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Introduction

Since the early times of Quantum Mechanics it was clear that this new theory repre-

sented a breaking-point with the past deterministic interpretation of the physics world.

If, from one side, this theory was able to unify concepts that were considered antithet-

ical before its introduction, e.g. the wave-particle duality of matter and light, on the

other hand it destroyed many pillars of our classical interpretation of nature. The

concept of measurement itself, which represents the main instrument for physicists to

investigate the world, was completely revolutionized, going from a completely deter-

ministic interpretation to a probabilistic one, intrinsic in Born's rule [1]. In this thesis,

instead of dealing with di�erent philosophical implications of Quantum Mechanics, I

will present the opportunities it opens to develop new technologies. After countless

observations, which have con�rmed its validity, Quantum Mechanics has begun to en-

ter our daily life. The laser, widely used in medicine and in many other �elds, as well

as the transistors that are the building blocks of smartphones and computers that we

use daily, are just some examples of devices whose working principles can be explained

only in terms of this theory. In recent years, it has been understood that the features

of Quantum Mechanics can be used to overcome the limits imposed by the classical

interpretation of nature, especially in the �eld of metrology, computation and com-

munication. On the other hand, some operations easily implemented with classical

systems are prohibited in the quantum domain, such as measuring a system without

perturbing it or perfect cloning of units of information. The possible application of the

so-called quantum revolution in technology is indeed a highly debated point, which is

why basic research in the �eld of quantum mechanics is still necessary today.

Light is a very powerful tool to investigate the validity of the predictions of Quantum

Mechanics. Thanks to devices and methods available today, scientists are now able

to generate, manipulate and characterize the states of a light system at the quantum

level, making quantum state engineering a promising �eld of investigation. In this con-

text, the study of phenomena predicted by Quantum Mechanics can be carried out in
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three steps: the preparation of a system in a particular initial state, mathematically

described by a Hilbert space; its manipulation, for which the basic instruments are

described in this thesis; and �nally, its characterization. For the last point, the Homo-

dyne Detection technique, described in Section 1.3.2, is a powerful tool. In the context

of state manipulation, many works [2][3][4] have underlined the extremely interesting

possibilities opened by the ability to experimentally deal with the fundamental oper-

ations of annihilation (â) and creation (â†) of single quanta of light. Over the years,

more and more sophisticated techniques to implement quantum operations based on

the experimental realization of the annihilation and creation operators have been de-

veloped. For example, by exploiting the concept of quantum superposition, it has been

possible to experimentally test the commutation relations between these operators [5],

which are at the origin of the quantum nature of light. Following the lines of this

experiment, I present in Chapter 2 a technique able to emulate, on weak quantum

states of light, the same transformation caused by a strong optical nonlinearity, the

Kerr e�ect, which can not be obtained with the materials available today.

Any discussion about the revolutions introduced by Quantum Mechanics can not be

concluded without talking of entanglement. This is one of the most controversial con-

cepts introduced by this theory, on which the most brilliant minds of the last century

have been debating for a long time. At the beginning of Chapter 3, a general review

of this phenomenon is presented. Again, light is a perfect tool to investigate it. At

the end of this thesis I will show how, by delocalizing the addition operation among

di�erent light systems, it is possible to generate entanglement among them even if

they are initially in a macroscopic non-entangled state. This experiment represents a

new tool to study, in the macroscopic domain, phenomena up to now con�ned in the

microscopic regime. From this work we can also understand what are the limits of the

available technologies to when we deal with quantum e�ects.



Chapter 1

Brief Introduction to Experimental

Quantum Optics

The aim of this work is to study some fundamental aspects of Quantum Mechanics,

and in this �rst chapter I will provide a description of the main building blocks using an

experimental perspective. I will introduce various formalisms need to describe quantum

operators, quantum states and quantum measurements.

1.1 Quantum Operators

Quantum mechanics is based on the concept that two systems can exchange only dis-

crete quantities of energy. For example, an excited atom can jump to a lower energy

state yielding a quantum of energy to the surrounding environment. From the mathe-

matical point of view, the destruction and the generation of energy quanta are described

by the â and the â† operators. Their action on a number state (|n〉)1 is described by

the relations:

â |n〉 =
√
n |n− 1〉

â |0〉 = 0,
(1.1)

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.2)

1The details of this kind of state are better explained in Section 1.2. Here it is su�cient to know

that these vectors represent the eigenvectors of the hamiltonian describing the electromagnetic �eld

quantized in vacuum [1].
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6 1.1. QUANTUM OPERATORS

and they obey the commutation rule:

[
â, â†

]
= 1 (1.3)

The relation (1.2) tells us that the creation operator (â†) acts on a system with no

energy, the vacuum (|0〉), creating a single quantum of energy in that system.

â† |0〉 = |1〉

For the destruction operator (â) something similar is true. Its action on a system with

exactly n quanta of excitation is to remove just one of them, leaving the system with

n− 1 energy quanta.

This PhD thesis is focused on the study of the quantum properties of light systems,

therefore, I will refer to the operators â† and â as the creators and the annihilators of

photons, the energy quanta of the electromagnetic �eld.

The product â†â is another important operator that will be widely used in this work.

It is called number operator (n̂) and it has a crucial role in the quantization of the

electromagnetic �eld. For example, the Hamiltonian that describes the energy of a

quantized electromagnetic �eld in vacuum can be written in the form[1]

Ĥe.m.
free = ~ω

(
n̂+

1

2

)
, (1.4)

where the frequency ω
2π

de�nes the oscillation frequency of the �eld. The role of n̂ is to

count the number of quantized excitations, each of energy ~ω, of the electromagnetic

�eld i.e. the number of photons. Applying n̂ on an eigenvector of the hamiltonian (1.4)

we have2:

n̂ |n〉 = n |n〉 . (1.5)

Equation (1.5) tells us that this operator leaves the number state unchanged, giving

us the number of photons (n) that characterize it. I will show in the next session

that the knowledge of the photon number statistics of an optical state gives interesting

information about it. From this point of view, it is important to notice that the

operator n̂ is hermitian, so it can be measured [6]. In Section 1.3 I will describe two

detectors sensitive to the photon number carried by a state of light.

Other observables, very useful to characterize the quantum properties of a light state,

2That is the de�nition of the number states.
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are the quadratures of the electric �eld, de�ned as a combination of the annihilation

and creation operators:

X̂θM =
â e−iθM + â† eiθM

2
, (1.6)

where θM is the measurement phase. Its meaning will be clari�ed in Section 1.3.2, where

I will give a detailed description of an instrument, the Homodyne Detector, capable to

measure the quadrature values of a quantum state of light for all the possible measure-

ment phases. Commonly, we call the quadrature measured at phase θM = 0 as the X̂

quadrature, while setting the phase equal to π
2
we measure the Ŷ quadrature. This

convention is related to the mathematical form used to describe the monochromatic

electric �eld in terms of measurable operators

Ê(θM) =

(
1

2
âe−iθM +

1

2
â†eiθM

)
=
(
X̂ cos(θM) + Ŷ sin(θM)

)
, (1.7)

where I used the convention
√

2~ω
ε0V

= 1. In Section 1.4 I will describe an algorithm

capable to give a complete description of an optical state starting from the results of a

set of quadrature measurements performed on it, for di�erent settings of θM .

1.2 Quantum States

In Section 1.1 an important concept starts to emerge. In quantum optics the role of the

operators is to perform an action onto a system. It doesn't matter if it is a measurement

or some other operation that manipulates a certain system, the operators contain the

"rules of the game": they specify the action, the results depending on the particular

state the system is in. In this section I will present a brief description of the main

optical states used in this work.

1.2.1 Number states

The number states (or Fock States) are de�ned as the eigenstates of the number operator

n̂, as anticipated in Equation (1.5). They can be obtained by repeated application of

the creation operator on a system initially in the vacuum state.

|n〉 =
1√
n!
â†1 ⊗ â

†
2 ⊗ · · · ⊗ â†n |0〉 (1.8)
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As an immediate consequence of this de�nition, we have that there is no uncertainty

on the number of photons in such a state, so:(
∆n̂
)2

= 〈n| n̂2 |n〉 − 〈n| n̂ |n〉2 = 0 (1.9)

From Equation (1.4) it is also simple to understand their natural predisposition to

describe �xed energy states of the electromagnetic �eld. Indeed, it is possible to prove

that they are an orthonormal and complete base on which to describe the solutions of

the Schrödinger equation for the electromagnetic �eld [1].

〈n|m〉 = δn,m → Orthonormality condition
∞∑
n=0

|n〉 〈n| = Î → Completeness condition
(1.10)

Despite their easy mathematical description, they are non-trivial to produce in the

laboratory. A lot of e�orts have been spent on their generation in the past decades.

The main procedures to produce them involve quantum dots[7][8], cold atoms [9][10],

molecules [11][12], Nitrogen Vacancy Centers in diamonds [13][14] and nonlinear optical

processes, such as Parametric Down Conversion, that will be described later in this

work.

Let's focus now on the properties of this kind of states in relation to the electromagnetic

�eld. Using the �rst part of Equation (1.7) and a few other relations presented in the

previous section, it is possible to derive two important properties of measurements of

electric �eld performed on a number state.

Their mean value is always zero

〈n| Ê(θM) |n〉 = 0, (1.11)

and their variance grows as the photon number increases(
∆Ê(θM)

)2
= 〈n| Ê2(θM) |n〉 − 〈n| Ê(θM) |n〉2

=
1

2
(n+

1

2
).

(1.12)

The mean value and the variance of the electric �eld for an n-photon Fock state do not

depend on the phase at which the measurement is performed. This is the reason of the

failure of any attempt to describe them in an e�ective noise theory. The measurement

technique that I will describe in Section 1.3.2 allows to realize electric �eld measure-

ments, therefore, in view of this, it is useful to show the probability distribution of
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such measurements once performed on a given state. For the Fock state case, we can

calculate these quantities in terms of the measurable quadrature operators as:

Pn(XθM ) = |〈XθM |n〉|2 =
∣∣∣( 2

π

) 1
4
e−inθM

Hn(
√

2XθM )√
2nn!

e
−X2

θM

∣∣∣2
=
( 2

π

) 1
2 |Hn(

√
2XθM )|2

2nn!
e
−2X2

θM ,

(1.13)

where 〈XθM |n〉 are the wave functions for the quantum harmonic oscillator expressed

on the quadrature base, andHn(
√

2XθM ) are the Hermite polynomials. The quadrature

probability distributions for zero, one, and two-photon states are reported in Figure

1.1. From these plots it is evident that if we perform repeated quadrature measure-

ments on a Fock state, the outcome distribution will remain unchanged regardless the

measurement's reference phase.

Figure 1.1: Probability distributions of the X̂θM quadrature for |0〉, |1〉 and |2〉 Fock
states, for di�erent measurement phases θM . These probability distributions are in-

variant when changing θM .

Before describing another important class of states, let us focus our attention on a

particular number state, the vacuum state (|0〉). This is the minimum-energy state of

the electromagnetic �eld and, from Equation (1.4), we can see that this energy is larger

than zero. In quantum optics this is explained by considering the presence, everywhere

in the space, of a randomly �uctuating electric �eld [15]. We will see that, using an
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homodyne detector, it is possible to measure also this �eld. Let us now look at what

happens if we perform a simultaneous measurement of the two quadratures X̂ and Ŷ on

the vacuum state. Because of the phase invariance of the quadrature distribution, the

two measurements have the same uncertainty. From Equation (1.12) we can calculate

the variance of the joint measurement as:

(∆X̂)2(∆Ŷ )2 =
1

16
(1.14)

This is the minimum value allowed by the Heisenberg uncertainty principle, obtained

by the standard procedure [16], considering that, for the commutator between X̂ and

Ŷ , stands

[X̂, Ŷ ] =
i

2
. (1.15)

States that satisfy Equation (1.14) are called minimum uncertainty states.

1.2.2 Coherent states

This important class of states, introduced by Glauber in 1963 [17], is de�ned as the

eigenstates of the annihilation operator:

â |α〉 = α |α〉 α ∈ C α = |α|eiθco (1.16)

where the eighenvalue α is a complex number that de�nes the amplitude |α| and the

phase θco of the state. They can be expressed in the number state base as:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 , (1.17)

and recalling the expression of |n〉 (Equation (1.8)) as:

|α〉 = e−
1
2
|α|2

∞∑
n=0

(αâ†)n

n!
|0〉 = e(αâ†− 1

2
|α|2) |0〉

= e(αâ†−α∗â) |0〉 = D̂(α) |0〉 ,
(1.18)

where we have de�ned the Displacement Operator as3 D̂(α) = e(αâ†−α∗â). A deeper

understanding of the action represented by this operator can be obtained by studying

3In this equation we have used the relation eÂeB̂ = eÂ+B̂+ 1
2 [Â;B̂], that is valid in this case because

the equations
[
Â;
[
Â; B̂

]]
= 0 and

[
B̂;
[
Â; B̂

]]
= 0 are satis�ed for the coherent state case.
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the properties of the electric �eld of a coherent state. For the mean value of Ê(θM) we

have:

〈α| Ê(θM) |α〉 = 〈α| âe−iθM + â†eiθM |α〉

= |α| cos(θM),
(1.19)

where θM is the phase of the measurement. The variance of this operator has an

interesting property too:

〈α|
(
∆Ê(θM)

)2 |α〉 =
1

4
.

(1.20)

From these relations we can say that, applying the displacement operator to the vacuum

state of the electric �eld, we will shift the mean value of the results of a quadrature

measurement from zero to |α| cos(θM), maintaining its variance unchanged. This fact

classi�es the coherent states as minimum uncertainty states, as the vacuum state.

Unlike the number states, two di�erent coherent states are, in general, not orthogonal:

〈α|β〉 = e−
|β|2+|α|2

2

∑
n,m

(α∗)mβn√
m!n!

〈n|m〉

= e−
|β|2+|α|2

2

∑
n

(α∗β)n

n!

= e−
|α−β|2

2 .

(1.21)

They can be considered orthogonal only in the limit |α− β| → ∞.

Coherent states are very useful in quantum optics because they are the best approx-

imation of the ideal light state generated by a well-stabilized laser. Indeed, they are

easy to produce and they will be widely used in this work. Also in this case, the prob-

ability distribution for an electric �eld measurement is an important quantity to keep

in mind:

Pα(XθM ) =

√
2

π
e−2[XθM−|α|cos(θM )]2 . (1.22)

From Figure 1.2 the dependence of the quadrature distributions on the phase of the

measurement performed to obtain it is evident.

It is also useful to recall the photon number properties of this kind of states:

〈n̂〉 = 〈α| n̂ |α〉 = 〈α| â†â |α〉 = |α|2, (1.23)
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Figure 1.2: Probability distributions of the X̂θM quadrature for two di�erent values of

α and di�erent measurement phases θM .

(∆n̂)2 = 〈α| n̂2 |α〉 − 〈α| n̂ |α〉2 = |α|2 = 〈n̂〉. (1.24)

Equations (1.23) and (1.24) are the �rst two moments of the photon number probability

distribution for a coherent state, shown in Figure 1.3 for three values of α.
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Figure 1.3: Photon number probability distributions for coherent states of di�erent

mean photon number (〈n̂〉 = |α|2).

This is a peaked Poisson distribution for which the relative photon number (intensity)

�uctuations decrease for increasing α

∆I

Ī
∝ ∆n̂

〈n̂〉
=

1√
〈n〉

. (1.25)

This fact qualify the coherent states as "the most classical one among quantum states".

Indeed, for a classical stable wave the intensity is a �xed quantity with no �uctuations,

that is the limit case for coherent states of large α.
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1.2.3 Pure States and Mixed States - The Density Operator

Formalism

All classes of states described so far are called pure states. In general, a pure state

can be written as the superposition of states that form a base of the electromagnetic

radiation �eld ({|ψn〉}).

|ψ〉 = |pure state〉 =
∑
n

cn |ψn〉 , (1.26)

where cn are complex amplitudes that de�ne the probability to observe the state |ψn〉
(pn = |cn|2), and also the relative phase of the component |ψn〉 respect to the overall

phase of the superposition. However, not all the states of the electromagnetic �eld can

be written as pure states. Imperfections in the generation apparatus, interactions with

the external environment, or the will of the experimenter lead to a description of the

light state only in terms of probability, where all the phase relations between the states

are lost. This concept is introduced in quantum mechanics via the de�nition of the

density operator (ρ̂) and these states are called statistical mixtures [1]

ρ̂ =
∑
n

pn |ψn〉 〈ψn| . (1.27)

Here pn have a clear interpretation in term of probabilities, so we have:∑
n

pn = 1 (1.28)

From the relation (1.28) we can see that, as a special case of this formalism, we can

also describe the pure states. Indeed, if only one of the pn (p∗) is di�erent from zero,

we have p∗ = 1, so the resulting density matrix is

ρ̂∗ = |ψ∗〉 〈ψ∗| , (1.29)

where |ψ∗〉 is a pure state of the base de�ned at the beginning of this section.

Describing the state of a system in terms of its density operator reveals its importance

when we try to formalize the concept of expectation value of a measurement. In general,

it is de�ned as the statistical mean of all the possible measurement outcomes. Let's say,

for example, that the measurement is represented by the operator Ô. The expectation

value is:

〈Ô〉 =
∑
n

pn 〈ψn| Ô |ψn〉 , (1.30)
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but if we introduce the generic complete base {|ai〉}4

〈Ô〉 =
∑
n,i

pn 〈ψn| Ô |ai〉 〈ai|ψn〉 =

=
∑
n,i

pn〈ai|ψn〉 〈ψn| Ô |ai〉 =
∑
i

〈ai| ρ̂Ô |ai〉 =

= Tr
(
ρ̂Ô
)
,

(1.31)

that is equivalent to the Equation (1.30) but easier to manipulate in the case of a

statistical mixture. If we calculate the expectation value of the identity operator (Î),

we �nd the normalization condition of the density operator:

Tr (ρ̂) =
∑
n,i

pn〈ai|ψn〉〈ψn|ai〉 =
∑
n,i

pn〈ψn|ai〉〈ai|ψn〉 =
∑
n

pn = 1. (1.32)

If this condition is not veri�ed for a density operator it is not representing a physical

system.

It is also important to notice that, recalling the form of the density operator in the

case of a pure states (Equation (1.29)), we have:

Tr
(
ρ̂2
pure

)
= Tr (ρ̂pure) = 1. (1.33)

On the contrary, in the case of a mixed state, we have:

ρ̂2
mix =

∑
n,m

pnpm |ψn〉 〈ψn|ψm〉 〈ψm| ⇒

⇒ Tr
(
ρ̂2
mix

)
=
∑
n,m,i

pnpm〈ai|ψn〉〈ψn|ψm〉〈ψm|ai〉 =

=
∑
n,m,i

pnpm〈ψm|ai〉〈ai|ψn〉〈ψn|ψm〉 =
∑
n,m

pnpm〈ψm|ψn〉〈ψn|ψm〉 =

=
∑
n,m

pnpm|〈ψm|ψn〉|2 =
∑
n

p2
n ≤ 1.

(1.34)

So Tr(ρ̂2) can be de�ned as the purity of a state and used to discern a pure state from

a statistical mixture. During this introduction to the density operator we made use of

the base {|ψn〉}, over which ρ̂ is diagonal5, but, in general, it is not an orthonormal

4
∑
i |ai〉 〈ai| = Î

5Using this base indeed we have:

〈ψn| ρ̂ |ψn〉 = pn ∀n

〈ψn| ρ̂ |ψm〉 = 0 ∀n 6= m
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base. Switching to such a base ({|ai〉}) the ρ̂ operator has the form:

ρ̂ =
∑
n

pn |ψn〉 〈ψn| =
∑
n,i,j

pn |ai〉 〈ai|ψn〉〈ψn|aj〉 〈aj| =
∑
i,j

ρij |ai〉 〈aj|

ρij = 〈ai| ρ̂ |aj〉 =
∑
n,i,j

pn〈ai|ψn〉〈ψn|aj〉,
(1.35)

where the diagonal elements (ρii =
∑

n pn|〈ai|ψn〉|2) again tell us the probability to

�nd the system in the base state |ai〉. Instead, the o�-diagonal elements are related to

the correlations between the base states for the physical system represented by ρ̂.

In conclusion, we can say that the density operator contains all the information about

the state it represents. In the last section of this chapter I will show a technique to

obtain the density matrix ρij from a set of experimental measurements.

1.2.4 Distributed Modes - A more realistic formalism

The theory presented in the previous sections is the easiest way to explain the concepts

of operator and state from the quantum optics point of view, but, in this form, it is

often far from the real experimental situation. In several experiments the properties of

the optical states are not simply described as in Section 1.2. Indeed, if we say that we

have generated a single photon state, we are giving only a partial information. It could

be very important to specify also the spectral band over which we have produced it, for

example. Other important characteristics are its propagation direction, its temporal or

spatial shape, polarization, and so on, depending on the type of experiment performed.

All these features de�ne the mode of the optical state. From a practical point of view

it is useful to split the concept of optical mode into subsets, each of which refers to

di�erent features. In this thesis I will use the term "spatial mode" to indicate the

spatial properties of an optical state, as well as "spectral mode", "temporal mode",

etc. To mathematically formalize this concept we have to slightly modify some of the

above de�nitions. The operator â† de�ned in Equation (1.2), for example, adds a single

photon at a monochromatic frequency, with a single wave vector and so on. A more

complete description of this operator is6:

â†(ω) =

∫
dω′δ(ω − ω′)â†(ω′), (1.36)

where it is explicit that only one monochromatic frequency mode is involved. From

this expression it is easy to generalize to an operator that generates single photons with
6For sake of simplicity I will consider only the spectral mode in the following explanation.
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a wave-packet distribution of frequencies, as is very common for most of the devices

used to produce them

â†g =

∫
dωg∗(ω)â†(ω). (1.37)

Here the notation is heavier than the one in Equation (1.2) but has to be interpreted

as follows: â†(ω) is the monochromatic creation operator already de�ned, â†g is the

operator that generates a single photon in a frequency wave-packet of shape de�ned

by the complex mode function g(ω).

This formalism can alternatively be incorporated into the states instead of into the

operators. For example, for the single photon state we will write

|1g〉 = â†g |0〉 =

∫
dωg∗(ω)â†(ω) |0〉 =

∫
dωg∗(ω) |1ω〉 , (1.38)

where the notation has the same meaning of Equation (1.37). This is useful for the

calculations in which we don't want to introduce operators, but the mode properties

have to be taken into consideration. For example, using this formalism, we can see

that if two Fock states have equal number of photons, they can have a scalar product

equal to zero if their modes (indicated here as spectral modes g(ω) and f(ω)) are not

matched to each other, in contrast with the de�nition (1.10).

〈1g|1f〉 =

∫
dω 〈0| g(ω)â(ω)

∫
dω′f ∗(ω′)â†(ω′) |0〉

=

∫
dωdω′g(ω)f ∗(ω′)〈1ω|1′ω〉

=

∫
dωdω′g(ω)f ∗(ω′)δ(ω − ω′)

=

∫
dωg(ω)f ∗(ω).

(1.39)

This simple calculation is useful to understand the idea of the mode overlap, that will

be further discussed in the context of homodyne detection.

The mode overlap can be used to take into account the frequency mismatch between

two optical states, the spatial misalignment that frequently occurs while setting up an

experiment, and other imperfections. In the rest of this work I will use the following

convention for the normalization of the mode function g(ω):∫
dω|g(ω)|2 = 1, (1.40)

in order to keep valid the commutation rule (1.3), as well as all the other relations

regarding the number states.
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We can use this formalism also for the coherent state case. The only change we have

to do is regarding the normalization of the mode pro�le:∫
dω|α(ω)|2 = 〈n̂〉, (1.41)

where α(ω) is the function describing the spectral mode occupied by the coherent state

and 〈n̂〉 is its mean photon number. With this convention, the de�nition of coherent

state (Eq. (1.16)) is again valid:

â(ω) |{α}〉 = α(ω) |{α}〉 , (1.42)

considering that the notation |{α}〉 indicates a state distributed in the mode α(ω). Or

alternatively,

âα |α〉 = α(ω) |α〉 , (1.43)

where we incorporated the mode properties in the annihilation operator instead of

into the state. The only change with respect to the theory presented in Section 1.2.2

regards the commutation rule between the creation and annihilation operator acting

on a coherent state:

〈α|
[
âα, â

†
α

]
|α〉 = 〈{α}|

[
â(ω), â†(ω)

]
|{α}〉 = 〈n̂〉. (1.44)

This is a small price to pay because it leaves all the other coherent state relations

unchanged. The displacement operator in the distributed mode formalism has the

form:

D̂({α}) = eâ
†
α−âα , (1.45)

that acts on the vacuum generating a coherent state in the mode de�ned by α(ω).

Also the relations regarding the electric �eld and the photon number operator remain

unchanged.

Summarizing, the distributed mode formalism is useful to take into account many

experimental aspects, but, if we are able to generate all the optical states in the same

mode, most of the results obtained in Section 1.1 and 1.2 remain valid[1].

1.3 Quantum Measurements

In this section I will link the observables, described from a theoretical point of view in

the �rst part of this work, to the real measuring devices used in the laboratory during

the experiments.
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1.3.1 Photon Number Sensitive Detectors

As I showed in Section 1.2, the photon number distribution of an optical state can

give us useful information to understand its nature. Currently, there is a class of

detectors, called photon number resolving (PNR), able to detect the exact number of

photons in an optical state. These detectors are commonly based on superconducting

systems and thus require a complicate cooling apparatus. This technical di�culty

makes the characterization of an optical state based on the photon number distribution

not suitable for many experiments. A more "user-friendly" solution are the so called

single photon counting modules (SPCM). They are devices capable to detect, with a

given quantum e�ciency η, the presence or the absence of photons, but not to discern

their exact number. Practically, their output is the same (an electrical pulse or a

"click") if one or n photons impact on the detector, however large n is, while no clicks

are produced if 0 photons arrive on the detector. Due to this fact they are commonly

called on-o� detectors. This behavior can be mathematically formalized by two POVMs

[18](Positive-Operator Valued Measure) Π̂on = Î−|0〉 〈0| and Π̂off = Î− Π̂on = |0〉 〈0|,
where Î is the identity operator[19].

Using such a detector we can obtain the probability to observe more than one photon in

a given optical state. By the de�nition of POVM, the probability to obtain a click from

an on-o� detector is Pclick = Tr{Π̂onρ̂}, where ρ̂ is the density operator describing the

state we are measuring. Let's consider for example the state ρ̂ = (a |0〉+ b |1〉)(a∗ 〈0|+
b∗ 〈1|), that is the superposition between the �rst two Fock states described in Section

1.2.1. The probability to observe a click is

Pclick = Tr
{

(Î − |0〉 〈0|)(a |0〉+ b |1〉)(a∗ 〈0|+ b∗ 〈1|)
}

=
∞∑
n=0

〈n|
(
ρ̂− |a|2 |0〉 〈0| − ab∗ |0〉 〈1|

)
|n〉

= |a|2 + |b|2 − |a|2 = |b|2,

(1.46)

that is the probability to observe the single photon component of the state used as

example.

It should be emphasized that this type of detector can not be used to measure the pho-

ton number properties of an intense light beam, unless they are used in a multiplexed

scheme. Since they are designed to detect the small amount of energy carried by a

single photon, they have a high-gain ampli�cation stage, which can be easily saturated

(and even damaged) by a high-intensity light state.
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1.3.2 Homodyne Detection

As already anticipated in the �rst Section, one of the most used techniques to obtain

information about a quantum state of light is Homodyne Detection (HD). Using this

technique it is possible to directly measure the electric �eld quadratures also for the

very weak �elds of a few-photon state. Unlike the device described in Section 1.3.1,

this technique is sensitive to the phase of the optical state, so it is the perfect tool

to investigate phase dependent quantum properties like squeezing, or to perform full

reconstructions of the density matrix describing a quantum state [20]. In Figure 1.4 a

scheme of this measurement apparatus is reported.

Figure 1.4: Schematic representation of the Homodyne Detection (HD) apparatus. The

central element, denoted by the abbreviation HDBS, is a balanced beam-splitter, on

which the reference beam called Local Oscillator (âL) is mixed with the unknown state

(âS) under analysis. The outputs of this beam-splitter are detected by two photodiodes,

then the di�erence between the two photocurrents is ampli�ed and measured via an

electronic system.

The state of the mode that we want to analyze, represented by the operator âs, is mixed

in a balanced (50:50) beam-splitter with a strong coherent state, usually called Local

Oscillator (LO). In this picture the LO beam is represented by the operator âL. The

outputs of the beam-splitter are detected by two photodiodes, the di�erence between

the two photocurrents is ampli�ed and then measured. It is possible to show that the

output of such a detector is proportional to the quadrature of the unknown quantum

state of the signal mode, measured at the relative phase between the local oscillator
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and the signal. Due to the central role played by the balanced beam splitter, I remind

here the laws that describe its behaviour:

d̂1 = r âS + t âL

d̂2 = t âS + r âL.
(1.47)

For a 50:50 beam splitter the re�ection and transmission coe�cients can be written in

the following form:

r =
i√
2

t =
1√
2
, (1.48)

so the operator describing the Homodyne measure is:

Ĥ− ≈ n̂2 − n̂1 = d̂†2d̂2 − d̂†1d̂1

= i
[
â†S âL − â

†
LâS

]
.

(1.49)

If we calculate the expectation value of this operator, considering a strong coherent

state for the LO (|αL〉) and a generic state in the signal mode (|ΨS〉), we can see the

link with the quadratures operator acting on the signal mode:

〈αL,ΨS| Ĥ− |ΨS, αL〉 = i 〈αL,ΨS|
[
â†S âL − â

†
LâS

]
|ΨS, αL〉

= 2
√
nL 〈ΨS|

[ â†Sei(θL+π
2

) + âSe
−i(θL+π

2
)

2

]
|ΨS〉

= 2
√
nL〈X̂S〉,

(1.50)

where we can recognize the de�nition of the quadrature operator acting on the signal

(X̂S). The phase of the quadrature measurement (θM), de�ned in Equation 1.6, is

strongly linked to the LO phase (θL), but, for a correct determination of this parameter,

we have to take into account also the phase of the state on wich we are performing the

measure. The quadrature value obtained with an Honodyne measurement is ampli�ed

by a factor (
√
nL) proportional to the intensity (mean photon number) of the LO beam.

As already mentioned, the concept of mode is of a great importance in the homodyne

measurement. Thus, before going further with HD description, let us switch to the

distributed mode formalism considering that the local oscillator is a strong coherent

state |αL〉, occupying the mode α(ω) = |α(ω)|eiθL , and |ψS〉 is a generic quantum state

distributed in the mode β(ω) = |β(ω)|eiθS , that in principle can be di�erent from the

LO one7. If we calculate the expectation value of the HD operator using this formalism,
7As in Section 1.2 I consider only the spectral mode of the optical states. A complete description

of Homodyne measurement requires to take into account the whole mode function of both the LO and

the unknown state |ΨS〉.
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we have:

〈Ĥ−〉 ≈
∫

dω 〈ψS| 〈αL| i
(
β∗(ω)â†Sα(ω)âL − α∗(ω)â†Lβ(ω)âS

)
|αL〉 |ψS〉

=

∫
dω|αL(ω)||βS(ω)| 〈ψS| â†Se

i(θL−θS+π
2

) + âSe
−i(θL−θS+π

2
) |ψS〉

= 2
√
nL

(∫
dω|α̃L(ω)||βS(ω)|

)
·

· 〈ψS| X̂S cos(θL − θS +
π

2
) + ŶS sin(θL − θS +

π

2
) |ψS〉 .

(1.51)

In the last line I used the de�nition α(ω) =
√
nLα̃(ω), where α(ω) is the coherent state

mode pro�le de�ned in Equation (1.41), while α̃(ω) is the pro�le normalized to 1. From

Equation (1.51) the central role played by the local oscillator emerges. First of all, as

already seen in Equation 1.50, the term
√
nL acts as an ampli�cation factor. It is the

square root of the local oscillator mean photon number, that, due to the large intensity

of this beam, can amplify the small signal coming from the unknown quantum state |ψS〉
above the electronic noise of the measurement apparatus. The term

∫
dω|α̃L(ω)||βS(ω)|

has a deep meaning too. It quanti�es our ability to match the mode of the state that

we want to measure to the mode of the LO, de�ning the so called mode-matching

e�ciency, ηmm = (
∫
dω|α̃L(ω)||βS(ω)|)2. A good mode matching is fundamental to

perform homodyne detection, indeed, having �xed the mode of the local oscillator, if

the state that we want to characterize is not in the same mode, this integral may drop

to zero, despite the e�ect of the ampli�cation. Practically, the local oscillator acts

as a �lter, de�ning the mode over which the homodyne measurement is performed.

From Equation 1.51 we have also a precise de�nition of the measurement phase θM
introduced in Equation (1.6): apart from the constant term π

2
, this parameter is �xed

by the relative phase between the LO and the state we are measuring, θM = θL−θS+ π
2
.

We can rede�ne the homodyne operator as:

Ĥ−(θM) ≈ 2
√
nL
√
ηmm

(
X̂S cos(θL − θS +

π

2
) + ŶS sin(θL − θS +

π

2
)
)

= 2
√
nLX̂

α̃
S (θM),

(1.52)

where the operator X̂ α̃
S (θM) is the distributed mode version of the operator de�ned

in Equation (1.6), that describes a quadrature measurement acting on the unknown

quantum state |ψS〉, performed in the mode α̃, at the measurement phase θM = θL −
θS + π

2
.
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Losses

The approximation symbol used in the Equation (1.52) reminds us that another step

has to be done to keep into consideration all the technical details of this measurement.

In the previous discussion an implicit assumption has been done: the two photodiodes

are considered as perfect. In the real world, just a portion of the impinging photons

are converted into electrons detectable via the acquisition system. This portion is

usually quanti�ed via the quantum e�ciency ηph parameter, that is usually given by

the photodiodes manufacturers. A model that describes this phenomena makes use of

an unbalanced beam splitter as shown in Figure 1.5.

Figure 1.5: Graphical representation of the loss beam-splitter model used to take into

account the non-unitary detection e�ciency of a photodiode (ηph). The signal under

test (âS) is mixed with a portion of vacuum (ν̂0) proportional to ηph.

This model gives us the possibility to keep considering ideal detectors at the cost

of placing, in front of them, a beam-splitter that mixes the state that we want to

measure (âS) with a portion of vacuum (ν̂0) proportional to the quantum e�ciency of

the detector. Introducing this model, the homodyne apparatus appears as shown in

Figure 1.6.
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Figure 1.6: Same apparatus of Figure 1.4 in which we implemented the loss beam-

splitter model to consider the e�ect of non-perfect photodiodes.

We can now calculate the operator describing the homodyne measurement using

the relations:

d̂1 =

√
ηph
2

(iâβS + âαL) + i
√

1− ηphν̂0

d̂2 =

√
ηph
2

(âβS + iâαL) + i
√

1− ηphν̂0,

(1.53)

where âβS is the operator representing the signal state in the mode β(ω), âαL represents

the local oscillator beam in the mode α(ω) and ν̂0 is the operator acting on the vacuum

mode added to consider the losses,

Ĥ−(ηph, ηmm, θM) = d̂†2d̂2 − d̂†1d̂1

= iηph

(
â†βS â

α
L − â

†α
L â

β
S

)
+

+ i

√
ηph(1− ηph)

2

(
(i+ 1)(â†βS − â

†α
L )ν̂0 − (i− 1)(âβS − â

α
L)ν̂†0

)
.

(1.54)

The expectation value of this operator, calculated on the same signal and local oscil-

lator state used in the ideal description made before, clari�es the e�ect of non-perfect

photodiodes. Unlike the approximate version, in this case we also have to consider the
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vacuum state on which the ν̂0 operator acts, to �nd the correct expectation value:

〈0, ψS, αL| Ĥ−(ηph, ηmm, θM) |αL, ψS, 0〉 =

= iηph

∫
dω 〈ψS, αL| β∗(ω)â†Sα(ω)âL − α∗(ω)â†Lβ(ω)âS |αL, ψS〉 =

= 2
√
nLηph

√
ηphηmm 〈ψS| X̂S cos(θL − θS +

π

2
) + ŶS sin(θL − θS +

π

2
) |ψS〉

= 2
√
nLηph 〈ψS| X̂ α̃

S (θM) |ψS〉 ,

(1.55)

where X̂ α̃
S (θM) has the same meaning explained for Equation (1.52), incorporating also

the e�ect of non-ideal photodiodes. In this calculation the second term of Equation

(1.54) drops to zero due to the relations 〈0| ν̂0 |0〉 = 〈0| ν̂†0 |0〉 = 0. From Equation

(1.55) we see that non-ideal photodiodes acts in the same way of a non-perfect mode-

matching, reducing both the signal and the LO amplitude. Starting from this point we

can operatively summarize all the unavoidable losses in the experiment with an overall

detection e�ciency ηdet. This factor will take into account, along with the mode

matching and the photodiode e�ciency, also the electronic noise due to an imperfect

ampli�cation and subtraction of the electronic signals (ηel)[21] and optical losses caused

by the unavoidable imperfections of the optical devices (ηop)

ηdet = ηmm · ηph · ηel · ηop. (1.56)

Going further in the HD description we can calculate the variance of the Ĥ− operator

to show that it is related to the electric �eld quadrature variance of the unknown state.

For the sake of simplicity let's perform this calculation considering, as the unknown

state, a Fock state in the mode β(ω), |ψS〉 = |nS〉(
∆Ĥ−

)2

= 〈0, nS, αL| Ĥ
2

− |αL, nS, 0〉 − 〈0, nS, αL| Ĥ− |αL, nS, 0〉
2

= 4nLη
2
ph 〈nS|

1

2
(ηmmn̂S +

1

2
) |nS〉+ nLηph(1− ηph).

(1.57)

The �rst term of Equation (1.57) is the variance of the electric �eld measured on a Fock

state (see Eq. (1.12)), incorporating also the e�ect of a non perfect mode-matching.

In the ideal case of perfect photodiodes and perfect mode-matching, the variance of

the HD signal is exactly the variance of the electric �eld carried by the state we are

measuring. If instead, we totally fail to mode-match the local oscillator to the signal

mode (ηmm = 0), we have:(
∆Ĥ−

)2

shot
= nLηph, (1.58)
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that is the variance of the vacuum or the shot noise level of the detector. As we al-

ready saw in the ideal version of the HD described at the beginning of this section,

the local oscillator can amplify also the lowest optical signal above the electric noise of

the detector. This relation is often used to identify the linear region of an homodyne

detector. The unbalancing of the homodyne beam-splitter, saturation of the photodi-

odes or di�erences between them can cause a distortion of the signal and so a deviation

from the linearity predicted by Equation (1.58).

As last step in the description of Homodyne Detection technique I want to introduce

a graphical tool useful to represent the results of a HD measurement, usually called

phasor diagram. It consists of a 2D chart in which the two axes represent the real

and imaginary components of the electric �eld (X̂ and Ŷ ) carried by the state. We

already de�ned these quantities in Section 1.1 starting from the general de�nition of

the quadrature operator

X̂θM =
â e−iθM + â† eiθM

2

=
â† + â

2
cos(θM) + i

â† − â
2

sin(θM)

= X̂ cos(θM) + Ŷ sin(θM).

(1.59)

For example, an Homodyne measurement, performed at a local oscillator phase of θLO
on a single mode coherent state of amplitude |α| and phase θα will be represented by

the phasor diagram in Figure 1.7.

Figure 1.7: Phasor diagram representing an homodyne measurement performed on a

coherent state.

The red line of length |α| represents the amplitude of the electric �eld of the coherent
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state, while the circle centered at its extremity takes in account the unavoidable un-

certainty of each quadrature measurement due to the Heisenberg uncertainty principle.

By changing the measurement angle, the expectation value of the Homodyne measure-

ment changes according to Equation (1.19) and it is represented by the projection of

the red line on the X axes in the phasor diagram.

1.4 State Tomography

In this chapter we saw that di�erent states have di�erent properties (for example, the

photon number and electric �eld distribution) and also that these properties can be

collected in the density operator ρ̂, which fully describes a quantum system. In the next

two chapters, I will show di�erent techniques to manipulate optical quantum states. I

will explore a method to emulate strong nonlinear e�ects at the single photon level, or

how to generate entanglement between macroscopic states. To get the proper conclu-

sions from these experiments a complete characterization of the �nal states is needed.

A procedure that allows one to know all the information about a system, without us-

ing a priori knowledge about it, is usually called quantum state tomography. In many

cases, this procedure allows us to know the density matrix elements of the generated

state expressed in a given basis8. As already seen in the previous section, homodyne

detection is a powerful tool to measure the amplitude of the electric �eld carried by a

quantum state, for di�erent phases. In this section I will explain the procedure used

during this work to reconstruct the density operator describing a given state from a

set of homodyne measurements.

Maximum Likelihood Algorithm

This technique is based on the maximization of a functional widely used in mathemat-

ical statistic, called Likelihood (L). L represents the expected probability of observing

a given set of values {yi} as a consequence of a measurement on a system described

by the density operator ρ̂. Therefore, this procedure can be splitted into two distinct

steps: the �rst is the collection of a proper data set, while the second is the maxi-

mization of L over all the possible ρ̂. The set {yi} must be carefully selected because

not all the observables give the complete information about the system. For example,

8To analyze the results of our experiments, we always express the reconstructed density matrices

using the Fock basis.
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measuring only the position of a particle in a harmonic potential is not su�cient to

determine its wave function, it will also be necessary to measure its momentum. To

fully characterize the states I will discuss in the rest of this work, I will use a set of

quadrature operators X̂i(θM), each measured for di�erent values of θM .

For the second step, we make use of the work of Hradil et al. [22]. They demon-

strated, using variational methods, that the maximum value of the likelihood can be

found by solving the non linear system:

R̂(ρ̂,y)ρ̂R̂(ρ̂,y) = ρ̂, (1.60)

where

R̂(ρ̂,y) =
∑
i

fi
|yi〉 〈yi|
〈yi| ρ̂ |yi〉

, (1.61)

and fi is the frequency of the measured value yi.

Assuming the initial condition ρ̂(0) = N Î, where N is a normalization factor, the

system (1.60) can be iteratively solved according to the equation

R̂(ρ̂(n),y)ρ̂(n)R̂(ρ̂(n),y) = ρ̂(n+1). (1.62)

Before entering into the details of this calculation, it is useful to better specify our data

set:

{yi} = {xi(θj), θj}, (1.63)

that takes into account the fact that the same value of xi can be measured for di�erent

choices of θ. The POVM operators describing the measurements performed to obtain

the above data set have the form:

|yi〉 〈yi| = |xi(θj), θj〉 〈xi(θj), θj| . (1.64)

To implement the abstract algorithm of Equation (1.62) it is necessary to project it

on a properly chosen basis and give a speci�c form to the operators R̂(ρ̂(n),y) and ρ̂.

Describing the number states I said that, in many cases, this is the simplest base to

perform calculation. This is one of those cases. Indeed, we have:

ρ(n+1)
m,n = 〈m| R̂(ρ̂(n),y)ρ̂(n)R̂(ρ̂(n),y) |n〉

=
∑
k,l

〈m| R̂(ρ̂(n),y) |k〉 ρ(n)
k,l 〈l| R̂(ρ̂(n),y) |n〉

=
∑
k,l

Rm,k(ρ̂
(n),y)ρ

(n)
k,l Rl,n(ρ̂(n),y),

(1.65)
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where ρ(n+1)
m,n is the matrix element of the density operator at the iteration n + 1, the

matrix element Rm,k(ρ̂
(n),y) has now the form:

Rm,k(ρ̂
(n),y) = 〈m| R̂(ρ̂(n),y) |k〉

=
∑
i,j

fi,j
〈m|xi(θj), θj〉〈xi(θj), θj|k〉
〈xi(θj), θj| ρ̂(n) |xi(θj), θj〉

=
∑
i,j

fi,j
〈m|xi(θj), θj〉〈xi(θj), θj|k〉

Pr(n)(xi(θj), θj)
,

(1.66)

with Pr(n)(xi(θj), θj) the probability to observe the quadrature xi at the angle θj cal-

culated from the density matrix at the nth iteration

Pr(n)(xi(θj), θj) =
∑
t,s

〈xi(θj), θj|t〉ρ(n)
t,s 〈s|xi(θj), θj〉. (1.67)

Using these ingredients, and reminding that the projection of the quadrature eigen-

states on the number states is:

〈n|xi(θj), θj〉 = einθ
( 2

π

) 1
4 Hn(

√
2x)√

2nn!
e−x

2

, (1.68)

solving the system (1.62) is just a matter of computation, apart from an unavoidable

assumption. To calculate the series (1.65), (1.66) and (1.67) they have to be truncated

to a �nite number of terms. This means that a proper assumption must be introduced

to limit the Fock space9. Even if it is possible to do this without using any hypothesis

on the state under analysis, in many experiments a certain amount of a priori knowl-

edge is always present. The intensity of the measured state, some phase relation or the

number of involved modes can help in this operation, thus simplifying the calculations.

Another interesting feature of the maximum likelihood algorithm is the possibility to

include the e�ects of non-unitary detection e�ciency adopting the model of the lossy

beam-splitter introduced for the homodyne detection. We have to reconsider the ingre-

dients of the algorithm as transformed by an η transmissivity beam-splitter [23]. This

adjustment allows the reconstruction of what has been really experimentally generated

without considering the deterioration due to a non-perfect observation.

9It is the mathematical space on which the number states are described.



Chapter 2

Single-Mode State Manipulation

In the previous chapter, I described the features of the main quantum optics operators.

Among these operators the most fundamental two are, of course, â and â†. They

have been analyzed in detail, considering also their distributed mode version to give a

description more suitable for their practical realization. In this chapter I will discuss

the techniques used during my PhD to experimentally implement the annihilation

and the creation operators and superpositions of those on the same mode. Both of

them share a fundamental aspect: they are based on a probabilistic approach. In

contrast to an on-demand realization in which the wanted operation is realized at a

speci�c moment, decided by the experimenter, in the probabilistic implementation the

operation is randomly applied to the input state. Due to the ignorance about the

application or not of the operation, this approach seems more suitable to produce, not

the wanted operation (Ô), but a mixture between it and the identity operator (Î), which

is the mathematical way to say that "nothing happened". To overcome this problem, in

the probabilistic implementation we make use of a second mode, usually called ancillary

mode. Making a properly chosen measurement on the ancillary mode, it is possible to

herald1 the successful application of the operator Ô, erasing the contribution of Î. So

we can represent the tools used to experimentally realize â and â† as a machine with

two inputs and two outputs. Two of them, labeled with 1, will be used to describe

the signal before and after the operation, while the other two (labeled with a 2) will

describe the ancillary mode. We can mathematically formalize this idea using two

1We usually refer to this type of approach as heralded (or conditional) implementation or measure-

ment induced operation.

29



30

unitary operators with the form

Û{sub,add} = eiγĴ(â1,â2,â
†
1,â
†
2), (2.1)

where Ĵ(â1, â2, â
†
1, â
†
2) is the hermitian operator that generates the wanted transforma-

tion. For the annihilation case we should use

Ĵsub(â1, â2, â
†
1, â
†
2) = â1â

†
2 + â†1â2, (2.2)

while in the addition case

Ĵadd(â1, â2, â
†
1, â
†
2) = â†1â

†
2 + â1â2. (2.3)

The operator (2.1) can be the starting point to implement the creation and the annihi-

lation operators only in the case of a very low success probability. Indeed (2.1) leads to

the desired operator only at the �rst order of approximation respect to the parameter γ,

that, at this abstract level of description, can be only linked to the strength of the cou-

pling between the modes 1 and 2. As I said, this probabilistic approach can not works

if the ancillary mode is not properly detected2. So we have to consider as fundamental

part of the machine used to realized a desired operation also the heralding system that

measures the mode 2. To better understand this method let's focus on the annihilation

operator case, considering that at this general level the same considerations stand for

the creation operator. Taking γ ≈ 0 we can write:

Ûsub |ψ〉1 |0〉2 = N{
[
Î + iγ

(
â1â

†
2 + â†1â2

)
+O(γ2)

]
|ψ〉1 |0〉2}

≈ N{|ψ〉1 |0〉2 + iγâ1 |ψ〉1 |1〉2},
(2.4)

that represents, for the signal mode, the superposition between the initial state and

the same state after the application of the annihilation operator, with probability γ2.

Looking at the whole state of Equation (2.4), composed by the signal and the ancillary

modes, we can see that, when the â1 operator acts on the input state, there is a single

photon in the mode 2, while for the unmodi�ed part this mode remains in the vacuum

state. So the detection of a single photon in the mode 2 will let us know when the

operation has been performed. If we place an SPCM along the ancilla path, we can

remove the unmodi�ed component by observing the signal mode only in coincidence

with a click from the detector3,

N{|ψ〉1 |0〉2 + iγâ1 |ψ〉1 |1〉2}
heralding−−−−−→
Î2−|0〉2〈0|

iγâ1 |ψ〉1 . (2.5)

2This can be easily understood thinking to the fact that the operator 2.1 is unitary, while the

operators that we want to implement (â and â†) are not.
3See Section 1.3.1 for more details.
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It doesn't matter how small the success probability is, every time the operation is

performed it is announced by the detection of a single photon in the ancillary mode.

Of course, neglecting the higher order terms in the expansion of Ûsub (Eq. (2.4)) leads

to unavoidable errors. The faithful implementation of the annihilation operator using

this technique requires that the probability (γ4) to perform the operation (â1)2 |ψ〉1
is negligible respect to γ2. Thus, it is clear that the γ parameter must be chosen as

the best compromise between this request and the necessity to keep experimentally

acceptable success probabilities.

2.1 Experimental Realization of Single Photon

Subtraction

The single photon subtraction operation has been fundamental for the realization of

important experiments during the years, like Schrodinger's cat state generation [24],

enhanced quantum metrology [25] and fundamental tests [26][5]. The idea at the base

of its implementation is simple: the subtraction of a single photon from a traveling

optical state can be seen as a controlled loss. In this scenario, the â operator can

be realized using a low-re�ectivity beam-splitter. Indeed, the operator that obeys the

relations (1.47) has exactly the form that we are looking for

Ûsub = ÛBS = eiγ(â1â
†
2+â†1â2). (2.6)

It is possible to better see it if we look at what happens injecting a single photon in

an arm of a beam-splitter as described by the relation used in the previous chapter,
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compared to the application of the operator ÛBS on the same state:

Chapter 1 Description

|1〉1 |0〉2 = â†1 |0〉1 |0〉2
BS−−−−−−−−−→

Equations (1.47)

(
tâ†1 + râ†2

)
|0〉1 |0〉2

= t |1〉1 |0〉2 + r |0〉1 |1〉2 .

Application of ÛBS

ÛBS |1〉1 |0〉2 = ÛBS â
†
1 |0〉1 |0〉2

= ÛBS â
†
1Û
†
BSÛBS |0〉1 |0〉2

=
(
â†1 cos(γ) + iâ†2 sin(γ)

)
|0〉1 |0〉2

= cos(γ) |1〉1 |0〉2 + i sin(γ) |0〉1 |1〉2 ,

where I used the property of ÛBS to be unitary (ÛBSÛ
†
BS = 1), and the relation

ÛBS |0〉1 |0〉2 = |0〉1 |0〉2, that means that a two mode vacuum state remains unchanged

after passing through a beam-splitter. From these relations we can see that, if we

consider t = cos(γ) and r = i sin(γ), the operator ÛBS actually describes the behavior

of a beam-splitter. They are also telling us that, if we look at the signal mode after

the beam-splitter, in most cases, with the probability cos2(γ), the injected state re-

mains unchanged4, while, with the probability sin2(γ), a photon is removed from the

signal mode with the generation of a photon in the ancillary one. At this point, the

strong link between the physical meaning of the parameter γ and the strategy used

to practically implement the desired operation (â) is more clear. In the experimental

implementation of the annihilation operator using a low-re�ectivity beam-splitter we

have γ = arccos(t), that shows the link between the abstract γ and the more practical

re�ectivity of the beam-splitter (t). This implementation of the â operator has been

used in many interesting works until now [2]. In Figure 2.1 a schematic picture of the

setup used to realize this idea is reported.

In this representation we used the two spatial modes of the beam-splitter, one for the

signal and the other for the ancilla, but, from the experimental point of view, it could

not be the best choice. Indeed it implies that the two optical states travel along dif-

ferent paths, su�ering from di�erent losses and phase �uctuations. In some cases, a

better way to realize the â operator is making use of the polarization degrees of freedom
4You have to remember that, for a low-re�ectivity beam-splitter γ is small, so cos2(γ) ≈ 1.



CHAPTER 2. SINGLE-MODE STATE MANIPULATION 33

Figure 2.1: Schematic view of the heralded single photon subtraction scheme.

of the light states, with the help of a few polarization sensitive devices. In this type

of implementation, the role of the spatial modes is now played by the two orthogonal

polarization components of the traveling wave, that we will call horizontal and vertical.

For example, we could consider the signal mode as the portion of an optical beam with

horizontal polarization, while the vertically polarized part as the ancilla mode. To

obtain the same e�ects seen using the spatial degrees of freedom, we need an optical

device that mixes the two modes, like the beam-splitter. Its analog for the polarization

encoding is the half-wave-plate (HWP). This optical device is a foil of a birefringent

material cut with a proper thickness such that a delay of π is inferred between the

extraordinary (ordinary) and ordinary (extraordinary) polarization components, for a

�xed wavelength. This means that a linear polarization going through the plate will

be rotated of an angle γ when the ordinary axis of the birefringent crystal is rotated

of an angle γ
2
with respect to the input polarization direction5. Such a device is the

analogous of a beam-splitter, indeed its input/output relations have the form:(
âoutH

âoutV

)
=

(
cHH cHV

cV H cV V

)(
âinH

âinV

)
, (2.7)

that, considering cHH = cV V = cos(γ) and cHV = cV H = i sin(γ), with the particle

number conservation law n̂inH + n̂inV = n̂outH + n̂outV , are formally identical to the beam-

splitter ones. In this case, the small success probability, required to consider valid the

relation (2.4), can be obtained with small rotations of the signal mode polarization

with respect to the ordinary axis of the HWP [27]. For example, by setting this angle

5Look at Appendix A for the details about the birefringence e�ect.
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to 5 degrees, from the Malus' law we �nd a success probability of ≈ 3%, which is the

one typically used for most of our experimental implementations. In these conditions, a

photon from the polarization mode of the signal is transferred to the one of the ancilla.

However, both the modes share the same spatio-temporal pro�le, experiencing the

same drifts or vibrations of any optical element, enabling for a particularly stable and

compensation free implementation of â. The last step, also required in the polarization

based realization of â, is the detection of the ancillary photon. To do this, we need to

spatially separate the two polarization modes. This can be achieved by using another

birefringent device, a polarizing beam-splitter (PBS). This device can be considered as

a normal beam-splitter despite the fact that the transmission and re�ection coe�cients

depend on the polarization of the incoming beam. Using a PBS it is possible to totally

transmit a polarization component, i.e. the horizontal polarization with respect to the

PBS axes, while the other one is totally re�ected. In this way, the two modes travel

separately only at the end of the experimental scheme, the signal towards the char-

acterization apparatus and the ancilla toward the heralding detector. As remarked in

the previous chapter, to allow the treatment of the annihilation operator in the single

mode picture we have to perform the operation in the same mode of the signal. To

achieve this condition, the SPCM used to herald the operation has been coupled to

the target beam by means of a single mode �ber. The spatial propagation mode of the

�ber has thus been matched to the spatial mode of the target state by using a system

composed of two lenses, resulting in an e�ciency of ≈ 80% of �ber-coupled photons.

In Figure 2.2 is reported a schematic view of the setup just described.

Figure 2.2: Schematic view of the heralded single photon subtraction scheme based on

the polarization degrees of freedom of the light.
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For all the experiments described in this work I used a mode-locked Ti:sapphire laser

emitting 1.5 ps long pulses at 786nm, with a repetition rate of 80MHz. Consider-

ing also that the SPCM used for the heralding has a detection e�ciency of ≈ 60%,

we can expect a success rate for the annihilation operation of ≈ LaserRepetionRate ·
SubtractionProbability ·FiberCouplingE�ciency ·SPCME�ciency ≈ 1.1MHz , if at list

one photon per pulse is present at the input.

2.2 Experimental Realization of Single Photon

Addition

Figure 2.3: Schematic view of the heralded single photon addition scheme.

The generation of single photons, that in other words is the application of the â†

operator to the vacuum state, is an "hot topic" in the quantum experimental world. As

already anticipated during the description of the number states, a well known process

to achieve this purpose is Parametric Down Conversion (PDC) [2]. Thanks to this

process, it is possible to add a single photon in an arbitrary mode, both to the vacuum

state, and so we will talk about Spontaneous Parametric Down Conversion, or to an

arbitrary state (Stimulated Parametric Down Conversion). The core of each PDC-

based implementation of the â† operator is a nonlinear optical medium. It should
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have a second order nonlinear coe�cient (χ(2)) di�erent from zero. If we inject in

such a material an intense laser beam, called pump, there is a non-zero probability

that a photon of this beam is annihilated by the interaction with the atoms of the

medium. This interaction is not resonant with any atomic level, so the pump photon

is annihilated by exciting a very short-lived virtual atomic state with the simultaneous

emission of two single photons at lower energy, usually called signal and idler. One

of them, usually the signal one, will be the photon added to the target state, while

the other will be detected, heralding the success of the operation, as shown in the

schematic setup of Figure 2.3. For all the experiments described in this thesis we

used a 3-mm long bulk β−barium borate (BBO) crystal as nonlinear medium. For a

better understanding of the PDC process let's start from the light-matter interaction

hamiltonian

Ĥ =

∫
V

P̂ (r, t) · Ê(r, t)dr, (2.8)

where P̂ (r, t) describes the polarization of the medium and V is the crystal volume.

The l-th polarization component of this operator can be written as a series of electric

�eld operators as

P̂l(r, t) = χ
(1)
lm(r)Êm(r, t) + χ

(2)
lmn(r)Êm(r, t)Ên(r, t) + ... (2.9)

where the indices l,m, n run over the two polarization components and the summation

on the repeated indices is assumed. χ(1)
lm is the lm component of the linear susceptibility

tensor while χ(2)
lmn is its second order nonlinear term. The Ê(r, t) operator of Equation

(2.8) is the electric �eld representing the pump for the nonlinear process, and has the

form

Êl(r, t) =

∫ (
âl(k, ω)e−i(k·r−ωt) + â†l (k, ω)ei(k·r−ωt)

)
dkdω = Ê

(+)
l (r, t) + Ê

(−)
l (r, t).

(2.10)

Since we are interested in the �rst order nonlinear process, we will consider only the �rst

nonlinear term in the polarization decomposition. Among all the possible nonlinear

processes we want to describe the one in which a pump photon is annihilated with the

consequent generation of two lower-energy photons. So, inserting the right terms of the

expressions (2.9) and (2.10) in the Equation (2.8), we �nd the interaction hamiltonian
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ĤPDC =

∫
V

χ
(2)
lmn(r)Ê

(+)
l (rp, tp)Ê

(−)
m (rs, ts)Ê

(−)
n (ri, ti)dr

=

∫
V

χ
(2)
lmn(r)âl(kp, ωp)â

†
m(ks, ωs)â

†
n(ki, ωi)·

· e−i[(kp−ks−ki)·r−(ωp−ωs−ωi)t]dkpdωpdksdωsdkidωidr,

(2.11)

The indices p, s and i indicate that the relative operators act on the pump, signal and

idler modes respectively. This hamiltonian governs the temporal evolution of the three

involved modes according to the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = ĤPDC(t) |Ψ(t)〉 . (2.12)

Considering that this evolution can be described also in terms of the unitary operator

ÛPDC(t) according to the equation

|Ψ(t)〉 = ÛPDC(t) |Ψ(0)〉 , (2.13)

we can put the Equation (2.13) in the (2.12) and solving for ÛPDC(t). The solution is

ÛPDC(t) = e−i
∫ t
−∞ ĤPDC(t′)dt′ , (2.14)

that, apart from the integral required to de�ne the shape of the mode, has the right

form to describe the creation operator, according to the Equation (2.1)6. As we did

for the annihilation operator we have to expand the operator ÛPDC(t) as a series of

powers, but in this case we will do it respect to χ(2)
lmn. These parameters are of the

order 10−11 ÷ 10−8 so we can stop the expantion at the �rst order of approximation.

This assertion is con�rmed by the experimental data. Considering the same apparatus

parameters used at the end of the previous section, whit 100mW of pump power at

393nm of wavelength, we have

Pp
hνp

=
0.1W

6.6 · 10−34 J · s · 7.5 · 1014 s−1
≈ 2 · 1017s−1 (2.15)

injected photons per second in the nonlinear crystal. An averaged value for the idler

count rate measured with our setup is ≈ 2000 cps. So we can estimate the success

single photon addition probability as

2000 s−1

2 · 1017 s−1
≈ 10−14, (2.16)

6To clarify the notation, the signal mode, indicated with the label 1 in Equation (2.1), is here

labeled with an s, while the ancillary mode (2) will be the idler mode (i).
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where we are not considering the optical losses along the signal path. This number

means that we generate, on average, a signal/idler photon pair every 1014 pump photons

that traveled in the crystal. This data has to be compared with the probability to

perform a double addition (â†)2, that is of the order 10−28 for each pump photon. So

we can use the approximated version

ÛPDC(t) ≈ Î − i
∫ t

−∞
ĤPDC(t′)dt′, (2.17)

instead of the Equation (2.14). To go further in the study of the Parametric Down

Conversion process we have to de�ne the initial state of the three involved modes,

represented in the previous equations by |Ψ(0)〉. Generally the pump beam is a strong

laser beam, so it can be considered as a coherent state with a very large mean photon

number (|{α}〉p) occupying the mode αl(kp, ωp). For sake of simplicity we can start

considering the signal and the idler in the vacuum state before the nonlinear crystal.

So the initial state before the PDC is

|Ψ(0)〉 = |{α}〉p |0〉s |0〉i . (2.18)

We can now study the so-called phase-matching conditions that have to be satis�ed

to perform an e�cient PDC. Applying the operator (2.17) to the state (2.18) we can

obtain a preliminary expression of the PDC output state

|Ψ(t)〉 = ÛPDC(t) |Ψ(0)〉

= |Ψ(0)〉 − i
∫ t

−∞
ĤPDC(t′)dt′ |Ψ(0)〉

= |Ψ(0)〉 − i
∫ ∫ t

−∞
χ

(2)
lmn(r)e−i(∆k·r−∆ωt′)αl(kp, ωp)·

· â†m(ks, ωs)â
†
n(ki, ωi) |α〉p |0〉s |0〉i dkpdωpdksdωsdkidωidt

′dr,

(2.19)

where ∆k = kp−ks−ki and ∆ω = ωp−ωs−ωi. Considering that we are not interested
in the description of the signal state during the interaction inside the crystal, and also

that ĤPDC(t′) is zero before and after the interaction, we can extend the time integral

to +∞,∫ +∞

−∞
ei∆ωt

′
dt′ = δ(ωp − ωs − ωi). (2.20)

Equation (2.20) is the �rst phase matching condition. It is the energy conservation

law that de�nes the relation between the pump and the signal/idler photons frequency.
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Regarding the spatial integral, considering the χ(2)
lmn susceptibility constant over the

crystal volume is a reasonable assumption. So it can be solved as follows

K(∆k) =

∫
V

e−i∆k·rdr

=

∫ +Lx
2

−Lx
2

e−i∆kxxdx

∫ +
Ly
2

−Ly
2

e−i∆kyydy

∫ +Lz
2

−Lz
2

e−i∆kzzdz

= 8
sin(∆kxLx

2
)

∆kx

sin(∆kyLy
2

)

∆ky

sin(∆kzLz
2

)

∆kz
.

(2.21)

This term de�nes the spatial bandwidth of the crystal. Indeed, it can be considered as

a sort of spatial �lter that allows the generation of the signal and idler photons only

for speci�c combinations of the wave vectors. Equation (2.21) has a maximum for

kp − ks − ki = 0, (2.22)

that is the second phase matching condition and tells us that if we observe an idler

photon along the direction ki, given the pump direction kp, we have the maximum

probability to �nd the signal photon with ks = kp−ki. The width of the ks distribution
is smaller as the crystal is longer, becoming the usual momentum conservation law in

the limit of in�nite crystals. We can now rewrite the PDC output state in the simpli�ed

form

|Ψ(t)〉 = |Ψ(0)〉 −
∫
φlmn(ks, ωs,ki, ωi)â

†
m(ks, ωs)â

†
n(ki, ωi) |α〉p |0〉s |0〉i dksdωsdkidωi

= |Ψ(0)〉 −
∫
φlmn(ks, ωs,ki, ωi)dksdωsdkidωi |α〉p |1ks,ωs〉s |1ki,ωi〉i ,

(2.23)

where we de�ned the shape of the output modes of the spontaneous parametric down

conversion process as

φlmn(ks, ωs,ki, ωi) = iχ
(2)
lmn

∫
αl(kp, ωs + ωi)K(∆k)dkp. (2.24)

We have to notice that this pro�le is the convolution between the pump pro�le and

the crystal band. We have to be careful in the interpretation of φlmn(ks, ωs,ki, ωi) as

mode pro�le of the signal and idler photons. They are a pair of quantum correlated

(entangled) photons, so their individual properties are not well de�ned until one of

them is detected, only at that time the mode distribution of the other one will be well

de�ned7.
7See Chapter 3 for more details about entangled systems.
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We are now able to de�ne the detection part needed to implement the heralded version

of the addition operator. As for the â implementation, also to realize the â† operator

we are using a probabilistic approach. The PDC process has a small success probability

because of the small susceptivity coe�cient, so, also in this case we need to perform a

detection operation on the ancillary mode to herald the operation. A big challenge of

each experiment involving the implementation of â† is to perform the addition of a single

photon on a single target mode. This can be done accurately tailoring the measurement

performed on the idler photon. A theoretical recipe to do this has been developed by

Ou in 1997 [28] and Aichele and al.[29]. They agree in saying that a narrowband

spatio-spectral �lter should be placed in the heralding channel to produce high purity

transform-limited single photons in the signal one. According to this suggestions we

can de�ne the heralding measurement operator as

ρ̂f =

∫
dkfdωfΓ(kf , ωf ) |1kf ,ωf 〉 〈1kf ,ωf | , (2.25)

where Γ(kf , ωf ) is the band of the �lter centered at the frequency ωf and around the

wave vector kf 8.

De�ning the density operator of the biphoton state as ρ̂PDC = |Ψ(t)〉 〈Ψ(t)| we can

8Respect to the SPCM description made in Section 1.3.1 we are now considering that the probability

to generate Fock states with n > 1 is negligible in the PDC process. In this case we can restrict the

description of the operator representing the SPCM to an Hilbert space of dimension 2. So we have

Π̂on = Î2×2 − |0〉 〈0|

= |0〉 〈0|+ |1〉 〈1| − |0〉 〈0|

= |1〉 〈1| ≈ ρ̂f ,

(2.26)

apart from the integral de�ning the action of the spatial and spectral �lters.
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mathematically formalize the heralding measurement as

ρ̂s = Tri

{∫
dkfdωf |1kf ,ωf 〉 〈1kf ,ωf |Γ(kf , ωf ) |Ψ(t)〉 〈Ψ(t)|

}
=
∑
n

∫
dkfdωfdktdωtΓ(kf , ωf )〈nkt,ωt |1kf ,ωf 〉〈1kf ,ωf |Ψ(t)〉〈Ψ(t)|nkt,ωt〉

=

∫
dkfdωfΓ(kf , ωf )〈1kf ,ωf |Ψ(t)〉〈Ψ(t)|1kf ,ωf 〉

=

∫
dkfdωfdksdωsdkidωidks′dωs′dki′dωi′Γ(kf , ωf )·

· φ∗lmn(ks, ωs,ki, ωi)φlmn(ks′ , ωs′ ,ki′ , ωi′) |1ks,ωs〉 〈1ks′ ,ωs′
| ·

· 〈1kf ,ωf |1ki,ωi〉〈1ki′ ,ωi′
|1kf ,ωf 〉

=

∫
dkfdωfdksdωsdks′dωs′Γ(kf , ωf )·

· φ∗lmn(ks, ωs,kf , ωf )φlmn(ks′ , ωs′ ,kf , ωf ) |1ks,ωs〉 〈1ks′ ,ωs′
|

=

∫
dkfdωfdksdωsΓ(kf , ωf )|φlmn(ks, ωs,kf , ωf )|2 |1ks,ωs〉 〈1ks,ωs|

=

∫
dksdωsΦ(ks, ωs) |1ks,ωs〉 〈1ks,ωs| ,

(2.27)

where Tri denotes the trace over the degrees of freedom of the idler photon. In the

second to last step of Equation (2.27) we made use of the phase matching conditions

to evaluate the integrals over dks′ and dωs′ , while in the last one we introduced the

pro�le of the photon added in the signal channel

Φ(ks, ωs) =

∫
dkfdωfΓ(kf , ωf )|φlmn(ks, ωs,kf , ωf )|2. (2.28)

Actually, Aichele and al. showed that under reasonable hypotheses, like ignoring

di�raction, spatial or temporal walko� (by using a su�ciently short crystal) and con-

sidering gaussian collimated beams, in real scenarios it is su�cient to �lter the idler

detection much narrower than the pump spatial and spectral width to achieve highly

pure addition operations. We can de�ne the purity parameter for time and spatial

degrees of freedom as

P = Tr{ρ̂2
s} = Ptemp · Pspa, (2.29)

where

Ptemp(µt) =
1√

1 + 2µ2
t

(2.30)

Pspa(µs) =
1

1 + 2µ2
s

. (2.31)
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Equations (2.31) and (2.30) summarize the Aichele' idea asserting that the temporal

(spatial) purity of the added single photon depends only on the ratio µt = σfω/σ
p
ω

(µs = σfk/σ
p
k) between the frequency (wave vector) distribution width of the heralding

�lter and the one of the pump. In the limit case of delta shaped �lters with ωf = ωp
2

and kf = kp − ks we obtain

Φ(ks, ωs) =

∫
dkfdωfδ(kf − kp + ks)δ(ωf −

ωp
2

)|φlmn(ks, ωs,kf , ωf )|2

= |χ(2)
lmnαl(kp − kf ,

ωp
2

)|2,
(2.32)

that means that we have to prepare the pump �eld in a pure mode to obtain the

added photon in an equally shaped pure mode, centered at the frequency ωp
2
along the

direction conjugated to kf according to the momentum conservation law. At this point

of the analysis of the single photon addition technique we can de�ne the generation

e�ciency parameter ηgen. In analogy with the detection e�ciency de�nition, this

parameter quanti�es our ability to add just a single photon to a speci�c mode. It is

clear that it is strongly linked to the spatial and temporal purity of the photon emitted

by the PDC process. Other factors that degrade the addition operation are the dark

counts of the heralding detector9 and the double addition on the same mode10. The

overall generation e�ciency is de�ned as

ηgen = Ptemp · Pspa · ηdark. (2.33)

In our setup the pump �eld is prepared as a gaussian beam with a spectral width of

≈ 0.9nm and a waist of 200µm by means of spatial �ltering composed by a pin-hole

of 35µm of aperture and two lenses of 75mm and 100mm of focal length. For the

heralding part we used as spectral �lter an ethalon cavity of width 0.1nm, and for the

spatial �ltering a single mode �ber capable to select a propagation mode with a beam

waist of ≈ 530µm. The resulting generation e�ciency is, considering also the small

contribution of the dark counts (ηdark = 0.99), ηgen ' 0.92.

In order to give a full description of this technique, we need also to consider the

polarization degrees of freedom. There are three possible con�guration for the pump

(l), signal (m) and idler (n) polarizations. We call the process type I parametric down

conversion when l 6= m = n, that means that the signal and idler have the same

9When a false click come from the heralding detector we are applying on the signal mode the

identity operator Î instead of â†.
10This contribution can be neglected in all our experimental realizations as seen before.
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polarization, orthogonal to the pump, type II parametric down conversion if l = m 6= n

or l = n 6= m and type 0 parametric down conversion the last case in which the three

�elds are equally polarized (l = m = n). The general expression for the phase matching

condition can be expressed in the form [30]:

nl(ωs + ωi)(ωs + ωi)
kp
|kp|

= nm(ωs)ωs
ks
|ks|

+ nn(ωi)ωi
ki
|ki|

. (2.34)

Before going further in this analysis we have to notice that the BBO crystal, in which

the PDC process occurs, is an uniaxial birefringent medium. Referring to Figure A.1

and restricting to the degenerate process, for which ωs = ωi = ωp
2
, we can, for example,

study the type 0 case. Equation (2.34) for type 0 PDC has the form:

2ne,o(ωp)
kp
|kp|

= ne,o(
ωp
2

)
ks
|ks|

+ ne,o(
ωp
2

)
ki
|ki|

, (2.35)

where the three modes (p, s and i) feel the same refractive index11. For common crystals

n(ω) is an increasing function of ω, so Equation (2.35) has no solutions without a careful

engineering of the refractive index [31][32]. In our experimental setup we exploited type

I parametric down conversion, in the degenerate case, where ωs = ωi. Considering kp

directed along the y-axes of Figure A.1, the phase matching conditions for this case

are

2ne,o(ωp) = no,e(
ωp
2

)
( kys
|ks|

+
kyi
|ki|

)
kx,zs
|ks|

+
kx,zi
|ki|

= 0.

(2.36)

Now the pump feels a refractive index di�erent from that of the signal and the idler

(ne(ω) 6= no(ω)), so the �rst equation can be solved. The x, z part of Equation (2.36)

tells us that the signal and idler photons are emitted along a cone.

Addition of a Single Photon to an Arbitrary Input State

We restricted the previous analysis to the case of vacuum as initial state of the signal

mode (Eq. (2.18)). With the right precautions, the generalization to the case of single

photon addition to an arbitrary signal state (|Ψks,ωs〉) is quite straight forward. The

only one request is to use as seed an arbitrary state mode matched with the signal

11We can consider the wave vector of the pump �eld aligned along the y axis of Figure A.1. If its

polarization lies on the z axis all the �elds will feel the extraordinary refractive index (ne), otherwise,

if it is aligned along the x axis they feel no.



44
2.3. EXPERIMENTAL SUPERPOSITION OF SINGLE PHOTON QUANTUM

OPERATIONS

mode. In this way, the detection of an idler photon will herald the presence of the

state in Equation (2.37) in the signal mode

ρ̂s =

∫
dksdωsΦ(ks, ωs)â

†
m(ks, ωs) |Ψks,ωs〉 〈Ψks,ωs| âm(ks, ωs), (2.37)

where |Ψks,ωs〉 is a generic initial state of the signal mode.

In the particular case of using a coherent state as initial signal state, this request can be

relaxed. Indeed, we have only to take care that it occupy a spatial and spectral mode

broader than the Local Oscillator one. This is justi�ed by the fact that we will always

analyze the results of our experiments using a homodyne detector. Indeed, according

to the results of Section 1.3.2, the Local Oscillator acts like a �lter, making the detector

blind to the portion of the signal out of its mode. So, if we match the mode of the LO

to the one over which we perform the addition, we can neglect the remaining part of

the initial signal state simply considering an initial state of reduced amplitude.

2.3 Experimental Superposition of Single Photon Quan-

tum Operations

From a general point of view, all the experiments that will be discussed in this thesis

will aim to demonstrate some fundamental aspects of quantum mechanics. One of its

pillar is the superposition principle. Due to this, an atom, for example, can be in an

excited state or in the ground state at the same time. Transposing this concept to

the macroscopic world would lead to the famous Schrödinger's cat paradox [33], that

makes the microscopic world apparently so di�erent from the one in which we live. The

ability to experimentally deal with the quantum superposition is challenging. Along the

years various techniques to implement superpositions of heralded quantum operators

has been used to demonstrate fundamental relations like the quantum commutation

rules [5]. The experimental implementation of the operator superposition is based on

a simple idea. Let's consider the operator Â1,2 acting on the mode 1, heralded by the

presence of a single photon in the mode 2. Similarly the operator B̂1,3 acts on the

same mode and has the heralding photon in the mode 3. If we trigger an homodyne

measurement performed on the mode 1 on a coincidence between the clicks in mode

2 and 3, we will see the action of the sequence Â1,2B̂1,3. If instead we want to study

the e�ect of the superposition between these two operators (Â1,2 + B̂1,3), we have to

trigger the homodyne detection on a signal that erases the information about what



CHAPTER 2. SINGLE-MODE STATE MANIPULATION 45

operator acted. To do this we have to make the two heralding photons interfere in a

beam-splitter after an accurate matching of the two paths 1 and 2, and then we have

to use one of the two output of the BS as heralding. If we can neglect the probability

to simultaneously perform the two operations, such a trigger heralds the operation

(c1Â1,2 + c2e
iϕB̂1,3), as it is shown in Figure 2.4.

Figure 2.4: a) If we perform an homodyne measurement to characterize the mode 1

when we see a click only in the trigger detector placed along the path of mode 2,

we will see the e�ects of the application of the operator Â1,2. Similarly, the scheme

b) shows the e�ects on the initial state when we see a click only in the detector on

mode 3. Case c) shows that if we trigger the homodyne detection on the coincidence

between the two heralding events we are applying to the mode 1 the sequence of the two

operators, Â1,2B̂1,3. The last part of this �gure d) is the setup needed to implement

the superposition between the two operators. The two heralding modes are mixed

in a beam-splitter after a careful compensation of their relative phase. Considering

negligible the probability to perform simultaneously the two operations compared to

just one of them, we can see a click in the detector when the heralding modes are in

the state |1〉2 |0〉3 or |0〉2 |1〉3, with no possibility to distinguish the two cases. This

indistinguishability projects the operator acting on the mode 1 on the superposition

(c1Â1,2 + c2e
iϕB̂1,3).
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The ratio between the weights c1 and c2 can be controlled varying the transmission

(re�ection) coe�cient of the beam-splitter. The setup showed in Figure 2.4 d) is the

basic scheme used to implement the superposition between heralded operators. We

can then slightly modify it to implement more complicated and interesting operations.

For the realization of the experiment that I will discuss in the last part of this chapter

we used this idea to implement the superposition between di�erent sequences of the

operators â and â†. Exploiting the polarization degrees of freedom for the realization

of the annihilation operator and a PDC crystal for the creation one, we can implement

the operator (c1ââ
† + c2e

iϕâ†â), as shown in Figure 2.5.

Figure 2.5: From the left to the right we have the initial signal state in the verti-

cal polarization mode. The �rst HWP rotates a single photon from the signal to

the horizontal polarization mode, performing the �rst subtraction with a given, low,

probability. Later, considering type I PDC, only the vertical component of the sig-

nal interacts in the BBO crystal with the horizontal polarized pump. A click in the

addition detector DA heralds the generation of a single photon in the signal mode.

The second HWP acts as the �rst one. Due to the low success probability for the

subtraction operation we can neglect the case in which we have two single photons

in the vertical polarization mode of the signal. Therefore the PBS separates the two

polarizations sending the subtraction heralding photon to the second detector DS and

erasing the information about which HWP acted. Acquiring the homodyne signal only

when we see the coincidence between the two detector events ensures to characterize

the state after the application of the desired superposition of operators.

In this setup, the polarizing beam-splitter (PBS) removes a single photon from the

spatial mode in which the signal travels, giving us no information about the time at

which it has been subtracted from the polarization mode of the signal, before or after
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the addition operation. The coincidence of a click from the two detectors (DA and

DS) does not allow one to distinguish what sequence has been performed, ââ† or â†â.

Mathematically, this scheme is described by the sequential application of an unitary

low re�ectivity beam-splitter transformation (Eq. (2.6)), followed by the unitary PDC

operator (Eq. (2.14)) and again another low re�ectivity beam-splitter, in the usual low

probability regime.

Ûsub(γ3)Ûadd(γ2)Ûsub(γ1) = eiγ3(â1â
†
4+â†1â4)eiγ2(â†1â

†
3+â1â3)eiγ1(â1â

†
2+â†1â2)

≈
[
Î + iγ3(â1â

†
4 + â†1â4)

]
·

·
[
Î + iγ2(â†1â

†
3 + â1â3)

]
·

·
[
Î + iγ1(â1â

†
2 + â†1â2)

]
.

(2.38)

Here the subscript 1 indicates an operator acting on the signal mode, while 2, 3 and

4 represent the ancilla mode of the �rst subtraction, of the addition and the second

single photon subtraction in this order. γ1, γ2 and γ3 are their success probability as

discussed in the previous sections. Neglecting the terms representing the simultaneous

application of the three operations (ââ†â) and considering that the three ancillary mode

are initially in the vacuum state, we can infer the form of the operator describing the

action performed on the signal state when we see a coincidence between the triggers of

Figure 2.5.

|Ψout〉 = Ûsub(γ3)Ûadd(γ2)Ûsub(γ1) |ψins 〉1 |0〉2 |0〉3 |0〉4
≈
[
Î + iγ1â1â

†
2 + iγ2â

†
1â
†
3 + iγ3â1â

†
4 − γ1γ2â1â

†
1â
†
2â
†
3+

− γ1γ3â1â1â
†
2â
†
4 − γ2γ3â

†
1â1â

†
3â
†
4

]
|ψins 〉1 |0〉2 |0〉3 |0〉4

= |ψins 〉1 |0〉2 |0〉3 |0〉4 + iγ1â1 |ψins 〉1 |1〉2 |0〉3 |0〉4 + iγ2â
†
1 |ψins 〉1 |0〉2 |1〉3 |0〉4 +

+ iγ3â1 |ψins 〉1 |0〉2 |0〉3 |1〉4 − γ1γ2â1â
†
1 |ψins 〉1 |1〉2 |1〉3 |0〉4 +

− γ1γ3â1â1 |ψins 〉1 |1〉2 |0〉3 |1〉4 − γ2γ3â
†
1â1 |ψins 〉1 |0〉2 |1〉3 |1〉4 .

(2.39)

The POVM describing the trigger apparatus is Π̂ = |1〉3 〈1| ⊗ (|1〉2 〈1| + |1〉4 〈1|). We

can obtain the density operator describing the state after the transformation tracing

out the ancillary modes:

ρ̂out = Tr2,3,4

[
Π̂ |Ψout〉 〈Ψout|

]
= (γ1γ2â1â

†
1 + γ1γ3â

†
1â1) |ψins 〉 〈ψins | (γ1γ2â

†
1â1 + γ1γ3â1â

†
1).

(2.40)
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The operator applied to the initial state is therefore

Ôsup = N
(
â1â

†
1 +

γ3

γ2

â†1â1

)
, (2.41)

where N is a normalization factor. From Equation (2.41) it is clear that the relative

success probability of the two sequences of operations (ââ† or â†â) can be arbitrary set

by acting on the rotation of the two HWPs.

2.4 Measurement-induced strong Kerr nonlinearity for

weak quantum states of light

In this section, I will show an experiment in which, using the basic ingredients described

in the previous sections, we are able to emulate the e�ect of a strong Kerr nonlinearity

on weak quantum states of light [34].

Strong nonlinearity at the single photon level represents a crucial enabling tool

for optical quantum technologies, forming the basis of innumerable photonic devices.

Unfortunately, its use in quantum optics and optical quantum information processing

often requires strong nonlinear coupling between single photons, that it is hard to ob-

tain experimentally. This is because the typical nonlinearities of common non-resonant

optical media are many orders of magnitude weaker than what is required for these

applications. Among all the possible nonlinear interactions, Kerr e�ect is a fundamen-

tal one, which leads to dependence of the refractive index on the intensity of light that

propagates through the nonlinear medium, enabling e.g. for the realization of impor-

tant logical gates for quantum computing [35][36]. Despite its theoretical interest, the

large amount of experimental problems strongly limited its use. Moreover, during the

years, several works pointed out that the very nature of light-matter interaction may

prevent achievement of a su�ciently strong Kerr nonlinearity for weak quantum optical

�elds [37][38]. To overcome this problem, specially tailored media with enhanced non-

linearities, such as clouds of ultra-cold atoms, have been studied [39][40]. Despite the

interesting results, this kind of approach remains extremely complex and challenging.

In 2001, Knill, La�amme, and Milburn showed, in their landmark paper, that e�ective

nonlinear interactions at the single-photon level can be implemented with the use of

optical interference, single photon detection and auxiliary single photons [41]. In this

approach, the single photon detection provides the desired nonlinearity. The resulting

linear optical quantum gates are generally probabilistic, as implied by the fact that they



CHAPTER 2. SINGLE-MODE STATE MANIPULATION 49

are driven by quantum measurements, but their success probability can be boosted ar-

bitrarily close to 1 by using more ancilla photons and more complex interferometric

schemes [41][42]. This concept has triggered an immense amount of theoretical and

experimental works. For example, following this approach, a quantum-noise limited

phase insensitive ampli�cation has been implemented solely by a homodyne detection

and feedforward [43].

2.4.1 Theory

At the quantum level, the Kerr nonlinear interaction is described by a Hamiltonian

which is a quadratic function of the photon number operator n̂[44],

Ĥk = ~k â†2â2 = ~k n̂(n̂− 1), (2.42)

where k is the Kerr nonlinear coe�cient. The resulting unitary transformation of the

quantum state of the optical mode is diagonal in Fock basis, which means that each

Fock state |n〉 acquires a phase shift which is a non-linear function of n,

|n〉 KerrEffect−−−−−−−→ eiΦn̂(n̂−1) |n〉 , (2.43)

with Φ = k t, where t is the time variable. Strong Kerr nonlinearity with Φ ≈ 1 would

enable e.g. generation of macroscopic superpositions of coherent states [45], imple-

mentation of entangling quantum gates for universal quantum computing [46], and

complete Bell state measurement in quantum teleportation [47][2].

With this experiment we showed the successful implementation of a strong Kerr nonlin-

earity by measurement-induced quantum operations on weak quantum states of light.

Speci�cally, we emulate this interaction on the smallest non-trivial subspace spanned

by the vacuum, single-photon and two-photon states, |0〉, |1〉 and |2〉. In this subspace,

the Kerr interaction transforms a generic input state according to

e−
iĤk t

~ (c0 |0〉+ c1 |1〉+ c2 |2〉) = c0 |0〉+ c1 |1〉+ e−2iΦc2 |2〉 . (2.44)

We target a Kerr nonlinearity with Φ = π/2, which induces a π-phase shift of the

two-photon Fock state with respect to states |0〉 and |1〉. Up to a linear π-phase shift

which �ips the sign of odd Fock states12, and an unimportant overall phase factor −1,
12 The phase shift operator is de�ned as Û(Φ) = e−in̂Φ.

A π phase shift on a state in the subspace |0〉, |1〉 and |2〉 is equivalent to

Û(π)(c0 |0〉+ c1 |1〉+ c2 |2〉) = c0 |0〉+ e−iπc1 |1〉+ e−2iπc2 |2〉 = c0 |0〉 − c1 |1〉+ c2 |2〉 . (2.45)
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this transformation is equivalent to a π-phase shift in the amplitude of the vacuum

state on the three-dimensional subspace considered, i.e.,

c0 |0〉+ c1 |1〉 − c2 |2〉
π−shift−−−−−−−−−−−−−→

−1 overall phase factor
−c0 |0〉+ c1 |1〉+ c2 |2〉 . (2.46)

The change of sign in the amplitude of the vacuum component is thus the signature

of the strong Kerr nonlinearity that we wish to demonstrate in our experiment. To

implement the gate in Equation (2.46) we made use of the scheme in Figure 2.5. As

seen in the previous section, this scheme allows us to to implement the transformation

V̂ (â, â†) = Aââ† +Bâ†â, (2.47)

that, making use of the relations â†â = n̂ and ââ† = n̂+ Î, becomes

V̂ (n̂) = (A+B)n̂+ AÎ. (2.48)

The free parameters A and B have to be set according to the relations13
V (1)
V (0)

= 2A+B
A

= −1

V (2)
V (1)

= 3A+2B
2A+B

= 1
(2.49)

to implement the wanted transformation of the coe�cients as in Equation (2.46)(
V̂ (c0 |0〉+ c1 |1〉+ c2 |2〉) = −c0 |0〉+ c1 |1〉+ c2 |2〉

)
. This system has no solutions, so,

to make our task feasible we have to consider a simultaneous noiseless ampli�cation

[43] of the state

c0 |0〉+ c1 |1〉+ c2 |2〉
Kerr Tranformation +−−−−−−−−−−−−−−−→

+ Noisless Amplification
−c0 |0〉+ gc1 |1〉+ g2c2 |2〉 , (2.50)

where g > 1 is the ampli�cation factor.
V (1)
V (0)

= 2A+B
A

= −g
V (2)
V (1)

= 3A+2B
2A+B

= g
→

g = 1 +
√

2

B
A

= −3−
√

2
(2.51)

That is the equivalent of the system (2.49), modi�ed to take in account the ampli�-

cation, with the relative solutions. It has to be noticed that the ampli�cation doesn't

spoil the signatures of nonlinearity. On the contrary, it is actually bene�cial, because

13In Equation 2.49 the symbols V(n) have to be interpreted as V (n) = 〈n| V̂ (n̂) |n〉. So, for example,

V (0) = 〈0| (A+B)n̂+AÎ |0〉 = A.
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we intend to probe the quantum operation with weak coherent states and the ampli-

�cation makes the desired nonlinear e�ect even more visible. Otherwise, if wishing

to achieve the nonlinearity in Equation (2.46) without ampli�cation, one could either

use two photon subtractions and additions instead of one [48], or the output state of

Equation (2.50) could be noiselessly attenuated [49][50] with the help of a beam-splitter

with amplitude transmittance t = 1/g, a highly e�cient single-photon detector, and

conditioning on observation of no photons at the auxiliary output port of the beam-

splitter. The experiment requires the precise and stable setting of the relative weights

and phases of the operator superposition to implement the desired conditional trans-

formation. The resulting output states are subjected to balanced homodyne detection

and �nally analyzed via a full quantum state tomographic reconstruction.

2.4.2 Experimental Details

Figure 2.6: Experimental setup schematic illustration.
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The Laser For all our experiments we used a Mode Locked Ti:sapphire laser emitting

1.5 ps long pulses at a repetition rate of 80MHz14. The emission is centered at 786nm

of wavelength, distributed in a gaussian pro�le of width 0.6nm. As shown in Figure

2.6, the output of this laser is splitted in three main portions. The largest of them

is frequency doubled via a Second Harmonic Generation (SHG) process that occurs

in a lithium triborate (LBO) crystal. The UV (393nm) output, of approximately

400mW , is used as pump beam for the degenerate, non-collinear, type-I Parametric

Down Conversion that occurs in a 3-mm long β-barium borate (BBO) crystal. As

explained in Section 2.2 this process is used to implement the â† operator. The second

part of the main laser beam is very attenuated to generate the weak coherent state

(|α〉) used as initial state of the transformation (2.50). The procedure used to set a

speci�c vale of the amplitude of this state is described in Appendix C. The last portion

of light is used as Local Oscillator for the Homodyne Detector.

Weights and Phase Adjustment To satisfy the conditions (2.51) for the relative

success probability of the sequence â†â respect to ââ† we act on the rotation of the wave

plates HWP1 and HWP2 of Figure 2.6. According to the Malus' law, the probability

to rotate a photon from a linearly polarized beam to the orthogonal polarization is

proportional to cos2(θHWP ), where θHWP is the angle between the polarization of the

incoming beam and the axis of the plate. In the setting of these angles we have to

keep in mind that the implementation of the â operator via the half wave plate scheme

requires a low subtraction probability (Section 2.1). To satisfy both the conditions

we tilted the �rst HWP of 4 degrees respect to the vertical polarization of the weak

coherent state, while the second one of 1.9 degrees. The minus sign in the ratio B/A =

−(3 +
√

2) can be obtained by rotating the �rst HWP in the opposite direction to

the second one, with respect to the orientation corresponding to θHWP = 0. Due to

the birefringence of the BBO crystal15, there is a spatio-temporal walk-o� between

the subtracted photon (horizontally polarized) from HWP1 and the signal (vertically

polarized), after the addition stage. The heralding photon from the second HWP does

not su�er of this e�ect. This problem has the consequence to make the two subtraction

heralding photons partially distinguishable. To compensate this e�ect we placed a

second BBO crystal, identical to the one used for the â† implementation, between

HWP1 and the PDC crystal (not shown in Figure 2.6). This is rotated in such a way

14This means that each pulse is separated from the next one by ca. 12.5ns.
15See Appendix A for more details about birefringence.
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that its extraordinary axis is parallel to the ordinary axis of the PDC crystal. The fact

that these two BBO have the same length ensure the walk-o� compensation.

Detection I already anticipated that the output of this experiment will be charac-

terized using an Homodyne Detector. As we saw in Section 1.3.2, the Local Oscillator

acts like a �lter for the HD, making the detector only sensitive to the part of the signal

in the same mode of the LO. We can start from here to better de�ne the concept of

single mode in our experiment. Every optical state with the same mode pro�le of the

LO is de�ned as a single mode state. Our Homodyne Detector must be able to measure

the quadrature distribution for each single mode, so we can study the properties of the

single mode pro�le function of the LO beam to clarify how we optimize our setup to

perform the characterization of manipulated states:

• LO Polarization Pro�le: Linear, vertically oriented.

From the detection point of view the polarization features are not a problem

because the HD photodiodes are insensitive to the polarization. To ensure that

the signal lies in the same polarization mode of the LO we placed a polarizer,

aligned with the LO, before the signal input port of the HDBS (not shown in

Figure 2.6)

• LO Spatial Pro�le: The LO is spatially shaped, using a three-lens system, to

obtain a gaussian beam with a waist of 200µm at a distance from the center of

the Homodyne beam-splitter equal to the distance between this device and the

PDC crystal.

We can ensure the generation of the single photon from the addition stage in

the LO spatial mode by manipulating the pump beam to have a waist of 200µm

at the PDC crystal position (see Section 2.2). To produce the initial weak co-

herent state for our Kerr transformation in a single "spatial" mode, we have to

shape it in such a way that it will have the same beam waist at the same position.

Also for the â stage, we have to engineer the spatial mode collected by the �ber

coupled to the heralding SPCM (see Section 2.1) with the same features.

After the HDBS the output beams are focused on the two HD photodiodes

(Hamamatsu S3883, active area of 1.7mm2). They have been also selected to

have a good quantum e�ciency in the spectral region of our laser emission.
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• LO Spectral Pro�le: The LO is an unmodi�ed portion of the output beam of the

main laser, so its spectral pro�le has the same properties of the laser, described

in the previous paragraph.

Using the same laser to generate the LO and the signal state, all the involved

beams have the same spectral properties. The only problems could come from

the Parametric Down Conversion photon, that could be emitted at a di�erent

frequency from the LO. But, choosing the degenerate con�guration, with a pump

at a frequency double of the LO frequency, and highly �ltering the heralding idler

photon, we obtain an added single photon at the right wavelength (see Section

2.2).

• LO Temporal Pro�le: As for the spectral pro�le, the LO has the same temporal

properties of the main laser. We can de�ne a single temporal mode as a single

light pulse with these features.

The Homodyne Detector must be able to discern the electronic signal corre-

sponding to each LO pulse from the next one, allowing for a temporally resolved

homodyne detection. To achieve this purpose the overall electronic circuit of the

detector has been designed to have a bandwidth of 100MHz16.

We placed optical delays based on translation stages along the paths of the LO

and signal pulses to accurately synchronize them.

The overallmode matching e�ciency, obtained thanks to the procedures just described,

can be checked with the technique described in Appendix B.

With our setup, for each trigger event17 we acquire, via a Tecktronix oscilloscope

(TDS7104), the HD signal corresponding to four consecutive LO pulses. The �rst

one corresponds to the manipulated state, while the others, una�ected by the Kerr

transformation, are used to control the stability of the system. Each optical pulse

of length 1.5 ps is converted, by the overall electronic circuit, in a voltage signal of

approximately 10ns of duration. The quadrature value relative to each signal mode

16The main limitation for the detector bandwidth comes from the electronic circuit of the ampli�er

that performs the subtraction between the photocurrents produced by the two photodiodes. An home-

made circuit has been realized, taking great care to minimize the stray capacitance that is the main

cause of bandwidth reduction.
17See Appendix D for more details about the trigger apparatus.



CHAPTER 2. SINGLE-MODE STATE MANIPULATION 55

is obtained by measuring the area of the electronic signal corresponding to each LO

pulse.

To reach the best performance regime of the HD, a few other preliminary steps are

required. The �rst one is an accurate balancing of the power at the output ports of the

HDBS. This ensures the 50:50 splitting ratio of the homodyne beam-splitter, required

for a balanced measure, as described in Section 1.3.2. Also the bias voltage of the two

HD photodiodes has to be �nely tuned, minimizing the residual 80MHz component

of the HD signal after the subtraction of their photocurrents. This is required to max-

imize the extinction ratio between the photocurrents. This parameter is de�ned as the

ratio between the signal measured when the two photodiodes are illuminated, and the

one measured when one of them is blocked. For our detector, a value of −42dB has

been measured for this ratio18. Finally, to select the working point for the LO power,

we checked the linearity of the detector exploiting the Equation (1.58). The results of

a measurement of the variance of the HD signal relative to an input vacuum state, for

various LO powers, are reported in Figure 2.7. Above 9mW of LO power, the detector

is no longer linear, so we should stay below this limit during the measurements to avoid

deviations from the theory derived in Section 1.3.2.

Electronic 
Noise Level

Linearity Limit

Figure 2.7: Linearity check made on our homodyne detector. The variance of the

homodyne signal is measured for various powers of the Local Oscillator, injecting a

vacuum state in the input port of the detector.

Using 9mW of LO power we have a signal ampli�cation above the electronic noise

18In Section 1.3.2, when we introduced the losses e�ect, we made the implicit assumption that

the two photodiodes are identical (we used the same detection e�ciency for both of them). The

maximization of the extinction ratio ensures the validity of this assumption.
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(signal-to-noise ratio) of 9.6 dB. This parameter can be used to calculate the contri-

bution of the electronic apparatus to the detection e�ciency, leading to19 ηel = 0.9.

2.4.3 Results

A full tomographic reconstruction is performed on the input and output states for three

di�erent values of the input coherent state amplitude, α = 0.23, 0.53, and 0.79. We

used an iterative maximum likelihood procedure (See Section 1.4), incorporating the

e�ect of a �nite (ηdet = 0.66) detection e�ciency, to reconstruct the density matrices

in a 8 × 8 space in the Fock basis (from 0 to 7 photons). To do this we acquired

a set of 50000 quadrature values for 9 di�erent relative phases between the LO and

the target state. The stabilization of the relative phase between the LO and the

input coherent state during the measurement time is performed by locking the DC

component of the HD signal. When a slow modulation is applied to the LO phase,

we can see the interference fringes due to the interaction between the LO and the

signal state in the HDBS. A mirror, mounted on a piezo actuator, along the LO path,

is used to lock the fringe signal to di�erent values, corresponding to di�erent relative

phases. The reconstructed density matrices are shown in Figure 2.8, together with those

calculated by applying the V̂ (n̂) operator on the input coherent states. The desired

Kerr nonlinearity signature is evident in all the experimental data. All the o�-diagonal

terms containing a vacuum contribution are clearly negative, witnessing the expected

sign change in the amplitude of the vacuum component. However, when comparing

the experimental density matrices to those expected according to the transformation

(2.48) with ideal parameters B/A = −(3+
√

2) (rightmost column in Figure 2.8), some

discrepancy is apparent. The most notable is the appearance of a small imaginary

component. We found that all the experimental results can be reproduced very well

(with �delities around 90%) by using a single set of modi�ed parameters in the V̂ (n̂)

transformation, corresponding to a B/A ratio of −5.97 and to an additional phase of

about π
7
between the two terms in the operator superposition. Such small deviations

from the ideal con�guration, which only marginally a�ect the signatures of the sought

nonlinearity, are fully compatible with the delicate alignment and setting of the proper

small rotation angles in the wave plates responsible for the operator superposition.

Another relevant aspect of our protocol to implement strong Kerr nonlinearity is that

it does not involve post selection processes. The successful implementation of the

19See Section 1.3.2 for more details.
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operation (2.50) is heralded solely by measurements on auxiliary modes, thus making

the output state available for further processing and applications. In conclusion, our

results con�rm the feasibility of the method described above to realize strong Kerr

transformations for quantum states of light, paving the way for its implementation in

quantum computational schemes.
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Figure 2.8: Reconstructed density matrices of input coherent states and output states

after the emulated Kerr nonlinear interaction. The left column shows the real part

of the reconstructed density matrices of the input coherent states (the imaginary part

is negligible here). For each input state, the two central columns show the real and

imaginary parts for the reconstructed output states (upper plots), together with those

calculated from a best �t of the parameters in the applied V̂ (n̂) transformation (lower

plots). The corresponding �delities are F = 0.88, 0.86, 089 for α = 0.23, 0.53, 0.79,

respectively. Finally, the right column shows the expected output states (containing

no imaginary parts) that one would obtain from the ideal V̂ (n̂) transformation with

B/A = −3−
√

2.



Chapter 3

Multi-Mode State Manipulation

We started the previous chapter with the description of the techniques used to imple-

ment the â and â† operators. We underlined, in many occasions, the importance of

the mode concept, showing the experimental precautions that have to be considered

to realize the single photon addition and subtraction on a speci�c target mode. Going

further in Chapter 2 we focused on the manipulation of a single mode state, with the

aim of emulating the e�ects of a strong Kerr nonlinearity on a weak traveling coherent

state. Although experiments of this kind are fundamental to investigate some aspects

of the quantum nature of light, they do not give us the possibility to study all of them.

Indeed, already from the early period of quantum mechanics, there were interesting de-

bates about the properties of multimode systems that can not be investigated dealing

only with single mode states. Expanding the number of modes involved in a quantum

optics experiment leads to a growth of complexity, both from the theoretical and the

experimental point of view, but the ability to manipulate and characterize systems

containing more than one mode is fundamental to study phenomena that mark the

distance between the quantum world and the one in which we live. The most charming

and controversial is for sure the entanglement. In the following chapter I will describe

how to manipulate and measure a multi-mode optical system in order to investigate

this property.

The entanglement is a direct consequence of the quantum mechanics formalism.

This feature arises by the fact that, while in classical physics the phase space of a

composed system is always represented by the Cartesian product of the phase spaces

describing each subsystem, in quantum physics the concept of phase space is substituted

with the Hilbert space [51]. In this context the state of a multipartite system is the

tensor product of the Hilbert spaces of all the subsystems (Htot = ⊗ni=1Hi). This has as

59
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consequence that not all the states of a quantum system can be written as the product

of the state vectors of each individual subsystem. This fact has been used by Werner

in 1989 [52] to de�ne an entangled state as the one that can not be expressed like

a separable state, a state described by the product of the individual subsystem state

vectors. Formally, such a separable (pure) state has the form:

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψn〉 , (3.1)

where |Ψ1〉 , |Ψ2〉 , · · · , |Ψn〉 are the states of each individual subsystem. A generic state

of an n−partite system has instead the form

|Ψ〉 =
∑
i1,...,in

ci1,...,in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 , (3.2)

where |in〉 is an orthonormal base for the whole system. Equation (3.2) can be reduced

to Equation (3.1) only in same speci�c cases, splitting the ensemble of all possible

states for a multipartite system in two groups, the separable states and the entangled

ones. To better understand what dealing with an entangled state means let's make an

example. Let's consider the state

|ψAB〉 =
1√
2

(|H〉A |V 〉B + |V 〉A |H〉B), (3.3)

where A and B label two di�erent modes of the electromagnetic �eld, the two sub-

systems, and H and V are the polarizations of two single photon states present in

each mode1, respect to a common reference shared between them. This is clearly an

entangled state according to the Werner de�nition. The interesting properties of this

kind of states emerge if we look at each individual mode separately. Measuring the

polarization state of the mode A (B) we will see, half of the time, an horizontal polar-

ization and every other time, a vertical polarization. This means that we don't have

any information about the individual subsystems but the correlations in the global

state are well determined2. The quantum mechanics interpretation of this fact is based

on the superposition principle. The two modes A and B are, at the same time, in

the states |H〉A |V 〉B and |V 〉A |H〉B. Only when one of them is measured, the global

state of the system collapses in one of the two possibilities. In this way one can not

de�ne the state of each subsystem at any time, and this lead to the problems with

1The same conclusions hold for other kinds of physical systems like 1
2 spin particles, etc.

2When an horizontal polarization is measured in mode A, a vertical one is certainly observed in

mode B and viceversa.
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the concept of realism. Moreover, there are no restriction about the distance between

the two subsystems at the moment of the measurement. It means that, despite their

relative location, a measure performed on one of them instantaneously in�uences the

state of the other (problem of locality). These implications led Einstein, Podolsky and

Rosen, who �rst discussed the e�ects of entanglement in 1935 [53]3 to consider it as

the proof that quantum mechanics is an incomplete theory. For a long time, many

scientists tried to explain the e�ects of entanglement considering the existence of some

hidden variables, not experimentally accessible, that determine the state of the global

system at the moment of its generation, trying to reproduce the "strange" predictions

of quantum mechanics in a more classical way. Many of these theories also tried to

solve the problem of locality, going under the name of Local Hidden Variable Models

(LHVM). The solution of this dispute came from the work of Bell, in 1964 [54], when

he formalized the LHVM. The main assumptions that he made were:

1. the results of a measurement are determined by the a priori properties of the

system, independently from the measurement itself (realism),

2. acting on a part of the system does not in�uence the result of a measurement

performed on another part, distant from the �rst one (locality),

3. the choice of the apparatus settings is independent from the hidden variables that

determine the state of the system (freedom).

According to these constrains, Bell found the maximal value of the correlation that can

occur between the results of measurements performed on a bipartite system, usually

called Bell inequality. Then, he also proved that, performing suitable measurements on

a quantum entangled bipartite system, this bound can be overcome. Bell's work is the

theoretical discriminant between quantum mechanics and the LHVM. It asserts that

these two theories are not compatible, putting an end to the attempt to incorporate the

concepts of realism and locality in the quantum mechanics. The experimental answer

came almost twenty years later, when Aspect et al. performed the �rst convincing test

of the violation of the Bell inequality [55][56]. This, and many following experiments

[57][58][59], con�rmed the quantum mechanical predictions, putting entanglement at

the basis of new ideas, like quantum cryptography [60][61], quantum dense coding [62],

quantum teleportation [63], and many others. A crucial point for all these applications

is the necessity to determine if a system is entangled or not, and to quantify the amount
3In the same period Schröedinger reached the same results independently [33].
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of entanglement. This problem becomes more di�cult to solve if we consider that, in

real laboratory scenarios, it is more common to produce mixed states rather than pure

states of the form (3.2). In this case, a state is separable if and only if it can be written

in the form

ρ =
∑
i

piρ
i
1 ⊗ ρi2 ⊗ · · · ρin, (3.4)

where ρ1, · · · , ρn are the density operators of each subsystem, and the conditions∑
i pi = 1 and pi ≥ 0 must hold. All the states that can not be written as in Equation

(3.4) are entangled. The problem of the detection and quanti�cation of this property

in the case of mixed states became harder when Werner showed the existence of some

entangled mixed states that don't violate Bell's inequality. A milestone in the context

of entanglement detection was then placed by Peres in 1996 [64], and later completed

by M. Horodecki et al. [65].

Peres-Horodecki Criterion Let's consider a bipartite system4 in a separable state

according to the de�nition (3.4). It can be described by the density operator ρAB,

where A and B label the two subsystems. Fixing a product basis for the Hilbert spaces

of A and B we can write the density matrix elements as5

ρnmνµ = 〈n| 〈ν| ρAB |µ〉 |m〉 . (3.5)

Let's de�ne also the Partial Transposition operation corresponding to the transposition

of only the indices relative to one subsystem. We will indicate it with the symbol TA if

it acts on the subsystem A (ρnmνµ
TA−→ ρmnνµ) or TB if it acts on B (ρnmνµ

TB−→ ρnmµν).

This criterion asserts that, if and only if ρAB describes a separable state of a bipar-

tite system, than also the operator TBρAB (or TAρAB) is a physical density operator.

Mathematically, this means that also TBρAB must have unitary trace and non-negative

eigenvalues. If this is not the case, it means that we are able to transform a physical

state of the composite system into a non-physical one, acting on a single subsystem,

which is not possible without the presence of quantum correlations (entanglement).

Twice the sum of the negative eigenvalues of TBρAB de�nes the NPT parameter (Neg-

ative under Partial Transposition) [64] that can be used to quantify the amount of

entanglement. This parameter is zero for separable states, while it is 1 for maximally

4A system composed by two subsystems, e.g. the one of Equation (3.3).
5To clarify the notation, the Latin indices refer to the subsystem A, while the Greeks to B.
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entangled systems. The Peres-Horodecki criterion is a necessary and su�cient condi-

tion to determine the presence of entanglement in bipartite systems of dimension 2⊗ 2

and 2⊗3 [64]. For systems of higher dimensions it is only a su�cient condition, indeed

there are entangled states whose density operator remains positive after partial transpo-

sition. In the following of this chapter I will use the NPT to quantify the entanglement.

We need to do a �nal step in the introduction of the entanglement before starting

to describe the experiment that I will show in the second part this chapter: we have to

clarify the case of the so called Single-Particle Entanglement. Between 2005 and 2006

this phenomenon has been deeply analyzed in a series of publications, with authors

Van Enk [66][67] and Drezet [68]. The question was: is the state

|ψ〉AB =
1√
2

(|0〉A |1〉B + |1〉A |0〉B) (3.6)

entangled? As usual, the labels A and B refer to the two di�erent parts of a bipartite

system, while 0 and 1 denote the absence or presence of a particle in each mode. The

main arguments used to claim that there is no entanglement in the state (3.6) are:

1. One needs at least two particles for entanglement.

2. The state (3.6), when written in second-quantized representation has the form:

|ψ〉AB =
(â†A + â†B)√

2
|0〉A ⊗ |0〉B . (3.7)

that is clearly not entangled.

Van Enk proposed a simple but e�cient gedanken-experiment to show the presence of

entanglement in (3.6). Let's use the optical framework to illustrate it, but we have to

keep in mind that it is applicable to more general situations. In this context, |0〉A(B)

stands for no photons in the mode A (B) and |1〉A(B) corresponds to one photon in

the same mode. Let's also assume that the modes A and B are two distinct spatial

directions along which the optical states travel. We can think to place a cavity on the

path of each involved spatial mode, and we can also put an atom in each of them,

initially prepared in the ground state |g〉. From the experimental point of view, it is

possible to engineer the cavities and the two optical modes to let the photon enter the

cavity and interact with the atom, exciting it to a speci�c state |e〉. Thus, starting

with the two modes in the state (3.6) and the atoms in the ground state, we will end
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with

|Ψ〉AB =
1√
2

(|g〉A |e〉B + |e〉A |g〉B), (3.8)

for the atomic part, while the optical modes will be in the vacuum state after the

interaction. In the Equation (3.8), A and B represent the location of the atoms inside

the cavities. At this point, Van Enk concludes that the state (3.8) is an entangled

state of two particles (the two distinct atoms), so the condition 1) is now satis�ed, and

also that there is no motivation to write the state of two distinguishable particles in a

second-quantized form. Due to the fact that the interaction between the optical state

and the atoms is local, no entanglement can be generated during this process [69]. Thus,

we have to conclude that the entanglement, clearly present in (3.8), was also present

in (3.6), and that, at the moment of the interaction, it has been transferred to the

atomic system. With his arguments, Van Enk underlined the fact that entanglement is

a property concerning at least two Hilbert spaces, related to some degree of freedom of

the system. For the atomic system in the state (3.8), the two involved Hilbert spaces

(HA andHB) describe the energetic structure of the atoms placed in the location A and

B. We can say that HA and HB are entangled in (3.8) with respect to the internal state

degree of freedom of the two atoms. Accordingly, we just have to consider that the two

Hilbert spaces describe two spatial modes of the traveling electromagnetic waves, while

the degree of freedom with respect to which they are entangled is the particle number.

To further stress the point 2, we can note that the absence of entanglement arises from

an incomplete notation used to switch to the second-quantized form. Indeed, one really

should write

|ψ〉AB =
1√
2

(â†A ⊗ ÎB + ÎA ⊗ â†B) |0〉A ⊗ |0〉B , (3.9)

that clearly represents a nonlocal operation that leads to an entangled state.

During my master thesis I generated an optical state of the form (3.6) and I used the

method described in reference [70] to detect the presence of entanglement, concluding

that this kind of state can be considered entangled also from the experimental point

of view. In the following chapter I will show how it is possible to move the degree

of entanglement present in the single particle entangled state (Equation 3.6) to the

macroscopic domain, in which each mode contains a macroscopic number of photons.
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3.1 Single Photon Delocalized Addition

In this section I will describe a setup capable of experimentally generating the Single

Particle Entangled state of Equation (3.6). It involves the basic ingredients used to

realize the â† operator, as described in Chapter 2, plus some other trick. In the last

part of this section I will show how it is possible to modify this setup to generate a new

and more interesting entangled state, which will be used in the experiment presented

in the last part of this chapter.

3.1.1 Delocalized Photon Addition to Vacuum States

A common method used to generate the state (3.6) makes use of a Single photon

emitter, whose output is sent to the input port of a balanced beam-splitter.

Figure 3.1: Schematic representation of a beam-splitter based setup used to generate

the state (3.6).

The output modes, labeled A and B in Figure 3.1, are in the state

|ψ〉AB =
1√
2

(
|0〉A |1〉B + |1〉A |0〉B

)
. (3.10)

This is a well known method, largely used in quantum computation [41]. Based on this

concept, an experimental realization of the quantum-teleportation protocol has been

demonstrated [71]. Nevertheless, I will describe a more complex strategy to achieve

the same purpose, but this will provide the basis for understanding the next part of

this work.
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Figure 3.2: Schematic representation of the setup used to generate the state (3.6) based

on the delocalized single photon addition.

In Figure 3.2, two â† operations, acting on signal modes labeled A and B, are imple-

mented using two PDC crystals (see Section 2.2). Both the signal and idler channels

are, initially, in the vacuum state. After the nonlinear process, the two idler modes

are mixed in a 50:50 beam-splitter. Using the same expedients adopted in Section

2.3 to realize the superposition between di�erent operators acting on the same mode,

here we can erase the information about the mode on which the addition has been

performed, erasing the knowledge about the origin of the idler photon. Indeed, a click

in the heralding detector is produced, half of the time, by a photon coming from the

upper PDC of Figure 3.2 (acting on the A signal mode), while in the other half from

the bottom one (triggering the addition on the mode B). So, measuring just one of

the two outputs one can not know (not even in principle) where the idler photon is

coming from. This allows us to realize the superposition between two operators (they

are the same in this case, â†) acting on two di�erent modes. Finely tuning the relative

length of the path of the two idler modes we can control the phase of the superposi-

tion (ϕ). The �lter (F), placed before the heralding detector, ensures that, when we

see a click, we can be certain that the single photon in the signal modes has a good

purity (see again Section 2.2). The operation triggered by the heralding detector is

(â†A⊗ ÎB + eiϕÎA⊗ â†B), and we call it Delocalized Single Photon Addition. As I showed

in Section 2.2, the PDC implementation of the â† operator can be generalized to add
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a single photon to a arbitrarily populated mode. In recent years, it has been demon-

strated that, injecting a coherent state in one of the two signal channels and vacuum

in the other, a so-called hybrid discrete/continuous-variable entanglement [72] can be

generated.

3.1.2 Delocalized Photon Addition to Coherent States

The setup in Figure 3.2 can be used to investigate the problem of entangling large

systems. Indeed, if we inject two identical coherent states (|α〉) in the signal modes of

the nonlinear crystals, the output modes A and B will be in the state

|ΨAB〉 = N (â†A ⊗ ÎB + eiϕÎA ⊗ â†B) |α〉A |α〉B
= N

(
â†A |α〉A |α〉B + eiϕ |α〉A â

†
B |α〉B

)
= N

(
|α, 1〉A |α〉B + eiϕ |α〉A |α, 1〉B

)
,

(3.11)

where N is the normalization factor and |α, 1〉 indicates a coherent state on which a

single photon addition has been performed. This kind of state has been characterized in

[73] and is called Single Photon Added Coherent State (SPACS). In particular, the mean

photon number of each mode (n̄ = |α|2) can be made arbitrarily large by increasing

the amplitude of the injected coherent states, until reaching the macroscopic regime.

It is interesting to note the link between the state (3.11) and the one obtained applying

two identical displacement operators on both the modes A and B of the single particle

entangled state (3.10):

|ΨAB〉 = N
(
|α, 1〉A |α〉B + eiϕ |α〉A |α, 1〉B

)
= N

(
â†A ⊗ ÎB + eiϕÎA ⊗ â†B

)
D̂A(α)D̂B(α) |0〉A |0〉B

= N D̂A(α)D̂†A(α)︸ ︷︷ ︸
ÎA

D̂BD̂
†
B(α)︸ ︷︷ ︸

ÎB

(
â†AD̂A(α)⊗ D̂B(α) + eiϕD̂A(α)⊗ â†BD̂B(α)

)
|0〉A |0〉B

= N D̂A(α)⊗ D̂B(α)
(
D̂†A(α)â†AD̂A(α)⊗ ÎB + eiϕÎA ⊗ D̂†Bâ

†
BD̂B(α)

)
|0〉A |0〉B

= N D̂A(α)⊗ D̂B(α)
(

(â†A + α∗ÎA)⊗ ÎB + eiϕÎA ⊗ (â†B + α∗ÎB)
)
|0〉A |0〉B

= N
[
D̂A(α)⊗ D̂B(α)

(
â†A ⊗ ÎB + eiϕÎA ⊗ â†B

)
|0〉A |0〉B +

+ α∗(1 + eiϕ)D̂A(α)⊗ D̂B(α) |0〉A |0〉B
]

= N
[
D̂A(α)⊗ D̂B(α)

(
|1〉A |0〉B + eiϕ |0〉A |1〉B

)
+ α∗(1 + eiϕ) |α〉A |α〉B

]
,

(3.12)
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for which it is easy to calculate the normalization factor

N 2 = 〈ΨAB|ΨAB〉 = 2
(

1 + |α|2(1 + cos(ϕ)
)
. (3.13)

From Equation (3.12) we can see that the state generated by the setup of Figure 3.2,

when the signal modes are seeded with two coherent states, is the same of the one

obtained applying the operator D̂A(α) ⊗ D̂B(α) on the output modes of the setup in

Figure 3.1 only if ϕ = π. The setup in Figure 3.12 is more versatile than the one of

Figure 3.1 and more suitable to study the entanglement properties of a macroscopic

system.

The form of the state |ΨAB〉 obtained in Equation (3.12) is useful to understand the

interesting entanglement properties of this kind of states. Since this property is invari-

ant under local operations, we can apply the operator D̂A(−α) ⊗ D̂B(−α) to |ΨAB〉,
and then easily calculate the NPT value:

NPT (α, ϕ) =
1

1 + |α|2(1 + cos(ϕ))
. (3.14)

It is interesting to note that, if we set the operator superposition phase ϕ equal to 0,

the amount of entanglement decreases fast while increasing the mean photon number of

the injected coherent state. On the contrary, setting ϕ = π, the NPT value is constant

and maximal for all the α values. Figure 3.3 shows the NPT behavior for the odd

(ϕ = π) and even (ϕ = 0) version of the state (3.11), varying the injected mean photon

number in the modes A and B.

Figure 3.3: NPT of the state (3.11) for di�erent values of the mean photon number

injected in the signal modes. The yellow line represents the entanglement behavior of

odd version of the state, while the blue one correspond to the odd verion.
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The di�erences between the odd and the even state can be understood analyzing the

last line of Equation (3.12). When the phase ϕ is equal to π, the separable part of

the state (|α〉A |α〉B) is erased, making the state |ΨAB〉 equal to the displaced single

particle (maximally) entangled state. Otherwise, in the even state, the separable part

is maximal and may quickly mask the entangled contribution for large |α|.
In our opinion, it is very interesting to experimentally test if, applying the delocalized

photon addition operator, it is possible to generate an entanglement between separable

states of arbitrary macroscopicity. In the next section, I will report about the methods

and results of an experiment that we carried out to generate and characterize the odd

version of the state (3.11).

Another peculiarity that distinguishes the odd from the even state is the so called

discorrelation [74]. This property concerns the joint photon number probability of the

two modes

P (nA, nB) = | 〈nA| 〈nB|ΨAB〉|2 = Tr
{
|nA〉 〈nA| ⊗ |nB〉 〈nB| ρ̂AB

}
, (3.15)

where ρ̂AB = |ΨAB〉 〈ΨAB| is the the density operator of the state (3.11). Its matrix

elements, expressed in the Fock basis, have the form:

〈nA| 〈nB| ρ̂AB |mB〉 |mA〉 =

=
e−2α2

α(nA+nB+mA+mB−2)(nA + eiϕnB)(mA + eiϕmB)

2
(
1 + α2

(
1 + cos(ϕ)

))√
nA!nB!mA!mB!

,
(3.16)

where I used a phase reference in which the coherent states injected in the PDC crystal

have real amplitude. The behavior of P (nA, nB) is shown in Figure 3.4 for the two

cases. While for the even state, performing a photon number measurement on both

the modes A and B, the probability to obtain the same result is very high, in the odd

case it is zero. The discorrelation is one of the many forms of correlation that can be

observed in the quantum world. Di�erently from anti-correlation and decorrelation,

it can be summarized in the fact that "the joint photon number probability P (n, n)

of measuring n photons in each mode is precisely zero for all n, but the marginal

distributions P (nA) = TrB{ρ̂AB} (P (nB)) are nonzero for all nA (nB)". This property

reminds the fact that the two spatial modes of the state (3.11) are entangled respect

to the photon number degree of freedom, according to the idea of Van Enk discussed

at the beginning of this Chapter.
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Figure 3.4: Joint photon number probability of the state (3.11) for the even (on the

left) and the odd superposition (on the right).

3.2 Entangled and Discorrelated Macroscopic States

of Light

3.2.1 Time Bins Implementation: Experimental Details

To experimentally test the theory presented in the previous section we chose to de-

localize the addition of a single photon between two well-separated temporal modes

("time bins", [75]), instead of using spatial modes as described above. This is a con-

venient choice from the experimental point of view that does not modify the relevant

properties of the state. Looking at Figure 3.2 it is easy to note that entangling two

spatial modes requires two nonlinear crystals and two detection devices. In general,

enlarging the number of modes by exploiting the spatial degrees of freedom requires a

consequent increase of the elements needed to generate and characterize the state under

test. Moreover, the parts of the composed system travel along di�erent paths, su�er-

ing di�erent losses and phase �uctuations. This experimental inconvenient can cause a

strong degradation of entanglement, making its detection more and more complicated.

On the contrary, as it can be noticed looking at Figure 3.5, the time bin implementa-

tion allows us to increase the number of modes without increasing the resources needed.

The main request that has to be satis�ed to realize this kind of implementation con-

cerns the spectral bandwidth of the detector device. It has to be able to discriminate

the involved modes, without mixing them. Roughly speaking, the detector has to be

fast enough to acquire the signal relative to each mode without any contamination by
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the others.

Figure 3.5: Schematic picture of the experimental apparatus used to generate and

characterize the time bin version of the state of Equation (3.11).

Figure 3.5 shows a schematic picture of the generation and detection part of the setup

that we used to characterize the state (3.11). The main components of the setup

(laser, PDC crystal, Homodyne Detector) are the same used to realize the experiment

described in the previous chapter (see Section 2.4). As in that case, for this exper-

iment the temporal modes are de�ned by the local oscillator pulses. Each temporal

mode corresponds to a di�erent pulse emitted by the Ti:Sapphire laser. Thus, two

consecutive temporal modes are separated by 12.5ns and each one is characterized

by a gaussian pro�le of width 1.5 ps. The addition operation is again performed by

exploiting the PDC process (see Section 2.2). In order to delocalize the â† operation

between two temporal modes we have to erase the information about the time at which

it has been performed. We can reach this goal by allowing the herald photon from the

addition device to travel along two indistinguishable paths of di�erent length towards

the heralding detector (D1). To do so, we coupled the idler mode of the PDC crystal,

after the �lters (F), to a balanced Mach-Zehnder interferometer 6. If we set the time

delay between its two arms equal to twice the time separation between two consecutive

6In this context the adjective balanced is referred to the beam-splitters used to realize the inter-

ferometer. Both of them are set to have a balanced (50:50) splitting ratio. This note wants to clarify

that, as it is common in other contexts, the adjective is not referred to the length of the arms, that,

actually, are unbalanced in our setup.
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laser pulses (2Tp), an idler photon detected by D1 may have been generated by either

the Nth or the (N + 2)th pump pulse, projecting the state of the two relative signal

pulses in the state (3.11)7. The idea at the base of this technique is the same that we

used in the case of the superposition of di�erent operations applied to the same mode.

In that case, we erased the information about what operation had been performed to

implement the operator (c1ÔA + c2e
iϕÔ′A) each time we had a click in the heralding

detector placed after the balanced beam-splitter (see Section 2.3). In the same way, for

the temporal domain case, each trigger corresponds to the application of the operation
1√
2
(â†A ⊗ ÎB + eiϕÎA ⊗ â†B). The phase of the superposition can be controlled acting

on the relative phase between the two arms of the interferometer. For this experiment

we built a �ber Mach-Zehnder interferometer that guarantees a better phase stability

compared to a realization in air. It has to be noticed that 25ns of time delay (2Tp)

between the two �ber paths correspond to ≈ 5.1m of length unbalancing8. This condi-

tion makes the interferometer very sensitive to phase �uctuations, requiring a careful

stabilization. A small air-gap in the long arm allows us to �nely tune the relative

length of the two paths and to control the phase of the superposition (ϕ). As I showed

in the previous section, this parameter strongly in�uences the entanglement properties

of the state, switching from the maximally entangled odd version to the even one,

much less correlated. To control this parameter we mounted a mirror on a piezo-stage

placed in the air part of the interferometer. As shown in Figure 3.5, a weak portion

of the main laser output is sent to the unused output port of the interferometer. We

desynchronized the pulses of this beam with respect to the idler photons, ensuring no

interactions between them. This allows us to actively control the superposition phase ϕ

during the experiment by monitoring, with the detector D2, and locking the intensity of

interference fringes produced by the control beam. In order to reach this goal, I built a

microcontroller-based circuit able to read and elaborate the signal from D2, to produce

the output voltage used to drive the piezo in the air part of the interferometer. The

software, loaded on the microcontroller, incorporate a proportional�integral�derivative

7We chose to delocalize the addition operation over two nonconsecutive temporal modes to keep

them well separated. We tested an 1Tp con�guration for the interferometer, but due to the �nite

bandwidth of the HD, there was a small contamination of the mode B by the mode A. In the 2Tp

con�guration, the middle temporal mode is populated by an unmodi�ed coherent state of the train

injected in the PDC crystal. The unavoidable contamination has, in this case, the only e�ect to reduce

the detection e�ciency, easy to incorporate in the theoretical model.
8We use optical �bers with pure silica core, whose refractive index is 1.45332 at 800nm of wave-

length.
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(PID) control loop used to perform the active locking [76].

Losses and Noise

For a correct analysis of the experimental data that I will show in the next session, we

have to consider the limits of the setup of Figure 3.5 that make the �nal state deviate

from the theoretical one of Equation (3.11). We can start from the PDC process. As

explained in Section 2.2, the pairs of photons emitted during this nonlinear process

have to be carefully manipulated to ensure that the emission in the signal channel

occurs in a speci�c target mode. I showed that our ability in this operation can be

quanti�ed by the ηgen parameter. With our setup, we are able to reach a generation

e�ciency of ≈ 92%. This means that, in the 92% of the realizations, we add the single

photon to the right mode, while in the rest of the cases, we fail to perform the addition,

leaving the target mode unchanged. We have to remember that, in this experiment,

the signal modes are seeded with two coherent pulses of amplitude α in a separable

state, and their density matrix can be expressed in the Fock basis as:

ρ̂α = |α〉A 〈α| ⊗ |α〉B 〈α|

=
∑

nA,nB ,mA,mB

e−2α2
α(nA+nB+mA+mB)

√
nA!nB!mA!mB!

|nA〉 |nB〉 〈mB| 〈mA| .
(3.17)

Thus, the bipartite state, composed by the two temporal modes labeled A and B,

is better described by the mixed state ρ̂ηgenAB , than by the density matrix of Equation

(3.16).

ρ̂
ηgen
AB = ηgen ρ̂AB + (1− ηgen) ρ̂α, (3.18)

Since we are interested in the generation of the odd version of the state (3.11), we

have to consider that the piezo-based system, used to control the superposition phase

ϕ, introduces a small �uctuation of this parameter, as shown in Figure 3.6. The blue

line on the left is the control signal, measured by the detector D2 of Figure 3.5, used

to stabilize the phase in our setup, during the "scan" part of the locking algorithm.

In this part, the microcontroller used to drive the piezo looks for the maximum (Max)

and the minimum (Min) of the interference fringes. Then, we can set the desired ϕ

value by locking the interference signal at a value given by the formula:

LS(ϕ) =
Max+Min

2
+
Max−Min

2
cos(ϕ+ ϕOff ). (3.19)
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Figure 3.6: Typical behavior of the signal used to lock the parameter ϕ.

The o�set phase ϕOff is related to the o�set between the phase measured while looking

at the fringes produced by the control beam and those obtained from the counterprop-

agating idler states.

We calibrated this o�set by injecting a more intense coherent beam, easier to be de-

tected, in the interferometer port usually dedicated to the idler photons. We found

that the minimum of the interference fringes produced by this beam can be obtained

by locking the control signal to the phase ϕLock ≈ 3π
10
. Thus, the o�set phase in Equa-

tion (3.19) is ϕOff = π − 3π
10

= 7π
10
. The right part (red one) of the graph 3.6 shows

this signal during the "locking part". The residual noise of the locking signal can be

translated to a mean phase error of ∆ϕ ≈ π
100

. We can take into account this deviation

from the ideal case by averaging the density matrix ρ̂ηgenAB over an angle of π
100

around

ϕ = π.

Another source of error comes, again, from the the Mach-Zehnder interferometer. We

saw that setting ϕ = π corresponds to erasing the separable part of the state (3.11).

This is exactly true if our Mach-Zehnder interferometer is perfect, with no losses and

exactly balanced beam-splitters. In the real case, this type of imperfections lead to a

visibility of the interference fringes, measured at the interferometer outputs, smaller

than one. With our interferometer we measure a visibility of 0.996. This experimental

deviation from the ideal case can be implemented, in the theoretical model describ-

ing the odd state generation, considering an α-dependent increase of the dark counts,

or, equally, a decrease of the generation e�ciency (see Section 2.2). To con�rm this

hypothesis, we measured the count rate of the trigger photons (the clicks from the

detector D1 of Figure 3.5) varying the mean photon number of the two modes that
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compose our system. In the ideal case, this parameter should be constant. The ex-

perimental results are shown in Figure 3.7, con�rming a linear increase of the trigger

counts when the mean photon number of the injected coherent states increase.

Figure 3.7: Behavior of the trigger count rate when increasing the macroscopicity of

the state.

3.2.2 Tomography of the State

We characterized the state produced with our setup by performing a tomographic recon-

struction of its density matrix. To do so, we have to perform independent quadrature

measurements on both the temporal modes A and B. The acquisition system (Homo-

dyne Detector and oscilloscope), described in Section 2.4.2, has been used to acquire

the quadrature values. The resulting data set has the form:

{yiA, yiB} = {{xiA(θjA), θjA}, {x
i
B(θjB), θjB}} (3.20)

using the same notation of Section 1.4. Here θA and θB are the phases of the quadrature

measurements performed on each mode. Choosing again a phase reference in which

the coherent states injected in the PDC crystal have real amplitude (α ∈ R), we can

express θA and θB in terms of the global phase of the LO pulses train (θLOgl ) and the

relative phase between the LO pulses correspondent to the signal modes A and B.

θA = θLOgl +
θLOrel
2

θB = θLOgl −
θLOrel
2
.

(3.21)
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I will show in the next subsection how we can control θLOgl and θLOrel . The density

matrix of the state under analysis can be reconstructed acquiring 50000 quadrature

values for 9 phase values spaced by π
8
in the interval [0 , π], for both θLOgl and θLOrel .

Practically, to perform a full tomography reconstruction of the state under test we

need to acquire 50000 quadrature values for each one of the 81 combinations of the two

phase parameters θLOgl and θLOrel ∈ {0, π8 ,
π
4
, 3π

8
, π

2
, 5π

8
, 3π

4
, 7π

8
, π}. To analyze this data set

we used a two-mode extended version of the maximum likelihood algorithm described

in Section 1.4 [23][77]. I will discus the results in the next session.

The Global Phase

As for the superposition phase ϕ, we can control the global phase θLOgl using a piezo-

mounted mirror and a reference signal. The electronic system used to drive the piezo

is a copy of the one used to control the phase of the operator superposition, described

in the previous section. As in the that case we have to evaluate the noise introduced

on the phase θLOgl by the locking circuit, that has been measured of the same order

of the one measured for the parameter ϕ. The reference used to stabilize the global

phase to di�erent values is the DC component of the HD signal. This signal presents

the interference fringes due to the interaction between the local oscillator pulses and

the injected coherent states in the HDBS. As in the case of the superposition phase,

di�erent values of this signal correspond to di�erent values of θLOgl , allowing us to

actively stabilize it. For example, locking to the maximum of the reference signal

means that the LO and the injected coherent states have the same phase. We will use

this condition to �x the phase reference, so it will correspond to θLOgl = 0. We can

obtain the other global phase values according to the relation

LS(θLOgl ) =
Max+Min

2
+
Max−Min

2
cos(θLOgl ), (3.22)

that is the analogue of Equation (3.19).

The Relative Phase

To control the θLOrel parameter, we need to change the relative phase between two

LO temporal modes separated by 25ns. In this case, we need a device much faster

than a piezo9. We placed, along the LO path, an ultrafast electro-optic modulator
9Typically, the maximum frequency with which a piezo-mounted mirror can be moved is 10KHz.

To control θLOrel we need a phase modulation of the LO pulses at 20MHz, so a piezo system can not

be used.
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(EOM) made by Thorlabs (EO-PM-NR-Cx). The core of this device is a birefringent

crystal whose extraordinary refractive index can be modulated using a voltage signal

(see Appendix A for more details). Letting the LO pass through this crystal we can

modulate its phase. The version of phase modulator that we used can be driven from

DC up to 100MHz. After this component, the LO acquires a phase shift proportional

to the amplitude of the electrical signal applied to the RF port [78]. To obtain the LO

phase modulation that we need we used a sinusoidal modulation voltage of period 4Tp

(ωdrive = 2π
4Tp

= ωRR
4
, where ωRR is the repetition frequency of our laser), synchronized

with the train of optical pulses emitted by the laser. Figure 3.8 explains this concept.

0 Tp 2Tp 3Tp 4Tp
t

s
DrivingSignal applied

to the RF port of the EOM

LaserPulses

Figure 3.8: EOM driving signal strategy used to control the relative phase between

two local oscillator pulses separated by 25ns.

The blue arrows represent the LO pulses, while the red line is the driving signal. In

this way, the pulse at time 0 and the one at time 2Tp acquire a relative phase shift

(θLOrel ) proportional to the modulation depth s, while the pulses at time Tp and 3Tp

exit the EOM with the phase unchanged. Using the phase reference de�ned in the

previous paragraph, we can consider that the pulse at time 0 acquires a phase shift

of θLOrel
2

respect to the corresponding temporal mode of the signal, while the pulse at

time 2Tp will be shifted of − θLOrel
2

respect to its corresponding signal mode. To generate

the driving signal, we used the AD9959 Direct Digital Synthesizer (DDS) [79]. This

device can provide a sinusoidal voltage synchronous with an external reference. From

the output of the laser mode-locker we can obtain a signal synchronous with the pulses

train (at frequency ωRR), suitable for the synchronization. Another important feature

of this DDS is the possibility to arbitrary set the frequency and the phase of its outputs,

that, however, remain in phase with the reference signal. Therefore, we can obtain the

EOM driving signal at frequency ωRR
4

and we can also compensate the phase shift

between this signal and the LO pulses due to the overall electronic circuit. In order to



78
3.2. ENTANGLED AND DISCORRELATED MACROSCOPIC STATES OF

LIGHT

produce the high voltage amplitude (≈ 150V ) required to produce the desired phase

shift (θLOrel = π) at a frequency of 20MHz, we built a resonant circuit after the RF

port of the EOM, as shown in Figure 3.9.

Figure 3.9: Resonant circuit built inside the EOM. This circuit has been built to have

a resonance frequency of ωRR
4
, with a factor of merit of ≈ 20. This trick reduces the

amplitude of the modulation signal required to induce a π-phase shift.

The left side of the circuit, including the transformer, is an impedance matching circuit,

needed to avoid back re�ections of the driving signal. The right side determines the

resonant frequency, set to ωRR
4

and �nely tuned using the variable capacitor. Thanks

to a factor of merit of the overall circuit (Q) of approximately 20 we can obtain a π

phase shift with a driving signal of amplitude around 5V , that is easier to generate at

high frequencies. The overall scheme used to control θLOrel is summarized in Figure 3.10.

Figure 3.10: The overall phase control scheme for the LO beam.

The voltage controlled ampli�er, following the DDS, has a variable gain that can be set

from 0 to 10. We used this device to control the modulation depth s. The procedure

used to calibrate this setup is shown in Appendix E.
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3.2.3 Results

Using the methods just described to control the global (θLOgl ) and the relative (θLOrel )

phase of the LO pulses correspondent to the signal modes A and B, we performed

a complete tomography reconstruction of the odd state of Equation (3.11). We set

|α|2 = 1 for all the coherent states injected in the PDC crystal10. The overall data

acquisition required more then 48 hours to be completed. Unfortunately, our setup

is not stable enough to perform a so long measurement. Indeed, the �delity11 of the

reconstructed density matrix respect to the ideal odd state, for which we considered the

e�ects of the non-unitary generation and detection e�ciency (ηgen = 0.92, ηdet = 0.60),

is just 0.36. Beyond that, we have to consider that also the maximum likelihood

algorithm takes a long time to analyze the data (more then 100 hours). This is because

the number of density matrix elements needed for a faithful representation of the odd

state with |α|2 = 1 is almost 2500. It is worth noting that this number grows very fast

with the mean photon number of both modes; for instance, the density matrix of a state

of the form (3.11) with n̄ = 50 photons requires 30 millions density matrix elements.

Since this huge amount of elements prevents us to proceed with full reconstruction

of the density matrix for macroscopically populated modes, we have to develop other

strategies to quantify the amount of entanglement in the generated states.

Global Phase Averaged

The �rst method that we decided to test aims to reduce the number of density matrix

elements and the duration of the acquisition time by averaging the global phase of the

LO pulses. From a practical point of view this means that we analyze the state pro-

duced after the single photon delocalized addition by performing a partial tomographyc

reconstruction. We acquire 50000 quadratures values, for each mode, for 9 di�erent

values of θLOrel , while the global phase θ
LO
gl is randomized by applying a sinusoidal mod-

ulation, with frequency of 10KHz, to the piezo used to control this parameter (see

Section 3.2.2). This modulation is not synchronized with the acquisition system, so,

10See Appendix C for the details about the method used to calibrate α.
11It is a parameter used to quantify how much two quantum states are close to each other. If ρthAB

is the theoretical density operator and ρMAB is the measured one, we have:

Fidelity =
[
Tr{

√√
ρ̂thAB ρ̂

M
AB

√
ρ̂thAB}

]
. (3.23)

This parameter is 1 for two identical state, while it is 0 if they are orthogonal.
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each time a trigger event occurs12, the consequent quadrature measurement is per-

formed at a random θLOgl phase. It is evident that, scanning just one phase parameter

the total acquisition time needed for the measurement is roughly the square root of

the time needed for the full tomography. This allows us to obtain a good stability

of the overall apparatus during the measurements. Furthermore, a great advantage

of this technique is that only the density matrix elements that satisfy the condition

nA −mA + nB −mB = 0 are di�erent from zero, all the others are averaged to zero.

Figure 3.11 shows the reduction of the number of density matrix elements needed to

represent the states measured using the θLOgl averaged method respect to a full tomog-

raphyc reconstruction.

Figure 3.11: Comparison between the number of density matrix elements needed for a

faithful representation of the odd state with and without averaging the global phase.

The average operation, of course, also changes the entanglement properties of the

reconstructed states. Figure 3.12 reports the theoretical NPT behavior for the odd

and even state expected performing the θLOgl averaged partial tomography.

12See Appendix D for more details about the trigger used for this experiment.
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Figure 3.12: Theoretical behavior of the NPT value for the odd and even state measured

averaging the LO global phase.

It is interesting to note that NPT of the odd state is lowered by global phase averaging

respect to what shown in Figure 3.3, but the entanglement is still well preserved for

large mean photon numbers of the modes A and B. We performed the measurement

just described of the odd state for n̄ = 0, 0.29, 1.29, 5.44. The relative NPT values

are represented by the green dots in Figure 3.13. Also in this case we must pay close

attention to the experimental imperfections that inevitably occur in the generation

and detection of these states for a correct interpretation of the results. For the gen-

eration part the same conclusion obtained in Section 3.2.1 hold. The imperfections

induced by the detection part can be accounted by the Equation (1.56). Considering

that the Homodyne Detector used to collect the quadrature values is the same used

in the experiment described in Section 2.4.2, and that we measured a mode matching

e�ciency of 0.92, we obtain an overall detection e�ciency of ηdet = 0.60. The good

agreement between the experimental points and the theoretical model including both

the generation and detection e�ciency con�rms our prediction about the entanglement

features of the odd state.
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Figure 3.13: Experimental NPT (green dots) for the generated odd state as a function

of mean photon number (n̄) and calculated NPT (lines) for the odd (yellow) and even

(blue) state measured by averaging the global phase.

This result tells us that, with the available technology, we are able to produce opti-

cal states which degree of entanglement slowly decrease increasing their mean photon

number. However, investigating the macroscopic regime exploiting this technique is not

possible. Despite the number of density matrix elements is considerably reduced with

respect to full tomography, the maximum mean photon number that can be reached is

about 6 due to bounded computational resources needed for the reconstruction algo-

rithm13. I will show a technique suitable to overcome this problem in the next part of

this session.

It is interesting to note that the discorrelation properties, discussed in Section 3.1.2 for

the ideal state of Equation (3.11), are evident also performing the partial tomographic

reconstruction with the method just described. The joint photon number probabil-

ity distributions for the modes A and B, obtained from the density matrix measured

setting n̄ = 5.44, is reported in Figure 3.14.

13A parallel code, implementing the two mode version of the maximum likelihood algorithm pre-

sented in Section 1.4, takes more than 60 hours to reconstruct a n̄ = 5 odd state, running on a 8-core

3GHz Xeon processor.
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Figure 3.14: Experimental discorrelation property of the odd state with n̄ = 5.44, to

be compared with Figure 3.4.

Global Phase Locked

As explained at the beginning of this chapter, applying two identical displacement

operators (D̂A(α) ⊗ D̂B(α)) on both the modes of a bipartite entangled state doesn't

change its entanglement properties. In our case, choosing the proper amplitude and

phase of the displacement operator, precisely the same amplitude and opposite phase

respect to the coherent states injected in the signal mode to generate the state (3.11),

we can remove the macroscopic component of the state. If we do this before the de-

tection stage14, we obtain the entanglement behavior of the initially macroscopic state

by measuring the density matrix of the microscopic one. In this way we can use an

Hilbert space of dimension 2, spanned by the Fock states |0〉 and |1〉, to described it,

drastically reducing the computational resources needed for its characterization. Such

an approach has been proposed [80] and tested [81] by Gisin et al. This method has

been criticized due to the fact that, actually, no macroscopic states are measured.

To overcome the problems of the method previously proposed (Global Phase Averaged)

we decided to exploit the advantages of the back-displacement (D̂A(−α) ⊗ D̂B(−α)),

but we choose to apply this operator in a post-processing step by applying a numerical

high-pass �lter to the quadrature values measured by the modes A and B macroscop-

ically populated. In practice we performed a di�erent kind of partial tomography

respect to the Global Phase Averaged method. Even in this case we acquired 50000

14An optical implementation of the displacement operator can be realized using a beam-splitter and

an auxiliary coherent state [80].
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quadrature values for 9 di�erent LO relative phase (θLOrel ) for both the temporal modes,

but, this time, the global phase (θLOgl ) was locked to 0 during all the acquisitions. This

measurement scheme can be graphically illustrated using the phasor diagram formalism

introduced in Section 1.3.2. In this context, the measurements performed to analyze

the produced state via the Global Phase Locked method are represented in Figure 3.15.

Figure 3.15: Phasor diagram representing the measurements performed to realize the

Global Phase Locked analysis.

The red part of this graph represents the measurements performed on the mode A,

while the blue part represents the ones performed on the mode B. As explained in

Section 3.2.2, considering that θLOgl is always locked to 0, each measurement angle can

be obtain by the relations

{
θAM =

θLOrel
2

, θBM = −θ
LO
rel

2

}
. (3.24)

Contrary to the Global Phase Averaged method, with this measurement scheme no

density matrix elements are reduced to zero, but in this way the post selection appli-

cation of the back-displacement operator is easy to implement. Indeed, it is su�cient
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to subtract, from each quadrature data set15, its mean value.

{y′iA, y′iB} = {{xiA(θjA)− x̄A(θjA), θjA}, {x
i
B(θjB)− x̄B(θjB), θjB}} (3.25)

The validity of this method can be experimentally proved by looking at the correlations

between the quadrature values relative to the modes A andB measured with our scheme

Cor(α, θLOrel ) = 〈X̂A(θLOrel ) · X̂B(θLOrel )〉. (3.26)

If we don't apply the numerical displacement the measured correlation follow, at least

for small values of θLOrel , the theoretical behavior

Cor(α, θLOrel ) = 〈Ψodd
AB(α)| X̂A(θLOrel ) · X̂B(θLOrel ) |Ψodd

AB(α)〉 , (3.27)

as it is shown in Figure 3.16.

Figure 3.16: Correlations between the quadrature values of the mode A and B obtained

by measuring the entangled odd states produced with our setup for di�erent values of

α.

In Figure 3.17 are instead reported the quadrature correlations obtained after the

numerical displacement applied to the same data used in Figure 3.16. In this case

we have a good agreement between the post-processed experimental data and the

15To avoid misunderstanding I recall that a data set correspond to 50000 quadrature values acquired

for a �xed value of θLOrel .
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theoretical correlation behavior of the single particle entangled state, that is exactly

what we expect applying the back-displacement to the odd state.

D̂A(−α)⊗ D̂B(−α) |Ψodd
AB(α)〉 =

1√
2

(
|1〉A |0〉B − |0〉A |1〉B

)
. (3.28)

Figure 3.17: Correlations between the quadrature values of the mode A and B obtained

by applying the numerical back-displacemnt to the |Ψodd
AB(α)〉 states produced with our

setup, for two values of α.

To optimize the numerical displacement and to understand the source of the devia-

tion from the theoretical curve of the data in Figure 3.16, we performed the same

measurements described in Figure 3.15 on a separable, two modes, coherent state

|ΦAB〉 = |α〉A ⊗ |α〉B. The experimental values of the correlation parameter (3.26) are

shown in Figure 3.18 and present the same deviation, observed in Figure 3.16, from

the theoretical behavior when θLOrel approach to π.
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Figure 3.18: Correlations between the quadrature values of the mode A and B obtained

by measuring the state |ΦAB〉.

This anomaly can be explained considering an extra noise in the quadrature mea-

surements, dependent on θLOrel . If we look at the variance of the quadrature data used

to realize Figure 3.18, this phase dependent noise is evident, as it is shown in Figure

3.1916.

Figure 3.19: Variance of the quadrature values acquired by measuring the state |ΦAB〉
for the 9 values of θLOrel , for the mode A (left) and B (right).

16It is useful to remember that a coherent state is a minimum uncertainty state (see Section 1.2).

This means that the variance of a quadrature measurement performed on a coherent state should be

constant respect to α and to the measurement phase, and, using our notation, it should be equal to
1
4 (red line in �gure). The phase dependent increment of the quadrature distribution variance is the

signature of the presence of a phase dependent noise.
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From the measurements performed on the state |ΦAB〉 = |α〉A ⊗ |α〉B we also un-

derstood that this extra noise is also α-dependent. In Figure 3.20 I show the variance

of the quadrature measurement performed at various coherent amplitude. Each point

corresponds to the variance calculated on all the quadrature data acquired according

to the scheme of Figure 3.15 for each value of α17.

Figure 3.20: Variance of the quadrature values acquired by measuring the state |ΦAB〉
for di�erent values of α, respectively for the mode A (top) and B (bottom). The

red line represents the theoretical value of the quadrature variance for measurements

performed on coherent states.

To understand the origin of this extra noise we have to remember the modulation

strategy used to control the θLOrel phase, illustrated in Figure 3.8. The modes A and

B, on which we delocalized the single photon addition to generate the state (3.11),

correspond to the local oscillator pulses at time 0 and 2Tp of that �gure18. As justi-

�ed in Section 3.2.1, we choose to leave an unused optical mode between A and B.

The phase of its relative LO pulse is not modi�ed passing through the EOM, for all

the modulation depths s19. As explained in Section 2.4.2, with our acquisition sys-

tem we record, for each trigger event, the homodyne signal corresponding to 4 modes

(A → T = 0, A′ → T = Tp, B → T = 2Tp, B
′ → T = 3Tp). If we set a modulation

depth corresponding to θLOrel = 0, the mean value of the homodyne signal is the same

for all the 4 recorded modes, equal to 〈Ĥ−〉A,A′,B,B′ = |α|. If instead we set θLOrel = π,

the mean value of the signal corresponding to the modes A′ and B′ is the same, while

the one of the modes A and B is 0. This means that our HD have to switch the output
17The error bar is the standard deviation of the quadrature variance over the 9 values of θLOrel .
18The origin of the time axis is coincident with the arrival of the trigger event from the detector

after the MZ interferometer that herald the application of the delocalized single photon addition.
19See Section 3.2.2 for more details.
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signal mean value from 0 to |α| in a time smaller than TP = 12.5ns. The bandwidth of

our detector (100MHz) doesn't full satisfy this request, causing the extra-noise shown

in Figure 3.19 and 3.20.

We found that, optimizing the numerical back displacement, it is possible to erase

this noise. We can suppose that the apparatus limitations just discussed produce a

�uctuation of the quadratures mean value, faster than the time needed to acquire the

50000 quadrature values composing the data set {xiA(θjA), xiB(θjB)}, for each {θjA, θ
j
B}.

Considering that the this data set is time ordered, we can partition it in faster ac-

quired (smaller) ensembles and calculate from each of them x̄A(θjA) and x̄B(θjB) used

in Equation (3.25) to back-displace the quadrature values. From each partition we

subtracted its relative mean values, that, in this way, is less sensitive to the fast �uctu-

ations. Practically, the �nite bandwidth of the HD introduce noise in the detection of

the coherent states amplitude, with the back displacement we remove this parameter

from the state. Adjusting the length of the ensemble used to perform this operation

(DispBin) we can reduce the amplitude �uctuations and so the extra noise. To adjust

the DispBin parameter we noticed that, as I explained in Chapter 1, also the vacuum

state |0〉A ⊗ |0〉B is a minimum uncertainty state, with the same quadrature �uctua-

tions of the state |ΦAB〉. We reduced the DispBin parameter until we reach the same

quadrature variance obtained by performing the measurements of Figure 3.15 on the

vacuum state20. Some example steps of the optimization are shown in Figure 3.21.

Figure 3.21: Variance of the quadrature measurement performed on the state |ΦAB〉
after the application of the back-displacement operator for di�erent values of DispBin.

The red bar is the quadrature variance obtained measuring the state |0〉A ⊗ |0〉B.

Practically we optimized the DispBin parameter to obtain, after the application of

20We simply obtained the state |0〉A⊗|0〉B by blocking the signal port of the HDBS with an opaque

material.
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the numerical back-displacement on the data measured from the state |ΦAB〉, the

same results obtained from the measurements performed on the state |0〉A ⊗ |0〉B =

D̂A(−α)⊗D̂B(−α) |ΦAB〉. From this analysis we found that a binning of 100 is optimal

to perform the numerical back-displacement.

We used the independently optimized back-displacement to analyze the data measured

from the odd version of the state (3.11) generated with our setup. The entanglement

behavior obtained using the Global Phase Locked method is reported in Figure 3.22.

The red line is the NPT value that we expect for the odd state considering a constant

generation e�ciency (ηgen) of 0.92 (see Section 3.2.1 for the details), and a detection

e�ciency of 0.60 (see Section 1.3.2), while the blue line is the entanglement behavior

for the even state obtained from the same model.

Figure 3.22: Experimental NPT (green dots) for the generated odd state as a function

of mean photon number (n̄) and calculated NPT (lines) for the odd (yellow) and even

(blue) state.

The dependence of the measured NPT values (green dots in the �gure) from the mean

photon number of the two modes is caused both by the θLOgl noise discussed in Section

3.2.2 and the one associated to the superposition phase ϕ (see Section 3.2.1), and by

the dependence of the generation e�ciency by the mean photon number of the modes

A and B, as discussed in Section 3.2.1. The orange line is the NPT curve obtained

by a model including all these e�ects. The good agreement between the experimental

points and the theoretical model con�rms that the class of states in Equation (3.11)
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can be used to investigate the entanglement properties of macroscopic systems. Indeed,

the data in Figure 3.22 clearly show the presence of entanglement for bipartite systems

with up to 60 photons per mode.

From this experiment we can conclude that the Single Photon Delocalized addition

presented in Section 3.1 can be use to generate entanglement between macroscopically

populated optical systems initially prepared in a separable state. We also investigated

the entanglement properties of a sub-class of state that can be produced with this

technique, the odd version of the state (3.11). With this experiment we underlined the

experimental fragilities that may prevent the study of the entanglement in macroscopic

systems. To be able to further increase the mean photon number per mode we have to

improve the interference fringe visibility of the Mach-Zehnder interferometer used to

delocalize the addition operation, removing the dependence of the generation e�ciency

from the mean photon number. The main change needed to improve the detection

part regards the spectral bandwidth of the homodyne detector used to collect the

quadrature values from the state under test. Enlarging this parameter allows us to

reduce the quadrature extra-noise characteristic of the Global Phase Locked method.

Future perspectives In the just described experiment we used the NPT to quantify

entanglement. I showed that to calculate this parameter we need to know the density

matrix that describe the state we want to test. We saw that the full tomography

needed to reconstruct the desired density matrix is very demanding from the experi-

mental point of view, so demanding that in many cases it requires to �nd simpli�ed

measurement strategy (partial tomography). For this reason, along the years, many

e�orts have been devoted to develop "cheaper" methods to discriminate between sep-

arable and entangled states. From the de�nition (3.4), we can see that the space of

all separable states is a convex space21. It is possible to demonstrate that, if ρ̂AB is a

state in such a space, it is mapped into a positive operator (a physical state) by a map

of the form (ÎA ⊗ Λ̂B), where Λ̂B is a positive map22 acting on the subsystem B, while

ÎA stands for the identity operator of the subsystem A. The main idea, �rst developed

by Terhal [82], is that this property of the separable states doesn't hold for entangled

states i.e., if a state ρ̂∗ is entangled, then there exists a positive map ΛB such that

21A space is convex if each of its elements can be expressed as a linear combination of its base

vectors where all coe�cients are non-negative and sum to 1.
22Λ is a positive map if it maps a positive operator Ô into a positive operator. This means that, if

Ô has non-negative eigenvalues, then Ô′ = Λ(Ô) also has none.
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(ÎA⊗ Λ̂B)ρ̂∗ is not positive. This implies that it is always possible to �nd an Hermitian

operator Ŵ such that

Tr{Ŵ ρ̂} ≥ 0 Tr{Ŵ ρ̂∗} < 0

∀ρ̂ ∈ {separable states} ∀ρ̂∗ ∈ {entangled states}
(3.29)

Such an operator was de�ned as an Entanglement Witness by Terhal. Ŵ is Hermitian,

so it can be measured. The main virtue of this kind of observables is that they allows

an experimental detection of entanglement. On the other hand, given a general entan-

gled state, to �nd the witness capable to detect it is an hard task. Referring to Figure

3.23, if the entangled state ρ̂∗ (represented by the black dot in �gure) is detected by

the witness Ŵ(1), it will not be detected by Ŵ(2).

Figure 3.23: Geometric representation of entanglement witnesses.

To solve this problem, numerical methods and general strategies to �nd suitable en-

tanglement witnesses have been studied [83][84][85], but, until the present days, they

are not very e�cient.

In the future we will look for the existence of a properly tailored entanglement wit-

ness capable to detect the entanglement of the state 3.11. Our hope is to reduce the

complexity of the measurement strategy in order to further increase the mean photon

number of the two modes of the state 3.11.



Conclusions

In the �rst chapter of this thesis I introduced the main concepts of quantum optics,

focusing on the formalism needed to explain the experimental techniques presented

next. I paid particular attention to Homodyne Detection due to its central role during

my PhD work. Indeed, all the optical states discussed and experimentally generated in

this thesis were characterized performing homodyne measurements and tomographic

reconstructions of their density matrix. Then, I described the experimental implemen-

tation of the main tools in the �eld of state engineering. After a theoretical review of

the techniques used to realize the creation and the annihilation operators, I showed a

general scheme used to implement more sophisticated operations, based on their su-

perposition. I showed an experiment in which, exploiting the superposition of di�erent

sequences of â and â†, we were able to emulate the e�ect of a strong Kerr nonlinearity

on a quantum state of light. These results show that measurement-induced operations,

although working in a non-deterministic way, can be used to implement transforma-

tions forbidden with the materials available today, and can thus pave the way for

implementation in quantum computational schemes.

Finally, I investigated the properties of multipartite optical systems, focusing on the

phenomenon of entanglement. Also in this case, I described an experimental technique

useful to manipulate the state of such kind of systems. I showed that the so-called

Delocalized Single-Photon Addition can turn the initially separable state of a bipartite

system into a maximally-entangled one, independently of how macroscopic the initial

state was. Then, I presented two di�erent techniques to detect the amount of entan-

glement generated by delocalizing the addition of a single photon between two modes

populated by states of increasing mean photon number. Despite the experimental dif-

�culties involved in the accurate quantum tomographic measurement of macroscopic

systems, we were able to detect substantial levels of entanglement also between two

di�erent light states each containing up to 60 photons. The results obtained from this

experiment were preliminary published on arxiv [86] and presented during the 2018
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IEEE Photonics Society Summer Topical Meeting [87].



Appendix A

Birefringence

During the course of this thesis the well known phenomenon of birefringence has been

widely used in various experimental situations. Both the techniques used to realize the

annihilation and creation operators take advantages from this e�ect. For the �rst one

we used an half wave plate (HWP), a bire�ngence based optical component, to replace

the beam-splitter in the polarization implementation of this operator (see Section 2.1 for

more details). Thanks to this e�ect we could also reach the phase matching condition

necessary for an e�cient implementation of the â† operator (see Section 2.2 for more

details). Also the working principle of the electro-optic modulator used to control the

LO phase as explained in Section 3.2.2 can be explained in therms of a bire�ngence

e�ect.

A material is said birefringent when it shows di�erent optical properties respect to

di�erently polarized light, in particular when the refractive index is depending on

the directions of polarization and propagation of the light beam, as a consequence of

a natural or induced anisotropy. We will focus on a particular type of birefringent

crystal, said uniaxial, in which the refractive index takes di�erent values if taken along

the direction de�ned by a particular crystal axis or in its perpendicular plane. This

particular axis is usually called extraordinary axis or optical axes. To simplify the use

of this type of crystals in an optical experiment they are often cut so that the optical

axis is parallel to the input face, as shown in Figure A.1.
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Figure A.1: Schematic pictures of an uniaxial bire�ngent crystal. ~k and ~E represent

respectively the wave vector and the electric �eld of the light incident on the crystal.

We can decompose the electric �eld of the beam injected in such a crystal in two

polarization components, the one parallel to the optical axis will �ll a refractive index

(ne), di�erent from the one �lled by the x component (no). The two polarizations

accumulate di�erent phase delays as it is clear from Equation (A.1), that describes a

classical electric �eld propagating in the crystal.

E(y > 0) = E0e
iωtei2πno

y
λ (i cos(θ) + kei∆φ sin(θ)), ∆φ = 2π(ne − no)

y

λ
, (A.1)

where i and k are the versors of the x and z axis respectively. This e�ect can be used to

separate them, as in a Polarizing Beam-Splitter1, to switch from a linear to a circular

polarized beam, and vice versa, or to simply rotate a linear polarization.

The HWP used for the â implementation can be realized properly choosing the length

of the crystal. If we cut the it to satisfy the condition (ne − no)d = λ/2, the output

polarization will be rotated of an angle of 2θ.

Some birefringent materials also present the so called Electro-Optical E�ect, thanks

to which is possible, applying an electrical voltage between the faces perpendicular

to the extraordinary axis, to modulate the extraordinary refractive index. Aligning

the polarization of the incoming beam to the extraordinary axis (θ = 90 deg), the

output polarization will not be rotated, but the beam will have acquired a phase of

∆φ = 2π ne(Vs)
d
λ
, where Vs is the amplitude of the modulation voltage.

It is worth noting that, while the in�uence on the propagation direction of a beam

1As the one used in the experimental implementation of the â operator in Section 2.1.
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passing through a birefringence material can be positively used to produce devices like

PBS, at the same time, in many experimental situations, it can also create technical

problems that must be taken into consideration. The e and o polarization components

spatially separate when traveling inside the crystal. Indeed the electric displacement

�eld De and the electric �eld E of the e polarization are no more parallel due to

the anisotropy of the material and the wavevector ke, orthogonal to De, is deviated

respect to the ordinary beam direction of propagation ko. This phenomenon, called

spatial walk-o�, prevents to use beams waists too small within the crystal to avoid

complete geometrical separations of the outgoing beams.
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Appendix B

Visibility and Mode Matching

E�ciency

The procedures described in Section 2.4.2 to obtain a good mode matching between the

signal mode and the Local Oscillator are fundamental for a good Homodyne Detection

of the quantum states generated with our setup. To quantify the goodness of our mode

matching we can measure the visibility of the interference fringes (V is = Imax−Imin
Imax+Imin

)

produce by the interaction of the LO with the signal at one of the two outputs ports

of the Homodyne beam-splitter.

Let's consider, for example, that we want to measure the ηmm between the LO and the

coherent state used as initial signal state in the experiments described in Section 2.4

and 3.2. Without attenuating this beam we can easily measure the interference fringes

using a common power meter. We can indicate with αL(Γ) the pro�le function of LO

and with βS(Γ) the one of the coherent state in the signal mode, Γ indicate all the

degrees of freedom needed to describe the whole mode pro�le. The intensity measured

99



100

by the power meter is:

I(α, β) =

∫
dΓ 〈αL, βS| â†(Γ)â(Γ) |βS, αL〉

=
1

2

∫
dΓ 〈αL, βS|

{
â†S(Γ)âS(Γ)− iâ†L(Γ)âS(Γ)+

+ iâ†S(Γ)âL(Γ) + â†L(Γ)âL(Γ)
}
|βS, αL〉

=
1

2

∫
dΓ
{
nS|β̃S(Γ)|2 − i

√
nSnLβ̃S(Γ)α̃∗L(Γ)+

+ i
√
nSnLβ̃

∗
S(Γ)α̃L(Γ) + nL|α̃L(Γ)|2

}
=

1

2

∫
dΓ
{
nS|β̃S(Γ)|2 + nL|α̃L(Γ)|2+

+
√
nSnL|α̃L(Γ)||β̃S(Γ)|(ei(θL−θS+π

2
) + e−i(θL−θS+π

2
))
}
,

(B.1)

where the operator â(Γ), that describe the �eld at the output port of the beam-splitter,

is linked to the operators âS(Γ) and âL(Γ), describing the input �elds, via the relations

(1.47). As for the homodyne description, also in this case we introduced the pro�les

of the coherent state normalized to 1 (α̃(Γ) and β̃(Γ)) and their mean photon number

nL and nS. Using Equation (B.1) to calculate the visibility of the interference fringes

we have:

V is(α, γ) =
2
√
nLnS

nL + nS

∫
dΓ |α̃L(Γ)||β̃S(Γ)|. (B.2)

If we equalize the intensity of the two interacting beam we have that this parameter is

exactly equal to the square root mode matching e�ciency de�ned in Section 1.3.2.

ηmm =
[
V is(α, γ)

]2

(B.3)

Measuring the mode matching e�ciency between the LO and the single photons emit-

ted by the PDC crystal in the signal is an harder task. An additional bright beam,

occupying the same mode of the down-converted signal photons, should then be used

to check the mode matching instead of them. To produce a bright beam with these

characteristics we exploited a three wave mixing process, where a di�erence frequency

wave is generated in the PDC crystal by the injection of the ultraviolet pump with an

intense infrared coherent state aligned along the idler direction. If the infrared beam

is temporally and spectrally matched with the idler mode, the generated beam1 is

emitted in the signal mode.In the spatial domain a precise coupling between the pump

1The output of the di�erence frequency generation process can be considered as a coherent state.
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and the �eld in the idler channel is not necessary and a wider idler seed beam can be

used. A formal demonstration can be found in [29] but we can intuitively understand

it by imaging that the nonlinear interaction takes place only within the spatial overlap

region, i.e. with the narrower pump acting as �lter, so a broader size is a su�cient

condition to produce a bright signal wave well matched to the selected single photon

mode.Now we can use the just describe technique to measure also the mode matching

e�ciency between the LO and the signal mode of the PDC process.
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Appendix C

Coherent States Amplitude

Calibration

To calibrate the amplitude of the coherent states used during this thesis we exploit the

idea of Klyshko[88], proposed as metrological tool for absolute radiance measurements

[89]. He noticed that the measure of the rate of the photons emission in the idler mode

of a parametric down conversion process, with and without seeding the signal mode,

can be used to obtain an absolute calibration of the amplitude of the seeding states.

Indeed, referring to Section 2.2, we have that the spontaneous emission rate of the idler

photons (CRsp
i ) is proportional to the amplitude of the pump �eld and to the nonlinear

susceptivity coe�cient of the BBO crystal. Instead, in the stimulated case, where a

coherent state of amplitude |α|PDC is injected in the signal mode, the idler emission

rate (CRst
i ) is increased by a factor (1 + |α|2PDC). Thus, we can obtain |α|PDC as:

|α|2PDC =
CRst

i

CRsp
i

− 1. (C.1)

To measure the idler emission rate we used the SPCM detector placed after the narrow

band �lters along the idler path as explained in Section 2.2. This scheme is slightly

di�erent from the one proposed in [89]. In particular, the presence of the �lters gives

us a measure of the seed mean photon number (|α|2PDC) in a mode di�erent from the

signal one, given by the convolution between the pump and the seed modes. To take

into account this fact and to therefore obtain the mean photon number injected in the

signal mode (|α|2s) we performed a calibration using a calibrated Power Meter.

We generate the states used as seeds by strongly attenuating a portion of our main

laser with a series of attenuation �lters. The power meter used for the calibration is

not able to measure the low intensity of these quantum states, so we measured the
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�lters attenuation factor (τ) from the point A to the point B of Figure C.1 using an

intense laser beam.

Figure C.1: Schematic view of the setup used for the calibration.

Knowing the attenuation factor allows us to infer the (low) power of the beam just

before the HD by measuring the higher power of the initial beam (at the position A).

We have to consider now that not all the measured power (Pm) lies in the signal mode

due to the non perfect mode matching between the seed and the LO. Estimating the

mode matching e�ciency with the method described in Appendix B, we have:

Ps = (Pm − Pdark)τηmm, (C.2)

where Ps is the power in the signal mode and Pdark is the dark power of our detector.

Considering that the central wavelength of our laser (λ) is 780nm, and that it works in

a pulsed regime with a repetition rate (R) of 80MHz, we can estimate the amplitude

of the coherent states produced in the signal mode as:

|α|s =

√
Ps λ

R ~ c
. (C.3)

If, during the alignment procedure before each experiment, we acquire a set of values

{|α|is, |α|iPDC} we can obtain the factor of proportionality (m) of the relation

|α|s = m · |α|PDC , (C.4)

used to obtain the value of |α|s by the measure, naturally implemented in our setup,

of the ratio between the stimulated and spontaneous idler count rate. As example,
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Figure C.2: Results of one run of the calibration just described.

the results of one of these calibrations is shown in Figure C.2. The fact that the

experimental points (blue dots in �gure) are well reproduced by a linear �t (red line)

motivates our choice of the linear model in Equation (C.4).



106



Appendix D

Trigger Apparatus

For the experiment described in Section 2.4: As explained in Section 2.3, the

trigger event that heralds the application of the transformation described in [34], is

the coincidence between a "click" from the detectors DA and DS of Figure 2.5. They

occupy di�erent positions in the setup, so they "click" at di�erent times also if they

are triggering operations performed on the same mode. This delay, along with the one

due to the di�erence in the cables and electronic circuits of the two detectors, can be

compensated using an electronic delay line. Actually, a third level of trigger is used

for this experiment. To reduce the contribution of the dark counts of the two SPCM

to the generation e�ciency (see Equation (2.33)) we used as trigger the coincidence

between the signals produce by DA and DS and a signal synchronous with the pulses

train emitted by the laser. Such a signal can be obtained by the laser mode-locker. In

this way, only the small portion of dark counts that are synchronized with the laser

emission a�ect the ηgen parameter.

As �nal step we have to compensate the delay between the trigger event and the arrival

time of the homodyne signal corresponding to the mode on which we perform the Kerr

transformation on the oscilloscope. We did this by using a RG8/U cable with length

10.8m to connect the HD with the oscilloscope, and �nely tuning the electronic delay

set by this instrument between the trigger event and the start of the acquisition.

For the experiment described in Section 3.2: For this experiment the applica-

tion of the single photon delocalized addition is heralded by a "click" of the detector D1

of Figure 3.5. Also in this case we reduced the contribution of the dark counts of the

heralding SPCM by using as trigger only the clicks from D1 that are synchronized with

the laser pulses. To do this we make the SPCM clicks coincide with an electronic signal
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synchronous with the laser emission. Unlike the previous case, we generate this signal

using the DDS. This is advantageous because it ensures more precise delay adjustment.



Appendix E

Calibration of the EOM

Interference Fringe Visibility Technique We developed a method to calibrate the

EOM based on the interference of the modulated beam with a reference one. Studying

the behavior of the fringe visibility with respect to the variation of the modulation

depth, it is possible to retrieve the phase modulation imposed by the EOM.

A classical model can be used to explain this technique. The electric �eld at the output

of a pulsed laser can be mathematically expressed like the sum of a large number of

plane waves:

E0(t) =
∑
n

Eω0±nωRR cos[(ω0 ± nωRR)t+ φ0], (E.1)

the carrier frequency ω0

2π
is the optical frequency determined by the properties of the

laser active medium, all the other frequencies are spreaded around ω0 with a relative

distance ωRR �xed by the laser cavity length. If we inject this electric �eld in an EOM,

applying a sinusoidal voltage of amplitude V and frequency ωmod
2π

to the RF port, we

have at its output an electric �eld of the form:

Emod(t) =
∑
n

Eω0±nωRR cos[(ω0 ± nωRR)t+ sV cos(ωmodt+ φmod)], (E.2)

where sV is the modulation depth dependent on the amplitude of the modulation signal

(V ) and φmod is its phase respect to the optical pulse train. Interference fringes appear

when we mix the modulated beam with a portion of the same laser in a 50:50 beam
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splitter. The intensity at one of the output ports of the beam-splitter is:

Iinterf (t) = |E0(t) + Emod(t)|2

=
∑
n,m

(
|E0(t)|2 + |Emod(t)|2+

+ Eω0±nωRREω0±mωRR{cos[2ω0t± (n+m)ωRRt+ φ0 + sV cos(ωmodt+ φmod)]︸ ︷︷ ︸
optical frequencies oscillations mediated to zero by the detector

+

+ cos[±(n−m)ωRRt+ φ0 − sV cos(ωmodt+ φmod)]}
)
.

(E.3)

We can measure this intensity with a slow power meter. This has two consequences:

we can not see the 2ω0 component, that will be mediated to 0, and also the di�erence

frequency component will be mediated over a number of pulses determined by the

bandwidth of the detector. Since we chose ωmod = ωRR
4
, the average has to be done

over 4 pulses.

Īinterf =
1

4

3∑
i=0

∑
n,m

Eω0±nωRREω0±mωRR
2

+
Eω0±nωRREω0±mωRR

2
+

+ Eω0±nωRREω0±mωRR{cos[±(n−m)���ωRR
2π

���ωRR
i︸ ︷︷ ︸

∝2π

+φ0 − sV cos(ωmod
2π

ωRR
i+ φmod)]}

=
∑
n,m

Eω0±nωRREω0±mωRR{1 +
1

2
cos(φ0)

(
cos[sV cos(φmod)] + cos[sV sin(φmod)]

)
}.

(E.4)

We can scan the relative phase between the reference signal an the Local Oscillator

(φ0) using a piezo. Measuring the maximum and the minimum of Īinterf for various

modulation depths (sV ) we can study the relation between the fringes visibility (V is =
Imax−Imin
Imax+Imin

) and this parameter. From the calculation done before we �nd:

V is[sV , φmod] =
1

2
| cos[sV cos(φmod)] + cos[sV sin(φmod)]|. (E.5)

Figure E.1 reports the behavior of the visibility varying the parameter sV , for some

values of the phase φmod.

The shape of these curves changes a lot with respect to this phase. We can scan φmod
using the DDS to reduce the visibility curve to a pure cosine function, in order to set

the condition φmod = 0. To control the modulation depth sV we use a voltage controlled

ampli�er placed between the DDS and the EOM. In this way we can gradually change

the amplitude of the driving signal V varying the DC voltage applied to the ampli�er
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Figure E.1: Visibility v.s. Modulation depth for various phase delays (φmod) between

the pulses train and the driving signal.

(Vcontrol). Now we have to �nd the relation connecting sV to the control voltage. To do

so, we �t the measured visibility with Equation (E.5), replacing sV with a polynomial

function of Vcontrol:

s(Vcontrol) = a+ b · Vcontrol + c · V 2
control + d · V 3

control + e · V 4
control, (E.6)

after setting the condition φmod = 0 as explained before. In Figure E.2 I show the

results of the calibration used in the experiment.

Figure E.2: Experimental visibility data obtained scanning the modulation depth,

after we have set φmod = 0. The red line is the �t with Eq. (E.5), using the polinomial

expression of Eq. (E.6).

The relative phase between the two LO pulses corresponding to the signal temporal
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modes A and B can be calculated as:

θLOrel = s− s cos (ωmod 2Tp) = s− s cos

(
���ωRR

4
2

2π

���ωRR

)
= 2s. (E.7)

Combining this result with Equation (E.5) we can obtain that the condition of zero

visibility corresponds to a 2π phase shift between the �rst and the third pulse.

Validation of the Interference Fringe Visibility Technique To validate our

method, we performed an EOM calibration using a standard technique that involves

the use of an optical cavity. Applying a sinusoidal modulation of the phase of an optical

beam will result in a modi�cation of its frequency spectrum. As the amplitude of the

RF signal increases a series of side bands appears on the top of a laser spectral pro�le.

The behavior of the side bands can be used to calibrate the modulator.

Let's say, for example, we send a monochromatic laser in the EOM. Applying a sinu-

soidal phase modulation of amplitude s and frequency ωmod
2π

, we have at the output of

the modulator an electrical �eld of the form:

Emod(t) = A cos[ω0t+ s cos(ωmodt)]. (E.8)

If we measure the spectrum of this signal, changing the modulation depth s, it's possi-

ble to observe the uprising of the side bands. Each new frequency line is symmetrically

spread around the fundamental with a separation equal to the frequency of the mod-

ulation signal (ωmod
2π

). The energy of the optical signal is redistributed among the side

bands as shown in Figure E.3.
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f0 ± 2fmod

f0 ± 3fmod

Figure E.3: Power of the �rst three side bands as function of the modulation depth.

Measuring the values of s at witch di�erent side bands have the same power, it is

possible to retrieve the relation connecting the amplitude of the modulation signal to
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the induced phase shift. One of the easiest way to measure the spectrum of an optical

signal involves the use of a Fabry-Pérot cavity as shown in Figure E.4.

Figure E.4: Typical setup for the Phase Modulator calibration.

This setup is easy to use for CW lasers. Let's say for example we want to modulate the

phase of the laser beam with a signal of frequency 20MHz. To distinguish two con-

secutive sidebands, in order to measure their amplitude, we need the distance between

them to be greater than the full width at half maximum (FWHM) of the resonance

peaks of the cavity (FWHM < 20MHz). For this example a cavity with a FWHM

of 5MHz could be good. We can obtain this value using a Fabry-Pérot cavity 10 cm

long, with a Finesse (F = FSR
FWHM

) of 300 [90], that it is not di�cult to build and use.

FSR is the Free Spectral Range of the cavity, the distance between two consecutive

peaks, �xed by its length (FSR = c
2L
).

As many times mentioned, in our lab we work with a mode-locked laser emitting 1.5 ps

long pulses with a repetition rate of 80MHz. This fact drastically changes the sit-

uation compared to the previous example. First of all the energy of the modulated

signal is redistributed among the sidebands in a di�erent way respect to the CW case.

The spectrum of our unmodulated laser is a frequency comb consisting of a series of

spectral lines separated by 80MHz, centered at the optical frequency of the laser.

Looking at one of these lines, slowly increasing the modulation depth, we can �rst

see two sidebands appearing to the left and to the right of it, 20MHz away from the

central line (fmod). Going further, increasing the amplitude of the modulation signal,

two new sidebands will appear, 40MHz (±2fmod) away from each main peak. The

left sideband (−2fmod) of one of the laser lines will be superimposed to the right one

(+2fmod) of the previous line. Increasing even more the modulation depth also the
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±3fmod sidebands will appear, but they won't be distinguishable from the �rst one

(±fmod). Their distance from an unmodulated peak will be equal to the distance of

the �rst side bands ±fmod grown around the next one. The resulting sidebands behav-

ior is illustrated in Figure E.5.
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Figure E.5: Power of the �rst three side bands as function of the modulation depth for

the pulsed laser case.

To observe these features we have to built a resonant cavity with a Finesse of FSR
FWHM

≈
80MHz
5MHz

≈ 16, smaller than the CW case. To obtain this result I imposed that the FSR

of the cavity is equal to the FSR of our laser. This is a necessary condition that must

be satis�ed to reach the resonance condition for a pulsed laser in a cavity [90]. From

a practical point of view, this means that we need a 3.7m long cavity. Dealing with a

cavity like this is not easy, it requires frequent alignments, and the overall procedure

for the EOM calibration is di�cult to be automatized. From this point of view the

technique explained in the previous section is faster and easier to implement. In Figure

E.6 I report the results of the EOM calibration made with the resonance cavity.

The solid lines represent the theoretical behavior of Figure E.5. The colored dots rep-

resent the measured amplitudes of the �rst tree sidebands. We obtained these data

varying the voltage applied to the voltage controlled ampli�er (Vcontrol). For the exper-

imental data points the conversion of the x-axis of Figure E.6, from Vcontrol to radiant,

was done using the calibration of Figure E.2. The excellent agreement between the

experimental data and the theoretical curves is a proof of the validity of our method.
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Figure E.6: Measured (dots) and theoretical (lines) behavior of the side bands produced

on our laser spectrum by the EOM.
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