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Summary. — Turbulence in the fast stream of the solar wind is maintained despite the small
compressibility and a dominance of outward-propagating fluctuations (z+ > z−), in contrast
to its rapid decay in imbalanced homogenous MHD turbulence. We numerically study if the
inhomogeneity introduced by solar wind expansion can be an effective source of z− that main-
tains turbulence. Starting at 0.2 AU with z− = 0, we obtain a damping with distance of z+ and
a quasi-steady level of z−. The z+ spectrum steepens with distance toward a −1.4 power-law at
1 AU, while the z− spectrum has a −5/3 power-law index at all distances. These properties are
robust against variations of the input spectrum and expansion rate and are in agreement with
in-situ data, suggesting that imbalanced turbulence can be maintained by expansion alone.

1. – Introduction

Solar wind offers the closest example of a wind tunnel with turbulence at large Reynolds.
For scales larger than proton scales, Magnetohydrodynamics (MHD) is an accepted framework
to describe nonlinear dynamics in a plasma. Among the important open questions, the case
of Alfvénic turbulence in fast streams, i.e. with large cross-helicity and weak compressibility,
has been early noted to be paradoxical [1]. Because of the large cross-helicity, the outward
fluctuations are much stronger than the inward one, z+ >> z−, so that one expects nonlinear
couplings to be progressively depleted, leading to the switch off of turbulence. However, a
turbulent cascade seems to be well alive, since well-developed spectra are observed on several
decades of frequencies for all explored distances from the Sun, R > 0.3 AU, e.g. [2, 3].

In order to sustain turbulence one needs to inject z− that otherwise will be rapidly damped
leading to vanishing nonlinear interaction [1]. This can be done via shear interaction between
fast and slow streams [4, 5], parametric instability of large amplitude Alfvén waves (e.g. [6]),
or solar wind expansion [7]. Observational constraints [8-12] can help in understanding which
mechanism is actually at work in fast streams. For Alfvénic turbulence: (i) the sub-dominant
species has a remarkable constancy in its level and spectral slope at all distances (background
spectrum)’ (ii) the cross-helicity must decrease with heliocentric distance, its variation being
mainly due to the fall of the dominant species; iii) at 1 AU the spectrum of the dominant species

c© Società Italiana di Fisica 1



2 A. VERDINI, R. GRAPPIN, V. MONTAGUD-CAMPS, S. LANDI, L. FRANCI, and E. PAPINI

is flatter than the spectrum observed in non-Alfvénic streams, having a slope close to −3/2
instead of −5/3. Despite shear interaction is able to reproduce some of the above properties,
its importance is largely reduced in the polar wind that is composed of fast streams only. Also,
parametric instability can account for the decay of cross helicity, but the resulting spectra are too
steep compared to observations [13]. Expansion has not been tested against observations. In this
work we numerically study the sustainment of turbulence in the expanding solar wind using the
Expanding Box Model (EBM) that includes expansion in the 3D MHD equations [14-18]. We
consider a plasma volume placed initially at the distance of 0.2 AU with a spectrum of purely
outgoing Alfvén species and follow the development of turbulence as it is advected by the wind.

2. – Method

We use the EBM to simulate 3D MHD turbulence in a periodic domain whose size is smaller
than the initial heliocentric distance, (Lr, Ltr) << R0, where the subscripts r, tr indicate direc-
tions parallel and transverse to the radial one. As time proceeds, the domain is advected by the
solar wind at constant speed U0 moving to larger distances, R = R0 + U0t, while it expands
anisotropically, Lr = const and Ltr ∝ R. The EBM equations are very similar to the primitive
MHD equations and their complete form can be found in [19, 14]. We recall that an additional
non-dimensional parameter is introduced, the expansion parameter, defined as,

(1) e =
t0
NL

t0
exp

=
U0/R0

urmsk0
tr
,

which is basically the inverse of the age of turbulence [20] at the initial position. Note that the
expansion and advection times are equal, tad = t0

exp = R0/U0, and the nonlinear time t0
NL =

(k0
trurms)−1 is build on the largest scale transverse to the radial direction, k0

tr = 2π/Ltr.
We initialize the simulations with a superposition of outward-propagating Alfvénic fluctu-

ations with random phases, rms values z+
rms = 2, and equipartition between the magnetic and

(divergence-free) velocity fluctuations, urms = brms = 1 and ∇ · u = 0. The initial spectrum
is strongly anisotropic, denoting with k‖ and k⊥ the wavevectors parallel and perpendicular to
the mean field, B0 ∼ 2, the energy isocontours have an aspect ratio equal to that one of the
(anisotropic) domain, k⊥/k‖ = Lr/Ltr = 5. The initial temperature is large to maintain small
turbulent Mach numbers, M = urms/cs ∼ 1/8 (the plasma β ∼ 20 is also not realistic), and
all simulations have a resolution of 512 points in each direction. We start at the initial position
R0 = 0.2 AU with a mean magnetic field at an angle of 11o with the radial direction, and we let
the system evolve until 5R0 = 1 AU where B0 has an angle of 45o.

In order to explore the conditions for the sustainment of the turbulent cascade, we will vary
three parameters, the expansion parameter e ∈ [0.1, 2], the cutoff kcut ∈ [4, 64], and the slope
p ∈ [−3,−1] of the the initial spectrum. By varying the the expansion parameter we can roughly
set how many eddy-turnover times elapse before reaching 1 AU. By decreasing the initial cutoff

or increasing the initial slope, we can reduce the energy contained in those (large) wavenumbers
for which tNL(k) << texp and so reduce the initial turbulence activity.

3. – Results and Discussion

In figure 1(a) we plot the Elsasser energies E± = |z±|2 as a function of distance for kcut =

64, p = −1, e = 0.1, that is, parameters that maximize the turbulent activity. The energy in the
outward fluctuation decreases steadily, while that one of the inward fluctuations increases from its
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Fig. 1. – (a) Energy of the Elsasser species, E±, versus distance for parameters e = 0.1, kcut = 64, p = −1.
(b) One dimensional spectra in the transverse wavenumber, ktr, compensated by 5/3 at distances between
0.2 AU (dashed line) and 1 AU (thick lines).

initial zero value and saturates beyond 0.5 AU. This behaviour is opposite to that one of dynamic
alignment (E+ is constant, E− decreases) and consistent with observations. However, the decay
of cross helicity is modest because E+ > 10E− at all distances. In figure 1(b) we plot the one-
dimensional spectra of E± as a function of the transverse wavenumber ktr at several distances
and compensated by k5/3. The spectrum of E+ decreases while steepening with distance and
attains an asymptotic slope that is flatter than−5/3. On the contrary, after an initial growth, the
E− spectrum is extremely stable, maintaining the same energy and the same slope (very close to
−5/3) at all distances, such stability being reminiscent of the observed “background” spectrum.

In fig. 2 we plot the normalized transverse spectra Ẽ±(kη), averaged between 0.9 − 1 AU and
compensated by k5/3 (top and bottom rows respectively), for simulations with different expansion
parameters (left panel), initial cutoffs (middle panel), and initial slopes (right panel). Before
averaging, at each position we use the energy dissipation, ε± = ν

∑
k k2E±(k), and the viscous-

and resistive-coefficient ν to normalize spectra and wavenumbers, Ẽ±(kη±) = E±/(ε±ν5)1/4, with
the dissipation scale being η± = (νε3

±)1/4 [21, 22]. Styles have been attributed, following the
ordering of the parameter values at the top of each figure: solid, dotted, dashed, dot-dashed. The
wavenumber intervals in which E± spectral slopes can be identified are kη ∈ [0.007, 0.03] and
kη ∈ [0.02, 0.07] for E±, respectively.

Let us consider increasing the expansion parameter (left column). For the smallest expansion
(e = 0.1) already shown in fig. 1, we find E+ ∼ k−1.5 and E− ∼ k−5/3. For the strongest expansion
(e = 2, dashed line), E+ is flatter and E− is steeper. As a rule, as expansion increases, the
difference in slope between E+ and E− increases with E+ becoming flatter and E− steeper.

We now decrease the cutoff wavenumber from 64 to 4, with slow expansion and initial flat
slope (central column). It is seen that too small cutoffs prevent turbulence from developing, thus
leading to very steep spectra, while reasonably large values allow convergence to the previously
noted couple: flat E+ and E− ∼ k−5/3. We obtain similar results by considering steeper and
steeper initial spectra (right column). Here the case p = −2 (dashed lines) is interesting because
it clearly shows the development of a turbulent cascade for E+: the spectrum at 1 AU has E+ ∼

k−5/3 which is flatter than that one at 0.2 AU.
We have shown that in presence of expansion an anisotropic spectrum of outwardly propa-

gating fluctuations evolves into well-developed turbulence provided one starts with a moderate
excitation of small wavenumbers, i.e., kcut > 8, p > −2. When satisfying these conditions, the
properties of turbulence converge to the following ones: (i) inward fluctuations that are generated
by expansion maintain a constant energy and power-law index E− ∼ k−5/3 for R > 0.5 AU; (ii)
the energy of outward fluctuations decreases with distance because of expansion and turbulent
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Fig. 2. – Compensated, normalized, averaged one-dimensional spectra of Ẽ+ (top) and Ẽ− (bottom) versus
normalized transverse wavenumber (see text) for three groups of simulations in which we increase the
strength of expansion (thick solid, thick dotted, dashed, dotted-dashed lines) by varying the expansion
parameter e, the initial cutoff kcut, and the initial slope p (left, middle, and right columns), while keeping
fixed the parameters indicated on the bottom.

damping; (iii) at 1 AU the spectrum of the dominant species is flatter than that one of the subdom-
inant species, E+ ∼ k−1.4 and E− ∼ k−5/3. These properties are in agreement with observations
and suggest that turbulence in the polar wind is driven by expansion.
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