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Abstract

The thesis describes the research that has been carried out in order to reduce
the limitations of current analysis techniques for non-Markovianmodels, which
led to a three-fold contribution.

The first contribution is a technique that allows to integrate different anal-
ysis techniques for the evaluation of kernels of a MRGP. Specifically, the state
space of the underlying timed model is analyzed to identify epochs between
regenerations and apply distinct methods for their analysis depending on the
locally satisfied conditions. For epochs not amenable to existing methods, an
adaptive approximation of kernel entries based on partial exploration of the
state space is proposed, leveraging heuristics that permit to reduce the error on
transient probabilities. This approach extends the class of models that can be
analyzed, reduces errors committed by approximate analysis and allows one to
automatize the selection of the analysis technique.

The second contribution is a technique for the computations of the equi-
librium probability density functions (PDFs) for the continuous component of
the state in MRGP. Equilibrium PDFs are derived as closed-form analytical ex-
pressions by applying the Key Renewal Theorem to stochastic state classes com-
puted between regenerations. This techniques provides a basis to analyze sys-
tem properties from the equilibrium such as survivability.

The last contribution, is an extension of the analysis of hierarchical semi-
Markov processes with parallel regions, a technique that evaluates steady-state
probabilities of models with multiple concurrent non-Markovian timers in a
compositional way without the need of full state space generation. Specifically,
the technique has been extended by removing some of its limitations and in-
creasing its modeling power. By applying the time advancement mechanism
known from stochastic state classes, exits in parallel regions with different time
origins can be taken into account. Furthermore, exits can be put on state bor-
ders such that the model evolution depends on the exited region and a con-
cept for history states is also presented. This significantly increases modeling
power, such that the gap between semi-Markov processes with restricted mod-
eling power and non-Markovian models without modeling restrictions but also
with less efficient analysis is filled.
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Chapter 1

Introduction

Over the last four decades, our life has become increasingly dependent on auto-
mated systemswhose complexity is constantly growing. We all daily rely on various
transportation systems, medical devices, communication systems and monitoring
systems, which need to be highly reliable and available in order to not cause loss of
life or money. Additionally, the new trend of industry 4.0 (Lee et al., 2015; Lasi et al.,
2014) has led to the emergence of even bigger cooperative systems whose correct-
ness and efficiency heavily affects the competitiveness of involved companies. Ac-
cording to this the main challenge for modern engineering is to provide formalisms,
techniques, and tools that will enable the design of correct and efficient systems re-
gardless of their complexity.

These systems must fulfill quality, performance and dependability requirements.
Dependability (Laprie, 1992) commonly identifies a set of quantitativemeasures that
allow to asses howmuchwe can depend on a specific system. Specifically, in the case
of a safety-critical system, an important measure of dependability is the reliability
(Trivedi and Bobbio, 2017), which is defined as the probability that no critical failure
of the system occurs up to time t. In case of a highly availability system, another
measure of interest is the availability, defined as the probability to find the system
available at time t. This measure can for instance be used to asses the monetary loss
due to an unavailability interval of time or the probability that QoS requirements
will be met. Finally, it is worth to mention the survivability measure (Heegaard and
Trivedi, 2009; Liu and Trivedi, 2006), which evaluates the performance of the system
immediately after the occurrence of a critical failure. In particular, it allows one to
studywhat happens to the systemunder the hypothesis that something catastrophic
occurs and to measure how long it requires to return to its steady state.

The evaluation of such measures can be done directly on the system through
testing or withmodel-based approaches. Model-based approaches have on one hand
the advantage to allow one to study a system when it is in an early stage of design
and also to study low probability events that are otherwise too rare to be observed
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4 Introduction

on the real system within a reasonable time or too catastrophic to want to observe
them (e.g. a tsunami on a nuclear power plant); on another hand, building a re-
alistic model of a complex system is not trivial due to limitations in their analysis
techniques that often requires less realistic simplifications ofmodelswhichmay lead
to incorrect or unreliable results.

Systemmodels are represented through formalisms, which are languages that al-
low describing systems dynamics through an abstract representation. Many types
of formalism exist, each one allowing one to model different aspects of systems.
This thesis focuses on the study of systems characterized by discrete logic state and
continuous time behavior, in particular to those systems having non-Markovian con-
current timers. Many continuous time models assume to have only exponentially
distributed timers which are memoryless, that is, their future behavior does not
depend on the time already elapsed since their enabling (Kulkarni, 2016). This as-
sumption is typically referred as theMarkov assumption, that from the analysis point
of view dramatically helps since system states can be represented considering only
the discrete logical state of the system, completely neglecting past history since it
doesn’t affect future. But most of real systems are by nature non-Markovian since
timers accumulate memory of previous events and thus the remaining time before
it runs out depends on the elapsed time. For instance, aging of systems is non-
Markovian: given a component, the probability of a failure initially decreases over
time due to “infant mortality”, and then increases due to progressive degradation.
If the model contains only a single non-Markovian timer concurrently enabled, it
can be regarded as a Semi-Markov process (SMP) and its analysis is trivial (Kulkarni,
2016). But once again, real systems are often characterized by having several con-
currently enabled timers and thus the assumption to have a single timer enabled in
each state limits the number of real systems that can be modeled. Therefore we are
interested in the study of models with concurrent non-Markovian timers.

The analysis of such systems can be performed through simulation or numeri-
cal techniques. Simulation can be applied regardless of the structure of the model
under analysis, but when dealing with rare events it fails to give a sufficiently reli-
able estimation (Rubino and Tuffin, 2009). Rare event simulation techniques are a
possible solution to that problem, in particular importance splitting (I-SPLIT) is eas-
ily applicable to the simulation of non-Markovian systems, but it needs the manual
construction of a so called importance function which requires specific knowledge
of the structure of the state space. Recently researchers tried to automatize the con-
struction of the importance function (Budde et al., 2015), but although it seems a
promising solution, currently these techniques do not always provide good results.

Many numerical techniques were proposed for the numerical analysis of non-
Markovian models (German, 2000; Horváth et al., 2012; Choi et al., 1994; German
et al., 1995; Amparore et al., 2014; German andLindemann, 1994; Telek andHorváth,
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2001; Lindemann and Thümmler, 1999), which can be applied depending on the
type of distributions and the type of concurrency present in themodel. In this thesis
we focus on analysis techniques formodelswhere the underlying process is aMarkov
Regenerative Process (MRGP), that are processes which always reach a regeneration
point with probability 1. A regeneration point is a time instant where the Markov
property is satisfied, thus the future behavior doesn’t depend on what happened
before such time instant.

All the analysis techniques for the analysis of MRGP have limitations. Specifi-
cally, most works address the subclass where at most a single non-Markovian timer
is enabled in each state (enabling restriction), so that it can be analyzed by studying the
Continuous Time Markov Chain (CTMC) subordinated to the activity interval of the
non-Markovian timer (Choi et al., 1994; German et al., 1995; Amparore et al., 2014).
The method of supplementary variables (German and Lindemann, 1994; Telek and
Horváth, 2001) might in principle encompass the case of multiple concurrently en-
abled GEN timers, but practical feasibility restrains applicability under the enabling
restriction. Sampling at equidistant time points (Lindemann and Thümmler, 1999)
permits evaluation of models where all timers have either deterministic (DET) or
exponentially distributed (EXP) durations. The method of stochastic state classes
(Horváth et al., 2012) enables exact analysis of models with multiple concurrent
non-Markovian timers, when a regeneration is reached within a bounded number
of discrete events (bounded regeneration restriction), that is not always the case in real
systems. Moreover, an approximated version of the technique allows performing
the analysis beyond the bounded regeneration restriction. Furthermore, another
techniquewas developed for a specific formalism derived fromUML statemachines
(Group, 2018), where the particular hierarchical structure of the model can be ex-
ploited to efficiently analyze it (Homm and German, 2016), but expressiveness of
the resulting formalism is very limited greatly reducing its applicability.

1.1 Contributions
In this thesis we describe the contributions made in order to increase the appli-

cability of the before mentioned techniques, which led to a three-fold contribution.
The first contribution is a technique that allows to integrate different analysis

techniques for the evaluation of kernels of a MRGP. Specifically, the state space of
the underlying timed model is analyzed to identify epochs between regenerations
and apply distinct methods for their analysis depending on the locally satisfied con-
ditions. For epochs not amenable to existing methods, an adaptive approximation
of kernel entries based on partial exploration of the state space is proposed, lever-
aging heuristics that permit to reduce the error on transient probabilities. This ap-
proach extends the class of models that can be analyzed, reduces errors committed
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by approximate analysis and allows one to automatize the selection of the analysis
technique.

The second contribution is a technique for the computations of the equilibrium
probability density functions (PDFs) for the continuous component of the state in
a MRGP. Equilibrium PDFs are derived as closed-form analytical expressions by
applying the Key Renewal Theorem to stochastic state classes computed between re-
generations. This techniques provides a basis to analyze system properties from
the equilibrium such as survivability (Heegaard and Trivedi, 2009; Liu and Trivedi,
2006).

The last contribution, is an extension of the analysis of hierarchical semi-Markov
processes with parallel regions (Homm and German, 2016), a technique that eval-
uates steady-state probabilities of models with multiple concurrent non-Markovian
timers in a compositionalwaywithout the need of full state space generation. Specif-
ically, we extend the technique by removing some of its limitations and increasing
its modeling power. By applying the time advancement mechanism known from
stochastic state classes, exits in parallel regions with different time origins can be
taken into account. Furthermore, exits can be put on state borders such that the
model evolution depends on the exited region and a concept for history states is
also presented. This significantly increases modeling power, such that the gap be-
tween semi-Markov processes with restricted modeling power and non-Markovian
models without modeling restrictions but also with less efficient analysis is filled.

The first two contributions adopt the formalism of Stochastic Time Petri Nets (
STPN), that will be described in Chapter 3, along with some techniques for their
analysis. The STPN formalism is built on top of the Time Petri Nets (TPN) formalism
(Berthomieu and Diaz, 1991), adding the concept of probabilities. According to this,
in Chapter 2, we start introducing the TPN formalism and also the non-deterministic
analysis, which will be used in the approach described in Chapter 4. Chapters 2
and 3 will provide the basis to understand the approaches described in following
Chapters 4, 5 and 6, which form the main contributions of this work. Finally we
draw our conclusions in Chapter 7 and describe possible future directions of study.



Chapter 2

Time Petri Nets: formalism and
analysis

The Time Petri Net (TPN) formalism (Berthomieu andDiaz, 1991), is derived from
Petri Net(PN) decorating transitions with durations, expressed as timers having exe-
cution times taking values non-deterministically within dense intervals. According
to this, models represented through this formalism doesn’t represent a probabilistic
measure of its acceptable behaviors.

In this chapter, we will first describe the TPN formalism and then the non- deter-
ministic analysis of TPN that was developed in (Vicario, 2001). Such technique, will
be used as a basis of the approach described in Chapter 4.

2.1 The Time Petri Nets formalism
The TPN formalism is an extension of the Petri Nets (PN) formalism that extends

it with a notion of time (Berthomieu andDiaz, 1991). In the following, its syntax and
semantics will be illustrated.

2.1.1 Syntax
The syntax of a TPN is defined as follows:

Definition 1. A TPN is a tuple xP, T, A´, A`, Ai, m0, EFT, LFT, Uy where P is the set of
places, T is the set of transitions, A´ Ď P

Ś

T is the set of preconditions, A` Ď T
Ś

P
is the set of postconditions, Ai Ď P

Ś

T is the set of inhibition conditions, m0 P NP is
the initial marking, EFT : T Ñ Q ě 0 and LFT : T Ñ Q ě 0Y t`8u associate each
transition with a firing interval rEFTptq, LFTptqs, Uptq : NP Ñ NP is an update function
which given a transition t, associates each marking with a new marking.

Figure 2.1 shows an example of TPN. The TPN has 5 places P “ tp1, p2, p3, p4,

7
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p1

p2

p3

p4

p5t1
r0, 4s

t2
r1, 3s

t3
r2, 4s

t4
r1, 4s

Figure 2.1: Example of TPN

p5u, represented by circles, and 4 transitions T “ tt1, t2, t3, t4u, represented by thick
black bars. A marking identifies the number of tokens present in each place of the
TPN and it represents the logical state of the system. Initially, one token is present
in the place p1, thus the initial marking is m0 “ r1, 0, 0, 0, 0s. For simplicity, in the
following, we will refer to this marking as m0 “ r1p0s or as m0 “ rp0s, avoiding to
specify the number of tokens of places where there is exactly one token. Transitions
t1, t2, t3 and t4 are associated with firing intervals of r0, 4s, r1, 3s, r2, 4s and r1, 4s,
respectively. Preconditions and postconditions are represented by arrows. For in-
stance transition t1 has a precondition xp1, t1y and has two postconditions xt1, p2y

and xt1, p3y. Inhibitor arcs and update functions are not present in the example, but
they are usually represented as a line with a small circle at its end, and annotated
as text next to transitions, respectively. A place p is called input place for a transition
t if xp, ty P A´, output place for the transition if xt, py P A`, inhibitor place for the
transition if xp, ty P Ai.

2.1.2 Semantics

The behavior of a TPN is defined by the state and by the transition rule. The state
s “ xm, τ̄y is composed by a marking m and by a vector of times to fire τ̄. The vector
of times to fire associates each enabled transition, in the currentmarking, with a time
to fire τ̄ “ rτ1, ..., τns, where τj P R ą 0 is the time to fire of the j-th enabled transition
and n is the number of enabled transitions. For simplicity in the following, we will
also write τ̄pt0q to refer to the time to fire associated to the transition t0.

The state of the model evolves according to a transition rule composed by three
clauses: firability, progress and firing:

• firability: a transition t0 is enabled in a specific marking m, if each of its input
places contains at least one token and no place connected through an inhibitor
arc contains any token. We call TEpmq the set of enabled transitions in the
marking m.
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• progress: a transition t0 is firable if it is enabled and its time to fire τ̄pt0q in the
current state s “ xm, τ̄y is not greater than the time to fire τ̄ptjq of any other
enabled transition:

τ̄pt0q ď τ̄ptjq @tj P TEpmq (2.1)

We call TFpsq the set of firable transitions in the state s. A transition ti P TFpsq
among the firable transition will fire as next event at time τ̄ptiq.

• firing: when t0 fires, the state s “ xm, τ̄y is replaced by a new state s1 “ xm1, τ̄1y.
We write this change as s t0

ÝÑ s1.

Themarking m1 is computed by removing a token from each of the input places
of t0, leading to a temporary marking called mtmp, and by adding a token to
each of the output places of t0. Formally, given that the transition t0 fires, the
number of tokens in a place p in the newmarking can be derived according to
equations 2.2 and 2.3.

mtmp
ppq “

#

mppq ´ 1 if xp, t0y P A´

mppq otherwise
(2.2)

m1ppq “

#

mtmpppq ` 1 if xt0, py P A`

mtmpppq otherwise
(2.3)

Moreover, if an update function is associated to transition t0, it is also applied
to mtmp.

The marking mtmp is relevant to classify transitions enabled in the arriving
state which can be persistent or newly enabled that in turns affects the derivation
of the vector of times to fire τ̄1.

A transition tp is persistent if it is enabled in m, mtmp and m1 and if it is not the
fired transition t0. In that case the remaining time to fire τptpq is derived by
reducing τ̄ptpq by the value τ̄pt0q:

τ̄1ptpq “ τ̄ptpq ´ τ̄pt0q (2.4)

Any transition te enabled by m1 but not persistent is newly enabled and its time
to fire τ̄1pteq is set to a non-deterministic value sampled in the static firing in-
terval τ̄1pteq P rEFTpteq, LFTpteqs. We call TPpsq and TNpsq, the set of transitions
persistent and newly enabled in a state s, respectively.

Finally, the time to fire of any transition td that was enabled in m but is no
more enabled in m1 is not present in the vector τ̄1 and we say that td has been
disabled.
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p1

p2

p3

p4

p5t1
r0, 4s

t2
r1, 3s

t3
r2, 4s

t4
r1, 4s

(a) Initial marking

p1

p2

p3

p4

p5t1
r0, 4s

t2
r1, 3s

t3
r2, 4s

t4
r1, 4s

(b) After execution of t1

p1

p2

p3

p4

p5t1
r0, 4s

t2
r1, 3s

t3
r2, 4s

t4
r1, 4s

(c) After execution of t2

p1

p2

p3

p4

p5t1
r0, 4s

t2
r1, 3s

t3
r2, 4s

t4
r1, 4s

(d) After execution of t3

Figure 2.2: Example of TPN step by step execution

2.1.3 Example of TPN execution

For the sake of illustration, we show in Figure 2.2 a step by step example of the
execution of the model presented in Figure 2.1. Note that for simplicity, Figure 2.2
shows onlymarkings and not states. Initially, the state (Figure 2.2a) is s0 “ xm0, τ̄0y “

xrp1s, rτ̄pt1qsywhere τ̄0 is composed only by the time to fire of the only enabled tran-
sition t1. This value is sampled non-deterministically in the interval r0, 4s, for in-
stance suppose that τ̄pt1q “ 3. Since t1 is the only enabled transition, it is also the
only firable transition and it fires at time t “ τ̄pt1q “ 3. The marking is updated
and the new reached state (Figure 2.2b) is s1 “ xm1, τ̄1y “ xrp2, p3s, rτ̄pt2q, τ̄pt3qsy.
The two transitions t2 and t3 are enabled concurrently and are both newly enabled.
Suppose for instance that the vector of sampled times to fire is τ̄1 “ r2, 3.5s. With
these values, t2 will fire first since τ̄pt2q ă τ̄pt3q, but it is worth to notice that in
general the model accepts also the opposite behavior, with a different sampled vec-
tor of times to fire. When t2 fires the system reaches at time t “ 5 the new state
s2 “ xm2, τ̄2y “ xrp3, p4s, rτ̄pt3qsy, where τ̄pt3q “ 1.5 because it is persistent and
updated according to Equation 2.4. This time it is t3 to fire at t “ 6.5, allowing to
reach s3 “ xm3, τ̄3y “ xrp4, p5s, rτ̄pt4qsy. Finally t4 will fire since is the only enabled
transition and the system will reach again the initial marking.

2.2 Non-deterministic analysis

Thenon-deterministic analysis is an enumerative techniquewhich supports reach-
ability and timeliness analysis in TPN models (Vicario, 2001). The technique uses
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equivalence classes to enable discrete and compact enumeration of the state space.
It will be used in Chapter 4 to enumerate reachable states and identify subsets of
states which satisfy specific restrictions.

2.2.1 State classes

The technique is based on the concept of state class, a generalization of the syn-
tactic structure of the state of the TPN, defined as follows:

Definition 2. A state class is a pair xm, Dy where m is the marking and D is the support
for the vector of remaining times to fire of enabled transitions.

The support D is expressed as a set of inequalities on the difference between
firing times of different transitions and referring firing times to a ground reference
value τ̄pt˚q (Note that t˚ is not a real transition, but is used to identify the reference
time of the domain, i.e. the time instant at which the class is entered). In particular,
they are expressed in the form shown in Equation 2.5.

Dm “
!

τ̄ptiq ´ τ̄ptjq ă bij @ti, tj P TEpmq Y tt˚u with ti ‰ tj (2.5)

Where bij P RYt8u are the coefficients, τ̄ptiq and τ̄ptjq are the remaining firing times
and τ̄pt˚q is the reference time. This structure is usually called Difference Bound Ma-
trix(DBM). The difference between a state class and the state of the TPN presented
in section 2.1.2, is that the class is an equivalence class that specifies a support of
possible times to fire while the state has sampled a specific value for each enabled
transition. Thus a state class is a collection of TPN states.

2.2.2 Successors evaluation

Starting from the initial marking m0 and the initial support D0, the technique
allows enumerating the reachability relation among state classes yielding a State
Class Graph(SCG), which represents the continuous set of possible executions of the
model. Specifically, the reachability relation between state classes is defined as fol-
lows.

Definition 3. A state class Schild is reachable from a state class Sparent through a transition
t0 if and only if Schild collects all and only the states that are reachable from some states
collected in Sparent through a feasible firing of t0.

Considering this reachability relation, the successors of a state class can be iden-
tified according to Theorem 1 which has been proved in (Vicario, 2001).
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Theorem 1. Given a state class Sparent “ xmparent, Dparenty, with Dparent represented as:

Dparent “
!

τ̄ptiq ´ τ̄ptjq ă bij @ti, tj P TEpmparentq Y tt˚u with ti ‰ tj (2.6)

Transition t0 is an outgoing arc for Sparent if and only if t0 P TEpmparentq and bi0 ě 0 @ti P

TEpmparentq.

This theoremallows evaluating the set of outgoing arcs from the state class Sparent,
that is the set of transitions that are firable. Specifically the theorem states that a tran-
sition t0 is firable, and thus an output arc, if and only if the support Dparent accepts
solutions in which the firing time τ̄pt0q is not greater than any other enabled tran-
sition firing time. This condition is tested simply by checking if bi0 can be greater
than or equal to 0, because since bi0 represents the maximum delay of the firing of
ti after t0, if it is positive is acceptable that it executes after t0.

After having identified all possible outgoing arcs, the reached classes need to
be evaluated. The successor computation is performed by evaluating the marking
mchild as shown in section 2.1.2, and then evaluating Dchild, assuming that a transi-
tion t0 fires. Specifically, Dchild is computed removing disabled transition and in-
cluding enabled transitions with firing intervals set to their static values. For each
persistent transitions ti, the firing interval must be constrainedwithin theminimum
and the maximum delay that ti can have after the firing of t0, under the constraint
that τ̄pt0q ă τ̄ptiq. Let τ̄p be the vector of remaining times to fire in the parent class
and τ̄c be the vector of remaining times to fire in the successor class. The time to fire
of a persistent transition ti after the firing of a transition t0 is subject to the constraint
τ̄cptiq ´ τ̄cpt˚q “ τ̄pptiq ´ τ̄ppt0q . According to this, Dchild can be evaluated according
to the following proposition (Vicario, 2001):

Proposition 1. Let t0 be a fireble transition in class Sparent “ xmparent, Dparenty, with firing
domain Dparent.

Dparent “
!

τ̄ptiq ´ τ̄ptjq ă bij @ti, tj P TEpmparentq Y tt˚u with ti ‰ tj (2.7)

Let Dt0
parent be the restricted firing domain which augments the firing domain Dparent with a

set of additional constraints imposing τ̄pt0q to be not longer than any transition τ̄ptiq enabled
in TEpmparentq:

Dt0
parent “

$

’

’

&

’

’

%

τ̄ptiq ´ τ̄ptjq ă bij

τ̄pt0q ´ τ̄ptjq ă min 0, boj

@ti, tj P TEpmparentq Y tt˚u with ti ‰ tj

“

#

τ̄ptiq ´ τ̄ptjq ă Bij

@ti, tj P TEpmparentq Y tt˚u with ti ‰ tj

(2.8)
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The firing domain Dchild of successor state class Schild “ xmchild, Dchildy, reached through
the firing of t0, is given by the following equation:

Dchild “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

τ̄ptiq ´ τ̄pt˚q ď Bi0

τ̄pt˚q ´ τ̄ptiq ď B0i

τ̄ptiq ´ τ̄ptjq ď Bij

τ̄ptkq ´ τ̄pt˚q ď LFTptkq

τ̄pt˚q ´ τ̄ptkq ď ´EFTptkq

τ̄ptkq ´ τ̄ptiq ď LFTptkq ` B0i

τ̄ptiq ´ τ̄ptkq ď Bi0 ´ EFTptkq

τ̄ptkq ´ τ̄pthq ď LFTptkq ´ EFTpthq

τ̄pthq ´ τ̄ptkq ď LFTpthq ´ EFTptkq

@ti, tj P TPpmchildq

@tk, th P TNpmchildq

(2.9)

These results allow computing the whole SCG of a TPN that describes all possi-
ble behaviors of the model according to the time restrictions specified in its defini-
tion. Note also that in each state, we can easily identifywhich transitions are enabled
and which of them are newly enabled or persistent, a property that will be used in
Chapter 4. For a more formal discussion on the construction of the SCG and on the
complexity of this operation we refer to (Vicario, 2001). Additionally, an example of
SCG evaluation is reported in Appendix A.

Finally, it is useful to know that it has been proven that if EFTptq P Q ě 0 and
EFTptq P Q ě 0Xt8u for every transition t, then the SCG is finite provided that the
model generates a finite number of markings (Horváth et al., 2012).





Chapter 3

Stochastic Time Petri Nets: formalism
and analysis

Many formalisms have been developed for the representation of models with
concurrent non-Markovian timers (Vicario et al., 2009; D’Argenio et al., 2016; Jur-
dzinski et al., 2014; Buchholz and Telek, 2013; Homm and German, 2016; Biagi et al.,
2018), each one having different advantages. In the first chapters of this thesis (in
Chapter 6 we will use a different formalism) we adopt the Stochastic Time Petri Nets
(STPN) formalism (Vicario et al., 2009) because the stochastic state classes analy-
sis (Horváth et al., 2012), widely used in this work, was originally developed and
implemented on it (Carnevali et al., 2011). Nevertheless, it worth noting that the
same concepts that will be developed here, could be applied to other equivalent
formalisms (Ballarini et al., 2013).

In this chapter we will first recall the STPN formalism, then we will recall to
mind the concept of underlying processes and their classification, finally analysis
techniques of interest in this work will be briefly described.

3.1 STPN

The STPN formalism allows one to describe continuous time systems with con-
current generally distributed timers, possibly with bounded support. It is built on
top of the TPN formalism, extending it with stochastic parameters. Highlighting
this relationship is a key point to understand the contribution presented in Chapter
4.

In the following we recall STPNs syntax and semantics.

15
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G1 Restart Select

G2 E1

E2

G3

G4

gen1

uni(2,4)
E1Ð 0
E2Ð 0
G3Ð 0
G4Ð 0

restart

det(1)

reg

Wpregq “ 1{3
enab

Wpenabq “ 1{3
approx

Wpapproxq “ 1{3

gen2

uni(1,2)

exp1

exp(1)

exp2

exp(1)

gen3

erlang(2,1)

gen4

erlang(2,1)

Figure 3.1: Example of STPN

3.1.1 Syntax
Definition 4. An STPN is a tuple xP, T, A´, A`, Ai, m0, EFT, LFT, U, F, Wy where the
first nine elements define a TPN, while F and W extend it associating each transition t with
a Cumulative Distribution Function (CDF) Fptq with support rEFTptq, LFTptqs and with
a weight W : T Ñ R ą 0, respectively.

The definition clearly shows how STPNs extend TPNs adding stochastic param-
eters, specifically adding a probability measure to the transition supports that were
previously sampled non-deterministically. Additionally, adding weights allows a
modeler to represent probabilistic choices. It is worth noticing that from the quali-
tative perspective, the set of behaviors that a model can generate is the same of the
underlying TPN. The extension relies on having added a stochastic characterization
of such behaviors allowing to evaluate a quantitative measure of the event that a
specific behavior occurs.

Usually transitions are classified on the basis of the type of distribution assigned
to them. A transition t is immediate(IMM) if EFTptq “ LFTptq “ 0, otherwise it
is called timed. A timed transition t is exponential(EXP) if Ftpxq “ 1 ´ e´λx with
support r0,`8s and λ P R ą 0 and general(GEN) otherwise. A general transition t
is deterministic(DET) if EFTptq “ LFTptq ą 0, otherwise is called distributed. For each
distributed transition t, we assume that Ft is the integral of the Probability Density
Function(PDF), i.e. Ftpxq “

şx
0 ftpyqdy.

An example of STPN is shown in Figure 3.1. Transitions are graphically repre-
sented by different symbols depending on the type of associatedCDF. Exponentially
distributed transitions (e.g. exp1 and exp2 in Figure 3.1) are represented by white
thick bars. Deterministic transitions (e.g. restart) are represented by a grey thick
bar while immediate transitions (e.g. reg, enab and approx), are represented as a
black thin bar. Generally distributed transitions (e.g. gen1, gen2, gen3 and gen4) are
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finally represented by black thick bars. Immediate transitions have their weight ex-
plicitly reported in the figure. Specifically, transitions named reg, enab and approx

have weights of Wpregq “ 1{3, Wpenabq “ 1{3, Wpapproxq “ 1{3, respectively. Fi-
nally, an update function is associate to transition gen1, which removes all tokens
present in places E1, E2, G3 and G4 when it executes. The update function is anno-
tated as text below the transition.

3.1.2 Semantics
Also the semantics of STPNs can be regarded as an extension of the semantics of

TPNs, adding the concept of probability. The behavior of a STPN is defined by the
state and by the transition rules. As in TPN, a STPN state s “ xm, τ̄y is composed by
amarking m and by a vector of times to fire τ̄ of enabled transitions. A transition t0 is
enabled if each of its input places contains at least one token and no inhibiting places
contains any token. The set of enabled transitions in a marking m is named TEpmq.
A transition t0 is firable if its time to fire τpt0q is not greater than that of any other
enabled transition. The set of all firable transitions in a state s is called TFpsq. Where
multiple transitions are fireable at the same time, the choice is resolved through a
random switch using the weights W.

Pt”t0 fires first”u “
Wpt0q

ř

tiPTFpsqWptiq
(3.1)

When a transition t0 fires, the state s “ xm, τ̄y is replaced by a new state s1 “ xm1, τ̄1y.
We write this change as s t0

ÝÑ s1. Marking m1 is derived from m again from equation
2.2 and 2.3 as seen for TPN. Additionally, as in TPN, m, m1 and mtmp are used to
classify enabled transitions as persistent or as newly enabled, and this classification
is exploited in order to derive τ̄1, that is the vector of times to fire after the firing of a
transition t0. Specifically, the new time to fire τ̄ptpq

1 of each persistent transition tp is
evaluated reducing its time to fire τ̄ptpq

1 by the time elapsed in the previous state as
shown in equation 3.2, that is equivalent to what was defined for TPNs in equation
2.4.

τ1ptpq “ τptpq ´ τpt0q (3.2)

Finally, the time to fire τ̄pteq
1 of each newly enabled transition te is sampled in the

firing interval according to the CDF Fpteq “ Fte :

EFTpteq ď τ̄pteq
1
ď LFTpteq

Probtτ̄pteq
1
ď xu “ Ftepxq

(3.3)

Note that in TPNs, τ̄pteq
1 for newly enabled transitions was instead chosen non-

deterministically in the support interval.
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CTMC

SMP

MRGP

GSMP

Figure 3.2: Relationship between stochastic processes classes

3.2 Underlying process of a STPN

When studying continuous time systems with discrete logical states, the most
common measures of interest are the probability to be in a certain logical state, at
time t or at steady state. In STPNs the logical state is represented by the marking
whose evolution over time identifies an underlying continuous time stochastic pro-
cess (Ciardo et al., 1994). According to this, analysis of an STPN is usually focused
on the analysis of its underlying marking process, that is defined as tMptq, t ě 0u,
where where Mptq is the marking at time t. The marking process can be classified
based on its properties which depend on the type of distributions of timed transi-
tions and on their relationships (Ciardo et al., 1994; Choi et al., 1994). Depending
on the class of the process, different techniques can be applied, thus the identifica-
tion of the process class is crucial to select which analysis technique can be properly
applied to a model.

Specifically if the model includes only exponentially distributed timers, the un-
derlying process is a Continuous Time Markov Chain (CTMC). If instead non- Marko-
vian timers are presents, the process can accumulate memory over time and it can
be classified in different classes depending on the presence of regeneration points.
A regeneration point is a state where all non-Markovian timers lose their memory,
which basically depends on the persistence of non-Markovian transitions. If non-
Markovian transitions never persist at any firing, the process regenerates at each
step and is thus a Semi-Markov process (SMP) (Kulkarni, 2016). If the process al-
ways regenerates with probabilities 1, it is in the class of Markov Regenerative Pro-
cesses (MRGP). Whereas, when there is a non-null probability that a regeneration
point is never reached, then the process becomes a generalized semi-Markov pro-
cess (GSMP). As shown in Figure 3.2, it is worth noticing the relationship between
these process classes. In CTMCs, timers never persist and according to this they re-
generate at each firing, thus they can be regarded as a sub class of SMP and MRGP.
In SMPs the process regenerates after each firing and thus can be regarded as a sub
class of MRGP. It is important to understand this relationship because techniques
that can be applied to analyze MRGPs can be used also for the analysis of SMPs
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and CTMCs, but in general are less efficient since they can’t rely on the structural
assumptions that techniques developed for such sub-class of process can exploit.

In this thesis we focus on the analysis of Markov Regenerative Processes. Tech-
niques for their analysis, that are of interest for this work, will be briefly described
in the following section.

3.3 Regenerative transient analysis with Markov
renewal equations

Many techniques for the evaluation of transient and steady state measures of
MRGPs have been developed (German, 2000; German et al., 1995; Horváth et al.,
2012; Biagi et al., 2018; Choi et al., 1994; Amparore et al., 2014; Martina et al., 2016),
but each of these techniques has some limitations. Most of the numerical transient
analysis techniques are typically based on the solution of Markov renewal equations
defined by global kernels and local kernels (Kulkarni, 2016), which respectively char-
acterize the occurrence of regenerations and transient probabilities between them.

The marking process tMptq, t ě 0u, specifies the logical location of an STPN at
each time instant. If the marking process is an MRGP, its transient evolution can be
completely characterized by:

1. the initial marking. Or in a more general setting, the probabilities of the ini-
tial markings

2. a local kernel matrix Lijptq :“ PtMptq “ j, T1 ą t|Mp0q “ iu, where T1 is the
next time at which the process will regenerate. Lijptq is the probability to be in
state j at time t, given that the process started in i and it has not regenerated
yet. According to this the local kernel captures the evolution in the period be-
tween two subsequent regeneration points, that in the following will be called
regenerative epoch.

3. a global kernel matrix Gikptq :“ PtMpT1q “ k, T1 ă t|Mp0q “ iu, which char-
acterize the occurrence of regenerations. Gikptq is the probability that, starting
from a regeneration i, the first regeneration is reached atmarking k within time
t.

Specifically, transient probabilities of markings πijptq :“ PtMptq “ j|Mp0q “ iu are
the solution of the following set of equations (Kulkarni, 2016):

πijptq :“ PtMptq “ j |Mp0q “ iu “

Lijptq `
ÿ

kPΘ

ż t

0
gikpxqπkjpt´ xq dx

(3.4)
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Where gikpxq :“ dGikpxq{dx and Θ is the set of regenerative markings of the model.
Equation 3.4 constitutes a set ofVolterra integral equations of the secondkind, known
as generalizedMarkov renewal equations. While Equation 3.4 can be solved numeri-
cally by discretization, evaluation of the kernels is hard and can be done exactly only
for sub-classes ofMRGPmodels where some structural restrictions on the stochastic
model are satisfied.

3.3.1 Kernels evaluation under enabling restriction
One of the most popular technique for the derivation of kernels is the regenera-

tive transient analysis under enabling restriction (Choi et al., 1994; German et al., 1995),
usually called more simply analysis under enabling restriction.

Definition 5. Amodel is under enabling restriction if at most a single GEN timer is enabled
in each state.

If the enabling restriction is satisfied, each regenerative epoch of the process be-
haves either as a CTMC, if only EXP transitions are enabled in the current state, or
as a CTMC subordinated to the activity interval of a GEN transition, if a GEN transi-
tion is enabled. If in a state, no GEN transitions are enabled, the process regenerates
at the next firing. If a GEN transition is enabled, the process will regenerate when
such transition fires or is disabled by the firing of an EXP transition. According to
this, the underlying process of a model under enabling restriction is a MRGP. In
the following we illustrate how kernels can be derived if the enabling restriction is
satisfied (German et al., 1995).

First, if the model contains IMM timers, it is important to introduce the concept
of tangible and vanishing markings.

Definition 6. If the set of enabled transitions TEpmq of the marking m contains one or more
IMM transitions, the marking is said to be vanishing, otherwise the marking is tangible.

The reason behind this naming is that if an IMM transition is enabled, the mark-
ing process immediately evolves to the subsequent marking due the immediate ex-
ecution of one of the enabled IMM transitions. In so doing, the time spent in a van-
ishing marking is zero, while the time spent in a tangible marking is greater than
zero.

Function Mptq of themarking process denotes the tangiblemarking at time t. The
analysis technique can be applied if the set of tangible markings S is finite, thus the
state space can be enumerated. Let TG be the set of all GEN transitions in the STPN.
The state space S , can be partitioned into multiple disjoint sets SE, that is the set of
marking where only EXP transitions are enabled, and a set S g for each transition g P
TG, that is the set of stateswhere only g is enabled. Additionally, each state i P S g can
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be classified based on the state that can be reached from them. Let Spiq be the set of
tangible states that are not regenerative and can be reached from i through the firing
of an EXP transition that does not disable g. Let Sεpiq be the set of tangible states that
are regenerative and can be reached from i through the firing of an EXP transition
that disables g. Finally, let Sgpiq be the set of tangible states that are regenerative
and can be reached from i through the firing of g. We need also to define Q as the
infinitesimal generator matrix, defined by the rates of the EXP transitions, where qij
with i ‰ j denotes the rate from marking i to marking j and qii the negative sum
of all the other elements of the row. Moreover, transient probabilities of the CTMC
subordinated to the activity of a GEN transition are denoted by ηijptq, that can be
evaluated analyzing the CTMC in isolation through any of the available techniques
for their analysis (Bolch et al., 2006). Finally, let ∆ be the branching probabilities
matrix, which entries ∆ij describe the probability that an immediate transition will
bring from state i to state j.

The local kernel and global kernel can be derived according to Equation 3.5 and
Equation 3.6, respectively.

Lijptq “

$

&

%

eqii˚t i P SE ^ j “ i p1aq
p1´ Fgptqqηijptq i P S g ^ j P Spiq p1bq
0 otherwise p1cq

(3.5)

Gijptq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

qij
´qii
p1´ eqii ˚ tq i P SE ^ j ‰ i^ qii ă 0 p2aq

p1´ Fgptqqηijptq `
şt

0 ηijpxq fgpxqdx i P S g ^ j P Sεpiq ^ j R Sgpiq p2bq
ř

mPSpiq
∆mj

şt
0 ηimpxq ˚ fgpxqdx i P S g ^ j R Sεpiq ^ j P Sgpiq p2cq

p2bq ` p2cq i P S g ^ j P Sεpiq ^ j P Sgpiq p2dq
0 otherwise p2eq

(3.6)

Specifically equation (1a) of the local kernel gives the probability that if in the cur-
rent marking there are only EXP transitions enabled (since i P SE), no transitions
have fired yet at time t and thus the marking didn’t change (j “ i) and the model
didn’t regenerate yet. Since it behaves as a CTMC, this probability is given by eqii˚t.
Equation (1b) considers the case that a GEN transition has been enabled in the ini-
tial state i (i P S g) and in the current marking j the system has not regenerated yet
j P Spiq, thus transition g has not fired. The probability that transition g is not yet
fired at time t is given by p1´ Fgptqq, where Fgptq is the CDF of time to fire of tran-
sition g, while the probability that the subordinated CTMC is in j is given by the
transient probabilities ηijptq. In all the other cases, the model regenerates. In partic-
ular equation (2a) considers the case that in the initial state i all transitions are EXP
and one of them executes causing the system to regenerate. Equations (2b), (2c) and
(2d) consider the case that a GEN transition g was enabled in the initial state i. In
equation (2b) the model reaches state j, where g has been disabled due to the firing
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of one of the EXP transitions. In equation (2c) the model reaches state j due to the
firing of transition g. Finally, in equation (2d), the case of a state j that can be reached
both due to the firing of an EXP that disables g or due to the firing of g is considered.

Thus following this approach kernels can be evaluated and transient probabili-
ties of the model can then be evaluated through the Markov renewal equations 3.4.

3.3.2 Kernels evaluation under bounded regeneration restriction
An alternative technique for kernel evaluations is the regenerative transient anal-

ysis with stochastic state classes (Horváth et al., 2012). This technique can be applied
when the bounded regeneration restriction is satisfied.

Definition 7. A model is under bounded regeneration restriction if always a regeneration
is eventually reached within a bounded number of discrete events.

It is worth noticing that there are models in which both the bounded regenera-
tion restriction and the enabling restriction are satisfied, models in which only one is
satisfied, and models in which neither of the two is satisfied. According to this, de-
pending on the model, the correct analysis method needs to be chosen accordingly.

The regenerative transient analysis under bounded regeneration restriction is
based on the concept of Stochastic state classes, which samples the state of the STPN
immediately after a firing. In particular, Stochastic state classes extend the concept
of state classes introduced in Chapter 2, in a twofold manner. First, adding a timer
called age, that accounts for the time elapsed since the initial regeneration. More-
over, it adds a joint probability density function for the age and the remaining times
to fire of each enabled transition.

Definition 8. A stochastic state class is a tuple Σ “ xm, D, f y where: m is the marking; D
is the support of the random vector xτ̄, τagey, where τage is the absolute time since the initial
regeneration and τ̄ is the vector of the remaining times to fire of enabled transitions; finally
f is the PDF of xτ̄, τagey, which we denote as state density function.

Starting from an initial stochastic state class with τage “ 0 and independently
distributed times to fire for the enabled transitions, enumeration of a reachability
relation among stochastic state classes yields a stochastic transient tree, where the
support of the vector τ̄ in each class is represented as shown in Chapter 2, i.e. a
linear convex polyhedron that represents the solution of a set of linear inequalities
constraining the difference between pairs of remaining times to fire. The following
definition formalizes the concept of successors.

Definition 9. A stochastic state class Σ1 “ xm1, D1, f 1y is the successor of a stochastic state
class Σ “ xm, D, f y through firing a transition t with probability µ, which we write Σ

t,µ
ñ
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Σ1, iff, given that the marking is m and the random vector xτage, τ̄y is distributed over D
according to f , t fireswith probability µ, yielding amarkingm1 and a random vector xτ̄1, τ1agey

distributed over D1 according to f 1.

A stochastic state class is said to be regenerative if theMarkov property is satisfied
immediately after the class is entered, which occurs if and only if all active GEN
times to fires have been enabled for a deterministic time (Paolieri et al., 2016).

Definition 10. A stochastic state class Σ is called regenerative if the time elapsed from the
enabling of each enabled GEN transition ti until the firing that led to Σ is a deterministic
value di P Rě0, called the enabling time of ti in Σ.

A sub case of this definition, is that a stochastic state class is a regeneration in
the case in which all GEN times to fires are newly enabled, thus their deterministic
enabling time is di “ 0 @ti

The analysis technique enumerates stochastic state classes from each regenera-
tion until any regeneration is reached, yielding a set of stochastic transient trees that
are rooted in a regenerative stochastic state class and contain non-regenerative suc-
cessors reached before any regeneration. Note that according to this, all leaf nodes
represent regenerations. Under the bounded regeneration restriction, each tree is
finite and collects all stochastic state classes that capture the behavior during a re-
generative epoch of the MRGP. According to this, each tree allow to derive global
and local kernel of a regenerative epoch of theMRGP and thus to evaluate transient
probabilities of the model through the Markov Renewal Equations formulated in
equation 3.4.

The calculus of successors computes:

• the probability µ that t is the transition that fires in Σ

• the successor class Σ1 “ xm1, D1, f 1y, given that t fires, which includes themark-
ing m1 and the joint PDF of remaining times to fire f 1 of transitions enabled in
m1 and the variable τage which is decreased by the sojourn time. Note that in
so doing τage is negative instead of positive, because this allows one to treat it
similarly to remaining times to fire (Horváth et al., 2012). According to this,
the time of the last firing is given by ´τage

For additional details regarding the derivation of the joint PDF of successor classes
and the evaluation of µ, see (Horváth et al., 2012). When stochastic transient trees
enumeration is completed, kernels are evaluated. Let R be the set of regenerative
states and M the set of reachablemarkings. Given a stochastic transient tree enumer-
ated from regeneration i P R, let INNERpiq be the set of stochastic state classes that
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are inner nodes and LEAVESpiq be the set of stochastic state classes that are leafs.
Kernels can be derived from equations 3.7 and 3.8, for all i, k P R, j P M and t ě 0.

Lijptq “
ÿ

ΣPINNERpiq s.t.
Σ has marking j

pinpΣ, tq (3.7)

Gikptq “
ÿ

ΣPLEAVESpiq s.t.
Σ has regeneration k

preachpΣ, tq (3.8)

For a class Σ “ xm, D, f y that can be reached through a sequence of k firings, each
one having probability µi to occur, the probability to be reached is given by equation
3.9.

ρΣ “

k´1
ź

i“0

µi (3.9)

Which in turn allows one to derive the probability to reach Σ from i within time t,
with equation 3.10, and the probability that Σ has been reached and not yet left at
time t, with equation 3.11.

preachpΣ, tq “ ρΣ

ż

txτage,τ̄yPD|τageětqu
f pτage, τ̄qdτagedτ̄ (3.10)

pinpΣ, tq “ ρΣ

ż

txτage,τ̄yPD|τageětXminpτ̄qąt`τagequ
f pτage, τ̄qdτagedτ̄ (3.11)

3.3.3 Approximated kernels evaluation
Analysiswith stochastic state classes requires that the bounded regeneration restric-

tion is satisfied for each regenerative epoch of the process. If this is not true even only
for a single epoch, the analysis does not terminate because the number of nodes to
be enumerated is not bounded. Termination can be guaranteed in probability, if an
approximation is introduced for such regenerative epochs. The approximate anal-
ysis is based on a partial characterization of the regeneration epoch which can be
derived by a partial enumeration of nodes of the not bounded regenerative epoch.
First, an approximation threshold ε is chosen. Then the enumeration of successors
is performed giving priority to nodes that have an higher probability to be reached
within considered time limit t. When the evaluated stochastic transient tree has a
total mass of probability greater than 1´ ε, enumeration is interrupted. According
to this, approximated local kernels L̃ijptq and global kernels G̃ijptq can be evaluated
from the approximated stochastic transient tree. Equations 3.12 and 3.13, show the
relationship between exact kernel and local kernels.

L̃ijptq ď Lijptq (3.12)
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G̃ijptq ď Gijptq (3.13)

It is worth noticing that the approximation can be applied also to reduce complexity
of the analysis of models that satisfy the bounded restriction in order to speed up
the evaluation.

The problem of this approach is that in general less defective kernels result in
more precise approximated transient probabilities π̃ijptq and this error grows with
time:

lim
tÑ8

π̃ijptq “ 0 (3.14)

3.4 Regenerative steady state analysis
From the local and global kernels, steady-state probabilities of an MRGP can be

derived as follows (Martina et al., 2016; Logothetis et al., 1995; Kulkarni, 2016):

lim
tÑ8

PtMptq “ ju “
ř

iPR πiαij
ř

iPR,mPM πiαim
(3.15)

Where R is the set of regenerations of the model, M is the set of states, αij :“
ş8

0 Lijptqdt is the expected sojourn time spent in state j, after the regeneration i, πi
is the steady state solution of the DTMC embedded at regeneration points. Specifi-
cally, steady state probabilities on the DTMC embedded at regeneration points, can
be evaluated as ~π “ ~πG and

ř

iPR πi “ 1 where G :“ limtÑ8Gptq. Note that,
when evaluating the kernels with the stochastic state classes method, probabilities
are given per class, thus it is necessary to first aggregate them by marking, and then
apply Equation 3.15. Finally, note that the approximation technique described in
Section 3.3.3 can’t be used for the evaluation of steady state probabilities since error
grows with time.





Chapter 4

Integration of transient solution
techniques

As shown in Chapter 3, previous work on the evaluation of kernels of anMRGP
requires that all the regenerative epochs satisfy the bounded regeneration restriction,
or that all regenerative epochs satisfy the enabling restriction. Alternatively, also
the method of supplementary variables (German and Lindemann, 1994; Telek and
Horváth, 2001) might in principle encompass the case of multiple concurrently en-
abled GEN timers, but practical feasibility restrains applicability under the enabling
restriction. Moreover sampling at equidistant time points (Zimmermann, 2012; Lin-
demann and Thümmler, 1999), permits evaluation for models where all timers have
either DET or EXP durations. Finally, for models that break both the enabling and
the bounded regeneration restriction, kernel components may be still defectively
approximated by truncation of stochastic transient trees (Horváth et al., 2012), but
with the problem that the introduced error increases with time (see Section 3.3.3).
Additionally it is worth noticing that this approximation technique approximates all
regenerative epochs with the same threshold ε, without considering that different
regenerative epochs can have larger or smaller impact on the error committed on the
transient probabilities, depending on how often and for how long they are visited.

In this chapter, we present a novel technique (Biagi et al., 2017) that exploits the
non-deterministic analysis to automatically drive the integration of different solu-
tion techniques, that are applicable to different regenerative epochs. To this end, we
characterize the structure of the state space through terminating and efficient non-
deterministic analysis, identifying regenerative epochs and solution techniques that
can be applied for kernel components corresponding to each regeneration (Section
4.1). This permits integration of the consolidated technique of enabling restriction
with exact and approximate solutions based on stochastic state classes (Section 4.2).
Moreover, we also introduce a novel technique that iteratively adapts the approxi-
mation of each kernel component so as to optimize the impact of truncation on the

27
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defect in the evaluation of transient probabilities (Sections 4.3 and 4.4) (Biagi et al.,
2017). The approach permits to accurately evaluate kernels, and it is open to further
adaptation strategies and to integration of other solution techniques, both numerical
and simulative.

4.1 Identification and classification of regenerative
epochs

Let’s consider a model expressed in the STPN formalism. Given an initial mark-
ing m0 and an initial PDF fτ̄0 for the vector τ̄ of the times-to-fire of the enabled tran-
sitions, the STPN semantics induces a probability space xΩm0 , Fτ̄0 , Pm0, fτ̄0

y, where
Ωm0 is the set of outcomes (i.e., feasible timed firing sequences of the model), Fτ̄0

is a σ-algebra on the outcomes and Pm0, fτ̄0
is a probability measure over the events

(Paolieri et al., 2016). Note that Pm0, fτ̄0
is zero for outcomes that are not feasible

under fτ̄0 .
The set of states collected in a stochastic state class identifies a unique underlying

non-deterministic state class (Vicario et al., 2009) that represents themarking and the
support of the vector of the remaining times-to-fire of the enabled transitions when
the class is entered. The association between non-deterministic and stochastic state
classes is one-to-many (possibly one-to-infinite) and preserves qualitative properties
referred to the set of feasible outcomes Ωm0 , while abstracting from quantitative
properties depending on the probability measure Pm0, fτ̄0

.
Given that a stochastic state class is regenerative if it satisfies Definition 10 (see

Section 3.3.2), which depends on Ωm0 but not on Pm0, fτ̄0
, state classes can be used to

identify regenerations.
To this end, the state space of the underlying TPN is covered by a set of SCGs,

which we call First-Epoch State Class Graphs (FESCGs), each rooted in a regenerative
state class and containing all non-regenerative successors reached before any regen-
eration (which is also included in the graph). In other words, instead that using
non-deterministic analysis to build a single SCG as shown in Chapter 2, we split it
in a set of FESCGs, each one representing a regenerative epoch. Moreover, enumera-
tion of FESCGs can suppress successor relations that correspond to null probability
events, i.e., firings that in any associated stochastic state class would be possible in
a null measure subset of the support. The following lemma can be used to identify
which successor relations can be suppressed.

Lemma 1. Let u be an STPN, v be its underlying TPN, R be the set of successor relations
Σ “ xm, D, f y

t,µ
Ñ Σ1 “ xm1, D1, f 1y in the stochastic transient tree of u enumerated from

a regenerative stochastic state class Σ0 “ xm0, D0y, and S “ xm, D̄y t
Ñ S1 “ xm1, D̄1y

be a succession relation in the SCG of v enumerated from a regenerative state class S0 “
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xm0, D̄0y, such that D̄, D̄1, and D̄0 are the projections of D, D1, and D0 that eliminate
τage, respectively. Information regarding the probability µ can be derived according to the
following ordered criteria:

1. if t is IMM, µ ą 0

2. if t is not IMM and there is at least another enabled IMM transition in m, µ “ 0

3. if t is DET, µ “ 0 iff one of the following sub-statements is true:

a) there is at least another enabled DET transition with a smaller time to fire

b) there is at least one timer that is not DET, and D conditioned to be strictly greater
than τ̄t and eliminating all DET timers (including t) has null measures in RN,
where N is the number of distributed times-to-fire in Σ and S

4. if t is neither DET nor IMM, µ ą 0 iff both following sub-statements are true:

a) let τ̄ptdq be the smaller time to fire among enabled concurrent DET transitions.
D conditioned to be strictly smaller than τ̄ptdq and eliminating all timers except
t has non-null measures in RN

b) the projection of D that eliminates DET timers, conditioned to the firing of tran-
sition t, has a non-null measure in RN

Proof. Statement 1 considers the case of t being an IMM transition. In that case, ac-
cording to the semantics of STPN, its time to fire is τ̄ptq “ 0 and thus it is equal or
smaller the time to fire of any other concurrently enabled transition. If t it is the only
IMM enabled transition, µ ą 0, because DET transitions have times to fire greater
than zero, and transitions neither IMMnorDET, have probability 0 to sample a value
that is exactly 0. For concurrently enabled IMM transitions, in any case its proba-
bility to fire is greater than 0, since it is evaluated according to Equation 3.1 and all
weights are positive according to Definition 4. Following the same reasoning, state-
ment 2 exploits the fact the IMM transitions fire first. According to this, all following
statements do not consider the case of IMM transitions since in such case is always
easy to prove which transitions can fire or not.

If instead t is a DET transition, there are two cases in which it has probability to
fire µ “ 0. The first case of statement 3a is when another transition is DET and its
time to fire is smaller: from the semantics of STPN (Section 3.1.2) such transitionwill
fire first and thus µ “ 0. On the contrary, if a concurrently enabled DET transition
is enabled with the same or greater time to fire it does not prevent transition t to
fire and thus µ ą 0. The other case of statement 3b is when there are concurrently
enabled transitions that are not DET. Let Dt be D conditioned to be strictly greater
of t, i.e., Dt “ DXtτt ď τti @ ti P TEpmqu, where τt is the time-to-fire of t and TEpmq is
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the set of transitions enabled by m. Let D̂t be the projection of Dt that eliminatesDET
timers. (If) If D̂t has null measure in RN, either i) the STPN includes some transition
associated with a mixed distribution, or ii) µ “ 0, because it means that one of the
concurrently enabled transitionmust fire before t. ByDefinition 4 (Section 3.1.1), the
CDF of each GEN transition is absolutely continuous over its support, thus µ “ 0.
(Only if) If, ab absurdo, D̂t had non-null measure in RN, then the integral over D̂t of
the marginal distribution of distributed times-to-fire in Σ conditioned to the firing
of t would not be zero, yielding µ ‰ 0.

Finally, if t is neither DET nor IMM, to verify if the transition can fire, it is neces-
sary to verify if any of the concurrently enabled transition prevent it to fire. Specif-
ically, for statement 4a, let D̃td

t be the domain conditioned to be strictly smaller than
τ̄ptdq and where all transitions except t and td have been eliminated. (If) If D̃td

t has
non-null measure in RN, µ ą 0, because it means that t can fires before td, thus td
is not preventing the firing of the transition. (Only if) If, ab absurdo, D̃td

t had null
measure in RN, µ “ 0, because it means that t can’t fire before td. Note also that it is
sufficient to consider the DET transitionwith the smaller time to fire among enabled
DET transitions, because it is the worst case since other DET transitions are obliged
to fire later. In conclusion, for all other transitions statement 4b can be proven in the
same way as done for statement 3b.

It is worth noticing that enumerated criteria need to be applied following spec-
ified order, thus criteria from 3 onwards assume that no IMM transitions are con-
currently enabled. It is straightforward to show that a regenerative epoch complies
with the enabling restriction iff at most one GEN transition is enabled in each state
class of its FESCG. Conversely, compliance with the bounded regeneration restric-
tion depends on the presence of cycles in the FESCG.

Lemma 2. A regenerative epoch complies with the bounded regeneration restriction iff its
FESCG does not include any cycle.

Proof. (If) If, ab absurdo, a regenerative epoch did not satisfy the bounded regen-
eration restriction, the STPN would allow a timed firing sequence made of an un-
bounded number of firings that never visits a regeneration; given that an STPN and
its underlying TPN have the same set of timed firing sequences Ωm0 , also the TPN
would allow that behavior. Given that each state class is associatedwith one ormore
stochastic state classes having the samemarking and time domain, therewould exist
a state class associated with an unbounded number of stochastic state classes. As a
consequence, the FESCG would include a cycle.

(Only if) If, ab absurdo, the FESCG of a regeneration included a cycle, then, by
construction, that cycle would not visit any regenerative state class. Hence, there
would exist a timed firing sequence that would allow an unbounded number of
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firings without visiting a regeneration point, and the corresponding regenerative
epoch would not comply with the bounded regeneration restriction.

For instance, Figure 4.1 shows an STPN and its underlying TPN. The SCG of the
model, shown in the lower part of Figure 4.1, can hence be derived. The SCG consists
of 5 regenerative and 5 non-regenerative state classes. In particular: the FESCG
rooted in S3 includes S6 and S1, satisfying the bounded regeneration restriction (it
is cycle free) but not the enabling restriction (two GEN transitions are enabled in
S3); the FESCG rooted in S5 includes S8, S10, and S1, complying with the enabling
restriction but not with the bounded regeneration restriction (due to the cycle S8–
S10); and, the FESCG rooted in S4 includes S7, S9, and S1, satisfying neither the
bounded regeneration restriction (due to the cycle S7–S9) nor the enabling restriction
(two GEN transitions are enabled in S4, S7, and S9). Note that the firing of transition
gen1 in state class S3 would have probability zero in any associated stochastic state
class and thus it is suppressed. That’s because enabled transitions in themarking are
TEprG1, G2sq “ t”gen1”, ”gen2”u, the support of gen1 is r2, 4s and it is concurrently
enabled with gen2 that has support r1, 2s, according to this the probability that gen1
fires before gen2 is 0.

4.2 An algorithm for transient analysis of MRGP
Given an STPNwith an underlyingMRGP, the kernel entries of each regenerative

epoch can be derived through a different solution technique depending on whether
the epoch satisfies the bounded regeneration restriction, or the enabling restriction,
or neither of the two conditions. The applicable solution strategy can be efficiently
selected through non-deterministic analysis of the underlying TPN of the model, by
enumerating the SCG so as to identify the set Θ of regenerative state classes, the set
Ψ of reachable markings, and the FESCG of each regenerative state class i P Θ:

• if the FESCG of i complies with the bounded regeneration restriction (e.g., the
FESCG rooted in S3 in the SCG in Figure 4.1), Lijptq and gikptq are computed
through the exact regenerative transient analysis using stochastic state classes
(see Section 3.3.2), for anymarking j P Ψ, for any regenerative state class k P Θ,
and for any time point t;

• if the FESCG of i satisfies the enabling restriction (e.g., the FESCG rooted in
S5 in the SCG in Figure 4.1), Lijptq and gikptq are derived through the analysis
under enabling restriction (see Section 3.3.1);

• if the FESCG of i breaks both the enabling and the bounded regeneration re-
strictions (e.g., the FESCG rooted in S4 in the SCG in Figure 4.1), Lijptq and
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Figure 4.1: Evaluation of the SCG of a STPN. First the TPN is derived preserving the
supports but abstracting weights of immediate transitions and PDFs of timed tran-
sitions. Then the SCG composed by a set of FESCGs is evaluated and regenerations
identified
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gikptq can still be estimated by stochastic simulation of the STPNmodel or they
can be approximated by numerical solution as developed in Section 3.3.3.

Note that in doing so the derivation of kernel entries always terminates (even for
models with an underlying marking process beyond the class of MRGPs), provided
that the FESCG of each regenerative state class is finite, which in turn is guaran-
teed under the fairly general conditions mentioned at the end of Section 2.2. Also
note that, in the present implementation, kernels of regenerative epochs that satisfy
both the restrictions are derived through the method of stochastic state classes, but
analysis under the enabling restriction could be applied as well; moreover, approxi-
mated analysis or simulation might be applied also to regenerative epochs that sat-
isfy one or both the restrictions, as a way to reduce complexity of solution. In-depth
comparison and experimentation of the impact of different choices on accuracy and
complexity deserves further study.

When kernel entries have been evaluated, transient probabilities of reachable
markings are finally derived by numerical integration of the Markov renewal equa-
tions of Equation 3.4.

4.3 Approximate evaluation of the kernels of an
MRGP

In general, and in particular for regenerative epochs that do not satisfy either
the bounded regeneration or the enabling restrictions, an approximation of kernel
entries can be derived by truncating the enumeration of the stochastic transient tree
computed in the exact regenerative transient analysis (Horváth et al., 2012). In this
case, following the steps of Sect. 3.3.3, the approximated kernel entries L̃hjptq and
g̃ikpxq are computed on a subset of the classes in the stochastic transient tree of the
regenerative state class i, and they thus comprise an under-approximation of the
exact values Lhjptq and gikpxq. Specifically, denoting ∆ijptq :“ Lhjptq ´ L̃hjptq and
δikptq :“ gikpxq ´ g̃ikpxq, we have ∆ijptq ě 0 and δikptq ě 0 @t.

To characterize the impact of the approximation, the following Lemma provides
a bound on εijptq :“ πijptq ´ π̃ijptq, with π̃ijptq denoting the solution of Markov Re-
newal Equations (Equation 3.4) obtained with approximated kernel entries:

π̃ijptq “ L̃ijptq `
ÿ

kPΘ

ż t

0
g̃ikpxq π̃kjpt´ xq dx (4.1)

Lemma 3. For each regenerative state class i P Θ, marking j P Ψ, and time t, the error εijptq
is non-negative and upper-bounded:

0 ď εijptq ď φiptq `
ÿ

kPΘ

ż t

0

`

g̃ikpxqεkjpt´ xq ` φipxqpεkjpt´ xq ` π̃kjpt´ xqq
˘

dx (4.2)
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where φiptq :“
ř

jPΨpLijptq ´ L̃ijptqq `
ř

kPΘpgikptq ´ g̃ikptqq.

Proof. By combining Eqs. 3.4 and 4.1, we obtain: εijptq “ ∆ijptq `
ř

kPΘ
şt

0pg̃ikptq `
δikpxqq ¨ εkjpt´ xq ` δikpxqq ¨ π̃kjpt´ xqdx. Since ∆ijptq ě 0 and δikptq ě 0, φiptq ě ∆ijptq
@ j P Ψ and φiptq ě δikptq @ k P Θ. The upper bound of Eq. 4.2 can thus be obtained
by replacing ∆ijptq and δikptqwith φiptq.

To prove that εijptq ě 0, εijptq is rewritten as εijptq “ Aijptq `
ř

kPΘ
şt

0pg̃ikpxq ¨
εkjpt´ xqdx where Aijptq :“ ∆ijptq `

ř

kPΘ
şt

0 δikpxqπkjpt´ xqdx. Note that Aijptq ě 0,
being ∆ijptq ě 0, δikpxq ě 0, and being πkjpt´ xq a probability. For any discretization
step τ P Rą0, the expression of εijptq can be rewritten by replacing t “ M ¨ τ and
x “ m ¨ τ, with m P r0, Ms. By induction on M, it is easily proven that εijptq is
monotonic non-decreasing with t. Moreover εijp0q “ Aijp0q ě 0, which proves that
εijptq ě 0.

Note that, since 0 ď π̃ijptq for every marking i, j and time t, summation of proba-
bilities over all reachablemarkings provides a defective (i.e., lower than 1) evaluation
of the total probability mass properly allocated; the complement to 1 of this quan-
tity thus comprises a safe upper bound on the maximum value of each computed
probability or summation over them.

4.4 Heuristic driven approximation
The quantity φiptq in Eq. 4.2 can be safely estimated as the sum of probabilities to

reach a truncation point in the partial enumeration of the stochastic transient tree of
regenerative class i. According to this, the bounds of Eq. 4.2 can be used to define a
truncation policy in the partial enumeration of regenerative epochs that break both
the enabling and the bounded regeneration restrictions (unrestricted epochs) with a
twofold aim: adapt the error accumulated on kernel entries of each regeneration i
to the impact that this epoch takes on the final error εijptq; and drive the selection of
truncation points within each stochastic transient tree so as to control the trade-off
between complexity of enumeration and accuracy of approximation. However, exact
implementation of this policy would require repeated evaluation of approximated
probabilities π̃ijptq, which in turn implies a major numerical complexity for the so-
lution of Volterra integral equations. Lemma 3 can thus be more conveniently ex-
ploited as a ground for the definition of efficient heuristics driving truncationwithin
each regenerative epoch. Note that, while this work emphasizes the use of approx-
imation as a way to make the evaluation of kernel entries feasible, approximation
driven by efficient heuristics may be applied also to reduce complexity in epochs
that fit the bounded regeneration or the enabling restrictions.

Partial exploration of unrestricted epochs is performed by initially enumerating
atmost νstart nodes in each tree, and then by iteratively identifying a non-regenerative
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leaf node and by enumerating at most νiter of its successors, until the number of
classes enumerated in unrestricted epochs is larger than a threshold νmax (heuristic-
based approximate analysis). Given that the upper-bound of Eq. 4.2 suggests that the
approximation error affectsmore those regenerative epochs that are visitedmore of-
ten, at each iteration we enumerate the successors of the non-regenerative leaf node
with the largest estimated probability to be reached. Such estimate is evaluated by
analyzing a Discrete Time Markov Chain (DTMC) D specified as follows:

• D has a state for each regenerative state class i P Θ and for each leaf node j
(either regenerative or non-regenerative) belonging to any tree Ti P T (regen-
erative and non-regenerative leaf nodes are absorbing in every tree);

• D has an arc from each state representing a regenerative state class i P Θ to
each state representing a leaf node j in Ti, associated with probability µij;

• if the epoch rooted in i is analyzed exactly, µij is equal to Gijp8q under the
bounded regeneration restriction and to Gijptnq under the enabling restriction;
otherwise, if the epoch rooted in i is analyzed in approximate manner, µij is
equal to G̃ijp8q or to L̃ijp8q depending on whether j corresponds to a regener-
ative or non-regenerative stochastic state class, respectively.

Steady-state analysis of D yields the vector of state probabilities P. Then, the
steady-state probability of the states that correspond to non-regenerative leaf nodes
are normalized, obtaining the vector of state probabilities P̄, i.e., for each state l of
the DTMC D that corresponds to a non-regenerative leaf node in a tree Ti P T , P̄l “

Pl{
ř

hPSL
Ph, where SL is the set of states that correspond to non-regenerative leaf

nodes in any tree Ti P T . Finally, the non-regenerative leaf node that corresponds
to the state w with the largest probability P̄w is selected as the node to be expanded.

It’s worth adding that other heuristic criteria could be used as well to select the
next node to visit in partial enumeration of stochastic state classes, possibly taking
into account an estimate of the mean time until when a regeneration is reached.

4.4.1 Example of the iterative algorithm
An example of execution of the iterative algorithm for the truncated enumeration

of stochastic transient trees is reported in Figure 4.2, assuming νstart “ 2, νiter “ 3,
νmax “ 10 as parameters. Suppose we have two not restricted regenerations called
R1 and R2. Initially the algorithm starts to evaluate νstart successors of nodes ΣR1

and ΣR2, that are the stochastic state classes representing R1 and R2, respectively.
Enumerating νstart “ 2 successors, classes Σ2, Σ3, ΣR1 and Σ7 are found. Specifically,
ΣR1 is a regenerative class that thus need not to be expanded anymore, while Σ2, Σ3

and Σ7 are not yet expanded, thus the heuristic needs to decide which is the best
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Figure 4.2: Example of transient stochastic classes trees expansion through iterative
algorithm, assuming to have νstart “ 2, νiter “ 3, νmax “ 10
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candidate to be explored. Since only 4 ă νmax classes have been enumerated for not
restricted epochs, another iteration need to be performed. Kernels are evaluated,
the DTMC D is built and its steady state probabilities P are derived. P is than nor-
malized considering only Σ2, Σ3 and Σ7, which are the candidates to be expanded,
obtaining P̄Σ2 “ 0.5, P̄Σ3 “ 0.2 and P̄Σ7 “ 0.3. According to this Σ2 is selected and 3
successors expanded since νiter “ 3. Other 3 classes are found, two not regenerative
and one regenerative, where Σ5 has successors not yet expanded. The number of ex-
panded classes is 7 ă νmax, thus another iteration is required. Evaluated normalized
steady state probabilities of the DTMC are P̄Σ3 “ 0.2, P̄Σ5 “ 0.3, and P̄Σ8 “ 0.5, thus
candidate for next iteration is Σ8. Finally, since the number of enumerated classes is
10 ě νmax, the iterative algorithm is interrupted and kernels are evaluated on these
partial enumerated transient stochastic trees.

Note that when expanding the successors of a regeneration, that is the root node
of a stochastic transient tree, νstart nodes are explored, whilewhen a non-regenerative
node is selected νiter nodes are explored. This difference allows one to configure
heuristics that expand more nodes when dealing with a new tree, compared to in-
ner nodes of an already partially expanded tree.

Moreover when expanding successors of a node, the expansion is done giving
higher priority to nodes that have higher probability to be reached, considering only
the current regenerative epoch, as done in (Horváth et al., 2012). It is worth to notice
that at higher level, the heuristics selects next successor to be expanded based on the
probability that such node will be visited considering the overall process, not only
the single current regenerative epoch.

4.5 Experimental evaluation
The approach was implemented on top of the Sirio API of the ORIS Tool (Bucci

et al., 2010). Due to the small state space, with a single epoch requiring approxima-
tion of kernel entries, the STPN of Figure 4.1 does not illustrate the full potential of
the approach. Hence, experimentswere performed on the STPNof Fig. 4.3, a variant
of a 3-station exhaustive-service polling system (Ibe and Trivedi, 1990), where ser-
vice sojourn is bounded by a DET timeout, polling times have a GEN distribution,
and service times have an EXP or GEN distribution. For each station s P t1, 2, 3u:
place Waitings encodes the number of pending service requests; places AtServices
and Vacants encode whether the station is being served or not, respectively; and,
place Pollings encodes the state where the server is polling station s. In Fig. 4.3, all
stations have no pending requests and the server is polling station 1.

The service at station s begins with the firing of transition startServices, with
uniformdistribution over r1, 2s, and itmay terminate eitherwhen the queue of pend-
ing requests (Waitings) is empty or when timeouts fires after a DET maximum du-
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ration of value 3. During the service interval, place Vacants is empty and transition
serves is enabled, so that any number of requests can be served. Transition arrives

models the arrival of a new request as an EXP distribution with mean 20. Since
the EXP distribution has a null minimum value, the maximum number of requests
served during a service interval is limited only by the relation between the timeout
value and the minimum duration of each service. Specifically, the number of re-
quests served during a service interval sojourn is unbounded for stations 1 and 3,
and it is bounded to 3 for station 2 where each service requires at least 1 time unit.

The underlying marking process regenerates whenever the server arrives to any
station (i.e., at firing of emptys or startServices) or leaves it (i.e., at firing of emptys
or timeouts), which directly implies that starting from any reachable state, w.p.1, a
regeneration will be eventually reached, i.e. the process is an MRGP. The process
behavior falls in different subclasses of MRGP during service sojourns at different
stations. When the server is at station 1: the process satisfies the enabling restric-
tion, given that timeout1 is the only non-EXP transition enabled in each state; but
it does not satisfy the bounded regeneration restriction, as for any natural number
n, there exists a non-null probability that serve1 and arrive1 are fired more than n
times before the expiration of timeout1. When the server is at station 2: the process
satisfies the bounded regeneration restriction, given that serve2 cannot be fired more
than 3 times before the firing of timeout2; but the enabling restriction is not satis-
fied as timeout2 and serve2 can be concurrently enabled. When the server is at
station 3: the process falls in the unrestricted case as timeout3 and serve3 are con-
currently enabled, and serve3 may fire an unbounded number of times before the
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exp(0.05)

empty1
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Figure 4.3: STPN of a 3-station exhaustive-service polling system with server time-
out.
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Figure 4.4: Average number of messages waiting to be served at time t at station s,
i.e., wsptq @ s P t1, 2, 3u, and in the overall system, i.e., wptq

firing of timeout3.
Transient analysis is performed through the approach of Sect. 4.2with the follow-

ing parameters: time limit tn “ 30 (in so doing, each station is served at least twice),
time step 0.1, νstart “ 20 (number of stochastic state classes initially enumerated in
each unrestricted epoch), νiter “ 20 (number of stochastic state classes enumerated
in each unrestricted epoch at each iteration), and νmax “ 500 (threshold on the total
number of stochastic state classes enumerated in unrestricted epochs). Overall, the
analysis evaluates the kernel entries of 135 regenerative epochs: 99 through the anal-
ysis under the bounded regeneration restriction, 18 through the analysis under the
enabling restriction, and 18 through the heuristic-based approximate analysis. On a
machine equipped with an Intel i5-5200U 2.20 GHz and 8 GB RAM, the evaluation
takes nearly 40 min, spending less than 0.1 s to perform non-deterministic analy-
sis and classification of regenerative epochs; nearly 40 s, 0.3 s, and 0.4 s to analyze
the state space of regenerative epochs under the bounded regeneration restriction,
under the enabling restriction, and beyond both restrictions, respectively; approx-
imately 100 s, 180 s, and 2.5 s to evaluate the kernel entries of regenerative epochs
under the bounded regeneration restriction, under the enabling restriction, and be-
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Figure 4.5: total error εptnq (committed in the evaluation of transient probabilities of
markings at the time limit tn) as a function of the number of classes enumerated in
unrestricted epochs

yond both restrictions, respectively; nearly 23 s to evaluate the heuristic criterion;
and, approximately 34 min to solve the Markov renewal equations. Numbers show
that non-deterministic analysis has relatively negligible computational complexity,
and thus it can be efficiently used to select the solution technique applied to each re-
generative epoch. Notably, the heuristic criterion has a significantly lower cost with
respect to the evaluation of the kernel entries of restricted epochs, which mostly de-
pends on the number of encountered regenerations. Overall, results suggest that
approximate analysis could be applied also to epochs under enabling or bounded
regeneration restrictions to limit state space exploration and reduce evaluation com-
plexity.

To illustrate possible rewards of interest, Fig. 4.4 plots the average number of
messageswaiting to be served at time t in each station and in the overall system, eval-
uated according to Equation 4.3 and Equation 4.4, respectively, where i is the initial
regeneration (i.e., a stochastic state class with the marking of Fig. 4.3, where all en-
abled transitions are newly-enabled) and Ψ is the set of markings reached within tn.
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Figure 4.6: total error εptq obtained with 70 stochastic state classes enumerated in
unrestricted epochs

wnptq “
ÿ

jPΨ

πijptq ¨ jpWaitingnq @ n P t1, 2, 3u (4.3)

wnptq “
ÿ

jPΨ

πijptq ¨ jpWaitingnq (4.4)

To evaluate the impact of different heuristics in approximate analysis, we evaluate
the total defect in the evaluation of transient probabilities of markings, i.e., εptq :“
ř

jPΨ εijptq where i is the initial regeneration and Ψ the set of markings, which can
be easily computed a posteriori as εptq “ 1´

ř

jPΨ πijptq. Fig. 4.5 plots the total error
at the time limit tn “ 30 as a function of the threshold νmax, comparing results with
those obtained with a naive approximate analysis that explores all stochastic transient
trees of unrestricted epochs, enumerating νmax{U stochastic state classes in each tree,
where U is the number of unrestricted epochs. As expected, εptnq decreases as νmax

increases, and the two approaches achieve approximately the same values of εptnq

for very small values of νmax. Conversely, when νmax becomes larger than 60, the
heuristic-based analysis achieves significantly lower values of εptnq, in the order of
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8 ¨ 10´2 for νmax “ 100 and 7 ¨ 10´3 from νmax “ 200 on, with respect to values in
the order of 0.65 and 6 ¨ 10´2 attained by naive analysis, respectively. Overall, these
results could be used to select a convenient value of νmax in a trade-off between the
result accuracy and the computational complexity.

Fig. 4.6 plots the total error attained by the two approaches as a function of time,
with νmax “ 100, νstart “ 2, and increasing values of νiter. All curves are around zero
until time 5, due to the very low probability that the server has reached station 3 by
that time. From time 5 on, the error attained by naive analysis rapidly increases, be-
ing nearly 0.21, 0.48, and 0.64 at t “ 10, t “ 20, and t “ 30, respectively. Conversely,
εptq increases with a much smaller slope for heuristic-based analysis. As expected,
the cases with lower values of νiter achieve better results; for instance, for νiter “ 1,
εptq is approximately equal to 0.016, 0.049, and 0.083 at t “ 10, t “ 20, and t “ 30, re-
spectively. Values of εptq slightly increase with νiter, though remaining nearly in the
same order of magnitude, showing that heuristic-based analysis yields sufficiently
accurate results while permitting to limit the computational cost.



Chapter 5

Equilibrium analysis of Markov
regenerative processes

Long run dynamics of a system is usually studied through the evaluation of its
steady state distribution. This distribution is defined as the probability to be in a
particular discrete logical state at steady state, which provides a complete charac-
terization of the system at equilibrium when dealing with Markovian processes.
For non-Markovian processes, this distribution is not sufficient for a complete char-
acterization at equilibrium, since the equilibrium also depends on the continuous
component of the state, the active timers. Specifically, in non-Markovianmodels, the
remaining time of enabled timers at steady state need also to be evaluated, while in
Markovian models this is not necessary due the memoryless property that all en-
abled timers enjoy. The remaining time of enabled timers at steady state is called
equilibrium density of active timers (Equilibrium PDF in the following), and gives the
probability to have a specific vector of remaining times to fire at steady state. In
other words, assuming to perform an observation of the system at steady state, this
distribution gives the probability to have a specific remaining time for each enabled
timer in a specific state. For a non-Markovian process, the steady state distribution
along with the equilibrium PDF of remaining times in all possible states allows for
its complete characterization at equilibrium. For Markovian process, such an eval-
uation is not necessary since all timers can be considered as newly enabled due to
the memory less property.

In this thesis, we propose an analytical method to evaluate, in addition to the
steady-state probability of discrete states, also the equilibrium PDF. This provides
the basis to analyze system behavior starting from the equilibrium, such as the eval-
uation of survivabilitymeasures (Heegaard and Trivedi, 2009; Liu and Trivedi, 2006)
in non-Markovian models with multiple concurrently enabled timers, which was
not possible before.

43
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In the following, we consider a model expressed as STPN, having anMRGP un-
derlying process where the bounded regeneration restriction is satisfied in each pos-
sible regenerative epoch. The state of the underlying process will be represented
through stochastic state classes (defined in Section 3.3.2, Definition 8). A stochastic
state class Σ “ xm, D, f y provides a powerful tool to describe the state of the system
after a sequence of firings of model transitions, representing both the discrete log-
ical state through the marking m and the continuous part of the state through the
support D and the joint PDF f of enabled timers. The equilibrium PDF is directly re-
lated to D and f and for this reason a distinct equilibrium PDF needs to be evaluated
for each stochastic state class. According to this, we evaluate the probability to be in
a specific stochastic state class at steady state (Section 5.1) and afterwards we evalu-
ate the equilibrium PDF in each stochastic state class (Section 5.2). Finally we show
experimentally how this method allows one to perform analysis from equilibrium
(Section 5.3).

5.1 Steady state probabilities of classes
The evaluation of the steady state distribution of classes is given byEquation 3.15.

This time kernels are not aggregated per marking, rather each class is considered
separately. In particular this can be done computing the limit of each global kernel
entry Gijptq as t Ñ 8. These values can be obtained simply as the product of firing
probabilities from regeneration i to all classes in LEAVESpiq that reach regeneration
k P R as shown in Equation 5.1.

Gikp8q “
ÿ

ΣPLEAVESpiq s.t.
Σ has regeneration k

ρΣ (5.1)

Where ρΣ is defined as in section 3.3.2 by Equation 3.9. Afterwards, for each regen-
eration i P R and class j P INNERpiq the expected time αj spent in j can be evaluated.

Lemma 4. Let Σj “ xm, D, f y be a stochastic state class such that Σj P INNERpiq. Then
the expected sojourn time αΣj in Σj is:

αΣj “ ρΣj

ÿ

tPTEpmq

µptq
ż

Dptq
τkt f ptqpτage, τ̄qdτagedτ̄ (5.2)

where ρΣj is the product of firing probabilities of transitions that lead from regeneration i to
class j; µptq is the probability that t P TEpmq fires in j; Dptq “ tpτage, τ̄q P D|"t fires first"u
is the subset of the support D where t fires first; and

f ptqpτage, τ̄q :“
f pτage, τ̄q

ş

Dptq f pτage, τ̄qdτagedτ̄
(5.3)

is the PDF conditioned on t that fires first.
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Proof. Equation 5.3 follows from the definition of stochastic state class and from
the law of total expectation. The events of the firing in Σj of transitions in TEpmq
are mutually exclusive, thus if SΣj is the sojourn time in Σj, αΣj “ ρΣj ˚ ErSjs “

ρΣj

ř

tPTEpmq µptqErSj|t fires firsts

Similarly to Equation 3.15 of Section 3.4, the steady state distribution of a specific
class Σj P INNERpiq can be evaluated from Equation 5.4.

pj “
πiαj

ř

i1PR,j1PINNERpi1q π1iαj1
(5.4)

Where π̄ is such that
ř

kPR πk “ 1 and π̄ “ Gp8qπ̄.

5.2 Equilibrium PDFs
In this sectionwewill describe the derivation of the equilibriumPDF. First briefly

recall the concept of renewal process (Kulkarni, 2016) (Section 5.2.1), then we will
use this definition for the derivation of the stochastic process of times to fire across
renewals (Section 5.2.2) and the derivation of the equilibrium PDF (Sections 5.2.3
and 5.2.4).

5.2.1 Renewal processes
Let’s consider a series of events occurring randomly over time and Sn be the time

when the n-th event occurs. Assume that S0 “ 0 and Sn ď Sn`1. S1, S2, ... are also
called renewal times. We define Tn “ Sn ´ Sn´1 as the inter-event time, that is a
random variable describing the time between event n´ 1-th and event n-th, where
n ě 1. Note that Sn “

řn
i“1 Ti. Let Nptq be the total number of events observed

in p0, ts, assuming that the event at time 0 is not counted in Nptq, but any event at
time t is counted. The stochastic process tNptq, t ě 0u is called the counting process
generated by tTn, n ě 1u. It is also worth noticing that Nptq “ maxtk : Sk ď tu and
that Nptq “ k ô Sk ď t ď Sk`1. The renewal process is a special case of a counting
process.

Definition 11. A counting process tNptq, t ě 0u generated by tTn, n ě 1u is called re-
newal process if tTn, n ě 1u is a sequence of nonnegative identically and independently
distributed(i.i.d.) random variables.

5.2.2 Stochastic process of times to fire across renewals
Without loss of generality, we start considering a generic stochastic state class

Σ “ xm, D, f y, where n “ |TEpmq| transitions are enabled and respectively named
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t1, ..., tn, and assuming that t1 is the one that will fire first. Conditioned on this event,
the PDF of times to fire in Σ is defined in Equation 5.5.

f pt1qpτ̄q “

ş

Dpt1q f pτage, τ̄qdτage
ş

Dpt1q f pτage, τ̄qdτagedτ̄
(5.5)

Where Dpt1q “ tpτage, τ̄q P D|t1 fires firstu is the subset of the support D where τ1

is minimum and thus t1 will fire first. The PDF is derived restricting the support
to the subset Dpt1q, normalizing the PDF (denominator of Equation 5.5) and then
marginalizing τage (numerator of Equation 5.5).

Let us consider successive visits to the stochastic state class Σ. Each time, ob-
served values of xτage, τ̄y are i.i.d. according to the PDF f of Σ, since the MRGP
encounters a regeneration point between visits and then performs exactly the same
sequence of transition firings leading to Σ. Note that this sequence corresponds to
a unique path in the transient stochastic tree. Moreover, for the same reason, also
visits to Σ that end with the firing of t1 observe the same PDF f pt1q of τ̄ derived
in Equation 5.5 and their sojourn times are i.i.d. random variables. We focus our
attention on the time intervals of these i.i.d. sojourn times: as time advances, we
move from a sojourn in Σ to the next one, always under the hypothesis that t1 is the
transition that fires in Σ. This admits to build a renewal process tNptq, t ě 0uwhere
times between events are distributed as a sojourn in Σ that ends with the firing of t1.
The PDF of inter-event times of this renewal process is given by the marginal PDF
of τ1 given that it fires first as shown in Equation 5.6.

gpτ1q “

ż

Dpt1q
f pt1qpτ1, τ2, ..., τnqdτ2...dτn (5.6)

Where all times to fire except τ1 have been marginalized.

As Nptq evolves across each renewal S0, S1, S2, ..., a new vector of times to fire τ̄piq,
i “ 0, 1, 2, ... is sampled independently at each Si, according to the same PDF f pt1q.
The objective is to study the evolution of τ̄ over time, subject to the fact that also
the renewal times Si are random. Let tr̄ptq, t ě 0u be the n-dimensional stochastic
process describing, for each t ě 0, the current value of the times to fire vector:

r̄ptq :“ τ̄pNptqq ´ pt´ SNptqq (5.7)

We denote its PDF by hpt, τ̄q and according to this we can write:

Ppr1ptq ď x1, ..., rnptq ď xnq :“
ż x1

´8

...
ż xn

´8

hpt, τ̄qdx1...dxn (5.8)
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5.2.3 Equilibrium PDF conditioned to the firing of a transition
The goal is to compute the equilibrium PDF of r̄ptq, that is the function f̂ pt1qpτ̄q

defined in Equation 5.9.
f̂ pt1qpx̄q “ lim

tÑ8
hpt, x̄q (5.9)

This gives the PDF of the times to fire in Σ at equilibrium, conditioned to the fact
that the sojourn will end with the firing of t1.

First, it is necessary to highlight the fundamental relation between hpt, x̄q, the
object of our analysis, and f pt1q.

Lemma 5. If hpt, x̄q is the PDF of ¯rptq for each t ě 0, f pt1qpx̄q is the PDF of τ̄ at each
renewal, and gpxq is the PDF of τ1 (the interarrival time of the renewal process, i.e. the time
between renewals), the following renewal equation holds:

hpt, x̄q “ f pt1qpx̄` tq `
ż t

0
hpt´ u, x̄qgpuqdu (5.10)

Proof. Equation 5.10 can be derived by a renewal argument: for the first renewal
time S1 we have that either S1 ą t or S1 ď t.

If S1 ą t, then the first renewal has not occurred, so that Nptq “ 0 and r̄ptq “
τ̄p0q ´ t. The PDF of r̄ptq at time t is then given by f pt1qpx̄ ` tq{Ptτ1 ą tu, i.e., the
PDF f pt1q used to sample τ̄p0q but conditioned to the event tτ1 ą tu that t1 have
not yet fired, and where each component is shifted by time t (we denote by x̄ ` t
the vector px1 ` t, ..., xn ` tq). According to this and since S1 :“ τ1, we have that
hpt, x̄|S1 ą tqPpS1 ą tq “ f pt1qpx̄` tq, .

If S1 ď t, the process r̄ptq "probabilistic restarts" after S1, when a new time to fire
vector τ̄p1q is sampled. If S1 “ u, u ď t and at least one renewal is encountered by
time t, Nptq “ Npt´ uq ` 1, TNpt´uq`1 “ TNpt´uq ` u and thus:

r̄ptq “ τ̄pNpt´uq`1q
´ pt´ TNpt´uq`1q “ τ̄pNpt´uq`1q

´ rpt´ uq ´ TNpt´uqs (5.11)

for u ď t. Given that times to fire vectors τ̄pNpt´uq`1q and τ̄pNpt´uqq have the same
PDF f pt1q, it holds that hpt, x̄q “ hpt ´ u, x̄q, for u ď t. By conditioning on all the
possible values of S1 “ u and decreasing t accordingly, we have:

hpt, x̄|S1 ď tqPpS1 ď tq “
ż t

0
hpt´ u, x̄qgpuqdu (5.12)

By putting together the two cases, we obtain Equation 5.10.

Lemma 5 establishes a connection between hpt, x̄q and f pt1q and also reveals the
recursive structure of hpt, x̄q across renewals. This kind of renewal-type equation is
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well-known for renewal processes and provides a strategy to compute hpt, x̄q at the
equilibrium through the following result (Kulkarni, 2016, Theorem 8.17), called the
Key Renewal Theorem

Theorem 2. Let gpxq be the PDF of the interarrival time, and let h be a solution to the
renewal type equation hptq “ dptq `

şt
0 hpt´ uqgpuqdu. Then, if d is the difference of two

non-negative bounded monotone functions and
ş8

0 |dpuq|du ă 8,

lim
tÑ8

hptq “
1

ErSs

ż 8

0
dpuqdu (5.13)

where ErSs “
ş8

0 ugpuqdu is the mean interarrival time.

This theorem can be directly applied to Equation 5.10 for dptq “ f pt1qpx̄` tq and
requires only mild conditions on f pt1qpx̄ ` tq. When the PDFs ft used to sample
newly-enabled transitions are piecewise expolynomials (products of exponentials
and polynomials), the joint PDF f of timers, and thus f pt1q, is also piecewise contin-
uous with bounded variation (Carnevali et al., 2009).

By combining Lemma 5 and Theorem 2, we obtain the equilibrium PDF f̂ pt1q of
τ̄ in Σ when t1 is the transition that fires at the end of each sojourn:

f̂ pt1qpx̄q :“ lim
tÑ8

hpt, x̄q “
1

ErSpt1qs

ż 8

0
f pt1qpx̄` uqdu (5.14)

where ErSpt1qs “
ş8

0 ugpuqdu it the mean sojourn time in Σ when t1 fires. The iden-
tity of Equation 5.14 is a major step for the analysis of the joint PDF of τ̄ at steady
state. Combined with Equation 5.5 to obtain f pt1q from f and with Equation 5.6 to
obtain g, it provides a straightforward derivation of the equilibrium PDF under the
hypothesis that t1 is always the transition that fires first in Σ.

5.2.4 Equilibrium PDF when multiple transitions can fire
We can now remove the hypothesis previously made that t1 is the transition to

fire at each visit through the following theorem.

Theorem 3. Let Σ “ xm, D, f y be a stochastic state class where transitions t1, ..., tn can fire
with probability µpt1q, ..., µptnq, respectively. Then, the equilibrium PDF of τ̄ “ pτ1, ..., τnq

is given by

f̂ px̄q “
1

EpSq

n
ÿ

i“1

µptiq

ż 8

0
f ptiqpx̄` uqdu (5.15)

where EpSq is the expected sojourn time in Σ and, for all i “ 1, ..., n, f ptiq is the PDF of τ̄

conditioned on the firing of ti according to Equation 5.5.
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Proof. We focus only on sojourns in class Σ and ignore the rest of the time line.
The probability that a sojourn ends with the firing of ti is µptiq for i “ 1, ..., n, with
řn

i“1 µptiq “ 1; conditioned on this event, the expected sojourn time in Σ is ErSptiqs.
Then, the steady state probability of sojourns in Σ that end with the firing of ti is
given by

pi “
µptiqErSptiqs

řn
j“1 µptjqErSptjqs

(5.16)

which is the mean fraction of time spent in such sojourns. Since f̂ ptiq is the equil-
brium PDF when sojourns are conditioned to end with ti,

f̂ px̄q “
n
ÿ

i“1

pi f̂ ptiqpx̄q “
n
ÿ

i“1

˜

µptiqErSptiqs
řn

j“1 µptjqErSptjqs

¸

f̂ ptiqpx̄q

“
1

řn
j“1 µptjqErSptjqs

n
ÿ

i“1

µptiq

ż 8

0
f ptiqpx̄` uqdu

(5.17)

which, since
řn

j“1 µptjqErStjs “ ErSs, gives Equation 3.

We have thus derived the equilibrium PDF in a specific stochastic state class Σ.

5.3 Experimental validation
Steady-state probabilities and equilibrium PDFs represent the equilibrium dis-

tribution of the MRGP. When used as initial distribution for transient analysis, this
distribution must result in constant transient probabilities that are equal to steady-
state ones. We now show how to perform transient analysis from this distribution
and evaluate the correctness of the approach.

In Section 5.1, steady-state probability pΣ of each class Σ P YiPRINNERpiq, where
R is the set of regenerations of the process. Given that the MRGP is in class Σ “

xm, D, f y, the marking is equal to m and the times to fire vector τ̄ has equilibrium
PDF given by f̂ px̄q, which is computed form f according to Equation 3. To compute
transient probabilities from the equilibrium, it is necessary to modify the Markov
Renewal Equation of Equation 3.4 and the approach for the enumeration of transient
stochastic trees as follows.

First, for each inner node Σ “ xm, D, f y c P YiPR INNERpiq, we compute a tree
of stochastic state classes until the next regeneration. We construct the initial class
STARTpΣq of this tree using a marking m and PDF of xτage, τ̄y equal to gpxage, x̄q “
δpxageq f̂ px̄q, i.e., τage “ 0 and the times to fire vector τ̄ has PDF at equilibrium.
For each Σ P YiPR INNERpiq we denote the inner nodes of the tree computed from
STARTpΣq (until following regenerations) as STARTINNERpΣq, while the leaves of
the tree are denoted as STARTLEAVESpΣq.
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pIn1 pOut1

pIn2 pOut2

prod12
uni(2,4)

prod2
f pxq “ 1´ x{2 on [0,2]

consume

det(1)

prod11
f pxq “ 2x´ 2 on [1,2]

Figure 5.1: STPN model of a parallel Producer-Consumer

Then, we extend the Markov renewal equations of Equation 3.4 by introducing
an additional regeneration r̂ that represents the state of the MRGP at equilibrium.
The process starts in r̂ at time t “ 0, but never returns to this artificial regeneration:
by construction, the next regeneration belongs to R and, afterward, theMRGP cycles
through its original trees of stochastic state classes. To achieve this behavior, we set
MRGP kernel entries as follows. Let R̂ “ RY r̂ and set, for i “ r̂,

Lijptq “
ÿ

ΣPYi1PR INNERpi1q

pΣ

¨

˚

˚

˚

˝

ÿ

Σ1PSTARTINNERpΣqs.t.
Σ1 has marking j

pinpΣ1, tq

˛

‹

‹

‹

‚

(5.18)

Gikptq “
ÿ

ΣPYi1PR INNERpi1q

pΣ

¨

˚

˚

˚

˝

ÿ

Σ1PSTARTLEAVESpΣqs.t.
Σ1 has marking j

preachpΣ
1, tq

˛

‹

‹

‹

‚

(5.19)

for all k P R, j P M, and t ě 0. Since r̂ is never reached again, we set Gikptq “ 0@i P R̂
when k “ r̂. Kernel entries in the additional row r̂ model a random choice of the
initial stochastic state class Σ according to the discrete distribution given by pΣ for
Σ P YiPR INNERpiq; for a given class Σ, the tree computed from STARTpΣq is used to
characterize the system evolution from the equilibrium in Σ until the next regener-
ation. As in Section 3.3.2, measures pinpΣ, tq and preachpΣ, tq provide the probability
that the MRGP is in the stochastic state class Σ at time t, or that it has reached Σ by
time t, respectively.

Consider the STPN model of Figure 5.1. There are 4 possible markings M “
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Figure 5.2: Transient probabilities of the model states from the initial marking i “
rpIn1, pIn2s

trpIn1, pIn2s, rpOut1, pIn2s, rpIn1, pOut2s, rpOut1, pOut2su and two regenerative states
R “ trpIn1, pIn2s, rpOut1, pOut2su. Steady state probabilities ofmarkings are πrpIn1,

pIn2s “ 0.263, πrpOut1,pIn2s “ 0.010, πrpIn1,pOut2s “ 0.317 and πrpOut1,pOut2s “ 0.410.
Figure 5.2 shows evaluated transient probabilities πijptq for 0 ď t ď 15 of the MRGP
for i “ rpIn1, pIn2s, that is the initial regeneration, and for each j P m. Figure 5.3
shows instead evaluated transient probabilities 0 ď t ď 15 and each j P M, where
the initial state is the additional regeneration r̂ and additional kernels rows are eval-
uated using Equations 5.18 and 5.19. As expected, using both the steady state distri-
bution and equilibrium PDFs, we can evaluate transient probabilities starting from
the equilibrium and according to this evaluated distributions are constant and cor-
respond to the steady state probabilities.

5.4 Additional remarks
In this chapter, we presented a solution to compute a closed-form expression

of the equilibrium distribution of MRGPs. The solution leverages the calculus of
stochastic state classes and it has been validated through an implementation based
on the ORIS tool (Bucci et al., 2010).

In future work, this technique can provide a basis for the evaluation of surviv-
ability measures (Heegaard and Trivedi, 2009) on non-Markovian models, that we
consider to be the major contribution of this approach. Another possible minor ap-
plication could be to use the same theoretical concepts for the estimation of serving
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Figure 5.3: Transient probabilities evaluated using steady state distribution and
equilibrium PDF as initial state

time of a queue, based on observations. Specifically, suppose to have a queue with
multiple servers, where customers arrive and need to wait a certain amount of time
to be served. When a customer arrives, he doesn’t know the service time distribu-
tion, but wants to infer it based on observations that he can do in the short term.
Initially, he can only observe how long customers a the top of the queue need to be
served. This first observed time is not a sample of the real service time, but are in-
stead remaining times at equilibrium. According to this, the theory discussed in this
chapter could be used to immediately estimate service times having only observed
values at equilibrium.



Chapter 6

Analysis of hierarchical semi-Markov
processes with parallel regions

In the previous chapters models were represented using the STPN formalism,
which has a great expressiveness but is not widespread outside the research con-
text. Other approaches (Jansen et al., 2003; Homm and German, 2016; Gnesi et al.,
2000) are based instead on derivations of more common formalisms like state charts
(Harel, 1987) and UML state machines (Group, 2018). The use of these UML de-
rived formalisms, can help in the spread of techniques of non-Markovian analysis,
allowing engineers to study more realistic models of systems.

Additionally, the application of non-Markovian analysis techniques, requires the
user to have deep knowledge about the technique to understand which restrictions
themodel needs to satisfy (bounded, enabling or neither) and thus which technique
can be applied and which one is more efficient. Also using approaches that auto-
matically verify which technique can be applied as shown in Chapter 4, the user
needs to understand how some assumptions can make the model analyzable effi-
ciently and how much these assumptions impact on final results. Alternatively, the
usage of other types of formalism, can be exploited so as to guarantee that each pos-
sible model expressed in such formalism can be analyzed or at least that it is easier
to verify whether it is analyzable. Finally, formalisms can also be defined so as to
guarantee a particular structure of the model, which can be exploited to implement
analysis techniques that are more efficient and admit to analyze a broader class of
processes, compared to more general techniques described in Chapters 3 and 4.

The approach of (HommandGerman, 2016) exploits the hierarchical structure of
aUMLderived formalism in order to develop a compositional approach for the eval-
uation of steady state probabilities of the model, notably without the requirement
to build the whole state space. The limitation of such work was mainly related to
the restricted number of features adopted from the UML state machine formalism.
Specifically the derived formalism defines a state machine, where each state can be
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simple or composite. Simple states have a sojourn time distribution describing how
long the system remains in a particular state, while composite states are described
by a set of parallel regions, where each region is in turn described by another state
machine. Additionally, regions can have final states or exit states describing the
condition that needs to be met in order to leave the composite state. One major lim-
itation of the approach is that it doesn’t allow to have different successors of a state
based on how concurrency is resolved. Additionally the technique imposes restric-
tions on how exit states can be included in the model. In this chapter, we show how
such a formalism can be extended in order to increase its expressiveness (Biagi et al.,
2018). Specifically we remove the limitation to have exit states only at the lower level
of the hierarchy of a composite state, allowing to define more complex concurrency
patterns. This is achieved by applying the concept of time advancement mechanism
known from state classes (Horváth et al., 2012). It is also combined with a compu-
tation of probabilities to reach nested states, which is needed for the final compu-
tation of steady-state probabilities. We also add the possibility to have exit states
on the border, making it possible to have different successor states based on which
region finishes first, substantially increasing the expressivity of the formalism. Fi-
nally we introduce the possibility to have history states, enabling the definition of
more condensedmodels. The new technique has also been implemented in order to
experimentally validate it and to better characterize the advantages of having such
a compositional approach.

The following sections are organized as follows: in Section 6.1 we present the
extended formalism and give a formalization of it; in Section 6.2 we describe the
analysis technique; finally in Section 6.3we report an application example and study
the efficiency of the technique.

6.1 Hierarchical semi-Markov process with parallel
regions

The adopted formalism is derived from UML state machines (Group, 2018), al-
lowing only the usage of a subset of its features but also adding some extensions
to model quantitative aspects as done in, e.g., (Jansen et al., 2003). A previous ver-
sion of the formalism was presented in (Homm and German, 2016), but here it is
enriched with the concept of history states which allows for a more concise repre-
sentation, and for exit states on the border, which allow for distinct successor states
based on which region concludes first.
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Figure 6.1: Example model defined with the formalism

6.1.1 Description and graphical representation

The model describes a state machine, thus a system that can be in exactly one
state at any given time. The time elapsed in a particular state is stochastically dis-
tributed, and when such time expires the system changes its state. Each state can
be simple or composite. Time spent in a simple state is described by a stochastic dis-
tribution and there are no additional details regarding the internal representation
of the state. Instead the internal state of a composite state is described by a set of
one or more parallel regions, each one described again as a state machine. When
a composite state is entered, each region has its own internal state and only when
a specific condition between regions is met the composite state is left. Recursively
applying this concept allows to define hierarchical models, since in the same com-
posite state it is possible to have sub-states that in turn are composite, thus having
more levels of detail in the same composite state. The highest of such levels will be
called hereafter top level.

An example model is shown in Figure 6.1. At any given time at top level, the
system can be in states S1, S2, S3, S4, S5 or S6, where S1 is the initial state identified
by an arrow with a black circle on its origin. States S1, S5 and S6 are simple states,
while states S2, S3 and S4 are composite states where their internal representation is
described through regions and sub-models. Additionally, the successor of state S3

is a P-pseudonode, introduced in (Jansen et al., 2002), that is used to handle discrete
probabilistic branching. Specifically, after state S3 with probability pa the next state
is S4 andwith probability pb “ 1´ pa the next state will be S1. In this example, com-
posite states are all defined by a set of two regions, each one describing a nested state
machine. When state S2 is entered, both regions have their own current state, S2,a
and S2,b, respectively. In this case the end condition is defined by exit pseudostates,
which denote that the composite state is left when one of the exit pseudostate is
reached first. Exit pseudostates are graphically represented as a circle with a cross.
Composite state S3 is modeled with a different kind of end condition, by using final
pseudostates, which denotes that the state is left when both final states are reached.
Final states are graphically represented as a circle with an inscribed black circle. Fi-
nally, state S4 uses again exit pesudostates, but they are placed on the border of the
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composite state, meaning that the state reached when state S4 is left depends on
which region completes at first its execution. If the upper region ends first, the next
state will be S5, otherwise, if the lower region ends first, S6 will be the next state.
Moreover, the upper region of state S4 has an initial state depending on its history.
A history state allows a region to keep track of the state it was in when it was last
exited. When the system enters again in such a region, the region returns to this
same state. The first time the state is entered a default history state is specified, in this
case it is S4,a. This is represented as described by the UML specification (Group,
2018). Note also that if the absorbing state was reached in the previous execution,
next time the region is entered the default history state will be selected. Accord-
ing to this, history states have a meaning only in regions where exit pesudostates
are present. As a restriction, we require that all regions on a level directly below a
composite state must have the same type of end pseudostate.

6.1.2 Formal definition
First we recall the definition of semi-Markov processes (SMP) (Kulkarni, 2016).

Consider a stochastic process tXptq, t ě 0u with a countable number of states. It
starts in an initial state X0 at time t “ 0, stays for a sojourn time T1 and then changes
its state to a new value X1. In general it stays in a state Xn for a duration Tn`1 and
then jumps to a state Xn`1.

Definition 12. A stochastic process Xptq, t ě 0 is called SMP if it has a countable number
of states and the sequence tX0, pXn, Tnq, n ě 1u satisfies PpXn`1 “ j, Tn`1 ď t|Xn “

i, Tn, Xn´1, Tn´1, ..., X1, T1, X0q “ PpX1 “ j, T1 ď t|X0 “ iq “ Gi,jpyq.

The matrix Gpyq “ rGi,jpyqs is called global kernel of the SMP process.

Definition 13. A hierarchical SMPwith parallel regions (HSMP) is a tuple θ “ xR, ρ, S, P,
F, φ, ηy, where R is the set of regions; ρ : R Ñ S is a function that identifies the initial
state of a region; S “ Ss Y Sc Y Sa is the set of states where Ss are simple states, Sc are
composite states, Sa “ SE

a Y SF
a are absorbing states, SE

a are absorbing states of type exit, SF
a

are absorbing states of type final; P : S ˆ S Ñ R is the matrix that describes the discrete
probability that the successor of a state will be a specific state; F : Ss Ñ CDF associates each
simple state to a cumulative distribution function; φ : Sc Ñ θ associates the composite state
with another HSMP that describes its internal representation.

The definition is recursive since each composite state is described through a
nested HSMP. It is worth noting that for convenience this definition defines branch-
ing with a matrix P and not as a pseudostate. It would also be easy to associate
state transitions with timing. If we consider the model of a particular region, with-
out considering sub-states of composite states, the underlying process constitutes a
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semi-Markov process. The reason is that the state space of the process is composed
by the states of the region, where the sojourn time depends only on the current state
and not on the history as required by Definition 12. In particular if the current state
is a simple state s P Ss, the distribution of time to reach the next state is simply given
by Fpsq. If instead the current state is a composite state it can be evaluated as will be
shown in Section 6.2 and the distribution does not depend on the history.

Finally it should be noted that exits on borders and history states are not directly
formalized in the above definition, because as we will see in Section 6.2 they need
special handling to be considered.

6.2 Analysis technique
The steady-state analysis of anHSMP presented in (Homm andGerman, 2016) is

extended here notably to increase its applicability. Specifically it can now be applied
to analyze models with history states, with exits on borders and with a complex
structure of exit states, not handled by the previous version of the technique.

The analysis technique allows to evaluate steady-state probabilities for top level
states and for states nested inside composite states of the HSMP. As in the steady-
state analysis of an SMP (Kulkarni, 2016), the idea behind the analysis is to build the
embeddedDTMC of the top level SMP, evaluate its steady-state probabilities and then
evaluate steady-state probabilities of the top level SMP using mean sojourn times of
states. Subsequently, the steady state probability of nested states can be evaluated
by evaluating the ratio of time spent in each nested state.

The analysis is organized in the following 6 steps:

1. Sojourn time distributions are evaluated for each composite state, without
considering possible exits in parallel regions (Section 6.2.1)

2. Exit distributions are computed, defined as the probability to leave a region
at time t due to an exit in a parallel region (Section 6.2.2)

3. Reaching probabilities of sub-states are computed, considering also possible
exits in parallel regions (Section 6.2.3)

4. If exits on the border are present, probabilities to exit from a specific exit are
computed (Section 6.2.4)

5. Mean sojourn times are evaluated, considering also possible exits in parallel
regions (Section 6.2.5)

6. Steady-state probabilities of the HSMP are evaluated (Section 6.2.6)
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In the following each step will be explained in detail, first without considering his-
tory states, then describing required extensions for analyzing models with history
states in Section 6.2.7

6.2.1 Evaluation of the sojourn time distributions

The first step of the analysis is to evaluate the sojourn time distributions of com-
posite states, without considering possible exits that may occur in parallel regions
on the same level or at higher hierarchy levels. This is done with a bottom-up ap-
proach starting from the deepest level where only simple states are present and then
going up through the hierarchy exploiting sojourn times of composite states evalu-
ated in previous steps. Following this approach, when evaluating the sojourn time
distribution of a state sk P Si

c of an HSMP θi “ xRi, ρ, Si, Pi, Fi, φi, ηiy, we first evalu-
ate the distribution of time to reach the end state of each region and then compose
them. In particular, being φipskq “ θ j “ xRj, ρj, Sj, Pj, Fj, φj, η jy theHSMP describing
the internal representation of the composite state sk, we need to evaluate it for each
region rq P Rj. Let ψrq be the distribution of time to reach the end state of the region
rq, it can be derived from the transient probabilities of the underlying SMP. Tran-
sient probabilities of an SMP can be evaluated according to Equation 6.1 (Kulkarni,
2016).

Vrqptq “ Erqptq `
ż t

0
dGrqpuqVrqpt´ uq (6.1)

Where Vrqptq is thematrix of transient probabilities to be in a state of the SMP at time
t given an initial state, Erqptq “ I ´ diagpH1ptq, ..., H|Trq |

ptqq is the local kernel of the
process, Trq is the set of states of the process and Hiptq is sojourn time distribution
of the state si P Trq . Let e be the vector with 1 in the position of absorbing states
of the SMP and 0 otherwise and l the vector having 1 in the position of the initial
state of the SMP given by ρprqq and 0 otherwise, the sojourn time distribution of the
region is given by ψrqptq “ 1´ l ˚Vrqptq ˚ e. After evaluating ψrqptq for each region
of the composite state sk, its sojourn time distribution can be derived. If end states
are final states, the distribution of the sojourn time of sk is the maximum over the
sojourn time of its regions, evaluated as Ωskptq “

ś|Rj|
q“1 ψrqptq, otherwise if all end

states are exit states its distribution of sojourn time is given by the minimum over
the sojourn times of its region evaluated as Ωskptq “ 1´

ś|Rj|
q“1p1´ ψrqptqq

6.2.2 Evaluation of exit distributions

The evaluation of the mean sojourn time of a state needs to take into account its
distribution of sojourn time, but also the possibility that an exit occurs during its
sojourn in some parallel region. According to this we evaluate the distribution of
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Figure 6.2: Evaluation of the exit distribution of a region

probability Fexit
ri
ptq that sojourn in a region ri is interrupted at time t due to an exit

occurring in a parallel region of the same composite state or in a higher level parallel
region. Consider Figure 6.2 where Fexit

rF
ptq needs to be evaluated. An early exit in

such region can occur if an exit occurs in region rE, rC or rA. Fexit
ri
ptq can be evaluated

with a top-down approach exploiting the fact that the behavior in each region is
independent from other regions except that when an exit occurs. Additionally we
assume that the evaluated distribution needs to have as time origin the time atwhich
ri is entered. Since higher level parallel regions were entered before the entrance in
region ri, we need to condition the probability that such regions will cause an exit
to the fact that time has already passed when region ri is entered.

First, it is useful to recall that the conditioning of a distribution to the passage
of time can be done using the time advancement operation introduced in (Horváth
et al., 2012):

Definition 14. Let τA and τB be two random variables of the sojourn time in two concurrent
states A and B distributed according to the probability density functions fτAptq and fτBptq,
respectively. Let’s assume that τA ă τB. When A is exited, the remaining sojourn time
τ1B in B is reduced by τA, τ1B “ τB ´ τA and is distributed as fτ1B

ptq “
şMaxpτAq

MinpτAq
fτBpt `

xq fτApxqdx. This operation is called time advancement or time shift.

Let ψ be the set of sojourn time distributions of each region of the model evalu-
ated in Section 6.2.1. The top-down algorithm for the evaluation of exit distributions
for region ri is reported in Listing 6.1.
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Listing 6.1: Evaluation of exit distributions
1
2 procedure eva lua t eEx i tD i s t r i bu t i on ( ri , ψ )
3 //Bottom-up reasearch of parents
4 paren tS ta t e s = [ ] ; //Stack
5 parentRegions = [ ri ] ; //Stack
6 parent = ge tParen tS ta t e ( ri ) ; //Find the state that directly contains ri
7 while ( parent i s not nul l )
8 paren tS ta t e s . push ( parent ) ;
9 containingRegion = getParentRegion ( parent ) ;
10 i f ( containingRegion i s not nul l )
11 parentRegions . push ( containingRegion ) ;
12 parent = ge tParen tS ta t e ( containingRegion ) ;
13 e lse
14 parent = nul l ;
15 //Top-down evaluation of the distribution
16 Fexit

ri
ptq = Upt´8q ;

17 cu r r en tS t a t e = paren tS ta t e s . pop ( ) ;
18 while ( cu r r en tS t a t e i s not nul l )
19 currentRegion = parentRegions . pop ( ) ;
20 regions = getRegions ( cu r r en tS t a t e ) ; //Get regions of the composite state
21 regions = regions . removeElement ( currentRegion ) ;
22
23 i f ( currentRegion has e x i t pseudostate )
24 for ( r in regions )
25 Fexit

ri
ptq = min ( Fexit

ri
ptq , ψrptq ) ;

26
27 nex tS ta t e = paren tS ta t e s . pop ( ) ;
28 i f ( nex tS ta t e i s not nul l )
29 smp = buildSMP ( currentRegion ) ; //Build the model of the region
30 γptq = smp . evaluateTransientTo ( nex tS ta t e ) ; //Evaluate time to be absorbed
31 Fexit

ri
ptq = timeAdvancement ( Fexit

ri
ptq , γptq ) ; //Apply the time advancement

32
33 cu r r en tS t a t e = nex tS ta t e ;
34 return Fexit

ri
ptq ;

In order to better understand the algorithm we apply it to the model of Figure
6.2. We want to evaluate the exit distribution for region rF, so procedure parame-
ters are rF and ψ. From line 3 to 13, the model is visited with a bottom-up approach
creating two stacks of parent states of the considered region and regions contain-
ing such parent states. At the end of this first step parentStates “ rSk, Sj, Sis and
parentRegions “ rrF, rD, rBs. Note that the two stacks are equipped with the classic
push() and pop() operations. Then the procedure from line 15 to 32 effectively eval-
uates the exit distribution by iterating with a top-down approach until the target
region is reached. The exit distribution is initialized at line 15, with a unit step func-
tion in 8. Then the top-down approach iterates from Si over Sj to Sk. At lines 19
and 20 all parallel regions of the current region are found. Then from line 22 to line
24, if the current region has a final pseudostate, it has no exit and so also its parallel
regions do not contribute to the exit distribution. Otherwise the total exit distribu-
tion is given by the minimum between the previous regions exit distributions and
the sojourn time distribution of these regions. Finally if another level in the hierar-
chy is present, we need to apply a time advancement to the evaluated distribution,
equal to the time required to be absorbed in the state containing the target region,
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Figure 6.3: Example of a composite state with exit states

so that at the next step all considered distributions will continue to have the same
time origin. To help understand, Figure 6.2 highlights the distributions used in the
evaluation of Fexit

ri
ptq. At the first step Fexit

ri
ptq “ ψrAptq since rA is the only parallel

region to rB and the minimum between the step function in 8 and ψrAptq is the so-
journ time distribution of rA. The algorithm goes down to the next level, and first
the distribution γSjptq that represents the time to be absorbed in Sj is evaluated, then
a time advancement operation is applied to Fexit

ri
ptq by subtracting γSjptq. At the next

step the minimum between the previous Fexit
ri
ptq and ψrCptq is evaluated and then a

time advancement of γSkptq is applied. Finally theminimumbetween the previously
evaluated Fexit

ri
ptq and ψrEptq gives the final result of the evaluation.

This algorithm evaluates the Fexit
ri
ptq distribution for each region of the model.

The approach has a limitation: it can’t be applied if a lower level region contains cy-
cles which includes a composite state. The reason is that if cycles with a composite
state are present, when evaluating the exit distribution we need to evaluate the time
to be absorbed by the target state in order to apply the time advancement condition-
ing. But if cycles are present, it is possible to enter in a sub-region, exit and then
enter again and according to this the evaluation of the absorbing time is no longer
compositional, but requires to analyze the model as a whole instead of through a
succession of isolated evaluations. Note that this restriction applies only to the case
of regions with exit states, if only final states are present there is no need to evaluate
the absorbing probabilities.

Finally it is important to highlight that the early version of the technique pre-
sented in (Homm and German, 2016) didn’t use this algorithm and thus it was lim-
ited to the case in which exit states were possible only at bottom levels of composite
states.

6.2.3 Evaluation of the reaching probabilities of nested states
Consider the composite state of Figure 6.3. When we evaluate the steady-state

probabilities of sub-states Sk,b or Sk,d we need to consider both the ratio between the
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Figure 6.4: Example of a composite state with exits on the border reaching distinct
successor

sojourn time spent in the parent state and in the nested state and also the probability
that the nested state will be visited. The reason is that in both regions of the com-
posite state it is possible that an exit occurs in the other parallel region before the
nested state will be reached. More generally, the probability µsi to visit a sub-state
si given that the parent state is visited is µsi ď 1 if it is not the initial state of the
region and there are parallel regions or higher level regions with exit states, thus
in that case it needs to be evaluated. The value µsi of a state si in a region rj can be
evaluated using Equation 6.2.

µsi “

ż

Dτ1ăτ2

γsipτ1q f exit
rj
pτ2qdτ (6.2)

Where γsiptq is the probability to be absorbed in state si at time t given that the
region rj is entered a time t “ 0, f exit

rj
is exit density evaluated from the distribution

Fexit
rj
ptq, τ “ă τ1, τ2 ą and Dτ1ăτ2 is the joint domain of the two functions restricted

to τ1 ă τ2, thus where the absorption occurs before any exit.

6.2.4 Evaluation of probabilities to exit from border points
Exit states on the border allow us to define different successors of a composite

state, based on which region completes first. Consider the composite state si shown
in the left part of Figure 6.4. If region r1 exits first, the successor state will be sj, and
if region r2 exits first, the successor state will be sk.

Evaluation of sojourn time distribution of a composite state with exits on the
border is not different compared to exits not on the border. Its sojourn time con-
tinues to be the minimum between the sojourn times of its regions and this will be
later used to evaluate the mean sojourn time of the state. The presence of exits on
the border will instead affect evaluation of the distribution and probabilities in the
parent region that contains such a composite state. From the parent region point
of view, the composite state can be represented as an equivalent model as the one
shown in the right part of Figure 6.4. In particular the probability of reaching a spe-
cific successor can be evaluated as the probability that one region is faster than the
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other. Moreover if a specific successor is reached, it means that time spent in state
si is conditioned on the fact that a particular region was faster. Thus depending on
the successor, time spent in si is different, and this is represented as two distinct
states in which the sojourn time is conditioned to one region being faster than the
other. According to this the evaluation of models including composite states with
exits on borders requires to evaluate the probability that a region will be faster than
all other parallel regions, evaluate the conditioned sojourn time distributions and
replace such a composite state with the proposed equivalent model.

Consider a composite state si with exits on the border and Ri the set of its regions.
Let α

si
rj be the probability that region ri is faster than all other |Ri|´ 1 parallel regions,

it can be evaluated according to Equation 6.3,

α
si
rj “

ż

Dτj f irst

dψrjpτjq

dτj
˚

ź

rPRi,i‰j

dψrpτiq

dτi
dτ (6.3)

where Dτj f irst is the joint domain of the |Ri| densities restricted to the sub-region
where τj ă τi @i. Note that Equation 6.3 can be efficiently implemented replacing
the right factor with the minimum and solving a two dimensioned integral instead
of a multi dimensioned one. Finally, the sojourn time distribution for the state con-
ditioned on having a region rj that is faster, is given by ψrjptq.

6.2.5 Evaluation of the mean sojourn times

Now the mean sojourn times of each state can be evaluated through a bottom-
up approach, taking into account exits in parallel regions. Specifically, the mean
sojourn time for any top level state can be evaluated as the mean of its sojourn time
distribution σsi “

ş8

0 Ωsiptqdt. Also if all parallel regions on the same and on a higher
level have only final pseudostates, we can use the same formula. In all other cases,
the possibility that an exit occurs in a parallel regionmust be considered. In the latter
case, the mean sojourn time σsi for a composite state si contained in a region rj, can
be evaluated as σsi “

ş8

0 vsi
rjptq ˚ Fexit

rj
ptqdt, where vsi

rjptq is the transient probability to
be in state si, given that region rj is entered at time t “ 0 without considering exits
in parallel regions, while Fexit

rj
ptq takes into account possible exits in parallel regions.

6.2.6 Embedded DTMC and evaluation of steady state
probabilities

Consider the top levelHSMP θ and its transitionmatrix P. The embeddedDTMC
of such HSMP can be built considering only time point in which the top level state
changes. Then the steady-state probabilities u of the embedded DTMC of the top
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state can be evaluated by the system of linear equations u “ uP with the addi-
tional constraint |u| “ 1. Finally steady-state probabilities can be evaluated using a
top-down approach, considering the steady-state probabilities u of the embedded
DTMC and weighting them by the mean sojourn times. The top-down approach
starts evaluating steady-state probabilities for top level states as πsi “

usi˚σsi
ř

sjPS usj˚σsj

(Kulkarni, 2016). Then steady-state probabilities of a sub-state si contained in one
of the regions of the parent state sj can be evaluated as πsi “ πsj ˚ µsi ˚

σsi
σsj
.

It can be noted that in the early version of the technique presented in (Hommand
German, 2016), µsi was not considered and according to this, the technique didn’t
support the analysis of models where a parallel exit could prevent a sub-state to be
reached.

6.2.7 Analysis with history states

The concept of history states was introduced in (Harel, 1987), as a convenient
mechanism to keep track of a state configuration when a region was exited due to
some parallel region. In the original formulation a history state could be of two
types: shallow, that keeps track only of the top most level configuration or deep that
keeps track of all sub-levels. In a non-Markovian system, the system state is not only
given by the current location but also by the time elapsed in that state. According
to this, we can define an additional subdivision of history states types: Preemptive
Repeat Different(PRD), keeping memory of the location but not of time, and Preemp-
tive Resume (PRS) keeping track also of time, thus when the configuration is restored
also remaining time is restored. In this work we consider only PRD history states,
while PRS history states will be studied in future work. For the sake of simplicity,
in the following we also refer only to shallow history states, but similar concepts can
be applied to deep history states.

If a history state is present like in state s4 of Figure 6.1 when the state is entered,
the last configuration when it was exited is resumed. In order to keep track of the
last configuration when last exited, we propose to encode this information into the
state space. In practice, states of the system need to be differentiated based on the
history so as to keep track of it, thus allowing to diversify the future behavior based
on such encoded information and start in the correct configuration when the state
is visited again. An example is shown in Figure 6.5, where on the left a model with
one history state and in the center the corresponding state space are shown. If s1 is
exited due to region r2, we don’t need to keep track of history since its exit state was
reached. If instead s1 is exited due to region r1, we need to keep track of which was
the last configuration of r2, s1,b or s1,c. According to this when s2 is reached we need
to keep track of this information. In the state space diagram in the center of Figure
6.5 nodes represent current overall configurations of the model considering both
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SpaceForExport!Figure 6.5: Example of model with history states and encoding of history in the state
space

higher and lower level states, arcs represent the transition from one state to another
and their label report the state whose sojourn time ending causes the change of
configuration. In the upper right corner of nodes, a unique node name is assigned
in order to simplify the explanation and in states that need to keep track of history,
history information is represented in bold font. The initial node is MA, where the
system is in s1 and in particular in state s1,a in region r1 and in state s1,b in region r2.
If the first state to complete its sojourn is s1,a, s1 is exited reaching MC wherewe need
to keep memory of the state of r2 that was s1,b. Instead if s1,b completes first, MB1

is reached. From MB1 the system will in any case go to s2 but with different history
depending on which completes first. If s1,c completes first, node ME is reached and
next time r2 will start from its default history state since it has reached its end state. If
instead s1,a completes first, next time r2 will start again from s1,c and this is encoded
in the history. When this happens the initial configuration of s2 is different from
the one represented by node MB1, because in MB1 the remaining sojourn time of
state s1,a was conditioned on the fact that s1,b completes first. This is why node MB2

is different from MB1 even though the configurations represent the same locations,
because in the latter the remaining time of s1,a has a different distribution.

In practice, when history states are present, we need to enrich the state spacewith
additional information about history and in it must be observed that probabilities
to go from MB1 to MD or to ME require to be evaluated as well as probabilities from
MA to MC and from MB2 to MD or ME. Then the SMP of the top level of this model
can be built, as shown in the right side of Figure 6.5 based on the above analysis. It is
worth noting that the sojourn time in state s1 is different if we are in MB2 or MA and
also depends onwhich state we exit. This is similar to what was seen in Section 6.2.4
for exits on the border, since depending on the successor, the sojourn time changes
and thus can be handled following a similar approach. When entering in MA, a
pre-selection is needed like the one shown on the right of Figure 6.4 and then the
sojourn time is different. In particular it decides which is the probability to have a
particular history when the state will be exited, then the elapsed sojourn time will
be conditioned on the exit having such a particular history. The probability to have



66 Analysis of HSMP processes with parallel regions

a specific configuration when exiting a composite state with history states need to
be evaluated. More generally, suppose to have n regions r1, ..., rn all having history
states and suppose that rj exits, since the evolutions of regions are independent by
construction, the probability can be evaluated according to Equation 6.4.

Pt”H “ă h1, ..., hj´1, hj`1, hn ą ”u “
ż 8

0
f

rj
exitptq

ź

q“1...n,q‰j

vrq
hq
ptqdt, (6.4)

where hq is the location of region rq when the composite state was exited and thus
this allows to evaluate the probability to have a particular history h “ă h1, ..., hj´1,
hj`1, hn ą when the state was exited. Note that if a region has not a history state,
we can simply remove it from the equation and consider instead the probability that
the region was not exited before region rj. Finally the sojourn time elapsed in the
composite stateswith a history state need to be evaluated conditioned on the specific
successor. Let sk be the composite state with n regions r1, ..., rn all having history
states. Given that the configuration when an exit occurs in rq, was h and thus the
successor will encode that history, the sojourn time distribution can be evaluated
according to Equation 6.5.

Ωsk|H“ăh1,...,hj´1,hj`1,hnąptq “
ż t

0

f
rj
exitpτq ˚

ś

q“1...n,q‰j vrq
hq
pτq

Pt”H “ă h1, ..., hj´1, hj`1, hn ą ”u
dτ (6.5)

It should be noted that analyzing models with history states substantially increases
the complexity of the analysis, in particular if the number of composite states with
history states are more than one since it is required to encode the cartesian product
of all possible histories causing an increase of the number of states and requiring
to evaluate probabilities to have a particular history for all such states. However,
on the positive side, the concept of history states requires an extension of the state
space just on the level of states with a history state inside. If history states appear
on different levels, the extension can also be considered separately. History state
analysis can be combined with all other modeling elements of HSMPs presented in
this chapter.

6.3 Experimental evaluation

6.3.1 Unavailability analysis of a fault tree
A Java numerical implementation of the approach has been developed so as to

experimentally validate its correctness. The techniques can be implemented also as
an analytical approach, but this requires a restriction of its applicability (Homm and
German, 2016). The code is publicly available on GitHub1.

1https://github.com/biagimarco/hierarchicalSMP
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Figure 6.6: A fault tree and the equivalent HSMP model with repair and mainte-
nance

As an example, we show how the analysis can be applied for the evaluation of
steady-state probabilities of a repairable static fault tree with preventive mainte-
nance (Ruijters and Stoelinga, 2015). Consider the static fault tree shown on the left
side of Figure 6.6. The fault tree represents a system composed by four components
A, B, C and D. If components A and B or components C and D fail at the same time,
the whole system fails and becomes unavailable. In that case, a repair operation is
performed in order to restore the initial state of the system. Since the unplanned
repair operation is slow and more expensive, a preventive maintenance procedure
has been adopted in order to periodically maintain the system and thus reduce un-
planned repair operations. As shown in the right side of Figure 6.6, this system can
be representedwith anHSMPmodel. Specifically the fault tree is converted in paral-
lel regionswhereAND gates are represented by final states and theOR gate is repre-
sented by exit states. It is worth noting that static fault trees with only AND andOR
gates can always bemodeled as anHSMP. A third parallel regionmodels themainte-
nance period. Exits on the border are used in order to differentiate between unavail-
ability due to a failure of the system and unavailability due to preventive mainte-
nance. Distributions of the system are Fp”A”q “ Expp1{180q, Fp”B”q “ Expp1{240q,
Fp”C”q “ Expp1{180q, Fp”D”q “ Expp1{360q, Fp”Waiting maintenance”q “ Detpξq,
Fp”Repair”q “ Uni f p1, 3q, Fp”Preventive maintenance”q “ Uni f p0, 1q, where Exppλq
is the exponential distribution of rate λ, Uni f pa, bq is the uniform distribution with
support ra, bs, Detpξq is a deterministic time ξ. We want to measure the probabil-
ity to find the system unavailable and the probability that the system is unavailable
due to a preventive maintenance or due to a failure. Figure 6.7 shows these three
measures, varying the value ξ of the time between two subsequent maintenance
procedures. If the maintenance occurs too often, the probability to find the system
unavailable is higher. Increasing ξ, that means decreasing the frequency of preven-
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Figure 6.7: Steady-state probabilities that the fault tree is unavailable due to a failure,
due to preventive maintenance, or both

Nr

Ns 1 2 3 4 5 6

1 ă 1s ă 1s ă 1s ă 1s ă 1s ă 1s
ă 1s ă 1s ă 1s ă 1s ă 1s ă 1s

2 ă 1s ă 1s ă 1s ă 1s ă 1s ă 1s
ă 1s ă 1s ă 1s ă 1s » 1s » 3s

3 ă 1s ă 1s ă 1s ă 1 ă 1s ă 1s
ă 1s ă 1s » 5s N.D. N.D. N.D.

4 ă 1s ă 1s ă 1s ă 1s ă 1s ă 1s
ă 1s » 10s N.D. N.D. N.D. N.D.

Table 6.1: Evaluation times varying Nr and Ns. Upper rows with HSMP analysis,
lower rows with regenerative analysis

tive maintenance, reduces the total probability to find the system unavailable but
also increases the probability that the system is unavailable due to a failure and not
due to a preventive maintenance.

In order to experimentally validate the approach, the same system has also been
modeled as a Petri net and analyzed using the Oris tool API (Carnevali et al., 2011).
Evaluated results match for all possible values of ξ.
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6.3.2 Computational experience with composability
The strong point of this technique is compositionality, allowing to analyze a

modelwithout the need to build itswhole state space. In the following a comparison
with a technique that instead builds the whole state space is performed. The tech-
nique that we chose for comparison is the regenerative steady-state analysis based
on stochastic state classes (Martina et al., 2016), since currently it is the only tech-
nique allowing the evaluation of steady-state probabilities of models with multiple
concurrent non-Markovian timers and without the enabling restriction.
The experiment has been performed on a model having a top level composed by
a single composite state with a self loop. The composite state consists of Nr paral-
lel regions, each one composed by a sequence of Ns states leading to a final state.
Thus the lower level model is composed by Nr ˚ pNs ` 1q states. Sojourn times are
all uniform distributions with support r0, 1s.

The times required to analyze the model with varying Nr and Ns are reported in
Table 6.1. Experiments were performed on a single core of a 2.20 GHz Intel i5-5200U
with 8 GB RAM, and each single run was performed with a timeout of 2 minutes.
Increasing the number of regions Nr increases the concurrency degree of the model
and thus the regenerative analysis needs to evaluate the state space considering all
possible orders inwhich the transitions can be executed. As one can see, with Nr “ 3
and Nr “ 4, 2minutes are nomore sufficient to analyze themodelwith the regenera-
tive analysis while with the hierarchical approach it requires less than 1 second. The
experiment gives an impression of the advantage of this technique when applied to
highly concurrent models.





Chapter 7

Conclusions

In this thesiswehave beendealingwith the problemof analysis of non-Markovian
models, with the objective to reduce the limitations of current analysis technique for
such models.

We have described some of the existent analysis techniques and how their inte-
gration can be driven by exploiting non-deterministic analysis. This approach can
automatically choose the best technique to analyze a model and also be used to an-
alyze models that were not analyzable before. Additionally, for models for which
no exact solution can be derived, we have presented a novel approach based on the
partial enumeration of stochastic state classes, which are iteratively explored accord-
ing to a heuristic criterion based on the probability that a regeneration is reached. In
thisway, the approximation is limited to the kernel entries of a subset of regenerative
epochs, and transient probabilities of markings can be safely and accurately approx-
imated. Experimental results show that the heuristic-based approximate analysis
provides accurate results while maintaining a moderate computational cost, sug-
gesting that approximation could be used also for regenerative epochs characterized
by finite stochastic transient trees, in order to reduce the number of stochastic state
classes needed to compute the kernels.

Moreover, we presented a novel approach to compute a closed-form expression
of the equilibrium distribution of MRGPs. The approach leverages the calculus of
stochastic state classes and notably this constitutes a basis to compute survivability
measures for MRGP (Heegaard and Trivedi, 2009).

Finallywe have shown how a different formalism calledHSMP, inspired byUML
state machines (Group, 2018), can be analyzed leveraging its hierarchical structure
with a compositional approach, enabling the development of an approach that does
not need to generate the whole state space. In particular we have extended the work
of (Homm and German, 2016), improving the analysis technique by removing some
of its limitations and extending it so as to boost its modeling power in the direction
to be more similar to that of UML state machines. Specifically, composite states now

71



72 Conclusions

have no limitations related to exit states, also the possibility to have exit states on the
border of composite states has been introduced, allowing to define different succes-
sors of such states based on which region finishes first. Additionally, the concept of
history states has been added, enabling the definition of more condensedmodels. A
future development of this approach will be to further extend the technique so as to
reduce the gap between the modeling power of UML state machines. For example
composite states mixing regions with final states and exit states may be allowed, or
final and exit states in the same regionmay be introduced. Another direction would
be to study how to analyze models with PRS history states introduced in this work.



Appendix A

State Class Graph evaluation example

We report a partial example of evaluation of an SCG, in order to show how the
analysis can be practically performed, applied to the TPN of Figure A.1a. The re-
sulting SCG is shown in Figure A.1b, where the marking of each class is explicitly
reported. The support is instead not explicitly shown for readability reasons. Ini-
tially, in the state class S0 all timers are newly enabled and according to this the
support can be easily defined by the hyper-rectangle with constraints defined ac-
cording to the static interval EFTptq ď τ̄ptq ď LFTptq, as shown in Equation A.1.

D0 “

$

’

’

&

’

’

%

0 ď τ̄pt1q ď 10

5 ď τ̄pt2q ď 15

12 ď τ̄pt3q ď 22

(A.1)

Note that for simplicity, the support is not expressed in the form of Equation 2.5, but
in an aggregated and simplified form. In practice, each point of the hyper-rectangle
represent a possible vector of times to fire of the three enabled transitions t1, t2 and
t3. Using the ground reference τ̄pt˚q and explicating constraints between timers, we
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p3

t1
r0, 10s

t2
r5, 15s
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r12, 22s

(a) TPN model

S0 “

xrp1, p2, p3s, D0y

S1 “

xrp2, p3s, D1y
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xrp1, p3s, D2y

S3 “ xrp3s, D3y

S4 “ xrp2s, D4y

S5 “ xrp3s, D5y

S6 “ xrs, D6y
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(b) Resulting SCG

Figure A.1: Example of analysis applied to a TPN
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can also rewrite it as shown in Equation A.2.

D0 “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0 ď τ̄pt1q ´ τ̄pt˚q ď 10

5 ď τ̄pt2q ´ τ̄pt˚q ď 15

12 ď τ̄pt3q ´ τ̄pt˚q ď 22

´5 ď τ̄pt2q ´ τ̄pt1q ď 15

2 ď τ̄pt3q ´ τ̄pt1q ď 22

´3 ď τ̄pt3q ´ τ̄pt2q ď 17

(A.2)

This domain implies that only t1 or t2 can be the first transition to fire, because b13 “

´2 ă 0 (which is the negative of the left element of the fifth inequality of Equation
A.2) implies that t3 can’t fire before t1. In this case, this can be easily seen also from
themodel since t3 is forced to fire after t “ 12while t1 is forced to fire not after t “ 10.
Another point of view is that reducing the support to the subspace where t3 ă t1,
the resulting state space is empty since no solutions of this type are admitted by the
set of constraints. According to this, if follows that state class S0 has two successors,
S1 if t1 fires and S2 if t2 fires, as show in Figure A.1b. The evaluation of the marking
of such state classes can be done following the transition rules described in Section
2.1.2, while the evaluation of the supports is more elaborate, and requires instead
the application of Proposition 1. In particular, domains D1 and D2 are shown in
Equations A.3 and A.4, respectively.
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%

0 ď τ̄pt1q ´ τ̄pt˚q ď 5

2 ď τ̄pt3q ´ τ̄pt1q ď 17

2 ď τ̄pt3q ´ τ̄pt˚q ď 17

(A.4)

The same passages need to be done also for all other successors allowing to build
the SCG of the model shown in Figure A.1b.
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Publications

Journal papers

1. M. Biagi, L. Carnevali, M. Paolieri, E. Vicario, “Performability evaluation of
the ERTMS/ETCS - Level 3”, Transportation Research Part C: Emerging Technolo-
gies, pages: 314-336, 2017. Candidate’s contributions: carried out researches
regarding the standard ERTMS/ETCS, theoretical analyses and experimenta-
tions

2. M. Biagi, L. Carnevali, F. Tarani, E. Vicario, ‘Model-based quantitative eval-
uation of repair procedures in gas distribution networks”, ACM Transactions
on Cyber Physical Systems, 2018. Candidate’s contributions: experimentation
including sensitivity analysis

Peer reviewed conference papers

1. M.Biagi, L. Carnevali, T. Papini, M. Paolieri, E. Vicario “Exploiting non- deter-
ministic analysis in the integration of transient solution techniques forMarkov
Regenerative Processes”, International Conference on Quantitative Evaluation of
SysTems (QEST), pages: 20-35, 2017. Candidate’s contributions: initial idea,
theoretical analyses and experimentations

2. M. Biagi, L. Carnevali, E. Vicario, M. Paolieri “An introduction to the ORIS
tool”, Proceedings of the 11th EAI International Conference on Performance Evalu-
ation Methodologies and Tools(VALUETOOLS), pages: 9-11, 2017. Candidate’s
contributions: improvements to the tool

3. M. Biagi, L. Carnevali, F. Santoni, E. Vicario “Hospital Inventory Manage-
ment Through Markov Decision Processes@ runtime”, International Conference
on Quantitative Evaluation of SysTems (QEST), pages: 87-103, 2018. Candidate’s
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contributions: part of the theoretical analyses and part of the experimentation
on Hidden Markov Models

4. M. Biagi, L. Carnevali, K. Tadano, E. Vicario “Evaluation of stochastic bounds
on the remaining completion time of products in a buffered sequential work-
flow”, IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), 2018. Candidate’s contributions: theoretical analyses and
experimentation

Workshop papers
1. M. Biagi, L. Carnevali, M. Paolieri, F. Patara, E. Vicario, “A stochastic model-

based approach to online event prediction and response scheduling”, European
Workshop on Performance Engineering (EPEW), pages: 32–47, 2016. Candidate’s
contributions: part of the theoretical analyses and experimentations

2. M. Biagi, L. Carnevali, T. Papini, K. Tadano, E. Vicario “An inspection based
compositional approach to the quantitative evaluation of assembly lines”, Eu-
ropeanWorkshop onPerformance Engineering (EPEW), pages: 152–166, 2017. Can-
didate’s contributions: part of the theoretical analyses and experimentations

3. M. Biagi, R. German, E. Vicario “Extending the steady state analysis of hier-
archical semi-Markov processes with parallel regions”, European Workshop on
Performance Engineering (EPEW), 2018. Candidate’s contributions: idea, theo-
retical analyses and experimentation

Papers under review
1. M. Biagi, L. Carnevali, M. Paolieri, F. Patara, E. Vicario “A continuous-time

model-based approach for activity recognition in pervasive environments”,
IEEE transactions on human-machine systems, 2018. Candidate’s contributions:
offline analysis, formalization of the technique and experimentation

2. M. Biagi, L. Carnevali, M. Paolieri, E. Vicario “The ORIS Tool: Quantitative
Evaluation of Non-Markovian”, IEEE transactions on software engineering, 2018.
Candidate’s contributions: improvements to the tool and definition of a case
study
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