To quantify these efforts, a three-level scale was employed,
where +, -, and n.d. mean, respectively, that many/some,
insufhicient, and nondiscussed efforts were made to overcome
the limitations. Unfortunately, we know that the evaluation
of how many efforts were performed could seem subjective.
Therefore, in Table 4, for each drawback, we summarize how
we evaluated the efforts.

3.1. “Soil” Landslides. “Soil” landslides, with respect to “rock”
landslides, are the typology most studied with geophysical
techniques. Among the 120 analysed papers, more than
half (e.g., 66 papers, which means 75 landslides analysed
without considering those reported in [20]) were about “soil”
landslides, and among them, more than half were on the
flow type. As summarized in Table 5, in fact, no one was
focused on falls, topples, or spreads, while 28 landslides
(the 37.3%) were analysed focused on the slide (6 clay/silt
rotational slides, 8 clay/silt planar slides, 11 rotational and
planar slides, 1 debris slide, and 2 clay/silt compound slides),
41 (the 54.6%) on the flows (5 sensitive clay flowslides, 9
debris flows, 5 mud flows, and 22 earthflows), and 6 (the 8.1%)
on the slope deformations (soil slope deformation). Only two
of the analysed landslides were marine landslides [33, 35],
indicating that it is not easy to conduct geophysical surveys
to characterize landslides that dive into the sea. It is also
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TABLE 4: For each drawback, this table explains how the three-level scale (+, -, and n.d., which mean that many/some, insufficient, and
non-discussed efforts were made to overcome the limitations) was applied.

. _ n.d.
(i) Coloured figures ..(1) B&W figures
(if) 3D figures (ii) Non-interpreted
Drawback 1 oy T . figures /
(iii) Figures with oy e
interpretation. (iii) Figures too small
erpretations (iv) Only raw data
There is wide discussion There are only some .
. . . There are no mentions of
about the technique/s mentions of the technique/s . )
Drawback 2 . . the technique/s penetration
penetration depth and/or penetration depth and/or .
: h depth and/or resolution
resolution resolution
There is wide discussion There are only some There are no mentions of
Drawback 3 about the geological mentions of the geological the geological
awba interpretation of the interpretation of the interpretation of the
geophysical data geophysical data geophysical data
3D/4D data are presented 3D/4D data are p {esented No 3D/4D data are
Drawback 4 : but they are not discussed .
and discussed . presented or discussed
in depth
There is wide discussion on There are only some There are no mentions of
how to link geophysical mentions of how to link how to link geophysical
Drawback 5 data with geotechnical geophysical data with data with geotechnical
and/or hydrological geotechnical and/or and/or hydrological
properties hydrological properties properties

TABLE 5: For each type of movement and “soil” landslide typology, the table summarizes how many papers are focused on it. In italic movement
types that usually reach extremely rapid velocities as defined by [2], while for the others, the velocity varies between extremely slow to very

rapid (for details, refer to [4]).

TYPE OF MOVEMENT Number of papers

SOIL

Number of papers

Fall /

Boulder/debris/silt fall

/

Topple /

Gravel/sand/silt topple

/

Slide 28

Clay/silt rotational slide
Clay/silt planar slide

Gravel/sand/debris slide
Clay/silt compound slide

11

Spread /

Sand/silt liquefaction spread
Sensitive clay spread

Flow 41

Sand/silt/debris dry flow
Sand/silt/debris flowslide
Sensitive clay flowslide
Debris flow

Mud flow

Debris flood

Debris avalanche
Earthflow

Peat flow

— - Ul O Ul — — |~ — [N~

N
[\

Slope Deformation 6

Soil slope deformation
Soil creep
Solifluction

- - O |~

important to point out that in our analysis, we do not consider
papers focused on the geophysical characterization of quick-
clay that could evolve into a sensitive clay flowslide but only
papers focused on those that already occurred [35, 51, 52, 72].

In only 8 works (12.1% of the analysed “soil” landslide
works), it is possible to find a detailed discussion of the theory

applied to landslides, concerning either how to formulate the
inversion problem [41, 46, 52, 55, 68, 83] or how to combine
data from different surveys [7, 42]. All the other papers deal
with the discussion of a case study.

A detailed analysis of the applied techniques is discussed
in Section 4. Below, we present only the main considerations
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from some papers. ERT is an active geophysical method that
can provide both 2D and 3D images of the subsoil. A wide
review of this technique applied to landslides is provided
n [20]. Therefore, here, we limit discussion to saying that
in most papers (29 of 33 that present ERT applications, i.e.,
88.0%), 2D ERTs are shown, while only in 6.0% (2 papers of
33), 3D ERTs are shown, and in the remaining 6.0% (2 papers
of 33), both 3D and 2D applications are presented.

Since the ‘60s, passive seismic techniques have been
developed to monitor and characterize signals triggered
by landslide dynamics and related changes in the material
mechanical properties (i.e., (i) material bending, shearing, or
compression; (ii) fissure opening; (iii) slipping at the bedrock
interface; and (iv) debris flows or mudslides) [22, 55]. They
are of great interest in (a) detecting debris flows [30], (b)
assessing site effects [24, 29], (c) detecting landslide slip sur-
faces [10], and (d) estimating the thickness of a material that
could be mobilized by a landslide [136]. Another advantage
of this method is its ability to detect remote events that
might otherwise go unnoticed for weeks or months. The main
difficulties arise from two issues: (i) the seismic signatures
of landslides and mud/debris flows are very complex and
cannot be effectively identified without a detailed waveform
analysis and (ii) the epicentres of landslides and mud/debris
flows cannot be confidently determined by conventional
earthquake-locating methods, mainly due to the lack of clear
arrivals of P and S phases [44].

3.2. “Rock” Landslides. Among the 120 analysed papers, less
than half (e.g., 54) were about “rock” landslides, and the
majority discussed were of the rock fall type. As summarized
in Table 6 the landslide typology is divided as follows: 41 (the
54.6%) falls, 5 (the 6.7%) topples (5 block topples), 18 (the
24.0%) slides (1 rotational, 2 planar, 1 wedge, 3 compound, 1
irregular), 1 (the 1.3%) spread (rock slope spread), 6 (the 8.0%)
flows (avalanches), and 4 (the 5.4%) slope deformations (3
mountain slope deformations and 1 rock slope deformation).
In all the works that discuss the application of seismic
techniques [26, 55, 84, 86, 87, 89, 91, 93-101, 103-107, 111-
118, 120, 121, 126-128, 130, 131, 133, 134], it is possible to find a
more- or less-detailed discussion on the theory of the seismic
wave analysis carried out to find the “rock” landslide features.

“Rock” landslides are well-known phenomena but are
poorly understood. Contrary to other landslide types, rock-
falls are usually sudden phenomena with few apparent pre-
cursory patterns observed prior to the collapse. A key point
in the prediction of rock slope failure is better knowledge
of the internal structure (e.g., the persistence of joints),
which requires an interdisciplinary research field among
rock mechanics, rock engineering, and mining [98]. This
is why in 64.8% of the analysed papers, the geophysical
technique is carried out along with more traditional methods
(i.e., boreholes, mining, extensometers, and inclinometers).
Moreover, there are at least two limitations in applying
geophysical methods for rock deposits: (a) the difficulty of
deploying sensors (i.e., ER electrodes, geophones, or GPR
antennas) on sharp and blocky ground with a high void ratio
and (b) the low geophysical contrast between the rock deposit
and the underlying layers with comparable properties [[137],
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not listed in Table 3 because it was already analysed by [20]].
In [137], there is another limitation in applying geophysics
for rock deposits: the presence of a shallow geophysical
contrast caused by the subsoil water table that could mask
deeper interfaces. Nevertheless, this limitation also has to be
considered for “soil” landslides.

More recently, to overcome these limitations, rock slope
stability characterization and monitoring has been carried
out using passive seismic techniques (see also the discussion
session), implemented initially in open-mine monitoring
[98]. These techniques, in fact, could help in (i) understand-
ing the seismic responses of rock to slope deformation (e.g.,
the release of stored elastic energy under particular condi-
tions) [135, 138], (ii) detecting and locating microearthquakes
generated by fracturing within unstable rock masses (major
effort is required for classifying seismic signals and extracting
those related to landslides [86, 99, 129]), and (iii) identifying
remote events that could otherwise go unnoticed for weeks or
months. Therefore, these methods are applied to avalanches
[26, 84, 101, 126], rock topplings [107, 111, 117, 134], rockslides
[55,96-99,103,116,126,127,130], and rock falls or cliff failures
(86, 88, 89, 91, 93-95, 100, 104-106, 112-115, 118, 120, 121, 126,
128, 131, 133]. Finally, some works are focused on finding
the relation among “rock” landslides, displacement rate mea-
surements, and meteorological (i.e., rain and temperature)
parameters [95, 99, 100].

4. Discussion

Most studies focused on geophysical surveys are applied
(a) to explore the subsoil for mineral deposits or fossil
fuels, (b) to find underground water supplies, (c) for engi-
neering purposes, and (d) for archaeological investigations
[19]. Technological progress and the availability of cheaper
computer electronic parts has allowed the improvement of
more portable equipment and the development of 2D and 3D
geophysical techniques [11, 12]. Therefore, the applicability of
geophysical methods in landslide characterization has grown
over the years. Starting from the state of the art of the
geophysical techniques applied in landslide characterizations
pointed out in [12], this review focused on the papers from
the last twelve (2007-2018) years and tried to understand how
many efforts have been made by the international scientific
community to overcome the drawbacks. These geophysical
techniques limitations are listed in Introduction. To reach
the goal of this paper, contrary to the four reviews discussed
in Section 2 [8, 11, 12, 14], the analyses of the geophysical
method advantages and limitation were carried out on the
basis of the latest landslide classification, which is mainly
based on the involved materials and geotechnical properties
[4]. Therefore, the 120 analysed papers were divided into two
classes: “soil” (in red in the following figures) and “rock” (in
green in the following figures), which account for 66 and 54
works, respectively.

Even though it is well known that it is better to integrate
more than one geophysical technique because of the intrinsic
limitations of each approach, in 68.3% of the analysed
papers (Figure 1), only one geophysical method is presented
and discussed. However, in 64.6% of these works (which
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TABLE 6: For each movement type and “rock” landslide typology, the table summarizes how many papers are focused on it. In italic movement
types that usually reach extremely rapid velocities as defined by [2], while for the others, the velocity varies between extremely slow to very

rapid (for details, refer to [4]).

TYPE OF MOVEMENT Number of papers ROCK Number of papers
Fall 41 Rock/ice fall 40
Topple 5 Rock block topple 5
Rock flexural topple /
Rock rotational slide 1
Rock planar slide 2
Slide 18 Rock wedge slide 1
Rock compound slide 3
Rock irregular slide 1
Spread Rock slope spread 1
Flow 6 Rock/ice avalanche 6
Slope Deformation 4 Mountain slope deformation 3
Rock slope deformation 1
correspond to 44.1% of the total analysed papers, as indicated 20 3%
by the bottom/darker part of the blue bar in Figure 1), the 80
geophysical results are interpreted on the basis of other TOF
techniques. This means that only in 24.2% of the analysed 604 -
works (the top/lighter part of the blue bar in Figure 1) is P03 oo T78% I
just one technique presented, and in 80% of these 24.2% 409 e -1 4.
(which means four works out of five), the employed method 309 o 394%
is a passive seismic technique. This is probably because these 209 1 B | 22.20%
techniques (a) require quite light equipment, (b) can be 104
employed to both monitor and characterize seismic signals 0° One technique More than one technique
triggered by landslide dynamics [55, 133, 134], and (c) can
= SOIL = ROCK = Total

be useful for overcoming the unpredictable occurrence of
rockfalls [128], even though it is not easy to correlate seismic
signal features with landslide geological properties [120, 134].

In general, active and passive seismic methods are the
most employed in landslide characterization and monitoring
(Figure 2). In “soil” landslides, the three most employed
techniques are ERT, SN (at local and regional scales), and
SR. The last, together with SRe and SW; is largely used in
this kind of landslide typology, and in general, it is easier
to find papers focused on “soil” landslides that integrate the
abovementioned seismic techniques with other less-common
techniques (e.g., MG, IP, SP, and EM). Our analysis of “soil”
landslides confirms the conclusions of [20]; i.e., (a) ERT and
SR integration proves to be the most effective, (b) the joint
application of ERT, SR, and GPR seems to solve and overcome
the resolution problems of each single method, and (c) in the
literature, there are very few examples of ERT combined with
IP to distinguish clayey material or to better interpret ERT.
In “rock” landslides, the three most employed techniques are
SN (at local and regional scales), ERT, and SR, indicating that
passive seismic techniques are preferred over electrical ones.
As mentioned above, this is probably because they can be
employed to both monitor and characterize seismic signals
triggered by landslide dynamics [55, 133, 134]. At the fourth
position is GPR, although the authors highlight both the
difficulty of deployment on cliffs and the limitation of its
applicability to only highly resistive rock slopes [87, 88, 92,
132].

FIGURE 1: For each landslide typology (“soil” in red, “rock” in green,
and total in blue), the bar graph shows the number of papers focused
on just one technique or on more than one. Numbers on the top of
the bars are the percentage values with respect to the total number of
analysed papers. The darker colours of the “soil” and “rock” bars of
the “one-technique” group indicate in how many works the passive
seismic technique was employed alone. The dark blue portion of
the “one-technique total bar” indicates in how many works other
nongeophysical techniques were employed.

In Figure 3, for each drawback, the percentages and the
numbers of papers (numbers on the top of the bars) that fall
into each level of the three-level scale (+, -, and n.d., which
mean that many/some, insufficient, and nondiscussed efforts
were made to overcome the limitations, as shown in Table 4)
are summarized. In general, it is possible to observe that
great efforts were made (95 papers out of the 120 analysed,
which is 79.1%, are on the + level of the scale) to improve
the geological interpretation of the geophysical data and to
explain it more clearly and critically (drawback 3). In contrast,
very few efforts were made to (a) systematically discuss,
in an understandable way, the resolution and penetration
depth of each method (drawback 2: 91 papers out of the
120 analysed, which are 75.8%, are on the n.d. level of the
scale), (b) to convince geologists and engineers that 3D
and 4D geophysical imaging techniques can be valuable
tools for investigating and monitoring landslides (drawback



20

60

International Journal of Geophysics

VES ERT P SIP Sp LOGS GPR

= SOIL = ROCK = Total

FDEM VLF-EM EM

RMT

AE SN (local) SN SR
(regional)

SRe SwW DH CH MG

FIGURE 2: For each landslide typology (“soil” in red, “rock” in green, and total in blue), the bar graph shows the number of papers focused

on each geophysical method.

Drawback 1 Drawback 2 Drawback 3

100.0

Drawback 4 (3D) Drawback 4 (4D) Drawback 5
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80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

47
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51
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FIGURE 3: The bar graph indicates the percentage of efforts made (+ means many/some, - means insufficient, and n.d. means nondiscussed)
to overcome each drawback. The percentages of papers focused on “soil” landslides are in red, those of papers focused on “rock” landslides
are in green, while in blue are the total percentages. The numbers on the top of each bar indicate the numbers of papers.

4: 107 papers for 3D applications and 102 papers for 4D
applications out of the 120 analysed, which are 89.2% and
85.0%, respectively, are on the + level of the scale), and (c)
to obtain quantitative information in terms of geotechnical
parameters and hydrological properties from geophysical
data (drawback 5: 99 papers out of the 120 analysed, which
are 82.5%, are on the n.d. level of the scale). Finally, thanks to
the development of new 2D and 3D imaging software, some
efforts, but still not enough (57 papers out of the 120 analysed,
which is 47.5%, are on the + level of the scale), were made to
show the geophysical results more clearly (drawback 1).

In the following discussion, we analyse point-by-point the
efforts made to overcome each drawback highlighted by [11].

Drawback 1: Geophysicists Have to Make an Effort in the
Presentation of Their Results. According to our analysis (Fig-
ure 3), the efforts to overcome this drawback were performed
more or less in the same way for both “soil” and “rock”
landslides. This means that a tendency to show and present
the results more objectively is beginning to emerge. This
could be possible thanks to the development of new 2D
and 3D software that allow the integration of data from

different sources and surveys (e.g., geophysical, geotechnical,
and borehole data). Nevertheless, the presentation of seismic
data is sometimes still hard, since authors often show the
rough traces or spectra (e.g., [22, 24, 26, 29, 39, 40, 44, 47,
49, 55, 56, 58, 64, 76, 84, 89, 95, 97, 98, 101, 103, 104, 106, 112,
116, 117, 121, 126, 127, 131, 133]) that could be difficult to read
for a nonexpert audience.

Drawback 2: The Spatial Resolution and Penetration Depth of
Each Method Are Not Systematically Discussed in an Under-
standable Way. Each technique has a different resolution and
penetration depth that contribute to the final quality of a geo-
metrical model. According to [7], several preprocessing steps
are needed to carefully check the data quality and, therefore,
the resolution and penetration depth before incorporation
into a 3D model. In total, 75.8% of the analysed papers (47
of those on “soil” landslides and 44 of those on the “rock”
type) do not discuss either the resolution or the penetration
depth of the presented methodology (Figure 3). Additionally,
in the review in [20], none of the cited papers within the
year range (2007-2013) examine these two points. In contrast,
in the remaining 24.2% (Figure 3) of the examined works,
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these two points are discussed more in depth in nine papers
[7, 23, 27, 38, 62, 68, 93, 105, 128], and only few words are
presented in the other twenty [25, 33, 41, 43, 49, 50, 67, 73-
75, 78, 80, 85, 87, 90, 92, 108, 110, 132]. Therefore, most of the
authors who present the results of an integrated survey do not
discuss how to consider and combine these data. It is possible
to conclude that this drawback has still not been overcome
since 2007 and the review in [11].

Drawback 3: The Geological Interpretation of Geophysical
Data Should Be More Clearly and Critically Explained.
The 3D internal structural characterization of a slope/cliff
is essential to any landslide stability analysis and to
hydro-mechanical modelling [7]. Nevertheless, interdisci-
plinary aspects between geomorphological and geophysical
data/results are poorly addressed [19]. According to our
review (Figure 3), in 79.2% of the analysed papers (47 of
those on “soil” landslides and 48 of those on the “rock”
type), many efforts have been made to interpret, show, and
explain the geophysical data in a more clear and critical
way. However, almost 50.0% of these works (those marked
with +# in Tables 2 and 3, which total 11 of 47 for “soil”
landslides and 36 of 48 for the “rock” type) involve passive
seismic monitoring and data analysis and interpretation to
(a) provide information on slope dynamics and (b) identify
landslide features. Moreover, it is worthwhile to note that
the geophysical data interpretations are still not indisputable.
In many papers, in fact, the discussion of the results is
accompanied by words such as “suspect,” “suppose,” “specu-
late,” “probably/probable,” “potential,” “our preferred inter-
pretation,” and “provide important information on possible”
[9, 22, 25-27, 35, 38-40, 42-44, 46, 48-53, 57, 58, 63, 68,
72, 74, 75, 77, 85, 86, 96, 99, 101, 102, 104, 106, 108-110,
112, 114, 115, 118, 122, 126, 134]. Without close collaboration
between geophysicists and geomorphologists, the accurate
and effective use of geophysical techniques, as well as the
corresponding data interpretation, is often very limited [19].

Drawback 4: The Challenge for Geophysicists Is to Convince
Geologists and Engineers That 3D and 4D Geophysical Imaging
Techniques Can Be Valuable Tools for Investigating and Moni-
toring Landslides. In the hydrocarbon industry, the best strat-
egy for reconstructing a high-resolution model is acquiring
a 3D data set [31]. On the other hand, there are interesting
results from the noninvasive time-lapse monitoring of the
hydrological behaviour of a mountain slope [139]. However,
in 89.2% of the analysed works (Figure 3) 3D geophysical
imaging is not discussed. Even though the 3D volumetric
reconstruction of a landslide is a suitable target with new
technologies [46, 60, 65, 92], a 3D survey could be very tiring,
exhausting, and time-consuming, since it is still difficult to
carry and move the equipment over the slope [18, 20]. To
overcome this limitation, the acquisition is usually performed
by means of 2D parallel profiles, and the results are shown in
a 3D fence diagram [[20] and references within, [27, 51, 52,
57, 86, 92, 124]]. Thus, this drawback highlighted by [11] has
not been overcome and is still a challenge for geophysicists.
Passive seismic monitoring could be considered a 4D
technique, but none of the authors refer to this method in this
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way. Therefore, in our analysis, we also have not considered
it as a 4D technique, and the results show that in 85% of the
works (Figure 3), 4D geophysical imaging is not discussed.
In general, 4D ERT has been more frequently employed
thanks to the development of ER multichannel measuring
systems that significantly reduced the acquisition time [20,
140]. These systems [such as those employed in [141, 142]],
in fact, (i) are able to simultaneously acquire a number of
potential measurements for a single pair of current electrodes
and (ii) can be set up to provide ERT at specific times
during the day. Nevertheless, even though tI-ERTs could be
helpfully employed in landslide monitoring, since they could
provide information about the water content changes (i.e.,
the data could be related to pore water pressure variations
and, therefore, to landslide triggering mechanisms), there are
still few examples of 4D ERTs in landslide areas [60, 65, 92].
Moreover, it is still needed to improve software such that it is
able to (i) continuously (or very frequently) process acquired
data (e.g., ErtLab by Geostudy Astier, [140]), (ii) to link ER
variations with hydrological parameter changes, and (ii) to
take into account that the positions of the electrodes could
change over the time because of the landslide movement
(38, 65].

Drawback 5: Efforts Should Also Be Made towards Obtain-
ing Quantitative Information from Geophysics in Terms of
Geotechnical Parameters and Hydrological Properties. Authors
agree that seismic wave velocities and soil ER could be useful
in identifying anomalies related to structural (faults, fissures,
and stability), lithological (sand to clay or calcareous varia-
tions) and hydrological (moisture, water flow) conditions [42,
123, 143]. However, drillings and inclinometer measurements
are still crucial to providing a reliable idea of landslide
structures and slip surfaces and to validate any geophysical
measurements. This is probably because the geophysical
property ranges cover several orders of magnitude, and a
measured parameter cannot be directly assigned to a sure
substrate. Currently, the major difficulty of applying geophys-
ical techniques to landslides, as also highlighted by [11], is still
the complex relationship between the measured geophysical
parameters and the desired geotechnical and hydrogeological
properties, which prevents the provision, in terms of engi-
neering properties, of a straightforward interpretation. More-
over, a very accurate and high-resolution survey can still only
be done on a small landslide portion [23, 24, 27, 28, 38, 40,
46, 60, 78, 86, 92], as it is costly and time-consuming. As also
pointed out by [143], this complexity in obtaining quantitative
information from geophysical data is probably also caused
by (a) the lack of knowledge about geophysics techniques in
the geotechnical engineering/geological community and (b)
engineers inclination to believe in soil and rock that they can
see visually (borehole log), rather than in what they cannot
see (geophysical signal).

These abovementioned limitations are confirmed by our
analysis. In total, 82.5% of the works (99 of 120, Figure 3), in
fact, do not discuss how to obtain quantitative information on
geotechnical and hydrogeological properties from geophysi-
cal data. In the remaining 17.5% (21 works, 14 of those on “soil”
landslides and 7 of those on the “rock” type), both seismic
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and electrical methods are used in the same percentage (9
works focused on seismic methods, 8 on ER, and 4 on
both seismic and ER methods). Thus, this drawback has still
not been overcome, and laboratory surveys to establish a
link between rock properties and geophysical data, as well
as interdisciplinary communication and discussion, are the
primary keys [90].

5. Conclusion

This review work analysed the papers published in open-
access journals from 2007 until today, focusing on the
application of geophysical techniques to landslides. It was
based on a “material landslide approach” analysis and
evaluated how many efforts were performed to overcome
the five drawbacks highlighted by the last review, which
dates to 2007, concerning geophysical techniques applied
to landslide monitoring and characterization. To quan-
tify these efforts, a three-level scale was employed (from
many/some efforts to nondiscussed). In general, it is possible
to observe that (i) many efforts were made to improve the
geological interpretation of geophysical data and to explain
the interpretations more clearly and critically (drawback
3); (ii) some efforts, but still not enough, were made to
show geophysical results more clearly (drawback 1); and
(iii) very few efforts were made to (a) systematically dis-
cuss, in an understandable way, the resolution and pene-
tration depth of each method (drawback 2), (b) to con-
vince geologists and engineers that 3D and 4D geophysical
imaging techniques can be valuable tools for investigating
and monitoring landslides (drawback 4), and (c) to obtain
quantitative information in terms of geotechnical param-
eters and hydrological properties from geophysical data
(drawback 5).

The most studied landslides are those of the flow type
for “soil” landslide typology and those of the fall type for
the “rock” category. From the “employed method” point
of view, active and passive seismic methods are the most
employed in landslide characterization and monitoring. The
latest method is also able to remotely detect events that might
otherwise go unnoticed for weeks or months, and therefore,
it is widely employed. The three more frequently applied
techniques, regardless the typology (“soil” or “rock”), are
ERT, SN and SR, which are to both characterize and monitor
the slope deformation. Finally, independently of the applied
technique/s, a very accurate and high-resolution survey could
be performed only on a small landslide portion, as it is costly
and time-consuming.
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