


 



i 
 

Abstract 
 

 

The purpose of this research is to study how a set of mathematical activities designed within 

a Dynamic Interactive Environment (DIE) influence a class of high school students’ learning 

of functions. The study builds on findings of previous research on students’ difficulties in 

working with real functions; these include difficulties in managing covariation of the two 

variables involved, that is the relationship between variations of the independent variable 

and variations of the dependent variable, as well as difficulties in dealing with the graphs of 

functions. The study involved designing a sequence of activities in a DIE that introduce 

functions through a dynamic approach, and it takes a discursive approach in analyzing 

students’ interactions in this setting over a nine-week period. Data collected included: audio 

and video recordings of what happened in the classroom, video recordings of what happened 

on the students’ computer screens, and the students' work on paper that was produced 

during the lessons and during a set of subsequent interviews. The analyses of these data lead 

to a model describing how dragging mediates students’ discourse on functions; moreover, 

they shed light onto important features characterizing such discourse on functions and their 

graphs. The study has implications for the design of activities based on the use of DIEs for 

introducing real functions, highlighting the covariational aspect behind the functional 

dependency between the two variables. 

The work involved in this thesis is structured as follows. 

We situate the study within the literature, taking into account the educational issue of 

teaching and learning functions and studies pointing to students’ common difficulties in this 

mathematical domain. We highlight previous research involving activities on functions 

presented within a DIE, focusing on covariation in relation to functional dependency. 

In Chapter 2 we present the foundational elements of the Theory of Commognition, which is 

the theoretical framework within which we based the study. We focus on specific tools 

offered by this theory and on certain theoretical constructs om which we further elaborated. 

Indeed, since we use a DIE to represent functions, we needed to refine theoretical tools that 

allow to focus on dynamism and on the possibility of interacting with those that the theory 

of commognition describes as visual mediators of discourse.  

In light of the theoretical framework, in Chapter 3 we formulate four research questions. In 

Chapter 4, we introduce the methodology used, including a presentation of all the activities 

designed for the classroom lessons and for the interviews, as well as the design principles 

behind the activities. Almost all of the activities involved the use of a DIE in which, thanks to 

the dragging tool, students could experience the dependence relation. In Chapter 5 our 

analyses focus on how dragging mediated students’ discourse on functions, while in Chapter 

6 we analyzed students’ discourse comparing it to the hypothetical discourse of an expert in 

the same context. 

In the concluding chapter, after answering the research questions, we re-contextualize the 

findings within the literature, highlighting the theoretical contributions of the study, which 

include a refinement of Sfard’s notion of visual mediator. This is done by introducing the 

notion of DIM (Dynamic Interactive Mediator) and by elaborating on Ng’s notion of 
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dragsturing by considering also cases in which there is no physical use of the dragging tool. 

Finally, we describe possible implications and directions for further research, which include 

the realization of a longer term teaching experiment, where the formal mathematical 

definitions of functions and their properties are introduced to students; and the design of 

activities with DIMs, such as those designed here, contextualized within the greater research 

problem of generating “good problems” aimed at achieving certain educational goals. 
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1 INTRODUCTION 

In this chapter we contextualize our study within the literature, describing how it is situated 

within the educational issue of teaching and learning functions and looking at students’ 

common difficulties in this field. In particular, we discuss how these difficulties can be related 

to the plurality of different representations and approaches traditionally used for teaching 

functions. At this regard, we focus on the possibility of implementing activities on functions 

within a Dynamic Interactive Environment (DIE) and on the contributions of this approach to 

the processes of teaching and learning. There are several studies describing the potentials of 

DIEs, especially, related to their implementation within a classroom setting and a review of 

them can be found in Sinclair & Robutti (2013). In this chapter we introduce some of these 

studies, taken from the literature on dragging, and we show the elements that are 

particularly significant with respect to the focuses of our research. 

Then, after giving a deeper insight into the covariational aspect characterizing functions, we 

describe different graphical representations, implemented within both static and dynamic 

environment, highlighting their possible strengths and weaknesses for supporting students 

understanding of the main functions’ properties. 

Finally, we introduce a general version of the research questions we set out to investigate, 

and the main goals of the study. 

1.1 CONTEXTUALIZATION OF THE RESEARCH PROBLEM WITHIN THE LITERATURE 
We are interested in studying the learning process of students who are introduced to a new 

(for them) mathematical object, in the context of their mathematics classroom. Part of our 

research deals with the design of a sequence of activities on functions and graphs of 

functions aimed at supporting the learning process of 10th grade students. 

This topic has a central role both in secondary school and university mathematics and it has 

always entered different fields of mathematics. This fact leads to a great variety of definitions 

of functions, for example experts in geometry or algebra speak about transformations and 

homomorphism, while in calculus a function is immediately associated with its graph on the 

Cartesian plane. Formally, a function can even be defined without using almost any words 

(Sierpinska, 1992). According to the notion of function that can be found in the Encyclopedia 

of Mathematics Education (2014), there are three main aspects characterizing this 

mathematical object:  

“Firstly, a function is a purely mathematical entity in its own right. Depending on the 

level of abstraction, that entity can be introduced, for example, as either a 

correspondence that links every element in a given domain to one and only one 

element in another domain, called the codomain, or as a certain kind of relation. […] 

Secondly, functions have crucial roles as lenses through which other mathematical 

objects or theories can be viewed or connected, for instance, when perceiving 

arithmetic operations as functions of two variables. […] Thirdly, functions play crucial 

parts in the application of mathematics to and modelling of extra-mathematical 

situations and contexts.” (p. 239) 
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Moreover, being able to interpret the graph of a function, as representing a function through 

its graph, are key elements in the mathematics education field but, at the same time, they 

are also basic requirements for most people, as indicated in the document Matematica 2003 

(UMI et al., 2003). All the competencies that should be developed by students attending 

Italian high schools are stated in a document that is called Indicazioni Nazionali (MIUR, 2010). 

In the text referring to a special kind of high schools, that in Italy are called “Licei”, it is 

possible to see that functions, differential calculus and integrals are all notions that students 

are required to have learned by the end of their education. Moreover, great emphasis is 

given to the study of different representations of functions and to the ability of passing from 

one representation to another: 

“Lo studente sarà in grado di passare agevolmente da un registro di rappresentazione 

a un altro (numerico, grafico, funzionale), anche utilizzando strumenti informatici per 

la rappresentazione dei dati.” 1 (MIUR, 2010, p. 24) 

A similar view is expressed in the introduction to Matematica 2003 (UMI et al., 2003), where 

it is highlighted the importance of building a connection between the graph of a function, its 

algebraic expression, its behavior and specific elements of it like the zeros and the sign. In 

particular, the following is expressed: 

“Uno dei maggiori obiettivi didattici di questo nucleo [relazioni e funzioni] è, infatti, 

l’acquisizione da parte degli alunni di un ‘pensiero funzionale’. Come lo si può favorire? 

Con una forte connessione fra il grafico di una funzione, l’interpretazione 

dell’andamento, il collegamento di questo con l’espressione algebrica della funzione, 

gli aspetti numerici, e l’analisi di momenti particolari di questo andamento che 

corrispondono agli zeri (cioè alle equazioni), al segno (cioè alle disequazioni) […] Ciò 

non vuol dire che non si possa parlare di equazioni e sistemi indipendentemente dallo 

studio delle funzioni, ma che, laddove possibile, si cerchi di favorire l’interazione con 

la rappresentazione geometrica. Momenti particolari dell’andamento del grafico sono 

anche i massimi e i minimi, la crescenza e la decrescenza, il comportamento in 

prossimità di valori particolari; questa non è l’analisi matematica, perlomeno non è 

l’analisi matematica in senso classico. È lo studio qualitativo di un fenomeno. La 

considerazione dei fenomeni a livello qualitativo deve diventare un’abitudine mentale 

degli alunni e degli insegnanti, se si vuole fare in modo che le tecniche che l’alunno 

imparerà nel corso degli anni non siano mai oggetto di applicazione meccanica, ma 

frutto di riflessione sui significati nei diversi contesti proposti.” 2  (UMI et al., p. 206) 

                                                           
1 “The student will be able to easily pass from a register of representation to another one (numerical, 
graphical, functional), even by using technological artifacts for representing data” (translated by the 
authors). 
2 “Indeed, one of the main didactical aims of this section [relations and functions] is the acquisition of 
‘functional thinking’ by students. How can it be fostered? Through a strong connection between the 
graph of a function, the interpretation of its behavior, its link to the algebraic expression of the 
function, the numerical aspects, and the analysis of specific aspects of its behavior that may 
correspond to the zeros (that is, the equations), to the sign (that is, the inequalities) […] This does not 
mean that it is not possible to speak about equations and systems of equations independently from 
the study of functions, but, when possible, that we have to support the interplay with the geometrical 
representation. Other specific aspects of the behavior of a graph are maximum and minimum, 
monotonicity properties, the behavior in correspondence to special values; this is not calculus, at 
least, it is not calculus in the classical sense. It is the qualitative study of a phenomenon. The qualitative 
analysis of phenomena has to become a habit of mind for students and teachers, if the aim is that of 
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The existence of a wide variety of possible representations of functions and the fact that 

each of them allows to highlight certain aspects of them is an important issue that arises in 

this context and that we are going to deepen in this chapter. 

We also observe that, especially from the Nineties on, the concept of function interested lots 

of researchers who started to investigate why many students, and also teachers, experience 

so many difficulties when dealing with functions.  

1.1.1 Students’ difficulties with the notion of function 

There is a wide literature describing a variety of possible difficulties related to the learning 

of functions and graphs of functions. Some studies approach the problem from a cognitive 

point of view (Dubinsky, 1991; Tall & Vinner, 1981; Vinner & Dreyfus, 1989), others highlight 

the difference between the images one holds and the definition of the same mathematical 

object, called concept image and concept definition (Tall & Vinner, 1981; Vinner & Dreyfus, 

1989); finally, some researchers focus on the process/object duality (Sfard, 1992; Dubinsky, 

1991). Moreover, there are studies concerning the problems related to the visualization and, 

in particular, the visualization and the graph of a function (Monk & Nemirovsky, 1994; 

Goldenberg, 1995). Now we are going to describe the main issues pointed out by these 

different approaches to the problem. 

Tall (1992) highlighted how the past experience of students, before they are introduced to 

the formal definition of a specific mathematical object, may affect the formation of their 

mental representations of the same object. Indeed, Tall argued that the words used in a 

definition are just one of the factors influencing students’ way of thinking about a 

mathematical object. For example, if we consider the learning process of the mathematical 

object ‘function’, there are many students who succeed in giving a correct set theoretic 

definition but they are likely to use their intuitive images when they are asked general 

questions about functions (Vinner, 1983). 

A description of the different roles played by the formal definition and the mental images of 

a student, about a specific mathematical object, has been initially provided by Vinner & 

Hershkowitz (1980) who introduced the terms concept image and concept definition. These 

terms were later explained by Tall & Vinner (1981) as follows:  

“we shall use the term concept image to describe the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated 

properties and processes […] the concept definition is a form of words used to specify 

that concept” (p. 152). 

Vinner & Dreyfus (1989) examined which definitions and images of the mathematical object 

‘function’ were evoked by college students and high school teachers. In particular, they 

described six categories for a complete characterization of students’ answers when asked to 

define a function: correspondence, dependence relation, rule, operation, formula and 

representation. The concept image is the first thing evoked in our memory when we hear a 

term used to indicate the name of a concept, it is something that for some reason we 

associate with that concept and it is non-verbal, such that only at a second stage it can be 

translated into verbal forms. Moreover, it is possible that even people who know the set 

                                                           
making all the techniques that the student will learn during his formation, not just as results of a 
mechanical repetition but as products coming from a reflection on the meanings, within the different 
contexts proposed” (translated by the authors). 
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theory definition of function do not provide it or a similar description of it when answering 

the question ‘what is a function?’ (Vinner, 2005). The study of the interplay between concept 

image and concept definition of a specific mathematical object, and especially of the concept 

images evoked by a student, can give information about the meaning that the student 

associates to that object. Concerning the example of functions, Dubinsky (1991) showed that  

“for most students, and indeed for many scientists, the idea of function is completely 

contained in the formula […] just as the concept of variable in which the student insists 

that x stands for a single number (which may not be known), the concept of function 

as formula has a very static flavor” (p. 116).  

Moreover, Sfard (1992) described the answers given by a group of students, at the end of 

their math course at the university, which included set theory, algebra and calculus; when 

they were asked to say if each function can be expressed through a specific algebraic 

formula. She found that most of the students answered yes. Therefore, it seems that many 

students think of functions only in terms of their algebraic expression. 

Now we are going to explain why a static conception of functions may be source of difficulties 

in students’ learning process. Dubinsky & Harel (1992) developed a framework distinguishing 

between different conceptions of functions, that can be used to analyze students’ learning 

process. In particular, according to their model students may have an action view or a process 

view of functions whose distinction is reported in Carlson & Oerthman (2005) as follows:  

“an action conception of function would involve the ability to plug numbers into an 

algebraic expression and calculate it. This is a static conception in that the subject will 

tend to think about it one step at a time (e.g., one evaluation of an expression). A 

student whose function conception is limited to actions might be able to form the 

composition of two functions, defined by algebraic expressions, by replacing each 

occurrence of the variable in one expression by the other expression and then 

simplifying; however, the students would probably be unable to compose two 

functions that are defined by tables or graphs.” (ibid, p. 7) 

In contrast to this view,  

“a process conception of function involves a dynamic transformation of quantities 

according to some repeatable means that, given the same original quantity, will always 

produce the same transformed quantity. The subject is able to think about the 

transformation as a complete activity beginning with objects of some kind, doing 

something to these objects, and obtaining new objects as a result of what was done. 

When the subject has a process conception, he or she will be able, for example, to 

combine it with other processes, or even reverse it.” (ibid, p. 8) 

Carlson & Oehrtman (2005) pointed out the necessity for students to move from what is 

called an action view to what is called a process view of functions. Indeed, the descriptions 

above highlight that students who think about a function in terms of symbolic manipulations 

and procedural techniques experience several difficulties in dealing with it as a general 

mapping of a set of input values to a set of output values. In contrast to this, having a process 

view may contribute to conceiving function relationships dynamically, that is, considering 

the change of the dependent variable respect to the change of the independent variable. 

These reflections suggest that students having an action view of functions may experience 

much more difficulties, while developing a process view seems to be not sufficient but at 
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least fundamental for the understanding of many functions properties (Carlson, 1998; 

Thompson, 1994; Carlson et al., 2002). For example, Carlson & Oerthman (2005, p.9) argued 

that  

“the ability to coordinate function inputs and outputs dynamically is an essential 

reasoning ability for limits, derivatives, and definite integrals. In order to understand 

the definition of a limit, a student must coordinate an entire interval of output values, 

imagine reversing the function process, and determine the corresponding region of 

input values. The action of a function on these values must be considered 

simultaneously since another process (one of reducing the size of the neighborhood 

in the range) must be applied while coordinating the results. Unfortunately, most pre-

calculus students do not develop beyond an action view, and even strong calculus 

students have a poorly developed process view that often leads only to computational 

proficiency (Carlson, 1998).” 

Many researchers reported on possible problems encountered by students when dealing 

with the graphical representation of a function. For example, among students a common 

interpretation of the Cartesian graph of a function is as an object or a static picture of a 

physical situation, rather than as the trajectory of a point moving on the plane according to 

the covariation of two quantities, one dependent on the other. This is actually one of the 

main problems pointed out by Carlson (1998), in line with Thompson (1994), who stressed 

the importance of conceiving functions as asymmetric relations between two variables, one 

depending on the other. On the contrary, what happens is that very few students seem to 

relate the Cartesian graph to the underlying functional relationship, but they see it as made 

up of points and lines; indeed, their attention is often on specific points (Dubinsky, 1991; Tall, 

1992). Other difficulties concerning the interpretation of the graph have been described by 

Tall (1996) and Barnes (1988), who found that according to many students the graph of a 

function should be regular and smooth. Moreover, they affirmed that the algebraic 

expression of a function should be given by a single formula and often, given the algebraic 

expression of a constant function, students did not consider it to represent a function 

because the dependency on 𝑥 was not explicit. 

It is important to notice that most of students’ difficulties regarding functions can also be 

found among teachers. In particular, Even (1993) highlighted that many prospective teachers 

considered functions to be equations or formulas, they claimed that graphs of functions 

should be “nice” and that functions were all known. Her study also showed that people 

having a concept image of functions as equations or as “nice” graphs were likely to consider, 

for example, circumferences and ellipses to be functions. 

Finally, there is a great number of more recent studies investigating students’ learning of 

calculus, that show how for many students understanding functions and their properties is 

conceptually challenging. To address this, researchers developed a variety of new 

approaches to functions and graphs of functions, aimed at promoting students’ engagement 

in the teaching and learning process (Jayakody, 2015; Ferrara & Ferrari, 2018). In the next 

section we are going to describe some of these approaches, especially focusing on that aimed 

at fostering a description of functions involving an analysis of changes, even when change in 

terms of average or instantaneous rate of change and derivative are not yet introduced to 

students (Sahin-Gur & Prediger, 2018). 
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1.1.2 Different didactical approaches to functions 

We start this section with a very short description of the historical genesis of the concept of 

function, which had an interesting evolution that allows us to better frame different 

approaches traditionally used for teaching functions. In particular, this evolution of the 

concept has been in some cases described as a move from a dynamic to a static definition of 

functional dependency (Freudenthal, 1983), or from an operational view, as a process, to a 

structural view, as an object (Sfard, 1991).  

In the attempt to briefly summarize the slow and intense process of development of the 

concept of function among mathematicians, it is possible to identify three main phases that 

characterized it (Boyer, 1946). Initially (17th century) the attention was mainly oriented 

towards motion and the relationships between quantities. However, the representation of 

these relations was mostly realized geometrically, which allowed people to convey 

relationships only statically; so movements were not explicitly addressed. Then Boyer 

described a spreading of equations, that thanks to the Descartes’ creation of algebraic 

notation, were used to better represent motion. Through equations it was finally possible to 

express the variations of two quantities, whose changing values were represented by 

variables, by constraining the two variables one to the other. Finally, it became possible to 

explicitly represent the relationship between the variations of two quantities and, in 

particular, when the values of the two variables were linked by a dependence relation such 

that the values of one determined the values of the other, the relationship between them 

was represented by a formula or a graph. The term ‘function’ appeared for the first time in 

1692, in a work by Leibniz and then, in the 18th century, it was used by Bernoulli to denote 

an analytic expression, made up of variables and constants, representing the relation 

between variables and by its graph having no "sharp corners" (Even, 1990, 1993).  

A progressive attempt to eliminate time from the definition of function took place, until this 

problem was solved by Bourbaki’s group that introduced a formal definition of function. At 

this regard we cite Frege: 

“In recent times the word ‘variable’ is predominant in the definitions [of function]. 

Consequently Analysis would have to deal with a process in time, since it takes 

variables into consideration. But in fact it has nothing to do with time; its applicability 

to occurrences in time is irrelevant… as soon as we try to mention a variable, we shall 

hit upon something that varies in time and thus does not belong to pure Analysis.” 

(Frege, 1970, p. 107; see Sfard, 1991) 

Dirichlet laid the foundations for function notation claiming that “a precise law of 

correspondence between x and y can be stated clearly” (Dirichlet, as quoted in Boyer, 1946). 

Moreover, he stressed that this law of correspondence could be arbitrary and that functions 

could be discontinuous, by proposing the famous “Dirichlet function” as an example. Only 

from this moment arbitrary functions started to be considered functions, thus the concept 

enlarged its meaning. Researchers highlighted that deep changes took place thanks to the 

evolution in the definition of functions, for example, Malik (1980) expressed that  

“a deep gap separates early notions of function based on an implicit sense of motion 

and the modern definition of function that is algebraic in spirit, appeals to discrete 

approach and lacks a feel for variable” (p. 492). 
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The mathematical definition of function that nowadays is presented in schools and textbooks 

follows the definition given by Bourbaki in 1939: 

“Let E and F be two sets, which may or may not be distinct. A relation between a 

variable element x of E and a variable element y of F is called a functional relation in y 

if, for all x in E, there exists a unique y in F which is in the given relation with x.” (Kleiner 

1989, p. 299) 

But it is usually stated in terms of Cartesian products and ordered pairs (Vinner, 2005; 

Thompson & Carlson, 2017). For example, we looked at the high school textbooks by 

Bergamini, Trifone and Barozzi (2005) and by Sasso (2015), that are among the most 

adopted textbooks in Italian high schools, and we noticed that the concept of function is 

presented through its formal definition. This definition is minimal and elegant, following 

the Dirichlet-Bourbaki approach. According to this approach, the definition of function 

includes also many correspondences that were previously not considered as functions; 

for example, discontinuous functions or that defined on split domains. However, most of 

the examples that are reported in textbooks are functions given by a formula or a 

Cartesian graph. 

A possible consequence of considering the representation through the Cartesian plane or 

the formal definition is that students are brought to associate the function to a static image, 

which is often hard to interpret and figure out for them.  Sierpinska (1988) argued that 

introducing functions to students starting from the formal definition may be a didactical 

error, because:  

“the most fundamental conception of a function is that of a relationship between 

variable magnitudes. If this is not developed, representations such as equations and 

graphs lose their meaning and become isolated from one another” (p. 572).  

Moreover, according to Falcade (2003), often the crucial problem is that, even if students 

grip the idea of correspondence, they are not able to perceive the covariation of the two 

variables. To foster this understanding through a dynamic interpretation of the notion of 

function, Laborde & Mariotti (2001) and Falcade (2001) came up with a key idea: to consider 

the curve representing the function on a Cartesian plane as the trajectory of a point. They 

developed this idea within the study of geometrical functions in a dynamic environment, but 

they suggested to also implement it out of that environment in order to support an 

interpretation of the Cartesian graph of functions as an object incorporating the asymmetric 

relation of covariation among two variables. 

Confrey & Smith (1995) presented a general approach for teaching exponential functions, 

based on their previous research where they investigated possible implications of the use of 

contextual problems (Confrey, 1991; Confrey & Smith, 1994), transformations and multiple 

representations. In particular, they described a model, which they called “splitting”, that can 

be efficiently used to define multiplication and division, instead of recurring to repeated 

additions. Then they argued that a combination of “splitting” and “a covariational approach 

to functions” seemed to be effective for students’ understanding of exponential functions. 

Where a covariational approach is intended as a way of describing situations in terms of rate 

of change and they presented it in contrast to a correspondence approach to functions. 

Actually, it happened that the distinction between ‘action view’ and ‘process view’ of 

function has been gradually considered as a dynamic interplay, which led the growth of 
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several approaches emphasizing the covariational aspect of functions (Carlson et al., 2002; 

Thompson, 2011). As we will better explain later in this chapter, the ‘covariational view’ is 

based on the understanding of the manner in which dependent and independent variables 

change as well as of the coordination of their variations. In a very recent study, drawing on 

Thompson’s theory of quantitative reasoning (Thompson, 1994), Johnson & McClintock 

(2018) identified students’ quantitative variational reasoning as a possible factor affording 

their discernment of variation in unidirectional change. Where “quantitative variational 

reasoning” is called students’ conception of attributes as something that varies and that can 

be measured, while “variation in unidirectional change” means that the direction of change 

is invariant. The studies concerning possible covariational approaches to functions are 

foundational for this study and we will examine in depth this part of the literature in Section 

1.2. 

However, as we discussed above, a very common approach for introducing functions is that 

of starting from the formal definition as a correspondence between two sets, but there are 

different uses of functions. There are several possible notations, and also different labels 

commonly used in mathematics addressing functions: mapping, transformation, 

permutation, operation, functional, operator, relation, morphism, etc.. From a didactical 

point of view, all these aspects together contribute to making it difficult to teach and learn 

‘function’ as a mathematical concept. In particular, as a direct consequence of the different 

uses of functions, a variety of possible approaches to functions came up. For example, 

pointwise approaches allow to plot, read or deal with single points of the function; other 

approaches focus on specific intervals, such as a neighborhood of a local extremum; global 

approaches show the global behavior of the function within its domain (Even, 1990). 

Moreover, there is a variety of possible representations: functions can be introduced 

through diagrams with arrows, input-output tables, algebraic expressions, sets of ordered 

pairs. For example, working with tables of data may be an approach to functions, that 

involves the process of entering the data and then the coordination of the columns. From 

the literature we observe that since the computer has been started to be used for 

introducing the function concept, researchers have mainly focused on the graphical 

representation (Yerushalmy, 1991).  

Bell & Janvier (1981) were among the first to claim that the construction of the graph of a 

function starting from an input-output table was not a fruitful approach for students’ 

understanding of the underlying relations. Alternatively, they suggested to introduce graphs 

to students through a qualitative approach. More generally, many studies have supported 

the importance of going back to the first interpretation of functions, which involved variables 

and time, instead of stressing the use of the formal and static definition. Ayalon, Watson & 

Lerman (2016) highlighted some of the possible positive contributions of dealing with 

variables and the concept of variation for the understanding of functions. The teaching 

approach that they proposed provides some graphing experiences from everyday life, in an 

attempt to foster students’ reasoning about variables and related concepts as rate of change, 

but also in an attempt to link these everyday situations to a more formal algebraic language.  

Regardless of the approach chosen to introduce functions, we noticed that the first examples 

given to students are usually linear functions. Discussing this, Markovits et al. (1986, 1988) 

highlighted how giving emphasis to straight-line graphs, especially when introducing 

functions, may then bring students to draw linear graphs each time they are asked to trace 

a possible graph passing through certain given points. Hitt & Gonzalez-Martin (2016) 
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reported the main contributions to research on the topic of functions and, among the others, 

they cited a study conducted by Aspinwall, Haciomeroglu & Presmeg (2008) where it is 

showed that students who were successful in calculus used a combination of visualization 

and analytic thinking. This was interpreted as their becoming able to dynamically transform 

their visual mental images, and so to construct and interpret graphs of functions. 

After this overview of the main approaches that have been developed to teach functions, in 

the next section we are going to describe some studies existing in literature about the use of 

technological artifacts for representing and teaching functions. In particular, we will focus on 

that implementing DIEs. 

1.1.3 Using technological artifacts to introduce functions 

The widespread availability of computers gave rise to the design of new approaches to 

functions, based on representations realized by implementing technological artifacts. 

Initially, the use of computers in calculus lessons involved programming and implementing 

numerical algorithms, then software for graphical tools appeared.  

Al Cuoco (1995) described innovative approaches to functions, involving computer 

environments, that have been designed to support students’ development of computational 

models for representing functions. In particular, Function Machines was a programming 

language whose underlying idea was that of building input-output machines. Logo was 

another programming language that presented as a sequence of instructions being 

performed on a specific input to produce an output. Finally, ISETL was a language more 

similar to the language of mathematics, since it used notation and constructions that 

appeared to be more formal. He found that an approach to functions through programming 

in Logo gave significantly different insights from a traditional approach. For example, he 

observed that “students who are able to model a situation with a Logo procedure are already 

viewing the function at hand as a process” (ibid, p. 12). Indeed, he described Logo as 

providing “an extensible and playful environment in which students can build and 

experiment with processes, compare them, and begin to manipulate them as data” (ibid, p. 

17). 

Schwarz & Dreyfus (1995) created an entire curriculum on functions, using a computer 

microworld called Triple Representation Model, with the aim of supporting problem solving 

processes. Moreover, this model was used to foster students’ use of different 

representations of functions, taken from several settings (tables, graphs and algebra), and 

also to ask them to generate other representations. The students involved in their study 

seemed to be able to cope with partial data about functions, to coordinate different 

representations, recognizing invariants in different representations belonging to the same 

setting. 

Tall (1996) identified the main potentiality of an approach using computer graphics with the 

possibility to magnify the graph of a function. Indeed, by magnifying the graph it will look 

always less curved; going on with this process, it is possible to see it become almost straight. 

When it looks visibly straight, the slope of the curve representing the function is the same as 

the slope of the line on the screen. This type of approach involves the concept of limit, 

implicitly expressed during the magnification process, and at the same time it shows students 

a way to find an approximation of the derivative.  
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However, among the various technological artifacts that can be used in the teaching and 

learning of functions, for this study we are particularly interested in DIEs. They have been 

developed especially for the dynamic geometry, but in some cases they have been 

implemented also for representing functions. For example, Hazzan and Goldenberg (1997) 

proposed an approach to functions built on dynamic geometry, in contrast with the 

numerical approach: it consisted in analyzing geometrical constructions by looking at the 

functional dependency that linked the geometric objects involved, as points and lines. One 

of the possible consequences related to this approach, from a didactical point of view, was 

pointed out by Grugnetti, Marchini & Maffini (1999). They observed that, if the geometrical 

relations proposed can be all described through continuous functions, a risk for students 

could be that of considering all functions as being continuous. Another approach based on 

the use of dynamic geometry was developed by Falcade, Laborde and Mariotti (2007). They 

introduced the functional dependency by first having students experience variables’ 

movements in an attempt to support a dynamic interpretation of the dependence relation. 

In particular, they implemented the activities in the software Cabri where it is possible to 

construct geometrical objects; with the aim of “providing a qualitative experience of 

covariation, and in particular an experience of functional dependency not primarily based on 

a numerical setting” (p. 318). Finally, Ng (2014, 2016) drew on Sfard’s communicational 

approach to investigate changes in bilingual learners’ communication about derivative, 

during their interactions with touchscreen-based DIEs. In particular, she highlighted the role 

of the DIE and students’ use of gestures for conveying dynamic and temporal relationships. 

Exploring a construction realized within a DIE involves searching for possible relationships 

existing between the movements, that can be obtained through dragging and that can be 

perceived as variations or invariants. A high number of research studies highlights how the 

identification of such invariants lies at the heart of a dynamic exploration (Holzl, 1996; 

Arzarello, Olivero, Paola & Robutti, 2002; Olivero 2002; Healy & Hoyles 2001; Laborde, 2005; 

Baccaglini-Frank, Mariotti & Antonini, 2009; Leung, Baccaglini-Frank & Mariotti, 2013).  

There is also a wide literature about the design of the tasks and about the role of the teacher 

in organizing and orchestrating the discussions, during classroom activities implemented 

within a DIE (Laborde, 2001; Bartolini Bussi & Mariotti, 2008; Mariotti, 2002). Moreover, 

some researchers investigated how a description in terms of logical dependency can be 

supported by explorations involving the use of the dragging tool, thanks to the difference 

between two possible types of motion: direct and indirect (Mariotti, 2006, 2010; Laborde, 

2003). This distinction will be particularly inspiring for our study because, in a similar way, 

we want to investigate how students can be introduced to the functional dependency 

through experiences of direct and indirect dragging in DIEs.  

Now we present some relevant studies concerning the characterization of different dragging 

modalities spontaneously used by experts during the exploration and solution of geometric 

open problems implemented in a DIE. Even if this literature is not specifically related to the 

teaching and learning of functions, it will be useful and we will refer to it in this study in order 

to investigate possible uses of dragging, that is a characterizing feature of DIEs, which 

enables to move objects on the computer screen according to different types of motion, 

depending on the construction. 

Arzarello et al. (1998, 2002) and Olivero (2002) operated a classification of different functions 

of dragging in Cabri environments for describing some of their cognitive features in learning 

processes. Indeed, their analysis focused on the use of the dragging tool from a cognitive 
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point of view and it highlighted how different uses of dragging depended on different aims 

during the solution process of a given geometric problem.  

The following table shows their classification of the dragging modalities summarized. 

Tag Description 

Wandering dragging Moving the basic points on the screen randomly, without a plan, 
in order to discover interesting configurations or regularities in 
the figures 

Bound dragging Moving a semi-draggable point, which is already linked to an 
object 

Guided dragging Moving the basic points of a figure in order to give it a particular 
Shape 

Dummy locus 
dragging 

Moving a basic point so that the figure keeps a discovered 
property; that means you are following a hidden path even 
without being aware of this 

Line dragging Drawing new points on the ones that keep the regularity of the 
figure 

Linked dragging Linking a point to an object and moving it onto that object 

Dragging test Moving draggable or semi-draggable points in order to see 
whether the figure keeps the initial properties. If so, then the 
figure passes the test; if not, then the figure was not constructed 
according to the geometric properties you wanted it to have 
Table 1.1. Dragging modalities (Arzarello et al., 2002) 

Antonini & Martignone (2009) proposed a similar classification in the case of physical 

artifacts. They introduced a classification of students' utilization schemes of pantographs, 

that are particular mathematical machines designed for geometrical transformations. 

Although the differences due to the different nature of the instruments these two studies 

concern, there are certain similarities. Especially the common purpose is to identify students' 

utilization schemes in order to analyze the cognitive processes involved in the investigation 

of geometric problems. 

A further contribution to this classification has been proposed by Baccaglini-Frank & Mariotti 

(2010) who gave a description of maintaining dragging. In particular, they defined it as 

follows:  

“maintaining dragging (MD) involves the recognition of a particular configuration as 

interesting, and the user’s attempt to induce the particular property to become an 

invariant during dragging” (p. 230).  

The same study reveals how the combination of maintaining dragging and the activation of 

the trace tool on the selected base point may be particularly useful for the process of 

generation of conjectures during the solution of certain geometric problems. 

1.2 THE COVARIATIONAL ASPECT OF FUNCTIONS  
The first studies on covariational reasoning were conducted by Confrey and Thompson, who 

developed this theoretical construct characterizing covariation in two slightly different ways. 

On one hand, in terms of coordinating two variables’ values as they change (Confrey, 1994), 

on the other hand in terms of conceptualizing individual quantities’ values as varying and 

then conceptualizing two or more quantities as varying simultaneously (Thompson, 1994). 
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Thompson supported the idea that the concept of rate was fundamental for developing a 

dynamic interpretation of functions; while Confrey & Smith (1994) described a covariation 

approach to functions as follows: 

“it entails being able to move operationally from ym to ym+1 coordinating with 

movement from xm to xm+1. For tables, it involves the coordination of the variation in 

two or more columns as one moves down (or up) the table” (p. 137).  

Carlson also contributed to the characterization of functions as covariation. By drawing from 

Confrey and Thompson’s earlier work Carlson, Jacobs, Coe, Larsen & Hsu (2002) created a 

framework for studying covariational reasoning and they illustrated how their framework 

could be used to describe students’ cognitive processes when they are asked to deal with 

dynamic situations that involve two simultaneously changing quantities. In the covariation 

framework five developmental levels of mental actions were specified, such that they 

become more sophisticated depending on the nature of students’ coordination of the values 

of the quantities involved. For example, students may look at the amount of change or at the 

direction of change, or at both of them. Moreover, they concluded that a student reached a 

given level of development if he showed covariational reasoning associated with that level 

and all lower levels. 

Thompson & Carlson (2017) revised prior covariational frameworks in two ways: by 

attending to students’ variational reasoning separately from their covariational reasoning; 

and by attending to how students coordinated their images of quantities’ values varying, 

taking into account their way of reasoning variationally. 

From this detailed description of the covariational aspects characterizing functions, it 

emerges that there are two possible ways of interpreting functional dependency: as a 

correspondence, which means functions as entities that accept an input and produce an 

output; or covariationally as a process involving two quantities varying together. The first 

aspect answers questions like “which 𝑓(𝑥) belongs to a specific 𝑥?” or “which 𝑥 belongs to 

a specific 𝑓(𝑥)?”, while the second aspect is related to questions like “how does 𝑓(𝑥) change 

when 𝑥 increases?” or “how do we have to change 𝑥 in order to decrease 𝑓(𝑥)?”. Some 

representations of functions highlight one of these two aspects and the identification of the 

other one is not always immediate, but it involves a deeper interpretation of the 

representation.  

The covariational view of functions has been found to be essential for understanding other 

concepts of calculus that are related to functions, such as limits and derivatives (Kaput, 1992; 

Cottrill et al., 1996; Saldanha & Thompson, 1998). In line with these findings, many recent 

studies about the teaching and learning of functions focused on the covariational aspects, 

and most of them also investigated possible ways of employing digital environments. Indeed, 

in order to provide students with opportunities to use a covariation perspective on functions, 

researchers designed activities involving dynamic and static Cartesian graphs (Ellis et al., 

2015; Hitt & González-Martín, 2015; Johnson & McClintock, 2018). For example, 

Kafetzopoulos & Psycharis (2016) implemented the software Casyopée (Lagrange, 2010) to 

design modelling tasks involving geometrical dependencies, aimed at studying students’ 

conceptualization of function. Nagle, Tracy, Adams & Scutella (2017) highlighted the 

importance of fostering students’ dynamic imagery to include simultaneous movement in 

both the 𝑥- and 𝑦-coordinates to avoid the common conception of the limit of a function as 

the value reached near a certain 𝑥 value. Moreover, they argued that students’ attention 
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should be lead towards the changing in both the 𝑥  and 𝑦  values, whatever approach is 

chosen, for example when looking at a table of values or a graphical representation of the 

function. 

Falcade, Laborde & Mariotti (2007) developed a covariational approach to functions by using 

a DIE; their study was framed within the framework of the semiotic mediation. It was 

particularly interesting for us to see that a fundamental assumption of the teaching sequence 

that they designed was that motion constituted a basic metaphor for covariation, indeed 

they argued that covariation can be experienced through change and the first change that 

we can think of is that of space in function of time, that is motion (Lakoff & Nunez, 2000). 

Based on this assumption, they introduced the Cartesian graph of functions starting from a 

dynamic representation realized within the software Cabri. In particular, they supported the 

interpretation of the graph of a function as the trajectory of a certain point P in the plane, 

representing the dependent variable, in function of the variation of another point M such 

that M belongs to the 𝑥-axis and it represents the independent variable (Laborde, 1999). In 

order to develop this reading, it became necessary for them to introduce the temporal 

dimension and to show the covariation of P and M through the simultaneous variation of the 

two points. They called this interpretation as “dynamic interpretation” of a graph. 

An important assumption at the core of this study is that covariation is an essential feature 

of the concept of function. In particular, we observe that here the term ‘covariation’ will 

always be used referring to quantities whose simultaneous variations are also related by a 

dependence relation. More specifically, we consider covariation to be a dynamic relation 

between two variables that is an asymmetric relation, because the variations of one of the 

variables depends on the variations of the other. This interpretation gives a bit of a different 

meaning to the term ‘covariation’ with respect to some of the studies that we described 

above, especially, with respect to the original description given by Confrey (1994). She 

referred to the rate of change of variables within the numerical context by looking at tables 

of values and focusing on the variations of the two variables in quantitative terms. 

Differently, our description of covariation is qualitative, more in line with the dynamic 

interpretation of the graph suggested by Falcade, Laborde & Mariotti (2007). 

1.3 GRAPHICAL REPRESENTATIONS OF FUNCTIONS 
The overview on students’ difficulties relative to the notion of variable and to the graphical 

representation of functions, that we made above, brought us to conclude that a purely 

quantitative approach to functions, mainly involving numerical and algebraic calculations, 

may be a source of several problems from a didactical point of view. 

In this section we are going to advance some considerations on the Cartesian graph to 

represent a real function of a real variable and then present studies that propose other 

graphical representations, designed in order to bring out the covariational aspect of the 

functional relation, in dynamic terms. 

1.3.1 Cartesian graphs 

The Cartesian graph, as mathematical object, is the set of points (𝑥, 𝑓(𝑥)) , where the 

independent variable 𝑥 belongs to the domain of the function and the dependent variable 

𝑓(𝑥) is its image. Traditionally, ‘Cartesian graph’ is used to indicate a drawing of this set of 

points in the Cartesian plane and, from now on, we will always use ‘Cartesian graph’ referring 

to this representation of the set. This description suggests that a curve on the Cartesian plane 
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representing the graph of a function is made up of points that incorporate the functional 

relation between the two variables in their coordinates. In particular, these coordinates are 

two numbers belonging to the same set (the set of real numbers) but they correspond to two 

points respectively belonging to two different axes: one horizontally oriented and the other 

vertically oriented. This splitting of the set makes the construction of the curve possible but 

it can also be confusing for a student who is approaching functions for the first time. A 

possible obstacle consists in recognizing that each point on the graph is a coordinated 

presentation of two pieces of information, a domain point and its image. Indeed, very often 

students consider the curve to be the image of the function and they identify a point on the 

curve as “the 𝑓(𝑥) value”; this is incorrect, since a point is defined by two values and not just 

one (Colacicco, Lisarelli & Antonini, 2017). In particular, this type of difficulties then 

influences the understanding of more advanced mathematical objects, for example limits. In 

the same paper, it is shown the case of a person having a degree in a scientific subject, that, 

by looking at the Cartesian graph of the function 𝑓(𝑥) =
1

𝑥
, affirms that the limit of the 

function for 𝑥 tending to positive infinity is positive infinity and, while speaking, he moves 

one hand showing that the function ‘keeps going to the right’. 

Similar observations have also been pointed out by Thompson & Carlson (2017) who 

suggested that many of students’ difficulties about the interpretation of the Cartesian graph 

in terms of covariation of two quantities “are grounded in their not having conceived points 

on a graph as multiplicative objects that represent two measurements simultaneously”. 

Moreover, what happens is that, often, students do not associate the graphical 

representation in the Cartesian plane directly to functions. Indeed, this type of 

representation is used in math classes long time before the teaching of functions, for 

example, for working with circumferences and ellipses. In these cases, the roles of the two 

variables, 𝑥 and 𝑦, are symmetrical. Therefore, a possible source of difficulty for students 

consists in considering functions as relations between two variables such that the order is 

not important in the pair (𝑥, 𝑦). 

Therefore, the Cartesian graph is an extremely rich in meaning and useful representation of 

real functions but, at the same time, the interpretation and manipulation of a graph requires 

a deep understanding of the relations existing between its elements. As we just discussed, 

the reconstruction of these relations is not an easy task from a cognitive point of view. For 

this reason, some researchers began to consider alternative graphical representations of 

functions and their properties. 

1.3.2 Dynamic graphs 

Goldenberg, Lewis & O’Keefe (1992) called DynaGraph an artifact that they created to 

visually realize functions, in which the domain variable is dynamically variable and it is 

separately presented by its image. It consists in representing two horizontal lines with one 

point on each line, so it develops in one dimension and originally they called these two axes 

‘x Line’ and ‘f(x) Line’. 

This particular representation of a function cannot be obtained without using a DIE, where 

objects can be moved on the screen thanks to the dragging tool. These types of software can 

help students focus their mathematical thinking on bigger and often more abstract 

mathematical ideas than it usually happens in paper-and-pencil environments. Indeed, a 

dynamic algebra and geometry software allows students to manipulate and investigate 

constructions without being mired in the technical aspects of drawing them, as can 
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sometimes happen if they must sketch on paper. Furthermore, constructions on paper-and-

pencil context virtually force students’ attention on the actual positions of objects. DIEs 

designed for experimentation make these features changeable and they bring students’ 

attention to the invariant properties of the construction, that are not easy to observe in a 

static environment (Hazzan & Goldenberg, 1997). 

In particular, thanks to the dragging tool it is possible to obtain two different types of 

movement: indirect and direct. The direct motion occurs when a basic element, for example 

a point generated by the point tool, is dragged by acting directly on it; while the indirect 

motion occurs when a construction procedure is accomplished and the motion of the 

elements obtained through it can be realized only by dragging the basic points from which 

the construction originates (Baccaglini-Frank & Mariotti, 2010). 

In the case of DynaGraphs the independence of the x variable is realized by the possibility of 

freely dragging a point, bounded to a line (the x Line) and the resulting movement visually 

mediates the variation of the point within a specific domain. Whereas the dependence of 

the 𝑓(𝑥) variable is realized by an indirect motion: the dragging of the independent variable 

along its axis causes the motion of a point, bounded to another line (the f(x) Line), that could 

not be directly dragged. Indeed, the indirect motion preserves the properties defined by the 

construction, that in a DynaGraph consist in keeping the functional relation that links the 

dependent variable to the independent one invariant. In other words, the use of dragging 

tool visually mediates the experience of functional dependency which is realized by the 

dependence relation between two different types of motion: a direct and an indirect motion. 

Moreover, the movement of points experienced through the use of the dragging tool can be 

visually materialized through the trace tool that, when activated on a point, allows the user 

to display its trajectory of movement. Although the final product of the trace tool is a static 

image, its use involves time and so it is possible to simultaneously grasp the pointwise and 

the global aspect of the product of trace tool: at the same time a sequence of positions of a 

moving point and the image consisting in the set of all such positions. 

Looking at the literature in math education, we observed that the representation of function 

with parallel axes was not largely used in the teaching of functions. We found that the 

original idea of DynaGraphs has also been developed by Healy & Sinclair (2007) and by 

Sinclair, Healy & Reis Sales (2009) who used the Geometer’s Sketchpad to dynamically realize 

the graphs of functions. In their representation the asymmetric relation between the two 

variables was visually realized as suggested by Goldenberg and his colleagues, by 

distinguishing between possible and impossible movements; there were just a few 

differences in the layout of the interactive files. They named the variables by A and f(A), but 

did not name the lines; and they added a segment linking A and f(A). Moreover, we found 

that Arcavi and Nachmias (1993) introduced a parallel axes representation of functions which 

they used for families of linear functions. However, their representation was very different 

from that designed by Goldenberg et al. (1992): it consisted of two parallel vertical axes, the 

one on the left is used for the domain, while the one on the right for the codomain and there 

were several “mapping segments” joining a number on the left axis with its image on the 

other axis. Since they proposed this representation for linear functions, it is possible to 

observe that the mapping segments were always intersecting at one point, except for 𝑦 = 𝑥 

where they were parallel. Therefore, the most significant difference with respect to 

DynaGraphs is the fact that this representation could be realized through computerized tools 

but also within a paper-and-pencil context.  
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The idea of considering the graph of functions as a representation of the dynamic relation 

between the variables and the attempt to foster the emergence of this dynamism is 

completely in line with the description of the graph given by Euler (1743). The original text 

has been translated by Mariotti, Laborde & Falcade (2003), who studied a method to 

represent geometrically the graph of numeric functions; as follows: 

“Because, then, a unlimited straight line represents a variable quantity x, let’s look for 

a method equally comfortable (useful) to represent any function of x geometrically. 

[…] Thus any function of x, geometrically interpreted in this manner, will correspond 

to a well defined line, straight or curve, the nature of which will depend on the nature 

of the function.” (Euler, 1743, p.4-5, translated by Mariotti, Laborde & Falcade, 2003) 

The representation suggested by Euler and developed by Mariotti and colleagues consists in 

building the graph of a function as the trajectory of a point M which is the extremity of a 

segment PM, whose other extremity P is a variable point on the 𝑥-axis that has a distance 𝑥 

from the origin. Then, M is on the perpendicular line to the 𝑥-axis passing through P and such 

that the length of the segment PM is determined by 𝑓(𝑥). A possible difficulty for students, 

that can originate from this approach, is about the interpretation of the trajectory that has 

a twofold meaning. Indeed, it is a succession of positions of a certain point moving on the 

plane and, at the same time, it is a static object visible on the screen. 

In designing and carrying out our study we expected that the one dimensional representation 

of functions could foster a description of relative movements of the variables and 

comparisons between possible movements of the ticks on the lines. For example, when 

exploring one of these dynamic graphs, it is quite an easy task to recognize whether the two 

variables’ movements follow the same direction or opposite directions, that can be identified 

by an expert as an information about the monotonicity properties of the function: a function 

is increasing if both variables have the same direction of movement while it is decreasing if 

the variables have opposite directions. In a similar way, a change in direction of the 

dependent variable, with the independent one always following the same direction, reveals 

the presence of an extremum point. In addition to changes in direction, the dynamic graphs 

also provide information about the rate of change. For example, moving the independent 

variable at constant speed along the 𝑥-axis can result in constant growth, which the user 

feels actually observing the dependent variable having always the same increment. Similarly, 

moving 𝑥  at a constant speed can result in accelerated growth and the user sees 𝑓(𝑥) 

whisking off the screen. Speaking about more advanced mathematical objects, descriptions 

of change in speed could be read mathematically as observations on the slope of the 

function, that is its derivative. 

The being undefined of a function at one point is realized in the dynamic graphs by the 

dependent variable disappearing from the screen, as soon as the independent variable is 

dragged on a value for which the function is undefined and then it quickly comes back. For 

example, if the function has a vertical asymptote at x0, with different limits at x0+ and x0
_, 

then the dependent variable comes back from the other side of the screen. This sudden 

disappearing of the tick can be surprising for someone who doesn’t know which function has 

been defined and very often students produce original narratives to describe this behavior 

(Sinclair et al., 2009). A study of narratives (Bruner, 1996) emerging during students’ 

discussion in mathematics classroom has been conducted by Healy & Sinclair (2007), who 

investigated a possible relation between narrative modes of thinking and the learning of 
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mathematics. The mathematical activities that they designed involved a computer 

interaction and, for example, the use of dynamic graphs. 

1.4 RESEARCH QUESTIONS: A FIRST FORMULATION 
We analyzed the most common student and teacher difficulties and different approaches 

that have been used in the teaching of functions and graphs of functions. From the literature 

review it emerges also that functions have been studied through different theoretical 

perspectives. 

Our objective behind this research study is to introduce high school students to the notion 

of function by highlighting its covariational aspect. We want to study an approach to 

functions that allows to stress the dynamic aspects of the concepts of variable and 

dependency among variables, that so many studies have shown are hard for students to 

understand (Arcavi & Schoenfeld, 1988). In particular, we refer to Tall’s (2009) description of 

calculus as the mathematical field that begins with the desire to quantify how things change, 

the function, the rate at which they change, the derivative, and the way in which they 

accumulate, the integral. According to this view, this field is fundamentally dynamic: even 

the calculation of static quantities, such as areas or volumes, involves dynamic processes of 

adding up a large number of very tiny elements. Then, at a certain point in history a 

transformation happened and calculus turned into rigorous definitions, developing the 

formal theory of mathematical analysis. For example, Solomon & O’Neill (1998) gave the 

following description of mathematics: 

“[mathematics] is structured around logical and not temporal relations” (p. 217).  

However, we observe that expert mathematicians’ reasoning is still characterized by an 

interplay between temporal and a-temporal attributes. In particular, Menz (2015, p. 31) 

highlighted that 

“There is also a huge discrepancy between the informal discourse between 

mathematicians and the presentation of work at a talk or in paper form.” 

For example, when exploring a new mathematical problem or trying some conjectures 

experts usually refer to time, because they speak about relations and processes. They draw 

sketches, use gestures and, at the same time, they use the mathematical formal vocabulary 

which allows them to be more concise and to directly refer to known mathematical objects. 

So, “doing mathematics” implies a continuous dialectic between the temporal dimension 

and the products of objectification. Indeed, even if formal mathematical discourse aims at 

eliminating time and dynamism, this does not imply that mathematicians engage in purely 

a-temporal modes of thinking. In particular, they seem to frequently communicate in ways 

that suggest they think of mathematical objects in motion (Sinclair & Gol Tabaghi, 2010). 

Many examples of this aspect are reported in a research study conducted by Menz (2015) 

who showed this dialectic between formal and less formal communication among experts: 

“The speech of the expert mathematicians is tightly linked with the bodily enactments of 

mathematical objects, and that there is a flow of communication among the expert 

mathematicians. Furthermore, the discourse of the expert mathematicians often centres on 

diagrams and is heavily saturated with gestures of pointing, hand-pointing, touchpointing, 

holding, tracing, sweeping and covering up” (p. 153).On the basis of these reflections, we 

bring back temporality and movement in the teaching and learning of functions, by 
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introducing students to functions and graphs through a covariational approach, according to 

the meaning of ‘covariation’ expressed in section 1.2. We hoped to have students experience 

the functional dependency in qualitative terms. Based on the studies conducted by Falcade 

et al. (2007) and Ng (2016), the idea is that of implementing a DIE to represent functions, 

and to investigate students’ learning process. In particular, they found that introducing 

students to functions and graphs through the explorations in a DIE and then providing 

situations for them to communicate in both static and dynamic contexts was beneficial for 

their learning. Moreover, at the beginning of this chapter we have presented several studies 

highlighting difficulties that students experience regarding function relationships, if they do 

not have the ability to think dynamically. Indeed, as Thompson & Carlson (2017) argued, 

continuous variation and covariation seem to be epistemologically necessary for students 

and teachers to develop robust conceptions of functions. This is because the main purpose 

of functions is to represent how things change and in DIEs it is possible to experience 

variation and functional dependency in the form of motion. 

Now we are going to clearly state the main focuses of our research, by giving a first 

formulation of the research questions that are at the core of this research study: 

i. Does the dynamic representation of functions that we propose support students’ 

experience of the dependence relation in terms of covariation? If so, what 

instances of covariation is it possible to identify? 

ii. What is the role of dragging, if it has one, in students’ learning of functions? Is it 

used to express covariation? If so, how? 

iii. Do students attempt to relate together the dynamic and static representations of 

functions that we propose? If so, what recurrent features is possible to identify? 

And what difficulties do they eventually encounter? 

iv. In students’ protocols are there possible connections with the mathematical 

notions considered in the design of the activities? If so, how are these notions 

represented by students? 

These questions will be recalled in the third chapter and, in light of the theoretical framework 

that we are going to make explicit in the next chapter, they will be reformulated. 
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2 THEORETICAL FRAMEWORK 

In this chapter we present the foundational elements of the theory of commognition (Sfard, 

2008), which is the theoretical framework upon which we based this study. We describe in 

particular the tools offered by this theory that are most significant for our research and also 

some specific theoretical constructs that we further elaborated and use in this study.  

In particular, we explain how the theory of commognition describes mathematics, showing 

the interpretation given to mathematical objects and learning. This part is particularly 

relevant for us, because we are interested in studying students’ learning process of functions, 

by conducting analyses as much objective as possible. Then, we discuss about different uses 

of the term ‘mediation’ that can be found in literature, which highly depend on the 

theoretical perspective adopted. This discussion allows us to clarify in which view this work 

can be placed, especially with respect to the use of artifacts in the teaching and learning 

process. Indeed, we use a Dynamic Interactive Environment (DIE) to represent functions and, 

at this regard, we propose a possible refinement of the theory of commognition, in light of 

some other studies that investigated about the use of DIEs in the teaching and learning of 

mathematics. Finally, we read through a commognitive lens some studies about dragging 

practices in DIEs, which we already presented in the previous chapter and they have been 

inspiring for our research. In particular, based on these studies we develop helpful tools of 

analysis of students’ use of dragging in their discourse on functions.  

2.1 THE THEORY OF COMMOGNITION 
In our study we chose to use a commognitive perspective because it highlights the 

communicational nature of learning and it provides us with analytical tools for examining 

students’ learning of functions. Moreover, we adopted this theory for its philosophical 

assumption about the relation of thinking and communicating, because it allowed us to 

investigate students’ thinking processes by focusing just on observable forms of 

communication that they used.  

In particular, we think that an important feature of the commognitive framework for this 

study is that it allows capturing fine-grained details, giving an operational description of what 

mathematical objects are and how they become objects of communication for students. 

Indeed, we also share this dialogical view according to which words take on meanings from 

the discourse in which they are used. In particular, Sfard‘s work for operationalizing concepts 

like ‘thinking’ or ‘communicating’ is rooted in Wittgenstein’s definition of the meaning of 

words. He claimed that  

“for a large class of cases – though not for all – in which we employ the word ‘meaning’ 

it can be defined thus: the meaning of a word is its use in the language” (Wittgenstein, 

1953/2003, p.18).  

Moreover, the commognitive framework is based upon the social dimensions of the learning 

process which is identified in the interaction of a person with other individuals. This view is 

grounded upon the works of Wittgenstein and Vygotsky. In particular, Vygotsky (1987) 

highlighted the social nature of learning, giving rise to several theories of learning that give 

importance to the social interactions and to the sociocultural context of learning. Indeed, 

according to these theories individuals are considered as initially participating in activities of 

a group before becoming fully integrated into the group activities. Taking on this 
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participationist view, that considers learning as inherently social and highly situated, we look 

at mathematical learning occurring in social contexts and situated in specific activities 

carefully designed to elicit mathematical discourse. Therefore, according to this perspective, 

students may change their way of acting and talking about mathematics through 

participation in mathematical activities, because there exists a strong link between 

mathematics learning and communication.  

In the light of these preliminary observations, the main reason that leads us to ground this 

study on the theory of commognition is that it provides us with the lenses to objectively 

observe and describe the main features of students’ communication (in a broad sense, as we 

are going to explain) about functions, eventually involving also a possible development of 

this communication. This type of observation gives us an insight into students’ learning 

process of functions, which can be actually described as the process of developing a 

discourse on functions; and we do not have to make hypotheses and interpretations about 

students’ thinking or try to read their minds. This is an important aspect to us since in 

educational research the subjective dimension is, in general, hard to be completely removed 

because researchers have to make a number of subjective choices in order to develop a 

research study. Therefore, to succeed in avoiding at least a part of this subjective dimension 

is positive for us as reserachers but, above all, it is crucial for the relevance of the study. 

After this introduction aimed at contextualizing our choice of the theoretical background, we 

now delve deeper into the most defining features of Sfard’s theory that highlights the 

communicative aspects of thinking and learning by defining thinking as an “individualized 

version of interpersonal communication” (Sfard, 2008, p. 81). The term commognition, 

obtained by blending the word ‘communication’ with the word ‘cognition’, stresses that 

interpersonal communication and cognition are considered as two manifestations of the 

same phenomenon. Here we have to specify that the word ‘communication’ is made to 

include all forms of communication, not just the verbal one, indeed it is defined as:  

“a collectively performed patterned activity in which one action A of an individual is 

followed by action B of another individual so that: 1. A belongs to a certain well-

defined repertoire of actions known as communicational; 2. action B belongs to a 

repertoire of re-actions that fit A, that is, actions recurrently observed in conjunction 

with A. This latter repertoire is not exclusively a function of A, and it depends, among 

others, on factors such as the history of A (what happened prior to A), the situation in 

which A and B are performed, and the identities of the actor and re-actor” (p. 86). 

Moreover, Sfard defines discourse a “special type of communication made distinct by its 

repertoire of admissible actions and the way these actions are paired with re-actions” (p. 

297). It is important to emphasize that a discourse encompasses all forms of communication 

“whether verbal or not, whether with others or with oneself, whether synchronic like in a 

face-to-face conversation, or asynchronous like in exchange of letters or in reading a book” 

(Sfard & Lavie, 2005, p. 245). Therefore, in the definition of communication reported above, 

the re-action B can be also played by the same person of the action A. 

Through the participation in communicational activities of a collective that practices a 

specific discourse, people start belonging to a community of discourse. More generally, 

human society may be divided into partially overlapping communities of discourse, whose 

boundaries are not clear-cut, because discourses are not stable entities that remain the same 

over time. In the next section we are going to focus on mathematical discourse, reporting its 
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most defining features as special type of discourse, as laid down in the commognitive 

framework. Indeed, discourses are dynamic, time-dependent entities but it is possible to 

describe, for example, what mathematical discourse is since they preserve their identity 

through continuous change.  

2.1.1 Mathematics as a discourse 

In this study, we refer to mathematics as described by Sfard as a special type of discourse 

and this makes mathematics learning a process which involves individualizing and developing 

a mathematical communication. What makes mathematics consistently different from other 

discourses is that mathematical objects are discursive objects, instead of concrete objects, 

which means that they do not pre-exist the talk. For this reason, it becomes necessary to also 

examine the possible relationships between talking, drawing, gesturing and mathematical 

thinking. Indeed, in respect to this type of analysis, Sfard (2009) explains that language and 

gestures should not be counterpoised one to another, since language is any symbolic system 

used in communication and gestures are “the actual communication” (p. 194).  

We characterized mathematics as a special discourse that creates its own objects, it is, 

however, possible to further discuss its main features, indeed, we can observe that people 

usually agree in deciding if a given discourse is mathematical or not. This is explained by Sfard 

through the description of four features characterizing a mathematical discourse. They are: 

words use, visual mediators, narratives and routines and we use these elements to analyze 

students’ mathematical thinking about functions.  

For a detailed characterization of a mathematical discourse, we report here how the four 

features are described by Sfard (2008): 

1. Words use is a main feature of mathematical discourse, it is “an-all important matter 

because, being tantamount to what others call ‘word meaning’, it is responsible for 

what the user is able to say about (and thus to see in) the world” (p. 133). Moreover, 

more than the words themselves, that mainly signify quantities and shapes, what is 

important is the way the words are used. However, when students are engaged in a 

mathematical problem, their mathematical discourse is not limited to the use of 

words. 

2. Visual mediators are “visible objects that are operated upon as a part of the process 

of communication” (p. 133). For instance, they can be concrete objects, images of 

concrete objects, symbolic artifacts or even imagined pictures. In fact, visual 

mediators include objects that pre-exist the discourse but also artifacts created 

especially for the sake of communication.  

3. Narratives are sequences of utterances, spoken or written, that are framed as a 

description of objects, of relations between objects, of processes with or by objects, 

and they can be endorsed or rejected. Examples of endorsed narratives are 

definitions, theorems and proofs. 

4. Routines are discursive patterns that repeat themselves in certain situations. “Such 

repetitive patterns can be seen in almost any aspect of mathematical discourse: in 

mathematical forms of categorizing, in mathematical modes of attending to the 

environment, in ways of viewing situations as ‘the same’ or different, which is crucial 

for the interlocutors’ ability to apply mathematical discourse whenever appropriate” 

(p. 134). 
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In particular, we observe that this characterization can be used in order to state if a given 

discourse may be considered a mathematical discourse, because people can investigate if it 

features words use, visual mediators, endorsed narratives and routines that are 

characteristic of the mathematical discourse. 

Firstly, we took into consideration a wide literature of studies adopting a commognitive 

perspective and, especially, that fousing on a teaching and learning process involving the use 

of a DIE (Sinclair & Yurita, 2008; Sinclair & Moss, 2012; Ng, 2016a). From these studies it 

emerges that an analysis of words use, visual mediators and routines used by students may 

allow to gain insight into their mathematical discourse, and so into their learning, when 

interacting within a DIE. Therefore, in this study we mainly focus on visual mediators and 

routines performed by students in order to gain information about their interaction with the 

graphs of functions in both dynamic and static environments. Moreover, we look at students’ 

use of words, because an in-depth description of students’ mathematical discourse requires 

also to look at this aspect. However, we do not look at just the formal words that characterize 

and are typical of mathematical discourses (as described in the first point above) but, in a 

more general sense, we are interested in the words used by students to communicate about 

functions. We are going to better explain this concern for words later in this chapter.  

2.1.1.1 Signifiers and realization trees 

As we previously observed, mathematical objects are discursive objects and this leads to 

mathematical communication involving continuous transitions from signifiers to other 

entities that Sfard calls realizations of the signifiers. In particular, “signifiers are words or 

symbols that function as nouns in utterances of discourse participants whereas the term 

realization of a signifier S refers to a perceptually accessible object that may be operated 

upon in the attempt to produce or substantiate narratives about S” (Sfard, 2008, p. 154). 

A peculiarity of mathematical signifiers is that each of them has several possible realizations 

such that every endorsed narrative about a signifier can be translated into an endorsed 

narrative about one of its realizations. Realizations can primarily be of two forms, visual or 

vocal: visual realizations are those realized through written words, algebraic symbols, icons 

(they can be drawings or just imagined icons), concrete objects or gestures; while vocal 

realizations are those realized though spoken words. Moreover, the relation between a 

signifier and one of its realizations is symmetrical and each realization can play the role of 

signifier, thus, being realized. Given a signifier with all its realizations it is possible to build a 

realization tree that is: 

“a hierarchically organized set of all the realizations of a given signifier, together with 

the realizations of these realizations, as well as the realizations of these latter 

realizations, and so forth” (p. 301).  

In particular, having deep and rich branches in the realization trees is important for 

mathematics. Indeed, for an expert mathematician it is fundamental to be able to pass from 

a realization of a signifier to another one of the same signifier. For this reason, it could be 

interesting for a teacher or a task designer to construct students’ realization tree 

(Weingarden & Heyd-Metzuyanim, 2018; Caponi & Lisarelli, 2018), where the inclusion of a 

certain realization in the tree means that “in certain situations the person has been observed 

implementing this realization” (p. 166). However, during this process it is worth considering 

that realization trees have the following key features:  
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 they are personal constructs: different students may realize the same signifier in 

different ways. Even though they originate in public discourse, students construct 

realizations themselves and the resulting realization trees may differ in the amount 

of realizations but also in the nature of the realizations; 

 they are a source of valuable information about students’ discourse on the particular 

mathematical object. Indeed, studying the number of ramifications and the depth of 

each branch can be insightful as feedback and it may give a possible assessment 

about students’ discourse on that mathematical object; 

 they are highly situated, and this means that although a student may correctly use a 

certain realization in a certain situation, he may not evoke it in another situation. 

At this point, a mathematical object can be described as the whole realization tree of a 

signifier within its discourse. In other words, it is the signifier itself and all the objects signified 

by its realizations. Therefore, in these terms the learning process may be expressed as the 

creation of new signifiers by collapsing different realizations into one, that may give rise to 

the creation of mathematical objects. We suggest visualizing this process as a path going 

through a realization tree such that it starts from the branches and goes towards the root. 

For example, Figure 1 shows a possible realization tree of the signifier ‘function’, which plays 

the role of root, where we have put some of its realizations. In particular, this complex 

process involves some consecutive steps and one of these is called the act of saming, that 

we are going to use in our analyses. This process is described as the act of calling a number 

of things that were not considered to be the same before, with the same name.  

 

Figure 1. Example of realization tree of the signifier 'function' 

As showed in Figure 1, the learning of the mathematical object ‘function’ can be seen as the 

product of a saming process involving, at least, the discursive objects: an analytic expression 

of two variables, a set of ordered pairs of the form (𝑥, 𝑓(𝑥)) that can be realized by a curve 

on the Cartesian plane passing the “vertical line test” (i.e. a vertical line cannot intersect the 

curve in more than one point), a dynamic graph, an input-output table. Each of these is a 

different realization of the signifier ‘function’ and can, thus, be called ‘function’. Moreover, 

there are many other possible realizations to be considered and also the relations between 

them are several: an input-output table may realize the set of ordered pairs and each 

ordered pair is a realization of a point on the Cartesian plane, but also the opposite holds. 

Therefore, the act of saming, and so of objectifying, may be a complex process involving 

many discursive objects that are initially separated one from the others, then they become 

connected by signifier-realization relations and only at the end of this process each of them 

can be called by using the same term, which is the resulting mathematical object. 



24 
 

In this study we introduce students to functions starting from a dynamic graph with parallel 

axes, that is a possible realization that constitutes one of the branches in the tree in Figure 1; 

and we focus on their discourse about this realization, eventually investigating about the 

saming processes that may occur with other realizations that they may have seen in other 

contexts.  

2.1.1.2 Learning as individualizing a discourse 

In this section we give a more detailed description of how the learning process occurs, as 

indicated by the commognitive theory. Traditionally, during classroom activities students are 

introduced to new mathematical objects by teachers who already hold a rich realization tree 

for that signifiers and they provide students with some realizations or examples or with 

definitions of those signifiers. If we look at this teaching-learning process by taking a 

communicational approach, it can be considered as the process of changing students’ 

discourse on specific signifiers.  

So, if we are interested in investigating a learning process on functions, we need to learn 

how students’ discourse about functions develops in relation to their interaction with the 

realization of function that we design. In particular, the changing in discourse develops 

through a process that Sfard calls individualization, which may be viewed as a participationist 

version of what Vygotsky called internalization. In particular, Vygotsky (1987) stated that 

what is being learned by an individual is something culturally and collectively produced and 

constantly modified. He expressed this in his famous statement about the development of 

an individual as that process involving higher mental functions that from the social plane 

move to the psychological plane. 

Based on this underlying assumption, Sfard hypothesizes a four stage model of the 

development of students’ use of words that involves the following steps. 

1. Passive use: at this first stage the student meets the signifier for the first time and 

she is not able to use the word in her own speech but may utter it as a reaction to 

her interlocutor’s utterance containing the given word.  

2. Routine-driven use: at this stage the student is able to use the word actively in the 

speech, but only in a restricted number of specific routines.  

3. Phrase-driven use: at this third stage the word becomes linked with constant phrases 

rather than with whole routines. The entire phrases constitute the building blocks of 

the student’s utterances.  

4. Object-driven use: at this stage the word is linked to a realization tree that remains 

relatively stable across different contexts.  

By looking at this model we notice that, initially, students may start using the new (for them) 

signifier only in response to someone who uses it or into familiar discourses, involving some 

specific routines. In fact, by elaborating what Vygotsky (1987) argued, Sfard claims that the 

first necessary step in the process of individualizing a discourse is thoughtful imitation. 

Moreover, in some cases students “engage in the new type of talk while still unable to realize 

the new signifier in any way” (p. 178) thanks to a mechanism of metaphor. For example, this 

mechanism can take place with the individualization of a discourse on a signifier which is 

called with a word that is also used in colloquial discourse (e.g. ‘function’). Finally, at the 

fourth stage of the model, students’ use of the word is developed and it is in line with that 

of an expert. This process brings the word to be used in each discourse involving that specific 

mathematical object, which is denoted by the signifier and its realization tree.  
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For example, Nachlieli & Tabach (2012) based their study on this model to investigate 

students’ individualizing discourse on functions and they observed students going through 

the first phase and entering into the second, with respect to the mathematical signifier 

‘function’. Moreover, they argued that words’ definitions seem to play almost no role in 

students’ decisions about the use of the words (Hershkowitz & Vinner, 1983) because the 

definitions provide a description of the objects, while students look for indications about 

how to act, that is about how to use the words in their communication. However, they did 

see defining as having an important role in the process of objectification. A possible 

conclusion is that the act of defining may occur later in the process of learning. 

In this study, we focus on students’ discourse on functions as it emerges during some 

activities that we designed in order to foster students’ first discursive steps in this direction. 

Before and during these activities we do not give students any formal mathematical 

definition of ‘function’. One of the consequences of this choice is, for example, that we do 

not discuss how students use the word ‘function’ during the activities, because we do not 

even introduce it to them. In particular, we are interested in words and verbal constructs 

used by students that might not be those of an expert, or that are not formal, but that their 

use is “close enough” to experts’ mathematical discourse.  Indeed, we want to investigate if 

students’ discourse, contains possible seeds of realizations of mathematical signifiers, 

mirroring a potential expert discourse on functions and their properties. We mean by 

“potential expert discourse” and by “mirroring” the following. 

Potential expert discourse is a discourse that we expect an expert mathematician would use 

for describing the same thing that students have described. This discourse is usually 

characterized by a formal mathematical vocabulary. On one hand we mean a discourse 

similar to written discourse that can be found in textbooks or journal articles, on the other 

hand it does not have to be necessarily completely objectified. Indeed, as discussed in 

section 1.4, the discourse of expert mathematicians during the explorations of problems is 

very often characterized by deictic words, half-finished sentences, mathematical terms that 

are imprecisely used and dynamism (Sinclair & Gol Tabaghi, 2010; Menz, 2015). 

When an expert can recognize in a student’s discourse potential expert discourse, we will 

also say that the student’s discourse is mirrored by potential expert discourse. For example, 

we say that a description of the graph with parallel axes such as “x and f(x) move in the same 

direction” is mirrored by the potential expert discourse “the function is increasing” about 

monotonicity properties of the function. An expression like “f(x) moves on, it stays on ten 

and then it goes back” is mirrored by the potential expert discourse “ten is a relative 

maximum value”. We believe that these possible connections are highly valuable in 

mathematical learning, because they represent some entry points into mathematical 

discourse for students who are not yet experts, but newcomers to the community of 

mathematicians. 

2.1.1.3 Routines 

In the section where we described mathematics as a special discourse we discussed about 

our focus in this study on visual mediators and routines performed by students and, in 

particular, we refer to a characterization of routines that has recently proposed by Lavie, 

Steiner and Sfard (2018). In this paper they address the relation between learning and our 

ability of finding and taking advantage of old memories when we have to face new situations. 

In particular, they explain our tendency of modeling the present actions on what we did in 
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the past; they use the term routine referring to patterns of actions resulting from this 

process. In line with this argumentation, they describe the learning process as a 

“routinization of our actions”. As we previously discussed in 2.1.1, their work on routines had 

started long before. Routines are one of the four essential features of a mathematical 

discourse, and Sfard & Lavie (2005) expressed the two sets of rules that allows to identify 

them: those telling the performer how to act and those indicating when to perform that 

specific routine. However, this definition revealed to not be exhaustive, because it has been 

showed to be difficult identifying ‘the when’ of some routines. Indeed, ‘the how’ and ‘the 

when’ of a routine are always changing and this may lead, for example, to the possibility of 

having different situations requiring the same routine (for which ‘the when’ is, then, not 

uniquely determined). 

For this reason, Lavie, Steiner and Sfard (2018) suggest a new definition of routine that 

improves the previous one by making it more operational. In order to do this, they introduce 

the notion of task situation, denoting “any setting in which a person considers herself bound 

to act”. When a person gets involved in a new task situation, she probably searches for a past 

situation that can be considered as sufficiently similar to the present one in order to repeat 

what was done then; it does not matter if it was done by herself or by another person. The 

researchers call precedent the past situation that the person identifies as acceptable and 

which allows her to perform in the new task situation. Moreover, they define the task, as 

understood by a person in a given task situation, as “the set of all the characteristics of the 

precedent events that the person considers as requiring replication”. However, the search 

of precedents is usually restricted to a precedent search space, which plays the role of 

preselection by restricting the set of possible choices. Having identified the task, the person 

may wish to perform it by replicating the precedent action. The replication of a certain 

precedent is also necessarily selective, because there are some aspects of the past 

performance that are preserved and other aspects that are changed.  

According to all these preliminaries, it is possible to introduce the new definition of routine 

in terms of a person’s interpretation of a given task situation, so it involves both the task and 

the procedure being performed. We refer to this definition when we analyze students’ 

discourse investigating which routines they perform, in order to identify a possible 

development of their discourse towards a discourse closer to that of an expert. Indeed, we 

expect that an expert mainly performs explorative routines, that now we are going to 

characterize. In particular, the researchers distinguish the routines by dividing them into 

practical or discursive, depending on the desired outcome of the performance, that is the 

expected change in the objects or in their relations. The distinction can be summarized as 

follows:  

 Practical routine: a person interprets the task situation as requiring a change, re-

organization or re-positioning of objects. For example, physical actions as biking or 

everyday activities as dressing 

o ritual if it is a process-oriented performance, highly situated, whose 

expected outcome consists in creating and sustaining a bond with other 

people; 

o deed if it is an outcome-oriented routine, whose expected outcome comes 

in the form of new, transformed or rearranged objects. 
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 Discursive routine: a person interprets the task situation as requiring a 

communicational action. It is a pattern that we follow while communicating with 

others or with ourselves 

o ritual if it is a process-oriented performance, highly situated, whose 

expected outcome consists in creating and sustaining a bond with other 

people; 

o exploration if it is an outcome-oriented routine, whose expected outcome is 

the production of a new endorsable statement.  

It may happen that some practical routines are performed discursively rather than in the 

form of a physical action and also that some routines may be considered as practical in one 

context and as discursive in another context. It would be more proper to speak about a 

continuum of forms, differing one from another in the performer’s ability to separate the 

procedure and the task: as long as a specific procedure is considered as part of the task, the 

routine cannot count as a full-fledged exploration; because the performer shows that a 

specific procedure must be used but his aim is probably not that of obtaining a particular 

outcome. 

In the case of rituals, the performers ask themselves how they should proceed and not what 

they want to get, which, instead, is the question guiding the actions of the performers 

involved in deeds and explorations. For example, learners at an early stage, cannot yet know 

how a specific routine can help them in solving other problems and so they mainly worry 

about pleasing others, that is being like everybody else and doing whatever other people are 

doing. In contrast to ritual participation, Sfard and Lavie (2005) describe explorative 

participation for producing mathematical narratives to solve problems. Explorative 

participation is related more broadly to the view of mathematical learning as the process by 

which students gradually become able to communicate about mathematical objects.  

By following these observations, in order to introduce students to functions, in this study we 

design activities aimed at creating opportunities for students' explorative participation 

during lessons. This include, for example, proposing different realizations of the signifier 

‘function’ and encouraging students to create links between these realizations. In particular, 

we design different realizations of function and we try to characterize the routines 

performed by students when exploring them, also investigating their search for precedents, 

in order to identify possible changes in discourse and so in their learning. Indeed, we expect 

them to perform discursive routines in the form of rituals, at least during the first activities 

with the dynamic realization of function, and we are interested in studying a possible 

development of their discursive routines towards exploration. This is because we consider 

this development of routines as a development in the process of learning, since we think that 

discursive routines in the form of explorations are those mostly performed by an expert 

mathematician. 

2.1.2 Some reflections on the word ‘mediation’ 

As we recalled in the previous section, the two features of students’ discourse on which we 

mainly focus in this study are routines and visual mediators. After having discussed about 

routines, now we analyze different uses of the term ‘mediation’, which is very common 

among the theories in educational literature, by explaining what we refer to when using this 

term. 
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Bartolini Bussi & Mariotti (2008) give a definition of ‘mediation’ by referring to what Hasan 

(2002) pointed out, that is the complex semantic structure characterizing the process of 

mediation involving the following participants and circumstances: 

1. Someone who mediates: a mediator; 
2. Something that is mediated: a content released by mediation; 
3. Someone or something subjected to mediation: a mediate; 
4. The circumstances for mediation: (a) the means of mediation i.e. modality; (b) the 

location i.e. site in which mediation might occur. 

Moreover, they develop a theory that deals with mediation in relation to the use of 

technologies, which are widely present in the mathematical education literature. Concerning 

the use of technological artifacts during classroom activities, Noss and Hoyles (1996) 

emphasize the perspective of communication. Indeed, they identify the mediation function 

of the computer in the possibility of creating a channel of communication between the 

teacher and the students, based on a shared language. 

According to the theory of semiotic mediation (Bartolini Bussi & Mariotti, 2008), an artifact 

may function as a semiotic mediator, but such a function of semiotic mediation is not 

automatically activated. Indeed, they describe the semiotic potential of an artifact as follows:  

“On the one hand, personal meanings are related to the use of the artifact, in 

particular in relation to the aim of accomplishing the task; on the other hand, 

mathematical meanings may be related to the artifact and its use. This double semiotic 

relationship is named the semiotic potential of an artifact.”  

(Bartolini Bussi & Mariotti, 2008, p. 754) 

Then, they assume that such a semiotic mediation function of an artifact can be exploited by 

the expert who has the awareness of the semiotic potential of the artifact, both in terms of 

mathematical meanings and in terms of personal meanings. This means that the teacher acts 

as a mediator using the artifact to mediate mathematical contents to the students. 

Moreover, any artifact can be referred to as tool of semiotic mediation as long as it is 

intentionally used by the teacher to mediate a mathematical content through a designed 

didactical activity. 

A different view is offered by the theory of commognition, according to which 

“communication mediators are often artifacts produced specially for the sake of 

communication” (Sfard, 2008, p. 90). Mediators are described as perceptually accessible 

objects with the help of which we are able to perform our actions and other individuals are 

prompted; so they can have auditory, visual, or even tactile effects on individuals. 

Moreover, we have seen in section 2.1.1 that Sfard describes four properties which 

characterize mathematics as a special type of discourse and one of them is the use of visual 

mediators. In particular, she refers to them as  

“visible objects that are operated upon as a part of the process of communication. 

While colloquial discourses are usually mediated by images of material things existing 

independently of the discourse, mathematical discourses often involve symbolic 

artifacts, created especially for the sake of this particular form of communication” (p. 

133).  
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This description suggests that a visual mediator provides the image with which people 

identify the object of their talk and it allows them to coordinate their communication. For 

example, gestures are considered by Sfard (2009) forms of visual mediation. They are 

essential for an effective mathematical communication, because “using gestures to make 

interlocutors’ realizing procedures in public is an effective way to help all the participants to 

interpret mathematical signifiers in the same way and thus to play with the same objects” 

(p. 198). Moreover, gestures can be realized actually when the signifier is present, or virtually 

when the signifier is imagined. Sfard illustrates the example of a student using different 

gestures to realize the signifier ‘fraction’. Since these gestures are performed in the air, they 

provide instances of a virtual realization. 

Unlike the theory of semiotic mediation, the theory of commognition does not take into 

account the use of artifacts, but it provides a description of different visual mediators: 

concrete, iconic, symbolic and gestural; and the same mediator may be used in several ways 

even when the task and the result remain the same. In particular, concrete mediators may 

be physically manipulated; the strength of iconic and concrete mediators is that they may 

lead to new endorsed narratives with only a relatively small number of verbal manipulations. 

For example, in order to compute a certain division a person can manipulate a set of concrete 

objects, partitioning the whole set into the right number of equipotent subsets, or she can 

imagine/draw a sketch of this partition; so the computation becomes quite immediate 

through the use of concrete or iconic visual mediators. Otherwise she can recur to symbols 

and proceed by algebraic computations but, since the symbolic mediators are basically 

verbal, instead of visual, they require a great demand on a person’s memory. To summarize 

our reflections, Sfard’s approach identifies the role of mediation with something visual which 

is related to people communicating with other people, or with themselves, in order to better 

understand each other and to ensure that everyone refers to the same object. Bartolini Bussi 

and Mariotti mainly use the term mediation in relation to the potentiality of promoting 

relationships between students and mathematical knowledge, and mediation is related to 

the accomplishment of a task.  

However, it seems that the main difference between these two theories in conceiving 

mediation is the role of the artifact that, according to commognition, can be used as a 

mediator by the teacher to better develop her discourse with a student, without necessarily 

referring to a mathematical object; and also by the student, in the communication with the 

teacher or other students. While, according to the theory of semiotic mediation, it can be a 

tool of semiotic mediation if it is used in a specific way by the teacher (mediator, 1 in Hasan’s 

list), to mediate a mathematical meaning (2 in Hasan’s list), and in this sense the artifact (part 

of the means of mediation, 4a in Hasan’s list) is something that links the student (mediatee, 

3 in Hasan’s list) to the mathematical knowledge. This observation is strictly related to the 

fact that the second point of Hasan’s list seems to be considered essential for defining 

mediation within the theory of semiotic mediation, but not in commognition. Indeed, these 

theories are based on two different theoretical assumptions about the nature of 

mathematical objects. On the one hand, Sfard describes mathematical objects as discursive 

objects, so they cannot be evoked as if they existed elsewhere because they exist in the 

communication itself. On the other hand, in the theory of semiotic mediation, Bartolini Bussi 

and Mariotti speak about “mathematical meanings” that exist within a specific culture and 

they represent something that can be mediated.  
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In this study we refer to mediation as intended by Sfard, and we extend her characterization 

of visual mediators, in an attempt to adapt the tools offered by the theory of commognition 

to the cases that involve discourse in the presence of digital artifacts, which may be used as 

particular mediators. Specifically, we are interested in studying possible implications of the 

use of DIEs in classroom activities. 

2.1.2.1 Static and dynamic mediation 

The most defining feature of DIEs is that they allow to experience relations dynamically over 

time, indeed they enable us to observe and manipulate objects that move on the computer 

screen, changing over time. As a direct consequence of this dynamic nature, visual mediation 

by DIEs is significantly different from visual mediation through diagrams or figures presented 

in the textbooks; and we found that the theory of commognition could be refined from this 

point of view, because it does not specifically address the use of DIEs in the teaching and 

learning process. 

A static visual mediator realizes a mathematical object statically, for example the drawing of 

a Cartesian graph on a sheet of paper realizes the mathematical signifier ‘function’ through 

a static curve; while visual mediation by a DIE may realize mathematical relationships and 

properties of the same mathematical object. For example, in a Cartesian graph constructed 

in a DIE, dragging one of the variables (the independent one) along its axis causes the 

movement of the other variable along the other axis and so it realizes the relationship 

between the variations of the two variables. Therefore, a dynamic visual mediator allows to 

realize the invariant properties of a mathematical signifier through motion. In particular, 

when interacting with DIEs, usually there is a large use of both gestures and dragging actions 

as visual mediators. Looking at the visual mediation of gestures, we observe that also the 

dynamic function of gestures has not been widely examined in literature. McNeill’s (1992) 

categorized gestures into deictic, iconic, metaphoric and beat, by distinguishing the type of 

functions served by them. For example, deictic gestures serve as pointing devices, while 

metaphoric gestures serve to represent the mathematical objects themselves. However, in 

this classification it is not specified when gestures are used to convey dynamic and temporal 

relationships. Núnez (2003) studied how some mathematicians use hand gestures for 

expressing dynamic thinking of functions and continuity. His analysis shows that  

“these mathematicians are referring to fundamental dynamic aspects of the 

mathematical ideas they are talking about” (p. 177).  

Furthermore, the words used by these mathematicians were related to motion and time; for 

example, they said “approaching” or “tending to” while producing metaphoric gestures as 

tracing the trajectory of a point. Another relevant study that showed how temporality can 

be evoked by the use of visual mediators like gestures was conducted by Sinclair and Gol 

Tabaghi (2010). They analyzed mathematicians’ use of gestures to speak about the 

movements of some vectors, providing evidence of the time dependency of these actions. 

Both these studies highlight the dynamic and temporal aspects of mathematicians’ thinking, 

focusing on the importance of gestures as visual mediators that may involve motion in the 

communication. 

From these considerations it is clear that gestures and dragging actions can play the role of 

visual mediators conveying dynamic and temporal relationships, but, the commognitive 

theory does not yet offer a distinction between static and dynamic visual mediators. This 

distinction is fundamental with respect to the mathematical objects that are involved in the 
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discourse, because different kinds of mediators allow students to communicate about 

different properties of the objects. Significant work in this direction has been conducted by 

Ng (2014, 2016) who proposed a distinction between static and dynamic visual mediation in 

the context of teaching derivative within both static and dynamic environment, and our 

purpose is to gain a deeper insight following her direction of research. Indeed, we consider 

the distinction between static and dynamic visual mediators to be important because the 

mathematical object mediated by static or dynamic visual mediators can be of completely 

different nature. For example, the signifier ‘increasing function’ can be realized by a static 

gesture evoking the image of a curve having positive slope or by a dynamic gesture such as 

the motion of a hand tracing a curve going up. For us, the main difference between the two 

kinds of visual mediators is that in the second case the gesture communicates temporal 

relationships existing behind an increasing function, as opposed to showing a possible shape 

of the function statically. The first aspect is fundamental in mathematical discourse, 

especially in the case of increasing functions, because the monotonicity properties of 

functions are dynamic and temporal relationships between the two variables.  

In particular, in the next section we propose a characterization of a specific type of 

mediation, which is based on the commognitive perspective, but it takes into account the 

use of DIEs and their dynamic nature. The theoretical foundations of this study of the relation 

between visual mediators and the use of DIEs can be identified in other studies reported in 

the previous chapter (e.g., Sinclair & Yurita, 2008; Ng, 2016).  

2.1.2.2 Definition of dynamic interactive mediators 

In this section we propose a characterization of a special type of mediators that takes into 

account the dynamic nature of the mediation, that has been previously addressed also by Ng 

(2016), and the cases in which the mediator is interactive. In this way, we do not aim at 

replacing, but we would extend the classification operated by Sfard, by addressing the 

mediation that may occur when DIEs are involved in the activities. DIEs are characterized by 

dynamism, because there is a change over time, and interaction, because they respond to a 

person’s manipulations.  

In particular, we define DIMs (Dynamic Interactive Mediators) digital objects constructed 

within a DIE that: 

 can be manipulated and they give immediate feedback based on such manipulations, 

in the form of dynamic change;  

 can be used in experts’ discourse as visual mediators of mathematical objects. 

We observe that a definition of DIM has been presented in Antonini, Baccaglini-Frank & 

Lisarelli (under review), where DIMs were constructed within touch environments. 

The second point in the definition suggests that a DIM can play the role of realization of a 

mathematical signifier but it can also be the object of students’ discourse which mirrors 

objectified discourse on a new (for the learner) mathematical object. In this case, students’ 

learning can be fostered by promoting discourse that makes links between the different 

objects (for the learner), which are actually different realizations of a same mathematical 

object (for the expert).  

In this sense, appropriately designed activities with DIMs may open doors to full-fledged 

participation in mathematical discourse, helping students construct new mathematical 

objects. Indeed, since we actually consider the learning process as a gradual development of 
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the discourse, we can expect that a fundamental step in the process of learning mathematics 

with DIMs will be a transition from considering the DIMs objects of exploration per se to 

considering them as realizations of mathematical objects, as experts do.  

2.2 DRAGGING 
Dragging is a characterizing feature of DIEs which enables to move objects on the computer 

screen according to different types of motion, depending on the construction. Indeed, 

exploring a construction realized in a dynamic software involves searching for possible 

relationships existing between the movements, that can be perceived as variations or 

invariants. Many research studies highlight how the identification of such invariants lies at 

the heart of a dynamic exploration (Olivero 2002; Healy & Hoyles 2001; Laborde, 2005; 

Baccaglini-Frank, Mariotti & Antonini, 2009; Leung, Baccaglini-Frank & Mariotti, 2013).  

There is a wide literature about the use of DIEs in the teaching and learning process, with 

studies grounded on different perspectives, and we have presented some of them in the 

previous chapter. Particularly significant with respect to our research is the study of how a 

description in terms of logical dependency can be supported by explorations involving the 

use of the dragging tool. This investigation has been conducted by some researchers that 

operated a distinction between two possible types of motion in DIEs: direct and indirect 

(Mariotti, 2006, 2010, 2015; Laborde, 2003). As we discussed in chapter 1, they highlighted 

that a description in terms of logical dependency is possible thanks to this difference. In a 

similar way, we want to analyze students’ emergent discourse about functions realized in 

this specific dynamic context and, especially, we are interested in particular aspects of their 

discourse, that is, how the visual mediation of dragging is involved. However, our focus and 

also the theoretical framework that we use in this study are different from that of the studies 

that we have cited, which concern geometry and, for example, the use of dragging is analyzed 

under the lens of the instrumental approach, according to which dragging is an artifact 

supporting the task of generating a conjecture (Lopez-real & Leung, 2006; Leung, 2008). 

Differently, according to the theory of commognition, dragging can be used by students as 

visual mediator in the communication with other students or with themselves and, in 

particular, we expect it to dynamically mediate the communication. Because of the focus of 

this study on students’ learning of functions, that is on their discourse about DIMs that for 

an expert are realizations of functions, we are interested in looking at different ways in which 

students use dragging as visual mediator. Indeed, this analysis can give us significant 

information about the main features of their emergent discourse. 

In the next sections we present the tools of analysis that we developed in light of the studies 

on dragging practices in DIEs. In particular, we adapted to our context some tools offered by 

the literature (see the previous chapter) and we are going to describe them according to our 

theoretical lenses. 

2.2.1 Different types of dragging 

As we have previously discussed, a group of researchers (Arzarello et al., 1998, 2002; Olivero, 

2002) described experts’ development of dragging modalities while dealing with geometric 

open problems implemented in a DIE. In particular, they operated a classification of different 

functions of dragging for describing some of their cognitive features in learning processes. 

Indeed, their analysis focused on the use of the dragging tool from a cognitive point of view 
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and it highlighted how students’ different uses of dragging depended on their interpretation 

of the task situation, and they classified them depending on the students’ aims.  

In this study we are interested in observing different types of dragging used by students, 

because we design a realization of function in a DIE and our main goal is that of describing 

students’ emerging discourse about functions in relation to their interaction with this 

realization. According to the theory of commognition, this study involves investigating the 

main features of students’ discourse that are the use of words, visual mediators, routines 

and narratives; so, one of our purposes is looking at how different types of dragging mediate 

students’ discourse. Since it is not possible to identify students’ aim behind a dragging action, 

unless they do explicitly express it, in line with the theory that we adopt we now describe 

different types of dragging that we expect students to use for exploring the dynamic 

realization of functions and then (in chapter 5) we use this description as tool for analyze 

students’ discourse.  

First of all, we expect that students interacting with the dynamic realization of function 

designed in this study use the mediation of dragging to describe the asymmetric relation 

between the movements of the two variables, that move according to two different types of 

motion, direct and indirect. It follows that the distinction between direct and indirect 

dragging is a key element for us to analyze how dragging mediates students emergent 

discourse about functions. In particular, we call impossible dragging a movement of the 

mouse attempting to drag an object that cannot be directly moved. In fact, in DIEs the only 

draggable objects are the basic ones, which are the objects from which the construction 

originates. For example, in the case of our dynamic graphs, students’ attempts to move the 

tick realizing the dependent variable, which cannot be directly dragged, are examples of 

impossible dragging. 

Moreover, we distinguish between continuous and discrete dragging. The continuous 

dragging is the dragging of an object using a continuous movement, that can be also 

characterized by changes in the speed and in the direction. Indeed, it is not necessarily a 

movement maintaining a constant speed and always oriented in the same direction, it may 

be faster and then slower but there cannot be stops, except those involved in changing the 

direction. Likewise, but in contrast at the same time, we call discrete dragging the movement 

of an object with jumps; for example, in our dynamic realizations of function the dragging of 

the tick realizing the independent variable used to let it take on only whole numbers. This 

type of dragging is characterized by several stops and it may be associated with counting.  

These three types of dragging can be objectively recognized by looking at students’ dragging 

actions and how the mouse moves on the screen. For this study, they can be useful tool to 

describe the routines performed by students and to analyze students’ discourse about the 

proposed realization of function. For example, we expect that an expert mathematician does 

not perform an impossible dragging on the dependent variable and that the mediation of 

discrete dragging is used to communicate about functions in terms of correspondence of 

values, while the mediation of continuous dragging is used to communicate about the 

continuous variations of the two variables simultaneously.  

In addition to looking at how and on which object of the construction students physically use 

the dragging tool, that give information about the quality of the possible movements, we can 

observe the relation between a specific dragging action and the focus of students’ discourse, 

both in terms of verbal description and gestures employed in the moment of dragging. 
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Indeed, it is possible to have a correspondence between the two elements, if students 

describe what happens to the object that they are dragging; but they can be also two 

different aspects, if students drag an object and their discourse is about another object of 

the construction that moves indirectly. By analyzing this interplay between dragging action 

and focus of discourse, we are able to identify other types of dragging, that we are going to 

use in the analysis of students’ discourse. We call wandering dragging the explorative 

dragging of an object of the construction which is accompanied by a description of that 

action. For example, as soon as students open a GeoGebra file they might move the objects 

randomly, to explore the construction and to identify possible and impossible movements; 

if this dragging action is associated to description of what can or cannot be done we call it 

wandering dragging. Otherwise, if the focus of the discourse is not on the directly dragged 

object but on other movements happing in the construction, we call this type of dragging 

actions handle dragging. Indeed, it is the dragging of an object as if it was a handle, that is in 

a way that allows the student to visualize movements of other objects that are not directly 

draggable. We observe that this case can be characterized by a particular position of the 

mouse with respect to the tick: the arrow giving the mouse’s position does not always 

overlap the dragged point, but it can drift far away from it. For example, when exploring our 

dynamic realization of function, it is possible that most of the dragging actions are handle 

dragging where the tick realizing the independent variable is dragged as a handle in order to 

make the other tick move on the screen. However, we consider the independent tick as 

actually being dragged as a handle only if the dragging action is combined with a verbal 

expression or a gesture suggesting the focus to be on an object which is not directly dragged. 

Moreover, if students express a conjecture about a specific movement of an object, or about 

a possible consequence of a dragging action, and they explicitly say that they use the 

dragging to test it, then we call the dragging action a test dragging. In this case students may 

express their idea about the expected movement of the objects before making the dragging 

action. Finally, we call guided dragging the moving of an object in order to obtain a particular 

configuration, which is expressed through verbal description or gesture by the student, 

before or while dragging the object. Otherwise, it is possible to recognize this type of 

dragging if it is used to answer to a question asking for the conditions under which a certain 

property holds or a certain configuration is obtained. 

Differently from the other types of dragging, these four types of dragging cannot be 

recognized by looking only at students’ dragging actions and how the mouse moves on the 

screen, but the relation between these elements and the object of students’ discourse has 

to be considered.  

A description of all these different types of dragging that we identified is summarized in Table 

2.1. We observe that even if we do not mention it for each type, in this study students’ 

dragging actions are always bound dragging, that according to Arzarello et al. (2002) consists 

of moving a semi-draggable object (such as a point which is already linked to another object). 

Indeed, the only object that our students can move is the tick realizing the independent 

variable, which is bound to the x-axis, and in some cases they can also move the line realizing 

the ordinates-axis, which is bound to move up and down, maintaining the alignment of the 

zero with the abscissas-axis.  
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Tag Description 

Continuous dragging Continuous movement 

Discrete dragging Movement with jumps, often associated with counting 

Impossible dragging Trying to move a dependent3 object that cannot be directly 

dragged 

Wandering dragging Random movement, exploring the construction  

Test dragging Movement aimed at testing a possibly implicit conjecture 

Handle dragging Movement of the object as if it was a handle, in order to 

observe other objects’ movements 

Guided dragging Movement aimed at reaching a particular configuration 

Table 2.1. Different types of dragging  

It is possible to notice that some of the tags that we have chosen for the types of dragging 

echo the classifications existing in literature. Moreover, in Table 2.1 we use a double row to 

separate the first three types of dragging from the other four. Indeed, continuous, discrete 

and impossible dragging refer to the quality of the movement on the screen, as it is induced 

on the directly dragged object; while wandering, test, handle and guided dragging describe 

the use of dragging in relation to the object of students’ description. The main difference 

between these two families is that on one hand the types of dragging belonging to the first 

can be also recognized by a computer that captures how the mouse moves on the screen 

and so objectively quantified, while on the other hand the types of dragging of the second 

family are strictly related to students’ discourse in the very moment of dragging, and their 

identification involves an analysis of students’ words, gestures and of their gaze. One of the 

potentialities of this classification involving two families of dragging modalities consists in 

the possibility of combining them, that allows a more complete description of students' 

dragging actions within a specific discourse that may involve also words and gestures. For 

example, when looking at students’ interaction with a DIM we can distinguish a continuous 

wandering dragging from a continuous handle dragging and, in this way, we gain information 

about the routines performed and about different characteristics of students’ discourse; and 

so, of their learning process.  

                                                           
3 We use this term to identify the tick realizing the dependent variable, but we do not know if the 
students are aware of this dependence relation. 
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2.2.2 Dragsturing 

A significant contribution to the literature of the dragging practices in DIEs has been 

developed by Ng (2014, 2016). In her work she combines the commognitive framework with 

a sociocultural view of learning as participation (Moskovich, 2007). In particular, she uses 

Sfard’s definition of gestures as communicational acts and she investigates the different 

kinds of communicational functions of the gestures used by bilingual learners dealing with 

activities implemented in a DIE, about the derivative of a function.  

When working within a DIE, students frequently use gestures and dragging actions and it is 

possible that some dragging actions are not merely dragging but also gestural 

communications. In particular, they can be used to communicate the dynamic features of 

the interactive file, as obtained by dragging. For example, if a student moves her finger along 

the graph of a function realized in a static environment, while speaking about the 

monotonicity properties of the function, he is showing a dynamic gesture. The same gesture 

in a dynamic environment may be represented by a dragging action of the dependent 

variable causing the indirect motion of the dependent variable and, eventually, of the point 

(𝑥, 𝑓(𝑥)) along the curve. In this case the student’s action is one action subsuming both 

dragging and gesturing characteristics: it causes the point to be moved on the screen 

(dragging) and it fulfills a communicational function (gesture).  

Ng (2014) refers to this type of action as dragsturing and she argues:  

“although I have named this action dragsturing, my purpose for naming is not solely 

to objectify an action into a noun, but to present the dual functions of dragging and 

gesturing in the dragsturing action for analyzing the students’ thinking-communicating 

process” (p. 293).  

In her analyses, Ng highlights how dragsturing emerges as a new and significant form of 

communication, which may give rise to new conversational patterns.  

We paid particular attention to this theoretical construct because it is an effective tool for 

our study. Indeed, we design activities employing a DIE which allows students the dragging 

with one hand on the mouse, and the gesturing with the other hand. In this way, the two 

actions can blend together as a unique action, that is worth looking into in order to analyze 

the main features of students’ emergent discourse. For example, during the description of 

the dynamic realization of function that we design, we expect that the use of dragsturing 

actions can help students address the movements of two variables in their communication 

with other students. In particular, it may happen that a student describes the movement of 

the independent variable as “moving fast towards here” while dragging the point realizing 

the independent variable along its line and stopping at a certain value. In this case the 

dragging action plays the role of dragsturing, because it is used also as a gesture that allows 

us to guess what the student means by “towards here”. 
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3 RESEARCH QUESTIONS 

In the first chapter we identified the importance of functions and graphs of functions in 

different fields of mathematics and highlighted the centrality of the notion of function in high 

schools and university mathematics. Moreover, we discussed various students’ difficulties in 

dealing with functions, especially in interpreting graphs; the literature that we analysed 

allowed us to identify covariation as a fundamental aspect characterizing the notion of 

function. Starting from this assumption we decided to introduce students to functions by 

using a particular realization, implemented within a DIE, that thanks to its dynamic nature is 

actually a realization of covariation of the two variables, one depending on the other. 

The theoretical framework elaborated and presented in the previous chapter allows us to 

introduce a second formulation of the research questions of this study. We want to study 

possible outcomes of a teaching and learning process involving this particular dynamic 

approach to functions and their graphs; we focus especially on how students’ discourse 

about functions emerges through interactions with the DIMs, what characteristics it has, and 

how it potentially changes. 

3.1 A SECOND FORMULATION OF THE RESEARCH QUESTIONS 
In this section we give a specific formulation of the four research questions that guide our 

study, now contextualizing them through the theoretical constructs we have defined. 

3.1.1 Research question 1 

The first question is quite general and it develops throughout the entire study.  

As we discussed, it is important to consider covariational aspects when fostering learning of 

functions: this was in important goal we kept in mind designing the activities introducing 

students to functions using a dynamic approach which involves a realization of covariation. 

Our dynamic approach lead to using a particular realization of functions, based on the idea 

of DynaGraph (Goldenberg et al., 1992), to investigate whether the activities designed using 

this realization actually support the emergence of students’ discourse on functions in terms 

of covariation of two quantities, one depending on the other. Thus we ask: 

Does students’ discourse emerging during the proposed activity sequence involve 

covariation? If so, in what ways? 

3.1.2 Research question 2 

The possibility of dragging plays an important role in the dynamic realization of functions; 

indeed it is thanks to the distinction between direct and indirect dragging that it is possible 

to realize the dependence relation between the two variables. Moreover, in the previous 

chapter we proposed a characterization of visual mediation that takes into account a 

difference between static and dynamic visual mediators. We expect that dragging could be 

used by students as dynamic visual mediator in their communication about the DIM realizing 

function. We are interested in exploring this possibility, focussing especially on if (and if so, 

how) this dynamic visual mediation is used by students to communicate about covariation. 

In particular, if students use the dynamic visual mediation of dragging, we want to analyze 

what types of dragging and possible dragsturing actions that may appear in students’ 

discourse. 
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These observations lead to the second research question: 

What is the role of dragging, if it has one, as a dynamic interactivemediator in students’ 

discourse? Is it used to express covariation? If so, how? 

This question is addressed in Chapter 5. 

3.1.3 Research question 3 

In this study, we aim to analyze students’ discourse about different realizations of the 

mathematical signifier ‘function’; we designed activities involving graphs of functions 

realized within both dynamic and static environments, hoping to identify any changes 

occurring in students’ discourse when passing from one realization to another one. We are 

also interested in the aspects of discourse that remain invariant. 

More specifically our third research question is: 

What recurrent features is it possible to identify in students’ discourse about the different 

realizations of functions that we design within dynamic and static environments? And in 

students’ attempt to relate them? 

This research question is explored in Chapter 5 and in Chapter 6. 

3.1.4 Research question 4 

We are interested in studying high school students’ emerging discourse on the dependence 

relation between two variables (as a key feature of the mathematical object function); 

moreover, we are curious about how this discourse compares to that of an expert 

mathematician (that of course may also involve other mathematical signifiers related to 

functions). At this regard, in the previous chapter we defined potential expert discourse so 

that we can compare this to students’ emerging discourse.  

Therefore, in order to support the emergence and the development of students’ discourse 

about different properties of functions, when designing the activities we choose different 

functions to realize with the DIMs; for example, including functions that are not everywhere 

defined or discontinuous. 

The research question on this issue is: 

How does students’ discourse compare to potential expert discourse about functions and 

their properties? In particular, from an expert’s point of view, what seeds of realizations of 

mathematical objects is it possible to identify in students’ discourse? 

This question is addressed in Chapter 6. 

 

Finally, we observe that students’ understanding of the covariational aspect of functions has 

been investigated (Carlson et al., 2002; Thompson & Carlson, 2017) and that specific 

approaches to functions, that make use of a DIE, has been developed in order to support this 

covariational view (Falcade et al., 2007; Ng, 2016). In the context of teaching and learning 

with the use of a DIE there are studies focused on students’ use of dragging (Arzarello et al., 

2002). However, an important difference is that in this study the theoretical perspective and 

the tools of analysis are different from those applied previously, which influence what we 

see and the results we obtain. In particular, we think that we can gain significant insights 
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thanks to our theoretical perspective that looks at the construction of a discourse through 

tools that allow to deeply analyze its features. In the formulation of the research questions, 

the theory allows us to focus on learning in terms of ‘discourse’ and to identify possible 

developments in learning by comparing students’ discourse to a potential expert discourse. 

Moreover, the theory lets us look at students’ use of dragging as dynamic visual mediator, 

that give significant information about students’ discourse when interacting with the DIMs 

and, so, about their learning. In the concluding chapter, we will further discuss the original 

and innovative results that we found thanks to our theoretical lens. 
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4 DESIGN OF THE RESEARCH 

Our study aims at investigating and describing students’ learning of functions, when they are 

introduced to this notion through a particular dynamic approach. The main aspect that 

influenced our choice of what methodology to utilize is that we needed to be able to observe 

students’ production of narratives during the solution of problems involving the realizations 

of functions both in dynamic and static environments.  Indeed, according to our theoretical 

perspective, thinking and communicating are two manifestations of a same phenomenon 

and so, in order to investigate about cognitive processes, we have to look at students’ 

discourse. This motivated our choice of designing open-problem activities, letting students 

work in pairs, conducting interviews and, in particular, the choice of using microgenetic 

methods (Schoenfeld, Smith & Arcavi, 1993; Chinn & Sherin, 2014; Lewis, 2017) for the 

analysis of the data. 

4.1 MICROGENETIC METHODS 
Chinn and Sherin (2014) describe microgenetic methods as analytic methods, originally 

coming from disciplines other than mathematics education, that can be used for studying 

learning processes.  In particular, this methodology has been adapted to the learning 

sciences by Schoenfeld and diSessa at the end of the last century and it is compatible with a 

range of theoretical perspectives. The main underlying assumptions (Chinn & Sherin, 2014) 

are that  

 “learning occurs continuously, and in small steps, with every moment of thought”; 

 “learning does not occur in a straight line, from lesser to greater understanding; it 

occurs parallel on multiple fronts”; 

 “learning events are heterogeneous, […] there are multiple kinds of learning, each 

requires its own study”; 

 “we learn from our environment, which includes, most critically, the cultural tools 

other individuals provide to us”.  

(ibid. p. 171) 

The main goal at the core of a microgentic study consists in observing learning processes as 

they occur. Indeed, this method allows to make strong inferences on learning processes: 

after a long period of observation, where students conduct experiments in which they have 

to think aloud explaining their actions, the researchers can draw conclusions about what 

triggers change and about how this change occurs. 

Siegler (2006, p.469) sets out the three main features of a microgenetic method: 

 “observations span the period of rapidly changing competence” and so students 

should not have that competence yet, but they should gain proficiency in a short 

intensive learning session, which is designed by the researcher;  

 “within this period, the density of observations is high, relative to the rate of change” 

and so the researcher should document all the students’ trials;  

 “observations are analysed intensively, with the goal of inferring the representations 

and processes that gave rise to them” and so the researcher should try to make 

inferences about the cognitive processes involved, going beyond the superficial 

behaviours. 
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Usually, a microgenetic study is not long lasting and it cannot include too many participants, 

especially for the density and the complexity of the analysis. For example, the focus can be 

individual learning within an interview setting. There are also some studies that used this 

methodology to observe small groups working within a classroom environment for a longer 

period, in these cases the risk could be that the observations miss critical learning events. 

As we are going to explain in the next sections, for this study we designed a teaching 

experiment that took place in a classroom environment and a researcher was in the 

classroom setting along the whole sequence of lessons, which developed over 4 months. In 

order to reduce as much as possible the loss of observation of critical learning events, we 

used fixed and mobile cameras to record the discussions and actions of some selected pairs 

of students. At the end of the teaching experiment we also interviewed the pairs of students 

that we fellow more closely. 

4.2 DATA COLLECTION 
The organization of the different phases of the research was led by the research questions. 

A first relevant aspect that we were interested in is the birth and development of students’ 

discourse about functions as covariation. For this reason, we wanted to work with students 

who had not taught about this topic yet and so we chose a 10th grade class. In fact, 

traditionally, in Italy students are introduced to functions at grade 7th or 8th but they 

extensively work with them from grade 11th on. Then, we can consider our intervention as 

students’ first approach to functions and their properties. 

The main study was conducted over 4 months (March-June, 2017) in an Italian High school 

for Math and Science. The participants were eighteen students, all belonging to the same 

class. In particular, we designed and implemented a sequence of lessons and at the end of 

the sequence we interviewed some students out of their mathematical schedule.  

A first experimentation has been carried out in 2016 (Colacicco, Lisarelli & Antonini, 2017), 

where we designed activities involving a one-dimensional realization of function in a DIE, 

similar to the DynaGraph, and we proposed them in a 10th grade class. We focused on 

different ways, like expressions or specific terms, developed by students to express the 

functional dependency, in their efforts to describe the dynamic graphs of function. It was the 

work of thesis for a bachelor degree in which we were get involved. Even if the goals behind 

the research and also the theoretical framework adopted were different, for us the 

experimentation played the role of pilot study, that we used for setting up this study and 

that allowed us to better design the sequence of lessons. 

4.2.1 Lessons 

We designed eight lessons, lasting one hour each, and we proposed them to the whole class, 

one per week. Each lesson was conducted by the researcher and during these lessons the 

regular teacher was not present in the classroom. Students were asked to work in pairs using 

one computer; at the beginning of the first lesson they chose their partner and then the pairs 

stayed the same for all the other lessons. We also asked them to sit always in the same place 

in the classroom, in order to work with the same computer. 

We chose to follow more closely selected pairs of students (but we did not tell them). These 

pairs were chosen at the end of the first lesson, due to their seeming particularly talkative 

and active in the discussions. Table 4.1 shows the pseudonyms of the students that we 
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decided to follow, and the lessons in which they participated – not all students were always 

present, and this could not be controlled ahead of time. 

Students Lessons 

Alessio and Nicco 1 – 6 

Matilde and Nicco 7 – 8 

Davide and Elena 1, 3 – 8 

Lore and Franci 1 – 8 
Table 4.1. The selected pairs of students 

Each lesson was video recorded by three cameras: two were fixed in the back of the room to 

record students’ gestures and to provide a global view of what happened in the classroom; 

one mobile camera was used to gain further insight at a fine-grained level into the pairs of 

students’ discussions. The mobile camera was held by an undergraduate student helping the 

researcher. Moreover, we used a software that captures the actions on the computer 

screens and that records the audio near the computer. This software was used on the 

computer that Alessio and Nicco worked with for 6 lessons and then Matilde and Nicco for 2 

lessons. We chose their computer because Alessio and Nicco seemed particularly talkative 

and not shy, but also because they were sit close to one of the fixed camera and so, we 

thought that in this way we could have rich and detailed data about the work of a specific 

pair of students along the entire sequence of lessons.  

4.2.2 Interviews 

At the end of the sequence of lessons, we interviewed the pairs of students who appear in 

Table 4.1. In particular, Alessio has been interviewed alone since he did not attend to the last 

two lessons. Therefore, he was given slightly different questions, which we are going to 

describe later.  

The interviews lasted approximately 45 minutes and they were video recorded using a fixed 

camera, a mobile camera, held by the researcher, and the same screen-capturing software 

mentioned above. 

4.3 THE EXPERIMENTAL SEQUENCE 
The activities that we designed involve different realizations of the graph of functions, 

employing both the dynamic and the static context. In this section, we are going to describe 

the experimental sequence and analyze its characteristics in detail.  

From now on, in order to slim down the narration, we are going to use the following 

acronyms to indicate the realizations of functions: DGp, DGpp, DGc, SGc. The first letter 

stands for the environment in which it has been designed (D: dynamic, S: static), while the 

lower case letters indicate the number and the position of the axes (p: one horizontal line, 

pp: two horizontal parallel lines, c: Cartesian plane). So, for example, DGpp stands for 

“dynamic graph with two horizontal parallel axes”. 

We observe that we disabled the magnetism in all the GeoGebra files, this is a property that 

this software allows to give to a point and makes it move on the real axis as if it has a magnet 

that attaches it to the whole numbers; and disabling this tool the dragging of the point is 

more uniform. 
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4.3.1 Description of the realizations of graphs used for the study 

The artifact DGp is a dynamic graph created within the dynamic algebra and geometry 

software GeoGebra (Figure 2). 

 

Figure 2. DGp 

Unlike the DynaGraphs designed by Goldenberg et al. (1992), that we described in the first 

chapter, we bound the two variables on the same line in order to stress their belonging to 

the same set of numbers. As shown in Figure 2, the dynamic file contains one fixed non-

numbered horizontal line, with two ticks bound to it. These ticks can be acted on, but only 

one of them affords direct action: one of them can always be dragged (direct motion) while 

the other only moves in dependence to the movements of the first one (indirect motion). 

The ticks have no labels and two points, 0 and 1, are marked on the line to determine the 

unit segment which has been placed to highlight that the line visually realizes the real 

numbers line.  

Another realization of the function that we designed, and which is more similar to the original 

DynaGraph, is the dynamic graph DGpp (Figure 3). It can be obtained thanks to the design of 

the interactive files which allows to separate out the two variables, that is, it shows two 

copies of the real number line, each with one tick on it. In this way, the two lines containing 

the variables can be dragged further apart or closer together, maintaining the parallelism 

and the alignment of their origins. Again, the two variables move according to two different 

types of motion. 

 

Figure 3. DGpp 
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The realization DGc is obtained by introducing a second dimension (Figure 4). In particular, 

by rotating the line containing the dependent variable, joining the zeros and making it 

orthogonal to the other line, it is possible to obtain the Cartesian numbered axes on which 

the two ticks are bound to move. The functional dependence between the two variables is 

still realized by the relation between direct and indirect motion but now they have two 

different directions: the tick on the abscissa axis is directly draggable, while the tick on the 

ordinate axis only indirectly draggable.  

 

Figure 4. DGc 

The tools offered by the dynamic interactive software allow to build point (𝑥, 𝑓(𝑥)) as the 

intersection point of the perpendicular line to the 𝑥 -axis passing through 𝑥  and the 

perpendicular line to the 𝑦-axis passing through 𝑓(𝑥); so, by dragging 𝑥, it is possible to see 

on the screen how (𝑥, 𝑓(𝑥)) moves in relation to the movements of 𝑥. Then, by activating 

the trace tool on this point and dragging the independent variable it is possible to obtain the 

image of the trajectory followed by (𝑥, 𝑓(𝑥)). This is the curve which realizes the graph of 

the function in the Cartesian plane, that we are used to seeing in textbooks and in paper-

and-pencil environments in general. We call this realization of functions SGc. 
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Figure 5. SGc 

 

Traditionally, the realization SGc is the one that is used the most by the teachers to introduce 

students to functions and to work on functions (Section 1.1.2). For example, a common 

approach consists in asking students to interpret the Cartesian graph of a function or to draw 

it, which means to ask them to recognize the function’s properties within the curve. This 

process involves seeing SGc as a set of points and identifying all the points belonging to the 

curve as pairs of coordinates, the first varying within the x-axis and the second varying within 

the y-axis; then these two variations have to be put in relationship with each other by 

imagining them happening simultaneously. In other words, the dynamism has to be 

collapsed into a static picture. We argue that the relation between SGc and DGc is what can 

make SGc actually become a realization of the signifier ‘function’ (Figure 6). Indeed, we 

believe that considering the static curve as the outcome of a dynamic relation between two 

covarying quantities, one depending on the other, is a precondition to think of SGc as a 

realization of the graph of a function. Otherwise a curve could simply realize a geometrical 

shape in the plane, as we have exhaustively discussed in Section 1.3.1.  

 

Figure 6. Relation between DGc and SGc 

 

To sum up this section, we designed four DIMs that realize graphs of functions and all their 

properties and three of them are made possible by the DIE. One of their peculiarities is that 

each of them can also play the role of signifier and be realized by another one. 
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4.4 TASK DESIGN AND A PRIORI ANALYSIS OF THE ACTIVITIES  
In this section we will describe the design of the research, trying to specify and explain which 

choices we made during the design process. Moreover, we will list all the activities that we 

implemented in the classroom and for each task we will provide an a priori analysis of the 

mathematical objects that we expect students will speak about. In particular, we will focus 

on the choice of words: if there are mathematical terms employed in non-expert ways, or if 

there are non-mathematical terms, in place of some formal terms, used in a coherent way 

for the expert. For example, the sentence “they are symmetric” used to describe two points 

moving in the same direction and opposite sides, but with different speeds, represents a 

non-expert employment of a mathematical term. Analogously, the question “How can I move 

𝑓(𝑥) from 0 to 1?” can be formalized into the question “Find the pre-image of the interval 

[0, 1]”, although it is still expressed in non-formal mathematical terms. 

The task design phase of the experimental sequence took place before the beginning of the 

activities with the class but it was later modified after each meeting, and the sequence was 

re-arranged depending on the outcomes. All these modifications are explained in the 

following sections. For example, we named the objects in the file by using the names given 

by students or we decided to skip some tasks depending on the time we had left. 

The activities that we designed contain all the realizations of functions described in the 

previous section and they were introduced following the same order that we used to list 

them. However, during the sequence of lessons we also supported the transitions between 

the different realizations, thanks to specific tasks that had the goal of building and then 

reinforcing the relations existing between them from a mathematical point of view. Indeed, 

one of our underlying goals is to lead these realizations to evolve (in the students’ discourse) 

towards realizations of a same signifier. We think that this is an important process, because 

for an expert the four artifacts described above can all be considered possible realizations of 

the signifier ‘function’, but this is not necessarily the case for the students. Indeed, we 

worked with students who had to be introduced to functions and we decided to use these 

artifacts, which we expected that, at least initially, would be nothing but DIMs for the 

students; that is, visual mediators used in the communication with other students or with 

the researcher, as well as concrete mediators that they could directly manipulate. On the 

contrary, the ability of the expert consists in translating an approved narrative about the 

signifier within its different realizations, each of them having its own discourse that supports 

its unique set of narratives. So, the multiplicity of visual realizations broadens the 

communicational possibilities.  

From this point of view, we can reformulate one of our goals at the core of the designed 

experimental sequence, that is a didactical goal, as an attempt to foster students’ 

employment of DGp, DGpp, DGc and SGc as DIMs in their communication with themselves, 

with other students or with the teacher, that realize the signifier ‘function’ and all its 

properties. This has been investigated through the four research questions about students’ 

discourse on functions as covariation of two variables, focusing on the role of dragging and 

on their use of the different realizations of functions proposed, in both DIE and paper-and-

pencil environment. Moreover, the fourth research question addresses a possible 

development of students’ discourse involving DGp, Dgpp, DGc and SGc along the sequence 

of lessons, by investigating whether a mirroring of experts’ discourse occurs. Now, we are 

going to explain the design principles that we elaborated and applied to reach our purpose. 
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4.4.1 Design principles 

The design principles that guided the design of this study follow two different directions: a 

theoretical-methodological direction; and a didactical direction. In particular, attention to 

the former should help us to analyze students’ discourse, focusing on their learning process; 

while the latter supports the design of the sequence of lessons according to the didactical 

goal. We now introduce the design principles, underlyning for each the aspects related to 

the two directions. 

P1) Foster students’ speech aloud, supporting their discourse which includes gestures and 

dragging actions. In particular, foster students’ discourse on specific mathematical objects 

related to functions.  

P1a) Create conflictual situations for students who experience a mismatch between 

what they see and what they expect to see; 

P1b) Ask for written explanations. 

This principle is closely related to our view of thinking as an act of communicating in different 

forms – not only verbally. This principle goes in the theoretical-methodological direction, 

based on our theoretical assumption about learning, according to which we have to focus on 

students’ discourse in order to gain insights about their learning. 

P2) Focus on the exploration of covariation.  

P2a) Do not use numbered axes, almost initially, to put the focus on variables’ 

movements instead of their values. 

This principle goes in the didactical direction. We are interested in the teaching and learning 

of functions as covariation because, as we explained in Section 1.2, we consider covariation 

to be an essential feature of the concept of function. In particular, we use this term referring 

to a dynamic, asymmetric relation between the variations of two variables. This qualitative 

description of covariation, which is in line with the dynamic interpretation of the graph 

suggested by Falcade, Laborde & Mariotti (2007), provides the basis for the choice of 

focusing on movements and looking at the numerical context at a later stage. 

P3) Support continuous transitions between the different realizations in order to build and 

reinforce the relations existing between them, especially, the relations between dynamic 

and static ones.  

P3a) Work on the differences and similarities between the different realizations 

proposed. 

This principle goes both in the theoretical-methodological direction and in the didactical 

direction. One of our aims, that is both related to methodological and didactical choices, was 

that of providing students with different realizations of a same signifier and promoting their 

process of saming among the different realizations in order to build rich realization trees. In 

particular, we consider the relation between the two graphs DGc and SGc very significant for 

the construction of a discourse on functions, because thanks to this relation the Cartesian 

graph traditionally presented in schools and textbooks becomes a possible realization of 

functions. 

P4) Give students previously constructed files where they can use basic tools like dragging 

and the trace mark. 
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This principle goes both in the theoretical-methodological direction and in the didactical 

direction. It goes in the former direction, because we set out to study students’ discourse on 

dynagraphs; and constructing a dynagraph involves making explicit other realizations of the 

function. It goes in the didactical direction because we want to teach functions through 

dynagraphs and not vice versa; and the construction of a dynagraph requires previous 

introduction of functions. 

P5) Support the development of a suitable language to communicate and to describe the 

realizations proposed.  

P5a) Use ticks instead of points, which is the default construction offered by the 

software GeoGebra, to realize the variables, to distinguish between the meanings 

of “one value” and “a pair of values”; because very often the misunderstanding of 

this fact causes difficulties; 

P5b) Use (or not) some mathematical formal terms in the text of the task 

depending on the goal of the activity and with respect to students’ words choice 

(the teacher – here the researcher – plays a fundamental role in accomplishing 

this).  

This is another principle closely related to our theoretical perspective, for which a student’s 

learning process consists in individualizing the discourse of an expert and during this process 

a possible development occurs in the use of words that characterize each specific discourse. 

However, it is also connected to our didactical aim of supporting such a development of 

students’ discourse. 

P6) Minimize teacher’s interventions during classroom activities. 

This principle goes both in the theoretical-methodological direction and in the didactical 

direction. Indeed, it is related to our choice of focusing more on students rather than on the 

teacher, because we want to analyze their learning process as it develops. Therefore, we are 

interested in posing particular attention to students’ interactions during the classroom 

activities and to the role of the teacher in the task design. For example, following principle 

P5b requires an important ongoing design action by the teacher, as does designing the 

interactive files and the activities in the first place.  

P7) Set the task within a realistic context to support students’ production of narratives. 

This principle goes in the theoretical-methodological direction and it is in line with the first 

design principle that we expressed. Indeed, we are interested in students’ discourse because 

it gives us information about their learning and so we want to foster students’ production of 

narratives. In order to support this production, we implement some of the activities within 

realistic contexts involving functions, where the two variables represent specific quantities.  

4.4.2 General structure of the sequence 

As already discussed, we designed a series of interactive files in the dynamic algebra and 

geometry software GeoGebra, presenting specific activities, with the underlying goal of 

fostering students’ emergence and development of discourse on functions and their 

properties. The tasks in the activities aimed at creating a challenge for the students, who 

then need to search for appropriate terms in order to produce a coherent discourse and 

communicate in the specific context of the activity. In fact, we do not expect their discourse 

to contain formal mathematical terms, at least initially, and this could be a source of 
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difficulties when they are asked to describe their experience and to write down their findings. 

We also tried to build situations that could support the evolution of this discourse, in the 

direction of becoming more detached from the specific context and closer to that of an 

expert. 

The diagram in Figure 7 sketches out our design process for the sequence of lessons. The box 

contains the four DIMs, created and implemented for this study, and we separated with a 

vertical dotted line the realizations designed in the DIE from the realizations produced in the 

static environment. However, DGp, DGpp, DGc and SGc are linked together to convey that 

over the sequence of activities we also support continuous transitions between them. The 

circled part in the diagram shows the mathematical context of reference relative to which 

each activity has been designed, that is, the list of mathematical objects that a potential 

expert discourse would be about. 

 

Figure 7. Diagram for the task design 

 

An innovative and interesting aspect of this diagram is that from an expert’s point of view it 

can be seen as a possible realization tree of the signifier ‘function’, where this term includes 

the functional dependence that links two variables and also all its properties. Indeed, each 

DIM can play the role of realization of a function and, at the same time, it can play the role 

of signifier that is realized by one of the other DIVs.  

4.4.3 Task design of each lesson 

In the following section we are going to describe in detail how the sequence of lessons has 

been designed. In particular, for each lesson we are going to illustrate: a copy of the diagram 

presented in Figure 7 where we highlighted only the parts involved in the design of that lesson 

(the realizations used and the mathematical contents we wanted to introduce), the main 

goals of the lesson, the setting of the lesson, the list of the activities and, if there are any, the 

aspects that have been modified during the implementation of the sequence, with respect 

to the first design phase.  
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4.4.3.1 First lesson 

 

Goal: to start to develop a language that enables to speak about the dependence relationship 

existing between the two variables.   

Students work in pairs on pre-designed GeoGebra interactive files, using the dragging tool 

that is offered by the software. The task is the same for all the files and it is: Explore the 

construction, identify and describe possible movements by using the dragging tool and write 

down your own observations on a sheet of paper.  

It is an open task that focuses on students’ descriptions, it asks them to speak and discuss 

with their computer-mate and then elaborate and re-organize their ideas writing them down 

briefly. This leads students to have to choose which words to use in translating from the oral 

to the written form, which is an important aspect in the construction process of the 

discourse.   

Our hypothesis was that some students could encounter difficulties in working with the new 

chosen DIM; but we thought that this would not be an obstacle for the implementation of 

the activities. In none of the files did the students have to construct anything using the tools 

offered by the software; they only had to move objects on the screen with the dragging tool.  

Activity1_1: realization DGp of the function 𝑓(𝑥) = −𝑥 + 5. 

We decided to start with a linear function because it is defined everywhere and the 

movement of the dependent variable along its axis does not present any peculiar 

characteristics. Indeed, we wanted to bring the attention to the investigation of (im)possible 

movements and to the asymmetric relation between the two variables, because only one of 

them can be directly dragged. We thought that a more advanced function might lead the 

exploration to focus on describing the quality of movements and the speed of the two ticks.   

After having worked on this task, students had to share with the rest of the class their 

descriptions in order to compare them with the observations of other students and discuss 

them. The goal was to let the different descriptions of covariation emerge, highlighting 

possible differences in the choice of words, labels and gestures. Since the two variables are 

bound to the same axis, that is horizontal, our hypothesis was that students would be more 

likely to use “tick 1 and tick 2” or “first dash and second dash” or “A and B” to name the 

variables rather than x and y.  
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Activity1_2: realization DGp of the function 𝑓(𝑥) = |𝑥|.  

We thought that this particular function could cause an inner conflict for students when they 

have to investigate the movement of the two variables for positive values of the independent 

one, since for these values the two ticks are perfectly overlapped and they move together. 

This aspect can even be surprising for students. After the initial exploration of the interactive 

file, each pair of students had to explain its observations to the whole class; we expected 

that someone would argue that one of the variables disappears while others would see the 

two variables staying close together. In this case, students would be involved in the 

important process of defending and supporting their own interpretation in front of the rest 

of the class.  

In order to have feedback from the interactive file itself, some elements of the construction 

can be changed. For example, someone might propose to modify, hide or build some objects 

and so, to discover the actual behaviour of the two variables. Now is the right moment to 

suggest to students the introduction of a second copy of the real number line in order to 

bound the two ticks to two different lines. With respect to the diagram in Figure 7, this means 

passing from the realization DGp of the function to its realization DGpp and this activity plays 

a central role for the construction of this relation. Indeed, it shows the gains of having the 

two lines with the variables separated, which is relevant for laying the foundation for the 

construction of the Cartesian plane, where the domain and the range of the function are 

presented separately from one another. 

Activity1_3: realization DGpp of the function 𝑓(𝑥) = |𝑥|.  

As soon as the file is opened, it looks the same as Activity1_2, since the two lines are 

overlapped and the function is the same. But its design allows the student who is interacting 

with it to separate out the two lines by dragging one of them vertically, up or down, as 

previously described. This means that students can play with the realization of the function 

passing from DGp to DGpp and from DGpp to DGp. We chose not to start with them 

separated and have them fixed, in order to highlight that they are both copies of the real 

number line. We consider this fact mathematically important since these students will work, 

with us and during their education in general, with real functions having real values. So, we 

let students decide how to place the two lines, depending on the task and the exploration 

they have planned to do. For example, there are some cases where it is better to have the 

two lines separated, such as the absolute value function, but other cases where the opposite 

seems to occur. 

Activity1_4: realization DGp of the function 𝑓(𝑥) = √𝑥.  

This function can generate a new conflict for students that is very similar to the previous one, 

but this time separating the two variables can be useful for discovering where and how the 

dependent variable moves when the independent one varies within the negative numbers. 

So our assumption is that the last two functions realized by DGp can lead students to similar 

reactions due to the fact that on a half-line of the real axis just one of the two ticks is visible, 

the one that is directly draggable. The mathematical reasons behind these two examples of 

“strange” behaviour of 𝑓(𝑥) are completely different because in the first case 𝑓(𝑥) = 𝑥 for 

all 𝑥 ≥ 0, while in the second case the function is not defined for negative values of 𝑥. This 

difference can be appreciated by separating the two variables and seeing them on two 
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separate axes, that is passing from DGp to DGpp, because it makes clear whether the 

dependent one is visible or not.  

Design choices developed during the implementation of the sequence of activities:  

 Activity1_4 was not given to students due to time restrictions.  

4.4.3.2 Second lesson 

 

Goal: to proceed with the construction of a language that enables to speak about the 

dependence relationship existing between the two variables and, in the attempt of this 

development, to explore some properties of functions, such as their domain and range.  

As already discussed, the tasks have been designed to support the production of discourses 

that an expert mathematician would recognize as possible realizations of the properties 

considered. However, we expected the communication between students to be highly 

situated with respect to the particular context and that an important role for the success of 

this communication was played by the DGpp as a DIM. 

As in the first lesson, students work in pairs on the pre-designed interactive files, using the 

dragging tool and, eventually, the trace tool that are offered by the software. Moreover, if 

someone asks for numbers on the lines s/he is allowed to activate the grid. 

Activity2_1: realization DGpp of the function 𝑓(𝑥) = 𝑒𝑥−1 +
1

25
. The task is the same as in 

the previous activities: Explore the construction, identify and describe possible movements 

by using the dragging tool and write down your observations on a sheet of paper.  

The function has been defined so that it is always greater than 𝑥, this means that there exists 

no 𝑥 such that 𝑓(𝑥) ≤ 𝑥, but the value of 𝑓(𝑥) is very close to 1 for 𝑥 tending to 1 (since the 

function is continuous and 𝑓(1) =
26

25
). So, during the solution of this problem we would 

bring students’ attention to the movements of the variables in a neighborhood of 𝑥 = 1. 

Indeed, we think that in the attempt to determine and describe the mutual position of the 

two variables in this neighborhood, students should need to express the dependence 

relation between 𝑓(𝑥) and 𝑥. This is one of the examples where it is probably more useful 

to keep the two lines overlapped, since this makes the comparison between the values of 

the variables easier. Moreover, this function has been chosen because it is appropriate for 

letting another mathematical object into the light, which we wanted to introduce during this 
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lesson: the set of images. Indeed, 𝑓(𝑥) only takes on strictly positive values and we expect 

this to be observed by students during their explorations of the file. 

Then, we designed two different activities in which the tasks are one the inverse of the other: 

in Activity2_2 an interval belonging to the range of a function is fixed and we ask to find out 

where 𝑥  has to vary in order to obtain that interval as image; in Activity2_3 an interval 

belonging to the domain of a function is fixed and we ask to find out its image. However, it 

is not possible to deal with the domain and the set of images separately, especially within 

the one-dimensional realization of the function. In particular, in order to identify the domain 

of a function, given one of its dynamic realizations, the only possibility is to look for where 

the dependent variable exists. In general, we can already notice how in each activity several 

aspects characterizing the function are intertwined; so, we expected to find some of them 

realized in students’ discourse, even if we did not consider them among the goals of that 

activity. 

As we are going to see, these were the first two activities whose focus is not only on the 

behavior of the variables and their possible movements but also on their values. 

Activity2_2: realization DGpp of the function 𝑓(𝑥) = √𝑥 + 3 − 2, with the same task as 

before.  

After a while, we projected the second part of the task on the screen of an interactive 

white board (IWB) for the class. Activity2_2bis consists of the following questions: 

1) Is it possible to have 𝑓(𝑥) = −3? How? 

2) Is it possible to have 𝑓(𝑥) = 3? How? 

3) How can you move 𝑓(𝑥) from 0 to 1? 

Explain your answers on a sheet of paper. 

We chose this particular function because we think that the presence of the square root 

could foster students’ discourse on the domain. But we did not want to put too much 

emphasis on the zero; so, we did not use the function  𝑦 = √𝑥. Indeed, the zero is often 

considered by students as a special case where a function can have a strange behaviour. For 

the same reason we also decided to translate the function’s output by -2. 

Concerning the questions, their projection on the IWB follows a first phase of students’ 

exploration and description of the graph, because we supposed that giving them the 

questions from the beginning of the activity could orient their explorations. The first and the 

second questions are the same, except for the numbers, which are chosen so that one is the 

opposite of the other and one gives an affirmative answer while the other a negative one. 

Indeed, our aim was to bring students’ attention to critical values for the function, in order 

to speak about its domain. Moreover, the use of words in the construction of these two 

questions does not refer to the dynamism of the particular realization; this is done to 

investigate differences and similarities between students’ discourse and a potential expert 

discourse mirrored. This activity can also support the production of discourse on the set of 

images of the function, since the dependent variable is always larger than or equal to -2; the 

first question helps bringing the attention to this fact. The third question is more focused on 

the dynamic features of the file and, in particular, it concerns the dependent variable’s 

movement. It can be seen also from the words used to express the interval “from 0 to 1” 

which convey the idea of motion, differently from the realization [0, 1] of the same interval 

that would have statically expressed the same thing. Indeed, the underlying goal was to 



55 
 

foster students’ exploration of the covariation between the two variables and to highlight a 

foundational aspect characterizing the domain of a function: it expresses the possible values 

of the independent variable. We think that this fact has to be stressed because of the 

realization which allows the user to drag the independent variable along the entire real 

numbers line, without restrictions; so a realization of the signifier ‘domain of the function’ is 

a description of the possible values for 𝑥 in order to visualize 𝑓(𝑥). 

Activity2_3: realization DGpp of the function 𝑓(𝑥) = √(𝑥2 − 1)(𝑥2 − 4), the task is the 

same as in the first activity.  

After a while, we projected the second part of the task to the class again using the IWB. 

Activity2_3bis consists of the following questions: 

1) Is it possible to have 𝑓(𝑥) = 4? How? 

2) Is it possible to have 𝑓(𝑥) = −4? How? 

3) By dragging 𝑥 from -1 to 1, what are all the possible values that 𝑓(𝑥) can assume? 

Explain your answers on a sheet of paper. 

The function is not everywhere-defined and we consider this to be a good starting point to 

speak about the domain; the function is also non-injective, which could support students’ 

observations about the set of images of the function. 

The design of the first and the second questions has been already discussed for the previous 

activity, while the third question is about the image of an interval. A tool offered by the 

software GeoGebra that can be useful to answer to this question is the Trace tool. If the 

students are not used to working with the software, we did not expect them to use this tool 

spontaneously, in this case it could be suggested to them to activate it on 𝑓(𝑥) . An 

affordance of this tool is to show all the values that  𝑓(𝑥)  takes on when 𝑥  varies. 

Interestingly, this is done by eliminating the temporal dimension: the result of the process is 

a static object, the set of all the positions touched by 𝑓(𝑥), which realizes the set of images 

of a specific interval of the domain.  

Finally, the non-injectivity of the function allows to highlight the difference between the 

dynamic succession of values which the dependent variable takes on when the independent 

one moves from one value to another one, and the static set of the values which the 

dependent variable takes on. This is because in the first case we consider the fact that 𝑓(𝑥) 

takes on the same value twice, which needs to be noticed in time, while in the second case 

the temporal dimension is not taken into account. 
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Figure 8. After having dragged A within [-1, 1], with the Trace activated on B 

 

Design choices developed during the implementation of the sequence of activities:  

 In all the activities and in the GeoGebra files the independent and dependent 

variables were labelled A and B respectively, because these were the names used 

and shared by the class during the previous lesson. 

4.4.3.3 Third lesson 

 

Goal: to reinforce the branch that links the signifier “dependent/independent variable” to its 

realization within the GeoGebra file “directly/indirectly draggable tick” and to go on with the 

focus on the domain and the set of images of a function. Moreover, while solving problems 

that involve these mathematical objects, to explore the injectivity that leads to observe the 

existence of maximum/minimum points. 

Students work in pairs on pre-designed GeoGebra interactive files, using some of the tools 

offered by the software: Dragging and, eventually, Trace. 
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Activity3_1: realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
. The first task is: Explore the 

construction, identify and describe possible movements by using the dragging tool and write 

down your own observations on a sheet of paper.  

The second part of the task, Activity3_1bis, is projected to the class by using the IWB and it 

consists of the following questions: 

1) Is it possible to have 𝑓(𝑥) = −1? How? 

Is it possible to have 𝑓(𝑥) = 1? How? 

2) Which are all the values that 𝑓(𝑥) can assume? 

3) Which of these values is it possible to obtain in 0; 1; 2; 3… different ways? 

We chose this function because it is not everywhere defined and it has a vertical asymptote. 

In the one-dimensional case this asymptote can be identified as follows: the dependent 

variable disappears from one side of the screen and it reappears from the other side. We 

know from the literature that students are usually surprised by this fact and they tend to 

produce creative narratives to interpret it (Healy & Sinclair, 2007). 

Moreover, this function is non-injective and it has a relative maximum and a relative 

minimum. These aspects can be noticed by students if they observe that the dependent 

variable takes on every value twice, except at the two critical points. The third question is 

posed to promote this kind of exploration. The choice of the function could also support 

discourse on the intervals of monotonicity as a direct result of the description of 

maximum/minimum points, because at these points the dependent variable changes its 

direction of movement on the line. 

The first and the second questions aim at the identification of domain and set of images. In 

order to identify the set of images of the function, and to answer the second question, it 

could be useful to activate the Trace tool on 𝑓(𝑥), as discussed for the last lesson.  

Activity3_2: realization DGpp of a function defined ad hoc. The task is: describe and 

comment all the information you can obtain about the charge level of a mobile phone 

battery, over time, during a 48 hours interval. 

We created a partially defined function that could ostensibly represent two life cycles of a 

battery. In particular, we bound 𝑥 to the interval [0, 48] of the real number line and we used 

a quadratic function for the discharge processes and a linear function for the charge 

processes. Moreover, we designed the file so that during the first discharge process the 

battery reaches 0%, but during the second discharge process it stops at 8%. This way there 

are values that 𝑓(𝑥) takes on two, three or four times. 

This problem is very similar to the previous one from a mathematical point of view, especially 

for the non-injectivity of the function and for its critical points, and also for the fact that the 

function is not everywhere defined. In this case the independent variable stops as soon as it 

reaches the extremities of the domain so it’s highlighted by the construction. The main 

difference is that in the second case there is a realistic context. It could be interesting to 

investigate possible changes in students’ explorations and discourse that can be related to 

the changing of the context. 

The scale used for the two lines is not the same, so we did not expect students to overlap 

them – which would mean switching from the realization DGpp to DGp. 



58 
 

Design choices developed during the implementation of the sequence of activities:  

 In Activity3_1 the independent and dependent variables were labelled A and B 

respectively, because these were the names used and shared by the class during 

the previous lessons. 

4.4.3.4 Fourth lesson 

 

Goal: to speak about the mathematical object ‘set of images of a function’, highlighting the 

difference between the set (a static object) and the trajectory of the dependent variable 

while moving the independent one in an interval of the domain (a dynamic process that 

includes time). In order to reach this main goal, we designed some activities that ask students 

to compare two functions. Another purpose of these tasks was to promote students’ 

discourse on domain and monotonicity properties. 

Students work in pairs on predesigned GeoGebra interactive files, using some of the tools 

offered by the software: Dragging and Trace. 

First of all, we observe that the one-dimensional realization of two functions needs the 

construction of four parallel lines, one for each variable. This means that by dragging one 

independent variable the user can only move one dependent variable, that is its image. But 

the tasks ask for a comparison between the two functions, so we expected students to give 

answers separately for the two functions and then to try to match their answers in order to 

obtain only one valid for both functions. 

Activity4_1: realization DGpp of the two functions 𝑓(𝑥) =
1

2
𝑥(𝑥 + 4)(𝑥 − 2) and 𝑔(𝑥) =

𝑒𝑥−1 − 5. The task is: compare and describe which the possible movements for f(x) and g(x) 

are. Then, determine whether it is possible that: 

1. f(x) is greater than g(x) 

2. f(x) is smaller than g(x) 

3. f(x) and g(x) have the same value 

And if it possible, for which 𝑥 values does this happen? 

The first request is to compare movements, as we usually asked in these activities, whereas 

the three questions are standard, similar to those we can find in an Italian textbook. This 

allows investigation of whether students translate their descriptions of movements of 

variables, that we expected to appear in the first answer, into static intervals to which the 

independent variable belongs. 
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The functions are defined so that they take on the same value for one 𝑥-value and, from a 

certain value of 𝑥  on, one is always greater than the other one. With respect to the 

mathematical context of reference these functions are appropriate with respect to the goals 

of this lesson because 𝑓(𝑥) is non-injective, so it has different intervals of monotonicity 

where its behavior changes, while 𝑔(𝑥) tends to -5 for 𝑥 tending towards negative infinity 

and it is an always increasing function. 

Activity4_2: realization DGpp of the two functions 𝑓(𝑥) = 𝑥2 𝑎𝑛𝑑 𝑔(𝑥) = |𝑥| +
3

2
. The task 

is: choose, if possible, an interval where 𝑥1 and 𝑥2 can vary, in order for the set of values 

which 𝑓(𝑥1) takes on and the set of values which 𝑔(𝑥2) takes on to be disjoint. 

We chose these examples because they are always positive and non-injective functions, 

features that could remind students of the exploration that took place during the last lesson 

about finding the values that a function takes on zero, one or two times. We wanted two 

functions taking on the same value, for at least one 𝑥 -value, in order to focus on the 

difference between functions having disjoint sets of images and functions having non-

intersecting graphs. Indeed, to solve the task it is not enough to choose an interval of the 

domain which does not contain 𝒙 such as 𝑓(𝒙) = 𝑔(𝒙), but we need to have that “for every 

𝑥1, 𝑥2 in the interval 𝑓(𝑥1) ≠ 𝑔(𝑥2) ”. This means that, given an interval where the 

independent variable varies, it does not matter for which value in this interval (when) the 

dependent variable takes on a fixed value in the codomain, but whether it takes on this value 

at all. By looking at the DGpp without considering the temporal dimension characterizing the 

variation of the independent variable we could clearly visualize and verify this property, and 

this can be done for example by activating the Trace tool on 𝑓(𝑥1) and 𝑔(𝑥2) and dragging 

𝑥1, 𝑥2 within a certain interval. 

We expected students to overlap the lines where 𝑥1, 𝑥2 move, as shown in the figure below. 

 

Figure 9. Example of dragging 𝒙𝟏, 𝒙𝟐 in [2, 3] with activated trace. The functions have non-disjoint 

sets of images but different for every x in [2, 3]. 

Design choices developed during the implementation of the sequence of activities:  

 We replaced the first activity with another one, that is very similar to it from a 

mathematical point of view, but which involves a realistic context. This is because 
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we noticed that students developed richer and more creative narratives when they 

had to solve problems where they could find some relations with their experiences. 

Activity4_1: realization DGpp of two functions, which contains four parallel lines 

and the grid is activated in order to have all the lines numbered. The task is: 

describe and comment all the information you can obtain about Aldo’s (TA) and 

Bianca’s (TB) telephone plans, which are expressed in euros, depending on the time 

spent to call, which is expressed in hours. Then, compare the two plans. 

We defined two functions in this way: one linear function and a partially defined 

function that is initially constant and then it becomes a step function. They seem 

quite realistic in representing phone fees. Moreover, these functions take on the 

same value for two different 𝑥-values, that can support discourse on the slope, and 

so the derivative, of the functions. Indeed, we expected students to observe which 

dependent variable is the fastest or the slowest in a fixed interval before and after 

their meeting.  

The task requires a comparison, for example students could find which function is 

the greatest, or the smallest for a fixed point of 𝑥1 and 𝑥2, which in terms of the 

phone fees means to find the most expensive, or cheapest, fee for a person who 

spends that amount of time calling. 

This problem could also foster discourse on the set of images, for example by 

setting a particular range of time calling and asking how much Aldo and Bianca 

should pay. 

 In Activity4_2 the variables 𝑥1, 𝑓(𝑥1), 𝑥2, 𝑔(𝑥2) were labelled A, B, C and D 

respectively, because these were the names used and shared by the class during 

the previous lessons. 

4.4.3.5 Fifth lesson 

 

Goal: to introduce students to the dynamic realization of a function on the Cartesian plane, 

and to work on the construction of the link that relates it to the already known realizations 

of the function and its properties. 

Students work in pairs on predesigned GeoGebra interactive files, using some of the tools 

offered by the software: Dragging and, possibly, Trace. 
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Activity5_1: realization DGc of the function 𝑓(𝑥) = −𝑥 + 5. The task is: Explore the 

construction, identify and describe possible movements by using the dragging tool and 

write down your own observations on a sheet of paper.  

This is the same function we used for Activity1_1, because we wanted a linear function to let 

students explore the realization DGc for the first time and we wanted a function that they 

had already met within the one dimensional graph DGp, in order to investigate changes or 

patterns in their discourse. The main goal of this first activity was to work on the covariation 

of the two variables in two dimensions. There is a great difference with the previous 

realizations because one variable moves horizontally while the other one now moves 

vertically, so we expected that dealing with both variations simultaneously could be 

somewhat harder. 

Moreover, we asked students to compare this file with Activity5_1bis, the realization DGpp 

of the same function, and to find similarities and differences. This second task was designed 

to build the relation between DGpp and DGc.  

We expected students to name the variables “𝑥, 𝑦” (if it has not happened yet), as soon as 

they see the Cartesian plane, and also that someone might ask for the point (𝑥, 𝑓(𝑥)); in that 

case we would investigate what they suggest doing in order to visualize it or how they 

imagine its movement. So, for the moment we would ask them why they consider that point 

to be important, explaining that it is an interesting idea but that we would speak about it 

next time. 

Activity5_2: realization DGc of the function 𝑓(𝑥) = √𝑥 + 3 − 2. The task is: 

1. Is it possible to have 𝑓(𝑥) = 3? If yes, how? 

2. Is it possible to have 𝑓(𝑥) = −3? If yes, how? 

3. Which are all the possible values for 𝑓(𝑥)? And for which 𝑥 values are they taken 

on? 

Explain your answers on a sheet of paper. 

This is Activity2_2 with some modifications: the realization of the function is two- instead of 

one-dimensional and the third question is more general. We decided to propose some 

functions and some tasks again, in order to analyze possible changes in students’ approach 

and discourse and to let students explore all the mathematical objects within the new 

realization of the function. In particular, this example supports the exploration of the 

dependence relation, the domain and the set of images, as discussed for Activity2_2. We re-

formulated the third question in a more general and formal mathematical way to support 

the evolution of the discourse. 

Finally, we designed a problem that could reproduce a realistic situation. 

Activity5_3: realization DGc of the function ad hoc defined 𝑓(𝑥) = −
𝑥2

25
+ 𝑥 + 1, where the 

𝑥-axis is labelled “liter” and the 𝑦-axis is labelled “ton”. The task is: describe and comment 

all the information that you can obtain about the seasonal trend of the citrus production of 

a farm, depending on the quantity of fertilizer which is used. 

We rotated and translated a parabola in order to have a fertilizer’s optimal quantity for the 

production of the farm, while for a higher quantity the citrus production decreases. The 

mathematical objects that could emerge from this activity are the following. The domain, 
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indeed we restricted 𝑥 to the interval [0, 
25+5√29

2
] and so the tick stops when it reaches one 

of the two endpoints that have been chosen in this way: 𝑥 = 0 because using a negative 

quantity of fertilizer has no meaning in a real context; 𝑥 =
25+5√29

2
  because 𝑓 (

25+5√29

2
) =

0 and for bigger 𝑥-values the function is negative, that is, the farm produces a negative 

amount of citrus and, again, it has no meaning in a real context. The set of images, indeed 

𝑓(𝑥)’s movement is limited, and the intervals of monotonicity of the function that increases 

and then decreases; its maximum point and the fact that it is a non-injective function which 

takes on almost every value twice. 

As we can notice, the same task could be given in a static context, because there are no 

references to the specific dynamic environment. This is designed to not influence students’ 

words choice and discourse construction. 

Design choices developed during the implementation of the sequence of activities:  

 In all the activities the independent and dependent variables were labelled A and B, 

respectively, because these were the names used and shared by the class during 

the previous lessons. 

4.4.3.6 Sixth lesson 

 

Goal: to develop students’ use of words and expressions to describe the mathematical object 

‘function’. In particular, to reinforce the branches between different realizations that we can 

find in students’ discourse on the dependence relation between two variables and all the 

mathematical properties of functions met at this time.  

Students work in pairs on predesigned GeoGebra interactive files, using some of the tools 

offered by the software: Dragging and, potentially, Trace. 

In order to reach the main goal of this lesson students need to talk and produce narratives. 

We designed a problem where two functions are involved and it asks for the composition. In 

particular, students were engaged in working with two separated files where the dependent 

variable of one of them should play the role of the independent variable in the other file. In 

this way they could gain some information about the compound function. 

Activity6_1: realization DGc of a function defined ad hoc, where the 𝑥-axis is labelled 

“month” and the 𝑦-axis is labelled “𝑚3”. The first task is: describe and comment on all the 
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information that you can obtain about the quantity of water that has to be used every 

month to irrigate a garden for a year, that has 100 m2 of grass. 

We used a partially defined function whose domain is the interval [0, 12) and for which 

𝑓(𝑥) = 0 for every integer 𝑥 belonging to this interval. Moreover, we set it up so that during 

the summer, for 𝑥 ∈ (5, 7), 𝑓(𝑥) reaches the maximum value. 

Activity6_1bis: realization DGc of a function defined ad hoc, where the 𝑥-axis is labelled 

“𝑚3” and the 𝑦-axis is labelled “euro”. The task is: describe and comment on all the 

information that you can obtain about the price of water with respect to its consumption. 

The domain of this function is the set of real positive numbers and it is defined by using three 

linear functions, that model the water’s fee (according to information we found on the web). 

As for the last lesson, someone could ask for the point (𝑥, 𝑓(𝑥)) and in that case we would 

investigate what they suggest doing in order to visualize it or how they imagine it might 

move. In that case, for the time being, we would ask them why they consider that point to 

be important, explaining that it is an interesting idea that we will speak about next time. 

Then the second part of the task is projected onto the IWB; it contains the following 

questions: The owner of a garden is worried about the amounts he has to pay to irrigate his 

garden that has 100 m2 of grass, and he has the following doubts:  

a) Will I ever have to pay less than 5 euros for the irrigation of my garden?  

If yes, when? If not, why not?  

b) Will I ever have to pay more than 50 euros for the irrigation of my garden?  

If yes, when? If not, why not? 

By keeping the files containing Activity6_1 and Activity6_1bis open, answer the two 

questions on a sheet of paper. 

Then, describe how the cost of the water varies in time, for the owner of the garden that each 

month has to pay for the garden’s irrigation (we do not consider any monthly fixed fees).  

Questions a) and b) are designed to have students use both the files simultaneously, in order 

to gain some information about the compound function. For example, in order to answer the 

first question, we expected that they might open Acctivity6_1bis and drag 𝑥  to obtain 

𝑓(𝑥) ≤ 5 and discover how many 𝑚3 there are. 

Finally, we explicitly asked for a description of this function, in qualitative terms. We notice 

that the tasks never use the formal expression ‘compound function’; indeed we do not think 

our students have ever seen this mathematical object in class, but by using the dynamic 

realization designed and the discursive approach proposed they should be able to make 

sense of it and deal with it.  

The following problem is taken from the literature and re-arranged for the specific dynamic 

environment.  

Activity6_2: realization DGc of two functions, where there is one independent variable 

bound to the 𝑥–axis and two variables depending on it bound to the 𝑦–axis. The task is: 

Here are represented the speeds of two different cars with respect to time, they started the 

race at the same position and they move in the same direction. What can we infer about 

the mutual position of the two cars at different times? 
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We defined two speed-time functions 𝑣1(𝑡), 𝑣2(𝑡), that model a possible real situation if we 

consider the units  
𝑘𝑚

ℎ
 on the 𝑦-axis and 𝑚 on the 𝑥-axis. For small t values v1<v2, then this 

relation swaps and the cars have a constant speed. The most interesting point is where the 

two cars have the same speed, because it is usually interpreted by students as the point 

where the cars physically meet each other (Carlson et al., 2002). 

As we can notice, the same task could be given in a static context, because there is no 

reference to the specific dynamic environment. This was done in order not to influence 

students’ choice of words and discourse construction. 

Design choices developed during the implementation of the sequence of activities:  

 Activity6_2 was not proposed in class, to leave more time for the compound 

function problem that better fitted within the sequence of lessons that were 

actually proposed to our students. Indeed, Activity6_2 is first of all a modeling 

problem whose focus is the fact that a speed-time graph is represented and 

typically treated as a space-time graph: this aspect was not among our priorities at 

this point of the experimental sequence. 

4.4.3.7 Seventh lesson 

 

Goal: to introduce the realization SGc of the function by working on the branches that link it 

to the other realizations and, in particular, to deal with the point (𝑥, 𝑓(𝑥)), studying its 

trajectory in the Cartesian plane.  

Students work in pairs both in the dynamic and static environments. Indeed, there are some 

tasks in GeoGebra interactive files, where students have to use Dragging and Trace tools and 

some other tools offered by the software to make small constructions in the same file (for 

example points and perpendicular lines), but there are other tasks that involve paper and 

pencil answers. 

The first and second activities support the transition between SGc and DGc, so the 

construction of a relation between two realizations of the same signifier. 

Activity7_1: realization DGc of the function  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
. The 

task is: draw on a sheet of paper the trajectory of the point (𝑥, 𝑓(𝑥)). 

This is a non-injective cubic function with only one real zero, because we wanted to try to 

avoid the strategy that consists in finding some specific coordinates and then connecting 
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them with a curve to obtain the graph of the (usually known) function. In this case the 

intersection points with the 𝑥-axis, at least, are not so simple to discover. Instead, we tried 

to foster the description of the dynamic aspects, for example imagining the trajectory of 

point (𝑥, 𝑓(𝑥)). We observe that this point is not visualized on the computer screen, so the 

task requires paying attention to the variations of both variables at the same time and then 

sketching a curve on the sheet of paper that realizes this covariation. 

Activity7_2: realization DGc of the function 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
. The task is the inverse of the 

previous one and it is on the following sheet of paper, which was given to each pair of 

students 

Open the GeoGebra file Activity7_2.ggb and state which one of the following graphs represents 
the trajectory of the point (𝑥, 𝑔(𝑥)). Explain your own choice, describing on the sheet of paper 

how you chose your answer and why you rejected the others. 
 

A) 

 
 
B) 

 
 

C) 
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Students dealt with this function in Activity3_1 with the realization DGpp so it would be 

interesting if someone recognized it and suggested some links with the one-dimensional 

realization. The two incorrect options are the graphs of the functions 
1

𝑥−3
  and – (

𝑥

2
+

3

𝑥−3
), 

which were chosen because they both have a singularity for 𝑥 = 3 but their behavior for 𝑥 

tending to negative and positive infinity is different. 

After this activity, we used the IWB to show the construction of point (𝑥, 𝑔(𝑥)) and, by 

dragging 𝑥, we fellow its trajectory so students could check their answers. Then we asked 

them to do the same construction in the file Activity7_1 and to use it to verify their drawings. 

We expected that someone could suggest the activation of the Trace tool on the constructed 

point in order to better visualize its trajectory, otherwise we would do it.  

We remark that the choice to show the construction on the IWB in order to give students the 

necessary tools is due to the fact that they were not used to working with this software. 

Indeed, it was not the main focus of the lesson, so we did not consider it worth to spend too 

much time on this part. At the same time, we think that by visualizing and reproducing the 

construction students may experience the importance of building two lines to obtain the 

desired point, and so the fact that a point in the Cartesian plane has two coordinates, not 

only one value. In particular, the lines have to pass through the independent and dependent 

variable respectively, so attention can be brought to the fact that the point (𝑥, 𝑔(𝑥)) exists 

thanks to both contributions. 

The next activity supports the transition between SGc and DGpp, so the construction of a 

relation between two realizations of the same signifier. 

Activity7_3: realization DGpp of the function ℎ(𝑥) =
3

2𝑥
+ 2. The task is: draw on a sheet of 

paper the graph of this function in the Cartesian plane. 

We performed certain transformations to 
1

𝑥
, in order to avoid immediately recognizable 

points that students could interpolate, for the same reason explained before. And we started 

from 
1

𝑥
 in order to have a function with vertical and horizontal asymptotes to foster students’ 

discourse on these properties of the function, in particular during the transition from one 

dimension to two dimensions.  
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Design choices developed during the implementation of the sequence of activities:  

 Activity7_3 was not proposed in class because students’ construction of the point 

(𝑥, 𝑓(𝑥)) to verify their answers to Activity7_1 took up a lot of time. 

 

4.4.3.8 Eighth lesson 

 

Goal: to reinforce the links between the four different realizations DGp, DGpp, DGc and SGc 

and between these and the mathematical reference context. For this reason, the aim of the 

designed activities is to support the use of different symbolic artifacts simultaneously. 

Students work in pairs both in the dynamic and static environments. 

Activity8_1: realization DGpp of the function 𝑓(𝑥) = {

3

2𝑥
+ 2                                 𝑥 > 0

(𝑥 + 1)2(𝑥+ 6)(𝑥+ 3)

𝑥
 −  1    𝑥 ≤ 0

  

The task is: draw on a sheet of paper the graph of this function on the Cartesian plane. 

We partially defined a function trying to obtain horizontal and vertical asymptotes, non-

injectivity and coordinates that were not immediately recognizable. In this case it is not 

possible to build the point (𝑥, 𝑓(𝑥)) because the dynagraph is in one dimension. 

After this activity we showed on the IWB the same realization of the same function. However, 

it was possible for us to rotate the 𝑦-axis in order for it to become orthogonal with respect 

to the other one, and that, combining the origins, to obtain the Cartesian plane. Moreover, 

in the same file we built point (𝑥, 𝑓(𝑥)) and let students compare its trajectory with their 

drawings, potentially activating the trace tool on this point. In this way we let students work 

on the relation between three realizations of the same signifier (DGpp, SGc, DGc) and on the 

realization of the graph as the trajectory of the point (𝑥, 𝑓(𝑥)). 
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Activity8_2: the task is on a sheet of paper, given to each pair of students. It contains the 

following: 

 
By activating the Trace on point (x, f(x)) we obtained: 

 
 

Indicate what would colour by activating the Trace on 𝑥: 

 

 
 

Indicate what would colour by activating the Trace on 𝑓(𝑥): 

 

 
 
 

 

This activity focuses on the distinction between the independent variable, the dependent 

variable and the point (𝑥, 𝑓(𝑥)). The Trace tool has a twofold function: it transforms the 

(dynamic) trajectory into a (static) set of “crossed” values by eliminating the temporal nature 

of the dragging action that causes the movement of the variables and it helps to keep 

separate the notions of domain, set of images and graph because there are different parts 

of the same figure colored.  
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Activity8_3: the task is on a sheet of paper, given to each pairs of students. It contains 

the following: 

 
Draw on the Cartesian plane the graph of a function with the following properties: 

 

 Before 𝑥 equals zero, if 𝑥 increases 𝑓(𝑥) increases as well 

 When 𝑥 is greater than six, they have opposite directions 

 As 𝑥 moves forward, 𝑓(𝑥) moves more and more: for example, if 𝑥 moves from -5 to -
4, 𝑓(𝑥) moves only little, if 𝑥 moves from 1 to 2 𝑓(𝑥) moves much more 

 𝑓(𝑥) can take on all the negative values and the positive values up to 10, because 
when it reaches 10 it goes back 

 They intersect approximately at 3,5 

 We can obtain some values of 𝑓(𝑥) in just one way, others in two, in three, or in four 
different ways 

 

 

This task is very similar to Activity8_1 but this time the description of the dynamic graph with 

parallel axes is given and students have to draw it. So, this time, they were asked to translate 

the information expressed verbally into an iconic realization, but they also had to translate 

the description of a DGpp into a SGc passing from the dynamic to the static context and from 

one dimension to two dimensions. 

Design choices developed during the implementation of the sequence of activities:  

 The description of the properties that the function should have in Activity8_3 is 

made combining several expressions used by students during the sequence of 

activities.  

4.4.4 A priori analysis 

In the following table we made a list of all the activities designed for the experimental 

sequence; for each activity we specified which realization of the function is involved. Then, 

we colored the boxes referring to the mathematical objects, which are listed in the first line, 

depending on the goal of that activity. In particular:  

- A black box indicates the mathematical object that has been mainly considered 

during the design process of the task. It means that the main goal of that activity was 

to foster students’ discourse about this mathematical object.     

- A grey box indicates the mathematical object that has been considered during the 

design process of the task, but with a secondary role. This means that we designed 

that activity in order to let students eventually also include this mathematical object 

in their discourse, because it represented like a sub-goal of the main goal indicated 

by the black box. 

- A white box refers to a mathematical object that has not yet been included among 

the goals of the task during the design process. 

As we can see in the table below, some mathematical objects were at the core of several 

activities, while others occurred only in some of them. For example, each activity focused on 

the dependence relation between the two variables, even if it was not the main goal of all of 

them, as suggested by the colors. At the same time, we can observe that the derivative was 

considered in the design of an activity for the first time in the last lesson.  
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This table refers to the analysis done for the task design and so it indicates the mathematical 

objects that each activity is designed to support. In particular, we highlighted our goals with 

respect to the mathematical context, by using three different priority levels determined by 

the use of white or grey or black. This allows the reader to have a general view of the whole 

experimental sequence that we designed, but it will also be useful in the a posteriori analysis, 

when, after the implementation of the sequence, we will create a similar table and then 

compare them. 

 

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

1_1 DGp          

1_2 DGp          

1_3 DGpp          

2_1 DGpp          

2_2 DGpp          

2_3 DGpp          

3_1 DGpp          

3_2 DGpp          

4_1 DGpp          

4_2 DGpp          

5_1 DGc-
DGpp 

         

5_2 DGc          

5_3 DGc          

6_1 DGc          

6_1bis DGc          

7_1 DGc-
SGc 

         

7_2 DGc-
SGc 

         

8_1 DGpp-
SGc 

         

8_2 SGc          

8_3 SGc          
Table 4.2. A priori analysis of the mathematical objects 

4.5 DESIGN OF THE INTERVIEW 
The design of the interview took place at the end of the implementation of the lessons.  

The main goal was to make students deal with the static and the dynamic realizations of a 

function, so the problems that we designed were centred on the relation between different 

realizations; for example, students had to translate their discourse about a dynamic graph 

into discourse about a static realization of the same function. Moreover, we wanted to 

observe students’ behaviours when asked to apply the formal definitions of some 

(supposedly new) mathematical objects, which had been discussed during the lessons but 

had never been introduced in formal mathematical terms. Indeed, we were interested in 

observing possible changes in their discourse. 
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Now we are going to describe the tasks given to the pairs of students during the interview. 

In particular, we will see the transcript of the interview that we used with Alessio, which 

contains some of the activities designed for lessons 7 and 8, that took place when he was 

absent. Then, we will see the transcript of the interview that we used with Matilde and Nicco; 

for the interviews used with the pairs of other students we only changed the functions, since 

they took place within an interval of 3-4 days. In general, we defined specific functions in 

order to have examples of vertical or horizontal asymptotes, limited domains or limited sets 

of images, constant functions, maxima/minima and points of non-injectivity. These choices 

were made because we wanted the students to speak about the different mathematical 

properties of functions which they had encountered during the lessons. 

4.5.1 The tasks for Alessio 

1) Activity7_1 

2) Activity7_2 

3) Activity8_1 

4) Activity8_2 

4.5.2 The tasks for Matilde and Nicco 

1) Imagine having this function represented with parallel axes in a GeoGebra file, how 

would you describe it? 

 
 

2) One of you sits at the computer and the other one sits in front of him.  

The student at the computer opens the file named Intervista1.ggb and describes it 

to other student who, following the directions received, has to draw the graph of 

the function on the Cartesian plane on a sheet of paper. 

ATTENTION! The following actions are forbidden: to show any writing, to turn the 

computer screen, or to give information by using hand gestures. 

3) Repeat the same activity, this time changing your spot and with the file 

Intervista2.ggb. 

4) Carefully read the instruction on the sheet of paper that you received; it is the copy 

of a page belonging to a mathematical textbook for high school. Then answer these 

questions which refer to the graph below: 

 

a. Colour the image of the interval [-1, 1] 
b. Colour the pre-image of the interval [-5, -3] 
c. Which is the domain of this function? 
d. Which is the set of images of this function? 
e. Is it injective? Why? 
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Figure 10 shows the sheet of paper that we gave to students in task 4. We wrote on the 

worksheet that it is the copy of a page from a mathematical textbook for high school, but we 

actually designed it by re-arranging on the same page the definitions taken from different 

sections of the book by Bergamini, Trifone & Barozzi (2005) and by giving to the page a 

realistic layout. 

 

Figure 10. A book page used for the interview 
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4.6 DATA ANALYSIS 
The data collected include video recordings, taken from the cameras and from the screen 

capturing software that was running in the background while students were working in 

GeoGebra, and students’ worksheets produced during all the activities; both for the lessons 

and the interviews. 

The data analysis process consisted of the transcription of the data and then of the analysis 

of the transcripts. In particular, we organized the transcripts in tables having the following 

structure: 

# When Who What is said What is done 

In fact, we transcribed the words spoken and made note of the dragging actions and gestures 

that took place in the videos; we specified the subject of each action and the researcher was 

marked as ‘R’. We organized the transcripts in order to highlight the interplay between 

words, dragging actions and gestures within the student pairs’ discourse, also including some 

screenshots of dragging or gesturing actions in the column called ‘What is done’. The 

punctuation was added in this way:   

 a comma is used for very short pauses,  

 a period is also used for short pauses, in particular those pauses which seem to mark 

the end of a sentence;  

 more consecutive periods denote longer pauses: the higher the number of periods 

is, the longer the pause lasted.  

Moreover, transcripts contain the exact ways in which words were uttered by students, for 

instance, a student’s utterance “B equals two when A is less than five and more than four” is 

written exactly that way and not as “B=2 when 4<A<5”. During this phase, we also identified 

some critical events which could be significant with respect to our research questions. 

Then we analyzed all the transcripts through different perspectives, depending on the 

research question we were addressing. In particular, we improved some tools offered by the 

theory to carry out the analyses. For example, we looked at how students used the dragging 

tool, both physically when manipulating the GeoGebra files and also by referring to it in their 

discourse, searching for recurring features. We will show these analyses in Chapter 5. 

Moreover, we created a coding scheme to identify instances of students’ discourse mirroring 

potential expert discourse about specific mathematical objects. In the analyses, that we will 

show in Chapter 6, we will present excerpts from the transcripts to explain how we identified 

seeds of possible realizations of mathematical signifiers in students’ discourse. 
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5 THE MEDIATION OF DRAGGING  

During the transcription process of all the videos, we focused on the main features and on 

possible modification of students’ discourse on covariation. The first thing we noticed was 

that it is rich in references to movement, time and space (Colacicco, Lisarelli & Antonini, 

2017), as expected. Indeed, students were working on the activities that we designed and 

almost all of them involved the use of the software GeoGebra where, thanks to the dragging 

tool, activated through the mouse, they could experience the dependence relation that links 

a (dependent) tick to the one that is directly dragged. Thanks to the possibility of dragging 

they could also visualize the movements of the two ticks realizing the variables and the 

relation between these variations, that is the covariation. For this reason, one of our research 

questions concerns students’ use of dragging when interacting with the DIMs that we 

designed. In particular, we were interested in investigating the role of dragging in the process 

of construction of a discourse on functions, in terms of its place for students and how they 

physically use it, how they communicate about it and through it. 

The investigation of these aspects led us to identify different types of dragging, which 

students efficiently use for the exploration of the proposed DIMs, and different ways in 

which dragging mediates students’ discourse, which seem to be supported by the designed 

activities in a DIE. In particular, we described the classification of the types of dragging in 

Chapter 2 and now we are going to show how it can be efficiently used to observe, describe 

and analyze students' discourse about functions in this specific context. The main goal behind 

our analyses is that of investigating if, and eventually how, the dragging mediated students’ 

emergent discourse about functions. In particular, we are interested in studying how it is 

used by students as visual mediator in the communication with other students or with 

themselves; as expressed in our second research question. 

In this chapter we will also show how the analysis of students’ use of dragging allows us to 

investigate about the types of routines that seem to be supported by the activities that we 

designed. Moreover, we will describe a possible development of students’ discourse towards 

that of an expert, that we observed along the sequence of lessons. 

5.1 DRAGGING MEDIATED DISCOURSE 
Gestures and dragging actions can be used both repeatedly to define a discursive pattern 

and as mediators to complement word use. From a preliminary analysis of the videos’ 

transcripts we noticed that students' discourse is heavily mediated by dragging, where the 

mediation is intended according to the theory of commognition, as discussed in Chapter 2. 

This fact was not unexpected to us because we asked students to work in a DIE, where 

gestures and dragging actions play a central role in the communication. In particular, we have 

seen that characterizing features of the realizations of functions that we used are the 

dynamism. Indeed, the positions of the ticks realizing the variables can move under dragging. 

Moreover, we have seen that they are interactive, because they respond to students’ 

dragging actions by maintaining the relationship between the variables. Therefore, we 

wanted to analyze in fine grain how students’ discourse involved the mediation of dragging 

and gesturing actions and we carried out this analysis with tools that had previously been 

developed within the communicational approach to characterize mathematical discourse.  
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Drawing on the works of Morgan & Sfard (2016) and of Nachlieli & Tabach (2012), we chose 

to focus on specific aspects of students’ discourse that are strictly related to the use of DIMs. 

Morgan and Sfard (2016) analyzed students’ written discourse in a context of maths 

examinations, by developing an analytic scheme in which they expressed the aspects of the 

discourse that they wanted to investigate and the questions that guided the analysis of these 

aspects. Nachlieli and Tabach (2012) focused on students’ discourse about functions in a 

context where they were introduced for the first time to this mathematical signifier; the 

analyses are led by the four-stage model (see section 2.1.1.2) for the evolution of the use of 

words that was described by Sfard (2008).  

One of the aspects of students’ discourse that we wanted to investigate was the use of 

dragging and gesturing actions as mediators in communication. We were also interested in 

studying a possible evolution in their use of these mediators, during the sequence of lessons. 

In order to capture key items for a fine-grained analysis of dragging mediated discourse, we 

formulated the following guiding questions:  

- whether the dragging tool is physically used during the speaking; 

- whether the dragging blends with a gesture becoming an act of dragsturing; 

- whether the subject is a person or an object; 

- whether mathematical objects are considered; 

- which verb tense is used. 

In other words, we set out to capture very specific features of the discourse, such as students’ 

use of static or dynamic mediation, the type of mediator used, since it can be a symbolic 

artifact or a visible object employed in the communication, and whether it is physically 

manipulated, reproduced through a gesture or just seen. Moreover, we wanted to identify 

the subject and the object of the discourse, and the words used to address a mediator. 

Through these elements we also expected to be able to capture possible changes in dragging 

mediated discourse over time.  

In the rest of this chapter we will show how the analysis of students’ discourse leads to the 

identification of different ways in which dragging seems to mediate their discourse. In the 

next section we will give a detailed and operative description of these different ways. 

5.1.1 Characterizing dragging mediated discourse 

From the analysis of students’ discourse, according to the research focuses explained above, 

we identified three different phases of what we called dragging mediated discourse: a 

passive phase, an active phase and a detached phase. We used the term ‘phase’ because it 

suggests a sort of temporal evolution from the first one to the third one. In fact, with respect 

to our sequence of lessons, we found most instances of the passive phase from the first to 

the third lesson; of the active phase from the second to the eighth lesson, and in the 

interviews; of the detached phase during the eighth lesson and the interviews.  

Moreover, we are tempted to consider this temporal evolution of the phases also as a 

possible development of students’ discourse towards a discourse closer to that of an expert 

mathematician, and we will focus on this aspect later in this chapter. The foundation of our 

idea can be placed in Sfard’s work where she describes a four stage model of the 

development of word use (Section 2.1.1.2). In particular, she argues that students’ word uses 
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change during the individualization process of a discourse, going through a passive use; a 

routine-driven use; a phrase-driven use and, finally, an object-driven use. Starting from this 

idea, we described a model of the development of the role of dragging as a mediator in 

students’ discourse, by identifying three main phases and giving them names that evoke 

those given by Sfard.  

Now we are going to characterize each phase of dragging mediated discourse. 

 Passive phase 

The dragging tool is physically used. The discourse is about dragging, it is a 

description of the direct action of the dragging tool on an object, while there are no 

mathematical objects considered. In this first phase of dragging mediated discourse 

the subject is a person, the student, and the object is the movement of the objects 

upon which she acts through dragging. An explorative dragging allows the student 

to answer to the question posed in the activity, or to a request of the teacher, that 

explicitly ask for dragging and for describing the effects of dragging. Indeed, the 

student uses types of dragging that we would not expect from an expert interacting 

with the DIM, as frequent attempts to drag the tick realizing the dependent variable 

that cannot be directly dragged. Moreover, sometimes the students show also to be 

surprised by what they see on the screen.  

The verb tense used within this discourse is the present simple and some typical 

expressions or words that characterize it are: “I can(not) move it”, “you can(not) 

move it”, “drag it”, “move it” (in Italian: “(non) lo posso muovere”, “(non) lo puoi 

muovere”, “trascinalo”, “spostalo”). 

 Active phase 

The dragging tool is physically used. The discourse is about the effects of dragging 

that are visible on the computer screen, it is a description of the perceived relations 

between the moving objects. The focus of this dragging mediated discourse is on the 

mathematical signifiers, while the action of dragging is not explicitly depicted and so 

the description looks as if it was independent from the person. The active phase sees 

a greater participation of the student in deciding what to move and how to move it 

and often her use of the different types of dragging mirrors that of a potential expert 

in the same task situation.  

The verb tense used within this discourse is the present simple and some typical 

expressions or words that characterize it are: “if 𝑥 […] 𝑓(𝑥) […]”, “when 𝑥 […] 𝑓(𝑥) 

[…]”, “as 𝑥 […] 𝑓(𝑥) […]” and other expressions like these that do not necessarily 

contain the labels ‘𝑥’ and ‘𝑓(𝑥)’ but that an expert can read in terms of the two 

variables (in Italian: “se 𝑥 […] 𝑓(𝑥) […]”, “quando 𝑥 […] 𝑓(𝑥) […]”, “man mano che 𝑥 

[…] 𝑓(𝑥) […]”). 

 Detached phase 

The dragging tool is not physically used. The structure and the contents of the 

discourse are very similar to those in the active phase with the focus is on the relation 

between movements; but the dragging tool is not used to act upon any objects, so 

these movements are only imagined. In particular, the active use of dragging that 
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characterizes the two other phases is here replaced by a realization of motion 

through gestures, also in a static context out of the DIE.  

Within this discourse, verbs can be in the present tense, but also in the future tense 

or expressed in the “-ing” form. Typical expressions that characterize it are: “I 

imagine to drag”, “by dragging 𝑥 [...] 𝑓(𝑥) will move [...]” and other expressions like 

these that do not necessarily contain the labels ‘𝑥’ and ‘𝑓(𝑥)’ but that an expert can 

read in terms of the two variables (in Italian: “immagino di trascinare”, “trascinando 

𝑥 […] 𝑓(𝑥) si muoverà […]”). 

 

The temporal evolution characterizing these three phases seems to also be related to the 

design of the activities. Indeed, generally speaking, initially the activites are implemented in 

a DIE, where students are asked to physically use dragging, and students’ discourse is mostly 

in the passive phase; as the activities become paper-and-pencil based, correspondingly, 

students’ discourse moves towards the detatched phase. 

In the next three sections, we will analyze some excerpts, taken from the videos’ transcripts, 

that we consider as representative examples of each phase of dragging mediated discourse. 

In particular, in the right column ‘what is done’ we also specify the type of dragging used by 

students by distinguishing between continuous, discrete and impossible dragging that can be 

objectively recognized; indeed, we identified them by looking at the movements happening 

on the computer screen. Moreover, we observe that in Italian there is a wide use of the 

impersonal form of the verbs and, in the following excerpts, we translate them by using the 

passive form; for example, “it is dragged”. 

5.1.2 Examples of dragging mediated discourse from the passive phase 

In the following excerpt, which is taken from the first lesson, students are exploring the 

realization DGpp of the absolute value function and this is the first time that they are given 

this realization where the two axes can be separated out.  

Excerpt 5.1 - Lesson 1 

(realization DGpp of the function 𝑓(𝑥) = |𝑥|) 

 When Who What is said What is done 
524 I1Mp3 

12:33 
R These lines can be.. moved apart if you 

move the line 
Activity1_3 
She points to the 
screen 

525  F How? That is, what can I do?  
526  R Take the line, not the tick Initially he drags the 

tick to the right 
527  F Ehm the line Now he drags the line 

downwards 
528  R You can move it now, if it is helpful for 

you, to understand what happens 
She moves her hand 
up and down 

529  F That is, can I actually make a copy of it?  
530  R Yes well done! …… Now maybe if you drag 

the tick you can see better 
 

531  F This one? Or that one?  
532  R Try!  
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533  L You cannot drag that one Impossible dragging 
of the dependent 
variable 

534  F Ehm I cannot drag this one  
535  L Try that one  
536 13:25 F Let’s try with this one He drags the tick to 

the left 

Franci and Lore’s discourse in excerpt 5.1 is an example of dragging mediated discourse from 

the passive phase because it focuses on possible movements of the lines realizing the axes 

and the students’ dragging actions are the objects of their discourse. There are no 

mathematical objects involved in the discourse because the students pay special attention 

to the construction. In particular, Franci and Lore use wandering dragging to explore the 

construction, as is also suggested by the researcher who explicitly tells them to drag one of 

the lines in order to discover what may happen (line 528). Then Franci expresses a movement 

that he observed, which consists in separating out the two lines, by making a copy of the line, 

at line 529, when he says “can I actually make a copy of it?”. However, Franci’s question at 

line 531 and the following impossible dragging of the tick realizing the dependent variable 

suggest that he is not keeping track of what the possible or impossible movements are. 

We also notice that the subject of the discourse is always a person who acts on the file, some 

examples of this phenomenon are: “what can I do?” (line 525); “you can move it […]” (line 

528) and “you cannot drag that one” (line 533).  

The short episode in excerpt 5.2 happened at the end of the second lesson. 

Excerpt 5.2 - Lesson 2 

(Realization DGpp of the function 𝑓(𝑥) = √𝑥 + 3 − 2) 

 When Who What is said What is done 
148 I2C2 

58:58 
A We did not see if B can be dragged Activity2_2bis 

Impossible dragging of B 
149  N It cannot be dragged, it can never be 

dragged 
 

150  A Why?!  

In this excerpt Alessio experiences an impossible dragging of B of which he is curious and for 

which he is in search for a reason at line 150. The students’ discourse is about their 

impossibility of directly dragging one of the two ticks that according to Nicco “can never be 

dragged”. Again, the subject used by the students is “we”, so there is reference to be a 

person manipulating the file. 

Excerpt 5.3 is taken from the beginning of the third lesson. Alessio and Nicco are exploring 

the realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
, with Nicco handling the mouse, and 

they are describing which movements are possible or impossible. The independent variable 

is labelled A, the dependent one is labelled B and the function is not defined at x=3, where it 

has a vertical asymptote. 

Excerpt 5.3 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
) 
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 When Who What is said What is done 
1 I3C2 

06:50 
A This irritates me, move it [A] to three Activity3_1 

Nicco drags A in a 
neighborhood of 𝑥 = 3 

2  N  It does not go there He uses the arrows of the 
keyboard to drag 

3   A Yes it does, you have to move it and 
then you can drag it. 
Look, now if you drag it, it goes one by 
one 

 

4  N  Continuous dragging of A 
forward and backward 
close to 3. Then 
impossible dragging of B 

5  A Try to overlap them, this is not possible, 
look at how it moves! But zoom in, like 
this it is too sensitive… a little bit more, 
oh zoom in…. Don’t zoom out but make 
it bigger. Let’s go and see if they meet. 
You have make it bigger, stretch a little 
bit more… but we do not see if they 
meet each other. 

The two axes are 
overlapped. 
Then they look at large 
positive A-values                                                       

6  N  Impossible dragging of B 
7 08:05 A  A is the only thing that can be dragged!  

In excerpt 5.3, Nicco uses the dragging tool in two different ways: through the mouse (line 

1), through the arrows of the keyboard (line 2) and then through the mouse again (line 4 and 

line 6). So, he obtains two different qualities of motion of the independent variable, because 

the mouse induces continuous dragging (it depends on how the student moves the mouse 

but, in this case, the movement is quite uniform), while the arrows of the keyboard induce 

discrete dragging making the point jump by one. Alessio seems to notice this fact and he 

suggests to Nicco to use the mouse when he says “you have to move it” (line 3). 

In general, the focus of the students’ discourse is on what they can or cannot move on the 

screen. Indeed, the dialogue starts with Alessio asking to Nicco to drag A and move it (line 

1), then the subject of the discourse becomes A for a while (line 2 and the beginning of line 

3), until Alessio expresses what and how Nicco can move (line 3) and so the subject of his 

discourse is a person again. 

Dragging mediates their discourse so significantly that in two lines of this short excerpt Nicco 

substitutes the dragging for words (lines 4 and 6): he does not speak aloud, instead, through 

a dragging action he succeeds in communicating with Alessio, who replies. These are two 

examples of dragsturing, in which the dragging also fulfills a communicational purpose. The 

students do not seem to manipulate the file as an expert would do, especially Nicco who, at 

the end, experiences impossible dragging (line 6) because he tries to drag B which cannot be 

directly moved; but immediately Alessio, irritated, stresses that A is the only thing in the 

construction that they can drag (line 7). 

5.1.3 Examples of dragging mediated discourse from the active phase 

In the following excerpt, which is taken from the second lesson, Alessio is sharing with the 

researcher his findings about the realization DGpp of a function, after having explored it.  
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Excerpt 5.4 - Lesson 2 

(Realization DGpp of the function 𝑓(𝑥) = √𝑥 + 3 − 2) 

 When Who What is said What is done 
284 I2Mp3 

03:57 
A Now it is this one [A] that moves 

in an uniformly accelerated way 
because as this one goes forward 
this one [A] covers more space 
and this one [B] less and less and 
so it depends on the point of 
view because this one [A] moves 
by one and this one [B] moves a 
tiny bit (Fig. 5.4a) then this one 
[A] moves by one and this one [B] 
even by even less (Fig. 5.4b). 
Therefore it depends on… on the 
point of view 

Activity2_2bis 

 
Fig. 5.4a 

 
Fig. 5.4b 

285  R But you decide how to move A  
286  A Yes  
287  R And so you describe how B moves  
288  A Yes  
289  R If I move A  
290 I2Mp3 

05:00 
A And I move A by one..ehm but I 

do not know how to write it 
because over here [negative 
numbers] if I move A by one B 
moves by…I do not know about 
point five, while if I move A over 
here [large positive numbers] by 
one B moves by point two. As A 
increases…that is, I do not know 
how to say it 

He is still dragging and he 
points to the negative and then 
the positive semi-axis on the 
screen 

In excerpt 5.4 Alessio describes how the range of movement of the dependent variable 

depends on the position on the line of the interval of variation of the independent variable. 

In particular, he expresses the changes in range as “depending on the point of view” (line 

284), because moving A by one for negative values he sees B moving by 0.5, while moving A 

by one for positive values he sees B moving by 0.2. So, he uses a combination of discrete and 

continuous dragging, both of which are guided, since he refers to moving A by one or by 0.2 

(line 290) by showing two specific examples: an interval between two negative numbers and 

an interval between two large positive numbers.  

His discourse is mediated by dragging actions and gestures (Fig. 5.4a and Fig. 5.4b), but, 

especially, it is about the relation between the movements resulting from the dragging of A. 

The subject is usually one of the two ticks, except in the last line where Alessio becomes the 

subject of the action, as can be seen from his expression “if I move A […]”. Even if Alessio 
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explicitly says “I do not know how to say it” (line 290), his discourse involves mathematical 

signifiers, indeed, it mirrors the discourse of an expert about the decreasing of the derivative 

function. 

In the following excerpt Franci and Lore are exploring the behavior of a function in a 

neighborhood of the vertical asymptote and they are working with the realization DGpp. 

Excerpt 5.5 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
) 

 When Who What is said What is done 
35 I3Mp1 

04:35 
L If A goes that way [3+] B goes there [off 

the screen to the right] and it pops up 
there [off the screen to the left], while if A 
goes from the negative [3-] to the positive 
[3+] 

Activity3_1 
Lore holds the mouse 
and drags 𝑥 in a 
neighborhood of 3 

36  F When B goes, when A goes..are you 
dragging A right?  

 

37  L Yes only A can be dragged  
38 I3Mp1 

04:55 
F Therefore if A goes from the positive to the 

negative… B keeps going in the positive, 
that is… 

 

The students’ discourse in excerpt 5.5 is an example of dragging mediated discourse from 

the active phase because it is about the movements of the tick realizing the dependent 

variable when the other tick is dragged towards a specific direction. In particular, this 

dragging action is an example of guided dragging because Lore is exploring a specific 

configuration of the construction, that is with x moving in a certain interval of the x-axis, 

while Franci describes the movements observed on the screen. In particular, the two 

students express these movements in terms of “if A goes […] then B goes […]” (see lines 35 

and 38); the subject of their discourse is not considered to be a person but the tick itself.  

At line 36 Franci, who almost never holds the mouse, asks Lore which of the two ticks can be 

directly dragged and then he focuses again on the relation between the movement of A and 

that of B, that follow two different directions. 

The same two students in the following excerpt are describing the behavior of a telephone 

plan depending on the time spent to call, which is expressed in hours; to do this they are 

looking at the realization DGpp of this function. 

Excerpt 5.6 - Lesson 4 

(Realization DGpp of the two functions 𝑓(𝑥) = {
7, 𝑥 < 5

3 + 𝑓𝑙𝑜𝑜𝑟(𝑥), 𝑒𝑙𝑠𝑒
 and 𝑔(𝑥) =

{

5

2
𝑥, 𝑥 < 6

1

2
𝑥 + 12,  𝑒𝑙𝑠𝑒

  ) 

 When Who What is said What is done 
113 I4Mp1 

12:30 
L A equals six and TA [g(x)] is fifteen, A is 

seven.. look it is already diminished, 
before it had increased by a certain 

Activity4_1 
Lore holds the mouse. 
The grid is shown. 
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amount of squares, now it increased just 
by half a square in one hour, just by half a 
square, more or less, see, at eight it 
continues to diminish 

Discrete dragging 

114  F Yes  
115  L Until Continuous dragging 

to the right 
116  F they go and coincide at twenty-four  
117  L Yes, so more or less the cost is not 

constant all the time, I mean the cost of 
the telephone cost  

No dragging actions 

118  F No after which number?  
119  L Seven  
120  F After seven, so after seven hours it [ the 

cost] is not constant anymore, while 
above [TB] 

 

121 I4Mp2 
13:20  

L No no no I mean that here [in a right 
neighborhood of 0] the cost increases, it 
increases more and more each hour, while 
after seven the cost is less than before 
that is it decreases with respect to the 
hours 

He points to the screen 
in a right 
neighborhood of 0 

Franci and Lore in excerpt 5.6 manipulate the dynamic file while speaking and the dragging 

mediates their discourse about the changing in ratio of the variations of f(x) to the variations 

of 𝑥, indeed they say “after 7 hours the cost is not constant anymore” (line 120) and “for each 

hour the cost increases more and more, but after 7 the cost decreases with respect to the 

hours” (line 121). As we can see, one of the two variables plays the role of subject in their 

discourse, which is about the relation linking the moving objects and it also involves 

mathematical signifiers.  

Moreover, Lore seems to decide where and how to drag 𝑥: initially he uses discrete dragging 

by one, while counting the number of squares of the grid that 𝑓(𝑥) passes through, then 

continuous dragging to the right until he sees that “they become matching at 24” (line 116). 

In the following excerpt Matilde is sharing with the researcher her findings about the 

function realized by the DGc in activity5_1. 

Excerpt 5.7 - Lesson 5 

(Realization DGc of the function 𝑓(𝑥) = −𝑥 + 5) 

 When Who What is said What is done 
73 I5Mp2 

07:45 
M We could say a relation, B equals five 

minus A 
Activity5_1 

74  R B equals five minus A  
75  M Because we start from zero and B equals 

five, when A is on three, for example, 
five minus A, so five minus three equals 
two and it holds for all the values, also 
five minus ten that is minus five and so 
on 

She starts dragging A 
from the origin to right. 
Discrete dragging 
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76  R Okay, so you found that B is five minus A  
77  M Yes and in any case in the end they are 

like inversely proportional in quotes 
because as one increases the other one 
decreases. Indeed, when A increases B 
starts moving, it also goes into negative 
[numbers] and also when A goes into  
negative [numbers] B [goes into] 
positive [numbers] and so it increases 
and decreases  

When she says “indeed” 
she starts dragging A to 
the left. 
Continuous dragging 

78  R Okay, but what does inversely 
proportional mean? 

 

79 08:55 M No, they are not inversely proportional, 
no, as one increases the other one 
decreases and vice versa 

 

In the first line of excerpt 5.7 Matilde proposes the algebraic realization of the function “B 

equals five minus A” and then, in order to explain how she obtained it, she uses the mediation 

of dragging actions. In particular, she initially uses discrete test dragging of 𝑥 from 0 to 3 and 

then to 10 while showing that her formula holds for all these three values (line 75). Then she 

describes the relation between the two variables in terms of their opposite direction of 

movements, since “as one increases the other one decreases”, while using continuous test 

dragging of 𝑥  to left (line 77). This is an example of test dragging where the student 

expresses through words her idea before dragging and, after that, she tests it through 

dragging.  

Moreover, the mediation of dragging for this communication can be also shown through the 

explicit references to dragging actions operated upon the ticks that can be found in Matilde’s 

discourse, such as “we start from zero” (line 75) and “B starts moving, [it] goes into negative 

[numbers]” (line 77). 

Below we analyze two excerpts taken from the seventh lesson. The first one is from the 

beginning of the lesson and Matilde and Nicco have to draw on paper the Cartesian graph of 

a function, by exploring it realized through the dynamic realization DGc. In particular, it is the 

first time during our sequence of lessons that students have to deal directly with a Cartesian 

graph. 

Excerpt 5.8 - Lesson 7 

(Realization DGc of the function  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
 ) 

 When Who What is said What is done 
16 I7F1p1 

11:00 
R What were you planning to do? Activity7_1 

17  N We wanted to see where the 
intersection point between the 
axes passing through x and f(x) 
was 

He moves the hand simulating a 
cross 

18  R And to trace?  
19  N Yes, but  
20  M But I do not know how to, we 

could start by marking some of 
She makes continuous dragging 
of 𝑥 to right 
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the values and then, but it is not 
useful because there is something 
strange 

21 I7F1p1 
12:15 

N Yes because, at the beginning it is 
like this more or less [Fig. 5.8a] 
but then it takes on the same 
value as it had here… 

He simulates a curve passing 
through the three points: 

 
Fig. 5.8a 

   […]  
40 I7F1p1 

15:05 
M I’ll try to do something, even if it 

is not useful… it does not work! 
She activates the Trace on 𝑥 
and drags it, then she activates 
the Trace on 𝑓(𝑥) and drags 𝑥 
Continuous dragging 

41  R Do you see that it is slightly 
colored? 
What does it tell you? Even if you 
can’t see the trace very well. 

 

42  N For some specific x-values, f(x) 
stays still within a certain interval, 
after those values it goes to 
infinity  

 
Fig. 5.8b 

43  R Okay. You should try to put this 
information here 

Pointing to the sheet of paper 

  M We have to identify where the 
point is for the first time, wait, 
here it is okay… so, therefore, it 
has to do like this if everything 
works well…no, then it does like 
this, until it reaches this point, 
well do you understand? I think, I 
hope, because otherwise I do not 
know how to start! Let’s try again 

Discrete dragging: she stops 

when 𝑥 is at 0, then at -1, at -6 

and then continuous dragging 

to the left. With the finger she 

traces a curve on the screen, 

from the second quadrant 

going down and a bit to the left. 

44  R What are you doing with your 
finger? 

Matilde makes continuous 
dragging of 𝑥 from 0 to left and 
again she uses a finger to trace 
the curve on the screen 
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45  M I am marking the point, more or 
less now.. but I don’t think it goes 
down again 

 
Fig. 5.8c 

46  N It is always going down, but it is 
not straight 

 

47  M Wait, let me think, yes it is like 
this 

 

48  N For me it does the same thing 
over there too [large positive x-
values] 

Continuous dragging of 𝑥 from 
0 to right 

49 I7F1p1 
17:40 
C2 
22:50 

M No because over there it does not 
go down, but not straight  

 

   […]  
69 C2 

24:30 
M wait, because it starts from here [ 

(0, f(0)) ] 
She drags 𝑥 in a right 
neighborhood of 0 

70  R Is it from there that it starts going 
down? 

 

71  N Yes, it goes down for a while and 
then 

 

72  M A little bit down, so it does 
something, where is the point? 
The point is here 

 

73  R And now? Good! Matilde points to (0, 𝑓(0)) on 
the screen 

74   M Here! Is it here?  
Therefore it does like this…. no, it 
is here  
[(0, f(0))]  

She drags 𝑥 from 0 to 1 very 
slowly, then backward to 0  

75  N After one it starts going up 
again… there is something 
strange  

He speaks before 𝑥 reaches 1 

76 C2 
25:30 

M Well, and then it goes up again. 
Therefore it could be, give me the 
pencil.. it could be like this 

Continuous dragging of 𝑥 to 
right 
This is their final drawing: 

 
Fig. 5.8d 
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In excerpt 5.8 Matilde and Nicco explore the realization DGc of a function, with Matilde 

holding the mouse, trying to find a way to keep track of the trajectory of (𝑥, 𝑓(𝑥)) that they 

have to draw on the paper. 

As Nicco explains (line 17), they first search for “the intersection point between the axes 

passing through x and f(x)” and they mark some points of the Cartesian plane on the paper 

(Fig. 5.8a). However, Matilde notices that “it is not useful because there is something 

strange” (line 20) and so she decides to activate the trace on 𝑓(𝑥) and she uses continuous 

wandering dragging on 𝑥. By looking at the screen, Nicco observes that “for some specific x-

values, f(x) stays still within a certain interval, after that values it goes to infinity” (line 42). 

The dragging and, especially, the trace left by 𝑓(𝑥)  mediate his discourse, which is about the 

covariation of the two variables playing the role of subjects of the discourse. 

At lines 43 and 45 Matilde follows with one finger the trajectory of the point (𝑥, 𝑓(𝑥)), 

although it is not visible on the screen, while she uses the other hand to carry out continuous 

dragging of 𝑥 to the left. This is an example of continuous handle dragging: she is acting on 

x but her focus is on the movements of the imagined point (𝑥, 𝑓(𝑥)). 

Moreover, we identify continuous test dragging at line 49, after Nicco makes a prediction 

about the behavior of 𝑓(𝑥) for large positive 𝑥 -values (line 48). 

Finally, the two students explore the dynamic realization of the function for 𝑥  in a right 

neighborhood of 0 and then also for positive large 𝑥 -values, by using continuous wandering 

dragging, that leads them to complete their drawing (from line 69 to the end). 

It is interesting to see how two other students in the class addressed the same activity. Their 

names are Bernardo and Carlo, we do not have videos recording their working along the 

whole sequence of lessons but the following excerpt is recorded by the mobile camera and 

it shows part of their discussion during the seventh lesson. As we are going to discuss, their 

dragging mediated discourse is at the active phase. 

Excerpt 5.9 - Lesson 7 

(Realization DGc of the function  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
 ) 

 When Who What is said What is done 
36 I7Mp1 

04:35 
B Can you add color? Can you put 

color on f(x)? 
Activity7_1  
The grid is shown. 
Carlo holds the mouse 

37  C How do we do that?  
38  B I do not know  
39  R Now where should the point (x, 

f(x)) be? 
 

40  B The point f(x) is a bit less than 
two 

He points to the tick on the 𝑦 -
axis on the screen 

41  C x, f(x)  
42  B but x f(x) is a segment  
43  R The point of coordinates, that 

has two coordinates, one is x and 
 

44  B Ah zero and a bit less than two  
45  R And so where should it be?  
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46  B Where it was until now Bernardo points to the tick on 
the 𝑦 -axis while Carlo uses the 
arrow of the mouse to indicate 
(𝑥, 𝑓(𝑥)) 

47  R The arrow?  
48  B No, almost here where there is a 

light point 
He points to the tick on the 𝑦 -
axis on the screen 

49  R Therefore it would be here  
50  B The first point. Drag x on one… x 

on one is about here [Fig. 5.9a], 
go to x two 

 
Fig. 5.9a 

51  C Two and a half Discrete dragging 
52  B If you go on three and a half, that 

is two and a half go on, go on 
three, no it dashes away, from 
two to three it dashes away… But 
we could, are there some tools to 
color where it is, more or less? 
That is, with the arrow 

He points to other points 
(𝑥, 𝑓(𝑥)) in the first quadrant 
as he was doing in Fig. 5.9a 

53  C No  
54  B Does it not exist? That is, if you 

have x at one and f(x) at ten you 
can’t mark this point here on the 
plane [Fig.5.9b]?  

 
Fig. 5.9b 

55  R Ah you would like to draw them 
there? 

 

56 06:25 B Yes, to draw the points on the 
graph 

 

   […] The researcher tells them how 
to use the point tool 

86 I8Mp1 
09:12 

B Move x on one  

87  C Therefore I have to drag  
88  B Yes, drag to one, well, now select 

the point tool and make it here 
He points to (1, 𝑓(1)) 

89  C I do not know if we can  
90  B Yes we can, if we cannot  
91  C Yes but it is not perfect He builds the point (1, 𝑓(1)) 
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92 09:40 B What does it matter? More or 
less, put it on two now… so a bit 
at a time we get the staircase 

 

   […] Discrete dragging of 𝑥: Carlo 
drags it and stops at 2 to build 
the point (2, 𝑓(2)); at 3 to 
build the point (3, 𝑓(3)) 

102 10:20 B Put it on four, it goes up up up, 
here… this looks like half a 
parabola 

Discrete dragging to 4 
He points to (4, 𝑓(4)) 

103  C Can you take off your hand? He builds the point (4, 𝑓(4)) 
104  B It looks like half a parabola 

 
Fig. 5.9c 

105  C Now we should go to the 
negatives 

 

106  B Go to the negatives and we see if 
it appears in same way…indeed 
this one [ (1, f(1)) ] should be a 
bit more up, it is wrong… go to 
the negatives 

 

107  C Exactly He drags 𝑥 to -1 and stops 
108  B It is not a parabola. Put it here! He points to (−1, 𝑓(−1)) 
109  C Ah He builds the point 

(−1, 𝑓(−1)) 
110  B It is not a parabola  
111  C No it is not a parabola, it is 

something even stranger 
Discrete dragging to -2 and he 
speaks after building the point 
(−2, 𝑓(−2)) 

112  B I trust your precision   
113  C Yes, I may get some millimeters 

wrong but... it does not look like 
Discrete dragging to -3 and 
then he builds the point 
(−3, 𝑓(−3)) 

114 12:20 B This is a very strange thing, can 
you mark where the lines cross 
each other? Zoom out, I want to 
see it for a moment 

Carlo zooms out 
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Fig. 5.9d 

   […] Discrete dragging of 𝑥 to the 
left and Carlo builds other 
points  

136 I7Mp2 
01:00 

B Now can you zoom out? It’s 
impressive how it dashes away, 
do you see it? Put the last point 
and then zoom out in order to let 
me see everything! Zoom out 

Discrete dragging of 𝑥 from -10 
to -11 then Carlo builds the 
point (−11, 𝑓(−11)) 

137  C No but it is too cool! 
Sorry, let’s try to go on over 
there too [large positive x-values] 

 
Fig. 5.9e 

138  B Let’s go on over there too  
139  C Yes but it disappears  
140 01:55 B Yes, they did it on purpose... why 

is it like this? Have we ever seen 
something similar? 

 

Bernardo and Carlo solve activity7_1 in a completely different way with respect to Matilde 

and Nicco. They use discrete dragging to move 𝑥 by one along its axis and they build a set of 

points of the form (𝑥, 𝑓(𝑥)) directly in the interactive file, using the point tool. 

Initially, the two students seem to be looking at the movements of the tick ‘𝑓(𝑥)’, for 

example at line 36 Bernardo asks “can you put color on f(x)?”. Then the researcher brings 

their attention to the point (𝑥, 𝑓(𝑥)) (that is not visible on the screen) and at line 54 he asks 

again for the color but changing a little the question: “if you have x at 1 and f(x) at 10 can 

you mark this point here on the plane?”.  
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After they have learned how to use the point tool, from line 86 on, they proceed by using 

discrete guided dragging until they obtain Figure 5.9e. In particular, Carlo drags 𝑥 stopping 

at each whole number and, when he stops dragging, he constructs the point (𝑥, 𝑓(𝑥)). In this 

case, the students’ discourse is mediated by dragging but their focus is on the results of their 

actions that are visible in the file. In particular, they discuss the shape of one of the possible 

curves that can be obtained by connecting the constructed points; they say “it seems a half 

parabola” (lines 102, 104). Moreover, they seem surprised by the behavior of 𝑓(𝑥) for large 

positive 𝑥 -values: they remark “it’s impressive how it dashes” (line 136) and “it disappears” 

(line 138). 

 

In the following excerpt from Alessio’s interview, the student is exploring the realization DGc 

of a function and he has to draw its Cartesian graph on a sheet of paper. He is describing the 

construction while he is manipulating it. 

Excerpt 5.10 - Interview 1 

(Realization DGc of the function 𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
 ) 

 When Who What is said What is done 
13 C 

15:15 
A From here, from minus one to 

minus two it moves more or less 
by one but from minus five to 
minus six…mm…….it moves, from 
minus five to minus six no let's do 
from minus four to minus five it 
moves by less than one, so as x 
decreases, that is, also the 
relationship existing between f(x) 
and x changes and so it cannot be 
like this [straight line] but it is a 
[curve]… that is to say it is not a 
broken line 

Task1 
Discrete-continuous-discrete 
dragging 
Then he draws the red part of 
the curve: 

 
Fig. 5.10a 

Alessio refers mainly to motion: he uses frequently the verb “to move”, but the focus of his 

discourse is the search for a possible relation between movements, more than the 

movement itself. The subject is always a variable and not Alessio himself; initially it is 

unexpressed but then he says “as x [...]”. This happens at the end of the excerpt where he 

describes changing in ratio of 𝑓(𝑥)  to 𝑥  in relation to the dragging of 𝑥 . This is a very 

prototypical example of dragging mediated discourse from the active phase. Indeed, he acts 

on the file by dragging 𝑥  to the left and at the same time his discourse focuses on the 

relationship between movements that he observes happening on the screen. So, the object 

of this discourse is not the action of dragging, it is only mediated by it: he uses a combination 

of discrete and continuous dragging of x while estimating the range of variation of 𝑓(𝑥), 

which suggests a good control over the dependency between the two variations. 

At the very beginning of the excerpt, there is an example of dragsturing: when he says “from 

here” he uses the mediation of dragging as a gesture, because he indicates what he intends 

for “here” but he does not directly describe this action. 
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Finally, the excerpt below is taken from Alessio’s interview when he is asked to draw the 

Cartesian graph of a function on a sheet of paper, given its realization DGpp. 

Excerpt 5.11 - Interview 1 

 (Realization DGpp of the function 𝑓(𝑥) = {

3

2𝑥
+ 2, 𝑥 > 0

(𝑥 + 1)2(𝑥 + 6)(𝑥 + 3)
1

𝑥
− 1, 𝑒𝑙𝑠𝑒

 )    

 When Who What is said What is done 
9 C 

25:20 
A So, we start when f(x) is on the zero, 

x is on minus six then as it [x] goes on 
f(x) goes on but until….. minus five. 
Therefore, as x moves forward y 
makes, ehm.. from zero it reaches… 
so here [x=-6] it is zero, from zero it 
reaches, the top is five and a half…. 
And then does it come back down? 
Ehm no but it starts going down….. at 
minus five it is still going down but 
still it has no  arrived at zero, it 
arrives at zero at minus, I do not 
know like minus three, a bit more 
than minus three. And then from 
minus three point two it keeps going 
down until.. minus three, when this 
[x] is at minus two point two…. And 
then it comes back up until minus 
one when it [x] is at minus one… then 
it comes back, then it goes away [Fig. 
5.11b]  

Task3  
The grid is shown. 
Continuous dragging of 𝑥 to 
the right and in the first 
pause he drags it 
back/forward in a 
neighborhood of -5. Again 
continuous dragging to the 
right.  
Then he draws: 

 
Fig. 5.11a 

Finally, he moves his left 
hand this way: 

 
Fig. 5.11b 

10  R Which one goes away?  
11  A F(x) so this [the graph in a right 

neighborhood of -1] goes down 
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Fig. 5.11c 

12  R Why not up?  
13  A Because from minus one it goes 

down towards..and then, then it 
arrives at, when this [x] is at one, so 
wait, at minus one it is over here…… 
Well, it arrives at, so from here [(0, 
7)] it comes back for sure, but while 
coming back this [x] is still going on, 
this one goes on but as x goes on, y is 
going further and further down, that 
is, the ratio is always more [Fig. 
5.11d] that is, as x goes on y changes 
but less and less in function of the 
movement of x, f(x) the function 
changes as x goes on 

Continuous dragging of 𝑥 
from -1 to the right and he 
repeats this action several 
times. 
He points to large positive 𝑥 
-values on the paper and he 
makes this gesture: 

 
Fig. 5.11d 

14  R The function change, but less and 
less? 

 

15 C 
30:30 

A Yes, I mean like this [f(x) approaching 
0], and then it is always flatter, that 
is, as x goes on the ratio of x to f(x) 
increases because, I do not know 
how, x goes on and f(x), as x goes 
on… 

 

In excerpt 5.11 Alessio explores and describes the realization DGpp of the function. So, he 

actually moves objects on the computer screen through the dragging tool but his discourse 

is about the variations of 𝑓(𝑥) as 𝑥 moves on along its axis and it is not a description of the 

dragging action itself. Indeed, the role of subject in the discourse is played by one of the two 

variables, as if their movements were independent from the person. In particular, at lines 9, 

10, 11 he focuses on the graph of the function for negative 𝑥 -values and he describes all the 

movements of 𝑓(𝑥) in relation to the variations of 𝑥. In particular, at line 9 he says “when 

f(x) is at 0, x is at -6 […] [f(x)] decreases until -3, when this [x] is at 2.2” while interacting with 

the file. We can notice that in both cases he first expresses the 𝑓(𝑥) -value and then the 𝑥 -

value, and indeed he drags 𝑥  in order to see 𝑓(𝑥) take on a specific value and then he 

describes what happens “when f(x) does a certain action”. However, in the same line he also 

drags 𝑥 backward and forward in a neighborhood of the relative maximum point. In doing so 

he seems to be investigating a particular configuration of the two variables, combining 

continuous handle dragging with continuous guided dragging. 

Then Alessio focuses on the ratio of 𝑓(𝑥) to 𝑥 for large positive 𝑥 -values. Indeed, at line 13, 

while using continuous wandering dragging of 𝑥, he says “as x goes on, y is going further and 
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further down, that is, the ratio is always more […]” and he makes the gesture in Figure 5.11d; 

then at line 15 he adds “as x goes on, the ratio of x to f(x) increases”.  

5.1.4 Examples of dragging mediated discourse from the detached phase 

In the following short excerpt from the eighth lesson, Matilde is working on a task using 

paper-and-pencil. By looking at the trace mark left by the point (𝑥, 𝑓(𝑥)) (that is, a bit of the 

Cartesian graph of a function) she has to mark on the same Cartesian plane, drawn on a sheet 

of paper, the trace mark that 𝑓(𝑥) would leave if trace were activated on it. Here she is 

exploring the graph only for positive abscissas. 

Excerpt 5.12 - Lesson 8 

 (Realization SGc of the function 𝑓(𝑥) = {
𝑥, −3 < 𝑥 < 0

1

2
(𝑥 −

3

2
)

2
+ 1, 0 ≤ 𝑥 ≤ 4

 ) 

 When Who What is said What is done 

158 I8Mp4 
03:00 

M But wait, no no...x you have to 
move it inevitably towards here 
[to the right], because you do like 
this, you do like this because it 
has to stay perpendicular...while 
over here, here you do like that 
[Fig. 5.12a], it comes back up [Fig. 
5.12b], yes...so there are some 
more marked parts in quotes, 
still, not here but here since it 
does...did you understand? 

Activity8_2 

 
Fig. 5.12a 

 
Fig. 5.12b 

Analyzing the video, we saw how, while speaking aloud, Matilde moves her fingers on the 

sheet of paper as follows: her left hand moves from the origin to the right along the 𝑥 -axis, 

her right hand from up to down and then from down to up along the 𝑦 -axis (Fig. 5.12a and 

Fig. 5.12b). Moreover, her discourse is rich in references to space such as “towards here”, 

“over here”, “up”, which need to be interpreted in association with her dragging actions, 

examples of dragsturing. At the end of the excerpt this dragging mediation even replaces 

words, when she doesn’t explicitly say what “it does” through words but she moves her 

fingers on the graph to communicate it to her companion (during the pause indicated by the 

suspension dots). 

On the one hand, excerpt 5.12 could be seen as an example from the passive phase because 

the subject of Matilde’s discourse is a person and she describes the direct action of dragging 

on the objects. On the other hand, we notice several differences with the excerpts illustrating 

the passive phase and we consider it to be an example from the detached phase. First of all, 



95 
 

in this case the dragging tool is not physically used but a dragging action of the two variables 

re-created within the static context, and it plays the role of mediator in Matilde’s discourse. 

Moreover, her discourse mirrors potential expert discourse on covariation, as we can see 

from the fact that she is able to evoke both ticks’ movements with her body. Finally, she says 

“there are some more marked parts”, suggesting that she is trying to find an answer to the 

question assigned in the activity, that is, discovering how to mark the trace of 𝑓(𝑥); so her 

discourse is about mathematical objects, as well. These elements all characterize the 

detached phase. 

In the following excerpt Matilde is having a discussion with Nicco during the interview. They 

have been asked to describe a function, as if it was realized by a DGpp, given its Cartesian 

graph on a sheet of paper (Fig. 5.13a). 

Excerpt 5.13 - Interview 2 

 (Realization SGc of the function 𝑓(𝑥) = {
2, 𝑥 < 0

−
1

3
(𝑥 +

3

𝑥
+ 2), 𝑒𝑙𝑠𝑒

  ) 

 When Who What is said What is done 
1   […] Task1 

 
Fig. 5.13a 

2 MNm1 
1:48 

M This is okay, I mean this is 
y equals two  

She points to the graph of the function 
for negative x-values 

3  R And how would y equals 
two be visualized with 
parallel lines? With 
parallel lines I mean in a 
GeoGebra file like the 
ones  that we have seen 
with parallel axes 

 

4  M Yes yes ehm there is one 
of them that stays still at 
two and y that moves 

 

5  N No x moves, x moves and 
y stays still at two 

He keeps the right hand fixed while 
moving the left hand horizontally: 

 
Fig. 5.13b 
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6 MNm1 
02:50 

M While this one, you go 
forward with x and until 
it reaches one y goes 
down, I think, and then, 
going on, it comes up and 
then it goes down 
again…that is, you can 
drag x over here too 
[large positive x-values] 
and then y makes a sort 
of 

After speaking she moves her hand 
down-up-down 

   […]  
12 MNm1 

04:03 
M But here [positive x-

semiaxis] is x or y faster? 
No y, no no no, if you 
drag in this direction [to 
the right] ……..x is faster 

 

13  N Yes yes, x is faster while y 
is slower 
I mean in this case it 
seems that here [1] y 
would move faster, ehm 
because from here to 
arrive up here [2] it takes 
like this4, then from up 
here to go back to this 
point [3] it takes like this5 
and…it is the same x, but 
faster, you drag one of 
them and so 

He indicates different part of the graph: 

 
Fig. 5.13c 

14 MNm1 
06:00 

M Exactly, no x is always 
faster I think………….. 
Wait, no but, are we sure 
that this is faster? Wait! 
Why faster? 

During the pause she moves the hands 
as follows: 

 
Fig. 5.13d 

 
Fig. 5.13e 

                                                           
4 In Italian he says “ci mette questo”, and he opens his fingers as measuring the distance between 
the points 1 and 2 on the curve. 
5 In Italian he says “ci mette così”, and he opens his fingers as measuring the distance between the 
points 2 and 3 on the curve. 
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As in the previous example, in excerpt 5.13 Matilde and Nicco’s discourse is mediated by 

dragging, which is not physically used but dragging actions are referred to through the 

mediation of gestures. In particular, at line 5 Nicco moves his hands on the table describing 

the constant function 𝑦 = 2 for which “x moves and y stays still at 2”. He keeps one hand 

fixed while moving the other to the right and to the left (Fig. 5.13b). His gestures evoke 

continuous guided dragging, because he shows Matilde a specific configuration of the 

dependent variable, which stays still, while 𝑥 can be moved to the right and to the left. 

Then the students discuss the relationship between the variations of the two variables in 

terms of their different speeds for positive 𝑥 -values. They search for “which one between x 

and y moves faster” (line 12) and Nicco expresses his observations by pointing to different 

parts of the graph on the paper (line 13). Matilde, instead, reproduces with her body the 

movements of the two variables along the Cartesian axes (line 14), using the dynamic visual 

mediation of dragsturing actions that are gestures on the paper but they blend with dragging 

actions previously made in an interactive file. 

5.2 A SECOND LEVEL OF ANALYSIS: A DEVELOPING DISCOURSE  
Provided with a model for the evolution of dragging mediated discourse and a description of 

different types of dragging used by students when interacting with DIMs, now we are going 

to investigate if, and eventually how, along the sequence of lessons students’ discourse 

developed towards an expert’s discourse on functions and on functional dependency in 

terms of covariation of two variables. 

5.2.1 Students’ use of precedents and their individualization of dragging 

In the analyses of the excerpts above, that we presented to better characterize each phase 

of dragging mediated discourse, we also showed examples of students’ use of different types 

of dragging and this analysis allowed us to better describe students’ communicational 

actions. In this section we are going to focus on some recurring uses of these types of 

dragging that constitute possible precedents identified and performed by students within 

the specific task situations. We also describe how students’ use of dragging seems to 

constantly change in relation to the different activities and to the context in which the 

activites are implemented. For example, we found episodes in which students use dragging 

actions in activities that ask to drag and explore the construction, but also in activities where 

it is not explicitely asked in the assignment; we even found drsagging to be employed, at 

times, in the paper-and-pencil environment. In relation to these different uses of dragging 

observed among different activities, we noticed a particular change occurring in various 

students’ use of dragging, which we see as characterizing a process of individualization of 

dragging. Although this change does not necessarily happen for all the students, or in the 

same way in those for which it does happen, we were able to identify three main phases of 

dragging mediated discourse for various students. By individualization we mean a process 

that moves towards a use of dragging that is more similar to that expected from an expert. 

While speaking about the use of words in a mathematical discourse (see section 2.1.1.2), we 

have observed that in this study we are interested in knowing what specialised mathematical 

words are used by students; but also in identifying what informal words or constructs are 

used by students in certain ways that can be mirrored by experts’ discourse. Simlilarly, we 

consider students’ dragging and dragsturing actions and we investigate whether they can be 

mirrored by those used by experts. We describe experts’ uses of dragging and dragsturing 

actions as having a more subjective dimension: there can be cases in which these actions are 
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involved in experts’ discourse but not prompted by specific requests to drag or gesture. It 

follows that we do not identify specifc types of dragging and dragsturing actions as 

characterizing experts’ discourse, since they are necessarily related to the activity and to the 

context in which the activity is implemented. 

The analyses of students’ discourse illustrate a combination of continuous and discrete 

dragging during all the three phases, while wandering and impossible dragging seem to be 

predominant in the passive phase. Indeed, the examples from the active phase show 

students’ use of test, handle and guided dragging. Then, the peculiarity of the detached 

phase is that the dragging tool is not physically used and so the different types of dragging 

are just evoked by students’ gestures recreating dragging actions, that mainly consist of 

continuous movements of hands or fingers. We describe these changes in the use of dragging 

as possible steps in the process of individualization of dragging, which seems to move 

forward from the passive to the detached phase. Indeed, during the passive phase the visual 

mediation of dragging allows students to formulate a description of the construction 

involved in the specific task situation. Moreover, there are several examples of impossible 

dragging of the tick realizing the dependent variable, that we expect an expert would not 

do, at least after a first exploration of this kind of realization of functions. Then, the active 

phase sees a greater participation of students in deciding what and how to explore in the 

construction, that appears in their discourse which is about some effects of their dragging 

actions on the construction. With respect to the previous phase, there are no impossible 

dragging actions, suggesting that the impossibility of directly dragging one of the ticks has 

been identified by the students a precedent event. Moreover, continuous and discrete 

dragging still intertwine in students’ manipulations of the DIM but they also start combining 

different types of dragging, as wandering and guided dragging (excerpt 5.11), and discrete 

and continuous dragging (excerpt 5.4). We also found expressions of the form “when B […] 

A […]”, that can be considered as examples of handle dragging where students move the tick 

A realizing the dependent variable in order to keep the other tick B in a specific position on 

the line, or to move it in a certain manner, and then they describe what happens on the 

screen when B behaves in this way. Since we consider this combination of different types of 

dragging as a potential routine that could be performed by an expert for exploring the 

specific realization of the function, we describe the change observed from the passive to the 

active phase in terms of students’ individualization of the use of dragging. 

Particularly interesting with respect to this process of individualization of dragging that we 

observed in students’ discourse, are excerpts 5.8 and 5.9. Indeed, they show different 

procedures performed by the pair of students composed by Matilde and Nicco and that 

composed by Bernardo and Carlo for solving activity7_1, that asks them to draw on a paper 

the Cartesian graph of a function, given its dynamic realization DGc. The main difference that 

we noticed emerges from the types of dragging that are respectively used by the students: 

Matilde uses continuous dragging of x, while Carlo uses discrete dragging of 𝑥. In particular, 

Matilde traces with one finger the trajectory of the point (𝑥, 𝑓(𝑥)), without living any marks 

on the screen, while making a continuous dragging of 𝑥 to the left. On the other hand, Carlo 

uses discrete dragging to move 𝑥 by one along its axis, by stopping at each whole number, 

and he uses the point tool to build a set of points of the form (𝑥, 𝑓(𝑥)) directly in the DIM. 

So, at the end of these procedures, in Nicco and Matilde’s discourse the curve realizing the 

function in the Cartesian plane is described as a result of the covariation of the two variables 

while Bernardo and Carlo’s discourse is about the step-by-step process that they performed. 
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The analyses of these two excerpts show how the use of different types of dragging can be 

influenced and, at the same time, can influence the discourse. Moreover, the two students’ 

different uses of dragging are both related to descriptions about the graph of the function 

that we could also expect from an expert and in this sense, we argue that an individualization 

of the use of dragging by students happened. Indeed, they mirror two different expert 

discourses about a curve in the Cartesian plane realizing the graph of function: a set of points 

of the form (𝑥, 𝑓(𝑥)) (discrete dragging) or the trajectory of the point (𝑥, 𝑓(𝑥)) (continuous 

dragging). 

A further step in the development of this process of individualization of dragging can be 

identified in the detached phase of dragging mediated discourse, where the active use of the 

dragging tool is replaced by a realization of motion by using hands and fingers, also in a static 

context out of GeoGebra. Therefore, the different types of dragging are evoked by students’ 

gestures that reproduce the movements of the variables along their respective axes within 

the realization SGc of a function. This shows how students have individualized the use of 

dragging for exploring the covariation of a function’s variables, because it is precisely this 

aspect that constitutes the relationship between a dynamic graph DGc and a static graph 

SGc, and therefore that makes a Cartesian graph a possible realization of functional 

relationship. In fact, describing a curve in the Cartesian plane in terms of the movement of 

variables on the respective Cartesian axes is what an expert would do (even if without such 

an explicit reference to dragging actions). In particular, students seem to identify as possible 

precedent for the proposed task situation a procedure that they previously implemented in 

a DIE and so it cannot be performed exactly in the same way, because of the change of 

context, but they evoke it thanks to the mediation of dragsturing actions. 

In particular, in the two excerpts 5.12 and 5.13 students make use of continuous dragging, 

because Matilde and Nicco move their hands reproducing a continuous movement of the 

tick realizing the independent variable. However, we interpreted differently the actions of 

the two students as continuous wandering dragging and continuous guided dragging, 

respectively. Indeed, Matilde describes the movements of her hands, that realize the 

movements of the two variables, for example she says “here you do like that, it comes back 

up” and so, the specific dragsturing actions are the objects of her discourse, as in the case of 

wandering dragging. While Nicco shows how the particular realization DGpp of a constant 

function would be, highlighting the difference between the behaviors of two ticks because 

one would move and the other would stay still and we called it guided dragging since he 

speaks about the behavior of the two variables before moving his hands for reproducing it. 

From these two examples it is possible to notice how many actions characterizing the 

experience within the DIE are used by the students as precedents requiring for replication in 

a paper-and-pencil context. In particular, their discourse heavily involves the visual 

mediation of different types of dragging, realized through acts of dragsturing, and this 

constitutes a phase in their process of individualizion. 

In the next section we continue the analysis of dragging mediated discourse in this direction 

of research, which is aimed at characterizing the possible development of students’ 

discourse along the sequence of lesson. For now, we described it by looking at their process 

of individualization of the use of dragging and at their identification of precedent events. 
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5.2.2 A possible turning point during the active phase 

As we previously discussed, we used the word ‘phase’ for describing the three kinds of 

dragging mediated discourse because we observed a temporal evolution, from the passive 

to the detached, along the sequence of lessons, but we are tempted to consider this 

evolution also as a development of students’ discourse towards a discourse closer to that of 

an expert mathematician. In particular, we identified a ‘turning point’ for this development 

happening during the active phase. In this section we are going to explain what we mean by 

‘turning point’ and why we think that it can be associated to the second phase of dragging 

mediated discourse. To do this, we mainly focus on the routines performed by students along 

the three phases of dragging mediated discourse. 

The passive phase is characterized by practical routines in the form of deeds and by 

discursive routines in the form of rituals. Indeed, in students’ discourse in the excerpts 5.1, 

5.2, 5.3 it is not possible to identify any references to a precedent event used by students 

because it required replication; they seem to start using the dragging tool to explore the 

DIM. For example, Nicco in excerpt 5.3 explores the construction trying to discover possible 

and impossible movements, which he does not seem to be aware of, as suggested by his 

impossible dragging actions. The desired outcome of students’ procedures is a change in the 

objects, both in terms of physical changes in the construction and changes in their 

communication about the construction. Indeed, they have to give a description of what they 

see in the DIM but in several cases students substitute the dragging for words (e.g., excerpt 

5.3). So, the dragging and dragsturing actions have a two-fold role because they allow 

students to communicate and, at the same time, they are the objects of students’ discourse. 

During the active phase of dragging mediated discourse students’ performances are mainly 

communicational actions, which involve the physical use of dragging for manipulating the 

DIM. Therefore, a change in the objects is caused by the dragging actions, but the desired 

outcome of the routines seems to be the construction of a discourse about the mathematical 

properties of the function which is realized in the DIM. With respect to the previous phase, 

dragging is still used as a visual mediator that supports communication but there is a change 

in the object of students’ discourse. Indeed, the description of the DIM is not accomplished 

with reference to the dragging actions but to mathematical signifiers realized by the DIM.  

For example, we have seen in excerpt 5.5 that Franci uses the mediation of dragging to 

express the dependency of B. Indeed, he tells “when B goes, when A goes.. are you moving 

A right?” revealing that in order to choose how to build the sentence he would know which 

of the two ticks can be acted upon directly, because it may determine which one is 

independent. 

Another example is excerpt 5.7 where Matilde’s discourse contains explicit references to the 

dragging actions operated upon the ticks, but her focus is on finding a description for the 

specific function and on the relation between the two variables in terms of their opposite 

direction of movements. In particular, she uses the mediation of dragging to describe how 

she found the algebraic realization of the function and also to show that it holds for several 

values of the variables. Then, in excerpt 5.8, Matilde says that “there is something strange” 

which is interesting from a discursive point of view, because she identifies a ‘strange’ 

movement in the construction with ‘something strange’ and this can be seen as mirroring 

potential expert discourse on a specific property of the graph and, so, of the function 

realized.  



101 
 

Moreover, as we previously highlighted, in all these examples the subject of students’ 

discourse is an object realized by the DIM, such as one of the variables or the function itself, 

and this makes the description independent from the person. This aspect usually 

characterizes experts’ discourse; indeed the presentation of phenomena in an impersonal 

way is part of the process of objectification. 

According to these observations, during the active phase of dragging mediated discourse, 

students perform discursive routines that can be described as standing at intermediate levels 

between rituals and explorations, that are the two extreme cases indicating “the process-

oriented performance of the child” and “the outcome-oriented routine of the expert”, 

respectively (Lavie, Steiner & Sfard, 2018). Moreover, together with a change in the routine, 

in the active phase also the mediation of dragging seems to change: it is used by students to 

better communicate, with other students or with themselves, about mathematical signifiers. 

During the detached phase students seem to identify specific dragging actions as precedents 

for the proposed task situation. However, because of the design of some activities, that are 

implemented within a paper-and-pencil environment, they cannot physically use the 

dragging tool and so they re-create these actions with their body in the paper-and-pencil 

context. As in the previous two phases, the mediation of dragging is called into play but in a 

different way. In particular, students work with static realizations of mathematical signifiers 

and thanks to the visual mediation of dragging they evoke dynamic realizations of the same 

signifiers. In other words, dragging and dragsturing actions allow them to accomplish saming 

of a realization in paper-and-pencil context with a DIM. 

Now we discuss about two examples of this process of saming. Matilde in both excerpts 5.12 

and 5.13 evokes temporal and dynamic aspects characterizing the realization DGc of the two 

functions, in her discourse on the static realization SGc of the same functions. In particular, 

thanks to the dynamic visual mediation of dragsturing actions, she describes the covariation 

of the two variables bounded to the Cartesian axes. She seems to refer to a dynamic 

realization of the same functions, where the curve in the Cartesian plane is the result of the 

movements of two variables along their axes. Therefore, her process of saming, in both these 

cases, involves the realization of the functions SGc, given in the activities, with the realization 

DGc in a DIE; that she does not have at her disposal in that moment. In excerpt 5.13 also 

Nicco recreates a dragging action of the independent variable highlighting its dynamism with 

respect to the dependent one, because “x moves and y stays still at 2” (line 5). His dragsturing 

action is used as dynamic visual mediator in a discourse about the constant function 𝑦 = 2 

and it allows him to accomplish a saming of its realization SGc, given on the paper, with the 

algebraic expression of the function, which was found by Matilde few lines before in the 

excerpt and also with the realization DGpp of the same function, as suggested by the position 

and the movements of his hands. 

According to these analyses, what we called ‘turning point’ for the development of students’ 

discourse about covariation, towards the discourse of an expert, may be described as a 

change in discourse that we identified as sometimes happening during the active phase. In 

particular, during this phase the focus of the discourse changes: from being a description of 

possible and impossible movements in the DIM, it becomes a description of the relations 

existing between the movements observed on the screen, which means that students 

gradually involve mathematical signifiers into their discourse. Moreover, students start using 

the passive voice or they give variables the role of grammatical subject, instead of referring 

to themselves in the narration or to another person acting on the DIM. Together with these 
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changes we observed a change in the routines performed by students that moved from 

rituals in the direction of explorations. Indeed, by analyzing how their uses of different types 

of dragging developed from the passive to the active phase, we observed that there were 

much more examples of guided, handle and test dragging than impossible and wandering 

dragging. Also the dynamic visual mediation of dragging seems to be used differently: during 

the passive phase dragging actions are the objects of students’ discourse, in the active phase 

dragging and dragsturing actions are used by students to better communicate about 

mathematical signifiers, in the detached phase this kind of mediators is still used by students, 

even if they work in a static environment, especially through acts of dragsturing. Therefore, 

from the active phase the dynamic visual mediation of dragging and dragsturing actions 

becomes so intertwined with students’ discourse that, at the same time, it subsumes the 

covariation. 

5.3 CONCLUDING REMARKS 
In this chapter, we studied students’ use of dragging and, especially, we characterized its role 

as visual mediator in their communication about the DIMs that we designed. In order to this, 

we mainly used two tools of analysis, that we developed: the classification of different types 

of dragging described in Chapter 2 and a model for the evolution of dragging mediated 

discourse. Our analyses show that students performed different types of dragging to engage 

in mathematical discourse practices and their consistent use of dragsturing to complement 

their own speech, or as a response to their partner’s, further contributes to the literature 

about dragging practices in DIEs.  

Moreover, the analyses that we conducted through these tools, allowed us to describe the 

routines performed by students and to investigate how dragging mediates students’ 

communication. In particular, we showed that along the sequence of lessons an 

individualization process of dragging takes place for students and that the role of dragging 

goes through the following changes:  

 during the passive phase dragging allows students to communicate, and it is the 

object of their discourse; 

 during the active phase dragging is used as a visual mediator which enlarges 

students’ communicational actions about DIMs and it starts subsuming 

mathematical signifiers; 

 during the detached phase dragging is used, blended with gestures, as visual 

mediator to evoke the dynamism of the DIMs and so it enlarges students’ 

communicational actions and it subsumes the covariation even in a realization of 

function within a static environment. In particular, dragging and dragsturing actions 

allowed students to accomplish saming of a realization in paper-and-pencil context 

with a DIM. 

According to these results, the temporal evolution characterizing the three phases of 

dragging mediated discourse along the sequence of lessons, may be also considered as a 

development of students’ discourse about functions, towards a discourse closer to that of an 

expert mathematician. In particular, we identified a turning point for this developing process 

happening during the active phase, where several aspects of students’ discourse change with 

respect to the previous phase and then they stay similar in the detached phase. Moreover, 
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we also described a change in the routines performed by students moving from rituals in the 

direction of explorations. Indeed, they initially seem to perform practical routines in the form 

of deeds and discursive routines in the form of rituals; we did not identify any references to 

precedent events used by students that required replication. Then, their discourse becomes 

independent from the person, as is usually the case in experts’ discourse, and students 

perform discursive routines that can be described as standing at intermediate levels between 

rituals and explorations. 

Finally, our analyses suggest that dragsturing is an important mode for students of 

communicating dynamic and temporal aspects of functions. We think that the specific design 

of the DIMs facilitated the blending of dragging and gesturing actions, since the ticks were 

not labeled, and it led students to often refer to them through pointing gestures made with 

hands and fingers or through the mouse. However, an innovative and interesting result is 

that students used this type of non-linguistic communication also within a paper-and-pencil 

context. This finding seems to be in contrast with that of Ng (2016), according to which 

participants communicated about the fundamental calculus ideas differently within different 

types of environments. In particular, this is a defining feature of the detached phase of 

dragging mediated discourse where we showed that the visual mediation of different types 

of dragging, characterizing the experience within the DIE, is used by the students as 

precedent event requiring for replication and so it is realized through acts of dragsturing in 

paper-and-pencil context.  

  



104 
 

 

  



105 
 

6 THE FORMATION OF A NEW MATHEMATICAL OBJECT 

This chapter contains the analysis of the main features characterizing the students’ emergent 

discourse about functions. We highlight the potential expert discourse mirrored and the 

seeds of possible realizations of mathematical signifiers, especially, the emergence of the 

covariational aspect of functions. This is made possible by the creation of a coding scheme, 

that we are going to describe, aimed at identifying different instances of specific patterns in 

discourse. Moreover, we present the a posteriori analysis of each task, comparing it with the 

a priori analysis, in order to have a feedback on the task design process. 

6.1 SOME ASPECTS CHARACTERISING THE NEW MATHEMATICAL OBJECT 
We are interested in analyzing the main features of the mathematical signifier ‘function’, 

which students are introduced to, as it is realized in their discourse; because we want to 

investigate what characterizes the specific discourse supported by the sequence of lessons 

and the DIMs that we designed.  

In particular, we are going to analyze some excerpts taken from students’ discourse during 

the lessons and the interviews, by focusing on:  

 whether a formal vocabulary is used to communicate mathematical ideas;  

 whether students’ discourse is mirrored by potential expert discourse; 

 whether visual mediators are involved in students’ discourse;  

 whether there are references to the dynamism of the realizations proposed, such as 

movement, time and space to describe functions and their properties; 

 whether there is a shift in discourse where the DIM passes from being the object of 

students’ discourse, eventually playing the role of mediator, to being the realization 

of the mathematical signifier ‘function’. 

6.1.1 Different expressions for 𝒇(𝒙) = 𝒚 

In this section we describe different expressions used by the students to communicate about 

the correspondence between the values of the two variables, which is determined by the 

relation 𝑓(𝒙) = 𝒚, for some 𝒙  in the domain of the function. In particular, we selected 

excerpts that show a variety of expressions in students’ discourse, and in which there is 

evident intertwining of static and dynamic aspects.  

For example, in the following excerpt the researcher asks a question that prompts two 

different answers from Matilde and Anna: one of the students expresses a specific position 

of one variable, while the other student expresses the movement of one variable within an 

interval. 

Excerpt 6.1 - Lesson 2 

(Realization DGpp of the function 𝑓(𝑥) = √𝑥 + 3 − 2) 

 When Who What is said What is done 

225 I2Mp3 
00:03 

M Put it [A] a bit forward…ah no, exactly on 
twenty-two, okay. So, B equals three when 
A is on twenty-two, but we have zero B, 
let’s say that when B is on zero, when A is 
on one, and B on one when A is on six 

Activity2_2 
The grid is shown 
Anna holds the 
mouse 
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226  A Yes  

227  M And then.. it seems that B decelerated I 
don’t know if 

 

228  A In any cases, it [B] goes slower over there  

229 00:40 M It goes slower, when A comes here B is a 
little bit more, it decelerates….if we can say 
to decelerate 

She points to 
bigger and bigger 
values for A 

   […]  

239 01:15 R Well! Now, how can I move B from zero to 
one? 

 

240  M Ehm I have to put A on zero  

241  A By moving A from one to six  

242  R Let me see Matilde takes the 
mouse 

243  M Because, when  

244  A Put A on one  

245 01:35 M If I put like this, it is at zero, if I put A at six 
it is on one 

Guided dragging 
to have A=1 and 
then A=6 

Excerpt 6.1 is taken from the second lesson, when Matilde worked with Anna, one of her 

classmates. In the excerpt, they mainly use the expression “the variable is on [a specific 

value]”, which has a static nature, realizing the variable as an object that can be put on 

different numbers as Anna says at line 244 “put A on one”. However, there are also several 

references to the dynamic aspects of the dynagraph, such as the description of B’s velocity 

(see lines 227 and 228) and of A’s movements (see line 229). In particular, the different 

answers of the two students to the question of the researcher (see line 239) show how both 

static and dynamic aspects coexist. Indeed, Matilde suggests to “put A on zero” while Anna 

to “move A from one to six”. Moreover, in their attempt to find a correspondence between 

the values of the two variables, they also express the dependence relation referring to time, 

as indicated by their frequent use of the word ’when’. 

Excerpt 6.2 - Lesson 4 

(Realization DGpp of the two functions 𝑓(𝑥) = 𝑥2 𝑎𝑛𝑑 𝑔(𝑥) = |𝑥| +
3

2
) 

 When Who What is said What is done 

235 I4Mp3 
00:18 

E When C is negative, D is positive Activity4_2 
He holds the mouse 
and she points to 
the screen 

236  D But look, it is much more up… 
when C is minus three, nine and a half 

He writes on the 
paper, in a 
Cartesian plane that 
he drew 

237  D Minus two? Minus two will be here! 
Minus two, six and four… 
Minus one...almost one 

She moves C by 
using the arrows on 
the keyboard 
He points to the 
screen while saying 
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“here” and then he 
writes on the paper 

238  E However, they meet each other at zero She is still using the 
arrows of the 
keyboard 

239  D Then put it at one  

240  E They meet each other there, too… but 
wait, theoretically not exactly 

 

241  D A little bit less  

242  E At zero, too  

243  D However, let’s see, yes more or less. At 
two? 
At two is two, no four 

 

244  E At three   

245 02:08 D Nine He draws a set of 
points in the paper 

In excerpt 6.2, Elena and Davide’s discourse is highly reified, characterized by the use of few 

verbs, short sentences and the focus seems to be on the static positions more then on the 

process to reach them. Students’ exploration of the dynagraph consists in identifying pairs 

of values for the variables: for example, Davide’s expression “minus two, six and four” (see 

line 237) describes the relation 𝑓(−2) = 6,4. It seems that the students were reading a table 

of values, without considering the temporal dimension of their dragging actions. Indeed, they 

use the arrows of the keyboard which shows discrete dragging of the independent variable 

which probably allows them to observe the product of the imposed movement. However, 

the students list the pairs of values according to the dependence relation, since they always 

express before the 𝑥-value and then the 𝑓(𝑥)-value (e.g., lines 243, 244 and 245). 

During the following lesson, Elena and Davide’s discourse maintains the same features: 

again, they proceed by identifying in the DIM several pairs of values for the two variables 

and by plotting them on a Cartesian plane drawn on the sheet of paper. An example of this 

fact is shown in the excerpt below. 

Excerpt 6.3 - Lesson 5 

(Realization DGc of the function 𝑓(𝑥) = √𝑥 + 3 − 2 ) 

 When Who What is said What is done 

262 I5Mp6 
00:04 

D At six it is one, put it……then at thirteen it 
is two……. 
and at twenty-two it is ok, so, let’s do the 
negative values now, at minus one, or 
rather let’s do at minus two it is minus 
one, at minus three it goes away, that is, 
a bit before, but at minus three it is a bit  

Activity5_2 
The grid is shown. 
He holds the mouse 
and she writes on 
the paper 

263  E It is almost minus three  

264  D Then let’s see some values in the middle, 
how much I took, you are at ten, at ten it 
is…one point six 

Zoom in 

265  E At ten?  

266  D Mm, but how is it possible? He looks at the 
paper 
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267  E Because I was wrong in doing this one 
and so 

 

268  D Does it go up and then down?  

269  E How is it possible? It is what you are 
telling to me 

 

270 01:40 D No, absolutely not  

In the excerpt we can see Davide dragging the tick realizing the independent variable by using 

the mouse and he gives Elena a set of points of the form (𝑎, 𝑏 = 𝑓(𝑎)) by telling her “at [a 

number] it is [a number]”. Again, his discourse seems focused on static positions more than 

on dynamic relations between movements; however in the excerpt 6.3 there are also some 

expressions involving dynamic aspects. For example, at line 266 when Davide notices, by 

looking at the realization SGc, that Elena made a mistake because for him it is not possible 

that “it goes up and then down” (line 268). This observation is ambiguous since he does not 

explain what ‘it’ refers to, and it could be the dependent variable which moves up and down 

or the shape of the curve in their drawing.  

Excerpt 6.4 is from the sixth lesson, and it captures Matilde working with Franci and Lore. 

Excerpt 6.4 - Lesson 6 

(Realization DGc of a function ad hoc defined, having [0, 12] as domain) 

 When Who What is said What is done 

51 I6Mp1 
08:35 

F Sorry, try to go at one for a moment, that 
is, we have to understand the meaning of 
this fact that it bounces 

Activity6_1 
She holds the 
mouse and Franci 
writes on the 
paper 

52  M Now it [x] is at one  

53  F Eh, x equals one  

54  M No, equals one it [f(x)] is one  

55  F And when is f(x) at zero?  

56  L It [f(x)] is zero, that is, when they are both 
zero, but also in each interval 

Zoom in 

57  M No, on [x equals] one it [f(x)] gets to zero, 
so before one 

After speaking she 
zooms out 

58  F Eh, on one, aaah before one does it [f(x)] 
get to one? 

 

59  L I mean, after one month  

60  M Yes  

61  F And on [x equals] one it [f(x)] gets to zero  

62  L During one month, zero cubic meters of 
water 

 

63  F X equals one and zero cubic meters? While 
when x is close to one, but it is not at one, 
it is one cubic meter, in which sense? 

He writes on the 
paper 

64  M It [f(x)] moves in the interval from zero to 
one, and at one it [f(x)] vanishes, then from 
one it will go up and from one to two it 
[f(x)] arrives at two, then it vanishes again 

She moves her 
hands up and 
down  
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65  L But it seems to me that it [f(x)] goes from 
zero to three 

He moves one 
hand from one 
point in the air 
going up at 
another point 

66  M With [x equals] two? Not with two She starts dragging 
again 

67  L Yes, with [x equals] two it [f(x)] arrives over 
there, while with three? 

 

68  M With three, it arrives at  

69  L At three  

70  F With three it arrives at three, therefore 
between two and three 

 

71  M At four it [f(x)] arrives at five and a half and 
with five also, at more than eight 

 

72 10:10 L Yes, then go to six…ah it is back, however, 
they always go down in each interval 

He points to the x-
axis while saying 
“it is back” 

Several times in this episode the students describe the variables as “staying on” or “being at” 

a certain value, which are expressions that Matilde already used in previous lessons. In 

excerpt 6.4 there are many examples of students’ descriptions of the correspondence 

𝑓(𝒙) = 𝒚  which is expressed statically (see lines 54, 56, 63) or with reference to the 

movement (see lines 57, 58, 61, 64, 67, 70, 71). The dynamism is involved in the description 

especially when Matilde moves her hands (see line 64) reproducing the movements of the 

dependent variable.  

Excerpt 6.5 - Lesson 7 

(Realization DGc of the function 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
 and realization SGc of other four different 

functions) 

 When Who What is said What is done 

212 I7Mp4 
01:49-
01:55 

F We have to find in which one among 
these four graphs it associates zero and 
one both with minus one 

Activity7_2 

Excerpt 6.5 is another example of description in terms of the process involved to reach a 

particular configuration. Indeed, Franci describes the correspondence between the 

variables’ values as an association operated by the graph. 

 

 

In conclusion, we have shown different excerpts from the sequence of lessons, containing 

students’ discourse about the relation between the variables’ values. If 𝑎, 𝑏 ∈ ℝ, and f is a 

real function, we denote with A the independent variable and with B the dependent one, as 

most of the students did, all the following expressions are examples of students’ descriptions 

of 𝑓(𝑎) = 𝑏, that we found in the excerpts shown above:  
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1 “if I put A on a, it is on b” 7 “at a, it arrives at b” 
2 “B is on b when A is on a” 8 “with a it arrives at b” 
3 “B equals b when A is on a” 9 “equals a, it is b” 
4 “it associates a with b” 10 “when A is a, b […]” 
5 “when x is a, f(x) is b” 11 “at a, it is b” 
6 “on a it gets to b”  12 “at a, b […]” 

 
We listed them starting from expressions that explicitly mention the dependence relation or 

the dragging action of the user or the process needed to obtain that values. Then there are 

expressions that still contain some references to motion but in a less explicit way and finally 

there are the most reified realizations of the correspondence, even without any verbs. They 

actually do not appear in this order within students’ discourse, but scrambled up, revealing 

students’ attempt to build a discourse which takes into account (or which struggles with) a 

relationship between the dynamic action of dragging A, which brings it onto a certain 

position on the line, to the static condition “A equals a”.   

6.1.2 The use of the word ‘function’ 

In order to investigate possible changes in students’ discourse, we selected all the excerpts 

where students use the word ‘function’, by using the Find Tool to identify its occurrences, 

and we analyze how it is used. 

We noticed that very frequently students say “in function of”, which is an Italian expression 

used to describe a dependence relation, but it does not necessarily refer to the mathematical 

functional dependency, since it is commonly used in everyday situations. For this reason, 

now we are going to show all the excepts where the word ‘function’ is used not within this 

expression, highlighting possible patterns or developments in discourse. 

 

During the first lesson, Matilde and Francesco already mentioned the word ‘function’ and in 

the following two excerpts we are going to describe in which context it happened. 

Excerpt 6.6 - Lesson 1 

(Realization DGp of the function 𝑓(𝑥) = −𝑥 + 5) 

 When Who What is said What is done 

425 I1Mp3 
01:50-
02:05 

M It could also be a function such that, 
when x is less than zero there is its 
image, when f(x) is like x that is, the 
absolute value, x becomes bigger than 
zero 

Activity1_1 
She tells the class 
her findings 

Matilde uses the word ‘function’ when describing the DIM, hypothesizing that it was a 

realization of the absolute value function. In her description the dependence relation is 

initially expressed by the sentence “when x is less than zero, there is its image”, then her 

discourse about the relation between the two variables wanders from potential expert 

discourse mirrored. Moreover, she names them 𝑥 and 𝑓(𝑥) giving other realizations of the 

signifiers ‘independent variable’ and ‘dependent variable’, as if the dynagraph was for her a 

possible realization of these mathematical signifiers.  
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Excerpt 6.7 - Lesson 1 

(Realization DGpp of the function 𝑓(𝑥) = |𝑥|) 

 When Who What is said What is done 

512 I1Mp3 
11:08 

F I wanted to say that if it was a function, 
then there should be the inverse as 
well, so if I 

Activity1_3 

513  R What does the inverse mean?  

514  
 
 
 
 
 
 
 
 
11:50 

F It means that..wait, please do the 
movements…when we pass into 
positive numbers, then when the tick 
are separated out and one of them is in 
the positive [semiaxis] and the other 
one is in the negative [semiaxis] I 
should be able to move that one in the 
positive [semiaxis] also into the 
negative, because ehm..while I can 
move it only from the negative to the 
positive, so for me it is not a function 
because there should be an inverse as 
well 

He gives the mouse 
to Lorenzo and tells 
R his observations 
pointing to the 
screen 

Francesco repeats twice the word ‘function’ and he also speaks about an inverse. In his 

discourse he does not refer to the dependence relation between the two variables, but he 

speaks about the ticks as two separated objects “one of the ticks is in the positive [semiaxis] 

and the other one is in the negative [semiaxis]” (see line 514). Moreover, it seems that he 

would recognize the DIM as a realization of a function if he had the possibility of dragging 

the dependent variable onto negative numbers, obtaining what he calls the ‘inverse’. This 

observation seems an attempt to identify a precedent in his precedent-search-space 

involving similar task situations. 

The main character of the episodes reported in the next excerpts is usually Davide, who 

seemed to employ quite often the word ‘function’ along the sequence of lessons. 

Excerpt 6.8 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
) 

 When Who What is said What is done 

96 I3Mp2 
00:05-
00:15 

D Eh we have taken 
some points and we 
have put each of 
them here, then we 
have not taken 
them all so, more or 
less, I think that it 
comes in this way. 
But for three it does 
not exist as if it was 
a function that does 
not exist for three 

Activity3_1 
He shows to R their drawing:  



112 
 

 
Fig. 6.8a 

Davide gives a description of the routine that he and his classmate usually perform for this 

type of task situation: it consists in identifying some pairs of values in the DIM and plotting 

them on a Cartesian plane on the paper, as shown in Figure 6.8a. Referring to the graph 

drawn, he treats it as a realization of “a function that does not exist at three” (see line 96). 

We interpret his discourse as related to a new branch, containing the realization DGpp, 

within his realization tree of the mathematical signifier “function not defined for 𝑥 = 3”. 

Indeed, from the realization DGpp he moves to SGc, which he seems quite familiar with, 

indeed, he also notices a gap in the domain of the function. 

In the next lesson Davide was asked to describe his observations about this activity 

(Activity3_1) to the whole class and his explanation is reported in the following excerpt, 

where the student speaks without looking at the GeoGebra file. 

Excerpt 6.9 - Lesson 4 

 When Who What is said What is done 

3 I4Mp1 
00:25-
00:45 

D Eh we were able to understand that the 
function, a function x not exist for the 
value three and that all the other values it 
could not be less, it could not be more than 
minus a half and less than six and a half 

Activity3_1 
He tells the class his 
findings about the 
activity of the 
previous lesson, 
without opening the 
file 

Davide uses the word ’function’ again. He characterizes the domain, then he describes the 

set of images expressing the values that the function cannot be greater or lesser than. It is 

possible to see his discourse mirrored by potential expert discourse, if we identify the two 

extreme values that he expresses with constant functions. Otherwise, the dependent 

variable seems to be identified with the function itself in Davide’s discourse. 

In the next excerpt there are two episodes both belonging to the fifth lesson, in which two 

different students are involved. 

 

Excerpt 6.10 - Lesson 5 

(Realization DGc of the function 𝑓(𝑥) = −𝑥 + 5) 
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 When Who What is said What is done 

4 I5C2 
07:15-
07:20 

N Eh but it will be something, it will be a 
function 

Activity5_1 
He explores the file, 
working with Alessio 

   […]  

197 I5Mp5 
00:55-
01:05 

D Yes, it is as the first one [DGc of 
activity5_1] but here [noises], but at the 
end the function is the same 

Activity5_1bis 
He tells the class his 
idea 

In the fifth lesson Nicco mentions for the first time the word ‘function’, identifying the DIM 

with a realization of a function. This excerpt is taken from the beginning of the lesson when 

students have just began exploring the interactive file of activity5_1 with the realization DGc. 

Since it is the first time that students see this type of realization, it is possible that because 

of the Cartesian plane Nicco identified a possible precedent in his precedent-search-space 

about task situations involving functions. 

Then, Davide recognizes the DGpp of activity5_1bis and the DGc of activity5_1 as two 

realizations of the same function (see line 197) – this actually was the aim of that activities. 

This suggests that these are two different realizations both belong to his realization tree of 

the signifier 𝑓(𝑥) = 𝑥 − 5, which is the function considered.  

Excerpt 6.11 - Lesson 6 

(Realization DGc of a function defined ad hoc, having [0, 12] as domain) 

 When Who What is said What is done 

85 I6Mp1 
12:20-
12:28 

F Yes f(x) sorry, it is a function……a function 
that vanishes for all whole numbers 

Activity6_1 
He talks with Lore 
and Matilde who 
manipulate the file, 
while he holds the 
pen to write on the 
paper 

In excerpt 6.11, Franci describes the behaviour of the function that he sees realized by its 

DGc. From his words “f(x), it is a function” it seems that he identified the function with 𝑓(𝑥) 

itself, which is the label used for the dependent variable that moves bounded to the 𝑦-axis 

in the DIM. However, then he says “a function that vanishes for all whole numbers” which 

expresses the dependence on 𝑥. 

In the following excerpt there are two episodes from the same lesson. In the first one, Davide 

is telling the entire class what he did to draw the Cartesian graph of the function in the 

activity7_1 and what he noticed about the behaviour of the function, by looking at the graph 

obtained. In the second one, Elena, who works paired with Davide, is speaking to the 

researcher. 

Excerpt 6.12 - Lesson 7 

(Activity7_1: realization DGc of the function  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
;  

Activity7_2: realization DGc of the function 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
 and realization SGc of other four 

different functions) 
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 When Who What is said What is done 

263 I7Mp5 
02:20 

R Davide and Elena how did you make it? Activity7_1 

264  
 
 
 
 
 
 
 

D Ehm so, we have done as usual, we have 
taken various x-values and we saw how 
the function behaved, we noticed that for 
.. when x assumed certain values the ... it 
created some curves that went up and 
down and then we managed to 
understand that for certain values of the 
function, that this function assumes, 
there are three solutions and therefore 
that for y varying between one and a half 
and about six or seven there are three x-
values that satisfy such 

He tells the class 
how they solved the 
activity 

265  R And did it help you to draw the 
trajectory? 

 

266  D We noticed it later… to draw the graph 
we made as 

 

267  R Using the values?  

268 03:30 D Yes, as usual, and then we noticed this 
fact  

 

   […]  

338 I7Mp6 
06:07- 
06:13 

E And so here [in the Cartesian plane] we 
mark the two points and then we trace.. 
the function 

Activity7_2  
She talks with R 

In excerpt 6.12 the researcher asks to Davide and Elena how they made the graph on the 

paper and Davide’s answer focuses on the non-injectivity of the function, but this property 

is something that they noticed later, by looking at the Cartesian graph. Indeed, he explains 

the routine he and his classmate performed to solve the task which was the same “as usual” 

(line 264). In particular, Davide’s use of the word ’solution’ suggests that he refers to the 

equation 𝑓(𝑥) = 𝑘, 𝑘 ∈ [1.5, 7] , which is satisfied by different 𝑥 -values. So in this case 

Davide employs the word ‘function’ as an expert.  

Some moments later during the lesson, Elena says ‘function’ referring to the curve that 

realizes the graph of the function in the Cartesian plane. 

Finally, in the next excerpt there are two episodes happened during the last lesson. 

Excerpt 6.13 - Lesson 8 

 (Activity8_1: realization DGpp of the function 𝑓(𝑥) = {

3

2𝑥
+ 2, 𝑥 > 0

(𝑥+1)2(𝑥+6)(𝑥+3)

𝑥
− 1, 𝑒𝑙𝑠𝑒

;  

Activity8_3: description of different properties of a function to draw its realization SGc) 

 When Who What is said What is done 

146 I8Mp3 
03:04- 
03:05 

N But which function is it? Activity8_1 
He asks to R 

   […]  
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277 I8Mp5 
01:45- 
02:27 

D Here for three, for example, 
then also down here, and here 
for four values, and so we 
interpreted it in this way. Then 
the fact that they intersect at 
about three point five mans 
that the point three point five, 
three point five belongs to this 
function and so we also 
satisfied this request 

Activity8_3 
He tells R how they solved the 
activity, showing their 
drawing on the sheet of 
paper: 

 
Fig. 6.13a 

   […]  

283 I8Mp5 
03:12-
04:06 

D However, before zero as x 
increases also f(x) increases, 
then the fact that going forward 
with x..the function moves very 
little so we have satisfied in this 
way the fact that between ten 
and six, between zero and six, 
that are the values on the x-
axis, we have more movement, 
the function is more dense, I do 
not know how to say it, while 
when before zero, that is, when 
the values are less it is a bit 
more smooth, I do not know 
how to say it and then, I think 
that all the things are satisfied 

 

At this point, Nicco seems sure about the fact that he is working with the realization of a 

function, but he does not know which function, as his question to R, at line 146, suggests. 

Then Davide repeats the word ‘function’ several times and he almost always uses it as an 

expert; except when he says that “the function moves very little” at line 283, which probably 

describes the movements of the dependent variable when the independent one is dragged 

in a certain interval. 

The analyses highlight that not many students of the class say ‘function’ during the sequence 

of lessons; indeed all the excerpts are taken from the discourse of Matilde, Davide, Elena, 

Franci or Nicco. Moreover, we have observed that in several cases these students use the 

word ’function’ when talking about the independent variable and this is often done also by 

the experts, especially in oral communication. 

In the case of Davide, since the first time the word ‘function’ appears in his discourse during 

the third lesson, till the last one during the eighth lesson, we see an evolution in the way that 

it is employed. In particular, his discourse is ever more mirrored by potential expert discourse 

in which the word ‘function’ is used. Moreover, during the sequence of lessons, we also see 
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a development in students’ use of the DIMs: from being the objects of the discourse, for 

many students theybecome possible realizations of the mathematical signifier ’function’. For 

example, in the excerpt 6.10 Nicco’s discourse shows this transition which started during the 

fifth lesson, while we observed that for Franci part of the switch happened during the sixth 

lesson (see excerpt 6.11).  

6.2 POSSIBLE REALIZATIONS OF FUNCTIONS’ PROPERTIES 
After showing an overview of the implications of the sequence of lessons on the whole class, 

aimed at identifying all the seeds of possible realizations of mathematical signifiers in 

students’ discourse, in this section we are going to focus on certain selected pairs of students 

that we followed more closely. In particular, our purpose is to investigate if, and eventually 

how, these students’ discourse is mirrored by a potential expert discourse (for a description 

of it, see section 2.1.1.2). For this reason, in the excerpts that we are going to show we added 

a column for the ‘potential expert discourse’ where we express what the student says as we 

expected from an expert. In some cases, this column is divided in two lines, because in the 

bottom line we add some further implications or other possible details that an expert would 

probably say. There could be also some notes in italic where we write possible corrections 

of students’ mistakes. Moreover, we added another column for the ‘code’ that contains the 

mathematical signifiers realized by the corresponding discourse, including also the cases 

where the discourse contains seeds of realizations of these signifiers, expressed according to 

the coding scheme that we are going to explain. 

6.2.1 A posteriori analysis 

In this section we use the same table that we created for the a priori analysis (Table 4.2).  

By looking at both Table 6.1 and Table 4.2, for each activity it is possible to compare the a 

priori and a posteriori analyses in order to have an idea of the strength of each task in 

fostering a specific discourse. Moreover, analyzing all the selected instances for a given 

mathematical object, which are all the sentences with the same label, it is possible to have a 

general view of the development of students’ discourse along the sequence of lessons, with 

respect to that object.  

To create the table we follow a similar approach with respect to that used for Table 4.2: a 

black box represents a mathematical object which students refer to in their discourse and a 

white box represents a mathematical object that does not appear in students’ discourse. 

Moreover, the grey is used for an intermediate level, that is for the mathematical objects 

included in students’ discourse but just a few number of times. 

In order to choose which of the three colors should be used for each box and to have rigorous 

criteria for this choice, applicable to all the activities, we developed a coding scheme. We 

coded all the video transcripts by applying the labels: IN/DEP – DOM – RAN – INJ – MON – 

MAX/MIN – LIM – ASY – DER every time we identified a potential expert discourse mirrored 

about the corresponding mathematical signifier. Therefore, it is not necessary for a discourse 

to be expressed with a formal mathematical vocabulary in order to be coded through these 

labels. This process allowed us to assign a color based on the number of instances of a 

particular label within a specific activity: black indicates the most frequent labels, the grey 

for the less frequent and the white for absence of the label. Now, we provide a detailed 

description of each label, with a description of the coding; for example, we show some 

expressions or words considered representative for that mathematical signifier. In these 
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expressions we always denote the two variables by 𝑥 and 𝑓(𝑥), but in the excerpts we use 

the same labels for the mathematical signifiers even if in students’ discourse they are 

denoted by A and B, or something similar. 

 IN/DEP (independent/dependent variable): every time the asymmetric relation 

between the two variables is explicitly described, for example “ 𝑓(𝑥)  moves in 

function of 𝑥”; or it is expressed by using temporal references, for example “as 𝑥 

increases, 𝑓(𝑥)…”; or it is used the hypothetical form which conveys causality “if 𝑥…, 

𝑓(𝑥)…”.  

Moreover, the same label is used to mark seeds of realizations of the relation 𝑓(𝒙) =

𝒚, for some 𝒙 in the domain of the function; that we described in 6.1.1. 

 

 DOM (domain): marks discourse involving references to impossible movements, or 

values, of 𝑓(𝑥), expressed with respect to the corresponding movements, or values, 

of 𝑥; for example “𝑓(𝑥) disappears after… [corresponding 𝑥-value]” or “𝑓(𝑥) does 

not exist between… [corresponding  interval of 𝑥]”. 

 RAN (set of images): every discourse which involves references to possible or 

impossible values for 𝑓(𝑥), that can also be expressed in dynamic terms as possible 

or impossible movements of 𝑓(𝑥); for example “𝑓(𝑥) does/does not go from… to…” 

or “𝑓(𝑥) does not go past…” or “𝑓(𝑥) does not exceed…” or “from here on 𝑓(𝑥) 

always exists”. 

 

 INJ (injectivity): marks discourse on non-injectivity of the function, in particular, in 

each case where the fact that a particular value of 𝑓(𝑥) can be obtained for, at least, 

two different values of 𝑥 . For example, “𝑦 = 𝒚 can be obtained in two, three,… 

different ways”. 

 

 MON (intervals of monotonicity): every time the direction of movements of the two 

variables is explicated to emphasize that they have the same direction, in the case 

of an increasing function, or two opposite directions, in the case of a decreasing 

function. For example, “𝑓(𝑥) and 𝑥 move in the same direction” or “𝑓(𝑥) and 𝑥 are 

symmetrical” or “𝑓(𝑥) comes back”. 

 

 MAX/MIN (relative or absolute maximum/minimum): it is used every time the word 

‘maximum’ or ‘minimum’ is used, but also for discourse referring to a point where 

𝑓(𝑥) changes its direction or stops or bounces. For example, “𝑓(𝑥) arrives at … and 

then it moves down again” or “𝑓(𝑥) bounces” or “𝑓(𝑥) stops and it doesn’t pass 

over…”. 

 

 LIM (finite or infinite limit): marks discourse involving references to the behavior of 

the dependent variable at the extremities of the domain, for example “𝑓(𝑥) does 

not stop anymore” or “𝑓(𝑥) goes to inifinity”. 

 

 ASY (vertical or horizontal asymptote): marks the descriptions of the movement of 

𝑓(𝑥) when it moves so much slowly that it seems fixed and it is the case of a 
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horizontal asymptote, for example “𝑓(𝑥) stays still here” or “𝑓(𝑥) approaches… but 

it never touch it”; or the descriptions of the path followed by 𝑓(𝑥) as it was a circle 

around the computer screen and it is the case of a vertical asymptote, for example 

“𝑓(𝑥) arrives at an infinite point here and then it comes back from an infinite point 

there” or “𝑓(𝑥) reappears over there”. 

 

 DER (derivative): marks discourse about changes in the speed of 𝑓(𝑥)  and its 

possible acceleration/deceleration, for example “𝑥 moves a little and 𝑓(𝑥) dashes, 

then 𝑥 moves a little and also 𝑓(𝑥) moves a little”; or to mark all the descriptions of 

changes in the movements of 𝑓(𝑥)  that are expressed with respect to the 

movements of 𝑥, for example “𝑓(𝑥) moves less and less in relation  to 𝑥” or “𝑓(𝑥) 

passes over 𝑥”. 

 

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

1_1 DGp          

1_2 DGp          

1_3 DGpp          

2_1 DGpp          

2_2 DGpp          

2_3 DGpp          

3_1 DGpp          

3_2 DGpp          

4_1 DGpp          

4_2 DGpp          

5_1 DGc-
DGpp 

         

5_2 DGc          

5_3 DGc          

6_1 DGc          

6_1bis DGc          

7_1 DGc-
SGc 

         

7_2 DGc-
SGc 

         

8_1 DGpp-
SGc 

         

8_2 SGc          

8_3 SGc          
Table 6.1. Mathematical objects in all students' discourse 

Table 6.1 shows that several mathematical objects intertwine in students’ discourse along the 

whole sequence of lessons. So the designed activities seem to support the formation of 

discourse about functions and the description of a specific property of a function involves 

the observation of several other aspects characterizing the same function. 

The first notable difference that we can observe between Table 6.1 and Table 4.2 concerns 

the derivative. Indeed, it is realized in students’ discourse almost during the whole sequence 

of lessons, especially in the activities 4_1 and 5_3, even if this mathematical object was not 
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included in the a priori analysis until the last lesson. It seems that the dynagraphs, where 

movement is essential to explore the functional relation, promote discourse about the speed 

and changes in speed of the ticks realizing the variable, this discourse is mirrored by potential 

expert discourse about the derivative of the function. Moreover, activity3_1, which was 

designed to support discourse about the domain and the set of images of a function, as 

indicated by the black boxes in Table 4.2, seems actually to promote discourse about the set 

of images and the monotonicity properties, but not about the domain. This observation 

could suggest a review of the task or the choice of the particular function defined for the 

activity, in order to foster further discourse on possible values for the independent variable, 

according to the goals of the lesson. For example, the question “For which 𝑥 values does 

𝑓(𝑥) exist?” could be added in activity3_1bis. 

As we expected, in some activities the choice of asking the questions to students after giving 

them time to explore the file seems to have fostered richness in their discourse describing 

their explorations – more so than when answering the questions. Differently from what we 

expected, when solving activity7_2 no one in the class mentions that the same function was 

also used in activity3_1. 

6.2.2 Nicco and Alessio 

Table 6.2 shows the list of the mathematical objects that can be found in Nicco and Alessio’s 

discourse, who worked together for six lessons. 

As previously discussed for the whole class, seeds of realizations of several mathematical 

signifiers characterizing functions can be found in Nicco and Alessio’s discourse.  

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

1_1 DGp          

1_2 DGp          

1_3 DGpp          

2_1 DGpp          

2_2 DGpp          

2_3 DGpp          

3_1 DGpp          

3_2 DGpp          

4_1 DGpp          

4_2 DGpp          

5_1 DGc-
DGpp 

         

5_2 DGc          

5_3 DGc          

6_1 DGc          

6_1bis DGc          
Table 6.2. Mathematical objects in Nicco and Alessio’s discourse 

If we consider Table 6.2 and Table 4.2 we can notice some differences: for example activity 

2_3 mainly proposes realizations of the domain, and not of the set of images of the function, 

as was indicated in the a priori analysis. This could suggest reviewing the task or the choice 

of the particular function. However, Table 6.1 shows that this difference is not observed for 

all the students and so it might be due to the particular focus of Nicco and Alessio’ discourse 

during the explorations of the DIMs.  
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There are also some differences between Table 6.1 and Table 6.2, for example, activity4_1 has 

a black box for the set of images if we consider the whole class’s discourse, while Nicco and 

Alessio’s discourse seems not to be mirrored by potential expert discourse about this 

mathematical object, as indicated by the white box in Table 6.2. The same remark holds for 

activity5_2 with respect to the domain of the function and also in this case the question “For 

which 𝑥  values does 𝑓(𝑥)  exist?” could be added to bring students’ attention on the 

independent variable. On the contrary, in activity4_2 the only possible realizations of the 

intervals of monotonicity that have been observed in the class’s discourse come from Nicco 

and Alessio, while all the other students in the class are mainly focused on the set of images 

of the function.  

Now we are going to analyze Nicco and Alessio’s discourse and how it develops during the 

sequence of lessons, showing some possible realizations of mathematical objects that we 

have identified, coded and listed in Table 6.2. Since the mathematical objects are intertwined 

in students’ discourse, an expression is rarely coded with only one label. Therefore, we are 

going to present the excerpts following the chronological order of their happening and not 

dividing them according to the codes that characterize them.  

 

Excerpt 6.14, from the first lesson, documents students’ attempts to establish which tick 

moves and, possibly, how it moves. This type of exploration supports discourse about the 

asymmetric relation between the two variables and about the behaviour of the function, that 

decreases.  

Excerpt 6.14 - Lesson 1 

(Activity1_1: realization DGp of the function 𝑓(𝑥) = −𝑥 + 5;  

Activity1_2: realization DGp of the function 𝑓(𝑥) = |𝑥|;  

Activity1_3: realization DGpp of the function 𝑓(𝑥) = |𝑥|) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

70 I1Mp1 
06:42 

R What moves? Activity1_1   

71  A They move 
symmetrically and in 
opposite directions, 
that is, if this one [x] 
moves a bit this one 
[f(x)] moves the 
same but in the 
opposite direction 
 

 
Fig. 6.14a 

The 
function is 
strictly 
decreasing 

MON 

72  R But do they move 
both? 

   

73  A yes..absolutely!    

74  R Do you agree?    
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75  N Eh they move both, 
we move just one of 
them 

   

76 I1Mp1 
07:08 

A No they move both    

   […]    

209 I1Mp2 
02:15- 
02:20  

A In my opinion they 
move in a 
symmetrical way 
because if one goes 
away, the other goes 
away, if one 
approaches the 
other, the other 
approaches too 

He tells the class their 
findings and he moves 
his hands to the right 
and to the left, without 
manipulating the file 

The 
function is 
strictly 
decreasing 

IN/ 
DEP 
MON 

   […]    

221 I1Mp2 
03:00- 
03:18 

A yes! That is, we said 
that they move both 
because, that is, with 
respect to the two 
fixed points that are 
zero and one, by 
moving maybe B to 
the right, A moves to 
the left and then it 
goes below zero and 
by moving B to the 
left A goes to the 
right 
 

He tells the class their 
findings and he moves 
his hands, without 
manipulating the file 

A depends 
on B. 
The 
function is 
strictly 
decreasing. 

IN/ 
DEP 
MON 

   […]    

233 I1Mp2 
03:47 

N That one does not 
move 

Alessio takes the mouse 
to drag again 

  

234  R Let me see, do they 
move both or does it 
move just one of 
them? 

   

235  A Ah only one of them 
moves, it’s true 

   

236  R But what does it 
mean that just one 
of them moves? 

She asks this question to 
the class 

  

237  A That is, they move 
both but one of 
them 

He is not dragging 
anymore 

  

238  R I see them moving!    

239 04:08 A But one of them 
moves in function of 
the other one, of A 
and B, that is, B can 

 A moves 
depending 
on B 

IN/ 
DEP 
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move while A moves 
in function of B 

   […]    

327 I1Mp2 
11:28 

N When minus x 
arrives at zero 

Activity1_2   

328 I1Mp2 
11:38 

A Yes, that is, we have 
the intersection 
point between minus 
x and plus x 

He points to the screen 
and closes together his 
second and third finger 

−𝑥 
intersects 
+𝑥 
 

 

𝑓(0) = 0 

   […]    

360 I1Mp2 
15:30 

N They are x and 
absolute value…and 
if x is positive then 
only the positive it 
exists 

He drags 𝑥 along 
positive real numbers 

  

It is the 
absolute 
value 
function 
and for 
positive 𝑥-
values 
𝑓(𝑥) = 𝑥 

361  R Therefore, over here 
[negative x-axis] 
there is one if them 

   

362  A Yes, so both x and 
minus x 

   

363  N The fact that the 
graph of the absolute 
value… they are 
three 

 
Fig. 6.14b 

  

364  A That is, if x is 
negative, and also if 
x is positive that is, it 
is always positive so 
it is absolute value 
function 

He points to the screen, 
moving his hand to the 
right and to the left a 
number of times 

For all 
positive 
and 
negative 𝑥-
values the 
function is 
positive, so 
it is the 
absolute 
value 
function 

 

365  R Therefore, which one 
is x? X is that variable 
that can go into 
positive and negative 
numbers? 

   

366  A Yes    

367  N And so, minus x, 
absolute value of x, 

He points to the screen 
firstly x which is negative 
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but if it was positive 
the absolute value is 
positive 

and secondly f(x) which 
is positive.  
R nods 

368  A Therefore, this one is 
the absolute value of 
x, while these two 
are x without 
absolute value 

When he sees just one 
tick; 
when he sees the two 
ticks 

𝑓(𝑥) = |𝑥|  

369 I1Mp2 
16:38 

N Absolute value of 
minus x… this is 
minus x and this is 
the absolute value of 
minus x 

   

   […]    

500 I1Mp3 
10:07 

R So which one are you 
dragging now? 

Activity1_3   

501  A This one [f(x)] He holds the mouse and 
points to the screen with 
the other hand 

  

502  R The one above    

503  A And this one [f(x)] 
moves in function of 
this one [x] 

 𝑓(𝑥) 
depends 
on 𝑥 

IN/ 
DEP 

504  R And is it the same of 
what you said 
before? 

   

505  A Yes..because no one 
of them disappears 

He stops dragging 
before speaking 

The 
function is 
always 
defined 

DOM 

506  N For negative [values 
of x] there exist 
negative and 
absolute value 

He takes the mouse to 
drag x 

  

507  A It does not 
disappear, because 
this one [f(x)] is the 
absolute value of 
minus x, and this one 
[x] of x, and so they 
are two different 
segments  

The class listen to him 
and he moves his hands 
without dragging 

  

508  R Is there never a point 
that disappears?  

   

509  A No    

510  R While according to 
you, it should 
disappear, that is, 
does it seem strange 
to you? 
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511 I1Mp3 
11:00 

A No no no    

   […]    

546 I1Mp3 
14:14 

A This one [x] moves in 
both the negative 
and positive 
[numbers]…this one 
[f(x)] is the absolute 
value of x and this 
one [x] is x 

He holds the mouse and 
drags, while pointing 
and following the 
movements of the ticks 
on the screen with the 
other hand 

  

𝑓(𝑥) = |𝑥| 

547 I1Mp3 
14:26 

N Yes, that one above 
is this [graph of the 
absolute value in Fig. 
6.14b] and that one 
below is only this 
part [the line y=x in 
Fig. 6.14b] 

    

The dependence relation is expressed by students thanks to the difference between direct 

and indirect motion, as shown by Nicco explicitly referring to his possibility of dragging just 

one of the two ticks (see line 75). This type of observations is also prompted by some 

questions of the researcher such as “but do they move both?” or “but what does it mean that 

just one of them moves?” (lines 72 and 236). At a certain point in the excerpt Alessio says 

that the movements of one variable depend on the other one (see line 503) and we can figure 

out which variable he is talking about by watching at his pointing gestures, since he does not 

distinguish them by words. Also, Alessio explains that by moving one tick the other one 

moves (see lines 221, 239) and he denotes with B the independent variable and with A the 

dependent one. In line 221, as in 71 and in 209, his discourse contains references to the 

opposite directions of movement of the variables and so, it is mirrored by potential expert 

discourse about the interval of monotonicity of the function, where it is decreasing. Alessio 

mainly uses the mediation of gestures, together with words, to communicate his 

observations to the whole class and to the researcher.   

However, Nicco and Alessio do not always express the dependence relation between the two 

variables; indeed there are several examples in which they speak about them as two separate 

entities (e.g., lines 328, 368, 507, 546, 547). In particular, when exploring the dynagraph of 

the absolute value function, Nicco and Alessio do not immediately identify the independent 

variable and the dependent one. They assume that there are three different objects: 

𝑥, 𝑓(𝑥), −𝑥; which they treat as separate entities, not linked to one another. This means, for 

example, that they describe 𝑓(𝑥) independently from x, which might even not exist (see lines 

368, 546). Also, their drawing on the paper (Fig. 6.14b) seems consistent with this description 

involving three different elements. However, the students are building discourse on the 

dependence relation, trying to put together different objects which they still see as distinct. 

There are some instances of this discourse which is forming, for example, when Alessio at 

line 364 describes the absolute value function, probably identifying a precedent from his 

precedent-search-space, he describes the behavior of 𝑓(𝑥) as depending on the sign of 𝑥. 

During the second lesson the focus is mainly on the domain and the set of images of the 

functions. In particular, students’ discourse is rich in references to values that the variables 

can or cannot assume and to unexpected movements or direction of movements. Moreover, 
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in the excerpt 6.15 we will see that Nicco and Alessio’s discourse on the dependence relation 

is still evolving.  

Excerpts 6.15 - Lesson 2 

(Activity2_1: Realization DGpp of the function 𝑓(𝑥) = 𝑒𝑥−1 +
1

25
; 

Activity2_2: realization DGpp of the function 𝑓(𝑥) = √𝑥 + 3 − 2;  

Activity2_3: realization DGpp of the function 𝑓(𝑥) = √(𝑥2 − 1)(𝑥2 − 4) ) 

 When Who What is said What is done Potential expert 
discourse 

Code 

45 I2C2 
37:00 

A Over here as you 
move, it seems that it 
becomes more 
sensitive, like B to the 
movements of A, 
because here if [x] 
moves by one, I do 
not know, one 
millimeter, this one 
[f(x)] moves maybe 
by two millimeters, 
instead here if this [x] 
moves by one 
millimeter, here this 
one [f(x)] moves by 
two centimeters so I 
do not know... 

Activity2_1 The derivative is 
not constant 

IN/DEP 
DER 

   […]    

66 I2C2 
28:28 

A There is a bug, there 
is a bug! 

Activity2_2 
He drags A 
forward and 
backward in a 
neighborhood 
of -3 and B 
disappears from 
the screen 

  

67  N Where is [f(x)] from 
[x equals] minus 
three? There is not 
[f(x)] from minus 
three 

 In a left 
neighborhood of 
-3 the function is 
not defined 

DOM 

68  A Try a second to go 
behind minus three? 

He asks to other 
two students 

  

69  N After minus three 
does it [f(x)] 
disappear also to 
you? 
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70  A Professor, to us B 
disappears after 
minus three 

   

71  N Yes, it disappears also 
to them, no, so it is 
not a bug in the 
program! 

   

72 I2C2 
28:52 

A Does it disappear? 
It’s a magic, magic! 

   

   […]    

109 I2C2 
40:55- 
41:22 

A But in my opinion, 
now it is this [f(x)] 
that moves with 
uniformly 
accelerated motion, 
because as this one 
[x] goes forward this 
[x] moves in more 
space and this one 
[f(x)] always less, so it 
depends on the point 
of view anyway, 
because this [x] 
moves by one and 
this one [f(x)] moves 
very little, then this 
[x] moves by one and 
this one [f(x)] always 
less, therefore it 
depends on, I do not 
know, on the point of 
view, for me 

He talks to R 
and moves his 
hands pointing 
to the screen 

As 𝑥 grows, the 
ratio of ∆f(x) to 
∆x decreases 
 

IN/DEP 
DER 

The derivative is 
decreasing 

   […]    

113 I2C2 
44:17 

A Oh my god! if it [x] is 
minus one, B 
disappears 

Activity2_3 
Alessio makes 
an impossible 
dragging on B 

The function is 
not defined at -1 

IN/ 
DEP 
DOM 

114  N Yes but go further, it 
reappears, look  

   

115  A It’s true! Probably 
also before, because 
we did not go beyond 
minus three 

   

116 I2C2 
44:54 

N B does not exist in 
the interval between 
[x equals] minus two 

 The function is 
not defined on 
the interval [-2; ?) 

DOM 

   […] They stay in 
silence while 
Nicco continues 
dragging 

  



127 
 

117 I2C2 
45:30 

A What? No! 
Keep going forward, 
go go go 

They see B 
coming back 
when dragging 
A from 0 to 1 

  

118  N Also between [x 
equals] one and two 
it [f(x)] does not exist, 
between one and 
two it does not exist! 

 The function is 
not defined on 
the interval [1; 2] 

DOM 

119  
 
I2C2 
46:27 

A It is as if it 
bounced………for me, 
it seems a bouncing 
ball 

Fast dragging 
where B moves 
“well” and slow 
dragging around 
the “critical 
points” such as 
x=1 and x=2 

In a left 
neighbourhood 
of 1 the function 
decreases, then it 
does not exist 
and in a right 
neighbourhood 
of 2 it increases 

 
MON 

   […] They are quite   

120 I2C2 
48:50 

A We have seen that in 
the interval between 
minus two 

He tells R their 
findings 

  

121  N Between minus two 
and minus one and 
between one and 
two it [f(x)] does not 
exist, B does not exist 

 The function is 
not defined on 
the intervals [-2; -
1] and [1; 2] 

DOM 

The domain is R 
except for these 
two intervals 

122  R And these numbers 
are…that is, do they 
refer to A or B? 

   

123 I2C2 
49:13 

A It would be in the 
intervals of A 
between one and 
two and between 
minus one and minus 
two, that B does not 
exist 

 The function is 
not defined on 
the intervals [1; 
2] and [-2; -1]  

DOM 

   […] Activity2_3bis   

140 I2C2 
54:54 

N Nooo, B does not go 
on zero 

For several 
times he drags 
A from -2 
towards the 
left, in a small 
interval, and he 
brings it back 

It does not exist 𝒙 
such that 𝑓(𝒙) =
0 

RAN 

141  A And B does not either 
go on four 

 It does not exist 𝒙 
such that 𝑓(𝒙) =
4 

RAN 

142  N But how not? But do 
you see that from 

𝑓(𝑥) takes on all 
positive values 

RAN 
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here on it always 
exists? How can it not 
go there?! 

He still drags A 
from -2 towards 
the left 

(0, +∞) is a 
subset of the set 
of images 

143  A It does that thing, 
how is it called that 
thing like this? It is 
symmetrical, it is a…? 

 The function is 
even 

INJ 

144  N Parabola    

145 I2C2 
55:45 

A Yes, a parabola but it 
had a particular 
name, symmetry, no, 
how is it called? 

   

146  N from zero point 
two…what do you 
do? No bring it back 
here 

Nicco reads the 
third question 
and explores 
the file by 
dragging 

  

147  A Nicco, for me it is a 
parabola…… 
But for me, we do 
not have to focus on 
the numbers, but 
more on the 
characteristics  

 The graph is a 
parabola 

 

148  A We did not see if we 
could drag B 

Impossible 
dragging 

  

149  N We cannot drag it, 
we can never drag it 

 𝑓(𝑥) is the 
dependent 
variable 

IN/ 
DEP 

150 I2C2 
59:00 

A Why?!    

In the first episode reported in the excerpt (line 45), the students are working on Activity2_1 

and Alessio gives a detailed description of the range of variations of the dependent variable, 

given a fixed interval of variation of the independent one. Also later in this excerpt he makes 

some other observations about the speed of the two variables and, in particular, about the 

changes in speed of the dependent variable with respect to the independent one (e.g. line 

109). These types of discourse are mirrored by potential expert discourse about the 

derivative of the function, and so about the slope of its graph restricted to a fixed interval. 

Similarly to what is described in the studies by Healy & Sinclair (2007), Alessio and Nicco are 

initially surprised by the vanishing of the dependent variable from the screen. At lines 68, 69, 

70 they even ask other students and the researcher if their file had some problems, since 

“from minus three it vanishes” and it seems strange to them. They refer to the disappearance 

of the dependent variable and they express it with respect to the value of the independent 

one, which is -3, mirroring potential expert discourse about the domain of the function. As 

already discussed in the a priori analysis, in the realization DGpp of a function the domain 

has to be identified by observing the movements of the dependent variable. In a similar way 

they realize the domain of the function of activity2_3 by expressing for which 𝑥-value 𝑓(𝑥) 

disappears from the screen (see lines 113-116), and we can infer what variable they refer to 
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by looking at their dragsturing actions. Then, for example at line 123, Alessio expresses the 

distinction between the two variables by using the labels A and B. 

Moreover, Alessio associates the movements of the dependent variable to the movements 

of a bouncing ball (see line 119) mirroring potential expert discourse about the behavior of 

the function in a neighbourhood of the interval not belonging to its domain. Indeed, in a left 

neighborhood of 1 and in a right neighbourhood of 2, that are the two extremes of this 

interval, he slowly drags the independent variable as focusing the attention on the changing 

in direction of movement of the dependent variable. In the last excerpt the students speak 

about symmetry and about a parabola: it may be that the bouncing movements and the 

existence of a minimum lead them to evoke the image of a parabola, recalling a precedent.  

From the last three lines, we can see that Nicco and Alessio’s discourse on the dependence 

is still forming:  they are not able to justify the fact that B cannot be directly dragged and 

they even try impossible dragging on it. 

The aim of activity2_3bis was to mediate a transition from variation in terms of movement 

to variation within a set. In particular, when talking about the set of images of a function, 

mathematically we intend the set of possible values for the dependent variable; this 

definition is independent from any specific value taken on by the independent variable. So, 

the activation of the trace tool on the dependent variable could support the transition from 

the description of all possible movements to the description of the static set of values which 

are taken on. Indeed, the trace tool might allow to overcome the temporal dimension, since 

it leaves a static mark on the screen. From the episodes analyzed it seems that Nicco and 

Alessio realize the domain and the set of images of the function dynamically in terms of 

possible or impossible movements (see lines 68, 140); but also statically referring to possible 

or impossible positions (see lines 116, 121, 123). 

The discourse on injectivity, which starts to arise when students talk about the parabola and 

the bouncing ball, during the third lesson comes to light, according to the goals of the lesson. 

For example, in the excerpt 6.16 we will see that during the activity3_1 Nicco distinguishes 

between the extreme points which the dependent variable takes on for only one 𝑥-value and 

all the other values which have at least two pre-images. 

Excerpt 6.16 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
 )  

 When Who What is said What is done Potential expert 
discourse 

Code 

34 I3C2 
11:14 

A But we must see 
how B moves in 
function of A. Then... 
then... then, after 
five... After that A 
passed over five, B 
moves in the same 
direction... in the 
same direction, 
because if you move 

Activity3_1 
Nicco drags A 
to the right 
and then 
brings it back 
fast                                                                            
  
                                                                                                                          
                                                                                     

𝑓(𝑥) depends on 𝑥. 
In a right 
neighborhood of 5 
the function is 
strictly increasing 
while in the interval 
[0; 4]* the function is 
decreasing 
(*[1.5; 3) and (3; 5] ) 
 

IN/ 
DEP 
MON 
MAX/ 
MIN 
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it [x] in here... do you 
see that it [f(x)] does 
move in the same 
direction? 
Instead try from zero 
to four, go to zero. 
Go! See you are an 
inept! Do you see 
that it moves in the 
opposite direction? 
Instead, when it [x] 
arrives at five, go to 
five, it [f(x)] starts 
moving in the same 
direction 

The derivative 
changes the sign at 
𝑥 = 5, which is a 
relative minimum 
point 

35  N After five?    

36 I3C2 
12:25 

A No, yes…..after that 
A passed over five 

He laughs and 
he stresses A 

  

   [...]    

54 I3C2 
22:53 

N  All the values can be 
obtained in two 
different ways 

He drags A 
forward and 
backwards 

All the 𝑓(𝑥)-values 
have two distinct 
pre-images 

INJ 

The function is non 
injective 

55  A What?    

56 I3C2 
23:14 

N It is possible to have 
all the values in two 
different ways….all 
the values except for 
the minimum… 

 All the 𝑓(𝑥)-values, 
except for the 
minimum, have two 
distinct pre-images 

INJ 

The function is non 
injective 

   […]    

81 I3C2 
27:55 

A yes, that is, in the 
interval where A 
moves from one to 
five, B moves from 
minus zero point five 
to six point five, but I 
do not know 

Nicco holds 
the mouse 

𝑓(1) = −0.5; 𝑓(5)
= 6.5 

ASY 

The function has a 
vertical asymptote 
at 𝑥 = 3 

82  N No, while A moves 
from one to five, B 
moves… that is, how 
can be 

   

83  R But it does not move    

84  N  Ehm, exactly! It is as 
if it arrived at an 
infinite point over 
there and then it 
started from infinite 
point here 

 lim
𝑥→𝟑−

𝑓(𝑥) = −∞ 

lim
𝑥→𝟑+

𝑓(𝑥) = +∞ 

LIM 
ASY 
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85 I3C2 
28:20 

A As if it moved 
around and came 
back  

   

   […]    

127 I3C2 
38:55 

R So, B is leaving this 
trace, how can this 
fact help us? 

She suggests 
them to 
activate the 
trace on B 

  

128  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I3C2 
39:35 

A To see where B 
passes throw. Then, 
as we said, B first 
passes everywhere, 
it stops at six point 
five and at minus 
zero point five. And 
then it follows, that 
is, in the time 
interval in which A is 
between zero and 
five, B moves in the 
opposite direction to 
A, while when A 
passes over five B 
moves in the same 
direction. We have 
seen this. 

Alessio holds 
the mouse and 
he answers to 
R. 
He drags A 
from 5 to the 
right and to 
the left, then 
he drags A 
from 1 to -1 
and vice versa 
for several 
times. 

The set of images is 
all R except for the 
interval (-0.5; 6.5). 
For xϵ[0; 5]* the 
function is 
decreasing, for 𝑥 >
5 the function is 
increasing 
(*In the intervals 
[1.5; 3) and (3; 5] the 
function is 
decreasing) 

RAN 
MON 
MAX/ 
MIN 

The function has a 
relative minimum 
point at 5 

In the excerpt 6.16 we can see that Alessio describes the DIM focusing on the behavior of 

the function, expressing its intervals of monotonicity in terms of relative movements of the 

two variables and his discourse is rich in references to time and to the position of the ticks 

on the line. His discourse is mirrored by potential expert discourse about the dependence 

relation between A and B. Indeed, he directly explicates this relation (“B moves in function 

of A”, line 34), or he refers to it by mentioning the role of time (“when A…B…”, line 36, 81, 

128; “while A…B…”, line 82). 

At line 85 of the excerpt there is an example of possible realization of the vertical asymptote, 

which is the dependent variable “moving behind the screen”. Furthermore Nicco, in the line 

before, speaks about the same variable going to negative infinity and then to positive infinity 

mirroring potential expert discourse about the mathematical object of limit, which in this 

case is lim
𝑥→3±

𝑓(𝑥). 

In the last line of the excerpt, after that the researcher suggested to activate the trace on 

𝑓(𝑥)  and asked them what it could be used for, Alessio’s discourse has some seeds of 

possible realizations of all the main properties of the function. For example, his discourse is 

mirrored by potential expert discourse about the set of images of the function, about the 

maximum and minimum values and about the intervals of monotonicity; in fact he 

distinguishes between concord or discord movements of the variables. 

While the students’ discourse on the dependence relation between the two variables is 

almost the same as potential expert discourse, in the excerpt below they are mainly involved 

in describing the behavior of the function and its derivative. 



132 
 

Excerpts 6.17 - Lesson 4 

(Activity4_1: realization DGpp of the functions 𝑓(𝑥) = {
7, 𝑥 < 5

3 + 𝑓𝑙𝑜𝑜𝑟(𝑥), 𝑒𝑙𝑠𝑒
  

and 𝑔(𝑥) = {

5

2
𝑥, 𝑥 < 6

1

2
𝑥 + 12, 𝑒𝑙𝑠𝑒

 ;  

Activity4_2: realization DGpp of the functions 𝑓(𝑥) = 𝑥2  and 𝑔(𝑥) = |𝑥| +
3

2
 ) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

23 I4C2 
16:00 

A This is half an 
hour 

Activity4_1 
The grid is shown. 
Nicco holds the mouse 

  

24  N Yes but it is 
always increasing, 
look 

 The function 
is strictly 
increasing 

MON 

25  A It increases but 
look, it increases 
and here it [f(x)] 
slows down and it 
[f(x)] reaches the 
other [x] 

  The function 
is increasing 
but the 
derivative is 
not constant. 
There exist a 
𝑥-value such 
that 𝑓(𝑥) = 𝑥 

MON 

26  N Twenty-four 
hours, ah, in a 
day 

   

27  A In a day he pays, 
in a day he pays 
twenty-four, he 
pays twenty-four 
euros per day 
It is 
enough…….Sorry 
but..he pays, pays 
eighteen euros 
twenty-one hours 

The ticks are fixed: A = TA 

= 24 
Then Nicco drags A to 0 

𝑓(24)
= 24; 𝑓(21)
= 18 

 

28  N Yes, it is okay but 
he pays twenty-
four euros in 
twenty-four 
hours 

   

29  A Yes, but we must 
describe the 
motion of the 
line, we do not 
have to... do you 
see that here it 

 The 
difference 
quotient 
increases and 
then it 
decreases. 

DER 
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goes faster and 
here it goes 
slower? You don’t 
understand... see 
here, he pays, see 
here, see here [0] 
they are equal, it 
surpasses it and 
then it reaches it, 
then, no, we 
don’t write like 
that 

𝑓(0) = 0 

The 
derivative is 
not constant 

30  N Anyway, he pays 
one euro per 
hour 

 The 
difference 
quotient is 1 

DER 

31 I4C2 
17:25 

A On average, but 
do we have to 
average? Is there 
the word media 
written? No, 
there is written to 
describe and 
comment all the 
information that 
it is possible to 
gain 

 The average 
rate of 
change is 1 

DER 

   […]    

106 I4C2 
37:37 

A Ah I understood, 
but we must 
speak about sets, 
not a point, 
points where B 
and D are not 

Activity4_2 
He has just read the task 

We look at 
the set of 
images and 
not at the set 
of points 
(𝑥, 𝑓(𝑥)) 

RAN 

107  N We can put B and 
D together, and C 
and A together, 
no probably only 
these two [B and 
D] 

They drag the B-line 
overlapping it to the D-
line 

  

108  A Then, not here 
because D goes… 
no, actually it 
depends 

He drags C obtaining B 
and D overlapped and 
says “not here” but then 
he drags A in order to 
have A=C and he seems 
confused 

  

109  N These two [B and 
D] must have the 
same value and 
these [A and C]?! 

   

110  A That is, possibly, 
from one to less 

 For example, I 
have to find 

MON 
RAN 
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than two this one 
[B] goes 
backward and, 
this [D] from one 
to three goes 
forward and so 
they don’t have 
points in 
common, is it like 
this that you 
mean? 

an interval [a; 
b] where the 
function f is 
decreasing 
while the 
other 
function g is 
increasing 
and 𝑓(𝑎) <
𝑔(𝑎) 

111  R Yes, but did you 
always look at D 
or one time at B 
and the other 
time at D?  

   

112  A Ehm, once B and 
once D, do we 
have to do like 
this, no? So... 
from zero on B 
goes forward, but 
also from... so he, 
A always goes 
forward, that is, B 
always goes 
forward so we 
have to see when, 
in which range of 
C, D goes 
backward, 
because if B 
always goes 
forward 

 
 
He drags A from zero to 
the right and then to the 
left 

In a right 
neighborhood 
of 0 the 
function f is 
increasing, 
actually, it is 
always 
increasing 

MON 

113  R For example, if 
there is 

   

114  A But B does not 
reach zero, B 
arrives at a half, 
therefore we 
have to see which 
is in C, the time 
interval when D 
goes from a half 
to zero  

He drags C in a 
neighborhood of 0 while 
A=0, B=3/2 

𝑓(𝑥) never 
vanishes: 
𝑓(𝑥) > 0; so 
we have to 
find the pre-
images of [0; 
0.5] with 
respect to the 
function g 

RAN 

115  R Okay    

116 I4C2 
39:34 

A Ehm but how do I 
write it? 

Then they write what 
follows: 
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Fig. 6.17a 

Activity4_1 involves an always increasing function, as mirrored by Nicco’s discourse at line 

24. However, they do not just observe this propriety, indeed in the following line Alessio puts 

the focus on the different speeds of the two ticks, which move in the same direction with 

𝑓(𝑥) in general bigger then 𝑥, but there exists a value such that 𝑥 = 𝑓(𝑥). His discourse is 

mirrored by potential expert discourse about the changes in slope of the graph, even if the 

function keeps growing. Moreover, Alessio’s detailed description of relative motions of the 

two variables and of possible changes in speed of the dependent one with respect to the 

independent one is a possible realization of the derivative of the function as the limit of the 

difference quotient. Probably, it is thanks to his attempt to describe as much as possible 

information about the DIM, which is the aim expressed by Alessio at line 31, that his 

discourse is so rich of realizations of mathematical objects. 

Activity4_2 has been designed to let students deal with the difference between the set of 

images and the set of points belonging to the graph. At line 106, Alessio’s discourse is 

mirrored by potential expert discourse about the set of image of the function which is 

different from the set of points (𝑥, 𝑓(𝑥)). Then, at line 110, he explains to Nicco what they 

have to do to find the solution, by making an example of possible movements of the two 

dependent variables, and at line 112 he tries to adapt his example to this particular case 

where “B goes always ahead”. Finally, at line 114 Alessio finds the solution which he 

expresses dynamically and referring to the time interval when D moves. 

In the last line of the excerpt Alessio admits that he does not know how to write down their 

findings, highlighting how much the mediation of the DIM and of gestures facilitates the 

communication. 

Excerpts 6.18 - Lesson 5 

(Activity5_1bis: Realization DGp of the function 𝑓(𝑥) = −𝑥 + 5; 

Activity5_3: Realization DGc of the function ad hoc defined 𝑓(𝑥) = −
𝑥2

25
+ 𝑥 + 1 ) 

 When Who What is said What is done Potential expert 
discourse 

Code 

55 I5C2 
21:30 

N But it is the same Activity5_1bis 
He refers to 
Activity5_1 

  

56  A It is the same, but 
there is just one 
line… we are smart! 
[…] 
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57 27:00 R Did you compare 
the two files 
together? 

   

58  N Yes, according to us 
they are the same 
but just on one line 

 They are two 
realizations of the 
same function 

 

59  A That is, the second is 
just on one line 

   

60  N Also here they 
intersect at two 
point five 

 𝑓(2.5) = 2.5  

61 I5C2 
27:30 

A Because we made 
the grid and the 
numbers too, and 
they intersect on 
two point five and 
before we found 
that A plus B equals 
five, in fact 

 In both cases the 
algebraic expression 
of the function is 𝑥 +
𝑦 = 5 

 

   […]    

109 I5C2 
51:00 

A Look, look, look, 
when it [x] arrives at 
fifteen, that is, there 
an increasing of 
production, then, 
wait 

Activity5_3 
He drags A 
and stops on 
1, on 2, then 
continuous 
dragging until 
B goes down 

The function has a 
relative maximum 
point at 15* 

(*x=13) 

MAX/ 
MIN 

110  N No it goes down 
even before 

 The function is 
decreasing 
 

MON 

111  A No it goes down at 
fifteen 

 In a right 
neighborhood of 15* 
the function is 
decreasing 
(*x=13) 

MON 

112  N it goes down even 
before 

He takes the 
mouse 

The function is 
decreasing 
 

MON 

113  A It’s true, it’s true, at 
thirteen it goes 
down, go, go, no, 
zoom in a little 

 In a right 
neighborhood of 13 
the function is 
decreasing 

MON 

114  N It goes down after 
thirteen 

 In a right 
neighborhood of 13 
the function is 
decreasing 

MON 
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115  A For me it goes down 
after twelve and a 
half… so, it goes up, 
up, up, from when is 
it still? So, it goes up 
until…from twelve 
to thirteen it is 
stationary at seven 
point twenty-five 

He takes the 
mouse and 
zooms in, he 
starts dragging 
from A=11 

The function 
increases until 
reaching the value 
𝑓(𝑥) = 7.25 for a 
certain x around 12 
and in a right 
neighborhood of 12.5 
the function is 
decreasing 
 

MON 
 

116  R Then, describe and 
comment all the 
information 

She reads the 
task 

  

117  N The maximum to 
reach it is seven 
point twenty-five 
tons, because then it 
comes back  

He talks to R The maximum value 
is 7.25 

MAX/ 
MIN 

118  A That is, it is always 
increasing, then 
from twelve to 
thirteen it is 
stationary 

He continues 
dragging 

The function is 
strictly increasing and 
it is constant for 
𝑥ϵ[12; 13] 

MON 
DER 

The derivative is 
positive and then it 
vanishes 

119  N It arrives at a 
maximum point and 
then 

 The function has a 
relative maximum 
point 

MAX/ 
MIN 

120 I5C2 
52:55 

A From twelve to 
thirteen it is still 
seven point twenty-
five, and then the 
production starts 
decreasing 

 For 𝑥ϵ[12; 13] 𝑓(𝑥) =
7.25 
In a right 
neighborhood of 13 
the function is 
decreasing 

MON 

The first episode in the excerpt shows that Nicco and Alessio look at DGc in activity5_1 and 

DGpp in activity5_1bis as two different realizations of the same function. In particular, their 

saming among the two types of graphs seems to arise from their observations that in both 

cases 𝑓(2.5) = 2.5 and also that the algebraic expression of the function 𝑥 + 𝑦 = 5 holds. 

Then, during the activity5_3 Nicco and Alessio describe several features of the function. In 

particular, in the excerpt 6.18 we can see that they focus on the maximum value that the 

dependent variable can take on and they express it with respect to the value of the 

independent variable. Moreover, their description concerns the behavior of the function in 

a neighborhood of that value and Alessio’s discourse is especially about the dynamic 

relations between the two variables. He expresses the movements of the dependent variable 

at lines 113, 115 in terms of “going up/down”, then at line 118 as “increasing” and, finally, 

at line 120 he translates the information in relation to the task saying that “the production 
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starts decreasing”. In this way he succeeds in realizing the intervals of monotonicity of the 

function.  

In lines 115, 118, Nicco and Alessio observe that the function “increases and from twelve to 

thirteen it becomes stable”, mirroring potential expert discourse about the derivative of the 

function which is positive and at x=12 it vanishes. 

6.2.3 Nicco and Matilde 

During the last two lessons and the interview Nicco worked with Matilde and from the video 

transcripts we can see that, in general, Matilde speaks more than him and, usually, she also 

brings new ideas in their discussions.  

In their discourse it is possible to identify many seeds of possible realizations of mathematical 

signifiers, as described in Table 6.3. 

Differently from other students of the class, Nicco and Matilde’s discourse is not mirrored by 

any potential expert discourse about the domain of the function, when solving activity7_2 

and activity8_1. Indeed, they seem to focus on some other properties of the functions, as 

their behavior in terms of intervals of monotonicity and asymptotic behavior. It also seems 

to be a good choice of focus for them, because dealing with these properties may be a key 

element in order to complete the activities. In particular, the main goal of these two activities 

is to support the passage from a dynamic realization to a static one and it could be done by 

looking at different aspects of the function, but the dynamic realizations DGpp and DGc seem 

to support Nicco and Matilde’s discourse on these specific aspects (monotonicity properties, 

derivative and asymptotic behavior of the function) contributing in this way to their success 

in the activities. 

 

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

7_1 DGc-
SGc 

         

7_2 DGc-
SGc 

         

8_1 DGpp-
SGc 

         

8_2 SGc          

8_3 SGc          
Table 6.3. Mathematical objects in Nicco and Matilde's discourse 

The first excerpt contains two episodes characterizing the first time that these two students 

worked together. 

Excerpt 6.19 - Lesson 7 

(Activity7_1: realization DGc of the function  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
;  

Activity7_2: realization DGc of the function 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
 and realization SGc of other four 

different functions) 
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 When Who What is said What is done Potential 
expert 

discourse 

Code 

41 I7C2 
20:55 
Fp1 
12:40 

N So, for some x-
values, f(x) stays 
within a certain 
interval, after that 
values it [f(x)] goes 
to infinity 

Activity7_1 

 
Fig. 6.19a 

For a certain 
interval in 
the domain 
the function 
is limited. 

lim
𝑥→+∞

𝑓(𝑥)

= +∞ 

RAN 
LIM 

42  R Okay. You should 
try to write this 
here 

Pointing to the sheet of 
paper 

  

43  M You have to see 
where is the point 
the first time, wait, 
here it is okay [f 
(0)]... so, therefore, 
it must do like this, 
if everything is 
fine... no, please 
don’t do it, then it 
does so, so until 
getting here, [a 
point in the 
bottom-left part of 
the screen], well 
did you understand 
how it does?! 
I think so, I hope 
so, because 
otherwise I don’t 
know from where 
to start! Let's try 
again, wait 

Discrete dragging: she 
stops when 𝑥 is at 0, 
then at -1, at -6 and then 
continuous dragging to 
the left. 
 
With the finger she 
traces a curve on the 
screen, from the second 
quadrant going down 
and a bit to the left 

  

44  R What are you doing 
with your finger? 

Matilde drags from 𝑥 =
0 to the left 

  

45  M I am keeping the 
point/place, more 
or less now.. but 
for me, it does not 
go down again 

 
Fig. 6.19b 

  

46  N It ever goes down, 
but not straightly 

 lim
𝑥→−∞

𝑓(𝑥)

= −∞ 

LIM 
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47  M Wait, let me think, 
yes, like this 

   

48  N For me, it does the 
same also over 
there 

She drags from 𝑥 = 0 to 
the right 

  

49 I7C2 
22:45 

M No, because over 
there it doesn’t go 
down, so it goes up 

 The function 
increases for 
positive 
values of 𝑥 

MON 

   […]    

102 I7C2 
35:00 
Fp2 
09:45 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I7C2 
35:56 

M Because then, 
sincerely, the 
values of... of... 
because in this 
case [A] it is as if 
the g(x)-values 
were constant 
because it moves in 
this way, so it is as 
if only x changes 
and g(x) remained 
still, and instead in 
this case [in the 
dynagraph] also 
g(x) moves in 
relation to x, 
therefore going, 
going down or, 
anyway, since the 
result decreases, 
that is, being in 
relation and g(x) 
remaining still, 
here it is the trace 
of the point while 
on the other part 
[for positive x-
values] it cannot be 
this [A] because, 
mmm... are we 
sure? 

Activity7_2 
She explains to R why 
she thinks that the 
answer is not A but C, 
without dragging, only 
looking at the paper 
 
 
 
 
 
 
 

In A the 
function has 
an horizontal 
asymptote: 
lim

𝑥→−∞
𝑔(𝑥) =

0 
 
 

ASY 
LIM 
DER 

In activity7_1, which presents the realization DGc of a function, students are asked to draw 

the trajectory of the point (𝑥, 𝑓(𝑥)) on a sheet of paper. Matilde uses her finger “to keep the 

point/place”, as she says at line 45 of the excerpt 6.19, while dragging 𝑥 along its axis in the 

DIM. We observe that in Italian, the word ‘point’ can be used to indicate the point (𝑥, 𝑓(𝑥)) 

but also to indicate a specific place on the screen, and since it is not clear what Matilde refers 

to, we translated it into point/place. Actually, what happens seems a combination of the two 

possibilities, indeed she is keeping trace of the position on the screen of the point (𝑥, 𝑓(𝑥)) 

. In particular, she moves her finger on the computer screen following the trajectory of 

(𝑥, 𝑓(𝑥)), even if this point is not visible on the screen. Meanwhile she also holds the mouse 
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and drags 𝑥 from right to left, combining continuous and discrete dragging, proving to have 

a high control over what moves in the DIM. In particular, in order to transition from a 

realization DGc to a realization SGc of the function, she uses the mediation of this dragsturing 

action with a twofold role: communicating with her partner (line 43), and discovering what 

shape the curve should have. 

Moreover, we observe that at line 41 Matilde’s discourse is quite the same of potential 

expert discourse. Indeed, her descriptions of the movements of the dependent variable, such 

as “it goes to infinity” and “it ever goes down” (see lines 41 and 46), are mirrored by potential 

expert discourse about the behavior of the function at the extremities of the domain and in 

this case it is an unlimited function. 

In the second part of the excerpt (see line 102) she works on activity7_2 and her discourse is 

mirrored by potential expert discourse about the asymptotic behavior of the function 
1

𝑥−3
 for 

large x-values, since she draws attention to the small variations of the dependent variable 

with respect to the variations of the independent one. In particular, she says “as if g(x)-values 

were constant” and “as if only x changes” referring to one of the Cartesian graphs on the 

sheet of paper and then she contrasts this particular property with what happens in the 

realization of another function in the DGc where “g(x) moves in relation to x”. So Matilde 

seems to focus on the different range of variations of the two ticks, mirroring potential 

expert discourse about the derivative of the function seen as the limit of the difference 

quotient.  

Excerpt 6.20 - Lesson 8 

(It is given a description of different properties of a function to draw its realization SGc) 

 Whe
n 

Who What is said What is done Potential 
expert 

discourse 

Code 

121 I8C2 
40:50 

N So, for me, here 
before zero if x 
increases, also f(x) 
increases, so it should 
be a line  

Activity8_3 
He reads the first 
description of the 
function in the task: 
“Before zero, if x 
increases, also f(x) 
increases” 

For 𝑥 < 0 
the function 
increases, so 
it should be 
a line* 

(*the graph is 
not 
necessarily a 
line) 

MON 

   […]    

138 I8C2 
43:55  

M They intersect at three 
point five and some 
f(x)-values can be 
obtained in just one 
way, other in two 
ways, other in three 
ways and other in four 
different ways..so, at a 
certain point there is a 
situation of equality, 
in a certain sense 

She reads the 
description of the 
function in the task: 
“They intersect at 
3.5 and some f(x)-
values can be 
obtained in just one 
way, other in two 
ways, other in three 
ways and other in 
four different ways” 

𝑓(3.5) = 3.5 
The function 
is non 
injective, so 
an horizontal 
line may 
intersect the 
Cartesian 
graph in 
more than 
one point 

INJ 
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Then she moves one 
hand horizontally 

139  N Or something like this, 
that is, for f(x) equals 
minus two, it [x] can 
be zero or it [x] can be 
three 

 -2 has two 
pre-images 
that are 0 
and 3: 
 𝑓(0) = −2
= 𝑓(3) 

INJ 

140  M Yes yes, but this one I 
don’t know how, 
when x is bigger than 
six….they have 
opposite directions, 
what does it mean? 

She reads the 
description in the 
task: “when x is 
bigger than six, they 
have opposite 
directions” 

  

141  N For me, it means that 
this one [x] is positive 
and this one [f(x)] is 
negative 

   

142  M If they intersect at 
three point five 

   

143  N Yes but it could be 
that  

   

144  M Wait, when x is bigger 
than six, they have 
opposite directions, 
no, it means that it 
[f(x)] comes back 

 For 𝑥 > 6 
the function 
decreases 

MON 

145  N Yes    

146  
 
 
 
 
 
 
 
 
 
 
 

M I got it, I got it, but 
something happens 
somewhere, some 
f(x)-values, here [Fig. 
6.20a] we have the 
f(x)-values obtained in 
one, two, and three 
ways because here is 
the same as here, here 
is the same as here, 
here is the same as 
here… and then, 
before zero if x 
increases, also f(x) 
increases, so it is in 
this way, when x is 
bigger than six they 
have different 
directions, so I had to 

She points to some 
𝑥-values with the 
same image: 

 
Fig. 6.20a 

 
She reads the 
description in the 
task: “man mano 
che x va avanti si 
muove sempre di più 
ad esempio se va da 
cinque” 
 

There are 
different 𝑥-
values 
having the 
same image. 
 
𝑓(𝑥) takes 
all negative 
and positive 
values* 
(*smaller 
than 10) 
 
There are 
two different 
pre-images 
of 3.5: 
𝑓(3.5) = 3.5 
and 𝑓(7) =
3.5 

INJ 
RAN 
MAX
/ 
MIN 
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do it bigger, anyway, if 
x goes this way [to the 
right] f(x) goes to 
negative numbers, as 
x goes on, it moves 
more and more, for 
example if it goes 
from five, here we are, 
we have to do this 
one, f(x) takes on all 
negative and positive 
values…ah we should 
get there, wait… 
Then we draw it 
better! 
They intersect at three 
point five, indeed…this 
[(3.5, 3.5)] is the 
intersection point at 
three point five, some 
values can be 
obtained in just one 
way, other in two 
ways, indeed here 
[(3.5, 3.5)], for 
example, we have 
three point five and 
we have it also here 
[(7, 3.5)], but here [on 
the x-axis at 3.5] it is 
three point five and 
here [on the x-axis at 
7] it is a bit more than 
six, it will be about 
seven 

She extends the 
curve in order to 
obtain the maximum 
value for 𝑓(𝑥) at 10 

The function 
is non-
injective 
 

147  N But other values in 
three or four ways, 
this graph is not good, 
there must be some 
strange turns 
somewhere 

He moves one hand 
making circles on 
the sheet of paper: 

 
Fig. 6.20b 

There should 
be more 
different 
intervals of 
monotonicit
y  

MON 
MAX
/ 
MIN 

And more 
relative 
extreme 
points 

148  M No, also here [(0, -5)], 
if f(x) is about five 
here, it is the same 
here [(9, -5)], wait, this 
is minus five and 

Her gestures 
indicate the 
horizontal line 𝑦 =
−5 

The pre-
images of -5 
are 0 and 9 

INJ 
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149 I8C2 
47:30 

N But there are two, 
there are only two 
ways in our graph 

   

   […]    

154 I8C2 
48:40 

M Ehm, there could be 
something like this 
[Fig. 6.20c]….but the 
fact that it moves 
faster and slower 

 
Fig. 6.20c 

During the pause 
she reads the 
description in the 
task: “Man mano 
che x va avanti 𝑓(𝑥) 
si muove sempre di 
più” 

 INJ 
DER 

155  
 
 
 
 
 
 
 
 
I8C2 
49:15 

N Eh, they are these 
lines [Fig. 6.20d], they 
could be one a little 
more steep and the 
other less steep… the 
problem is that I don’t 
know which one 
should be more, and 
which one less, steep 

 
 

 
Fig. 6.20d 

The curve in 
the Cartesian 
plane should 
be more and 
less steep  

DER 
 

The faster 
the 𝑦 grows 
the steeper 
the curve is, 
because the 
derivative 
increases 

We find very interesting to analyze Nicco and Matilde’ discourse when working on the last 

activity, since it contains the seeds of many mathematical properties of functions. In the 

excerpt 6.20 students are asked to draw on the Cartesian plane the graph of a function with 

some given properties, so they have to read and interpret all the properties described on the 

paper and translate them in the realization SGc of a function. In some parts of the excerpt 

the students read the description given in the activity, but there are also many other parts 

where they rephrase it with their words or they use it to gain information about the curve. 

For example, Nicco explains the increasing of both variables simultaneously as if the graph 

in the Cartesian plane was a line and he expresses it at line 121.  

At line 138, Matilde, after reading the description in the task, talks about a “situation of 

equality”, moving her hand horizontally as referring to a horizontal line intersecting the curve 

in the Cartesian plane in at least two points. The potential expert discourse mirrored in this 

case is about the non injectivity of the function, as suggested by her dragsturing action 

involving a horizontal line intersecting the graph of the function. Nicco answers her by 

showing an example, indeed he fixes a f(x)-value, “f(x) equals minus two”, and he expresses 

two different x-values for which f(x) takes on that fixed value. Since the subject of his 

discourse is f(x), the potential expert discourse mirrored is about the pre-images of that 

specific f(x)-value. Then he supposes that if the variables are oppositely directed then they 
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have different signs, while Matilde’s discourse is mirrored by the potential expert discourse 

about the interval of monotonicity of the function where it decreases. In particular, when, 

she says that the dependent variable “goes back” (see line 144). At line 146 she checks if 

their drawing fits the descriptions in the task, by worrying in particular about the properties 

that in the potential expert discourse are described as the non-injectivity and the maximum. 

Nicco supposes the existence of “some strange turns” in order to satisfy the condition which 

increases the number of pre-images to three and four, because in their graph “there are only 

two ways” (see line 149). 

Another realization of the non-injectivity of the function is proposed at line 154 by Matilde, 

but her drawing in Figure 6.20c does not fit the other conditions that are given in the task, 

for example “the fact that it moves faster and slower”. Then, in line with our a priori analysis, 

Nicco seems to succeed in saming between changes in the speed of the dependent variable 

and changes in the slope of the curve. In particular, he explains it to Matilde at line 155 with 

the visual mediation of gestures (see Fig. 6.20d) and his discourse is mirrored by potential 

expert discourse about the derivative of the function that defines the slope of the curve in 

the Cartesian plane. 

 

The following excerpts are taken from the interview with Nicco and Matilde.  

Excerpt 6.21 - Interview 2 

 (Realization DGpp of the function 𝑓(𝑥) = {
|

(𝑥−1)(𝑥−4)(𝑥+8)

8
| − 6, 𝑥 < 4.94

𝑥−5

5
, 𝑒𝑙𝑠𝑒

 ) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

1 MNm
2 
00:07 
C 
15:15 

N The zero for f(x) is the value 
minus seven point five of x, 
so f(x) equals zero when x 
equals minus seven point 
five 

Task2 with 
Nicco at the pc 
and Matilde 
drawing. 

𝑓(−7.5) = 0  

2  M Okay, no wait…..when x is 
minus seven point five and 
not f(x)? 

She drew the 
Cartesian 
plane on the 
paper and puts 
a point in it 

  

3  N Yes! Then, f(x) never goes 
under minus six, it is always 
greater than or equals to 
minus six, f(x) greater than 
or equals to minus six…. f(x) 
is between… because it also 
never goes over an 
interval…more or less it will 
be fourteen point two or 
fourteen  point twenty-five 

She writes this 
information in 
a small space 
in the bottom 
part of the 
paper 

 
𝑓(𝑥) ≥ −6 
𝑓(𝑥) ≤ 14.2 
 

RAN 

4  M So, between minus six and?    
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5  N Between minus six and 
fourteen point twenty-
five…. And when x, no, 
fourteen point five, and 
when x is in the interval 

Zoom in and 
out 

 
−6 ≤ 𝑓(𝑥)
≤ 14.5 

RAN 

6  M But also equals to fourteen 
point five? 

 But can 𝑓(𝑥) 
takes on 14.5? 

 

7  N Also equals, less than and 
equals to, when f(x) is at, at, 
that is, fourteen point five, 
which is the maximum, x 
equals minus four point 
five.…. while, when it is at 
minus six, so the end of the 
other interval, x equals 
minus eight 

She draws 
other two 
points 

 𝑓(𝑥) ≤ 14.5 
The pre-image 
of 14.5, which 
is the 
maximum, is -
4.5 
While the pre-
image of -6 is -
8  

RAN 
MAX
/MI
N 

8  M Can you tell me some 
points?! 

   

9 MNm
2 
03:15 
C 
18:25 

N No, wait, because this graph 
is strange…it is very strange! 
No, f(x) exists also after 
fourteen point five 

   

1
0 

 M That is, does it break for a 
while? 

She moves the 
pe in the air as 
drawing a 
short segment 

  

1
1 

 N Then, by going to the 
positive [numbers], no 
wait… that is, because x 
arrives at minus four point 
five, then f(x) arrives at 
fourteen point five, then if I 
keep dragging it backward  

 𝑓(−4.5)
= 14.5 

 

1
2 

 M If you keep dragging 
backward, x? 

   

1
3 

 N If I still move x backward, 
f(x) comes back 

He moves his 
left hand to 
the left on the 
table for two 
times 

The function is 
increasing in a 
left 
neighborhood 
of -4.5 

MO
N 

1
4 

 M It goes down because you 
told me that, when x is 
minus eight, it [f(x)] is at 
minus six 

 𝑓(−8) = −6  

1
5 

 N Exactly, it comes back at 
minus six and then it goes 
up again, it goes up until, it 
doesn’t stop anymore 

Now he moves 
the same hand 
to the right 
while dragging 
x to the left 

In a left 
neighbourhoo
d of -8 
(because f(-
8)=-6) the 
function 
decreases 

MO
N 
LIM 
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while in a right 
neighbourhoo
d it increases 

lim
𝑥→−∞

𝑓(𝑥)

= +∞ 
So the 
derivative 
changes the 
sign and -6 is a 
relative 
minimum 
value for f 

1
5 
bi
s 

 M Can you tell me some 
points? I have three of 
them! 

   

1
6 

 N f(x) goes to one, so, when 
f(x) equals one.. it [x] is 
equal to minus eight point 
five 

Zoom in and 
out 

The pre-image 
of 1 is -8.5 

 

1
7 

 M x?    

1
8 

 N When x equals minus eight 
point five, f(x) is one…. 
Then, when x is about minus 
six, f(x) equals twelve… but 
f(x) equals twelve also when 
x equals minus three point 
twenty-five 

She draws 
other two 
points 

𝑓(−8.5) = 1 
𝑓(−6) = 12 
but there is 
another pre-
image of 12 
that is -3.25 

INJ 

1
9 

 M Is it [f(x)] always equal to 
twelve? I mean, f(x) equals 
twelve on [x equals] minus 
six 

   

2
0 

 N f(x) equals twelve    

2
1 

 M on x that is on minus six    

2
2 

 N Yes, about minus six, and on 
minus three point twenty-
five… so it twill be a… Ah, 
f(x) equals zero also when x 
equals five 

She draws 
other points 
and he moves 
his hand like 
making a small 
hill in the air 
after saying “it 
will be a” 

Another zero 
of the function 
is at 𝑥 = 5 

INJ 

2
3 

 M Five or minus five?    

2
4 

 N Five!    

2
5 

 M Okay, can you tell me some 
points over there, like for 
positive x-values? 
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2
6 

C 
21:50 
MNm
3 
00:00 

N When x equals one, f(x) is 
minus six ... .then, ah that's 
why here [in a 
neighborhood of x = 3] it 
goes back, when x is minus 
two point five, when x is 
two point five, f(x) is minus 
three. I have no idea about 
what a strange graph it is! 

He drags 𝑥 
from 1 to 4 
rapidly and 
then slowly to 
2.5 

𝑓(1) = −6 
The function is 
increasing, 
𝑓(2.5) = −3 
and then it is 
decreasing 

MO
N 
MAX
/MI
N 

The derivative 
changes the 
sign and the 
function has a 
relative 
maximum 

2
7 

 M Go on in this way    

2
8 

 N Then, x arrives at four, 
probably I already told it to 
you, f(x) equals minus six 

 𝑓(4) = −6  

2
9 

 M No! Yes! Go even more far, 
like about seven or eight 

   

3
0 

 N I put it on one, when x 
equals ten, f(x) equals one, 
it goes slower, passed over 
zero, then since x passes 
over five f(x) passes over 
zero, f(x) goes slower, 
maybe it's slowing down 
and... 

 I search for the 
pre-image of 
1, 𝑓(10) = 1  
Then for 𝑥 >
5, 𝑓(𝑥) > 0 
and the 
function 
increases 
more slowly 

MO
N 
DER 

The difference 
quotient 
decreases 

3
1 

 M When x is ten    

3
2 

 N When x is ten, f(x) equals 
one 

 𝑓(10) = 1  

3
3 

 M One or minus one?    

3
4 

 N one.. while minus one, 
when x….. then f(x) is minus 
one when x equals four 
point seventy-five 

Discrete 
dragging 

The pre-image 
of -1 is 4.75 

 

3
5 

 M f(x) is minus one, when is x 
four point seventy-five? 

   

3
6 

 N When it is four point 
seventy-five, yes, but it [f(x)] 
is minus one also when.. it’s 
better if I say that, when x 
equals zero, f(x) is minus 
two… there is another 
minus one 

She starts 
tracing the 
curve, without 
marking the 
paper 

But there is 
another pre-
image of -1 

𝑓(0) = −2 

INJ 

3
7 

 M Go to f(x) about five, six    
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3
8 

 N Mmmm….. Eh, I don’t know 
if you have enough space, 
f(x) is five when x is thirty, it 
should be something like 
this, then 

He points to 
the graph in 
Task1 on the 
sheet of paper 

The pre-image 
of 5 is 30 

 

3
9 

 M But is f(x) one when x is 
ten? 

 Is 10 the pre-
image of 1? 

 

4
0 

 N Yes, it [f(x)] is one when it 
[x] is ten and when it [x] is, 
because there will be 
another one, when it [x] is 
ten 

 Yes, but there 
are two 
distinct pre-
images of 1 

INJ 

4
1 

 M When it [x] is minus eight 
point five 

   

4
2 

 N Also when it is minus, yes, 
but then there is also 
another one too, when it [x] 
is minus zero point seventy-
five 

Zoom in Another pre-
image of 1 is -
0.75 

INJ 

4
3 

 M When is x minus zero point 
seventy-five? 

   

4
4 

 N f(x) is one    

4
5 

 M Go to the negative 
numbers, with both x and 
f(x) 

   

4
6 

 N So, f(x) doesn’t go under 
minus six 

 𝑓(𝑥) ≥ −6 RAN 

4
7 

 M Okay, before. You only gave 
me one point [of the form 
(x, f(x))] x at minus eight and 
f(x) at minus six 

   

4
8 

 N Eh because then it dashes! He drags 𝑥 to 
the left 

The function 
decreases 
quickly 

MO
N  
DER 

The difference 
quotient takes 
on an high 
values –in 
absolute 
value- for 𝑥 <
8.5 

4
9 

 M What does it mean that 
then it dashes? Is there 
nothing in the middle? Like 
at minus two, minus three 

   

5
0 

 N X minus two? when x equals 
minus two, f(x) is seven 
point five 

Zoom in 𝑓(−2) = 7.5  

5
1 

 M When x is minus two?     
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5
2 

 N f(x) is seven point five    

5
3 

 M But is there nothing before 
minus eight and minus six? 

   

5
4 

 N Before minus eight    

5
5 

 M Before that x is minus eight, 
I mean 

   

5
6 

 N Ah before that x is..?    

5
7 

 M Yes, that is, about seven 
point five or minus six 

   

5
8 

 N Minus six, yes, ah no, 
negative x? No when x 
equals minus six, f(x) is 
eleven   

 𝑓(−6) = 11  

5
9 

 M No, what did you say? 
Repeat, repeat, when f(x) is 
minus six 

   

6
0 

 N No, when x is minus six, f(x) 
is eleven point five 

She points (-
6,0) and then 
moves the 
hand up and 
to the right to 
intersect the 
y-axis at about 
12 

𝑓(−6) = 11.5  

6
1 

 M And sorry, when x is minus 
three point twenty-five? 

 𝑓(−3.25)?  

6
2 

 N f(x) is twelve point twenty-
five…. Did I tell you about 
minus eight, right? minus 
eight for x 

   

6
3 

 M Minus six for f(x)?    

6
4 

C 
29:15 
MNm
3 
07:25 

N Yes then, I can give you f(x) 
equals zero again.. when x is 
minus seven point five, f(x) 
equals zero 

She moves the 
pen on the 
paper as 
drawing the 
curve for 
negative x-
values but still 
without 
leaving any 
trace 

I can tell you 
another pre-
image of 0 
𝑓(−7.5) = 0 

INJ 

   […]    

7
2 

MNm
3 
08:35  

N For example, there is x 
equals twenty-five, f(x) is 
four, it moves slowly, I told 

He points to 
the graph for 
𝑥 > 0 in 
Task1: 

𝑓(25) = 4 
and the 
function 
increases 
slowly 

MO
N 
DER 



151 
 

you that it is like this here 
[Fig. 6.21a] 

 
Fig. 6.21a 

The difference 
quotient takes 
on a small 
value in a 
neighborhood 
of 25 

7
3 

 M Repeat it! f(x) is four?    

7
4 

 N f(x) is four when x is twenty-
five.. I also have f(x) equals 
three if you want, such that 
x equals twenty…. Ah it 
moves five by five, basically, 
every five x, f(x) makes one.. 
so, when f(x) equals two, for 
example, f(x) equals two it 
[x] is fifteen, when f(x) 
equals three, it [x] is twenty, 
yes, when x equals twenty, 
f(x) equals three, when x 
equals twenty-five f(x) 
equals four, then five, six 

Discrete 
dragging 

The pre-image 
of 4 is 25; the 
pre-image of 3 
is 20. 
The ratio 
between the 
variations of 
𝑓(𝑥) and 𝑥 is 1 
to 5. 
The pre-image 
of 2 is 15; the 
pre-image of 3 
is 20, 𝑓(20) =
3 and 𝑓(25) =
4 

DER 

   […]    

7
8 

C 
33:00 

N Ah yes yes, when x equals 
minus five, f(x) arrives at 
fourteen point twenty-five, 
about fourteen point five, 
and then, as x keeps going 
to negative numbers, f(x) 
goes down again, it comes 
back at minus six when x is 
at minus eight and then, 
passed over minus eight, so 
when x passes over minus 
eight, f(x) goes up to 
positive numbers again, eh, 
here it [f(x)] goes fast…it 
[f(x)] goes very fast 

 
 

𝑓(−5)
= 14.25 

The function is 
increasing for 
−8 < 𝑥 < −5, 
while it is 
decreasing for 
𝑥 < −8 and 
𝑓(−8) = −6 

lim
𝑥→−∞

𝑓(𝑥)

= +∞ 
and the 
function 
decreases 
rapidly 

MO
N 
LIM 
DER 
MAX
/ 
MIN 

The derivative 
changes the 
sign at 𝑥 = −8 
where the 
function has a 
relative 
minimum and 
the difference 
quotient takes 
on high values 
at 𝑥 in a left 
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neighborhood 
of -8 

7
9 

 M But is it possible that for f(x) 
between minus one and 
minus six, when x is 
positive, it goes like back 
and forth? 

She moves her 
right hand 
up/down and 
then to the 
right/to the 
left 

Is it possible 
that the 
behaviour of 
the function 
changes for 
positive 𝑥-
values such 
that −6 <
𝑓(𝑥) < −1? 

MO
N 
 

8
0 

 N Yes, it is possible because 
when x equals zero, I move 
it, f(x) goes backward, then, 
passed over x equals one 
f(x) goes on again 

 In a 
neighborhood 
of 𝑥 = 0 the 
function 
decreasing 
and in a right 
neighborhood 
of 𝑥 = 1 it is 
increasing 

MO
N 
MAX
/MI
N 

The derivative 
changes the 
sign at 1 
where the 
function has a 
relative 
minimum 

8
1 

 M Then, it comes back again 
and it goes forth 

 Then the 
function 
decreases and 
increases 
again 

MO
N 

8
2 

 N Then, it comes back again 
and it goes forth, it goes on 
slowly 

 Then the 
function 
decreases and 
it increases 
slowly  

MO
N 
DER 
MAX
/MI
N 

The derivative 
changes the 
sign and the 
function has a 
relative 
minimum. 
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Then the 
difference 
quotient takes 
on small 
values 

8
3 

 M From there it [f(x)] goes on 
to infinity…slowly? Doesn’t 
it go five by five?! 

 lim
𝑥→+∞

𝑓(𝑥)

= +∞ 

LIM 
DER 

8
4 

 N Five by five is slow! Here it 
goes twenty-three by 
twenty-three 

 Here the ratio 
between the 
variations of 
𝑓(𝑥) and 𝑥 is 1 
to 23 

DER 

8
5 

MNm
3 
13:00 

M There is a little problem, 
this [Fig. 6.21b] could be the 
going back and forth, this is 
the rising, the fact that from 
zero point twenty-five, it 
creates me many problems, 
I really don’t know how to 
fit it because in this way it 
seems a bit strange to me... 
something like this, and 
where do I put these [two 
points that she drew in the 
third quadrant]? Since x 
passes over minus one, 
does f(x) get to minus six? 

She points to 
the curve for 
0 < 𝑥 < 5: 

 
Fig. 6.21b 

  

8
6 

 N Since x passes over minus 
one?  

He drags 𝑥 to 
the right 

  

8
7 

 M It [f(x)] goes down, down 
and then it goes up again 

She moves her 
right hand 
down and up 

The function is 
decreasing 
and then it is 
increasing 

MO
N 

8
8 

 N f(x) goes down  The function is 
decreasing 

MO
N 

8
9 

 M That is, it [f(x)] goes 
forward, it [f(x)] goes 
backward 

She moves her 
left hand to 
the right and 
to the left  

The function is 
increasing, it is 
descreasing 

MO
N 

9
0 

 N f(x) goes backward since x 
arrives at one, more or less, 
when x passes over one 

 The function is 
decreasing in a 
left 
neighborhood 
of x= 1 

MO
N 

9
1 

 M yes, and f(x) is minus six, 
then it [f(x)] goes forward 

   

9
2 

 N when x passes over minus 
one, it [f(x)] goes on 

She moves her 
left hand up 

The function is 
increasing in a 
right 

MO
N 
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neighborhood 
of x= -1* 

(*x=1) 
9
3 

MNm
3 
14:20 

M At [x equals] minus three, it 
[f(x)] comes back 

 -3 is a relative 
maximum for 
the function 

MAX
/MI
N 

9
4 

 N f(x)… yes, then it comes 
back at minus six 

   

9
5 

 M And it [f(x)] goes forward 
again, to infinity, five by five 

 lim
𝑥→+∞

𝑓(𝑥)

= +∞ 
and the ratio 
between the 
variations of 
𝑓(𝑥) and x is 1 
to 5 

LIM 
DER 

In the excerpt 6.21 Nicco is exploring the realization DGpp of a function and he is describing 

it to Matilde who has to draw the Cartesian graph of the same function on a sheet of paper. 

It is possible to observe that several times she asks him for some points (𝑥, 𝑓(𝑥)) (see lines 

8, 15bis, 25, 37, 47) and that sometimes he expresses them starting from the 𝑓(𝑥)-value and 

then explaining the corresponding 𝑥-value. This example of students’ discourse is mirrored 

by potential expert discourse about the pre-image of a point belonging to the codomain of 

the function (see lines 16, 18, 22, 30, 34, 36, 38, 40, 64, 74). Moreover, in some of these 

examples (see lines 18, 22, 36, 40, 64) students focus on the number of pre-images existing 

for a given 𝑓(𝑥) -value mirroring potential expert discourse about the injectivity of the 

function. Indeed, if there exist more than one pre-image the function is non injective. 

There are several examples where Nicco and Matilde’s discourse is mirrored by potential 

expert discourse about the derivative of the function. In particular, they describe changings 

in speed of the tick realizing the dependent variable (see lines 30, 48, 72, 78) mirroring the 

derivative in terms of limit of the difference quotient, but also changings in direction of the 

tick realizing the dependent variable (see lines 15, 26, 78, 80, 82) mirroring the changes of 

sign of the derivative. Consequently, in this second case their discourse is also mirrored by 

potential expert discourse about relative maximum/minimum points of the function. We 

observe that in the excerpt 6.21 the word ‘maximum’ is used only one time by Nicco at line 

7 (“when f(x) is at 14.5, which is the maximum, x equals -4.5”). 

Moreover, students’ discourse about the direction of movement of 𝑓(𝑥) with respect to the 

direction of 𝑥, and its possible changings, is mirrored by potential expert discourse about 

different intervals of monotonicity of the function. In general, the potential expert discourse 

can be obtained by replacing in students’ discourse “f(x) goes forward” with “the function 

increases” and “f(x) goes backward” with “the function decreases” (see lines 13, 15, 26, 30, 

48, 72, 78-82, 89-93). However, there are also some examples of students saying “f(x) goes 

down/up” (see lines 14, 85, 87, 88) and this description of the direction of movement of 𝑓(𝑥) 

along the 𝑦-axis refers to the two dimensional realization of the function where the 𝑦-axis is 

vertical. In fact, Nicco who works with the realization DGpp of the function uses the verb ‘to 

go down’ just one time, at line 88, while the other three examples are taken from Matilde’s 

descriptions, who has to draw the Cartesian graph of the function. In all the other cases she 

uses ‘to go backward/forward’ too, as if she was translating for him her discourse about the 

realization SGc. In particular, at line 92 she says “when x passes -1 [f(x)] goes forward” while 
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moving her hand up, so her gestures refer to the realization in the Cartesian plane and her 

words to the dynagraph. Moreover, it is interesting to notice that sometimes Nicco drags the 

tick to the left, as he explicitly says for example at lines 11 and 13 “moving x backward” or at 

line 78 “as x goes to the negative numbers”. In these cases the description of 𝑓(𝑥) going 

backward (forward) is mirrored by potential expert discourse about the increasing 

(decreasing) behavior of the function. 

Finally, Nicco and Matilde’s discourse in the excerpt 6.21 is mirrored by potential expert 

discourse about the limits of the function for 𝑥 tending to infinity. For example, students 

describe the behavior of the tick realizing the dependent variable through expressions like 

“it doesn’t stop anymore” (line 15), “then it goes up to positive values” (line 78), and Matilde 

uses explicitly the word ‘infinity’ at line 83 “from there it goes towards to infinity” and at line 

95 “and again it goes towards to infinity”. 

We also notice that Nicco’s discourse at lines 38 and 72 may be considered as an attempt to 

identifying precedents within his precedent-search-space, in particular he seems to take 

task1 of the interview for a similar task situation, because he points to the graph on the sheet 

of paper which they dealt with at the beginning of the interview. 

 Excerpt 6.22 - Interview 2 

 (Realization DGpp of the function 𝑓(𝑥) = {

−5.18,   𝑥 < −4.6

10
𝑠𝑖𝑛𝑥

𝑥
− 3, −4.6 ≤ 𝑥 < 6.2

3

2
𝑥 − 12.4,   6.2 ≤ 𝑥 < 8.3

  )  

 When Who What is said What is done Potential 
expert 

discourse 

Code 

11 MNm5 
03:15 

M It goes up, it 
goes up, but in 
the moment 
that f(x) arrives 
at zero and x 
goes up more 
than eight and a 
half, f(x) 
disappears 

Task3 with Matilde at the 
pc and Nicco drawing.  

The function 
increases until 
vanishing and 
it is not 
defined for all 
𝑥 > 8.5 

MON 
DOM 

12  N Wait, when f(x) 
equals zero, 
when x is equal 
to? 

 What is the 
pre-image of 
0? 

 

13  M wait… Okay, 
okay it [f(x)] 
disappeared. 
Did you 
understand this 
or I should 
repeat it for 
you? 

She zooms out and drags 
x to the right, she stops 
at 𝑥 = 40 
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14  N But is there a 
point where f(x), 
that is, the point 
x when f(x) 
equals zero? 

 Does it exist a 
value 𝒙 such 
that 𝑓(𝒙) = 0? 

DOM 

15  M F(x) equals zero 
when x is two 
point twenty-
five 

 The pre-image 
of 0 is 2.25 

 

16  N Two point 
twenty-five? 

   

17  M yes… when x is 
two point 
twenty-five, f(x) 
equals zero 

 𝑓(2.25) = 0  

18  N So it goes up 
here, no, it is 
two point 
twenty-five but.. 
because, then, 
here it goes 
down, then it 
goes up, then 
give me another 
point after that 
it goes up again 

With the pen he follows 
the trajectory of 
(𝑥, 𝑓(𝑥)): 

 
Fig. 6.22a 

The function is 
decreasing 
then it is 
increasing 

MON 
MAX/ 
MIN 

The derivative 
changes the 
sign and the 
function has a 
relative 
minimum point 

19  M After that it 
goes up, where? 
Tell me exactly 
because I don’t 
have.. 

   

20  N When x equals 
seven, f(x) 
should be, you 
told me about 

 𝑓(7)?  

21  M Minus two point 
twenty-five, 
minus two 

   

22  N Ah.. so, when x 
equals seven, is 
f(x) minus two? 
Okay, and 
another point 
that goes up? 

He draws the point (7, -2) 𝑓(7) = −2  

23  M Going up I have 
it at eight, that 
is like.… it [f(x)] 
is minus one 
point five and x 
equals eight 

 𝑓′(8) >
0; 𝑓(8) =
−1.5* 

(*𝑓(8) = −0.5) 

DER 
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24  N For example, x 
equals twelve or 
thirteen? 

   

25  M It [f(x)] 
disappeares! 
Yes, because f(x) 
arrives at zero 
and it 
corresponds to 
eight and a half 
for x, so, from 
eight and a half 
on there isn’t 
f(x) anymore… 
yes, there isn’t  

Zoom out during the 
suspension dots 

It does not 
exist. The 
function is not 
defined for all 
𝑥 > 8.5 

DOM 
 

26  N Ah okay, it 
disappears! 
Okay, tell me 
some negative 
values for x 

 Ah, it does not 
exist 

DOM 

27  M X minus one 
corresponds to 
five point 
twenty-five… 
minus two, to 
one and a half, 
I’m saying minus 
two referring to 
x, I always tell 
you first the 
value of x, 
minus three to 
minus three and 
a half… 

Discrete dragging 
He draws the points in 
the paper 

𝑓(−1) =
5.25; 𝑓(−2) =
1.5; 𝑓(−3) =
−3.5* 

(*𝑓(−3) =
−2.5) 

 

28  N minus three to 
minus three and 
a half? 

   

29  M Yes, of f(x)... 
minus four to 
minus five, more 
or less 

 𝑓(−4) = −5  

30  N As that in the 
other side, 
minus four of x, 
yes, then does it 
go up again? 

   

31 MNm5 
07:25 

M And then, from, 
oooh, wait, keep 
calm…. eh it 
[f(x)] stops.. 
when x arrives 

She drags x in a 
neighbourhood of -5.5 
and then stops dragging 
for a while  

For 𝑥 < −5.5 * 
the function 
becomes 
constant  
(*for 𝑥 < −4.5) 

RAN 
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at about minus 
five and a half, 
f(x) stops, it 
doesn’t go 
further, so it 
stays between  

32  N Minus five and a 
half, yes, so how 
much is f(x)? 

   

33  M when f(x) is a 
little bit less 
than minus five, 
it is minus six 
point eighty, 
something like 
that, but it 
doesn’t exist, 
that is, no, it is 
not right that it 
[f(x)] doesn’t 
exist, it stops 

 The function is 
constant: 
𝑓(𝑥) = −6.80 

* 

(*𝑓(𝑥) = −5.20) 

RAN 

34  N It stops and 
then it doesn’t 
go on anymore? 
That is, does f(x) 
move when x 
goes from minus 
five point five to 
eight and a half? 
Then doesn’t 
f(x) move 
anymore? 

Continuous dragging to 
the right  
His final drawing is the 
following one: 

 
Fig. 6.22b 

  

35  M No! Tell me 
what 
movements it 
does, according 
to you, so, tell 
me when it goes 
up and when it 
goes down, 
please! 

 Tell me about 
the possible 
monotonicity 
of the function 

MON 

36  N So, f(x) goes 
from minus 
seven 

He points to (0, -7): 

 
Fig. 6.22c 

The set of 
images is from 
minus seven 

RAN 
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37  M No, tell me 
going up, down 
because 
otherwise 

 Tell me about 
the intervals of 
monotonicity 

MON 

38  N so, when x 
equals minus 
five point five, 
f(x), I mean the 
graph, starts 
going up, it goes 
up, up, up 

With the pen he follows 
the trajectory of 
(𝑥, 𝑓(𝑥)): 

 
Fig. 6.22d 

From 𝑥 =
−5.5 the graph 
starts going up 
 

MON 

The function is 
increasing 

39  M Until? quickly, 
quickly 

Continuous dragging to 
the right 

  

40  N yes, then a bit 
more slowly but 
it’s ok, until 
seven, and then 
from seven it 
goes down again 

 In a left 
neighbourhood 
of 7 the 
function 
increases while 
in a right 
neighbourhood 
it decreases 
 

MAX/ 
MIN 

A relative 
maximum of 
the function is 
7 

41  M Yes, until?    

42  N Until minus five, 
then after minus 
five it goes up 

 A relative 
minimum of 
the function is 
-5 

MAX/ 
MIN 

43  M After minus five 
of f(x)?! 

   

44  N yes, it goes 
up…then you 
told me that it 
stops 

   

45 MNm5 
09:55 

M Until 
disappearing at 
eight 

 𝑓(8) does not 
exist 

DOM 

Oppositely from the previous excerpt, in the excerpt 6.22 Matilde is exploring the realization 

DGpp of a function and he is describing it to Nicco.  

Also in this excerpt there are several examples in which, especially Nicco, identifies pairs of 

coordinate (𝑥, 𝑓(𝑥)) by fixing a 𝑓(𝑥)-value and then expressing one of its pre-image (see 

lines 12, 14, 15). Moreover, at line 30, again he seems to identify a precedent when he says 

“it is like that on the other side”, probably referring to the piece of curve for 𝑥 < 0. 
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First of all we observe that Nicco and Matilde’s discourse about the direction of movement 

of the tick realizing the dependent variable is mirrored by potential expert discourse about 

the behavior of the function which is increasing or decreasing (see lines 11, 18, 35, 37, 38). 

In particular, we notice that Matilde uses the verb ‘to go up/down’ even if this time she is 

manipulating the DIM where the function is realized through a DGpp and so she sees the 

ticks ‘moving right/left’. As we previously observed, it seems as if she was translating for 

Nicco her discourse about the realization DGpp into a discourse about the two dimensional 

realization of the same function. Moreover, there are two examples of mirrored potential 

expert discourse about relative maximum and minimum points (see lines 40, 42) where 

students focus on the existence of different intervals of monotonicity of the function.  

As discussed for the excerpt 6.21 students’ discourse about changes in the direction of 

movement of 𝑓(𝑥) is mirrored by potential expert discourse about the derivative of the 

function, that changes the sign (see lines 18, 22). Then, at line 23 of the excerpt 6.22, Matilde 

says “at 8 there is one [point (𝑥, 𝑓(𝑥))] where it [the graph] goes up, which is -1.5” mirroring 

potential expert discourse about the positive value of the derivative at 𝑥 = 8. 

At lines 11, 25, 26, 34, 44, 45 students’ discourse is mirrored by potential expert discourse 

about the domain of the function, which is not defined for all 𝑥 bigger than 8.5. In particular, 

they describe the behavior of the tick that realizes the dependent variable which 

“disappears” for a certain 𝑥 -value. This description of the domain is supported by the 

dynagraph proposed, where one of the two ticks is always visible and draggable while the 

other one depends on the choice of the function. In this case the function is defined as 

constant for all 𝑥 < 5.5 while it is not defined for all 𝑥 > 8.5 and so in the dynagraph, which 

Matilde is manipulating, for 𝑥 < 5.5 the tick realizing the dependent variable is visible but it 

does not move while it is not defined for 𝑥 > 8.5 (and so it is not visible on the screen). In 

the excerpt we can see Matilde’s attempt to explain this difference by looking at her choice 

of the verbs: ‘to stop’ and ‘to disappear’. For example she says “when x arrives at 5.5 f(x) 

stops” (see line 31) or “when f(x) is more or less -6.80 it does not exist, no it is not right that 

f(x) does not exist, it stops” (see line 33) or “until disappearing at 8” (see line 45). However, 

Nicco’s discourse seems focused on the movements of f(x) which actually “moves when x 

goes from -5.5 to 8.5” as he says at line 34, but this description does to not highlight the 

different behavior of the function in a right neighborhood of 8.5 and in a left neighborhood 

of -5.5. Also in the graph that he draws (Fig. 6.22b) the function is defined only for −5.5 <

𝑥 < 8.5, so he does not trace the curve where the function is defined as constant. 

Excerpt 6.22bis - Interview 2 

(Realization SGc of the function 𝑓(𝑥) = {
√−𝑥 − 5, 𝑥 < 0

√𝑥, 𝑥 ≥ 0
  ) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

11 MNm6 
01:39 
C 
51:40 

M It is as I told you 
before, if x is eight, 
f(x) is zero, f(x) is 
the image of x, we 
never say like this 

Task4  𝑓(8) =
0; 𝑓(𝑥)  
is the 
image of 
𝑥 

RAN 
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but I think that it 
works 

12  N Ah, yes okay    
   […] They read the definition 

again 
  

13 MNm6 
03:30  

M I’m not sure about 
what I told you 

   

14  R For the image, you 
mean? 

   

15  M Yes    
16  N The value taken by 

f in x 
   

17  R Let me know what 
it doesn’t work for 
you 

   

18  N The image of the 
interval minus one, 
one… that is 

 The 
image of 
the 
interval [-
1; 1] 

RAN 

19  R The image is what 
you said 

   

20  M F(x), it is the 
corresponding one, 
okay, well, and we 
understood it 

   

21  R But you said the 
image of a point 

   

22  M Yes, for an interval 
it is different, I 
think 

   

23  R That is, the image 
of all the points 
that stays within 
this interval minus 
one, one  

   

24  M Anyway, so, minus 
one is about here… 
it i sas if it was the 
trace left by f(x)? 

 
Fig. 6.22e 

Then she moves the pen 
along the 𝑦 -axis 

 RAN 

25  R When you drag x, 
where? 

   

26  M When I drag x from 
minus one to one, 
and the trace left 
by f(x) is the image 

 The 
image of 
the 
interval [-
1; 1] is 

IN/ 
DEP 
RAN 
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the set of 
values 
which 
𝑓(𝑥) 
takes on 

27 MNm6 
05:20 

R Yes Matilde colors as follows: 

 
Fig. 6.22f 

  

In the last task of the interview, the students have to express the image of an interval, by 

looking at its Cartesian graph on a paper and having at their disposal the formal 

mathematical definition of ‘image of a subset of the domain’. Initially Matilde explains to 

Nicco what the image of a point is, through an example taken from the previous activity, then 

the researcher helps them to generalizing their idea and adapting it to an interval instead of 

a point. At line 24 Matilde proposes a realization of the mathematical signifier ‘image’ that 

evokes the dynamic environment, in fact she moves her hand up/down on the 𝑦 -axis on the 

paper and she says “as if it was the trace left by f(x)”. Then, at line 26, Matilde’s discourse 

mirrors potential expert discourse about the image of an interval as the set of values which 

𝑓(𝑥) takes on, and she actually marks the right interval on the paper. 

6.2.4 Excerpts from Alessio’s interview 

The following two excepts are taken from Alessio’s interview. As discussed in Chapter 4, he 

was interviewed alone and the activities were not the same that the other students had. For 

example, in the following excerpt Alessio is working on the first task that we gave to him, 

that involves the realization DGc of a function and he has to explore the dynamic interactive 

file in GeoGebra in order to draw the Cartesian graph of same function on the paper.  

Excerpt 6.23 - Interview 1 

(Realization DGc of the function 𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
 ) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

1 C 
09:45 

A so, I have to draw 
the trajectory of (x, 
f(x)), that is, f(x) 
moves in function 
of x, by moving x 
also f(x) moves, but 
can I see? 

Task1  
He still does not drag 
anything 

𝑓(𝑥) depends 
on 𝑥 

IN/ 
DEP 

2  R Obviously!    

3  A When x is zero, f(x) 
is one point eight 
more or less, then if 
x goes to minus 

In the pause he drags 𝑥 
to -12 and then in a 
neighborhood of -5.5 

𝑓(0) =
1.8; 𝑓(−2) =
3.8  

𝑓(𝑥) ≤ 6.5 

RAN 
MAX/ 
MIN 
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two, f(x) goes to 
three point eight, 
can we go on? Yes, 
then…… f(x) doesn’t 
go more than six 
point five and it 
reaches the 
maximum at minus 
five point seven, 
eight, and now I 
have to draw the 
trajectory! So.. but 
can I take two poits 
and then tracing 
from the two 
points? 

The function 
has a relative 
maximum 
point at -5.7 

4  R Yes Slow continuous 
dragging within 
negative numbers 

  

5  A The maximum is 
seven 

 A relative 
maximum is 7 

MAX/ 
MIN 

6  R And you said that it 
reaches it? 

   

7  A It reaches it when it 
is at five, more or 
less, so it is here [(-
5,0)], I was wrong, 
however it is good. 
Then it comes back, 
but… I don’t know 
but I think that a 
straight line is not 
correct 

He draws on the paper 
the following part of 
the graph: 

 
Fig. 6.23a 

Then he drags 𝑥 to the 
right 

In a right 
neighborhood 
of 𝑥 = −5 the 
function 
decreases. 
It is not a line. 

MON 
 

8  R Why do you think 
that a straight line 
is not correct? 

   

9  A Eeeeeh then, 
because….. when 
from one point 
five….. so, I think 
that here [from 
negative infinity to 
-5] it is a straight 
line to… [Fig. 6.23b] 
But they are two 
different 
trajectories or do 

In the first pause he 
drags 𝑥 from -3 to -5 
and then to 2.  
He moves the right 
hand in this way (along 
the red segment): 

 

For 𝑥 in (-∞, -
5] the graph is 
a line 
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they have to be 
linked together [the 
graph for positive 
and negative x-
values]? 

Fig. 6.23b 

10  R Eh let’s see, how 
can we understand 
it? 

   

11  A linked! Eh they are 
linked together, 
since f(x) moves in 
function of x, there 
are not two x, there 
is just one so, yes, 
then when this [x] 
is at zero, it [f(x)] is 
about two… and 
then it goes up 
again, but this is to 
infinity, while this 
one……. From here, 
from minus one to 
minus two it [f(x)] 
moves by? About 
one 

He drags 𝑥 in a 
neighborhood of 0, in 
the first pause he 
draws the point (0, 1.8) 
and then he drags 𝑥 
slowly to 5. In the 
second pause he drags 
𝑥 to the left, within a 
neighborhood of -5 and 
backward/forward 
between -1 and -2 

𝑓(𝑥) depends 
on 𝑥  𝑓(0) =
2  
The function is 
increasing in a 
right 
neighborhood 
of 0 
lim

𝑥→+∞
𝑓(𝑥)

= +∞ 
|𝑓(−1)
− 𝑓(−2)| = 1 

IN/ 
DEP 
MON 
LIM 
 
 

12  R f(x)?    

13 C 
15:15 

A Yes, f(x) moves by 
one, more or less, 
while from minus 
five to minus 
six…….it moves, 
from minus five to 
minus six, no, let’s 
do from minus four 
to minus five, it 
moves by less than 
one, so as x 
decreases, that is, 
also the ratio of f(x) 
to x changes, so it 
cannot be like this 
[straight line] but it 
is a [curve]… that is, 
it’s not a broken 
line 

In the first pause he 
zooms in and out 

The ratio of 
∆f(x) to ∆x is 1 
more or less; 
then 
|𝑓(−4) −
𝑓(−5)| < 1 
The ratio of 
∆f(x) to ∆x is 
not constant, 
so the graph is 
not a line 

DER 
 

In a left 
neighborhood 
of -5 the 
derivative is 
increasing 

14  R Okay, so is for this 
reason that you 
said that it cannot 
be a broken line? I 
mean, it cannot be 
a line 

He finally draws the 
following graph: 
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Fig. 6.23c 

15  A Yes, more or less! 
So, also this one 
[the graph for 
positive x-values] I 
think… because, 
from one to 
zero…about one, no 
a bit less, while 
from one to two eh, 
also here, and so 
this is a broken line 
for me, but I don’t 
know, it is a bit 
strange 

 |𝑓(1) − 𝑓(0)| 
is the same of 
|𝑓(2) − 𝑓(1)| 
so the graph is 
a line 

DER 

The derivative 
is constant 

16  R Which one?    

17  A This here He points to the graph 
for positive 𝑥 -values 

  

18  R Ah for positive x-
values, and here 
[Fig. 6.23d] does it 
go down to infinity? 

 
Fig. 6.23d 

lim
𝑥→−∞

𝑓(𝑥) =

−∞? 

LIM 

19 C 
18:05 

A Yes, it seems like 
that, yes, at least by 
looking at what we 
can see, yes, it goes 
down to infinity 

He drags 𝑥 to the left, 
zooming out, to -15 

lim
𝑥→−∞

𝑓(𝑥)

= −∞ 

LIM 

The dependence relation between the two variables is realized by Alessio in the first line of 

the excerpt through the expression “f(x) moves in function of x”, that he says even before 

starting to manipulate the DGc. 

We think that the most interesting feature of the excerpt 6.23 is the presence of seeds of 

possible realizations of the derivative of the function. In particular, at lines 11 and 13 Alessio 

looks at the relation between the variations of the two variables for negative 𝑥 -values and 

since he finds out that “the ratio of f(x) to x changes” he states that in that interval the graph 

is not a line. Then, from an expert point of view, at line 15 Alessio computes the ranges of 

variation of 𝑓(𝑥)  over the intervals [0; 1] and [1; 2] and he compares the two values 

discovering that they are the same. For this reason, he concludes that for positive 𝑥 -values 

the graph has to be a line. His discourse mirrors potential expert discourse about the 

behavior of the derivative function which in this case is increasing for 𝑥 < −5, and it is not 

constant as would be for a linear function. 

In lines 11 and 19 Alessio’s discourse is mirrored by potential expert discourse about the limit 

of the function for 𝑥 approaching positive and negative infinity respectively. In both cases 
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the function is unlimited, as he expresses by “it goes up again, but this is to infinity” and “it 

goes down to infinity”. 

Excerpt 6.24 - Interview 1 

 (Realization DGpp of the function 𝑓(𝑥) = {

3

2𝑥
+ 2, 𝑥 > 0

(𝑥 + 1)2(𝑥 + 6)(𝑥 + 3)
1

𝑥
− 1, 𝑒𝑙𝑠𝑒

 )    

 When Who What is said What is done Potential 
expert 

discourse 

Code 

9 C 
25:20 

A Then, let’s start 
from when f(x) is 
on zero, x is on 
minus six, then as 
it [x] goes on, f(x) 
goes on but 
until….. minus five. 
So, as x goes on, y 
makes, eh.. from 
zero it arrives… so 
here [x=-6] is zero, 
from zero it 
arrives, the peak is 
five and a half…. 
And then does it 
go down again? Eh 
no, but it starts 
going down….. at 
minus five it keeps 
going down but it 
is not still arrived 
at zero, it arrives 
at zero at minus, 
like minus three, a 
bit more than 
minus three. And 
then, from minus 
three point two it 
is still going down 
until.. minus three, 
when this [x] is at 
minus two point 
two…. And then it 
goes up until 
minus one, when it 
is at minus one… 
the nit comes 

Task3  
The grid is activated 
He drags 𝑥 to the right 
and in the first pause he 
drags back/forward in a 
neighborhood of -5. 
Then he draws: 

 
Fig. 6.24a 

Finally, he moves his left 
hand this way: 

 
Fig. 6.24b 

A pre-image of 
0 is -6, in a 
right 
neighborhood 
of -6 the 
function is 
increasing and 
it has a 
relative 
maximum 
point at -5. 
𝑓(−6) = 0, 
the relative 
maximum is 
5.5 and in a 
right 
neighborhood 
of -5 the 
function 
decreases. 
A pre-image of 
0 is -3.2 where 
the function 
still decreases 
and -3 is a 
relative 
minimum such 
that 
𝑓(−2.2) =
−3 
The function is 
increasing for 
𝑥 in [-2.2, -1], 
𝑓(−1) = −1 
and in a right 
neighborhood 
of -1 𝑓(𝑥) 
disappears  
 

MON 
MAX/ 
MIN 
DOM 
DER 
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back, the nit goes 
away [Fig. 6.24b]!  

The derivative 
changes the 
sign at -5; 
𝑓′(−3.2) < 0; 
the derivative 
changes the 
sign at -2.2; in 
a right 
neighborhood 
of -1 the 
function is not 
defined 

10  R Who goes away?    

11  A F(x), so this one 
[the graph in a 
right 
neighborhood of -
1] goes down 

 
Fig. 6.24c 

lim
𝑥→0−

𝑓(𝑥)

= −∞ 

LIM 
ASY 

12  R Why not up?    

13  A Because from 
minus one it gown 
down, it goes to.. 
and then, the nit 
arrives, when this 
[x] is at one, so 
wait, at minus one 
is here…… Then, it 
arrives at, so from 
here [(0, 7)] it 
comes back for 
sure, but while 
coming back this 
[x] keeps going on, 
this one goes on 
but as x goes on, y 
gets more and 
more down, but 
the ratio is still 
[Fig. 6.24d], that 
is, as x goes on, y 
changes less and 
less, in function of 
the movement of 
x, f(x), the function 
changes as x goes 
on 

He drags 𝑥 from 𝑥 = −1 
to the right and he 
repeats this action. 
He points to large 
positive 𝑥 -values on the 
paper and he makes this 
gesture: 

 
Fig. 6.24d 

In a right 
neighborhood 
of -1 the 
function 
decreases. 
For 𝑥 ≥ 0 the 
function is 
again defined 
and it 
decreases; 
then as 𝑥 
grows the 
ratio of ∆f(x) 
to ∆x 
decreases  
 

MON 
DOM 
DER 
ASY 

The derivative 
is negative 
and it 
decreases as 𝑥 
approaches 
positive 
infinity 
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14  R The function 
changes, but less? 

   

15  A Yes, like this [f(x) 
approaching 0], 
and then it is 
always more flat, 
as x goes on the 
ratio of x to f(x) is 
bigger and bigger 
because, I don’t 
know how, x goes 
on and f(x), as x 
goes on.. that is… 

 The slope of 
the graph 
tends to 0.  
As 𝑥 grows 
also the ratio 
of ∆x to ∆f(x) 
increases 

DER 
ASY 

The derivative 
decreases for 
positive large 
𝑥 -values 

16  R So, there [Fig. 
6.24e] as x goes 
on, f(x) comes 
back 

She points to the screen: 

 
Fig. 6.24e 

The function 
decreases for 
positive large 
𝑥 -values 

MON 
 

17  A Yes, here for 
positive numbers, 
as x goes on f(x) 
moves back 
getting very close 
to zero, that is, f(x) 
decreases more 
and more as x 
goes on, but as x 
goes on f(x) is 
always decreasing 
[Fig. 6.24f], but 
less than before, 
as x goes on 

 
 

 
Fig. 6.24f 

The function 
decreases and  
lim

𝑥→+∞
𝑓(𝑥) =

0* 

The ratio of 
∆f(x) to ∆x 
decreases as 𝑥 
grows 
(* lim

𝑥→+∞
𝑓(𝑥) =

2) 

MON 
LIM 
ASY 
DER 

The function 
has a 
horizontal 
asymptote 

18  R Is it slower?    

19 C 
31:35 

A Yes, it is slower in 
decreasing, so, it is 
like this, it doesn’t 
touch zero, so… it 
arrives at two, I 
don’t know….. that 
is, I don’t know 
where it start, 
where f(x) comes 
from 

 
 
 
 
He points to the positive 
𝑦 -axis on the paper 

The function 
decreases 
slowly and 
𝑓(𝑥) >
0; 𝑓(𝑥), 
approaches 2.  
I do not know 
where the 
function is 
defined 

MON 
DER 
DOM 
 

The difference 
quotient 
decreases 

20  R When does it 
appear? 
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21  A When it appears, if 
it [x] is one or two 

   

22  R When do you not 
see it for sure? 

   

23  A So…. I have to see 
when f(x) is at nine 
because here I did 
it of height nine….. 
more or less zero 

In the first pause he 
looks at the numbers on 
the 𝑦 -axis on the paper, 
then he drags 𝑥 in a 
neighborhood of zero 

A pre-image of 
9 is about 0 

 

24  R More or less zero, 
so does it appear 
again? 

   

25  A here! A little more 
further, no, here 
it’s good, on zero 
more or less 

 0 belongs to 
the domain of 
the function 

DOM 

26  R Yes, according to 
what you can see 

   

27  A on zero, and then 
it arrives at… at [x 
equals] two, a 
little more than 
two, then it starts 
falling, that is, less 
and less so, it is 
this [Fig. 6.24g], 
for me the line is 
like this, these two 
are not broken, 
but, they are 

 
Fig. 6.24g 

At 𝑥 around 2 
the derivative 
decreases and 
the function is 
decreasing 

DER 
MON 

28  R Are all curves?    

29  A yes!     

30  R So, at minus six it 
is zero and then, 
for smaller x-
values? Let’s try to 
continue a bit here 

She points to the 
negative x-axis on the 
paper 

𝑓(−6) = 0  

31 C 
33:50 

A At minus six it is 
zero, then, as it [x] 
moves backward, 
it is always more.. 
here [x=-4] I don’t 
know, wait, here 
from minus six to 
seven eeeh 
goodbye! It 
becomes more 
and more sensible, 
here [negative 
infinity] it is the 
opposite, here 

 𝑓(−6) = 0 
For 𝑥 tending 
to negative 
infinity the 
derivative 
tends to 
infinity 

DER 
LIM 
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[positive infinity], 
that is, as x moves 
backward this [the 
graph] becomes 
more and more… 

32  R So, how can we do 
it? 

   

33  A Like this! No no 
no, yes like this, 
always more open, 
no wait, but I’m 
not sure about it… 
yes, for me it’s 
good, for me yes, 
as it moves on this 
[the graph] 
becomes more 
and more… that is, 
for each small x-
variation, f(x) 
moves more and 
more, that is here, 
I don’t know, to go 
from minus six to 
minus seven, f(x) 
moves from minus 
one to minus 
fifteen and, from 
minus seven to 
minus eight, f(x) 
moves from minus 
fifteen to minus 
forty or minus 
fifty.. According to 
me it is like this. 

He draws the curve for 
𝑥 < −6 and he erases it, 
repeating these actions 
several times. Finally, he 
draws the following 
graph: 

 
Fig. 6.24h 

The graph 
becomes 
steep because 
the ratio of 
∆f(x) to ∆x is 
very high, for 
example: 
|𝑓(−7) −
𝑓(−6)| = | −
40 − (−15)| 

lim
𝑥→−∞

𝑓(𝑥)

= −∞ 

DER 
LIM 

34 C 
35:45 

R Well, so, from 
here we can see 
that there are 
some values that 
f(x) takes on more 
than one time, for 
example? 

She looks at the drawing 
on the paper 

There are 
some points of 
non injectivity 

INJ 

35  A Such as, from 
minus one, eeeh 
because this one 
does never come 
back here, so from 
minus one to 
infinity  

He points to the 𝑦 -axis 
going down from -1 

  

36  R To minus infinity    
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37  A Yes, to minus 
infinity, from 
minus one to 
minus infinity 
and.. from five 
point five, actually, 
the values that f(x) 
takes on, from 
minus three to 
minus infinity, 
twice, from minus 
one to minus 
three, four times, 
from five point five 
to minus one, only 
twice, ah no, and 
from five point five 
to two, three 
times, yes three 
times 

He looks at the drawing 
on the paper 

For all 𝑓(𝑥) ϵ(-
∞; -3] there 
are two pre-
images 
For all 𝑓(𝑥) ϵ(-
3; -1) there 
are four pre-
images 
For all 𝑓(𝑥) ϵ(-
1; 2) there are 
two pre-
images 
For all 𝑓(𝑥) 
ϵ(2; 5.5] there 
are three pre-
images 

INJ 

38  R And over five point 
five? 

   

39 C 
37:05 

A One    

Alessio’s discourse in the first line of the excerpt is very similar to potential expert discourse 

about the possible monotonicity properties, the intersection points with the 𝑥  -axis, the 

relative extreme points and the domain of the same function. Moreover, at line 11 Alessio 

realizes in the Cartesian plane the point outside the domain of the function by drawing an 

almost vertical line as part of the graph, which evokes the existence of a vertical asymptote. 

In line 13 Alessio starts describing the function for positive 𝑥  -values. In particular, his 

discourse is mirrored by potential expert discourse about the behavior of the function that 

is decreasing but “as x goes on, y changes less and less”. This observation, that Alessio 

repeats in other words in lines 15 and 17, is mirrored by potential expert discourse about the 

derivative as limit of the difference quotient, which expresses the average rate of change of 

the function. It is interesting to look at his gestures in Figure 6.24d and Figure 6.24f because 

they are very similar and they are used as visual mediators during the description of the 

getting smaller variations of the dependent variable. In line 17 Alessio’s discourse is mirrored 

by potential expert discourse about the horizontal asymptote 𝑦 = 0, which actually is 𝑦 =

2, when he explains that “as x goes on f(x) moves back getting very close to zero”. Moreover, 

in line 27 he identifies 𝑥 around 2 as the point where the function “starts decreasing slower” 

that, from an expert point of view, is a changing in the behavior of the derivative function 

which still remains negative. Finally, we analyse Alessio’s discourse about the behaviour of 

the function for 𝑥  tending to negative and positive infinity respectively. In line 31 he 

compares the two situations and he says that for 𝑥 tending to negative infinity “it becomes 

more and more sensible” while for 𝑥  tending to positive infinity “it is the opposite”. His 

discourse is mirrored by potential expert discourse about the study of the behaviour of the 

function in the extremities of the domain, since it has finite limit for 𝑥 tending to positive 

infinity and infinite limit for 𝑥 tending to negative infinity. Then, before realizing it in the 
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Cartesian plane (Fig. 6.24h), in line 33 he looks at the relation between the variations of the 

two variables for large negative 𝑥 -values, gaining information about the slope of the graph. 

From line 34 to the end of the excerpt Alessio’s discourse about the non-injectivity of the 

function is the same as potential expert discourse. In fact, he expresses the number of pre-

images of each value belonging to the set of images of the function. 

6.2.5 Franci and Lore 

The two students worked together during all the lessons and they were also interviewed 

together. As we will see in the excerpts below, Franci and Lore have two different roles along 

the whole sequence of activities: Lore holds the mouse and Franci writes their observations 

on the sheet of paper. 

Table 6.4 shows the list of the mathematical objects that can be found in Franci and Lore’s 

discourse, who worked together during the whole sequence of lessons and then they were 

also interviewed together. There are two blank lines in Table 6.4, because we do not have 

sufficient recordings of their discussions during activity7_1 and they did not have enough 

time to complete Activity8_3. However, by looking at the table we can notice that Franci and 

Lore’s discourse, developing during all the activities, is mirrored by potential expert discourse 

about several mathematical objects. 

 

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

1_1 DGp          

1_2 DGp          

1_3 DGpp          

2_1 DGpp          

2_2 DGpp          

2_3 DGpp          

3_1 DGpp          

3_2 DGpp          

4_1 DGpp          

4_2 DGpp          

5_1 DGc-
DGpp 

         

5_2 DGc          

5_3 DGc          

6_1 DGc          

6_1bis DGc          

7_1 DGc-
SGc 

         

7_2 DGc-
SGc 

         

8_1 DGpp-
SGc 

         

8_2 SGc          

8_3 SGc          
Table 6.4. Mathematical objects in Franci and Lore's discourse 
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In line with what we expected and what we have seen with Nicco and Alessio, during the first 

lesson the students are mainly involved in the construction of a discourse on the dependence 

relation between the two ticks. 

Excerpt 6.25 - Lesson 1 

(Realization DGpp of the function 𝑓(𝑥) = |𝑥|)  

 When Who What is said What is done Potential expert 
discourse 

Code 

542 I1Mp3 
13:45 

F So this one [dependent 
tick] cannot have, 
doesn’t have the 
negative and so this one 
[dependent tick] is the 
absolute value and this 
one [independent tick] 
not, or this [dependent 
tick] is the absolute 
value of this 
[independent tick] 

Activity1_3 
Lore holds the 
mouse and 
Franci points 
to the screen 

One of the two 
ticks is 𝑥 and the 
other is abs(x)  

𝑓(𝑥) = |𝑥| 

IN/ 
DEP 

543  L Something like that, yes    

544  R Something like that    

545 I1Mp3 
14:05 

F The first is the absolute 
value of the second 

 𝑓(𝑥) = |𝑥| IN/ 
DEP 

As we can see from the excerpt 6.25, when exploring the function in activity1_3 Franci tries 

to combine the two ticks together, by relating them through a dependence relation. 

However, finding this relation does not seem immediate, in fact at line 542 he initially 

describes them as two separated entities (“this one is absolute value and this one not”) and 

then he supposes that “this is the absolute value of this”. Finally, his discourse at line 545 

“the first [tick] is the absolute value of the second [tick]” is the same as potential expert 

discourse mirrored, where the first tick is intended to be 𝑓(𝑥) and the second tick to be 𝑥. 

Excerpt 6.26 - Lesson 2 

(Realization DGpp of the function 𝑓(𝑥) = 𝑒𝑥−1 +
1

25
 ) 

 When Who What is said What is done Potential expert 
discourse 

Code 

31 I2Mp1 
06:13 

F It [B] is a little bit 
greater, so B is greater 
than A, if A equals one, B 
is greater than A 

Activity2_1 
Lore holds 
the mouse 

In a neighborhood 
of 𝑥 = 1: 𝑓(𝑥) >
𝑥; 𝑓(1) > 1  

IN/ 
DEP 
 

32  L But in all the cases, 
because if A equals zero, 
B is greater than zero 

 For all x in the 
domain 𝑓(𝑥) >
𝑥;  𝑓(0) > 0 
 

IN/ 
DEP 
 

33  F Then, after one, we will 
check later, anyway, so B 
is always greater than A? 

He writes 
down 
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34  L Yes, basically yes, A is 
zero and B is about zero 
point three 

 𝑓(0) = 0.3  

35  F Yes, but the important 
thing is that it’s bigger, 
then, after one, so, if A is 
greater than one 

   

36  L Yes    

37  F If A is greater than one He writes 
down 

  

38 I2Mp1 
07:00 

L It [f(x)] goes faster and 
faster, they are never 
aligned 

 For all 𝑥 >
1, 𝑓(𝑥) ≠ 𝑥, and 
the derivative 
increases 

DER 

   […]    

62 I2Mp1 
09:15 

F In the interval between 
zero and one, if you 
move A to one, that is, 
considering that B 
started further, A is 
faster, so in the interval 
between zero and one A 
is faster than B…….. so, A 
is faster than B then, 
passed over one, then, if 
A arrives at one, B is a 
little bit further… 
however, A is faster 

Lore holds 
the mouse 
and Franci 
writes down 
their 
description 
(see Fig. 6.26) 
 

for 𝑥 ϵ [0; 1] the 
ratio of ∆f(x) to ∆x 
is smaller than 1  

𝑓(1) > 1 
 

IN/ 
DEP 
DER 

63  L After that, look at B…. it 
increases because if A is 
constant 

Continuous 
dragging to 
the right with 
an almost 
constant 
speed 

In a right 
neighborhood of 1 
the function is 
increasing 

MON 

64  F I know, but as A 
increases, B increases 
more and more, that is, it 
increases more and 
more, look, try to drag 
slowly  

 In a right 
neighborhood of 1 
the function is 
increasing and also 
the derivative is 
increasing 

MON 
DER 

65  L We start with a distance 
of.. the difference would 
be  

   

66  F As zero point one  𝑓(1) − 1 = 0.1  

67  L It’s minimum, and it 
increases more and more 

 As 𝑥 grows 𝑓(𝑥) −
𝑥 increases 

DER 

For all 𝑥 ≥
1, 𝑓′(𝑥) > 1 

68 I2Mp1 
11:00 

F Yes, but a lot, so it 
doesn’t increase in a 
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directly proportional 
way, it increases of… 

 

Fig. 6.26. Excerpt taken from students’ worksheet 

In the excerpt 6.26 Franci and Lore describe the movements of the two ticks in terms of “if 

A…B…”, but their discourse is not still properly mirrored by potential expert discourse about 

dependency, for example at line 34 Lore considers A and B separately.  

Meanwhile we identified the seeds of possible realizations of other mathematical signifiers. 

In order to find a value for which the two ticks are overlapped Franci and Lore observe not 

only the values that are taken on but also the speeds of the ticks. They discover that B is 

always greater than A (e.g. line 32 and Figure 6.26) and that in a right neighborhood of 1 it 

moves faster than A (e. g. line 64); their discourse is mirrored by potential expert discourse 

about the existence of different intervals of monotonicity and the derivative of the function. 

In particular, from line 65 to the end the students describe the changes in distance between 

the two ticks that “from the minimum value, it ever increases”, mirroring potential expert 

discourse about the derivative function. The value of the derivative gives information about 

the slope of the graph, that in this case for 𝑥 ≥ 1 is steeper than the graph of 𝑦 = 𝑥. 

Excerpt 6.27 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
 ) 

 When Who What is said What is done Potential expert 
discourse 

Code 

27 I3Mp1 
03:45 

F Where does B arrive? Activity3_1 
Axes 
overlapped 
Lore holds the 
mouse 

  

28  L B moves on and then it 
appears from that side 
[negative values] 

He drags A 
from right to 
left in a 
neighborhood 
of 𝑥 = 3 

In a right 
neighborhood of 
3 the function is 
decreasing; in a 
left 
neighborhood of 
3 the function is 
negative 

MON 
ASY 

𝑥 = 3 is a 
vertical 
asymptote 
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29  F Eh, it appears from that 
side, what does it mean? 
That it was positive and 
it starts from negative 
[numbers] 

 lim
𝑥→3+

𝑓(𝑥) = +∞ 

lim
𝑥→3−

𝑓(𝑥) = −∞ 

LIM 
ASY 

30  L Yes, but why, then     

31  F We don’t know why, we 
have to look at what we 
see….here [large positive 
x-values] they move 
together 

He points to 
the screen 

For large positive 
𝑥 -values the 
function is 
increasing 

MON 

32  F Wait, after six point six, 
six point four, what 
happens? B appears 
from negative 
[numbers]? 

 6.4 is a relative 
minimum 

MAX/ 
MIN 

33  L No no, it depends 
because it is strange 

   

34  F Go, go    

35  L If A goes that way [to 3 
from the right] B goes 
there [positive infinity] 
and it comes from that 
side [negative infinity]. 
While, if A moves from 
negative to positive 

He drags A and 
he also points 
to the screen 

lim
𝑥→3+

𝑓(𝑥) = +∞ LIM 

36  F When B goes, when A 
goes..are you dragging A 
right?  

  IN/ 
DEP 

37  L Yes, we can drag only A  A is the 
independent 
variable 

IN/ 
DEP 

38  F Therefore, if A moves 
from positive [3+] to 
negative [3-]..B keeps 
going to positive, that is 

 In a right 
neighborhood of 
3 the function is 
positive and 
strictly 
decreasing 

IN/ 
DEP 
MON 

39  L Buti t is not always true, 
because here [x=9] B 
follows A, and, once 
arrived at six point four, 
point five, it comes back 
and it reappears when A 
passes over, it reappears 
when A is two, no, it 
reappears when A is here 
[x=2.5], more or less 

He drags A 
from right to 
left 

For large positive 
𝑥 -values the 
function is 
increasing, 6.5 is 
a relative 
minimum. 
In a 
neighborhood of 
3 the function is 
not defined, 
there is a vertical 
asymptote 

MON 
MAX/ 
MIN 
DOM 
ASY 
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40  
 
 
 
 
 
 
 
 
 
I3Mp1 
06:05 

F It will be two point 
six……. This thing is 
strange because…how 
can a number going to 
positive and suddenly 
becoming negative? That 
is, if it goes on to 
positive, it goes on to 
positive, that is, suddenly 
it should change its sign 
because.. if it go on to 
positive, it would go on 
to infinity, while at a 
certain point it comes 
back and it doesn’t make 
sense 

   

The function in activity3_1 has been defined in order to support students’ emerging 

discourse about the domain, indeed it is not defined at 𝑥 = 3  where there is a vertical 

asymptote. In line with the expectations, at lines 33 and 40 the two students say “it is 

strange” and at line 40 “it has no sense” suggesting that they are surprised by the vanishing 

of the dependent variable. In particular, Franci seems surprised by the possibility for a 

number “to go toward the positivity and to suddenly become negative” after taking on 

positive values (see line 40), and his discourse is mirrored by potential expert discourse about 

the existence of a vertical asymptote. Moreover, Franci at line 29 and Lore at line 30 of the 

excerpt 6.27 say that they do not give meaning to the movements of B.  

Students’ discourse in the excerpt 6.27 is also mirrored by potential expert discourse about 

the monotonicity properties of the function (see lines 28, 31, 38 and 19). However, when 

looking at most of these examples we have to pay attention to Lore’s dragging action because 

he usually drags A from right to the left and this is important because an analysis of the 

monotonicity properties involves the relation between the directions the two ticks. For 

example, at line 39 Lore says “B goes forward and then it appears again over there [negative 

values]” for describing B moving to the right as A moves to the left and he uses ‘then’ 

referring to smaller A-values; in fact, it is mirrored by potential expert discourse “in a right 

neighborhood of 3 the function is decreasing; in a left neighborhood of 3 the function is 

negative”. 

Students’ discourse at lines 36, 37, 38 is mirrored by potential expert discourse about the 

dependence relation between the two ticks, which is experienced by the students in terms 

of direct/indirect motion within the DIM. In fact, Franci, who never holds the mouse to 

manipulate the file, has to ask Lore which tick is directly draggable to formulate the sentence 

“if A goes from negative to positive [values] then B keeps going to positive [values]” (see line 

38). 

At lines 28, 31, 35, 39 there are examples of students’ use of ‘this’ for indicating both the 

ticks and ‘here’ to describe particular positions of the ticks on the lines; these descriptions 

are understandable by looking at their pointing gestures to the screen or their dragging 

actions which are, actually, dragsturing actions. 
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Excerpts 6.28 - Lesson 4 

(Realization DGpp of the two functions 𝑓(𝑥) = {
7, 𝑥 < 5

3 + 𝑓𝑙𝑜𝑜𝑟(𝑥), 𝑒𝑙𝑠𝑒
    

and 𝑔(𝑥) = {

5

2
𝑥, 𝑥 < 6

1

2
𝑥 + 12, 𝑒𝑙𝑠𝑒

    ) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

44 I4Mp1 
06:00 

F So, one third of the 
day.. after eight 
hours, [TA equals] 
sixteen, eh after 
eight hours, it [A] 
seems moving faster 

Activity4_1  
The grid is shown 

For 𝑥 > 8, 𝑓′(𝑥) 
decreases 

DER 
 

45  L Yes, that is, it seems 
that they… 

While dragging he 
moves the other 
hand closing two 
fingers: 

 
Fig. 6.28a 

As 𝑥 grows 
𝑓(𝑥) − 𝑥 
becomes 
smaller 
 

DER 

The derivative 
is decreasing 

46  F That is, A moves 
always in the same 
way, but B takes 
same spaces in less 
time… then, coming 
back, this thing is 
normal  

At the end it is not 
clear what he refers 
to 

As 𝑥 grows the 
ratio of ∆f(x) to 
∆x increases* 

(*the derivative 
is decreasing) 

DER 

47 I4Mp1 
06:37 

L TA is never less than 
zero and also for 
twenty-four 

 𝑓(𝑥) is always 
positive 

RAN 

   […]    

107 I4Mp1 
12:20 

L At seven it is still 
decreasing because  

   

108  F What is decreasing?    

109  L The distance, I mean  For 𝑥 ≥
7, 𝑓(𝑥) − 𝑥 
decreases 

DER 

For 𝑥 ≥ 7 the 
derivative is 
decreasing 

110  F And so, in other 
words? 
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111  L The speed of TA  For 𝑥 ≥ 7 the 
speed of 𝑓(𝑥) 
decreases 

DER 

For 𝑥 ≥ 7 the 
derivative is 
decreasing 

112  F Is it decreasing?    

113  
 
 
 
 
 
 
 
I4Mp1 
12:52 

L A equals six and TA is 
fifteen, A is seven, 
look, it is already 
lesser, before it was 
increased by a 
certain number of 
squares, now it is 
increased just by a 
half [square] in one 
hour, just half a 
square, at eight it is 
always decreasing 

Discrete dragging 𝑓(6) = 15; 
𝑓(7) − 𝑓(6)
< 𝑓(6) − 𝑓(5): 
𝑓(8) − 𝑓(7) <
𝑓(7) − 𝑓(6)  
 

DER 

For 𝑥 ≥ 7 the 
derivative is 
decreasing 

During the fourth lesson Franci and Lore’s discourse is mainly mirrored by potential expert 

discourse about the set of images and the derivative of the function. For example, at lines 44 

and 46 of the excerpt 6.28 Franci describes the relative speed of the two ticks, while Lore 

mainly focuses on the distance between the two ticks, which becomes smaller as 𝑥 grows, 

as he expresses through the gesture in Figure 6.28a and through words at lines 109 and 113. 

In particular, he computes 𝑓(𝑥) − 𝑥 for some specific 𝑥 -values and then he compares the 

resulting values, mirroring potential expert discourse about the behavior of the derivative 

function that has different intervals of monotonicity. Indeed, this comparison between 

different values of 𝑓(𝑥) − 𝑥  gives him information about the speed of TA, as he explains to 

Franci at line 111. 

At line 113 Lore says “at eight it is always decreasing” by using an instantaneous reference, 

because eight is a point, but he describes the behavior of the function, which is decreasing, 

and the monotonicity property of a function concerns an interval of its domain. Therefore, 

we identify in Lore’s discourse a seed of realization of the passage to the limit, mirroring 

potential expert discourse about the derivative of the function, especially about 𝑓′(8).  

Moreover, Lore’s discourse at line 47 is mirrored by potential expert discourse about the set 

of images of the function, which takes on only positive values. 

Franci and Lore’s discourse seems now to be properly mirrored by potential expert discourse 

on dependency, also when they describe the function in activity5_1, which involves for the 

first time the realization DGc. The following excerpt shows a short part of their discussion 

during this activity. 

 

Excerpt 6.29 - Lesson 5 

(Realization DGc of the function 𝑓(𝑥) = −𝑥 + 5) 
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 When Who What is said What is done Potential expert 
discourse 

Code 

25 I5Mp1 
02:02 

F A is four times B, but it 
doesn’t work 

Activity5_1 𝑥 = 4𝑓(𝑥) * 

(*f(x)=-x+5) 

 

26  L No, because if A is two, 
B is three, if A is three, 
B is two  

 𝑓(2) = 3; 𝑓(3)
= 2 

IN/ 
DEP 

27  F So, as the numbers on 
the x-axis increase  

   

28  L It increases more and 
more 

He does not 
move anything 

  

29  
 
 
 
 
I5Mp1 
02:30 

F But it [B] goes down, 
look, go to eight, nine, 
ten, it goes down, try 
to go and see if 
something changes at 
the bottom [large 
positive x-values]…no, 
nothing changes, then 

Lore drags A to 
the right, then 
quickly drags A 
onto 8 and he 
continues 
dragging A to 
the right 

The function is 
strictly 
decreasing 

MON 

In line with our observations above, the two students express the dependency through the 

expressions “if A… B…” (see line 26) and “if going on along the x-axis then…” (see line 27).  

At the beginning of the excerpt, which almost corresponds to the beginning of the lesson, 

Franci searches for a rule to express the relation between the two variables. Then they focus 

on possible changes in direction of the dependent variable, which is actually what an expert 

would do when studying the monotonicity properties of the function, At line 29, Franci’s 

discourse is mirrored by potential expert discourse “as x grows, the function is strictly 

decreasing”. Moreover, we notice that instead of using “to go back” as in the previous 

lessons Franci for the first time says “[B] goes down” (see line 29). It is interesting because it 

happens when he is working for the first time with the realization DGc of the function, which 

involves the second dimension and so he sees the tick realizing the independent variable 

moving vertically. 

Excerpt 6.30 - Lesson 7 

(Realization DGc of the function 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
 and realization SGc of other four different 

functions) 

 When Who What is said What is done Potential expert 
discourse 

Code 

229 I7Mp4 
03:10 

L What can we do to see 
the positive numbers? 
well…for example, 
from three, no! … 
three….sorry but, 
three….. it reappears 
from the top, there is 
something wrong, 
three can be both up 
and down 

Activity7_2 
He drags 𝑥 
maintaining 
(𝑥, 𝑓(𝑥)) in the 
first quadrant 

lim
𝑥→3−

𝑓(𝑥)

= −∞ 
lim

𝑥→3+
𝑓(𝑥)

= +∞ 

ASY 
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230  F What does it mean 
that three can be both 
up and down? 

   

231  L Look…that is, we were 
here, less than three, 
and it was minus 
ninety-nine, do you 
remember? 

He zooms in at 
2.9 on the 𝑥 -axis 
and then he 
zooms out at -99 
on the 𝑦 -axis 

For 𝑥 in a left 
neighborhood of 
3 𝑓(𝑥) = −99 

lim
𝑥→3−

𝑓(𝑥)

= −∞ 

LIM 

232  F Yes    

233  L Then, if I go on, look at 
f(x), then it appears 
again 

He zooms in at 
3.1 on the 𝑥 -axis 

lim
𝑥→3+

𝑓(𝑥)

= +∞ 

LIM 

234  F It doesn’t appear 
anymore…did it appear 
before? 

   

235  L Yes, wait, I have to 
zoom out…….look! 

He zooms out at 
a big number on 
the 𝑦 -axis 

  

236  F Oh where did it 
reappear? 

   

237 I7Mp4 
04:55 

L Three, where could it 
also be? It dashes 
away! 

 𝑓(3) does not 
exist 

DOM 
ASY 

When exploring the DIM in activity7_2, Franci and Lore do not seem to identify activity3_1 

(where there was the same function) as a precedent, but their discourse is very similar in 

both cases (see Excerpt 6.27).  

In particular, their discourse in the excerpt 6.30 is mirrored by potential expert discourse 

about the vertical asymptote of the function which is not defined at 𝑥 = 3; for example when 

they say that “the three can be both up and down” (see lines 229, 230) or “it dashes away” 

(see line 237) or “then f(x) appears again” (see line 233). This activity involves the realization 

DGc of the function and it might be guessed also from the students’ choice of words. Indeed, 

they describe the tick realizing the dependent variable going down and appearing from the 

top, instead of making a circle around the screen, as they did in the excerpt 6.27 where they 

were exploring the realization DGpp of this function. 

However, also in this case they seem surprised by the movements of the dependent variable 

which they probably did not expect to see, for example Lore says “there is something wrong” 

at line 229. 

Excerpt 6.31 - Lesson 8 

(Realization DGpp of the function 𝑓(𝑥) = {

3

2𝑥
+ 2, 𝑥 > 0

(𝑥+1)2(𝑥+6)(𝑥+3)

𝑥
− 1, 𝑒𝑙𝑠𝑒

  )  

 When Who What is said What is done Potential 
expert 

discourse 

Code 

78 I8Mp2 
03:00 

L What a beautiful 
graph! 

Activty8_1   
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Fig. 6.31a 

79  F Eh, this [Fig. 6.31a] 
should be the 
graph, I cannot 
understand, but if 
you notice it, it 
never belongs to 
this [the fourth] 
quadrant, it 
intersects all the 
other and it never 
goes there [fourth 
quadrant], zero 
there isn’t, and it 
doesn’t pass 
through the origin 

 𝑓(0) ≠ 0 
 

DOM 

the function 
is not defined 
at 𝑥 = 0 

80  L No, but sorry, so 
here in the graph 
that we did, if x is 
zero 

   

81  F Zero doesn’t 
disappear, zero 
disappeared at all 

 The function 
is not defined 
at 𝑥 = 0 

DOM 

82  L No, here if x is zero, 
it intersects the y-
axis, anyway 

   

83  F Yes, I know, but it 
should be a kind of 
parabola, but we 
didn’t do the 
parabola  

   

84  L It passes through 
one, more or less  

   

85  F I think that it is    

86  L And here, that is, 
here zero 

He takes the mouse 
and zooms out with 
𝑥 = 0 

  

87  F It’s not visible, 
there isn’t, that is, I 
don’t know how to 
explain it 

 𝑓(0) does not 
exist; the 
function is 
not defined 
at 𝑥 = 0 

DOM 
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88  L Here it is, here it is    

89  F F(x) about minus 
four hundred and 
seventy, however, 
the important thing 
is to know that it is 
down 

 𝑓(0) is 
around -470 

LIM 

in a left 
neighborhood 
of 0 𝑓(𝑥) is 
around -470 

90  L So wait, if x is zero?    

91 I8Mp2 
04:10 

F Minus four 
hundred and 
seventy, it means 
that you have to 
take a point here  

He points to a large 
negative number on 
the 𝑥 -axis in the paper 

  

   […]    

102 I8Mp2 
04:50 

L Then wait, if it is 
here [1] it will be 
like here [2] but it 
is like here [2] 
randomly, so it 
decreases, then, 
when it [x] is one it 
moves up again 
and it does this [3], 
so the two graphs 
are not linked, I 
don’t know why I 
liked them, that is 

 
Fig. 6.31b 

In a left 
neighborhood 
of 0 the 
function is 
decreasing 

lim
𝑥→0−

𝑓(𝑥)

= −∞ 

MON 
LIM 

103  F Are they not 
linked? Then, if 
they are not linked, 
how can we know 
that they are not 
linked?  

   

104  L Because if x is zero, 
y is minus four 
hundred, 
something like that 

 𝑓(0) is 
around -400 

LIM 

in a left 
neighborhood 
of 0 𝑓(𝑥) is 
around -400 

105  F And so, they are 
separated, but 

   

106  L And so, that is, it 
starts from zero, it 
goes down and 
comes up, like this 
[Fig. 6.31c] more or 
less 

He points to this piece 
of curve: 

For 𝑥 ϵ [-3.5; -
2] the 
function is 
decreasing 
and for 𝑥 ϵ [-
2; -1] it is 
increasing 

MON 
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Fig. 6.31c 

107  F What does it? It 
starts like this and 
then goes 

   

108  L That is, if x equals 
zero 

   

109 I8Mp2 
06:10 

F X equals zero, they 
have two different 
values 

 𝑓(0−) is 
different 
from 𝑓(0+) 

LIM 

lim
𝑥→0−

𝑓(𝑥)

= −∞ 
lim

𝑥→0+
𝑓(𝑥)

= +∞ 

The excerpt 6.31 is from the last lesson and during the activity8_1 students are asked to pass 

from the realization DGpp to the realization SGc of a function. The function is not defined for 

𝑥 = 0, where there is a vertical asymptote; again Franci and Lore express uncertainty doing 

this, for example at line 87 Franci explicitly says “I do not know how to explain it”.  

However, their discourse is mirrored by potential expert discourse about the domain and the 

different limits for 𝑥 tending to 0 from right or left. Indeed, at lines 79 and 81 they notice 

that in their drawing (Fig. 6.31a) 𝑓(0) exists while in the DIM “zero disappeared”, since 𝑥 =

0 is not in the domain of the function. But then, at a certain point during their explorations, 

they say to have found a value for 𝑓(0), which is around -470 (see line 89), and at line 102 

their description is about different limits of the function for 𝑥 in left and right neighborhoods 

of zero. At lines 104 and 109 they also say, as happened in the previous lesson, that “x equals 

zero has two different values”. They do not nevertheless modify their drawing. 

Then at line 83 Franci mentions a parabola, as saming their drawing on the paper with a 

possible realization of a parabola in the Cartesian plane, even if he says that they “did not 

study it yet”. Moreover, at lines 102 and 106 Lore identifies possible intervals of monotonicity 

of the function, when looking at the realization SGc on the paper after exploring the DIM 

again to check their drawing. 

 

The following excerpt is taken from the interview with Franci and Lore. 

Excerpt 6.32 - Interview 3 

 (Realization DGpp of the function 𝑓(𝑥) = {

1

𝑥−2
− 5, 𝑥 > 2

1

4
√−(3𝑥 + 21)(2𝑥 + 2)(𝑥 + 4), 𝑒𝑙𝑠𝑒

  ) 



185 
 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

22 C 
20:45 
FLm2 
03:50 

F Well six is minus 
five, a bit less than 
minus five, then do 
I go on? 

Task2 with Franci at the 
pc and Lore drawing the 
points on the paper 

𝑓(6) is around 
-5 

 

23  L Yes Discrete dragging   

24  F Seven is minus 
four and eight 
more close to 
minus five  

 𝑓(7) = −4.8  

25  L That is, like seven?    

26  F Eh no, I’m at seven 
now 

   

27  L Like six, sorry    

28  F Wait, now I look, 
because I don’t 
remember it! Yes, 
yes, like six, 
exactly, that is, it 
[f(x)] doesn’t move 
but the strange 
thing, what I can 
tell to you is that 
between six and 
seven, that is, it 
moves very little, 
so much little that 
I think it is even 
impossible to 
notice it  

Zoom out and he drags x 
within the interval [6, 7] 

𝑓(7) − 𝑓(6) is 
about 0 
because 𝑓(𝑥) 
takes on the 
same value 

DER 
MON 

For 𝑥 ϵ [6; 7] 
the derivative 
is about 0 

29  L eight?    

30  F While eight is  
always less than 
minus five, so now 
there are different 
values between six 
and eight, there 
are different 
values 
approaching minus 
five, then nine, we 
are always a little 
less than minus 
five, so I would go 
on until the trend 
doesn’t change  

discrete dragging 
zoom out  
discrete dragging again 

𝑓(8) is around 
-5 There are 
several pre-
images of 
about -5, also 
𝑓(9) is around 
-5.  
I would search 
for a change in 
the behavior  

INJ 
MON 

31  L Yes, for example 
look at eleven, 
twelve, to see if 
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something 
changes  

32  F No, ten doesn’t 
change, neither 
eleven, twelve, 
thirteen, fourteen, 
no, it doesn’t seem 
to me… I would go 
back to negative 
again  
 

 The function is 
constant for 
all 𝑥 > 5 

MON 

33  L Minus five, 
because then I 
don’t know, minus 
five 

   

34  F Minus five, there 
isn’t, the 
correspondence 
doesn’t exist, or 
even in these 
intervals, do you 
want to know 
minus six? Neither 
minus six, so for 
sure it will be a 
function that… 
well, it appears 
again at minus 
seven and it is zero 

Zoom out and in 
Discrete dragging 

The function is 
not defined on 
[-6; -5] 

𝑓(−7) = 0 

DOM 

35  L Try minus eight, 
probably  

   

36  F Minus eight is 
three and a half, 
more or less, but 
we have also to 
precise that it is 
positive 

 𝑓(−8) = 3.5  

37  L Sorry but, does it 
go up? 

 Is the function 
decreasing? 

MON 

38  F Minus eight, three 
and a half yes 

 𝑓(−8) = 3.5  

39  L Minus nine, let’s 
go till we have 
some values 

   

40  F Well, minus nine, 
five and a half, 
minus ten, almost 
eight, well, and 
minus eleven.. ah, 
yes minus eleven is 

Discrete dragging 𝑓(−9) =
5.5; 𝑓(−10) =
8; 𝑓(−11) is 
around 10 
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a little more than 
ten 

41 C 
24:25  

L Then I think that it 
can be enough  

Finally he draws: 

 
Fig. 6.32a 

  

The function for this activity has been chosen such that it is not always defined and the value 

of its derivative is very close to zero for large positive 𝑥 −values, in order to investigate 

students’ possible description of these two properties. In the excerpt 6.32 we can see that 

Franci and Lore’s discourse is mirrored by potential expert discourse about the derivative, 

the monotonicity properties, the non injectivity and the domain of the function.  

First of all, they observe that “[f(x)] does not move” or “[f(x)] moves very little, so much little 

that I think it is even impossible to notice it”, mirroring potential expert discourse about the 

derivative function, which takes on values very close to zero from a certain positive 𝑥 −value 

on; and Franci proposes to search for a possible change in the “trend” (see lines from 28 to 

32), that might be what an expert would call ‘behavior’ when looking at the intervals of 

monotonicity of the function. They also speak about the non injectivity of the constant 

function 𝑓(𝑥) = −5, since they observe that there are several pre-images of -5 (see line 30), 

and this leads Lore to draw the horizontal line 𝑦 = −5 𝑓𝑜𝑟 𝑥 ≥ 5. Concerning the intervals 

of monotonicity, at lines 34 and 36 Lore is dragging 𝑥 to the left and so his discourse “does it 

goes up again?” mirrors potential expert discourse “does the function decrease?” even if he 

is talking about a growing of the 𝑓(𝑥) -value. 

Moreover, at line 34 Franci identifies an interval where “the correspondence does not exist” 

and he finds out that “it will be a function such that it exists for x=-7” properly mirroring 

potential expert discourse about the domain. 

 

Excerpt 6.33 - Interview 3 

(Realization DGpp of the function 𝑓(𝑥) = {

5.18,   𝑥 ≤ −4.6

−10
𝑠𝑖𝑛𝑥

𝑥
+ 3, −4.6 < 𝑥 < 8.2

2

5
𝑥 −

3

2
,   𝑒𝑙𝑠𝑒

  )  

 When Who What is said What is done Potential 
expert 

discourse 

Code 

21 C 
35:40 
FLm5 
02:15 

L However, for 
now by moving x 
within the 
positive 
[numbers], so by 

Task3 with Lore at the pc 
and Franci drawing 
Discrete dragging 
Zoom out and in 
 

The function 
is increasing 
in a left 
neighborhood 

MON 
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increasing x, also 
f(x) increases, 
for now… x 
equals four, f(x) 
about four point 
nine… five is 
always a little 
more than four 
point nine 

of 5; 𝑓(5) =
4.9 

22  F Five is a little 
more than four 
point nine, then, 
I don’t even 
know if marking 
it, since the 
trend, at the end 
we are 
interested in the 
trend, if it is 
what I think… 
six?  

He does not write anything We are 
interested in 
the behavior 
of  this 
function 

MON 

23  L Six is a little less 
than three and a 
half, about three 
point four, it is 
going a little 
down 

Discrete dragging 𝑓(6) = 3.5; 
in a right 
neighborhood 
of 5 the 
function is 
decreasing 

MON 

24  F It is going down   It is 
decreasing 

MON 

25  L Yes, arrived at, 
well, a little 
more than five 
and then it went 
down 

 In a right 
neighborhood 
of 5 the 
function is 
decreasing  

MON 
MAX 
/MIN 

𝑥 = 5 is a 
relative 
maximum 
point 

26  F What a strange 
thing! Seven, a 
little more than 
two? We hope 
well! Eight, one 
point eight, it is 
following more 
or less, then 
stop at nine, 
that is, go to the 
other, nine, a 
little more than 
two? 

He repeats what Lore says 
At the end he uses the pen 
to move on the curve that 
he drew 

𝑓(9) is 
around 2; 
there are 
several pre-
images of 
that value 
around 2. 
-7 is a relative 
minimum: in 
a right 
neighborhood 
of -7 the 
function is 

MAX/ 
MIN 
MON 
INJ 



189 
 

There are many, 
a little more 
than two! So it 
seems that it 
goes up… so, 
wait a second, 
here I see that 
minus seven is 
the point, as we 
did at math, like 
the vertex of a 
parabola?! It 
could be 
something like 
that, but I don’t 
know, because 
here I started 
from minus 
seven then I 
went up, then I 
went down and 
now, with ten, 
sorry? 

increasing 
and then it 
decreases 
 

There is also 
a relative 
maximum 
point where 
the derivative 
changes the 
sign 

27  L Ten, we are at 
two and a half 

 𝑓(10) = 2.5  

28 C 
38:30 

F Eh, so it went up 
again  

 The function 
is increasing 

MON 

   […] They find that 
lim

𝑥→+∞
𝑓(𝑥) = +∞ and that 

for−4.5 < 𝑥 < −6, 𝑓(𝑥)  
has always the same value, 
that is around 5 

  

35 C 
42:35 
FLm6  

L I look if it is 
constant, no, 
from now on it is 
constant 

 For 𝑥 < −4.5 
the function 
is constant 

MON 

36  F That is, do they 
have the same 
value, more or 
less? 

 all 𝑥 < −4.5 
have the 
same value as 
image 

INJ 

37  L Yes, now it is 
constant, 
because it 
doesn’t move, 
now I’m going 
on but it doesn’t 
move, it is still 
there, minus 
sixteen, still 
there 

Continuous dragging to the 
left 

The function 
is constant, 
the derivative 
is 0 
𝑓(−16) is still 
around 5 

MON 
DER 
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38  F So, wait a 
second, because 

   

39  L No Franci, it 
[f(x)] is always 
here [around 5] 

   

40  F That is, is it still 
five point four, 
five point six?  
A little more 
than five… so, 
does it go up? 

He moves his hand up as 
making a vertical line in the 
air 

  

41  L Not now, it is, 
yes, it is always 
constant its 
value  

 The function 
is constant 

MON 

42  F So it goes 
straight 

 Is it a line?  

43  L Now, I don’t 
know the shape 
of your graph 

 I do not know 
the shape of 
the graph 

 

44  F Yes, but it 
doesn’t have a 
shape! That is, 
there will be a 
succession of 
points one on 
another one 

 It might be a 
vertical* line 
(*horizontal) 

 

45  L No no, look also 
at mine… a 
straight line and 
I don’t know, in 
both my and 
your graph there 
is a succession of 
points where the 
value is always 
constant, the 
f(x)-value 

In the same paper there 
the Cartesian graph drawn 
by Lore in the previous 
activity 
He does not drag anything 

A horizontal 
line; there are 
several 𝑥 -
values such 
that 𝑓(𝑥) 
takes on the 
same value 

 

46  F Then, does it tell 
you something 
about the 
function? Some 
information, 
some details? 
What I can tell 
you is that its 
shape, this one 
seems a 
parabola, but we 
have not studied 
them in details, 

He draws this curve  

 
Fig. 6.33a 

The graph 
seems a 
parabola 
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yet, and it has a 
bit strange 
shape 

47  R How would you 
go on here, for 
negative values? 

   

48  F How I would go 
on, eh, sorry, go 
to minus seven 
for a second 

   

49  L Minus seven is 
always a little 
greater than 
five, from minus 
six on… 

Zoom out 𝑓(−7) is 
around 5, for 
𝑥 in a left 
neighborhood 
of -6 it is a 
constant 
function 

MON 

50  F So they are still 
in the same 
point, so it will 
go… eh!  

   

51  L That is, x equals 
minus six for 
example, and 
f(x) is always 
greater than five 

He moves his hand up 𝑓(−6) is 
around 5 

 

52  F Yes, minus eight     

53  L Minus seven, 
minus nine, they 
are all the same, 
sixteen, wait, I 
can go on but I 
don’t think that 
there could be a 
turning point… it 
is still there also 
at fifty 

He drags to the left  and he 
zooms in at (0,5) 

-7; -9 and 16* 
have the 
same image; 
𝑓(50) is* 
around 5 
(*-16 and 
𝑓(−50)) 

MON 

𝑓(𝑥) = 5 for 
all 𝑥 ≤ −6 
 

54  F Wait a second, 
because if the 
ordinate moves 
and the abscissa 
is always in the 
same point, or 
anyway it 
doesn’t go up, 
that is, for me 
we are stuck 
here, but I don’t 
know, because y 
can, how I can 
say it, we can 

  DER 

The 
derivative is 0 
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move x as we 
want 

55  L which? what?    

56  F x, minus one, 
minus two, that 
is, minus five, 
minus six 

   

57  L You will obtain a 
continuous line, 
I mean, straight 
line, like the one 
that I obtained 
before, even if I 
didn’t do the 
entire line  

He moves both his hands 
horizontally 

The graph is 
an horizontal 
line 

 

58  F a line following 
the trend 

   

59  L Yes, a straight 
line 

   

60  F It should be like 
this, parallel to 
the ordinates 

He draws the vertical line 
x=-5 

A vertical line, 
parallel to the 
𝑦 -axis 

 

61  L No! x moves, x    

62  F not y     

63  L Eh but, it’s not 
true that it 
doesn’t move, 
but it is 

He moves one hand 
horizontally as before 

  

64  F Yes, but it 
corresponds to 
the same point, 
in other words if 
x has a value and 
y has always the 
same 

He looks at his drawing on 
the paper 

  

65  L However, you do 
all the points, 
minus seven put 
five, a little more 
than five, then 
minus eight put 
the same value 
again, minus 
nine the same 
value 

Franci is still looking at his 
drawing 

You can plot 
the points (-7, 
5); (-8, 5); (-9, 
5) 
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66 C 
48:25 

F Yes, yes, it’s 
true, I was 
wrong, so minus 
seven should be 
here, then minus 
eight……….. so it 
is parallel to the 
axis of abscissas! 

He starts drawing the 
points that Lore told him to 

put in the plane 

 
Fig. 6.33b 

The graph is a 
horizontal 
line, parallel 
to the 𝑥 -axis 

 

The function that we used for this activity is always defined on the real number set and it is 

constant on a specific interval of the domain. In the excerpt 6.33 Lore is manipulating the 

realization DGpp of the function and he is telling to Franci the coordinates of some points 

(𝑥, 𝑓(𝑥)); he also describes the function in terms of movements of the two ticks. In fact, 

there are several examples of the two students’ discourse mirroring potential expert 

discourse about the monotonicity properties of the function (see lines 21, 22, 23, 24, 25, 26, 

28, 35, 37, 41, 49). This is actually what Franci says to be interested in to drawing the graph: 

‘the trend’ (see lines 22 and 58). Moreover, the students’ description of changes in direction 

of the tick realizing the dependent variables, at lines 25 and 26, is mirrored by potential 

expert discourse about the existence of relative maximum or minimum points of the 

function. 

From line 35 to the end of the excerpt students’ discourse focuses on the interval of the 

domain where the function is constant. Franci seems to have some difficulties with the 

realization of this property graphically in the Cartesian plane; at line 46 he even asks Lore if 

there are some more information about the function written in the DIM. At line 45 Lore 

suggests him to look at the graph in the previous activity (Fig. 6.32a) which also had “a set of 

points where the f(x)-value is constant”, and at line 65 he invites him to apply the following 

routine: plotting in the Cartesian plane a set of points having different abscissas and the same 

value of the ordinate. Nonetheless, at lines 40, 44 and 60 Franci describes a vertical line in 

the Cartesian plane as a possible realization of the constant function and he also draws it. 

Then he changes his idea, explaining that “[the line] has to be parallel to the x-axis” (see line 

66) and he finally modifies his drawing by delating the vertical line and tracing a horizontal 

line (Fig. 6.33b). 

As happened in the excerpt 6.31, we observe that at lines 26 and 46 Franci describes the 

shape of his graph by speaking about a parabola, as saming his drawing in the Cartesian plane 

with a possible realization of parabola. 

6.2.6 Davide and Elena 

Davide and Elena worked together during the whole sequence of lessons, except for the 

second because they were not at school when it took place. It is interesting to analyze this 

pair of students’ discourse, because they did not follow the intended path that we designed, 

with respect to the type of realization of the function being involved. Indeed, their routine 

for each activity consisted in identifying a set of points (𝑥, 𝑓(𝑥)) and plotting them in a 

Cartesian plane which they drew on a sheet of paper. This means that ever since the first 

lesson they actually worked with the realization SGc of the function, instead of getting there 

after a series of activities in the dynamic environment, as we designed.  
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By looking at Table 6.5 we notice that it is quite empty compared to Table 6.1. There also 

appear to be some completely white lines; we conjecture that it could be due to these 

students’ alternative approach to the activities which does not allow for as much mirroring 

of experts’ discourse. 

In general, these students use some mathematical technical words but not always in a 

formally correct way; especially Davide seems to evoke routines from his precedent-search-

space on task situations involving functions. He also employs visual mediators both symbolic 

and iconic, proposing different realizations of the mathematical objects of his discourse 

during the activities.  

 

Activity Type IN/DEP DOM RAN INJ MON MAX/ 
MIN 

LIM ASY DER 

1_1 DGp          

1_2 DGp          

1_3 DGpp          

3_1 DGpp          

3_2 DGpp          

4_1 DGpp          

4_2 DGpp          

5_1 DGc-
DGpp 

         

5_2 DGc          

5_3 DGc          

6_1 DGc          

6_1bis DGc          

7_1 DGc-
SGc 

         

7_2 DGc-
SGc 

         

8_1 DGpp-
SGc 

         

8_2 SGc          

8_3 SGc          
Table 6.5. Mathematical objects in Davide and Elena's discourse 

As we will see in some of the following excerpts, Davide and Elena prefer working with the 

realization SGc of the function instead of with the dynamic realizations proposed in the 

activities. However, they are not always able to interpret this realization, for example, in 

many cases Davide refers to a point (𝑥, 𝑓(𝑥)) belonging to the curve, but his discourse is 

mirrored by potential expert discourse about the behavior of the dependent variable. 

 

Excerpt 6.34 - Lesson 3 

(Realization DGpp of the function 𝑓(𝑥) = 𝑥 +
3

𝑥−3
 ) 
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 When Who What is said What is done Potential 
expert 

discourse 

Code 

181 I3Mp2 
08:14 

R Is this [realization 
SGc] coherent with 
this one 
[realization DGpp]? 

Activity3_1   

182  D Yes, because here 
all the values that B 
can take on, I don’t 
know, because it 
cannot be greater 
than this point and 
less than this point. 
Then B is minus 
one for A equals 
zero and then, 
which one among 
these values is it 
possible to obtain 
at zero, one, this, I 
didn’t understand 
the question  

He uses the pen to 
indicate the relative 
maximum point and 
then the relative 
minimum point in the 
Cartesian graph on the 
paper. 
He reads the question in 
the task. 

The set of 
images is 
limited. 
A pre-image 
of -1 is 0 

RAN 

183  R You told me that 
the values that B 
can take on are all 
except for 

She points to an interval 
in between the relative 
extremes  

 RAN 

184  D Except for three   DOM 

185  E Except for that 
part, yes 

  RAN 

186  R This part here, 
while these values 
that it can take on, 
that is, in how 
many ways can you 
obtain these down 
and these up? 

 Is the 
function 
injective? 

INJ 

187  D One    

188  R Just in one way? 
how? 

   

189  D Yes, because 
according to me, 
there is only a 
number that  

He moves the pen as 
tracing vertical lines: 

 
Fig. 6.34a 

 INJ 
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190  R Or there is only 
one A-value, by 
recalling this A  

   

191  D There is only one 
A-value that is six 
and a half, or there 
is only one value 
that is, however, 
that is zero or that 
is minus a half 

 There exists 
only a pre-
image of 
6.5, of 0 and 

of −
1

2
* 

(*0 is not in 
the set of 
images and 
there are 
two pre-
images of -
1/2) 

INJ 

192  R There is also just 
one value that 
makes it, if it was 
seven, seven and a 
half? 

She points to (0, 7.5) on 
the paper  

Is there only 
one pre-
image of 
7.5? 

 

193  D Yes, yes   INJ 

194  R Is it always just one 
that of A? 

   

195 I3Mp2 
09:30 

D Yes   INJ 

At line 184 of the excerpt 6.34 Davide says that three is the only value that the dependent 

variable B does not take on but, actually, this is the value which the independent variables A 

cannot take on. Since at line 182 he refers to an interval of values which B cannot take on, it 

is not clear which one of the two variables he thinks that does not exist at three. This 

difference is important from the point of view of potential expert discourse mirrored 

because it would be about the domain or about the set of images of the function. Moreover, 

at line 182 Davide’s discourse is about “the values that B can take on” and so he looks at the 

extreme values of the set of images but he shows them by pointing to the relative maximum 

point (𝑥1, 𝑓(𝑥1))  and the relative minimum point (𝑥2, 𝑓(𝑥2))  on the paper, instead of 

pointing to 𝑓(𝑥1) and 𝑓(𝑥2) on the 𝑦 -axis. 

In the last part of the excerpt, we observe that Davide’s discourse is not mirrored by potential 

expert discourse about the non-injectivity of the function. In particular, when the researcher 

asks him to find the number of pre-images of a given 𝑓(𝑥) -value, he looks at his drawing on 

the paper and he traces vertical lines (Fig. 6.34a), which intersect the curve at only one point. 

The mediation of these lines could be used to realize the being well-defined of the function, 

but not to investigate its injectivity (in this case the lines should be horizontal). However, 

Davide does not change his idea (see lines 193 and 195) despite the challenges of the 

researcher at lines 192 and 194.  

In the following part of the lesson, which is not reported in the excerpt, thanks to the request 

of the researcher to check their answer in the realization DGpp of the same function, Davide 

and Elena recognize that there are some points of non-injectivity. It is interesting that, even 

if they usually prefer working with the realization SGc, they see the realization of more 

properties of the function when manipulating its dynagraph. 
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Excerpt 6.35 - Lesson 4 

(Realization DGpp of the two functions 𝑓(𝑥) = 𝑥2 𝑎𝑛𝑑 𝑔(𝑥) = |𝑥| +
3

2
) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

280 I4Mp3 
07:25 

D Basically, this one 
[g(x)] greater 
than one point 
five and the 
other [f(x)] 
everywhere… 
disjoint? So it is 
the opposite, this 
one, this part 
here [the interval 
[0, 1.5) in Fig. 
6.35a]... unless 
this one [g(x)] 
then goes down 
again, but we 
don’t know 

Activity4_2 
He draws the diagram: 

 
Fig. 6.35a 

And then he marks the 
interval [0,3/2] on the 𝑦 -axis 

The set 
of images 
of 𝑔(𝑥) is 
[1.5, +∞) 
while the 
set of 
images of 
𝑓(𝑥) is 
[0, +∞).  
The 
interval 
(0, 1.5) is 
not in 
common. 

RAN 

   […] They are quite looking at the 
diagram 

  

281 I4Mp3 
08:20 

D Wait, but from 
one and a half 
downward…….so, 
from these 
points, no? 

He traces the horizontal line 

𝑦 =
3

2
 and he finds the 𝑥 -

values such that 𝑓(𝑥) =
3

2
: 

 

 
Fig. 6.35b 

 RAN 

282 I4Mp3 
08:50 

E yes, so from 
minus one to one 

   

To solve activity4_2, first of all Davide and Elena build the Cartesian graph of the function on 

the paper, as for all the other activities. However, in the excerpt 6.35 we can see that Davide 

uses also the visual mediation of a diagram, shown in the Fig. 6.35a, which actually reminds 

of the realization DGpp of the two functions, with the trace activated on the dependent 

variables. By looking at the diagram he describes the set of images of the two functions and 

he also identifies an interval that they do not have in common. In fact, from the diagram it is 

possible to see that one of the two ticks realizing a dependent variable does not mark the 

interval [0, 3/2] and that both of them touch all the values greater than 
3

2
. Initially Davide 
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expresses the interval on the 𝑦 -axis but then, after a short pause of reflection indicated by 

the suspension markers, at line 281 he passes to the 𝑥 -axis. In order to do this, he traces the 

line 𝑦 =
3

2
 on the paper and he marks the values on the 𝑥 -axis that are the abscissas of the 

intersection points with the curve (Fig. 6.35b).  

The following excerpt shows another example where Davide involves some visual mediators 

in his discourse, not presented in the activity or suggested by the researcher, in particular he 

writes an inequality on the sheet of paper as rephrasing the question posed by the 

researcher. 

Excerpt 6.36 - Lesson 5 

(Realization DGc of the function 𝑓(𝑥) = √𝑥 + 3 − 2)  

 When Who What is said What is done Potential 
expert 

discourse 

Code 

328 I5Mp7 
03:30 

R What are the A-
values such that B 
takes on values less 
than zero 

Activity5_2 
They have drawn the 
Cartesian graph on the 
paper (Fig. 6.36) 

For which 
𝑥 the 
function 
is 
negative? 

IN/ 
DEP 

329  D However, we can 
just do a inequality, 
for me, no? 

 We 
should 
solve an 
inequality 

 

330  R Which inequality 
would it be? 

   

331  D Square root of x plus 
three  minus two 
less than zero 

He writes the inequality on 
paper 

√𝑥 + 3
− 2 < 0 

 

332  R And what should 
you find out? 

   

333  D So, it would be like 
this (Fig. 6.36a)… 
then, I don’t 
remember how to 
do it, wait… less 
than one? Yes, for 
all x less than one 

 
Fig. 6.36a 

  

334  R So, for x less than 
one you find that  

She points to 𝑥 = 1 in the 
graph on the paper 

  

335  D Indeed, one, it’s 
true, for x equals 
one it is zero, 
because one plus 
three, four, so 
square root two, 
and it results zero, 
so for all [x] less 

 𝑓(1) = 0 
because 
1+3=4 

and √4 =
2; 
for all 
𝑥 < 1 
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than one it results 
less than zero 

then 
𝑓(𝑥) < 0 

336  R And here, how can 
we see it? 

She points to the DIM   

337  D Here we see it, 
where is A? A is 
here, B is here, 
going down… that is, 
obviously for the 
values less than one 
we always go… they 
are negative 

He drags A from 1 to the 
left and brings it back at 1 

  

338  R What are negative?    

339  D B-values    

340 I5Mp7 
04:50 

R Okay    

 

Fig. 6.36. Excerpt taken from students’ worksheet 

Analyzing the types of mediators used by students, in the excerpt 6.36 Davide employs 

symbolic visual mediation to answer the question at line 328. Indeed, at line 329 he proposes 

a realization of the correspondence expressed by the researcher in terms of dependence 

relation between the two variables, involving an analytic expression of the function. Then he 

writes the inequality on the paper (Fig. 6.36a) and solves it. In particular, at line 333 he says 

“I do not remember how to do this” and this expression seems an attempt to identify a 

possible ritual from his precedent-search-space for a task situation involving inequalities. 

Then the researcher asks him to interpret the solution that he found, by looking at the 

dynamic realization of the function. At line 337 he succeeds in doing this, since he drags the 

tick realizing the independent variable from 1 to the left, even if he seems to have some 

troubles in finding the words to describe what he sees on the screen, as suggested by his 

discourse “obviously for the values smaller than one it is, it goes… that is, they are negative”, 

where the subject is unexpressed. 

 

The following excerpt is taken from the interview with Davide and Elena. 

Excerpt 6.37 - Interview 4 

(Realization DGpp of the function 𝑓(𝑥) =
3

2𝑥−1
+ 2) 
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 When Who What is said What is done Potential 
expert 

discourse 

Code 

1 C 
27:45 

D then, for x equals 
zero, f(x) equals 
minus one…for x 
equals one, f(x) is 
five point one, a 
little bit more than 
five 

Task3 with Davide at 
the pc and Elena 
drawing. The grid is 
activated. 
Wandering dragging 

𝑓(0) = −1; 
𝑓(1) = 5.1 

 

2  E A little bit more 
than five? 

   

3  D Yes…then for x 
equals two, f(x) is 
three, for x equals 
three, f(x) is a little 
bit greater than 
two point five, for x 
equals four, f(x) is 
two point four, 
somehow it slows, 
slows, indeed…f(x) 
doesn’t arrive, wait 

After speaking he 
zooms out 

𝑓(2) = 3 
𝑓(3) is around 
2.5; 𝑓(4) =
2.4 
The difference 
quotient 
decreases 

DER 

4  E Does it arrive at 
two? 

 Is there 𝒙 such 
that 𝑓(𝒙) =
2? 

 

5  D Probably f(x) is two, 
but not exactly, for 
thirty 

 A pre-image of 
2 is 30 

 

6  E For example, for x 
equals ten, how 
much is f(x)? 

 𝑓(10)?  

7  D A little bit more 
than two…then, 
when x equals one, 
did I tell you that it 
is about five? 

He drags x and then he 
answers 

𝑓(1) is around 
5 

 

8  E When x equals one, 
five, yes! 

   

9  D when x, f(x) is 
about ten, for zero 
point six, that is, 
when x is zero 
point six, f(x) is 
ten… until for 
about a half, for x 
zero point five, f(x) 
disappears 

He drags 𝑥 in a 
neighborhood of 0.5 

𝑓(0.6) is 
around 10 
𝑓(0.5) does 
not exist 

DOM 

10  E Ah! So, at a half, 
when x is at a half, 

She does not write 
anything 

𝑓(0.5) does 
not exist 

DOM 
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does f(x) 
disappear? 

11  D Yes, for coming 
back again… it 
could come back 
beforee, but for x 
equals zero point 
two, f(x) is minus 
threee……..f(x) is 
zero for x equals 
minus one 
third…….for x 
equals minus one, 
f(x) is one 

 𝑓(0.2) = −3; 
a pre-image of 
0 is 

−
1

3
;   𝑓(−1) =

1 

 

12  E X minus one, is f(x) 
one? 

 𝑓(−1) = 1  

13  D Minus one, f(x) is 
one… for minus 
two, let’s say that it 
slows, more or less 
similar to what we 
saw before, it slows 
again close to two, 
indeed, when x is at 
minus two, f(x) is 
one point six and 
f(x) doesn’t arrive 
at two, never here, 
more or less 

 In a left 
neighborhood 
of -2 the 
function 
decreases 
slowly  
𝑓(−2) = 1.6;  

𝑓(𝑥) < 2 

ASY 
DER 

In a left 
neighborhood 
of -2 the 
derivative 
tends to 0 and 
lim

𝑥→−∞
𝑓(𝑥) =

2 
14  E For example, x 

minus eight? 
   

15  D When x is minus 
eight, f(x) is one 
point eight, it’s 
difficult for you to 
reach f(x) equals 
two, if not 
impossible, so the 
values that f(x) 
doesn’t ever reach 
are two… while f(x) 
doesn’t exist for a 
half…do you need 
something more? 

He drags 𝑥 backward 
and forward along the 𝑥 
-axis 

𝑓(−8) = 1.8 
𝑓(𝑥) < 2 

The function is 
not defined at 

𝑥 =
1

2
 

ASY 
RAN 
DOM 

16 C 
34:15 

E I don’t think so! Before speaking, she 
moves the pen on the 
paper but without 
tracing the curve 

  

   […] Elena’s final drawing is:   
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Fig. 6.37a 

25 C 
37:20 

D Now, I don’t know 
if it is relevant or 
not, but for me, 
this is a function, it 
is a fraction having 
x at the numerator 
and, probably, at 
the denominator a 
half minus x?  

He speaks to R The algebraic 
expression of 
this function 
should be like:  

𝑥
1

2
−𝑥

 

DOM 

26  R At the denominator 
a half minus x, 
why? 

   

27  D Because for a half it 
disappears, so 
when the 
denominator is 
zero, if it was a half 
minus x, when x is a 
half it would be 
zero 

 For 𝑥 =
1

2
, 𝑓(𝑥) does 

not exist, so 
the 
denominator 

might be 
1

2
− 𝑥 

DOM 

28  R And why did you 
say x at the 
numerator? 

   

29  D Eh, I don’t know 
why I do say x at 
the numerator, no 
no, I don’t know it 

   

30  R For large x-values, 
how much is it? 

 lim
𝑥→+∞

𝑓(𝑥) ? LIM 

31 C 
38:40 

D For large x-values it 
is always, about 
two, and so here it 
could be this part 
plus two, but now I 
don’t know what 
there is at the 
numerator 

 lim
𝑥→+∞

𝑓(𝑥)

= 2 
So the 
algebraic 
expression 
could be:  

𝑥
1

2
−𝑥

+ 2 

LIM 
ASY 

Davide and Elena’s discourse in the excerpt 6.37 is mainly focused on some static positions 

and not on the movements of the two ticks, in fact Davide tells her a set of points (𝑥, 𝑓(𝑥)) 

which she plots in the Cartesian plane on the paper and then she traces a curve passing 

through all these points. This is the same routine performed by the two students during the 

whole sequence of lessons. 
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In some lines, though, their discourse is mirrored by potential expert discourse about 

mathematical objects as the derivative, for example at lines 3 and 13 where Davide describes 

a change in speed of the dependent variable; or the domain of the function which is not 

defined at 𝑥 = 0.5 and they express it at lines 9, 10 and 15 by “f(x) disappears”. Moreover, 

Davide proposes a symbolic realization of the domain of the function, at line 25, when he 

tells to the researcher a possible algebraic expression of the function. In particular, he seems 

to identify a precedent about the relation between a point of non-definition for a function 

and its algebraic expression and he explains it at line 27 “because for [x equals] a half [f(x)] 

disappears, so when the denominator is zero, if it [the denominator] was a half minus x then 

for x equals a half it would be zero”. 

Excerpt 6.38 - Interview 4 

(Realization SGc of a function, that is showed in Fig. 6.38a) 

 When Who What is said What is done Potential 
expert 

discourse 

Code 

5 DMm6 
01:40 

E Color the image of 
the interval 

Task4 
She reads the task 

 RAN 

6  D Four, ten. Is the 
interval in x or in 
y? I mean, the 
interval on the 
axis 

   

7  R The image    

8  E The image is… She reads the definition again   

9  D Ah, color the 
image, the image.. 
ehm, this here, 
from four to ten 
here 

He points to the interval [4, 
10] on the 𝑦 -axis on the 
sheet of paper 

  

10  E No, wait    

11  D yes…the image of 
x is on y, while the 
pre-image of y is 
on x 

  IN/ 
DEP 

12  E Yes, yes so the 
image of the 
interval four, ten 

   

13  D From four to ten, 
do we color it 
here on the axis? 

   

14  R Is that the image 
of the interval 
four, ten? 

   

15  E Yes, yes    

16  D No, but it’s not 
just one, there are 
more than one, 
the image… this is 

He points to the interval [4, 
10] on the 𝑦 -axis on the 
sheet of paper and then he 
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the interval four, 
ten, the image is 
all this part and 
then till ten 

marks some parts of the 
curve (see Fig. 6.38) 

17  E Yes, it is that part    

18  D Right?    

19  R Mm, I don’t tell 
you if it is right or 
wrong  

   

20  D How can we color 
it? Do we trace it? 

   

21 DMm6 
03:15 

R Yes! He colors as follows: 

 
Fig. 6.38a 

  

In the last activity of the interview, after reading the formal mathematical definition of image 

of a subset of the domain through a function f, students are asked to express the image of 

the interval [4; 10], given the Cartesian graph of the function. Davide and Elena answer this 

task by identifying the interval [4; 10] on the 𝑦  -axis and then Davide marks the points 

belonging to the curve whose ordinate belong to this interval. We notice that the students 

seem not to doubt their idea, even if the researcher at line 14 challenges them by asking “is 

that the image of the interval [4, 10]?”. 

Their discourse seems not to be mirrored by potential expert discourse, because they should 

consider the interval [4; 10] on the 𝑥 -axis and searching for the corresponding values on the 

𝑦 -axis, not on the curve. Moreover, they do not correctly answer the question in the activity, 

even if they are given the realization of the function SGc that seemed to be the realization 

preferred by them. 

6.3 DISCOURSE ON COVARIATION 
The analyses of the excerpts, taken from the lessons and the interviews, show several 

instances of covariation in students’ discourse. In particular, we are interested in the 

covariation of quantities that vary following a dependence relation, so we focus on students’ 

discourse about the relation between variations when they describe it according to the 

functional dependency.  

We notice that in the excerpts above it is possible to identify three different levels of 

mirrored expert discourse on covariation: covariation of space and time, covariation of the 

two variables and covariation of ratios. Now we are going to describe them, by bringing some 

examples. 

1. Covariation of space and time: description of the behavior of a variable increasing or 

decreasing over time, or having the same amount of change with respect to time. In 
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general, the reference to time is explicitly expressed by students, while the space is 

intended as the range of variation of a tick on the line.  

For example, in excerpt 6.16 Alessio describes the movement of B with respect to 

“the interval of time that A moves […]” (see line 128) or in excerpt 6.28 Franci’s 

discourse is about the dependent variable “taking the same space in less time” (see 

line 46). 

 

2. Covariation of the two variables: description of the variation of the dependent 

variable with respect to the variation of the independent one. It is usually expressed 

in terms of “if A moves […] then B […]” or “when A […], B moves […]” and this type 

of covariation is the most frequently described by students, as we can see from the 

analyses above.  

For example, in excerpt 6.15 at line 109 Alessio relates the variation of 𝑓(𝑥) to the 

variation of 𝑥 by comparing their ranges of movement. Similarly, Nicco in excerpts 

6.19 (see line 41) and 6.21 (see line 78) describes the movement of 𝑓(𝑥)  for 𝑥 

varying within fixed intervals. 

 

3. Covariation of ratios: description of changes in ratio of ∆f(x) to ∆x, which is also a 

description of the speed of a variable with respect to the speed of the other one. 

Indeed, we have seen that in some cases students describe possible changing in ratio 

of the variation of 𝑓(𝑥) to the variation of 𝑥, calculated on different intervals of the 

real number line. 

Examples of this type of covariation can be found in the excerpts above where 

students’ discourse mirrors potential expert discourse about the derivative of the 

function. For example, in excerpts 6.23 (see line 13) and 6.24 (see line 13) Alessio 

focuses on changes in ratio of the variation of 𝑓(𝑥) to the variation of 𝑥, observing 

that “f(x) changes less and less in function of the movement of x”. 

In the light of these observations, we argue that the activities with the dynamic and static 

realizations of functions that we proposed supports the emergence of a discourse mirroring 

expert discourse on covariation. In particular, students expressed covariation by using words 

and verbs that refer to movement and to changing over time, and with the help of dynamic 

visual mediators such as gestures, dragging and dragsturing actions. Indeed, we have seen 

many examples of students describing the dependence relation between the two variables 

through the description of the range of variations (or of possible changing in speed) of the 

dependent variable, in relation to the range of variations (or of possible changing in speed) 

of the independent one. We noticed that Nicco and Alessio’s discourse is mirrored by 

potential expert discourse about covariation more than anyone else in the class. Moreover, 

it is possible to see that the examples used to explain the three types of covariation are taken 

from excerpts happened throughout the entire sequence of the lessons. Therefore, although 

the three different levels of discourse on covariation that we identified do not seem to be 

related to certain activities, they are probably supported by the specific context used in the 

activity and by the realizations of functions proposed to students.  

6.4 CONCLUDING REMARKS 
In this chapter we have analyzed the main features characterizing students’ emerging 

discourse about functions and their properties, by looking at its similarities and differences 

with potential expert discourse mirrored.  We found that all the students show difficulties in 
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finding the words to describe their explorations, for example, they say “how can I write it 

down?” (excerpt 6.17, line 116) or “otherwise I would not know how to begin with it” (excerpt 

6.19, line 43) or “I do not know to explain it” (excerpt 6.31, line 87). However, they heavily 

use dynamic visual mediators such as gestures and dragging actions to better communicate 

their observations. There are also some examples of their attempts to identify precedents, 

as possible routines being performed in a specific task situation (see excerpts 6.7; 6.10; 6.14; 

6.15; 6.21; 6.22; 6.36; 6.37).  

During the analyses we highlighted the various seeds of possible realization of many 

mathematical signifiers that we identified in students’ discourse. In general, the designed 

activities seem to support students’ emergent discourse about many mathematical objects, 

that is in line with our expectations expressed in the a priori analysis. Indeed, from the 

excerpts presented in this chapter it is possible to see that in some occasions the researcher 

participates in the pairs of students’ discussions but the explorations carried on by the pairs 

of students are mainly guided by the activities. However, there are also some episodes where 

the questions of the researcher prompt the students’ answers and, especially, we found 

them during the first lessons, while there is almost any trace of them during the interviews. 

We reported examples in the excerpts involving Nicco and Alessio, Davide and Elena and 

during Alessio’s interview.  

By comparing a priori analysis with a posteriori analysis of the sequence of lessons we 

conclude that Table 6.1 shows the number of realizations of functions properties contained 

in the potential expert discourse mirrored and that most of them are the same with respect 

to that considered in Table 4.2. However, we have seen how at the end of the sequence of 

lessons students’ discourse on functions is not still objectified. In fact, students express 

significant calculus ideas in multimodal ways incorporating language, gestures and 

dragsturing actions during the activities, without using a formal vocabulary. For example, 

they share a mutual understanding of what “this” or “it” or “there” refers to, even without 

stating what they mean explicitly.  

One central focus of our analyses was students’ discourse about the functional dependency. 

First of all, we investigated how students express the relation ‘ 𝑓(𝒙) = 𝒚 ’, identifying 

different possible ways that show how dynamic aspects related to dragging actions in the 

DIMs and more formal and reified expressions intertwine in students’ discourse. In 

particular, we found instances that explicitly mention the process needed to obtain that 

specific 𝑓(𝑥) −value, or that contain some references to motion, but in a less explicit way; 

and also some reified expressions, even without any verbs. Moreover, we highlighted that in 

most of the excerpts shown above, students express the dependence relation between the 

ticks realizing the two variables in terms of covariation of quantities and, in particular, we 

identified three different levels of covariation depending on the two covarying quantities. 

Another aim of our analyses was investigating students’ use of the DIMs in their discourse 

and the analyses suggest that, along the sequence of lessons, there is a sort of development 

of the DIM: from mediator used by students’ in their communication it gradually seems to 

become a realization of the mathematical signifier ‘function’. In Section 6.1.2 we showed this 

passage in relation to students’ use of the word ‘function’. Moreover, during the analyses of 

the excerpts we observed that some students propose other possible realizations of 

functions as saming the DIM with these realizations. For example, Davide introduces the 

algebraic expression of two functions, when interacting with the realization DGc (excerpt 

6.36) and with the realization DGpp (excerpt 6.37), while Franci describes the Cartesian graph 
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of a specific function, that he drew on the paper, as a possible realization of a ‘parabola’ 

(excerpt 6.33). 
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209 
 

7 DISCUSSION AND CONCLUSIONS 

In this concluding chapter we explain how the study that we conducted about the use of a 

dynamic approach to introduce students to functions and their graphs, led to significant 

findings with respect to the research questions we had set out to investigate. In particular, 

this study provides an adequate description of students’ learning process when they are 

introduced to the mathematical discourse on functions through a specific dynamic approach. 

The analyses of students’ use of dragging when interacting with the DIMs proposed brought 

us to identify different types of dragging and to describe the significant role played by 

dragging in students’ discourse. In particular, we developed a model for the evolution of 

“dragging mediated discourse” that shed light on the development of students’ discourse 

and on their use of dynamic mediators, as gestures and dragsturing actions, both in the 

dynamic and static context. Moreover, the activities with the DIMs proposed seemed to 

support the emergence of a discourse on functions and their properties that started as a 

description of the relation between the movements of two quantities, one depending on the 

other. This result is in line with our a priori analysis, since our dynamic approach to functions 

and their graphs is designed to highlight this dynamic aspect of functional dependency, that 

is covariation. Then, the description of a “potential expert discourse mirrored” provided a 

lens through which it was possible to analyze students’ discourse by focusing on the seeds 

of possible realizations of mathematical signifiers involved. This analysis allowed us to 

describe the richness of their discourse with respect to the properties of functions and their 

graphs. Indeed, we found many examples of students’ discourse about mathematical 

signifiers characterizing significant properties of functions, that they expressed by using a 

non-formal mathematical vocabulary and through a discourse that, in most of the cases, was 

not objectified. However, we were able to point out these examples by matching students’ 

discourse with a potential expert discourse that they mirrored, especially focusing on the 

mathematical signifiers that were realized. 

After answering the four research questions, we contextualize our findings within the 

existing literature, highlighting the theoretical contributions that this study offers and then 

we describe possible implications and directions for further research. 

Our findings have no statistical ambitions because of the limited number of cases analyzed. 

However, the fine grain qualitative analysis that was carried out provided a richness in detail 

and depth which would not have otherwise been possible. Furthermore, many 

commonalities emerged during the analyses and so, in a search for more general results, a 

quantitative research could be fruitfully grounded upon our findings. 

7.1 ANSWERS TO THE RESEARCH QUESTIONS 
The research questions we proposed to investigate were: 

1. Does students’ discourse emerging during the proposed activity sequence involve 

covariation? If so, in what ways? 

2. What is the role of dragging, if it has one, as dynamic interactivemediator in 

students’ discourse? Is it used to express covariation? If so, how? 

3. What recurrent features is it possible to identify in students’ discourse about the 

different realizations of functions that we design within dynamic and static 

environments? And in students’ attempt to relate them? 
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4. How does students’ discourse compare to potential expert discourse about functions 

and their properties? In particular, from an expert’s point of view, what seeds of 

realizations of mathematical objects is it possible to identify in students’ discourse? 

Now we discuss about the results of the analyses that we conducted, highlighting in which 

sense they provide meaningful insights with respects to each of these research questions. 

7.1.1 Research question 1 

In this study we analyzed the emergence and evolution of a discourse on functions, working 

with a group of students who were introduced to functions for the first time, at least 

concerning their math classrooms at high school. In particular, we focused on some features 

of their discourse, as suggested by the theory of commognition to investigate about a 

learning process, and we found several instances where they expressed dependency 

between the two variables in terms of covariation. These istances have been identified in 

Chapter 6 by looking at how their discourse possibly mirrored potential expert discourse and 

this analysis allowed us to distinguish between three different levels of covariation expressed 

by students, depending on the two covarying quantities considered.  

In other words, we showed that the activities with the DIMs that we designed to realize 

functions supported the emergence of students’ discourse on the movements of the two 

ticks realizing the variables and on the relation between these movements, that is a discourse 

on covariation. In particular, we identified the following three different kinds of covariation 

expressed by students, depending on the two quantities considered: covariation of space 

and time, covariation of the two variables and covariation of ratios.  

Covariation of space and time 

In some cases, student described the behavior of a variable increasing or decreasing over 

time, or having the same amount of change with respect to time. In particular, in order to 

express the range of variation of a variable they referred to the space walked by the tick on 

the line in the DIM and they discussed its evolution over time. 

For example, in the following excerpt from the third lesson (see the analysis in chapter 6) 

Alessio and Nicco were exploring the realization DGpp of a function and Alessio described 

the direction of movement of the dependent variable B with respect to the time interval 

within which the other variable A moved from 5 to 0, and then when A moved in a right 

neighborhood of 5. The covariation of space and time is expressed here for the tick A realizing 

the independent variable. Indeed, he described the range of variation of A identifying it with 

the space walked by the tick on the line, with respect to the interval of time that this variation 

lasted. 

In Figure 7.1, below the excerpt, there is the written description given by Nicco and Alessio 

about the same aspect of the DIM, where it is possible to see that they referred to the “in 

the time interval from 1 to 5” to discuss the covariation. 

Excerpt 7.1 - Lesson 3 

(It is taken from excerpt 6.16) 

 When Who What is said What is done 

127 I3C2 
37:00 

R So, B is leaving this trace, how can this 
fact help us? 

Activity3_1 
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The trace tool is 
activated on B 

128  A To see where B passes throw. Then, as 
we said, B first passes everywhere, it 
stops at six point five and at minus zero 
point five. And then it follows, that is, in 
the time interval in which A is between 
zero and five, B moves in the opposite 
direction to A, while when A passes 
over five B moves in the same direction. 

Continuous 
dragging of A from 
5 towards 0 and 
then to the right 

 

 

Fig. 7.1. Excerpt taken from students’ worksheet 

Covariation of the two variables 

In other cases, students described the variation of the dependent variable with respect to 

the variation of the independent one, that is a discourse on the covariation between two 

variables, one depending on the other. We reported several examples of this type of 

discourse on covariation in Chapter 6, because it was the one most frequently addressed by 

students, and now we just recall one of them. 

For example, in the following excerpt Alessio was exploring the realization DGpp of a function 

and he had to draw on a paper the realization SGc of the same function. From this short 

excerpt we can see that before realizing it in the Cartesian plane (Figure 7.2), he looked at 

the relation between the variations of the two variables for large negative 𝑥-values, gaining 

information about the slope of the graph. In particular, he related the small variations of 

𝑓(𝑥) to the wider variations of 𝑥, by comparing the range of their movements along the 

lines. The resulting discourse is on the covariation between the two variables. 

Excerpt 7.2 - Interview 1 

(It is taken from excerpt 6.24) 

 When Who What is said What is done 
33 C 34:15 A As this [x] goes on, it [pointing 

to the graph] becomes more 
and more ... that is, for a very 
small change of x, f(x) moves 
more and more, that is, here I 
do not know but to get from 
minus six to minus seven, f(x) 
goes from minus one to minus 
fifteen and from minus seven 
to minus eight, f(x) goes from 
minus fifteen to minus forty or 

Task3 
He draws the curve for 𝑥 < −6 
and he erases it, repeating these 
actions several times. Finally, he 
draws the following graph: 
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minus fifty.. In my opinion it is 
like this. 

 
Fig. 7.2 

 

Covariation of ratios 

There were also some cases in which students focused on the changes in ratio of ∆f(x) to ∆x, 

which is a description of the speed of a variable with respect to the speed of the other one. 

In particular, they looked at the ratio of a variation of  𝑓(𝑥) to a fixed variation of 𝑥 (for 

example, within a segment of length 1), then they looked at the ratio of a variation of  𝑓(𝑥) 

to the same fixed variation of 𝑥 but within another interval of the real number line. Then, 

they described the relation between these two ratios and so we called it covariation of ratios. 

For example, during the second lesson Alessio gave the description reported in excerpt 7.3 

(see the analysis in chapter 6), while interacting with the realization DGpp of a function. In 

particular, his discourse was about the different ranges of variation of the dependent 

variable given a fixed amount of change of the independent variable, but in correspondence 

of different parts of the real number line. He made this description in terms of the 

“sensitivity” of the dependent variable to the movements of the other variable. 

Excerpt 7.3 - Lesson 2 

(It is taken from excerpt 6.15) 

 When Who What is said What is done 

45 I2C2 
37:00 

A Over here as you move, it seems that it 
becomes more sensitive, like B to the 
movements of A, because here if [x] 
moves by one, I do not know, one 
millimeter, this one [f(x)] moves maybe 
by two millimeters, instead here if this [x] 
moves by one millimeter, here this one 
[f(x)] moves by two centimeters so I do 
not know... 

Activity2_1 
 
 

 

In all the three kinds of covariation expressed by students, we observed an use of words and 

verbs that refer to movement and to changing over time, and of dynamic visual mediators 

such as gestures, dragging and dragsturing actions. Therefore, the activities designed with 

the DIMs to realize functions seemed to support discourses on functions and their properties 

that draw attention to the covariational aspects, which was our first goal behind the choice 

of a dynamic approach to functions and graphs of functions.  
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7.1.2 Research question 2 

The dynamic realizations of functions that we designed are made possible by the use of a DIE 

and, especially, by the dragging tool and for this reason we were interested in analyzing 

students’ use of dragging as dynamic visual mediator in their communication about the DIM. 

In line with what we expected, the analyses reported in Chapter 5 show that students 

performed different types of dragging to engage in mathematical discourse practices and, in 

particular, dragging had a two-fold role for students: it allowed them to speak and it even 

became necessary to speak about covariation.  

We developed a classification of different types of dragging, that we used as tool of analysis 

and it allowed us to describe the routines performed by students and to investigate about 

the mediation of dragging in students’ communication. In line with what we expected, we 

found that students performed mainly discursive routines and by analyzing the interplay 

between the types of dragging used and the descriptions related to the dragging actions we 

observed a progressive modification from rituals in the direction of explorations. 

Moreover, we described a model for the evolution of dragging mediated discourse, that 

shows how during the sequence of lessons an individualization process of dragging took 

place for students. In particular, during the passive phase of dragging mediated discourse, 

dragging was the object of students’ discourse, then during the active phase dragging 

enlarged students’ communicational actions about DIMs and in some cases it subsumed 

mathematical signifiers. In this phase we identified a possible turning point for the 

development of students’ discourse about functions, towards the discourse of an expert 

mathematician. Indeed, during the active phase students’ performances were mainly 

communicational actions involving the physical use of dragging for manipulating the DIMs 

and so a change in the objects of the construction is caused by the dragging actions. In 

particular, the tick realizing the independent variable moves under the direct action of 

dragging and it causes the indirect motion of the other tick, realizing the dependent variable. 

However, the desired outcome of the routines seemed to become a discourse about the 

mathematical properties of the function realized by the DIM. This is why we spoke about 

turning point, intended as a change of focus in the discourse: from being a description of 

possible and impossible movements in the DIM, it progressively became a description of 

possible relations existing between the movements of the ticks, that are observed on the 

computer screen. Moreover, students focused their attention on the speed of the ticks, the 

direction of their movements, the range of their variations on the real number line and it 

suggested us that they gradually involved mathematical signifiers into their discourse. They 

also started using the passive voice or they gave variables the role of grammatical subject, 

instead of referring to themselves in the narration or to another person acting on the DIM. 

As we were previously discussing about, together with these changes we observed a change 

in the routines performed by students, moving from rituals in the direction of explorations. 

Indeed, by analyzing how their uses of different types of dragging developed from the passive 

to the active phase, we observed that there were much more examples of guided, handle 

and test dragging than impossible and wandering dragging. We considered this aspect to be 

relevant because, according to our description of these types of dragging in Chapter 2, we 

expect that an expert mathematician would use guided, handle and test dragging, both 

continuous and discrete, but we do not expect to find many examples of impossible dragging 

in a potential expert discourse about the DIMs.  
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Finally, we described the detached phase of dragging mediated discourse in which dragging 

was used by students as visual mediator to communicate about the dynamism of the DIMs 

in a context out of the DIE. For example, in the following excerpt (see the analysis in chapter 

5), Matilde and Nicco were working with the realization SGc of a function and, in particular, 

they were comparing the speeds of the two variables for positive 𝑥-values. In order to do 

this, they referred to the movements of the ticks along their axis and to the students’ 

dragging actions in a realization of the same function in a DIE, even if it was not present at 

that moment. Indeed, at line 12 Matilde says “if you drag” and at line 14 she even moves her 

hands along the lines, using the dynamic visual mediation of dragsturing. 

Excerpt 7.4 - Interview 2 

(It is taken from excerpt 5.13) 

 When Who What is said What is done 
12 MNm1 

04:03 
M But here [positive x-

semiaxis] is x or y faster? 
No y, no no no, if you 
drag in this direction [to 
the right] ……..x is faster 

Task1 

13  N Yes yes, x is faster while y 
is slower 
I mean in this case it 
seems that here [1] y 
would move faster, ehm 
because from here to 
arrive up here [2] it takes 
like this6, then from up 
here to go back to this 
point [3] it takes like this7 
and…it is the same x, but 
faster, you drag one of 
them and so 

He indicates different part of the graph: 

 
Fig. 7.4a 

14 MNm1 
06:00 

M Exactly, no x is always 
faster I think………….. 
Wait, no but, are we sure 
that this is faster? Wait! 
Why faster? 

During the pause she moves the hands 
as follows: 

 
Fig. 7.4b 

                                                           
6 In Italian he says “ci mette questo”, and he opens his fingers as measuring the distance between 
the points 1 and 2 on the curve. 
7 In Italian he says “ci mette così”, and he opens his fingers as measuring the distance between the 
points 2 and 3 on the curve. 



215 
 

 
Fig. 7.4c 

  

The identification of a detached phase of dragging mediated discourse was an innovative and 

interesting result because it showed that the close connection between dragging and the 

temporal and dynamic aspects of functions entered students’ discourse within a static 

context as well. Indeed, we found that dragging and dragsturing actions allowed them to 

accomplish saming of a realization in paper-and-pencil context (the Cartesian graph) with a 

DIM.  

7.1.3 Research question 3 

From the analyses in both Chapter 5 and Chapter 6 we did not find evidence of significant 

changes in students’ discourse that can be related to the passage from one realization of 

functions to another one. In particular, we observed that the characteristics of Davide and 

Elena’s discourse were quite the same during the whole sequence of lessons. We think that 

it was mainly because they have always worked with the Cartesian graph drawn on a paper 

as realization of functions, yet from the first lesson. Indeed, they used the DIMs proposed to 

identify pairs of values in order to plot some points in a Cartesian plane and to trace a curve 

passing through them. Even if the task situation almost always involved the exploration of a 

DIM and the description of the observed movements, also in a written discourse, their main 

task during all the activities was that of drawing the Cartesian graph of the function. In 

particular, we did not find any examples of their attempts to same the realization SGc of a 

function with the other realizations that we proposed to them. However, in some cases, we 

noticed that Davide accomplished a saming of the Cartesian graph with the analytic 

expression of the same function, because he expressed it by looking at the Cartesian graph 

and then he also used it to describe properties of the function.  

According to these observations, we can conclude that Davide and Elena were a bit apart 

from the other pairs of students, who were not introduced to the realization SGc of a function 

until the seventh lesson. However, we found that also the other students’ discourse did not 

present substantially different features when they were asked to pass from the dynamic 

realization in one dimension (DGpp) to that in two dimensions (DGc) and not even when 

going from a DIE to a paper-and-pencil environment. This fact has been also highlighted in 

the previous section when we discussed about students’ use of dragging and dragsturing 

actions to mediate the communication with other students within the static context as well. 

At this regard, we think that the specific design of the construction in the DIMs facilitated 

the blending of dragging and gesturing actions, for example the ticks realizing the variables 

were not labeled and it brought students to often refer to them through pointing gestures 

made with hands and fingers or through the mouse. The analyses suggested that this type of 

non-linguistic communication, that is an act of dragsturing, was a recurrent feature in 

students’ discourse about the different realizations of functions that we designed. 

Dragsturing actions represented an important mode for students of communicating dynamic 

and temporal aspects of functions both in static and dynamic environments. 
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Moreover, we noticed that very often students had difficulties in communicating about the 

features of the realizations of functions proposed, that were properties of functions, and, in 

particular, it seemed to be difficult for them to put their observations into a written 

discourse. For example, they showed difficulties in finding the words to describe their 

explorations and they expressed them explicitly through expressions like “how can I write it 

down?” (excerpt 6.17, line 116) or “otherwise I would not know how to begin with it” (excerpt 

6.19, line 43) or “I do not know to explain it” (excerpt 6.31, line 87). We also considered 

students’ acts of substituting dragsturing actions for words in the verbal communication as 

showing possible difficulties that they encountered.  

Another aspect that we investigated during the analyses was students’ search for precedents, 

as possible routines being performed in a specific task situation. We found several examples 

of students’ attempts to identify precedents, that we described in Chapter 6, and we noticed 

that this happened especially when they were introduced to a new (for them) realization of 

function. For example, when we asked them to pass from the realization DGpp of a function 

to the realization DGc of the same function, they tried to perform similar routines. It also 

happened in the passage from the realization DGc to the realization SGc, when they still tried 

to perform discursive routines involving dragging. Moreover, we showed several excerpts 

where students described the function as being “a parabola”. For example, it happened in 

some episodes where they found out that the function had a maximum or a minimum point, 

as if they identified this property to be typical of a parabola, from their precedent-search-

space. 

Concerning the second part of our research question, that is about the relationship between 

the different realizations of functions proposed to students along the sequence of lessons 

(DGp, DGpp, DGc and SGc), we mainly identified students’ attempts to build some of these 

relations during the interview. Indeed, we designed the interview with some activities where 

we explicitly asked them to pass from one realization to another one. We noticed that 

students’ discourse involved within this type of task situations was still characterized by a 

richness in references to movement and time, as it was when they had to interact with just 

one of these realizations. In particular, the analyses of their discourse showed that along the 

whole sequence of lessons, and also during the interviews, they focused on the “processes” 

more than on the “objects”. Indeed, the focus of their discourses was mainly on the dynamic 

and temporal relationships between the ticks realizing the variables. This attention to the 

processes brought them to non-objectified discourses, both when interacting with dynamic 

and static realizations of functions. It can be seen in their descriptions of possible movements 

of 𝑓(𝑥) (e.g. “B goes everywhere, it stops at six point five and at minus zero point five”, 

excerpt 6.16; “f(x) does not pass over six point five”, excerpt 6.23) and in their descriptions 

of the reciprocal movements of the two variables (e.g. “they move symmetrically and in 

opposite directions”, excerpt 6.14; “after [x equals] thirteen it [f(x)] goes down”, excerpt 

6.18); and in many other examples that can be found in the previous chapter. 

Moreover, even if students did not make use of a formal mathematical vocabulary, a sort of 

development in their discourse occurred from the first lesson to the last one. For example, 

the labels A and B that were used by students to name the ticks realizing the variables at the 

beginning of the sequence of lessons, were then replaced by ‘𝑥 ’ and ‘𝑓(𝑥)’. Even more 

significant is that the analyses that we conducted in both Chapter 5 and Chapter 6 highlighted 

how students’ use of the DIMs in their discourse developed during the sequence of lessons: 

from mediator involved to better communicate, it gradually seemed to become a realization 
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of the mathematical signifier ‘function’. In particular, we showed this development in 

relation to students’ use of the word ‘function’, but we also observed that some students 

made a process of saming between the different realizations of function proposed. For 

example, when we asked students to interact with both the realizations DGp and DGc of the 

function 𝑓(𝑥) = −𝑥 + 5, almost all of them immediately observed that they were the same 

thing; through discourses similar to that of Nicco and Alessio in the following excerpt (see 

the analysis in chapter 6). 

 

Excerpt 7.5 - Lesson 5 

(It is taken from excerpt 6.18) 

 When Who What is said What is done 

55 I5C2 
21:30 

N But it is the same Activity5_1bis 

56  A It is the same, but there is just one line… 
we are smart! 
[…] 

 

57 I5C2 
27:00 

R Did you compare the two files together?  

58  N Yes, according to us they are the same but 
just on one line 

 

59  A That is, the second is just on one line  

60  N Also here they intersect at two point five  

61 I5C2 
27:30 

A Because we made the grid and the 
numbers too, and they intersect on two 
point five and before we found that A plus 
B equals five, in fact 

 

 

Similarly, as we previously discussed, some students accomplished saming also between a 

graphical realization of a function and an analytic realization of the same function. For 

example, it happened in excerpt 6.36 (Davide at line 333) and in excerpt 5.7 (Matilde at line 

73). 

7.1.4 Research question 4 

Besides shedding light on the interplay between the use of words, gestures and dragging 

actions, that we addressed through the other research questions, the analyses conducted in 

this study also provided a deeper understanding of pairs of students’ mathematical discourse 

about functions, when interacting with a DIE.  

In Chapter 6 we investigated about a possible relation between students’ discourse and that 

of an expert, in terms of similarities and differences, and we showed how by using a non-

formal mathematical vocabulary students’ discourse was mirrored by potential expert 

discourse about many properties of functions and their graphs. In particular, dynamic and 

temporal aspects related to dragging actions and more formal and reified expressions 

intertwined in students’ discourse about their interaction with the dynamic and static 

realizations of functions proposed. However, during the whole sequence of lessons students’ 

discourse was not objectified. Indeed, they engaged in the development of a mathematical 

discourse about the dynamic and temporal nature of functional dependency and of the other 
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properties of functions, through everyday language. We also highlighted that, for doing this, 

they seemed to be helped by multimodal ways of communicating that incorporated 

language, gestures and dragsturing actions.  

Moreover, through Table 4.2 and Table 6.1 we pointed out the close relationship between a 

priori and a posteriori analyses of the whole sequence of lessons. Indeed, the designed 

activities proved to support students’ emergent discourse about many mathematical 

signifiers, in line with our expectations expressed in the a priori analysis. In particular, we 

showed that the potential expert discourse mirrored contained possible realizations of many 

properties of functions and we observed that most of them were also considered in Table 

4.2. Now we are going to discuss what seeds of possible realizations of mathematical 

signifiers it was possible to identify in students’ discourses, from an expert point of view.  

 Dependency: in order to realize the dependence relation between the values taken 

on by the two ticks, students used different expressions that we have listed in 

Section 6.1.1. Some of these realizations explicitly refer to motion and to the 

dragging actions made in the DIM, other still contain these references to the 

dynamism but in a less explicit way. Moreover, we found some very reified 

expressions, even without any verbs, used to realize the dependency.  

 Domain and set of images: they are realized in students’ discourse in terms of 

possible movements of the tick realizing the independent and the dependent 

variable, respectively. 

 Injectivity: we noticed that the injectivity was not a property described by students, 

while we identified some discourses about the non-injectivity of a function, that 

seemed to be observed by students. These discourses realized the non-injectivity as 

a characterization of several  𝑥-values which make 𝑓(𝑥) taking the same value. 

 Monotonicity: the monotonicity properties of a function, or the intervals of 

monotonicity, were realized by discourses about the relation between the directions 

of movements of the two variables. An expert would describe a function as 

increasing if students described both variables having the same direction of 

movement, while an expert would describe a function as decreasing if students 

described the variables moving in opposite directions.  

 Relative or absolute maximum/minimum: in a similar way with respect to an interval 

of monotonicity, a possible realization of an extremum point was the identification 

of a change in direction of the dependent variable, with the independent one always 

following the same direction. Moreover, we found that students realized a maximum 

point also through expressions like “the independent variable stops and goes back 

again” or through the help of gestures reproducing in the air this behavior of the 

ticks or drawings on the sheet of paper. 

 Limits and asymptotes: vertical asymptotes with the left and right limits having 

different signs were realized in students’ discourse by expressions of surprise. In 

some cases, they even asked to other students or to the researcher if their DIM was 

broken because one of the ticks suddenly disappeared out of their screen and then 

it quickly shot back from the other side of the screen. This sudden disappearing and 

reappearing of the tick has been also realized by students through the image of a 

small object moving around the screen, like a satellite that is orbiting.   
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While horizontal asymptotes were realized in students’ discourse through 

descriptions of the speed of the tick realizing the dependent variable which 

drastically slows down and then it approaches a specific number.  

 Derivative: in many cases students’ discourse contained references to the rate of 

change of the ticks along the axes. For example, students distinguished between a 

constant growth and an accelerated growth by moving the tick realizing the 

independent variable at constant speed along the x-axis and describing the 

movement of the tick realizing the dependent variable. In particular, they realized 

differently 𝑓(𝑥)  always having the same increment or whisking off the screen. 

Otherwise, some students focused on the range of variation of  𝑓(𝑥) with respect to 

the range of variation of  𝑥, by looking at different intervals of variation on the real 

number line and comparing them.  

Finally, some of the students also realized the observed changes in the derivative of 

a function by changing the slope of the curve that they were drawing in the Cartesian 

plane. 

We would also observe that each line in Table 6.1 corresponds to a specific activity and so 

to a realization of one function. The presence of many colored squares for only one activity 

shows how the description of some properties of a function involved students’ observation 

of several aspects characterizing the same function, and these aspects intertwined in their 

discourse. The following two excerpts represent two short examples of this feature of 

students’ discourse. We took them from the analyses in Chapter 6 in order to show the 

plurality of mathematical signifiers involved in students’ discourse, also in very short excerpts 

like these, and we expressed the specific signifiers that we identified through some codes in 

the last right column. 

 

Excerpt 7.6 - Lesson 2 

(It is taken from excerpt 6.15) 

 When Who What is said What is done Potential expert 
discourse 

Code 

118  N Also between [x equals] 
one and two it does not 
exist, between one and 
two it does not exist 

 The function is 
not defined on 
the interval [1; 
2] 

DOM 

119  
 
I2C2 
46:27 

A It seems that it 
bounced………for me it 
seems a bouncing ball 

Fast dragging 
where B moves 
“well” and 
slow dragging 
around the 
“critical points” 

There is a 
relative extreme 
point 

MAX/ 
MIN 
MON 

 

 

Excerpt 7.7 - Lesson 3 

(It is taken from excerpt 6.27) 
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 When Who What is said What is done Potential expert 
discourse 

Code 

39  L But not always, because 
here [x = 9] B still follows 
A and when it is arrived 
at six point four or point 
five it takes and goes 
back and it reappears 
when A passes over, it 
reappears when A is two, 
no, it reappears when A 
is here [x = 2.5] more or 
less 

Activity3_1 
He drags A 
from right to 
left 

For large positive 
𝑥-values the 
function is 
increasing, 6.5 is 
a relative 
minimum. 
In a 
neighborhood of 
3 the function is 
not defined, 
there is a vertical 
asymptote 

MON 
MAX/ 
MIN 
DOM 
ASY 

 

A notable difference that we pointed out between Table 4.2 and Table 6.1 is about the 

derivative, which was realized by students’ discourse even when this mathematical signifier 

was not included in the a priori analysis. This was probably due to the nature of the DIMs 

proposed, where the movement is essential to explore the construction and, thus, the 

functional relation. Therefore, the exploration of the DIMs seemed to promote discourses 

about the speed and changes in speed of the two ticks, and these types of discourse mirrored 

potential expert discourse about the derivative of the function.  

Finally, we already discussed in Chapter 6 possible modifications in some of the tasks given 

in the activities, that were designed to support students’ discourse about specific 

mathematical objects but they actually seemed to put the focus on other aspects of the 

functions involved. 

7.2 CONTEXTUALIZATION OF FINDINGS WITHIN THE LITERATURE AND MAIN RESEARCH 

CONTRIBUTIONS OF THIS STUDY 
In this section we situate our results within the field of mathematics education. In particular, 

we discuss how they can be considered with respect to the literature on the teaching and 

learning of functions and about the use of DIEs in classroom practices. Moreover, we present 

the study’s theoretical contributions to research employing the commognitive framework 

and, especially, to studying the use of DIEs in teaching and learning processes. 

7.2.1 Contextualization of the study’s findings with respect to the literature 

We chose the theory of commognition as theoretical framework for this study because we 

shared with it the main assumptions about the learning of mathematics. In particular, seeing 

mathematics as a special discourse, whose objects are discursive objects, allows us to look 

at “understanding mathematical objects” in terms of communicating about them. In order 

to do this, students engage in a process of individualization of a discourse, which corresponds 

to how learning occurs. Indeed, communication and cognition are seen as two 

manifestations of a same phenomenon and we were completely in line with this view. 

Especially, we considered worth to underline that communication has to be intended to 

include all forms of communication and not just the verbal one. Indeed, we were also 

interested in students’ use of gestures and dragging actions. 
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Moreover, it seemed to us that commognition could provide operative tools of analysis that 

allow to capture very fine details and to avoid as much as possible the role of the 

interpretation in the analyses. Indeed, Sfard described four main features characterizing the 

mathematical discourse, that are words, visual mediators, narratives and routines, and it can 

be investigated how they are used by students in their discourse. We thought that this type 

of analysis could be insightful with respect to the problem of studying how students, who 

were introduced to functions through a specific dynamic approach, were learning functions. 

This is because we had the tools to describe this learning process in terms of what and how 

students communicated about functions. In particular, it seemed to us that analyzing the 

main features of students’ discourse on functions we could describe their learning process 

without making any kind of unfounded inferences but focusing on what and how they 

communicated, which characterize their thinking. Indeed, one of our concern was that of 

objectivity, which is always a delicate point in educational research where it is impossible to 

keep the subjectivity of the researcher aside, because she inevitably has to make some 

choices influencing the study. 

However, conducting the analyses was not always straightforward given the tools offered by 

the theory. In particular, we identified our main problem to be the choice of using a DIE, 

because we noticed that several aspects related to this specific context could be found in 

students’ discourse and it was not easy for us to address them in the light of commognition. 

Students’ discourse was rich in references to the dynamic and temporal aspects 

characterizing their interaction with the DIMs. This was especially pointed out in chapter 6, 

when we analyzed Nicco and Alessio’s discourse and also Nicco and Matilde’s discourse. 

Moreover, they did not always use words, visual mediators and narratives that were specific 

of a mathematical discourse. For example, in chapter 5, we observed that dragging was 

heavily involved in their communication with themselves, with other students and with the 

teacher, and it seemed to not be used merely as a mediator to better communicate. Indeed, 

at times, it subsumed the dependence relation, as discussed in Section 5.2.1. 

We concluded that our main difficulties emerged from the use of a particular realization of 

function that is implemented in a DIE. The theory of commognition has indeed been 

developed in the context of written discourses and not specifically addressing the use of 

digital artifacts in the teaching and learning process.  

As we have pointed out, we were interested in investigating about students’ consistent use 

of dragging, especially in relation to their learning of functions and their description of 

covariation between quantities. Dragging seemed to play a central role in their interaction 

with the DIMs used to realize functions and so, in their discourse but, according to the theory 

of commognition, it could be described as a visual mediator. Therefore, we looked for a more 

detailed characterization of visual mediation and we based on the studies conducted by Ng 

(2014, 2016). She worked with bilingual learners on derivative function by using a DIE and 

her analyses provided strong evidence that there was an interplay between modes of 

communication, mathematical thinking and use of visual mediators. In particular, the 

participants in her study communicated about fundamental calculus ideas differently when 

prompted by different types of visual mediators. Indeed, she designed activities on the 

derivative function involving both dynamic and static environments and observed bilingual 

students working with them. What she found was that there were several changes in their 

discourse in relation to changing in the environment. Differently from her findings, we did 

not find significant differences in students’ discourse in the passage from dynamic to static 
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environment, as we largely discussed above, they even communicated with the help of the 

dynamic visual mediation of dragging without physically using the tool. In line with this 

direction of research, we integrated her description of visual mediation and we will better 

illustrate it in the next section. 

Indeed, an important part of this study consisted in refining some results taken from the 

literature that were useful and interesting for our research problem but we had to describe 

them through different theoretical lenses. Indeed, several studies that we referred to, about 

functions and also about the use of DIEs, were grounded on theories having different 

backgrounds and different underlying assumptions about the learning process, with respect 

to ours. For example, we found that students heavily used the dynamic visual mediation of 

the dragging, and sometimes also the trace tool, to communicate about functions in terms 

of dynamic and temporal relations between the variations and the movements visible on the 

screen. A similar investigation about the use of DIEs and about the role played by the specific 

design of the activities in supporting students’ discourse about the dynamic features of 

functions and graphs, has been carried on by Falcade, Laborde & Mariotti (2007) who 

described very similar results but through a different perspective, because their study was 

based on the theory of semiotic mediation. 

On the other hand, the literature that we took into consideration that draws on Sfard’s 

theory have often a different focus of research. Indeed, we noticed that some studies 

grounded on commognition (Nachlieli & Tabach, 2012; Ng, 2018), investigate students’ 

individualization process of the discourse of an expert and so, what happens during the 

hypothetical sequence of lessons is the introduction of a formal vocabulary by the teacher, 

then the researcher analyzes students’ progressively objectification of their discourse on a 

specific mathematical object.  

Differently, our goal behind the design of the sequence of lessons was that of supporting the 

emergence of a students’ discourse about function that involved the dynamic and temporal 

aspects characterizing this mathematical object. Indeed, we think that they are usually left 

implied when students are introduced to functions starting from the formal definition or the 

static realization of a function in the Cartesian plane. For this reason, we preferred to stress 

these aspects of the discourse, and so of students’ learning, that are related to the 

covariation of two quantities, one depending on the other; and we did not give to students 

the definitions or the formal mathematical terms that can be found written in textbooks. As 

Caspi & Sfard (2012) pointed out, even if they were discussing about the teaching and 

learning of arithmetic, an approach like this  

“minimizes the danger of purely ritualized learning, as a result of which the student 

would only be able to see algebraic discourse as a ‘discourse for others’.” (p. 65).   

Indeed, a significant result of this study is that during the sequence of lessons students 

communicated about functions and their properties through discourses rich in reference to 

movement and time, focusing on the processes rather than on the objects; but we also found 

remarkable similarities between the students’ discourse and a more formal reified discourse 

on functions. We have especially highlighted this aspect in the analyses, by the description 

of expert discourse mirrored.  

Another important problem of research concerns the possible effects of a formal 

introduction of the word ‘function’ and its properties, in the form of possible changes in 
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students’ discourse. In particular, it would be interesting to provide students with the formal 

mathematical terms used by expert mathematicians to indicate the properties of functions 

and their graphs, after a sequence of lessons similar to that one designed in this study. In this 

way, it could be investigated if the realizations of the mathematical signifiers, that already 

emerged in students’ discourse during the sequence of lessons, change; and eventually how 

they change in relation to the objectified discourse of an expert. For example, Ayalon, 

Watson & Lerman (2017) tried to force an object view of functions (Sfard, 1991) for studying 

possible implications in students’ understanding of functions and, in particular, they wanted 

to explore the role of the word ‘function’ in students’ development of their concept image. 

What they found was that  

“evidence for an object view of functions is mostly implicit, in that students were 

responding to the word as if it was a noun describing something, which could have 

been a set of actions, a process, or an object. […] Students have different ‘object views’ 

and the treatment of the idea of function as a noun is not enough to guarantee a full 

range of meanings – becoming an object and being fully understood could be separate 

lines of development” (p. 16).  

This is completely in line with our findings about students’ discourse. Indeed, on one hand 

we found that they did not developed an objectified discourse on functions, and they even 

used very few times the word ‘function’. But, on the other hand, we highlighted the richness 

of seeds of possible realizations of mathematical signifiers, related to functions and their 

properties, in students’ discourse. 

7.2.2 Theoretical contributions of this study  

This study accounts for three main contributions from a theoretical point of view.  

1. First of all, we contribute to the refinement of Sfard’s notion of visual mediator by 

introducing a notion of DIM (Dynamic Interactive Mediator) that characterizes a 

specific kind of mediator, which takes into account the distinctive features of a DIE.  

This notion is grounded on the distinction between two kinds of visual mediation, 

dynamic and static, that has been suggested by Ng (2014, 2016). We further 

developed her line of research on dynamic mediation since we consider this 

distinction between static and dynamic to be very important, especially when 

functions and graphs are the objects of the discourse. Moreover, we decided to 

move the focus away from “visual” and we introduced the term “interactive”. 

Indeed,  gestures, dragging and dragsturing actions, as the constructions within a 

DIEs, play a significant role in this study and they are used by students as mediators 

that are not only visual. In particular, the design of specific DIMs allowed us to realize 

mathematical relations through dynamic and temporal changes (Ng & Sinclair 2013; 

Núnez, 2003). This is particularly significant in a study involving functions, because 

DIMs can be used to communicate about the asymmetric relation between the two 

variables in terms of covariation of quantities. In this way, also the various properties 

of functions can be realized as different relationships between the movements of 

the variables within their sets of definition. On the contrary, a discourse on functions 

involving static visual mediators does not necessarily express the properties of 

functions with respect to the covariation of the variables, but it may refer to other 

realizations as an analytic expression or the drawing of a graph. 
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In particular, we observe that a feature characterizing the notion of DIM, that makes 

it more significant as theoretical contribution, is the fact that in experts’ discourse it 

is used as realization of a mathematical signifier. For example, in this study we asked 

students to interact with particular graphs implemented within the software 

GeoGebra, that in a potential expert discourse are used as realizations of functions 

while for the students, at least initially, they were the objects of their discourse. 

 

2. Moreover, we proposed a possible integration to the notion of dragsturing, that was 

originally described by Ng (2014). In particular, according to our analyses, the 

description of an act of dragsturing as subsuming both gesturing and dragging 

actions can be extended in order to include also that cases in which there is not a 

physical use of the dragging tool. This integration is important because the use of 

DIEs in the process of learning has long-term effects on mathematical thinking, which 

can be observed in the characteristic discursive patterns produced through their use. 

Therefore, it allows a more complete description of students’ actions, and so of their 

discourse, when they are engaged in activities implemented within both dynamic 

and static environments. 

In this study we found that students used dragsturing actions to communicate about 

functions, also out of the context of the DIE. This fact has been highlighted by the 

identification of a detached phase of dragging mediated discourse, characterized by 

students’ use of the dynamic visual mediation of dragging in their discourse about 

functions realized through the Cartesian graph on a paper. Therefore, we described 

this kind of actions, not involving a physical use of the dragging tool but that are 

actually gestures realizing dragging actions, as examples of dragsturing. 

For example, we have shown in excerpt 5.12 that Matilde said “x you have to move 

it inevitably towards here [to right], because you do like this, you do like this because 

it has to stay perpendicular”, while moving her hands on a sheet of paper containing 

the drawing of the Cartesian graph of a function. In particular, she was moving her 

fingers along the axes, as reproducing dragging actions in a dynamic realization of 

the same function. 

 

3. Finally, we further contribute to the current literature about dragging practices in 

DIEs. First of all, through the description of the consistent use of dragging and 

dragsturing actions to complement the use of words that, in some cases, even 

replace the use of words. Moreover, we developed a classification of different types 

of dragging, that we summarized in Table 2.1 and it can be used to investigate about 

the routines performed by students within particular task situations implemented in 

a DIE. Indeed, the identification of which types of dragging are used by the students, 

a posteriori gives information about possible patterns in discourse. In particular, our 

description was inspired by Arzarello et al.’s (2002) study where they identified 

different dragging modalities used by students in the process of generating 

conjectures about geometric open problems. The classification that we developed is 

more general, because it does not specifically address the exploration of geometric 

problems, and we also obtained the distinction between the types of dragging in a 

different way. Indeed, they adopted a different theoretical lens that allowed them 

to operate the distinction among the different modalities depending on students’ 

goals behind a specific dragging action. According to our theoretical framework, it is 

not possible to identify these goals, because they are not considered as part of the 
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discourse and the focus of the analyses is the discourse itself. Therefore, for us, the 

only way to identify students’ goals is that they communicated about them, that is, 

students expressed their goals explicitly in their discourse.  

Our analyses show that students performed different types of dragging to engage in 

mathematical communication about the different realizations of functions and we 

succeeded in characterizing them through two levels of analysis: one refers to the 

quality of the movements that are visible on the computer screen, while the other 

takes into account the interplay between a dragging action and students’ discourse, 

that involves verbal descriptions and gestures, in the moment of dragging. 

In the analyses we showed that this analytical tool allows to analyze students’ 

discourse on dynamic graphs and, in general, on functions, and we think it has value 

at the cognitive, didactical and epistemological levels. From a cognitive point of view, 

the tool is important because the classification proposed was identified a posteriori, 

through an empirical analysis of the data collected. Epistemologically, the use of 

different types of dragging suggests what types of routines are performed by 

students and they can be put in relation with the routines that we expected from an 

expert mathematician within the same discourse. It follows that, from a didactical 

point of view, the teacher could promote specific types of dragging, through 

appropriate tasks, knowing what to expect and how to gradually foster the transition 

of routines in the form of rituals to explorations.   

7.3 DIDACTICAL IMPLICATIONS 
In terms of implications for the teaching and learning of functions and graphs of functions in 

classroom, this study suggests a specific design of activities that can be employed in order to 

exploit the use of dynamic realizations of functions within a DIE to support the emergence 

of students’ discourse on functions in terms of covariation of two quantities.  

In relation to the use of a DIE, we gave insight into possible uses of dragging as dynamic 

mediators in students’ discourse. In particular, we described a model for the evolution of 

dragging mediated discourse that show some characterizing features of the discourse that 

seem to be supported by the activities within the DIE. These are significant information to 

take into account when implementing such a dynamic approach to functions in the 

classroom. 

Our analyses show how the discourse developed by students interacting with the realizations 

of functions proposed can be mirrored by potential expert discourse on functions and many 

functions’ properties. By considering the fact that students have always had several 

difficulties in learning functions, as reported by the literature, we can conclude that this 

didactical implication is important. Indeed, the activities can be used to have the students 

engage in discussions with other students and with the teacher, that is how a learning 

process occurs according to Sfard’s theoretical framework. At this regard, this study suggests 

that opportunities for students to work in pairs or small groups allow them to engage actively 

in the development of their mathematical discourse; a contribution in this direction is given 

also by the task situations designed by the teacher who, for example, can use open questions 

that ask for discussion and for a written description.  

Moreover, we expect that in a teaching and learning process the role of the teacher is that 

of promoting discourses on mathematical signifiers that can be found in students’ discourse 

but that should evolve towards potential discourses of an expert. In particular, we expect 
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that during the activities with the dynamic realizations of functions significant aspects 

characterizing students’ discourse are promoted by the teacher. It may happen when their 

discourse mirrors potential expert discourse on functions, or some properties of functions, 

and it is also expected to evolve. We found many properties of functions that were realized 

in students’ discourse, by mirroring potential expert discourse. For example, we found that 

the property of ‘injectivity’ was not described by students, but we identified some cases of 

students’ discourse mirroring expert discourse on the non-injectivity of a function. This is an 

interesting and important observation in terms of didactical implications, because we expect 

that it has to be considered at the moment in which these notions are introduced to students 

in a formal way, for example when giving them a definition or a word to indicate them.  

During the analyses, we highlighted how the discourse of our students was rich in references 

to the dynamic and temporal aspects of functions and graphs of functions and also their 

frequent use of non-formal mathematical words. On the other hand, we used a coding 

scheme and we defined a potential expert discourse mirrored to investigate about the large 

number of realizations of mathematical signifiers, related to functions and their graphs, that 

can be found in students’ discourse.  

Now we show some examples, they are very short excerpts taken from the analyses in 

Chapter 6 and for each of them we specify the mathematical signifier with the potential 

expert discourse mirrored. 

 “They move symmetrically and towards opposite directions.” (Excerpt 6.14, line 71) 

Monotonicity properties: the function is decreasing. 

 “Between minus two and minus one and between one and two it does not exist, B 

does not exist.” (Excerpt 6.15, line 121) 

Domain of the function: it is not defined on the intervals [-2; -1] and [1; 2]. 

 “It is as it came from an infinite point over there and it started moving infinite point 

over here.” (Excerpt 6.16, line 84) 

Asymptote and limits: lim
𝑥→𝟑−

𝑓(𝑥) = −∞ ; lim
𝑥→𝟑+

𝑓(𝑥) = +∞ 

 “There are some f(x) values that can be obtained in just one way, other values in two 

ways, other values in three ways and others in four.” (Excerpt 6.20, line 138) 

Injectivity: the function is not injective. 

We have reported here only some examples, but in the previous chapters we gave a detailed 

description of the type of students’ discourse that the designed activities seem to support 

and we think that this may be a very important issue for a teacher, in order to be aware of 

what to expect and in which direction to work. 

Moreover, we discussed the importance for students of developing and individualizing a 

discourse, of working with different realizations of a mathematical signifier and of 

accomplishing a process of saming among these realizations, beyond the particular DIE used. 

This is an important didactical implication of this study, which is in line with other research 

studies, even based on completely different theoretical backgrounds. In particular, Duval 

(2006) expressed the notion of register of semiotic representation of a mathematical object, 

and he highlighted the importance of conversions in and treatments between different 

representations. 

However, our findings suggest different hypotheses to be refined and investigated in future 

research and we are going to discuss about some of them in the next section. 
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7.4 LIMITATIONS AND FURTHER RESEARCH 
We would like to conclude this chapter by expressing some limitations that we identified 

about our study, introducing some general questions that arise from it and by outlining 

possible directions for future research that might be carried on from this study.  

In the first chapter we introduced the importance within the field of mathematics education 

of improving the teaching and learning of functions and we discussed about how focusing on 

the covariational aspects of functions can play a significant role for this purpose. Our results 

specifically address questions related to the use of DIEs to realize functions and to the 

possible role of dragging with regard to the issue of teaching and learning functions when 

such a dynamic approach is adopted. Given our findings, a discussion should be opened 

about whether, as a mathematics education community, we are interested in fostering a 

discourse on functions as described by our analyses, which is rich in references to the 

dynamic and temporal components. As we have seen, the use of a formal mathematical 

vocabulary is not the main goal of the activities, while we have discussed in the introduction 

that, traditionally, it is considered at the core of many teaching experiments. In particular, it 

means to debate about the possibility of considering a dynamic approach to introduce 

functions, which involves the specific one dimensional realization that we designed within a 

DIE, as part of the mathematics curriculum in high schools. In that case we should take into 

account issues related to the dragging tool, as the possibility of using the mediation of 

different types of dragging and the emergence, and eventually a development, of a dragging 

mediated discourse. For example, how to deal with students’ use of the dynamic visual 

mediation of dragging in their communication about functions and graphs of functions also 

out of the DIE. It should be discussed about the possibly choice, of a hypothetical teacher, of 

avoiding its use or supporting it. 

At this regard, an aspect that has not been considered in this study but that would be worth 

to do is a focus on the role of the teacher, especially during the classroom discussions. 

Indeed, we intentionally chose to keep the researcher as much as possible out of the 

students’ discussions, asking them to work in pairs during the whole sequence of classroom 

activities, in order to let them construct their own discourse on functions, by interacting only 

with the DIMs that we designed and with other students. In particular, we chose to do like 

this because we wanted to focus on students’ learning process, by looking at their choice of 

words, of visual mediators and of routines being performed, and we did not want to 

influence these choices, and so their construction of a discourse. However, a further research 

could focus more on the teaching process and so on the use of a similar dynamic approach 

to introduce functions and their graphs, by analyzing the role of the teacher. 

Moreover, we think that an appropriate methodology could be a longer term teaching 

experiment to allow the introduction of the formal mathematical definitions of functions and 

their properties, but this is something that need for further investigations. We have this 

impression, because from a theoretical point of view gaining some insights about the 

transition of the DIM from being the object of students’ discourse to be used in the same 

discourse as realization of function, as we hypothesized in Chapter 6, would be a very 

significant result for the research.  

Furthermore, it would be also interesting to deepen the analysis of gestures used by students 

to communicate about functions and graphs. Indeed, we mainly looked at dragsturing 

actions but there were also some examples of different gestures used by the students that 
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we did not analyzed. For example, in a discourse about the maximum point of a function, 

students may use the visual mediation of a gesture obtained by moving the hand to the right 

and suddenly to the left, as referring to the one dimensional realization of function; or by 

tracing with the hand a sort of semicircle, as referring to a curve in the Cartesian plane.  

We also suggest that it would be beneficial to investigate whether certain students benefit 

more, or less, from being introduced to functions through such a dynamic approach. For 

example, activities that make use of the DIMs that we designed may reveal to support 

especially students who have been labelled as carriers of specific mathematical learning 

disabilities. Indeed, these activities foster the development of informal discourse that is 

multimodal (it includes dynamic interactions, gestures, dynamic interactive mediation,…) 

and has the potential of developing into formal mathematical discourse, thus giving a larger 

range of students the possibility to participate to mathematical discourse. 

We conclude with an important issue that very often arises in the field of math education: 

the problem of designing tasks that are in line with to the educational goals behind a specific 

activity, that is, the problem of generating “good problems” aimed at achieving certain 

educational goals. Contextualized within this greater research problem, further research 

could investigate the design of activities with DIMs such as those we designed, in order to 

find significant examples and problems for the implementation of the specific dynamic 

realization of function.  
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Appendix A 
Here there is the original Italian version of the activities implemented during the sequence 

of lessons and the interviews. 

 

LEZIONE 1 

Attività1_1: DGp della funzione  𝑓(𝑥) = −𝑥 + 5. 

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

Attività1_2: DGp della funzione 𝑓(𝑥) = |𝑥|. 

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

Attività1_3: DGpp della funzione 𝑓(𝑥) = |𝑥|.  

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

 

LEZIONE 2 

Attività2_1: DGpp della funzione 𝑓(𝑥) = 𝑒𝑥−1 +
1

25
.  

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

Attività2_2: DGpp della funzione 𝑓(𝑥) = √𝑥 + 3 − 2.  

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

1) È possibile avere B=3? Come? 

2) È possibile avere B= -3? Come? 

3) Come faccio a muovere B da 0 a 1? 

Giustificare sul foglio le risposte. 

Attività2_3: DGpp della funzione 𝑓(𝑥) = √(𝑥2 − 1)(𝑥2 − 4). 

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni. 

1) È possibile avere B=4? Come? 

2) È possibile avere B= -4? Come? 

3) Trascinando A da -2 a 2, quali sono tutti i valori che può assumere B? 

Giustificare sul foglio le risposte. 
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LEZIONE 3 

Attività3_1: DGpp della funzione 𝑓(𝑥) = 𝑥 +
3

𝑥−3
.  

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni.  

1) È possibile avere B= -1? Come? 

È possibile avere B=1? Come? 

2) Quali sono tutti i valori che può assumere B? 

3) Quali di questi valori è possibile ottenerli in 0; 1; 2; 3...modi diversi? 

Attività3_2: DGpp di una funzione definita ad hoc, con dominio ristretto all’intervallo [0, 

48]. 

Descrivere e commentare tutte le informazioni che è possibile ricavare sulla percentuale di 

carica della batteria di un cellulare al variare del tempo, nell'arco di 48 ore. 

 

LEZIONE 4 

Attività4_1: DGpp delle due funzioni 𝑓(𝑥) = {
7, 𝑥 < 5

3 + 𝑓𝑙𝑜𝑜𝑟(𝑥), 𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖
 e 𝑔(𝑥) =

{

5

2
𝑥, 𝑥 < 6

1

2
𝑥 + 12, 𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖

 

Descrivere e commentare tutte le informazioni che è possibile ricavare sulle tariffe telefoniche 

di Aldo (TA) e di Bianca (TB), espresse in euro, al variare delle ore di chiamate effettuate. 

Confrontare poi le due tariffe. 

Attività4_2: DGpp delle due funzioni 𝑓(𝑥) = 𝑥2 𝑒 𝑔(𝑥) = |𝑥| +
3

2
.  

Scegliere, se possibile, un intervallo in cui far variare A e C in modo che l'insieme dei valori 

assunti da B e l'insieme dei valori assunti da D siano disgiunti. 

 

LEZIONE 5 

Attività5_1: DGc della funzione 𝑓(𝑥) = −𝑥 + 5.  

Esplorare la situazione, individuare e descrivere i movimenti possibili attraverso il 

trascinamento e trascrivere sul quaderno le proprie osservazioni.  

Attività5_1bis: DGpp della funzione 𝑓(𝑥) = −𝑥 + 5. 

Esplorare la situazione e confrontare con l’attività precedente. 

Attività5_2: DGc della funzione 𝑓(𝑥) = √𝑥 + 3 − 2. 

1) È possibile avere B=3? Se sì, come?  

È possibile avere B= -3? Se sì, come? 

2) Quali sono tutti i valori che può assumere B? 

3) Quali sono i valori di A per cui B assume valori minori di 0? 
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Giustificare sul foglio le risposte. 

Attività5_3: DGc della funzione 𝑓(𝑥) = −
𝑥2

25
+ 𝑥 + 1, l’asse 𝑥 è etichettato con “litri” e l’asse 

𝑦 con “tonnellate”.  

Descrivere e commentare tutte le informazioni che è possibile ricavare sulla produzione 

stagionale di agrumi di un'azienda agricola in funzione della quantità di fertilizzante 

utilizzato. 

 

LEZIONE 6 

Attività6_1: DGc di una funzione definita ad hoc, l’asse 𝑥 è etichettato con “mesi” e l’asse 𝑦  

con “𝑚3”.  

Descrivere e commentare tutte le informazioni che è possibile ricavare sulla quantità di acqua 

necessaria per irrigare un giardino, con 100 metri quadrati di prato, per ogni mese dell'anno. 

Attività6_1bis: DGc di una funzione definita ad hoc, l’asse 𝑥 è etichettato con “𝑚3” e l’asse 

𝑦 con “euro”. 

Descrivere e commentare tutte le informazioni che è possibile ricavare sul costo dell'acqua in 

funzione del consumo. 

Attività da consegnare dopo aver lasciato un po’ di tempo per Attività6_1 e Attività6_1bis:  

Il proprietario di un giardino è preoccupato per le spese che deve sostenere per irrigare i suoi 

100 metri quadrati di prato, e si pone i seguenti quesiti:  

c) Mi capiterà mai di dover pagare meno di 5 euro per l’irrigazione del prato?  

Se sì, quando? Se no, perché?  

d) Mi capiterà mai di dover pagare più di 50 euro per l’irrigazione del prato?  

Se sì, quando? Se no, perché? 

Tenendo aperti i file Attività6_1 e Attività6_1bis, rispondere sul foglio ai due quesiti. 

Descrivere poi come varia nel tempo, nel corso di ogni mese, la spesa per l’acqua che il 

proprietario deve sostenere per irrigare il suo giardino (non sono considerati i costi di canoni 

fissi mensili). 

 

LEZIONE 7 

Attività7_1: DGc della funzione  𝑓(𝑥) =
1

10
(

𝑥

2
+ 4) (𝑥 + 1)(𝑥 − 2) +

5

2
.  

Disegnare sul foglio la traiettoria del punto (x, f(x)). 

Attività7_2: DGc della funzione 𝑔(𝑥) =
𝑥

2
+

3

𝑥−3
.  

Aprire il file Geogebra Attività7_2.ggb e indicare quale tra i grafici sotto riportati rappresenta 

la traiettoria del punto (𝑥, 𝑔(𝑥)). Argomentare per scritto la propria scelta, descrivendo 

quale opzione avete indicato e perché, quali invece avete scartato e perché.  



232 
 

 

A)

 

 

B)

 



233 
 

C) 

 

 

LEZIONE 8 

Attività8_1: DGpp della funzione 𝑓(𝑥) = {

3

2𝑥
+ 2                                 𝑥 > 0

(𝑥 + 1)2(𝑥+ 6)(𝑥+ 3)

𝑥
 −  1    𝑥 ≤ 0

  

Disegnare sul foglio il grafico di questa funzione nel piano cartesiano. 

Attività8_2: Attivando la traccia sul punto (𝑥, 𝑓(𝑥)) abbiamo ottenuto: 
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Indicare cosa si colorerebbe attivando la traccia su 𝑥: 

 

 

Indicare cosa si colorerebbe attivando la traccia su 𝑓(𝑥): 

 

Attività8_3: Disegnare il grafico, nel piano cartesiano, di una funzione che abbia le seguenti 

proprietà: 

 Prima di zero se aumenta x aumenta anche f(x) 

 Quando x è maggiore di 6 hanno versi opposti 

 Man mano che x va avanti f(x) si muove sempre di più: ad esempio, se x va da -5 a -

4 f(x) si muove di pochissimo, se x va da 1 a 2 f(x) si muove di più spazio 

 f(x) può assumere tutti i valori negativi e quelli positivi minori di 10, perché quando 

arriva a 10 poi torna indietro 

 Si intersecano a 3,5 circa 

 Alcuni valori di f(x) si possono ottenere in un solo modo, altri in due, altri in tre e 

altri in quattro modi diversi 
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INTERVISTA 1: Alessio 

5) Attività7_1 

6) Attività7_2 

7) Attività8_1 

8) Attività8_2 

 

INTERVISTA 2: Matilde e Nicco 

5) Immagina di avere questa funzione rappresentata su rette parallele in un file 

GeoGebra, come la descriveresti? 

 
 

6) Uno studente si mette al pc e l’altro davanti. Lo studente che lavora al pc apre il file 

Intervista1.ggb8 e lo descrive al compagno, che seguendo le sue indicazioni deve 

disegnare sul foglio il grafico della funzione nel piano cartesiano.  

ATTENZIONE: è vietato mostrare al compagno cose scritte, o girare lo schermo del 

pc, o dargli indicazioni con le mani. 

 

7) Ripetere la stessa cosa, scambiandovi di posto, e questa volta lo studente al pc deve 

aprire il file Intervista2.ggb9. 

 

8) Leggere con attenzione l’altro foglio che avete ricevuto (è la fotocopia di una pagina 

presa da un libro di testo di matematica per la scuola secondaria). Dopo rispondere 

a questi cinque quesiti relativi al grafico riportato di seguito: 

 

f. Colorare l’immagine dell’intervallo [-1, 1] 
g. Colorare la controimmagine dell’intervallo [-5, -3] 
h. Qual è il dominio di questa funzione? 
i. Qual è l’insieme delle immagini di questa funzione? 
j. È una funzione iniettiva? Perché? 

                                                           

8 DGpp della funzione 𝑓(𝑥) = {
|

(𝑥−1)

2
(𝑥 − 4)

(𝑥+8)

4
| − 6, 𝑥 < 4.94

𝑥−5

5
, 𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖

 

9 DGpp della funzione 𝑓(𝑥) = {

−5.18,   𝑠𝑒 𝑥 < −4.6

10
𝑠𝑖𝑛𝑥

𝑥
− 3,   𝑠𝑒 − 4.6 ≤ 𝑥 < 6.2

3

2
𝑥 − 12.4,   𝑠𝑒 6.2 ≤ 𝑥 < 8.3
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INTERVISTA 3: Franci e Lore 

1) Immagina di avere questa funzione rappresentata su rette parallele in un file 

GeoGebra, come la descriveresti? 

 
 

2) Uno studente si mette al pc e l’altro davanti. Lo studente che lavora al pc apre il file 

Intervista1.ggb10 e lo descrive al compagno, che seguendo le sue indicazioni deve 

disegnare sul foglio il grafico della funzione nel piano cartesiano.  

ATTENZIONE: è vietato mostrare al compagno cose scritte, o girare lo schermo del 

pc, o dargli indicazioni con le mani. 

 

3) Ripetere la stessa cosa, scambiandovi di posto, e questa volta lo studente al pc deve 

aprire il file Intervista2.ggb11. 

 

                                                           

10 DGpp della funzione 𝑓(𝑥) = {

1

𝑥−2
− 5, 𝑥 > 2

1

4
√−(3𝑥 + 21)(2𝑥 + 2)(𝑥 + 4), 𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖

  

11 DGpp della funzione 𝑓(𝑥) = {

5.18,   𝑠𝑒 𝑥 < −4.6

−10
𝑠𝑖𝑛𝑥

𝑥
+ 3,   𝑠𝑒 − 4.6 ≤ 𝑥 < 8.2

2

5
𝑥 −

3

2
,   𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖
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4) Leggere con attenzione l’altro foglio che avete ricevuto (è la fotocopia di una pagina 

presa da un libro di testo di matematica per la scuola secondaria). Dopo rispondere 

a questi cinque quesiti relativi al grafico riportato di seguito: 

 

a. Colorare l’immagine dell’intervallo [0, 2] 
b. Colorare la controimmagine dell’intervallo [0, 2] 
c. Qual è il dominio di questa funzione? 
d. Qual è l’insieme delle immagini di questa funzione? 
e. È una funzione iniettiva? Perché? 

 

 

 

 

INTERVISTA 4: Davide e Elena 

1) Immagina di avere questa funzione rappresentata su rette parallele in un file 

GeoGebra, come la descriveresti? 
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2) Uno studente si mette al pc e l’altro davanti. Lo studente che lavora al pc apre il file 

Intervista1.ggb12 e lo descrive al compagno, che seguendo le sue indicazioni deve 

disegnare sul foglio il grafico della funzione nel piano cartesiano.  

ATTENZIONE: è vietato mostrare al compagno cose scritte, o girare lo schermo del 

pc, o dargli indicazioni con le mani. 

 

3) Ripetere la stessa cosa, scambiandovi di posto, e questa volta lo studente al pc deve 

aprire il file Intervista2.ggb13. 

 

4) Leggere con attenzione l’altro foglio che avete ricevuto (è la fotocopia di una pagina 

presa da un libro di testo di matematica per la scuola secondaria). Dopo rispondere 

a questi cinque quesiti relativi al grafico riportato di seguito: 

 

a. Colorare l’immagine dell’intervallo [4, 10] 
b. Colorare la controimmagine dell’intervallo [0, 2] 
c. Qual è il dominio di questa funzione? 
d. Qual è l’insieme delle immagini di questa funzione? 
e. È una funzione iniettiva? Perché? 

 

 

  

                                                           

12 DGpp della funzione 𝑓(𝑥) =
1

4
√

(𝑥−8)

2
(𝑥 + 1)(𝑥 − 6)(𝑥 − 1)  

13 DGpp della funzione 𝑓(𝑥) =
3

2𝑥−1
+ 2  
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Appendix B 
The original Italian version of all the excerpts that have been used in the thesis is 

available here: 

https://drive.google.com/file/d/1HVHedzI88afVv4-

fr5uHlIOfqLtV36Um/view?usp=sharing 

  

https://drive.google.com/file/d/1HVHedzI88afVv4-fr5uHlIOfqLtV36Um/view?usp=sharing
https://drive.google.com/file/d/1HVHedzI88afVv4-fr5uHlIOfqLtV36Um/view?usp=sharing
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