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On network two stages variable returns to scale

DEA models

20th June 2019

Abstract

Multiplicative decomposition of stages indices is shown to be consistent with VRS

network technologies. It is also shown why the primal dual correspondence breaks for

serial network VRS models. Different VRS models can be associated with alternative

transfer pricing systems, within the network. Multiplicative decomposition implies

marginal cost pricing across stages. While other pricing systems (full cost) correspond

to some of the known non-multiplicatively decomposable VRS models, proposed in

the literature. Stages indices, therefore, respond not only to efficiency, but also to the

network’s distributive criteria across stages. The distributive contents of stage indices

provide the key element for a solution to the problem of measuring scale efficiency in

network systems. Multiplicative decomposable VRS models can be extended to more

general network systems, containing both parallel and in series structures. The cost of

this generalisation is that efficiency indices are referred to modified stages, that is to

stages that include dummy processes. In perspective, these results contribute to show

how organisational aspects, such as transfer pricing systems, could be modelled once

network technologies are approached from the multiplier (ratio) side.

Keywords: Data envelopment analysis (DEA); Two stages network; Returns to scale;

Scale efficiency; Duality

1 Introduction

There are some open issues in Data Envelopment Analysis (DEA) literature as to how

convexity constraints should be embodied into network models in order to provide

the Variable Return to Scale (VRS) technology. It is maintained that VRS technology

is obtained by following the same procedure as in standard single stage model: i.e.

by adding convexity constraints on intensity variables to the Constant Return to Scale
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(CRS) model (Cook and Zhu 2014; Chen et al. 2016; Chen et al. 2009a; Chen et

al. 2010a). The problem has firstly arisen in the attempt to provide a VRS network

model with multiplicative decomposition of stage indices, as firstly proposed by Kao

and Hwang (2008) and Liang et al. (2008) for the CRS model. In such a model,

the inclusion of convexity constraints seems to be inconsistent with the requirements

posed by multiplicative decomposition (Chen et al. 2009a; Kao and Hwang 2011;

Sahoo et al. 2014; Chen and Zhu, 2018; Lim and Zhu 2019). Proposals to overcome

the problem have been put forward by Wang and Chin (2010), who rely, however, on

non convex technology, and by Sahoo et al. (2014), Lim and Zhu (2019), who have

proposed a way to get multiplicative decomposition by a post optimality sharing rule.

However, it is still open the problem of identifying the reason of the apparent

conflict between convexity and multiplicative decomposition. Even more so when

it is observed that, in some cases CRS stage efficiency indices turn out to be higher

than the corresponding VRS indices. This problem does not seems to be confined

to models with multiplicative decomposition of stage indices. As shown in Chen et

al. (2009b), Cook et al. (2010), Lim and Zhu (2019) by resorting to an additive

objective function one can decompose the overall (network) efficiency index into the

sum of its stages indices. However, even in these models, CRS stage indices turn out,

in some case, to be higher than VRS indices. Casting, therefore, doubts as to what

meaning should be attached to VRS technology in network systems. Quite inevit-

ably, these results have also led to question the primal-dual correspondence, which

holds for single stage models, between multiplier-based and envelopment-based net-

work models, thus suggesting that they might constitute two different approaches in

describing network technologies (Chen et al.2013; Sahoo et al. 2014; Lim and Zhu

2019).

There are, therefore, at least two problems linked to the contents of VRS network

models: one is that multiplicative decomposition of divisional indices appears not to

be consistent with VRS technology; the other is that, even abstaining from multiplic-

ative decomposition, network VRS technology does not seem to hold the properties

it has in a single stage technology, namely VRS efficiency indices being not lower

than the CRS indices. This paper aims at providing an answer to these questions, and

it does so by investigating the organizational underpinnings of multiplicative decom-

position and their link with the primal-dual correspondence in the case of two stages

serial network models.

The paper unfolds as follows. Sec. 2 shows the central role of the “multiplier

linking constraint” in achieving multiplicative decomposition of stage indices. It

also shows why the primal-dual correspondence breaks for serial network VRS mod-

els and, in this way, it provides a method to arrive at a multiplicatively decomposable

network model. Sec. 3 shows how the multiplicity of VRS network specifications
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can be associated to different transfer pricing systems within the network. It is poin-

ted out, therefore, how multiplicative decomposition implies marginal cost pricing

within the network. Other pricing systems (full cost) correspond to some of the

known non-multiplicatively decomposable VRS models proposed in the literature.

Sec. 4. shows that multiplicatively and non-multiplicatively decomposable convex

models are equivalent in as far as overall efficiency indices are concerned. What dis-

tinguishes them is the distributive criterion followed in allocating the overall index

across stages. Therefore, multiplicative decomposition of indices comes to be one of

the many possible criteria to allocate overall efficiency index. Non-multiplicatively

decomposable models, associated with full cost pricing, are equally plausible, al-

though they leave open the question of how to allocate, across stages, the overall

index of efficiency. In Sec. 5 it is argued that stage scale efficiency cannot be com-

puted, as in the single stage model, by the ratio of stage CRS to VRS indices, because

these indices respond to distributive criteria and depend on assumptions about the

network transfer pricing system. It is proposed that, in a network, scale efficiency

should take up the nature of conditional measurement. That is, returns to scale as-

sumptions have to be changed one stage at a time and the ”conditional” scale effi-

ciency computed for the stage under assessment. This introduces some sort of “path

dependence” type of indeterminacy in measuring scale efficiency, because, even in a

two stages model, there are at least two alternative paths to go form a CRS to a VRS

network model, one stage at a time. Sec. 6 contains an illustrative application of

a VRS network model with multiplicative decomposable indices. Sec. 7 extends to

more general network structures the approach developed in the previous sections. A

final section contains some concluding comments and hints for further research.

2 The multiplier linking constraint

We consider a two-stages serial technology with sub-technologies connected in a

system to form a network1. We assume there are n number of units, and each, in the

first stage (A), uses m number of inputs to produce p number of intermediate outputs,

which are then used as the only inputs by second stage (B), to produce s number of

final outputs. For each unit k (k = 1, ..., n), the vectors xk ∈ Rm; zk ∈ Rp and

yk ∈ Rs are initial inputs, intermediate outputs and final outputs, respectively. The

input matrix is defined by X = [x1, ...xn] ∈ Rn x m; the intermediate output matrix

by Z = [z1, ...zn] ∈ Rn x p;and final output matrix by Y =
[
y1, ...yn

]
∈ Rn x s;

It is also assumed that X > 0; Z > 0; Y > 0. The envelopment based network

technology by Fare and Grosskopf (1996) can be taken as the generally accepted

1For "series" or "serial" network structure is meant a system where the whole of first stage output, and only that, is

input to second stage. While "parallel" structures are made of processes operating independently.
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reference for the definition of a network technology. Adding convexity constraints,

we have, the envelopment input oriented VRS DEA model2:

E I =

min θ

∣∣∣∣∣∣
X ′λA − θxk ≤ 0

Z ′λB − Z ′λA ≤ 0

Y ′λB ≥ yk

;
−eλA = −1

−eλB = −1

λA,λB ≥ 0

 (2.1)

Where prime sign is for transpose and λA, λB are the (n x 1) vectors of intensity

variables. Its dual provides the VRS network multiplier DEA model (Chen and Zhu

2004; Sahoo et al. 2014; Lim and Zhu 2019), which, in fractional form, is3:

E I =

max
yku−h I

A − h I
B

xkv

∣∣∣∣∣∣
z j w−h I

A

x j v
≤ 1

y j−h I
B

z j w
≤ 1

;
v,w,u ≥ 0

h I
A, h

I
B = free

j = 1, ..., n

 (2.2)

Overall (E I ) and stages efficiency indices (E I
A, E I

B) are defined as:

E I =
(
yku− h I

A − h I
B

)/
xkv (2.3)

E I
A =

(
zkw− h I

A

)/
xkv

E I
B =

(
yku− h I

B

)/
zkw

Therefore, overall efficiency cannot be decomposed into the product of stage

efficiency indices (E I 6= E I
AE I

B), due to the presence of scale variables (h I
A, h

I
B).

The problem requires further examination, which can start by observing that in a

multiplier model, a special linking constraint has to hold to get a multiplicative de-

composition of indices. To show what this constraint is, let IA, OA; IB, OB, stand for

stage A input and output (virtual) measures; and stage B input and output (virtual)

measures, respectively. In an input oriented multiplier model, overall efficiency is

given by the ratio of final output to initial input: OB/IA. If multiplicative decompos-

ition has to hold, then it must be that:

OB

IA

=
OA

IA

OB

IB

That is, multiplicative decomposition requires that:

OA = IB (2.4)

2The convexity constraints carry negative signs in order for the input oriented multiplier version to conform with the

usage (Banker et al. 1984) of having scale variables (h) with negative signs.
3The fractional form is a convenient way to have at once the multiplier model and the implied definition of overall and

stages indices for all the models following this first one.
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Let us name it the "multiplier linking constraint". It is easily checked that it does

not hold for model (2.2) where output from first stage is OA = Zw − h I
A, while

second stage input is IB = Zw. Fig 1 provides a flow chart representation of this

point.

Fig. 1: Model (2.2) network

The multiplier linking constraint does hold, instead, for a CRS network model

(Kao and Hwang, 2008) where, by definition, scale variables are set to zero. Quite

clearly the problem for VRS network models lies in the envelopment convexity con-

straints (as contained in 2.1) interfering with the multiplier linking constraint (2.4).

In seeking a way to reconcile the two, it is useful to observe that algebraically equi-

valent forms of convexity constraints in the envelopment model give rise to different

multiplier models. For instance, the system of linear equations that makes the con-

vexity constraints in model (2.1) is in the form:[
−e 0

0 −e

] [
λA

λB

]
=

[
−1

−1

]
(2.5)

However, by mean of an Elementary Row Operation (ERO), an equivalent system

can be obtained. For instance, consider the following:[
−e e

0 −e

] [
λA

λB

]
=

[
0

−1

]
(2.6)

By replacing in model (2.1), the original convexity constraints (2.5) with (2.6), a

new envelopment model is obtained, with the same solution set as that of the original

model. However, the new envelopment model leads to a multiplier model different

from (2.2), namely to:
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E I I =

max
yku− h I I

B

xkv

∣∣∣∣∣∣
z j w−h I I

A

x j v
≤ 1

y j u−h I I
B

z j w−h I I
A

≤ 1
;

v,w,u ≥ 0

h I I
A , h

I I
B = free

j = 1, ..., n

 (2.7)

This model does satisfy the multiplier linking constraint: OA = Zw − h A = IB

and therefore its efficiency indices are multiplicatively decomposable:

E I I =

(
yku− h I I

B

)
xkv

=
zkw− h I I

A

xkv

yku− h I I
B

zkw− h I I
A

= E I I
A E I I

B (2.8)

Fig 2 provides a flow chart representation of model (2.7) and comparison with

Fig. 1 helps illustrating what changes occur in the definition of (virtual) input and

(virtual) output in respect to model (2.2).

Fig. 2: Model (2.7) network

Although model (2.7) provides a VRS network model with multiplicatively de-

composable indices, the procedure of how to get from the CRS envelopment model

to the VRS multiplier with decomposable indices is still to be detailed. Although

cumbersome to be put into words, the procedure is fairly straightforward once it

is realized that the central issue is about selecting among alternative ERO on the

convexity constraints (2.5), the one consistent with the multiplier linking constraint

(2.4). From there, the multiplier model with decomposable indices would follow. A

sketchy description is as follows:

1) Choose model’s orientation and write down the relevant envelopment VRS

model with convexity constraints in the standard form. That is, as in (2.5) for input

oriented model, or in the form:
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[
e 0

0 e

] [
λA

λB

]
=

[
1

1

]
(2.9)

for output oriented model4;

2) By dual relations write down the multiplier model. At this stage the multiplier

linking constraint (2.4) will not hold;

3) In the multiplier model, modify the allocation of scale variables (h) as required

for the multiplier linking constraint (2.4) to hold. The desired allocation is obtained

by moving the appropriate scale variable from the objective function to the relevant

stage constraint. This move correspond to an ERO on the system of convexity con-

straints. The resulting model will satisfy the multiplier linking constraint (2.4) and,

therefore, will have multiplicative decomposable indices.

As an example, the above procedure is used to get the output oriented VRS mul-

tiplier model. The starting point is the envelopment output oriented VRS model with

convexity constraints in the standard form of (2.9). That is:

Max φ
φyk − Y ′λB ≤ 0

Z ′λB − Z ′λA ≤ 0

X ′λA ≤ xk

eλA = 1

eλB = 1

(2.10)

Duality relations lead to the multiplier model, in fractional form for ease of ex-

position:

E I I I =

min
xkv+h I I I

A + h I I I
B

yku

∣∣∣∣∣∣
x j v+h I I I

A

z j w
≥ 1

z j w+h I I I
B

y j u
≥ 1
;

v,w,u ≥ 0

h I I I
A , h I I I

B = free

j = 1, ..., n

 (2.11)

With the help of Fig. 3, it is easily checked that, at this point, the multiplier

linking constraint (2.4) does not hold because: OA = Zw 6=IB = Zw+h I I I
B . To

make the constraint hold, scale variable h I I I
B has to become part of stage A output,

instead of being part of initial input5.

4This distinction being necessary to keep in line with the convention for scale variable (h) to take negative values in

the case of increasing return to scale (Banker et al 1984).

5The alternative move of simply removing scale variable h I I I
B from IB (hence from initial inputs as well) would leave

stage B without its scale variable. This would make stage B operate under costant return to scale.
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Fig. 3: Model (2.11) network

All these moves correspond to an ERO that transforms the initial system of con-

vexity constraints (2.9) into the following:[
e 0

−e e

] [
λA

λB

]
=

[
1

0

]
The initial VRS envelopment output oriented DEA model (2.10) becomes:

Max φ
φyk − Y ′λB ≤ 0

Z ′λB − Z ′λA ≤ 0

X ′λA ≤ xk

eλA = 1

−eλA + eλB = 0

and its dual, the multiplier model, in fractional form, is:

E I V =

min
xkv+h I V

A

yku

∣∣∣∣∣∣
x j v+h I V

A

z j w+h I V
B

≥ 1

z j w+h I V
B

y j u
≥ 1
;

v,w,u ≥ 0

h I V
A , h

I V
B = free

j = 1, ..., n

 (2.12)

Which shows that the multiplier linking constraint (2.4) does hold and efficiency

indices are, therefore, multiplicatively decomposable:

E I V =
xkv+h I V

A

yku
=

x jv+h I V
A

z jw+h I V
B

z jw+h I V
B

y ju
= E I V

A E I V
B
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Of course, the procedure would be more cumbersome for network with more than

two stages. However, the multiplier linking constraint (2.4) provides by itself the cri-

terion to follow to get the multiplier model directly without having to go through the

envelopment version. The central point, both for input and output oriented models,

is that the primal (envelopment)-dual (multiplier) correspondence is no longer one-

to-one as it happens for single stage models, and this is why defining technology

from the multiplier (ratio) side opens the way to a wider set of technologies than that

available under the definition from the envelopment side.

This result is, somehow, symmetrical to the one already observed in DEA network

literature about the lack of frontier projections in network multiplier models (Chen

et al. 2010b). There, alternative specifications of the envelopment linking constraint

(Fare and Grosskopf, 1996) result in the same multiplier model. Sahoo et al. (2014)

extend this approach to VRS models. Together these two observations suggest that

primal and dual specifications of technology are ways to model different features of

network processes.

3 Alternative pricing systems

The result from the previous section leads to a further question: what meaning to

attach to different network convex models, such as models (2.2) and (2.7)6. For

completeness, we observe that the set of two stages input oriented VRS models also

includes a third and last model, which completes the set of all possible VRS multi-

plier models for a two stages network if elementary row operations (ERO) are limited

to addition and/or subtraction and exclude the possibility of scaling. This statement

can easily be shown to hold because all models have to come from an elementary

row operation (ERO). If, starting from (2.5), as a first ERO one gets the system of

constraints (2.6), then, in a two columns system, there is only one more possibility

left, that is: [
−e 0

e −e

] [
λA

λB

]
=

[
−1

0

]
(3.1)

If the possibility of scaling is also admitted, then the set of alternative models be-

comes infinite even in a two stage model. Using (3.1) to replace (2.5) in model (2.1)

leads to an algebraically equivalent model, whose multiplier version in fractional

form is:

6Attention is being limited to input oriented models only for ease of exposition. The same arguments and answers

apply to output oriented models.
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EV =

max
yku− hV

A

xkv

∣∣∣∣∣∣
z j w−hV

A
+hV

B

x j v
≤ 1

y j u

z j w+hV
B

≤ 1
;

v,w,u ≥ 0

hV
A, h

V
B = free

j = 1, ..., n

 (3.2)

It satisfies the convexity constraints in the envelopment formulation and, there-

fore, it is a valid alternative to models (2.2) and (2.7). Like model (2.2) it is not

multiplicatively decomposable. We are going to show that these three models differ

in the way scale variables are allocated among stages and that the reason of such a

difference can be traced in the transfer pricing policy adopted within the network.

In order to compare the way scale variables are allocated, it is necessary to ex-

press each model in the same variables. We have already shown that models (2.2)

and (2.7) come from imposing two different, though algebraically equivalent, sys-

tems of convexity constraints (2.5 and 2.6) to the basic CRS envelopment model. A

similar link holds for model (2.2) and (3.2)7. Now, to compare models (2.2), (2.7)

and (3.2), in their linearised forms (by mean of the Charnes and Cooper (1962) trans-

formation), a starting observation is that their envelopment VRS versions are linked

by an ERO; therefore, an elementary column operation (ECO) links the multiplier

versions. It is straightforward to see that models (2.2) and (2.7) are linked by an

ECO, in their linearised forms, and, therefore, they are equivalent up to the following

change of variables:

h I
B = h I I

B − h I I
A (3.3)

h I
A = h I I

A

Where h I
B , h I

A are scale variables from model (2.2) and h I I
B , h I I

A are scale vari-

ables in model (2.7). By the same reasoning, we can compare models (2.7) and (3.2)

to obtain that they also are equivalent, in their linearised forms, up to the following

change of variable:

hV
A = h I I

B

hV
B = h I I

B − h I I
A

(3.4)

Where hV
A , hV

B are scale variables in model (3.2) and, as before, h I I
B , h I I

A are scale

variables in model (2.7). By applying these change of variables to the efficiency

indices from model (2.2) and model (3.2), we are able to see how allocation of scale

variables differs across models.

7See footnote above.
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Table 1: Models (2.2) and (3.2) efficiency indices in terms of model (2.7)’s variables

Model (2.7) indices Model (2.2) indices Model (3.2) indices

E I I =
yku−h I I

B

xkv
E I =

yku−h I I
B

xkv
EV =

yku−h I I
B

xkv

E I I
A =

zkw−h I I
A

xkv
E I

A =
zkw−h I I

A

xkv
EV

A =
zkw−h I I

A

xkv

E I I
B =

yku−h I I
B

zkw−h I I
A

E I
B =

yku−h I I
B
+h I I

A

zkw
EV

B =
yku

zkw−h I I
A
+h I I

B

Table 1 shows that the basic difference among the three models rests on the al-

location of scale variables in stage B. Namely, scale variable h A is part of input in

models (2.7) and (3.2), while it is part output in model (2.2). As for scale variable hB ,

it is part of output in models (2.7) and (2.2), while it is part of input in model (3.2).

The different allocation of scale variables causes stage B efficiency indices to differ

among models. Therefore, selecting one model over the others is not indifferent as

far as second stage efficiency is concerned, while first stage and overall indices stay

the same across models.

The issue, however, can conveniently be seen as the result of alternative transfer

pricing policies within the network. The allocation of profits/losses to subsidiaries

abroad is the core of transfer pricing models used by multinational companies. In al-

locating scale variables among stages, a network faces very much the same problem.

Models (2.2), (2.7) and (3.2) have the unit prices of resource (v,w,u) endogenously

determined (actually they are the same across models) while they differ in the way

they allocate scale variables (we shall refer to them also as: economic profits/losses,

see Starrett 1977).

By looking at model (2.7) and Fig. 2, we can see that efficient units (k) in stage

A are on the supporting hyperplane: zkw− xkv− h I I
A = 0, and price their output at:

zkw− h I I
A , that is to variable cost xkv. Because variable cost is constant per unit, we

are in front of a marginal cost pricing policy8.

On the hyperplane: yku −
(
h I I

B − h I I
A

)
− zkw = 0, efficient units in stage B

take stage A’s output (zkw − h I I
A = xkv) as input, and price their own output at:

yku−h I I
B = zkw−h I I

A . Therefore, they also follow marginal cost pricing9 and bear

the costs/benefits of their economic profits/losses, which means that their economic

profits (h I I
B ≥ 0) reduce gross revenue (yku) down to marginal cost (zkw + h I I

A ). In

8The quantity xkv stand for variable cost in accounting practice and, in general, differs from marginal cost. However,

if we have a linear technology with fixed input to output ratios and given input prices (these latter are parameters in the

hyperplane) then variable cost equals marginal cost. Limitedly to the rest of this section we shall use variable cost and

marginal cost interchangeably.
9For stage B the quantity: zkw + h I I

A represents marginal cost. No matter if it contains a profit/loss element. That is

part of stage A pricing system.
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case of economic losses (h I I
B ≤ 0), instead, gross revenue would be increased up to

marginal cost. Either way, efficiency requires zero accounting profits/losses.

From the network point of view (see Fig. 2) the combination of stage A and stage

B marginal cost pricing leads the whole system to function accordingly, and final

output to be priced at: yku−h I I
B = zkw−h I I

A = xkv, that is at the network’s marginal

cost (xkv). It follows that the network as a whole bears its economic profits/losses

by allocating them to the stage they arise from10. This goes to show that within the

set of network convex models, multiplicative decomposition of stage indices implies

marginal cost pricing within the network11.

The same reasoning, once applied to model (2.2), allows to highlight the dif-

ferences, with respect to model (2.7), in terms of transfer pricing policy. We have

already shown that models (2.2) and (2.7) are equivalent up to a change of vari-

able (3.3). Therefore, efficiency indices from model (2.2) can be re-written by using

model (2.7) variables, as done in Table 1. Efficient units are on the same hyperplanes

as those we have just been describing above for model (2.7). To illustrate the differ-

ence in terms of transfer pricing, however, a graphical representation of model (2.2),

in terms of model (2.7) scale variables, is of better help.

Fig. 4: Model (2.3) (Panel a) and model (3.2) (Panel b) in terms of model (2.7)’s variables

Panel (a), in Fig. 4, shows that stage A pricing policy is the same as in model

(2.7). That is, it operates under marginal cost pricing: economic profits/losses are

born by the stage itself.

10In his seminal article, Hirshleifer (1956) derives optimal transfer prices that lead each unit to maximize the company

profits. This result, however, requires some rather restrictive assumptions in the case of a network. Above all, that each

unit operating costs be independent of the level of operations in other units (technological independence).

11This does not hold outside the set of convex network models, as model (4.4) in Sec.4 shows
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The essential difference is in stage B, where input is priced at full cost zkw = xkv+h I I
A ,

(instead of stage A marginal cost: zkw − h I I
A ). This causes stage A economic

profits/losses to be shifted forward onto final output at the benefit/cost of stage

B revenue. Then, stage B prices its output at: yku−h I I
B + h I I

A = zkw. That

is, it bears the costs/benefits of its economic profits/losses (h I I
B ). In short, first

stage profits/losses h I I
A are shifted forward onto final output, while second stage

profits/losses h I I
B are born by the stage. The network as a whole prices its output

at: yku−h I I
B + h I I

A = xkv+h I I
A , that is, at the network marginal cost (xkv) plus first

stage economic profits/losses (h I I
A ). Therefore, differently from what happens in

model (2.7), stage B does not follow marginal cost pricing, rather it follows a hybrid

form of full cost pricing12.

By the same type of reasoning, it can be shown (Panel (b), Fig. 4 ) that model

(3.2) works according to a pricing system somehow symmetric to that of model (2.2).

As in models (2.2), (2.7) and (3.2), first stage follows marginal cost pricing by setting

its output at: zkw − h I I
A = xkv. Stage B, instead, prices its input at full cost: zkw −

h I I
A + h I I

B , that is, at marginal costs zkw−h I I
A , plus its economic profits/losses h I I

B .

Therefore, while stage A economic profits/losses are born by that stage, stage B

economic profits/losses are shifted forward onto final output. Altogether, this pricing

system leads to final output being priced at the network’s marginal cost plus second

stage economic profits/losses: xkv+h I I
B .

To summarise, the three models can be distinguished by the pricing decision

taken at stage B. While stage A follows marginal cost pricing in all the three models,

stage B does the same in model (2.7); while it follows a sort of hybrid full cost rule

in model (2.2); and follows the standard full cost pricing in model (3.2).

These results have a straightforward implication for the issue of multiplicative

decomposition of network convex models. The pricing policies supported by models

(2.2) and (3.2) are, from a general point of view, as plausible as the marginal cost

pricing contained in model (2.7). Therefore, it is reasonable to maintain that the

choice of which model to choose should be guided by what pricing policy is thought

to be more appropriate for the case at hand and not simply by the multiplicative

decomposition property.

Admittedly, if model (2.2) or (3.2) is chosen, then the question arises as to how

allocate the overall index of efficiency across stages. This is because only model

(2.7) provides an allocation, through its multiplicative decomposition, while models

(2.2) and (3.2) do not contain a way to reconcile stages indices with the overall index.

This issue is taken up in the following section.

12Full cost pricing by stage B would require its output being priced at marginal cost (zkw − h I I
A ) plus the stage’s

economic profits/losses (h I I
B ).
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4 The issue of multiplicative decomposition

Why should one seek multiplicative decomposition? Actually, what is sought is not

multiplicative decomposition as such, rather a way to account for the sources of

efficiency. Decomposition of overall index into stage efficiency indices conveys im-

portant bits of information similar to those provided by economic growth accounting

models in determining factors’ contribution to production. Multiplicative (Kao and

Hwang 2008) and additive (Chen et al. 2009) decomposition of stage indices are the

two basic methods used in the literature. While they have in common the definition

of stage indices they differ largely in the objective function and in the manner indices

are decomposed. Chen et al. (2009) firstly proposed the additive decomposition, one

motivation being that of overcoming the difficulty posed by multiplicative decom-

position in modelling Vrs technology. The overall efficiency (the objective function)

is a weighted average of stages efficiency indices. Weights are endogenously determ-

ined and that facilitates the linearization of the two stages model. Such an objective

function poses two different problems. The first is that being the weights endogenous

they come to be different from units to units. Therefore the size of the stages comes

to be part of the assessment which is meant to refer only to efficiency. Linked to

this problem there is also the observation that endogenous weight might differ from

the management’s objectives. The second problem is that decomposition weight are

non increasing along the sequence of stages. That is upstream stages receive higher

weighs and will therefore effect overall efficiency more than downstream stages.

In terms of efficiency indices this causes a bias in favour of downstream stages be-

cause indices decrease when the stage’s weight increases. Ang and Chen (2016) have

provided an alternative model with exogenous weights which overcomes the above

shortcomings. However the model is non linear and subject to computing difficulties.

While in what follows we shall concentrate on multiplicative decomposition, it

cannot be left unsaid that it also faces some indeterminacy problem because of the

non-uniqueness of its efficiency indices. That is because intermediate outputs do not

appear neither in the objective function nor in the normalisation constraint. This im-

plies that their value can change and the overall efficiency index remain the same.

That is, the same overall efficiency index is consistent with many values of stage

indices. Kao and Hwang (2008) recognised the problem and, in order to limit the

indeterminacy, proposed to solve a couple (in a two stages mode) of post optimality

models aiming at finding the highest efficiency score for one stage (the leader) while

keeping the overall efficiency at optimal level. The rationale being that one might

want to give priority to either stage in selecting among alternative optima. Though

this procedure has become common practice in applied work it still remains a mat-

ter of concern especially in cases where non priority among stages is sought or no

14



reliable information is available to assign priority.

In proposing model (2.2), Sahoo et al. (2014) provide an ex post multiplicative

decomposition of the overall index of efficiency. Though slightly different, the de-

composition proposed by Lim and Zhu (2019) is based on the same ex-post logic 13.

Using the symbols from model (2.2), Sahoo et al. (2014) proposed decomposition

is:

E I = E I
A ∗ E I

B ∗ K I (4.1)

⇒
yku− h I

A − h I
B

xkv
=

zkw− h I
A

xkv
∗

yku− h I
B

zkw
∗

(
yku− h I

A − h I
B

yku− h I
B

zkw

zkw− h I
A

)

Where E I , E I
A and E I

B are as from (2.3) and K I is identically defined by:

K I ≡
E I

E I
A ∗ E I

B

(4.2)

That is K I is a measure of the "gap" between the product of stages’ indices

and the overall index of efficiency. It has the role of a “residual” in the process of

allocating overall productivity to stages of production. As such, K I is not a measure

of efficiency independent from stages’ indices, even if its constitutive elements can

be traced back to parts of efficiency indices, as Sahoo et al. (2014, Remarks 1-3, p.

587) and (4.1) show.

This point deserves, however, some further investigation which can start by re-

calling the equivalence among models (2.2), (2.7) and (3.2) as summarised by Table

1. In short, there it is shown that overall and first stage indices are the same across

models, while second stage indices are different. If ex post multiplicative decompos-

ition, such as (4.1), is also applied to model (3.2), thus determining K V factor (com-

puted as in (4.2), but with indices from model (3.2)), then because of the equality

across models of first stage and overall efficiency indices (see Table 1), and because

multiplicative decomposition holds for model (2.7), that is: E I I = E I I
A E I I

B , it must

follow that efficiency indices from models (2.2), (2.7) and (3.2) are linked in the

following manner:

E I I = E I = EV

E I I
A = E I

A = EV
A

E I I
B = E I

B ∗ K I = EV
B ∗ K V

(4.3)

13In terms of the symbols we have been using, and taking the case of intermediate measures being the same between

stages (i.e. the Kao and Hwang, 2008 assumption), Lim and Zhu (2019) decomposition amounts to define second stage

efficiency as: E I
B =

(
yku− h I

A − h I
B

)
/
(
zkw− h I

A

)
, which is different from the definition used in their model (D3),

which, in turn, is the same as model (2.2). This is why we call this decomposition "ex-post". If the change of variable (3.3)

is applied to this definition of second stage index, one gets the same index as that in model (2.7) which is multiplicatively

decomposable. Therefore, the definition proposed by Lim and Zhu (2019) is consistent with multiplicative decomposition

of indices, though not with the model they adopt.
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Where superscript I , I I and V stand for models (2.2), (2.7) and (3.2) indices,

respectively. The first two lines simply repeat the fact that first stage and overall

indices are the same across models. The last line shows that if in models (2.2) and

(3.2) factors K I and K V are allocated to stage B index, then the two models yield

the same index as model (2.7). Therefore, the three models not only represent the

same network technology, and that is known because they all come from the same

envelopment model, but they also have the same distribution of efficiency across

stages.

Of course, this conclusion can be reached only because model (2.7) shows how

to allocate factors K I and K V to that end. There is, however, nothing compelling in

allocating factors K I and K V in this way. That is, models (2.2) and (3.2) can be used

to support any other different allocation of the K factors across stages. Actually one

would expect a different allocation across stages from that provided by model (2.7),

right because models (2.2) and (3.2) imply different transfer pricing systems within

the network.

However, models (2.2) and (3.2) require additional assumptions to arrive at a full

distribution of overall efficiency index across stages14. This causes some indeterm-

inacy as how to interpret the results for benchmarking purposes15 when using model

(2.2) or (3.2), and suggests that further research is needed in order to link the internal

pricing policies to a consistent way of sharing the overall index of efficiency across

stages.

One possibility could be that of resorting to a Nash type of cooperative bargain-

ing game, by extending to VRS technology the model proposed by Du et al. (2011)

for CRS technology. Stages’ disagreement constraints could be provided by stages’

indices resulting from models (2.2) or (3.2). However the network’s overall index

of efficiency might turn out to be lower than that from model (2.2) or (3.2). That is

because Du et al. (2011) model gives the optimal value for the network attainable

through cooperation. That is because Du et al. (2011) model gives the optimal

value for the network attainable under the constraint of the solution having to be co-

operative. That is, by non-cooperation (as in models (2.2), (2.7) and (3.2)) higher

overall efficiency could be achieved. It is of interest to observe, that for zero dis-

agreement point, Du et al. (2011) model reduces to the multiplicative decomposable

CRS model by Liang et al. (2008). It is straightforward matter to shown that such a

property would continue to hold for VRS technology provided model (2.7) is used,

right because it is multiplicatively decomposable.

In closing this section, a final remark is in line with the section’s main contents:

14It is worth observing that by resorting to an additive (ex post) decomposition, instead of the multiplicative one, would

not help because then the three models would all have a residual attached.
15Being K different across units, it can happen that, at stage level, efficiency ranking comes to depend on the assumed

distribution of K across stages.
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the role of the network internal pricing system. The possibility arises that in building

a VRS network model one might end up in a trade-off between making the model

consistent either with a given transfer pricing rule, or with convexity. For instance

the model by Wang and Chin (2010):

EV I =

max
yku− hV I

B

xkv+hV I
A

∣∣∣∣∣∣
z j w

x j v+hV I
A

≤ 1

y j u−hV I
B

z j w
≤ 1
;

v,w,u ≥ 0

hV I
A , h

V I
B = free

j = 1, ..., n

 (4.4)

has the property of multiplicative decomposition of indices but is not convex, neither

in input, nor in output orientation. Non convexity is easily seen by working out its

dual, the envelopment input oriented model, whose constraints on intensity vectors

turn out to be: eλA = θ; and eλB = 1. By a suitable change of variables: λA/θ =
λ̂A; λB/θ = λ̂B and 1/θ = φ, one gets the equivalent output oriented model, with

intensity constraints: eλ̂A = 1; and eλ̂B = φ.

Fig. 5 shows that model (4.4) is a combination of first stage full cost pricing with

second stage marginal cost pricing. It follows, with changes, the original idea put

forward by Kao and Hwang (2011), by joining together an output oriented model,

for the first stage, and an input oriented, in the second stage16. We do not, however,

further investigate this non-convex class of models because out of our present scope.

We observe, though, that models such as (4.4), when supplemented by organisa-

tional aspects, like the network internal pricing system, further widen the interest in

a line of research based on approaching the network technology from the multiplier

(fractional) side.

Fig. 5: Model (4.4) network

16Actually, Kao and Hwang (2011)’s was not a network model because made up of two separate stages: an input

oriented first stage and an output oriented second stage. Combining these two stages into a network would result in a

model, which is neither convex, nor multiplicatively decomposable.
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5 Scale efficiency in network models

The peculiarity of CRS efficiency indices being not smaller than VRS indices, thus

casting doubts on the meaning of scale efficiency measures in network systems, has

so far been observed in network models with additive decomposition (Chen et al.

2009b, Cook et al. 2010 , Lim and Zhu, 2019 ) and also in models with ex-post

multiplicative decomposition Lim and Zhu (2019).

The problem, however, persists in our multiplicatively decomposable model (2.7).

Applying this model to the Kao and Hwang (2008) data reveals that, in 6 out of 24

observations, stage A CRS index is higher than the VRS index. Stage B and the

overall VRS indices, instead, obey the usual rule of being not lower than CRS in-

dices17. Inspection of model (2.7) shows one obvious though important fact, that is,

first stage output is not part of the objective function, which contains only second

stage output. Therefore, in going from CRS to VRS technology, optimal values for

first stage variables will be selected so as to increase (relatively to CRS solution) final

output, i.e. second stage output. First stage output is no more than an intermediate

variable. This is the simple explanation of why in a network model it can happen that

stages’ CRS efficiency indices are higher than VRS indices. This explanation holds

also for models with additive decomposition, where to be maximised is the weighted

average of stages efficiency indices18.

What is in question is not the overall (i.e. network) scale efficiency index, which

shows the usual properties as in a single stage model (the same is observed in Lim

and Zhu 2019). Inded, it can easily be argued that in a two stages network two

additional (scale) variables are added, relatively to the CRS model, therefore, net-

work VRS optimal solution cannot be lower than the CRS’s. However, network scale

efficiency index can be multiplicatively decomposed, as a result of its components

(CRS &VRS indices) being themselves decomposable, and it is open to question what

meaning to assign to stage indices arising from such a decomposition.

The answer to this question comes from the analysis carried out in Sec.3. The

decomposition by stages of the overall index follows the network transfer pricing

system. And models (2.2), (2.7), (3.2) show how alternative assumptions about the

pricing system lead to different allocation, across stages, of the same overall index

of efficiency. In other words, stage decomposition responds to a distributive criterion

and it would be meaningless to use it to describe a technology feature such as scale

efficiency.

17The same happens for models (2.2) and (3.2). Interestingly, in model (3.2) it also happens that, for one unit, CRS

index is higher than VRS index even for second stage.
18In these models one would expect that also second stage CRS indices could turn out to be not smaller than VRS

indices, right because, differently from model (2.7), the model’s objective function is not made only of second stage

output.
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However a reasonable way to get a scale efficiency index for each stage could be

that of introducing the change in technology (from CRS to VRS) one stage at a time,

in a step-by-step procedure. This would provide the increase in network efficiency

due to changing the technology assumption in one stage, while keeping the other

stage’s technology unchanged, and would provide the same sort of information about

stage scale efficiency as in a single stage model. It would have, though, the nature

of “conditional” scale efficiency. Conditional on the other stage’s returns to scale

assumption.

To describe the procedure in some detail, let E (B=Crs; A=Crs) stand for the overall

efficiency index of CRS network model, where the CRS assumption holds for both

stages, as made clear by text within brackets. This index is obtained from model (2.1)

by removing the convexity constraints and, by dual relations, set in its multiplier

form. From Kao and Hwang (2008), it is known that this index is multiplicatively

decomposable as:

E (B=Crs; A=Crs) = EA(B=Crs; A=Crs) ∗ EB (B=Crs; A=Crs)

Then, let E (B=Vrs; A=Crs) be the overall efficiency index of a model obtained from

model (2.1) with stage A convexity constraints removed while stage B convexity

constraint is maintained and, again, expressed in its multiplier form. This index is

also multiplicatively decomposable because it complies with the multiplier linking

constraint (2.4):

E (B=Vrs; A=Crs) = EA(B=Vrs; A=Crs) ∗ EB (B=Vrs; A=Crs)

Therefore, scale efficiency index for stage B, conditional on stage A being on

CRS, is:

SEB (A=Crs) =
E (B=Crs; A=Crs)

E (B=Vrs; A=Crs)
(5.1)

Which can be decomposed as:

SEB (A=Crs) =
EA(B=Crs; A=Crs)

EA(B=Vrs; A=Crs)
∗

EB (B=Crs; A=Crs)

EB (B=Vrs; A=Crs)
(5.2)

= 1EA(A=Crs) ∗1EB (A=Crs)

Now let E (B=Vrs; A=Vrs) be the overall efficiency index of model (2.7), where both

stages are under convexity constraint. Then, stage A scale efficiency index, condi-

tional on stage B being on VRS, can be computed as:

SEA(B=Vrs) =
E (B=Vrs; A=Crs)

E (B=Vrs; A=Vrs)
(5.3)
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and decomposed as:

SEA(B=Vrs) =
EA(B=Vrs; A=Crs)

EA(B=Vrs; A=Vrs)
∗

EB (B=Vrs; A=Crs)

EB (B=Vrs; A=Vrs)
(5.4)

= 1EA(B=Vrs) ∗1EB (B=Vrs)

Indices (5.1) and (5.3) provide a measure of scale efficiency for the stage under

assessment (B and A, respectively) with the usual properties as in a single stage

model, with the provision of being conditional on the other stage’s returns to scale

assumption.

Stage decomposition of these indices, according to (5.2) and (5.4), only provides

a measure of the way the overall increase in efficiency is shared across stages. In this

following the results from Sec. 3, which has shown how multiplicative decomposi-

tion has a distributive meaning. If, for example, in (5.4) stage B index for a given

unit happens to be greater than one (1EB (B=Vrs)≥1), that has only the meaning of a

decrease in stage B efficiency when stage A moves from CRS to VRS.

Of course, to provide a measure of scale efficiency for a given stage, one could

follow a path different from that followed to get to (5.1) and (5.3). By taking

E (B=Crs; A=Crs) as a starting point, E (B=Crs; A=Vrs) could then be computed and their

ratio would provide scale efficiency index for stage A : SEA(B=Crs), conditional on

stage B being on CRS
19. This index would in general be different from (5.3. The

same would hold for scale efficiency index SEB (A=Vrs) as the ratio of E (B=Crs; A=Vrs) to

E (B=Vrs; A=Vrs), which would in general be different from (5.1). Therefore, this step-

by-step type of assessment introduces a sort of “path dependency” issue because,

even in the simplest network, made of only two stages, there are at least two differ-

ent paths one could follow. The conditional feature, of this way in computing scale

efficiency for network systems, contains, therefore, some inherent indeterminacy.

6 An illustrative application

For the 24 Taiwanese non-life insurance companies of Kao and Wang (2008), Table

2 shows efficiency indices under CRS and VRS assumptions. CRS indices are the

same as in Kao and Hwang (2008) and can be obtained from any of the VRS mod-

els presented in the text (i.e. models (2.2), (2.7) and (3.2)), by dropping all scale

variables. The same models, with all the scale variables included, provide the VRS

indices in Table 2.

19It is of some interest to observe that such a combination of assumptions about stages returns to scale leads to a

multiplier network model that is not multiplicatively decomposable because does not conform to the multiplier linking

constraint (2.4). Thus providing an indirect support to the necessity of keeping the information contents of multiplicative

decomposition of scale efficiency distinct from the content of conditional scale efficiency index.
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Multiplicative decomposition holds only for model (2.7). Confirming the results

obtained in Sec. 3, indices from the three VRS models are the same, as far as overall

and stage A are concerned, while they differ for stage B.

However, if stage B indices from model (2.2) are scaled by the K I factor (as

computed in (4.2)), then one gets the same indices as from model (2.7). The same

equivalence would hold between stage B indices from model (2.7) and those from

model (3.2) provided the latter are scaled by the K V factor described in Sec. 4.

Of course, there is no compelling reason to apply K I or K V factor entirely on

stage B indices. Any other distribution of the K factor across stages would be con-

sistent with models’ assumptions. That is why, models (2.2) and (3.2) need to be

supplemented by additional assumptions in order to arrive at a complete distribution

of the overall index across stages. Short of these assumptions, the use of models

(2.2) and (3.2) for benchmarking purposes is necessarily limited, for efficiency rank-

ing would depend on how one decides to allocate the K factor.

Table 2: CRS and VRS efficiency indices for two stages input oriented models

CRS VRS mod (2.2) VRS mod (2.7) VRS mod (3.2)

Units Overall Stage A Stage B Overall Stage A Stage B K I Overall Stage A Stage B Overall Stage A Stage B K V

1 0.6992 0.9926 0.7045 0.7366 0.9886 0.7434 1.0023 0.7366 0.9886 0.7451 0.7366 0.9886 0.7448 1.0004

2 0.6248 0.9985 0.6257 0.7109 1 0.7111 0.9997 0.7109 1 0.7109 0.7109 1 0.7192 0.9885

3 0.6900 0.6900 1 0.6903 0.6903 1 1 0.6903 0.6903 1 0.6903 0.6903 1 1

4 0.3042 0.7243 0.4200 0.3123 0.7172 0.4238 1.0275 0.3123 0.7172 0.4355 0.3123 0.7172 0.4255 1.0234

5 0.7670 0.8307 0.9233 1 1 1 1 1 1 1 1 1 1 1

6 0.3897 0.9606 0.4057 0.4904 0.9118 0.5323 1.0104 0.4904 0.9118 0.5379 0.4904 0.9118 0.5561 0.9672

7 0.2766 0.6706 0.4124 0.4479 0.7511 0.5938 1.0042 0.4479 0.7511 0.5963 0.4479 0.7511 0.6131 0.9726

8 0.2752 0.6630 0.4150 0.5292 0.7834 0.7216 0.9361 0.5292 0.7834 0.6756 0.5292 0.7834 0.8365 0.8076

9 0.2233 1 0.2233 0.2790 1 0.2756 1.1234 0.2790 1 0.2790 0.2790 1 0.2952 0.9451

10 0.4660 0.8615 0.5408 0.6286 0.8619 0.7272 1.0029 0.6286 0.8619 0.7294 0.6286 0.8619 0.7438 0.9805

11 0.1639 0.6468 0.2534 0.3329 0.7184 0.4580 1.118 0.3329 0.7184 0.4633 0.3329 0.7184 0.5011 0.9247

12 0.7596 1 0.7596 0.7827 0.9064 0.8618 1.0020 0.7827 0.9064 0.8635 0.7827 0.9064 0.8662 0.9969

13 0.2078 0.6720 0.3093 0.6133 0.8021 0.7634 1.0016 0.6133 0.8021 0.7646 0.6133 0.8021 0.8736 0.8752

14 0.2886 0.6699 0.4309 0.4055 0.7254 0.5550 1.0072 0.4055 0.7254 0.5590 0.4055 0.7254 0.5850 0.9556

15 0.6138 1 0.6138 0.8809 1 0.8795 1.0016 0.8809 1 0.8809 0.8809 1 0.8853 0.9950

16 0.3202 0.8856 0.3615 0.3846 0.9107 0.4169 1.0130 0.3846 0.9107 0.4223 0.3846 0.9107 0.4473 0.9441

17 0.3600 0.6276 0.5736 0.7242 0.7242 1 1 0.7242 0.7242 1 0.7242 0.7242 1 1

18 0.2588 0.7935 0.3262 0.3261 0.6589 0.4857 1.0190 0.3261 0.6589 0.4949 0.3261 0.6589 0.5504 0.8992

19 0.4112 1 0.4112 0.6763 1 0.6566 1.0300 0.6763 1 0.6763 0.6763 1 0.7644 0.8847

20 0.5465 0.9332 0.5857 0.9021 0.9021 1 1 0.9021 0.9021 1 0.9021 0.9021 1 1

21 0.2008 0.7321 0.2743 0.4437 0.8821 0.3376 1.4899 0.4437 0.8821 0.5030 0.4437 0.8821 0.2170 2.3180

22 0.5895 0.5895 1 1 1 1 1 1 1 1 1 1 1 1

23 0.4203 0.8426 0.4989 0.6610 0.9757 0.6202 1.0923 0.6610 0.9757 0.6774 0.6610 0.9757 0.5675 1.1938

24 0.1348 0.4287 0.3145 0.1899 0.4399 0.3489 1.2373 0.1899.9492 0.4399 0.4318 0.1899 0.4399 0.3616 1.1938

Tab. 3 contains in the second column the index of scale efficiency for the entire

network computed as the ratio of overall CRS index to overall VRS index. Then

Table 3 has two sets of conditional scale efficiency indices for stages A and B. The

first set is computed according to eq. (5.1, for stage B, and eq. (5.3, for stage A,

and is reported in the 3rd and 6th column of Tab. 3. In the case of this first path in

changing returns to scale assumptions, scale efficiency indices can be decomposed,

as shown in columns with the "Delta" headings. The second set of scale efficiency

indices is computed, by following a different path in changing the assumptions on

returns to scale, and is shown in 9th and last columns of Tab. 3. For these latter

measures of scale efficiency, no "Delta" headed column is added because they cannot

be decomposed multiplicatively.

Interpretation of the results is slightly different from conventional, one stage,

measure of scale efficiency. For instance, the second column shows that unit 3 has

21



stage B scale efficient (SEB = 1), conditional on stage A operating under CRS. For

stage A (SEA), instead, with second stage operating under VRS (6th column), no unit

is scale efficient. The conditional element affects the measure rather significantly,

although not so much as to alter the ranking, as it can be seen by comparing scale

efficiency for the same stage under different assumption about returns to scale on

the other stage. For instance, stage A scale efficiency, conditional on stage B being

under VRS (6th column), is different from the same measure with stage B under CRS

(10th column). Although the two measure seem to follow a similar tendency. The

same holds for stage B scale efficiency under the two alternative assumptions (3rd

and last columns).

Scale efficiency measures from eq. (5.1) and (5.3), columns 3rd and 6th, can

be decomposed multiplicatively according to eq. (5.2) and eq. (5.4), respectively.

Decomposition for stage B scale efficiency (3rd column) is reported in columns 4th&

5th under the headings of "Delta" to signify that these indices are to be interpreted

as a measure of the variation of stage efficiency. If the index is greater than one,

there is a reduction in efficiency, while an increase in efficiency shows by an index

lower than one. Take, for instance, Unit 1 and the case of returns to scale assumption

being changed so as to move stage B from CRS to VRS, while keeping stage A under

CRS, (3rd column). Unit 1 would, then, have stage B conditional scale efficiency at

SEB=0.9508 (i.e. 0.0492 scale inefficient) and this would cause stage A to remain at

the same efficiency level as before the move (DeltaA=1 , 4th column), while stage B

would experience an increase in efficiency (DeltaB=0.9598, 5th column).

Table 3: Network, conditional scale efficiency (SE) and changes in stages efficiency indices (Delta)

Network conditional on A=CRS conditional on B=VRS conditional on B=CRS conditional on A=VRS

Units SE SEB Delta EA Delta EB SEA Delta EA Delta EB SEA SEB

1 0.9492 0.9508 1 0.9508 0.9984 1.0040 0.9944 0.9952 0.9538

2 0.8789 0.8789 1 0.8789 0.9999 0.9985 1.0014 0.9994 0.8793

3 0.9996 1 1 1 0.9996 0.9996 1 0.9996 1

4 0.9740 0.9893 1 0.9893 0.9845 1.0099 0.9748 0.9830 0.9908

5 0.7670 0.9158 0.9918 0.9233 0.8375 0.8375 1 0.7670 1

6 0.7947 0.8035 1.0544 0.7621 0.9888 0.9992 0.9896 0.9878 0.8043

7 0.6175 0.6199 0.8917 0.6952 0.9961 1.0013 0.9948 0.9727 0.6349

8 0.5200 0.5351 0.9303 0.5752 0.9717 0.9098 1.0681 0.9504 0.5471

9 0.8004 0.8078 1 0.8078 0.9908 1 0.9908 0.9934 0.8057

10 0.7413 0.7439 1 0.7439 0.9965 0.9996 0.9969 0.9996 0.7416

11 0.4923 0.4998 0.9032 0.5534 0.9852 0.9968 0.9884 0.9792 0.5029

12 0.9705 0.9735 1.1045 0.8814 0.9969 0.9988 0.9980 0.9973 0.9731

13 0.3388 0.3390 0.8368 0.4051 0.9996 1.0012 0.9984 0.9454 0.3584

14 0.7117 0.7173 0.9245 0.7759 0.9923 0.9989 0.9934 0.9984 0.7130

15 0.6968 0.6979 1 0.6979 0.9985 1 0.9985 0.9980 0.6982

16 0.8326 0.8449 0.9762 0.8655 0.9853 0.9962 0.9891 0.9802 0.8493

17 0.4971 0.4977 0.8677 0.5736 0.9988 0.9988 1 0.9574 0.5193

18 0.7936 0.8106 1.1958 0.6779 0.9791 1.0071 0.9722 0.9820 0.8083

19 0.6080 0.6345 1 0.6345 0.9582 1 0.9582 0.9152 0.6643

20 0.6058 0.6545 1.1176 0.5857 0.9256 0.9256 1 0.8780 0.6900

21 0.4526 0.7375 0.9755 0.7561 0.6136 0.8508 0.7212 0.4780 0.9467

22 0.5895 1 1 1 0.5895 0.5895 1 0.5895 1

23 0.6359 0.8063 1 0.8063 0.7888 0.8635 0.9134 0.7269 0.8749

24 0.7098 0.9565 1 0.9565 0.7420 0.9745 0.7614 0.7301 0.9721
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7 Extensions

The three basic models (2.2), (2.7) and (3.2 ) we have been dealing with so far are

characterised by: 1) containing only two stages; 2) each stage is made of one and

only one process, hence there is equivalence between stages and processes; 3) stages

(processes) are organised in series, while parallel systems are not accounted for. In

this section we show how to extend the basic idea of multiplicative decomposition of

VRS systems to these more general networks.

1) Let us start from the most straightforward extension, that of more than two

stages, while keeping the structure in series with one process per stage. Convexity

constraints (2.5); (2.6), and (3.1), in a three stages case become, respectively:

 −e 0 0

0 −e 0

0 0 −e

 λA

λB

λC

 =
 −1

−1

−1

 (7.1a)

 −e e 0

0 −e e

0 0 −e

 λA

λB

λC

 =
 0

0

−1

 (7.1b)

 −e 0 0

e −e 0

0 e −e

 λA

λB

λC

 =
 −1

0

0

 (7.1c)

The corresponding models to (2.2), (2.7) and (3.2) for the three stages case are,

respectively:
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E I =
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Where, as compared to the two stages models, an intermediate stage(process) has

ben added to produce output zB by use of intermediate output zA from stage A. To

save on notation, the same symbols as in models (2.2), (2.7) and (3.2) have been used

for scale variables, although the network contains three stages. It is of some interest

to observe how efficiency indices from the three basic models (2.2, 2.7 and 3.2 ) are

linked in a three stages case. Scale variables equivalence for two stages models are

now extended to include the third stage. Therefore, equivalence (3.3) will contain

an additional row given by: h I
C = h I I

C − h I I
B , and equivalence (3.4) will also have:

hV
C = h I I

C − h I I
B . For ease of further reference we merge these equivalences in Table

4.

Table 4: Scale variables equivalences for three stages models

model (7.2a) model (7.2c)

Stage A h I
A = h I I

A hV
A = h I I

B

Stage B h I
B = h I I

B − h I I
A hV

B = h I I
B − h I I

A

Stage C h I
C = h I I

C − h I I
B hV

C = h I I
C − h I I

B

By means of these equivalences, efficiency indices can be written using the same

scale variable. Taking scale variable from model (7.2b) as reference, we have:
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Table 5 : Models (7.2a) and (7.2c) efficiency indices in terms of model (7.2b)’s scale variables

Model (7.2b) indices Model (7.2a) indices Model (7.2c) indices

E I I =
yku−h I I

C

xkv
E I =

yku−h I I
C

xkv
EV =

yku−h I I
C

xkv

E I I
A =
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A

wA−h I I
A

xkv
E I

A =
zk

A
wA−h I I

A
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A
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E I I
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B

wB−h I I
B
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A
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B
+h I I

A

zk
A
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B
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B

zk
A

wA−h I I
A

E I I
B =

yku−h I I
C

zk
B

wB−h I I
B

E I
C =

yku−h I I
C
+h I I

B

zk
B

wB
EV

C =
yku−h I I

C

zk
B

wB−h I I
B

Showing that as more stages are added to the basic models, only first stage and

overall indices remain the same across models. The remaining stages have different

efficiency indices, giving an even greater role to the choice of models for benchmark-

ing purposes.

2) A different type of extension is that of increasing the number of processes

within a stage, hence breaking the so far held correspondence between stages and

processes. It corresponds to a move from the basic series system, so far adopted,

towards a parallel systems. As far as the series system continues to constitute the

backbone of the overall system, that is the organization in series holds at the stages

level, although no longer holds at the process level, the basic requirements for mul-

tiplicative decomposition of (stage) indices stay the same. That is, the multiplier

linking constraint (2.4) has to hold between stages, though not necessary between

processes. We show this point with reference to an example contained in Kao (2014)

which is also going to be addressed, with some modifications, in the final part of

this section in discussing an even more general extension. In that example the case

is made of a stage A which by means of external input x produces (with a single

process) two intermediate outputs, z1 and z2. These are then inputs to two distinct

processes (B1 and B2) in stage B leading to final products y
B1

and y
B2

. Modification

to model (2.7) as required by the network structure gives the following fractional

model:

E =
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2 w
2
+(1−β)h A
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v,w1,w2,uB1

,uB2
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h A, hB1
, hB2

= free
j = 1, ..., n


A chart flow of this structure is in Fig 6. The interesting feature is that because

we are dealing with a VRS model, not only the two outputs from stage A are to be

allocated to processes in stage B, and here it is assumed that the whole of each inter-

mediate output goes into a single process in stage B (other more general allocation

could be considered, for instance proportional), but also the scale variable from first

stage has to be allocated. We have assumed that stage A scale variable (h A) is pro-

portionally (0 ≤ β ≤ 1) allocated to processes in stage B. The proportion does not
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matter for multiplicative decomposition, what matters is that the whole of the scale

variable has to be input to stage B, otherwise the multiplier linking constraint (2.4)

would not hold. Indeed, use of model (2.2) or model (3.2) instead of model (2.7)

easily shows that multiplicative decomposition would not hold.

Fig. 6: Network with two processes in second stage

Following Kao (2009a, 2014) efficiency index for stage B is the weighted average

of processes B1 and B2 indices, with the weights (ω) given by the share of resources

used by each process. That is by:

EB = ωEB1
+ (1− ω) EB2

=
zk

1w1 − βh A

zk
1w1 + zk

2w2 − h A

EB1
+

zk
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zk
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2w2 − h A

EB2

=
yk

B1
uB1
− hB1

+ yk
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uB2
− hB2

zk
1w1 + zk

2w2 − h A

Hence multiplicative decomposition follows from:

E = EA ∗ EB

=
zk

1w1 + zk
2w2 − h A

xkv
∗

yk
B1

uB1
− hB1

+ yk
B2

uB2
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2w2 − h A

yk
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uB1
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+ yk
B2

uB2
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xkv

I short, extension of VRS mutiplicative decomposable model (2.7) to the case of

parallel systems is also straightforward matter as long as the backbone of the whole

system remains that of a series. The only change is that stages instead of processes

are linked in series.
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3) A more general type of extension concerns the case of process specific inputs

and outputs. That is, when one or more processes, in addition to intermediate outputs

produced by upstream stages (processes), also use as inputs resources coming from

outside the network. Equivalently, the same problem is posed by stages (processes)

whose outputs are, at least partially, destined to outside the network, instead of being

fully absorbed by downstream stages (processes). Following Kao (2014), we shall

refer to these as exogenous inputs and outputs, respectively. For a useful graphical

representation of a general network system (one made up of parallel and series struc-

tures) we refer to Kao (2014, p. 118.). Quite obviously, the case is a hard one for

multiplicative decomposition of efficiency indices because due to exogenous inputs

and outputs there is no way the multiplier linking constraint (2.4) can hold, not even

at the stage level.

One possible way out is that provided in Kao (2009b, 2014) by means of the

"dummy" processes. A general network system can be transformed into a series

of parallel systems by using dummy processes whose role is to carry forward in-

puts to be used in downstream stages and outputs produced by upstream stages. A

dummy process has the same inputs and outputs (hence is efficient by definition)

and its use is that of helping to represent a general network system as a series of

sub systems. These subsystems may contain both actual and dummy processes. Kao

(2009b, 2014) has already shown that by means of dummy processes multiplicative

decomposition of stage indices can be obtained in general network under the CRS

assumption. We shall now provide the extension to the case of VRS assumption and

by the same token to the wider set of non constant returns to scale.

The extension relies on two rather self evident observations. The first is that all

basic network VRS models, such as two stages models (2.2), (3.2) and (2.7), or three

stage models (7.2a), (7.2c) and (7.2b), and in general models with any number of

stages, can be reconciled with multiplicative decomposition of efficiency indices by

means of dummy processes on scale variables. Let us take for instance the case of

model (7.2a) which is known not to be multiplicatively decomposable. By means of

dummy processes we modify the network so as to make the modified stages consist-

ent with the multiplier linking constraint (2.4), hence with multiplicative decompos-

ition. Fig. 7 shows the modified network, where processes with continuous borders

are actual processes and those with dotted borders are dummy processes. Stages B

and C are modified stages and are made up of actual and dummy processes, while

stage A only contains one actual process.
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Fig. 7: A three stages network modified for scale variables

It is easily seen that efficiency indices for the overall network and for the modified

stages are:

E I =
yku− h I

A − h I
B − h I

C

xkv
(7.3)

E I
A =

zk
AwA − h I

A

xkv

E I
B =

zk
BwB − h I

A − h I
B

zk
AwA − h I

A

E I
C =

yku− h I
A − h I

B − h I
C

zk
BwB − h I

A − h I
B

And multiplicative decomposition holds: E I = E I
A∗E

I
B∗E

I
C . For brevity we omit

to show the same results for model (7.2c). The key point is that dummy processes

are organised in such a way as to make the multiplier linking constraint (2.4) hold

for the modified stages. And because the lack of linking constraint is what prevents

the model to be multipicatively decomposable, the role of dummy processes is right

that of imposing the multiplier linking constraint on the modified stages.

A further interesting aspect of this result is that efficiency indices for the modified

stages turn out to be the same as those one could obtain by directly applying model

(7.2b) which is known to be multiplicatively decomposable and does not need to go

through the dummy processes procedure. This point is easily shown by replacing

scale variables in (7.3) with scale variables from model (7.2b) as in Table 5. We

have that:
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That is model (7.2b) indices are the same as those in (7.3) obtained from model

(7.2a). In the light of the previous discussion, the result is not surprising because

model (7.2b) as it stands satisfies the multiplier linking constraint, while model

(7.2a), which in its original form does not satisfy the constraint, is made to com-

ply by means of the dummy processes. Of course, the same result also holds for

model (7.2c). In other words, the result says that when dummy processes are used

to modify stages’ organisation then the distinction between models with and without

multiplicatively decomposable indices vanishes because they all provide the same

multiplicatively decomposable indices for the modified stages.

Now the question arises as to whether this result, which clearly holds for net-

work systems organised in series in their original stages, still holds for more general

systems which, although not organised in series in their original stages, can be trans-

formed into a series of modified stages by means of dummy processes. The answer

must be yes, because the rule guiding the allocation of dummy processes in a network

(the multiplier linking constraint) holds true irrespective of the original structure of

the network and of the presence of scale variables. We therefore expect the above

result of equivalence among alternative VRS models, when applied to network mod-

ified by dummy processes, to hold true even for more complex network.

Take for instance the example contained in Tone and Tsutsui (2009) as modified

in Kao (2014) about the electricity service where electric power (zA1
) is generated in

stage A from initial inputs xA1
and is then sent to the Distribution Division (stage B)

which uses some additional input (skilled workers, xB1
), sells some of the electricity

(yB1
) to large consumers and sends he rest (zB1

) to the Transmission Division which

uses some external input (skilled workers zC1
) to provide electricity (yC1

) to small

consumers. The presence of external inputs and outputs makes this network a rather

good example for a general multistage system because some parts of it are organised

in parallel and some in series.

As for the VRS model let us, for instance, use model (7.2a) which when applied

to the case at hand gives the following:
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Max yk
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As it stands we know the model is not multiplicatively decomposable. However

by means of dummy processes we can transform the network as in Fig. 8. The net-

work is now made of a series of modified stages, it conforms to the multiplier linking

constraint, as a simple visual inspection confirms, and therefore its efficiency indices

are multiplicatively decomposable. Of course, as observed by Kao (2014), decom-

posable indices refer to the modified stages, not to the original stages(processes),

therefore they contain a bias due to the presence of dummy processes whose effi-

ciency is one by definition.

Fig. 8: Model (7.5) modified system

As a last point it remains to show that indices from model (7.5) in addition of

being multiplicatively decomposable are the same as the indices obtained from any

other VRS model For this purpose let us take the case of model (7.2b) which when

applied to the Kao (2014) data is:
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Because of the presence of exogenous inputs and outputs the model would not

yield multiplicatively decomposable indices. To this end, use of dummy processes

leads to a modified system whose representation is as in Fig. 9.

Fig. 9: Model (7.6) modified system

By computing the modified stage indices for model (7.5) and model (7.6) and

using equivalences from Table 5 to express them in the same scale variables (those

of model (7.6) provides the following equivalences:
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That is indices computed by model (7.5) and model (7.6) are the same and they

are multiplicatively decomposable. Therefore, the concluding observation to this

section is that multiplicative decomposable VRS models can be extended to more

general network systems than the pure system organised in series, provided that al-

location of scale variables by means of dummy processes obeys the multiplicative

linking constraint (2.4). In these more general networks, the difference among al-

ternative VRS models vanishes, that is because dummy processes force multiplicative

decomposition even on models that do not possess it in their original, non modified

version. The cost of this generalisation, common to VRS as well as to CRS mod-

els, is that efficiency indices are referred to modified stages, that is to stages that in
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addition to actual processes also include dummy processes. In this way introducing

a bias, which can be isolated, as done in Kao (2014), but at the cost of losing the

multiplicative decomposition.

Table 6 contains the results of applying model (7.6) under CRS and VRS specific-

ation to the data in the example contained in Kao (2014). The addition with respect

to the results shown in Kao (2014) concerns the VRS indices. We observe that, as ex-

pected, indices are multiplicatively decomposable. We also observe that VRS indices

for modified stages are at cases lower than the corresponding CRS indices. This does

not come as a surprise in light of the discussion in sec.5. However, what could be the

meaning of scale efficiency indices in the presence of dummy processes is a matter

that deserves further investigation.

Table 6: Kao (2014)’s example under CRS and VRS assumptions

Network system Stage A Stage B Stage C

Units CRS VRS CRS VRS CRS VRS CRS VRS

A 0.3825 0.3888 0.6000 1 0.6468 1 0.9856 0.3887

B 0.3865 0.6301 1 1 1 1 0.3865 0.6301

C 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1

E 0.3297 1 1 1 1 1 0.3297 1

F 0.4416 0.5931 1 1 1 1 0.4416 0.5931

G 0.6263 0.8633 1 1 1 1 0.6263 0.8633

H 0.5200 1 0.7462 1 0.6968 1 1 1

I 0.9959 1 1 1 1 1 0.9959 1

J 0.5024 0.8247 1 1 1 1 0.5024 0.8247

8 Concluding remarks

Multiplicative decomposition of stages indices is shown to be consistent with VRS

network series technologies. This result comes to depend on the model satisfying a

constraint, named the multiplier linking constraint. Not all convex network techno-

logies satisfy such a constraint. It is shown how VRS network multiplier models can

be amended to make them consistent with the multiplier linking constraint, hence

with multiplicative decomposition of stage indices.

The multiplier linking constraint does not have a counterpart on the envelopment

model, in the sense that alternative formulations of the multiplier linking constraint

are consistent with the same envelopment model. This leads to a break in the primal-

dual correspondence, which holds, instead, for one stage DEA models. Thus opening

the way to two separate approaches in modelling network structures: one from the

envelopment side and the other from the multiplier (ratio) side.

It is shown that multiplicative decomposition can be associated with transfer pri-

cing rules, within the network, based on marginal cost pricing. Therefore, in choos-
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ing a multiplicatively decomposable model one should have some evidence in sup-

port of such a pricing strategy. Non multiplicatively decomposable models can be

associated to full cost pricing within the network. Adoption of these models requires

additional assumptions in order to arrive at a complete distribution, across stages,

of the overall efficiency index. That is because these models, by themselves, do not

provide such a distribution.

Associating each network convex technology to a different transfer pricing sys-

tem has made it possible to show that VRS network models differ in their distributive

criterion used to allocate the same overall index of efficiency across stages. Thus

making clear that stages indices respond not only to efficiency but also to distributive

criteria. This has provided the key element to propose a solution to the vexed ques-

tion of how to measure scale efficiency in network system. The proposed meas-

ure operates through a step-by-step procedure. Returns to scale assumptions are

changed, from CRS to VRS, one stage at a time and the “conditional” scale efficiency

computed for the stage under assessment. The meaning of such a “conditional” in-

dex is, therefore, slightly different from the conventional, one stage, measure. This

step-by-step type of assessment introduces, in addition, a sort of “path dependency”

issue because, even in the simplest two stages network, there are at least two differ-

ent paths one could follow. Therefore some indeterminacy is inherent to this way in

computing scale efficiency.

Multiplicative decomposable VRS models can be extended to more general net-

work systems, containing both parallel and in series structures, provided that alloca-

tion of scale variables by means of dummy processes obeys the multiplicative linking

constraint. In these more general networks, the difference among VRS models van-

ishes, because dummy processes force multiplicative decomposition even on models

that do not possess it in their original form. The cost of this generalisation is that ef-

ficiency indices are referred to modified stages, that is to stages that include dummy

processes.

Seen in perspective, these results contribute to show how organisational aspects

of network processes, such as transfer pricing systems, turn out to be relevant in

modelling network technologies once these are approached from the multiplier (ra-

tio) side. This seems to be a promising line of research. One which could provide

more general results on how to model network organisational arrangements by means

of new definitions of convex technologies.
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