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Abstract

Model-based techniques can often help to unlock the full potential of a dy-

namical system in terms of performance, robustness and effectiveness. This

dissertation, developed in collaboration with Nuovo Pignone - Baker Hughes,

a GE Company, focuses in particular on turbomachinery equipment for oil

and gas applications. The main purpose is to show the benefits that specific

model-based techniques can bring to the current system without modifying

the existing plant. The methods introduced in this thesis do not suggest any

physical change on installed system, indeed they are aimed to improve some

operative aspect by exploiting the already available equipment.

As a matter of fact, the detailed knowledge of mathematical models al-

lows both the estimation of quantities that can not be directly measured and

the prediction of the future behaviour of the system. Moreover, the increas-

ing computational capability of modern CPUs makes these techniques even

more interesting, allowing a potential real time implementation without an

excessive computational burden. In practice, this thesis work addresses the

issue of improving the reliability, the performance and the effectiveness of

the control systems of some specific oil and gas applications by studying and

exploiting the physical laws on which the system is based on.

In particular, this work focuses on specific rotating equipment, i.e. cen-

trifugal compressors, gas turbines and turbo-generators, which consist of

an electric generator driven by a gas/steam turbine. Usually the power re-

quired to drive a centrifugal compressor is not directly measured; therefore,

three power estimation methods based on the thermodynamic and mechan-
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viii Abstract

ical knowledge of the system and the least squares theory are proposed and

compared between each other. Then, after a deep analysis of a typical elec-

tric generation plant composed of several turbo-generators, a control logic

to prevent the system from experiencing torsional instability is proposed.

Finally, an accurate mathematical model of a particular gas turbine based

on Kalman filter theory is proposed as well as a comprehensive discussion

about the main fundamental modelling features introduced to cover all the

aspects of interest.
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Introduction

In the last centuries the strong economic growth has boosted the rise of

the global energy demand, and oil and gas industry has met most of this

increase. As is always the case, human needs have driven the technological

progress and many applications have been developed to meet these needs

and increase global wellness. As a matter of fact, power and energy industry

have always played a key role in scientific and technological development.

Oil and gas industry includes processes of exploration, extraction, refin-

ing, transporting through pipelines and marketing of oil and gas products.

Over many decades the scientific and industrial research has been focused

on the development of typical turbomachinery equipments such as gas and

steam turbines, compressors and auxiliary systems. This dissertation will

concentrate on Gas Turbines (GTs), Electric Generators (EGs) and Cen-

trifugal Compressors (CCs).

Gas turbines are a particular type of prime mover introduced at the be-

ginning of twentieth century, and their popularity is mainly due to their

reliability and availability, to the capacity of fulfilling rapid peak load de-

mand, and to their low operating and maintenance costs. To say it briefly,

flexibility and the capability of meeting several practical needs are the fea-

tures that make GTs so appreciated in many technical fields. Gas turbines

engines are widely used all over the world for aircraft propulsion, electricity

generation and many other industrial applications, indeed they can be used

as mechanical drivers both for pumps and compressors ([24], [87], [16],[61]

and [73]).

1



2 Introduction

Generally speaking, compressors are fluid-flow dynamic machines for the

compression of gases; centrifugal compressors are rotating machines charac-

terised by a flow with radial direction. CCs are heavily employed in many

industrial applications, in particular in oil and gas field they are used for

pipeline, gas lift and gas liquefaction applications.

Electric generators are rotating machines that convert mechanical energy

into electric energy: from a theoretical point of view they are analogous to

electric synchronous motors, indeed they are based on the same operating

principles.

CCs and EGs are driven machines, i.e. they need an external source of

energy to operate: usually the prime mover is a gas turbine. Gas turbine

and driven machine are generally coupled directly or by means of a gear unit,

depending on the application. This work is aimed to the study of mathe-

matical models for these rotating equipments, i.e. gas turbines, centrifugal

compressor and electric generators; in particular, the main purposes are the

development of a mathematical model for a specific GT and the analysis of

CCs or EGs driven by GTs.

For many years these items have been enhanced from a physical point of

view, thanks to a constant development concerning materials, manufactur-

ing procedures, mechanical and aerodynamical efficiency and more effective

control systems based on improved sensors and actuators. Nowadays it is

clear that the real challenge is to improve the performance of the whole sys-

tem without introducing deep modifications to physical equipment. Plant

designers have to face multiple and sometimes conflicting objectives, e.g.

global optimisation of the system, maximisation of each component lifespan

and reduction of harmful emissions such as NOx.

Model-based techniques, i.e. methods based on mathematical models

of the specific system under analysis, can provide a great help to achieve

these particular goals, indeed they are able to overcome system lacks or

limitations without introducing expensive or overkill solutions. These models

turn out to be very useful in many practical issues, such as fault detection,

prediction of system response to certain inputs and validation of different



3

control logics. Besides that, many quantities (e.g. the firing temperature of

a GT or the power request of a CC) are not directly measured by usually

installed commercial sensors; specific models can be used as soft sensors

to estimate these quantities and provide virtual measurements. Therefore,

these models can enhance the awareness about the whole plant and they

can be exploited to design a more effective control system or to predict the

future behaviour of the system.

As mentioned before, the main purpose of this dissertation developed in

collaboration with Nuovo Pignone - Baker Hughes, a GE Company, is to

show the benefits that specific model-based techniques can bring to the cur-

rent system without modifying the existing plant. The methods introduced

in this thesis do not suggest any physical change on installed systems, indeed

they are aimed to improve some operative aspects by exploiting the already

available equipment.

Finally, it is worth noticing that these model-based techniques become

even more interesting considering the increasing computational capability of

modern CPUs that allows a potential real time implementation without an

excessive computational burden.

Thesis outline and contributions

Specifically, the following macro-themes will be addressed in detail within

the thesis:

1. Chapter 1: Centrifugal Compressor Modelling and Robust

Power Estimation

In this chapter the attention is focused on centrifugal compressors and

in particular we will address the issue of estimating the power request

of a CC. Usually CCs are driven by synchronous electric motors or

GTs. In the former case a realistic model of the motor and accurate

electric measurements are available, thus it is trivial to figure out the

power absorbed by the CC. In the latter case on the contrary it is very



4 Introduction

complex to measure or estimate the GT delivered power, therefore

the idea is to exploit other CC available measurements and models to

estimate the power requested to drive the compressor.

In the first part some guidelines about centrifugal compressors tech-

nology are provided. Then, three different power estimation methods

based on CC models are introduced and compared with each other.

Finally, two techniques that rely on the least squares theory to en-

hance the robustness with respect to measurements unavailability are

proposed and analysed.

Contributions:

The main contribution of this chapter is the application of well-known

theories and techniques to a specific problem, i.e. the estimation of

the CC power request. In turn, the innovative aspects are related to

the comparison between different methods based on real field data and

to the introduction of techniques aimed to improve the robustness of

each method. In that sense, the thesis enhances the current state of

the art.

2. Chapter 2: Sub-Synchronous Torsional Interactions in Elec-

trical Networks

In this chapter the typical configuration of an isolated electric grid fed

by turbo-generators (TGs) is analysed. Typical TGs usually consist

of an electric generator driven by a turbine, and they are massively

employed in many power generation plants worldwide.

In particular this chapter deals with an unstable coupling phenomenon

between the mechanical and the electric parts which is usually referred

to as SSTI (Sub-Synchronous Torsional Interaction). SSTI can lead to

very critical situations in which the mechanical train composed of a GT

coupled with an EG can experience self-sustained or even increasing

torsional oscillations.

SSTI vibrations can cause mechanical damage and they heavily affect

the operability of the system, indeed when dedicated vibration sensors
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(e.g. seismic sensors) detect too large mechanical oscillations the sys-

tem is automatically shut down in order to protect itself and preserve

the surrounding workers’ safety.

In the first part of this chapter the physical causes of this phenomenon

are explored in depth and mathematical models of the mechanical and

electrical part are introduced. Then, an electric damping system aimed

to attenuate torsional oscillations is proposed and some simulations

results are examined.

Contributions:

The first contribution of this chapter is the analysis of the main causes

that may trigger SSTI phenomenon in an isolated electrical grid. Then,

it introduces and it validates through several simulations an effective

damping system that is aimed to reduce the torsional oscillations of

the turbo-generator system.

3. Chapter 3: Gas Turbine Modelling and Model-Based Estima-

tion

Many different types of GTs have been developed in the past years and

they can be broadly classified as single-shaft GT, mainly employed for

generator drive application, or two-shaft GT, mainly employed for me-

chanical drive application. In this chapter the characterization and the

modelling of a particular two-shaft GT will be addressed: the GT un-

der analysis is the GE LM2500+G4 DLE, an aero-derivative twin-shaft

GT produced by General Electric.

In particular, an iterative double-step method is proposed for the mod-

elling of gas generator (GG, that is high power turbine, or main shaft)

in this aero-derivative GT. The first step is based on a combination of

generalised maps describing the nominal GT behaviour and thermo-

dynamic laws that allow an a-priori estimation of flows, temperatures

and pressures of each GG section. The second step is based on a

Kalman Filter (KF) that corrects these a priori estimations exploiting

all available measurements.
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The model has been trained and validated on a massive dataset created

through a full high-fidelity modelling tool based on NPSS (Numerical

Propulsion System Simulation), which contains the turbine geometrical

and mechanical data. Finally, the quality of the model has been eval-

uated also by exploiting field data and conclusions have been drawn.

Contributions:

The main contribution of this chapter is the introduction of a novel

iterative double-step method to estimate the main quantities of a spe-

cific gas turbine. This innovative modelling approach is likely to have

a strong impact both in industrial and research field, indeed it repre-

sents a suitable solution to improve equipment performance avoiding

expensive hardware enhancement.

For the sake of clarity, the notations and the symbols used in each chapter

are introduced before being adopted. However, the lists of acronyms and

most used symbols is reported at the beginning of the thesis.



Chapter 1

Centrifugal Compressor Modelling

and Robust Power Estimation

After a brief description of centrifugal compressor technology,

the first part of this chapter introduces some mathematical models

to estimate the power request of these fluid-flow machines. In

the second part some methods to increase the robustness of such

models are presented.

1.1 General description

Compressors are heavily used in a wide variety of industrial processes. Fluid-

flow machines are usually categorised in axial and radial designs by means of

the main direction of flow; the mass flow is basically axial in axial machines

and basically radial in centrifugal machines, with the flow from the inside

to the outward direction. Axial compressors (ACs) are usually preferred in

high power gas turbine applications, indeed they can achieve higher mass

flow rate, even if the high pressure rise is achieved using a large number of

stages. On the other hand centrifugal compressor (CC) has wider operating

margins and generates a higher pressure ratio per stage, but they are not

suitable for high flow rate applications. Nevertheless, centrifugal and axial

7
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Power Estimation

compressors have the same operating principle, so it is worth to refer to

the more general class of turbocompressors that covers all continuous flow

compressors. Figure 1.1 shows a typical AC (1.1a) and a CC casing (1.1b),

which is needed to contain the rotor and the impellers of the CC.

(a) Axial compressor

(b) Centrifugal compressor casing

Figure 1.1: Example of axial compressor (a) and centrifugal compressor

casing (b). Courtesy of BHGE, source www.bhge.com

Centrifugal compressors are fluid-flow dynamic machines for the com-

pression of gases. A schematic sketch of a centrifugal compressor is shown

www.bhge.com
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in figure 1.2.1.2 CENTRIFUGAL COMPRESSION SYSTEMS 3

ω

Vaned diffuser

Impeller

Inducer

Diffuser

ImpellerShroud

Hub

Figure 1.1 / A centrifugal compressor with a vaned diffuser.

The diffusion process on the other hand can be explained by the Bernoulli1 equation that
states that the sum of kinetic energy 1

2
mu2, potential energymgh and pressure head p/ρ is

constant. In the widening diffuser channel, either vaned or vaneless, the flow decelerates
and this decrease in kinetic energy implies an increase in potential energy and pressure.

In general, the mechanical and thermodynamic processes in a turbocompressor are de-
scribed by the continuity equation, the momentum equation, and the first and second
law of thermodynamics. However, applying these general principles to the real flow in
centrifugal compressors, being three-dimensional, unsteady and viscous, is extremely
difficult. Many textbooks on fluid- and thermodynamics are available (e.g. Kundu, 1990;
Shavit and Gutfinger, 1995), as well as books dedicated to the modeling and design of tur-
bomachines (e.g. Cumpsty, 1989; Whitfield and Baines, 1990; Cohen et al., 1996), cov-
ering the basic concepts, advanced theoretical topics and empirical results acquired over
more than a century of research and development.

Ultimately, the performance of any compressor is determined by the complex interac-
tions between the system and the fluid. However, the performance of a turbocompres-
sor can be expressed through a limited number of basic parameters (Cumpsty, 1989;
Whitfield and Baines, 1990; Cohen et al., 1996). The number of parameters can be re-
duced by applying appropriate scaling, yielding a set of six dimensionless parameters
(ψ, φ, η,Me, Re, γ). Here, ψ and φ are parameters related to the compressor pressure
rise and flow rate, respectively, η represents the efficiency,Me the scaled impeller speed,
Re describes the amount of turbulence in the flow and γ represents the ratio of specific
heats for the compressed fluid. Often the last two parameters are neglected during the
preliminary analysis and design phase, but both parameters can have an impact on the
overall performance of compression systems in practice (Whitfield and Baines, 1990).

1Daniel Bernoulli (1700–1782) was a Swiss mathematician born in Groningen, The Netherlands. In
1738 he published his main work Hydrodynamica in which he showed that the sum of all forms of energy
in a fluid is constant along a streamline.

Figure 1.2: Centrifugal compressor with vaned diffuser.

It essentially consists of a stationary casing containing a rotating impeller

which imparts a high velocity to the air, and a number of fixed diverging pas-

sages in which the air is decelerated with a consequent rise in static pressure.

The bladed impeller, with its continuous fluid flow, transfers the mechanical

shaft energy into enthalpy, i.e. gas energy. Thus, pressure, temperature and

velocity of the gas leaving the impeller are higher than at the impeller in-

let. The annular diffuser downstream of the impeller delays the gas velocity,

thus it provides a further pressure and temperature increase. In practice,

centrifugal compressors convert the kinetic energy into pressure. This en-

ergy conversion can be explained by the Bernoulli equation that states that

the sum of kinetic energy, potential energy and pressure head is constant.

Note that the momentum transfer from the impeller blades to the fluid can

be described by using so-called velocity triangles (figure 1.3)

Centrifugal and axial flow compressors are very complex and they are

characterised by high non-linearities; moreover, they are subject to two dis-

tinct aerodynamic instabilities, rotating stall and surge, which can severely

limit the compressor performance. Surge is an unstable operating mode of

a compression system that occurs at low mass flows. It is a dynamic insta-

bility that develops into a limit cycle1 that finally results in large amplitude

1A limit cycle is a closed and periodic orbit in phase space [89].
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4 1 INTRODUCTION

ω Impeller

vi

Ui

wi

ve

Ue

we

Figure 1.2 / Impeller inlet and discharge velocity triangles.

Using thementioned parameters, the performance of a compressor can be graphically de-
picted in a so-called compressor map. An example is shown in Figure 1.3. The individual
characteristic curves or speed lines are formed by steady-state operating points with the
same rotational speed. The achievable flow rates are limited by the occurrence of surge at
low flows and the phenomenon known as choking at high flows. Choking occurs when
the local velocity, usually in the impeller exit or diffuser, reaches the speed of sound. For
completeness also a characteristic curve for the load of the compression system is plotted
in the upper part of the figure. This curve represents the total flow resistance of the sys-
tem that the compressor must supply with pressurized fluid. The intersection of a speed
line with the load characteristic determines the operating point of the compressor that,
ideally, coincides with the point of maximum efficiency.

1.2.2 Industrial centrifugal compressors

In this thesis we focus on industrial scale centrifugal compression systems that are typ-
ically used in offshore oil and gas production, (petro-)chemical process plants, and in
gas transportation networks. Some typical compressor configurations are depicted in
Figures 1.4 and 1.5. Important characteristics of these types of centrifugal compressors
are the large pressure rises and flow rates involved, see also Table 1.1. In order to reach
these numbers, the compressors have large diameter impellers or operate at high speeds
and they consume considerable amounts of power (order of magnitude up to 10 MW),
resulting in bulky machines that can withstand the large mechanical loads involved.

Figure 1.3: Impeller inlet and discharge velocity triangles.

fluctuations of pressure and flow rate. Surge not only limits compressor

performance and efficiency but it can also damage the compressor. Further-

more, the vibrations associated with surge can result in unacceptable noise

levels (for more details see [61], [24], [36] and [43]). During the past years

many antisurge systems have been proposed, see e.g. [6], [68], [38], [78], [103]

and [94].

Rotating stall is characterised by a distortion of the compressor flow that

occurs in specific regions usually called stall-cells. In these regions the flow is

highly reduced and sometimes completely blocked; obviously this instability

leads to a very large drop in performance and efficiency, and it results in

a very high mechanical stress for the machine. An other typical operating

region of compressor is choking, that is the condition which occurs when

a compressor operates at very high mass flow rate and flow through the

compressor can not be further increased. In this condition Mach number at

some part of the compressor reaches the unity, i.e. gas speed has reached the

sonic velocity. A typical performance map of a turbocompressor is depicted

in figure 1.4, which features several lines at constant speed that represent
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steady-state operating points at the same speed and two critical lines, surge

line (low flow rate) and choke line (high flow rate). These two curves are

obtained by joining respectively the surge and choke points at different con-

stant speeds, and the operating point is supposed to stay within the region

delimited by these curves.
1.2 CENTRIFUGAL COMPRESSION SYSTEMS 5

Flow rate

Flow rate
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Figure 1.3 / Illustrative compressor map with constant speed lines (black) and load char-
acteristic (gray).

Furthermore, the required pressure rise is seldom realized with a single compressor stage
somost industrial compressors containmultiple stages in series, resulting in complicated
mechanical and aerodynamic designs, see also Figures 1.4 and 1.5a. In particular we
mention the additional ducting that is required to guide the flow from one stage to the
other. We point out that in some cases multiple compressors need to operate in series or
parallel to realize the required pressure rise or flow.

Another characteristic for industrial compression systems is that they are usually inte-
grated into large and complex systems like, for example, a refinery or an international
gas distribution network. Each element in such complex systems, whether it is a reactor
vessel, a pipeline, an entire oil field, or a small relief valve, can influence the compressor
to which it is connected.

Industrial compression systems are expensive equipment as can be deduced from the
above, which in turn makes compressors a critical component of the entire system in
which it operates. This imposes restrictions on the equipment used in compression sys-
tems and numerous trade-offs need to be made between reliability, maintenance costs
and added complexity on the one hand and improvement of functionality and perfor-
mance on the other hand. Hence, the added value of new technologies needs to be proven
through extensive analysis and test programmes, prior to their application in actual com-
pression systems.

Figure 1.4: Typical turbocompressor performance map (black lines) and a

realistic load characteristic (grey line).

In order to quantify the distance between the current operating point

and the surge/choke line, the following margins Msurge and M choke can be

introduced

Msurge = 100
ṁ0 − ṁs

ṁ0
;

M choke = 100
ṁ0 − ṁc

ṁ0
.

Where ṁ0 is the actual mass flow, ṁs is the mass flow rate at surge line

at the same constant speed and ṁc is the mass flow rate at choke line at

the same constant speed. In practice, Msurge and M choke represent the

percentage horizontal distances between the current operating point and the

surge/choke line.
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The most famous model for approximating dynamics of deviations of

flow and pressure variables in a compressor from their nominal steady-state

values is the Moore-Greitzer model ([66], [67] and [84]): many different ap-

proaches have been proposed in order to estimate the parameters on which

this method is based on ([70], [96]). Furthermore, many variations of Moore-

Greitzer model have been introduced to adapt this model to the requirements

of particular applications ([28] and [97]). In addition, other kind of compres-

sor models and parameters identification have been addressed in the past

years, as shown in [105] and [71].

1.2 Mathematical model for power estimation

As shown in [21], an accurate model is important to design and optimise

the control of centrifugal compressors. A typical turbo-compression train

may consist of a gas turbine (GT), which incorporates an axial compressor

used to provide high-pressure and high-density air to subsequent combustion

and expansion stages, coupled to a centrifugal compressor used to perform

mechanical work on a process gas to be compressed. This process gas has

not to be confused with the gas fueling the GT, indeed they are different

and separated gases and they never mix each other.

The work presented in this section aims to provide a reliable algorithm to

estimate the power absorbed by a CC driven by a GT. This algorithm would

provide an alternative way to estimate the GT power which is not based on

a GT model that exploits the measurements provided by the sensors all over

the GT (for instance pressure, temperature and speed transducers).

The main idea is that the power of the gas turbine is equal to the sum

of the power absorbed by the driven system and the power losses. When

the GT drives an electric generator the power can be easily estimated, in-

deed the voltage and current measurements on the electric generator allow

an extremely accurate estimation of the electric power and the losses are

negligible. When the GT drives a mechanical system as a centrifugal com-

pressor the same idea can be exploited; thus, an alternative estimation of the
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GT power can be achieved considering the measurements on the centrifugal

compressor. However, for the time being the accuracy of sensors installed

on centrifugal compressor is not comparable to the one achievable in the

generator-drive case, which can also rely on a very realistic mathematical

model.

First of all it is necessary to introduce an high level mathematical de-

scription of the compressor, possibly irrespective of the compressor under

consideration: thus the modelling approach has to be based on a generic

centrifugal compressor structure, as the one showed in figure 1.5. Note that

the subscripts “s” and “d” simply state that the quantity refers respectively

to compressor suction (inlet) or discharge (outlet).
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CC Model, Power Estimation Methods 

The proposed algorithm should provide the required power estimation irrespective of the compressor 

under consideration, thus it has to be based on a generic centrifugal compressor structure, as the one 

showed below. 

 

The schematic shown in the previous figure contains six sensors: 

1. 𝑇𝑠 and 𝑇𝑑 are respectively the suction and the discharge temperature of the compressor; 

2. 𝑝𝑠 and 𝑝𝑑 are respectively the suction and the discharge pressure of the compressor; 

3. 𝑁 is the compressor shaft speed, typically measured by a toothed wheel; 

4. ∆𝑝 is the differential pressure across a calibrated orifice, it can be taken at suction or at discharge 

and it allows the evaluation of the mass flow �̇� throughout the compressor.  

�̇� = 𝑘𝐹𝐸 ⋅ √Δ𝑝 ⋅ 𝜌 

Where 𝜌 is the density of the gas and 𝑘𝐹𝐸  is the coefficient of the flow element. The density 𝜌 is equal to: 

𝜌 =
𝑀𝑤 ⋅ 𝑝

𝑍 ⋅ 𝑅 ⋅ 𝑇
 

Once that the mass flow is known the volumetric flow 𝑄𝑣 can be computed as follows: 

𝑄𝑣 =
�̇�

𝜌
= 𝑘𝐹𝐸 ⋅ √

Δ𝑝

𝜌
 

 

Actually, the only measurements listed above are not sufficient to estimate the CC power: the gas 

composition has to be known and it is assumed to be constant during the operation. 

𝑁 

𝑇𝑠 𝑝𝑠 

Δp𝑠 

𝑇𝑑 𝑝𝑑 

Figure 1.5: Centrifugal compressor schematic.

Table 1.1 summarises the characteristic quantities needed to describe

the compressor and the nomenclature that will be used hereafter to refer to

them.
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Symbol Unit Definition

D [m] Impeller diameter

hp [J · kg−1] Polytropic specific head

ηp [ ] Polytropic efficiency

∆h [J · kg−1] Compressor specific head

N [rpm] Compressor speed

u [m · s−1] Impeller tip speed

Z [ ] Gas compressibility

p [kPa] Gas pressure

T [K] Gas temperature

Mw [kg ·mol−1] Molar mass

R [J · (K ·mol)−1] Gas constant

ρ [kg ·m−3] Gas density

ṁ [kg · s−1] Mass flow

n [ ] Polytropic exponent

kv [ ] Isentropic volume exponent

kFE [ ] Flow coefficient

a [m · s−1] Sound speed

Q [m3 · s−1] Volumetric flow

v [m3 · kg−1] Specific volume

Table 1.1: Centrifugal compressor quantities nomenclature

The schematic shown in figure 1.5 is based on the measurements provided

by six sensors:

1. Ts and Td are respectively the suction and the discharge temperature
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of the compressor;

2. ps and pd are respectively the suction and the discharge pressure of

the compressor;

3. N is the compressor shaft speed, typically measured by one or more

toothed wheels;

4. ∆p is the differential pressure across a calibrated orifice (more informa-

tion about this kind of flowmeters can be retrieved from [83] and [60]).

It can be taken at suction or at discharge and thanks to equation 1.1 it

allows the evaluation of the mass flow ṁ throughout the compressor.

ṁ = kFE ·
√

∆p · ρ. (1.1)

Where ρ is the density of the gas and kFE is the coefficient of the flow

element. The density ρ is equal to

ρ =
Mw · p
Z ·R · T

. (1.2)

Actually, the measurements listed above are necessary but not sufficient

to estimate the CC power: in addition gas composition has to be known

and it is assumed to be constant during the operation. Once that gas com-

position is known and the measurements previously described are available,

three methods can be introduced to estimate the power requested by the

compressor, and they will be described in detail in the next paragraphs.

A - Method based on property libraries that allow the calculation of ther-

modynamic properties of the mixture;

B - method based on the non-dimensional curves that describe the perfor-

mance of the compressor and a gas properties calculator;

C - method based on the polytropic efficiency of the compression and a

gas properties calculator.
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Note that methods [A], [B] and [C] are different approaches that allow

the calculation of the specific gas enthalpy variation between suction and

discharge (∆h). Once that ∆h is known, they all use equation 1.3 to compute

the ideal CC power.

PCC = ṁ ·∆h+ P loss. (1.3)

Where P loss is needed to consider the mechanical losses of the system.

Usually P loss is set equal to a constant value or equal to a simple function

of the rotating speed N , for instance

P loss = f(N) = kloss ·
(

N

Nnominal

)2

.

In this work P loss will be set equal to an average value P̄ loss computed

during the design phase.

Moreover, all these methods are based on the assumption that the com-

position of the processed gas is known (e.g. it is measured by a gas chro-

matograph) and not variable during the operation.

1.2.1 Method [A]: calculation of thermodynamic prop-

erties of mixture

Thanks to the mentioned libraries, it is possible to find out all the main prop-

erties of the gas, both at suction and discharge of the compressor. Starting

from the knowledge of the gas composition, the library exploits all the mea-

surements provided by the six sensors described above and it implements the

real-gas equations of state in order to calculate the gas enthalpy increase. In

the past many different equations have been proposed in order to figure out

the real-gas behaviour, the library provides the possibility of choosing the

equations to be solved, even if the BWRS equations (Benedict-Webb-Rubin-

Starling, introduced in 1973) are the most used. BWRS equations and other

empirical approaches to describe real gas thermodynamics are described in

appendix A. Thermodynamic equations allow the evaluation of all the ther-

modynamic properties of the gas both at suction and discharge, thus it is
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possible to evaluate the specific gas enthalpy increase between suction and

discharge (specific compressor head)

∆h = hd − hs. (1.4)

Beyond the accuracy of this method with respect to real power (this topic

will be discussed in section 1.2.4), it is necessary to analyse some statistical

features of this method. Considering that this method takes as inputs some

measurements provided by real sensors, it is necessary to take into account

the fact that these measurements are not ideal. This is the reason why it is

necessary to test the sensitivity of every estimation method with respect to

its own inputs. This sensitivity test quantifies the robustness of the estima-

tion method with respect to the inputs variability. The real measurements

can be statistically described by a Gaussian distribution with mean value µ

equal to the value provided by the sensor and standard deviation σ connected

with the sensor precision (retrievable from specific sensors datasheets). The

95% confidence interval of this measurement is equal to µ±2σ, while the 99%

confidence interval will be equal to µ±3σ. Detailed description about Gaus-

sian distribution can be found in [92]. The sensitivity test can be performed

adding a noise-vector (in this work 1000 elements) with proper statistical

features to every single input. After that the estimation method has to be

applied to each single case and the results can be compared with the ideal

estimation relative to zero-noise case. The Additive White Gaussian Noises

(AWGN) relative to each input have been defined as follows.

• To define the mean value of each measurements a real trend has been

taken into consideration;

• concerning pressure sensors, the standard deviation is set equal to σ =

0.125% of the measurement range (95% confidence interval, i.e. [µ −
2σ;µ+ 2σ], corresponds to 0.25% of the measurement range);

• flow-meters are based on the measurements of pressure across an ori-

fice. Their standard deviation is set equal to 0.5% of the measurement
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range (95% confidence interval, i.e. [µ−2σ;µ+2σ], corresponds to 1%

of the measurement range);

• thermocouples datasheets usually provide a rectangular distribution to

statistically describe the measurements. If the rectangular distribution

has amplitude 2B it is possible to prove that the standard deviation

of the correspondent Gaussian distribution is σ = B√
3
.

Figure 1.6 shows an histogram of the percentage difference between noised

inputs power estimation based on method [A] and the CC power computed

with no-noise inputs.
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Figure 1.6: Deviation with respect to case without noise using method [A]

(µ = −0.02%, σ = 1.92%).

1.2.2 Method [B]: non-dimensional curves

As described in [61] and [24], the behaviour of a centrifugal compressor can

be characterised using non-dimensional quantities ϕ and τ , i.e. adimensional
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variables defined as follows

τ =
∆h

u2
; (1.5)

ϕ =
4Qs
πD2u

=
4kFE

√
∆p
ρ

πD2u
. (1.6)

Where Qs is the volumetric flow at suction defined as

Qs =
ṁ

ρ
=
kFE
√

∆p · ρ
ρ

= kFE

√
∆p

ρ
.

The impeller tip speed u can be computed starting from the rotating speed

N and the impeller diameter D as

u =
πND

60
.

These are experimental maps that describe the operating points where the

compressor is able to work, and they are defined at first during the design

phase (Expected maps) and then they are corrected to match the particular

behaviour of each single machine with proper tests (As-Tested maps). Each

map is defined as a family of curves obtained with different value of Mach

number M , defined as the ratio between the impeller tip speed u and the

sound speed in that thermodynamic conditions a

M =
u

a
=

u√
kvZRT
Mw

. (1.7)

Figure 1.7 shows an example of non-dimensional map: note that usually

these representations include a map relative to τ and a map relative to the

polytropic efficiency ηP , even if in this method [B] only the τ map is required.

Equation (1.7) relies on the knowledge of some gas properties, such

as gas compressibility Z (real gas behaviour is described by the equation

pvMw = ZRT , see appendix A), isentropic volume exponent kv and molecu-

lar weight Mw. This means that such method needs a suitable algorithm for

the definition of these quantities (e.g. the libraries introduced with method
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Figure 1.7: Example of non-dimensional map of a centrifugal compressor.

[A] can be partially exploited to find out only these properties). Thus,

through direct measurements and some calculations it is possible to com-

pute the flow coefficient ϕ and the Mach number M , then the value of τ can

be extrapolated from non-dimensional map (τ = Map(ϕ,M)) and ∆h can

be computed by reversing equation (1.5).

As done in paragraph 1.2.1, figure 1.8 shows the percentage deviation

in CC power calculation introduced by the same additive white Gaussian

noises on each measurement.
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Figure 1.8: Deviation with respect to case without noise using method [B]

(µ = −0.23%, σ = 1.51%).

1.2.3 Method [C]: compressor polytropic efficiency

This method is based on the polytropic efficiency of the centrifugal com-

pressor ηP ∈ (0; 1), defined as the ratio between the ideal polytropic specific

head ∆hP required to compress the gas and the real one ∆h

ηP =
∆hP
∆h

. (1.8)
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It is possible to demonstrate2 that the polytropic head is equal to

∆hP =
Zs ·R · Ts

Mw
·

(
pd
ps

)σ
− 1

σ
. (1.9)

Method [C] follows these steps to compute ∆h:

i. A gas properties calculator (e.g. the one described in paragraph 1.2.1)

provides the value of X, Y and kv, both at suction and discharge

(respectively subscript “s” and “d”)

X =

(
∂Z

∂T

)
p

T

Z
,

Y = 1− p

Z

(
∂Z

∂p

)
T

,

kv = isentropic volume exponent;

ii. polytropic efficiency ηP can be retrieved by interpolation of the ηP

non-dimensional curves (similar to the map represented in figure 1.7)

ηP = Map(ϕ,M);

iii. the coefficient σ has to be computed both at suction and discharge,

thanks to the relationship

σ =
n− 1

n
=
kv − 1

kv
·
X + 1

ηP

1 +X
+

1− Y
1 +X

·
(

1− 1

ηP

)
; (1.10)

2A polytropic process follows the relation pvn = C, where n is the polytropic expo-

nent([61]). Thus, it is possible to write these relationships

pvn = psv
n
s ; =⇒ v = vs

(
ps

p

) 1
n

;

Since ∆hP =
∫ d
s vdp, it follows that

∆hP =

∫ d

s
vdp = vsp

1
n
s

∫ pd

ps

p−
1
n dp = psvs

n

n− 1

[(
pd

ps

)n−1
n

− 1

]
.

Considering that pvMw = ZsRTs, and defining σ = n−1
n

we obtain

∆hP =
ZsRTs

Mw

1

σ

[(
pd

ps

)σ
− 1

]
.
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Equation (1.10) clearly states that σ is a function of ηP . Then, the

average coefficient σ̄ is equal to

σ̄ =
σs + σd

2
. (1.11)

Finally, merging equations 1.8 and 1.9 it is possible to find out ∆h.

∆h =
1

ηP

Zs ·R · Ts
Mw

·

(
pd
ps

)σ̄
− 1

σ̄
. (1.12)

As done in paragraph 1.2.1 and 1.2.2, figure 1.9 shows the percentage

deviation in CC power calculation introduced by the same additive white

Gaussian noises on each measurement.
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Figure 1.9: Deviation with respect to case without noise using method [C]

(µ = −0.28%, σ = 2.71%).

1.2.4 CC power estimation: results

Sensitivity analysis

As shown in figure 1.6, 1.8 and 1.9 all the three methods preserve the Gaus-

sian shape, with a mean value µ very close to 0. Nevertheless, the same de-
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viations on the inputs do not lead to similar deviations on power estimations

and this is due to the fact that different methods have different sensitivity

with respect to the same inputs. Table 1.2 summarises the results of the

sensitivity analysis. Table 1.2 states that method [C] is statistically more

sensitive with respect to input noises, thus the centrifugal compressor power

estimation provided by this method is the most affected by the inaccuracy

of input measurement.

µ σ

method [A] −0.02% 1.92%

method [B] −0.23% 1.51%

method [C] −0.28% 2.71%

Table 1.2: Outcomes of sensitivity analysis of methods [A], [B] and [C].

Estimation error

Sensitivity analysis describes how the results are conditioned by inputs vari-

ations, but it is not enough to evaluate the quality of the estimation method.

In order to assess the accuracy of the three methods it is necessary to feed

each method with real field data and compare the results with the power

measurement provided by a suitable field device. In turbo-compression in-

dustrial applications, like the one under investigation, a direct power mea-

surement system is not usually needed; nevertheless, when it is strictly re-

quired3, torque-meters are commonly used (to retrieve more details about

torque-meters please refer to [93]). It is worth noticing that this transducer

is affected by great inaccuracies (up to 10% in case of wrong calibration),

thus the errors defined with respect to this measurement have to be weighted

under the light of accuracy of each particular transducer. This is due to the

3 In some country LNG plants (Liquefied Natural Gas) are obliged by law to measure

and declare the absorbed power for tax purposes.
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nature of torque-meters, indeed the quality of the measurements is strictly

connected with a correct calibration phase. As shown in figure 1.10, the

torque measurement is indirectly achieved by evaluating the angular dis-

placement ∆ϑ between the extremities of the torque-meter; indeed, consid-

ering that the instrument has an equivalent torsional stiffness equal to K,

when the torque-meter is excited with a torque T then ∆ϑ should be equal

to T/K. Coefficient K obviously is not constant and varies with different

factors (for instance a temperature compensation is usually needed), and

this is the reason why calibration procedures are so important.

Figure 1.10: Generic schematic of a torque-meter.

Figure 1.11 shows some results obtained by exploiting four different

datasets taken from real sites (Tscan = 1280ms). These plots represent the

percentage difference between the power value provided by torque-meter and

the power estimation based respectively on method [A] (blue line), method

[B] (orange line) and method [C] (yellow line).
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Figure 1.11: Percentage errors of centrifugal compressor power estimation

based on method [A] (blue line), method [B] (orange line) and method [C]

(yellow line).
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Results of figure 1.11 have been confirmed repeating the estimation with

other trends, and they can be summarised as follows:

i. Different tests lead to different errors, therefore the errors are not only

due to the methods but they are in some way connected to the char-

acteristics and non-idealities of the particular site setup.

ii. Despite the absolute value of the errors, all the three methods are char-

acterised by a nearly constant percentage error. Considering that the

measured power undergoes significant variation within the estimation

interval, this means that each estimation method features a constant

bias with respect to the reference. Standing from the inaccuracy that

might affect the torque-meter this is a very appreciable feature;

iii. Method [A], which is based only on gas properties and transforma-

tions, seems to guarantee better results. However, it is worth noticing

that methods [B] and [C] rely on non-dimensional map, and these re-

sults are based on Expected Maps, thus they do not take into account

the peculiarities of each machine as As-Tested maps do. As already

mentioned, Expected maps are ideal compressor maps computed during

the design phase of the CC, while As-Tested maps are real compres-

sor maps confirmed by tests and measurements taken on CC in real

operating conditions and various operating points.

1.2.5 Method [C2]: compressor polytropic efficiency with

model-based correction

This additional method is very similar to method [C], but it introduces a

correction based on the analytical prediction of discharge temperature T̂d

based on the theory of polytropic compression

T̂d = Ts ·

(
pd
ps

)σ(ηP )

. (1.13)
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Equation (1.13) can be easily retrieved starting from the definition of σ

σ =

ln

(
Td
Ts

)
ln

(
pd
ps

) , (1.14)

that directly derives from the thermodynamic theory of a polytropic expan-

sion or compression4.

The main idea behind this method [C2], as shown in figure 1.12, is to

find out the value of polytropic efficiency η̂P that makes the predicted value

of discharge pressure to coincide with the measured one, i.e.

T̂d(η̂P ) = Tmeasd .

This method [C2] could also be based on the prediction of pd; indeed,

an equation similar to (1.13) can be derived concerning p̂d. However, by

construction, the value η̂P that would make p̂d to match with the measured

value pd is exactly the same value obtained exploiting the prediction of the

discharge temperature.

4 A polytropic expansion follows this pressure-temperature relationship (for a complete

proof see [61])

pn−1

Tn
= C,

where n is the polytropic exponent and C a constant. This means that for an arbitrary

compression the following equation is satisfied

p
n−1
n

d

Td
=
p
n−1
n

s

Ts
.

It is possible to demonstrate that the quantity σ = n−1
n

is a function of the polytropic

efficiency ηP , thus

σ(ηP ) =
n− 1

n
=
γ − 1

γηP
,

where γ =
cp
cv

. Finally, we obtain the desired relationship

Td

Ts
=

(
pd

ps

)σ(ηP )

.



1.2 Mathematical model for power estimation 29

1 
Ge Confidential 

 

𝑇𝑑  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
𝑁 

∆𝑃𝑑 

𝑃𝑑 

𝑃𝑠 

𝑇𝑑 

𝑇𝑠 

𝜂𝑃 

∆𝜂𝑃 

+ + 

- + 𝑇𝑑(𝜂Ƹ𝑃) 

𝑝𝑜𝑤𝑒𝑟_𝑒𝑠𝑡(𝜂Ƹ𝑃) 

𝛴𝜂𝑃
 

𝑘 න(∙)𝑑𝜏

𝑡

0

 

𝜂𝑃 non-dimensional 

Map 

𝜂Ƹ𝑃 

Figure 1.12: Schematic of method [C2].

Method [C2]: results

Figure 1.13 features the results of method [C2] (orange line) and method

[C] (blue line). Note that the method has been applied to the same four

datasets relative to figure 1.11.
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Figure 1.13: Percentage errors of centrifugal compressor power estimation

based on method [C] (blue line) and method [C2] (orange line).
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Even in this case it does not seem possible to define a general behaviour

pattern of this method, however method [C2] generally guarantee better

results with respect to method [C]. Furthermore, figure 1.13 clearly shows

that the percentage errors relative to method [C2] are usually characterised

by an initial transient phase due to the time needed by ∆ηP to converge to

a nearly constant value.

The reason of the improvement introduced with method [C2] is the fact

that the polytropic efficiency is not retrieved only from a scheduled map,

indeed it is corrected thanks to direct measurement of discharge temperature

Td.

1.3 Robustness with respect to measurements

All the power estimation methods presented in section 1.2 rely on some of the

six sensors represented in figure 1.5; obviously not all the methods exploit

all the six measurements, but the point now is that every method needs to

be fed by inputs provided by some kind of sensors.

Thus, the question is: how is it possible to improve the robustness of a

generic estimation method with respect to one or more of these six measure-

ments? Let’s suppose that one of the six measurements suddenly becomes

unavailable; is it possible to compensate this information leakage by using

the remaining five, or all the measurements are strictly required? These ques-

tions do not have specific answers, indeed some measurements are strictly

necessary to keep the system working. For instance, rotating speed mea-

surements are very important, thus a typical industry setup includes two or

three transducers to guarantee the redundancy of this basic measurement.

Rotating speed awareness is so important that it does not make any sense

to suppose the unavailability of this measurement, indeed in that case the

system would automatically shut down.

On the other hand, sometimes there are other sensors that are very useful

even if they are not essential. Concerning the proposed methods introduced

to estimate the power needed to drive a centrifugal compressor, it would be
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very appreciable to find out some techniques to make the system able to

turn around the temporary unavailability of a sensor. To reach this aim two

main techniques have been investigated:

• A technique exclusively based on Recursive Least Squares theory (RLS,

see section B.2 in appendix B);

• A technique based both on thermodynamic formulae and RLS theory.

1.3.1 Absolute least squares estimation

The six measurements provided by the sensors of the centrifugal compressor

are not independent, thus the system seems to be overdetermined. The main

idea of this method is to identify the model that takes as input five mea-

surements and returns as output the estimation of the sixth one. Without

loss of generality, let’s suppose that the unavailable measurement that must

be estimated is Td. Obviously, the model structure is unknown and the first

step is its definition.

The simplest model is the parametric linear one: this model is completely

defined once that the N-dimensional parameters vector ϑ = [ϑ1, ϑ2, . . . , ϑN ]

is known. This model can take as input also non-linear combinations of the

measurements, but it must be linear with respect to the parameters ϑi, i =

1, . . . , N . Let’s define the N-dimensional input vectorϕ = f(ps, Ts, pd,∆p,N) ∈
RN , the parametric linear model can be written as

Σ(ϑ) : Td = ϕTϑ. (1.15)

The parameters vector ϑ can be estimated exploiting the least squares

method. As shown in appendix B, least squares can be applied in two dif-

ferent ways: classic or recursive least squares.

In the past years, least squares method has already been employed in

turbomachinery applications. For instance, it has been applied to balance

rotating machineries ([33], [109] and [59]) and to perform parameters and



1.3 Robustness with respect to measurements 33

coefficients identification in centrifugual compressors ([76]) or in turbine en-

gines ([65] and [12]). In this framework least squares are applied in a different

way, indeed the main purpose is to find out how different CC measurements

are connected between each other.

Hereafter recursive least squares (RLS) will be used, indeed such method

updates the estimation step by step and it converges exactly to the same

result of classic least squares. Since the model is linear, an analytical solu-

tion can be defined. Obviously, to perform the least squares method, the

measurement of the variable that has to be estimated at least in a first phase

must be available. Once that the parameters vector has been estimated, if

the measurement becomes unavailable it can be estimated introducing ϑ̂ in

the parametric linear model.

This simple idea is represented in figure 1.14: clearly the loop is closed

only when Td is available, otherwise the system works in open-loop and the

estimation T̂d is based on the last estimation of ϑ.
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Figure 1.14: Schematic of Td absolute estimation based on least squares

theory.
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In order to simulate this scenario a real dataset has been split in two sep-

arated phases. In the former part (10% of total data) all the measurements

are considered available, thus within this interval it is possible to compute

vector ϑ̂. In the latter interval (last 90% of data) Td is considered unknown

and it is estimated using the least squares theory.

Obviously this procedure can be repeated for each measurement, thus

each quantity will have its own coefficient vector.

Figure 1.15 is composed of five subplots relative to these tests:

1. y = Ts, ϕ = [ps Td pd ∆p N ];

2. y = ps, ϕ = [Ts Td pd ∆p N ];

3. y = Td, ϕ = [Ts ps pd ∆p N ];

4. y = pd, ϕ = [Ts pd Td ∆p N ];

5. y = ∆p, ϕ = [Ts ps Td pd N ];
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Figure 1.15: Percentage errors of absolute estimations based on least squares

theory. Blue line (10% of total data) refers to calibration phase, while orange

line (last 90% of data) refers to validation interval.



36
Centrifugal Compressor Modelling and Robust

Power Estimation

1.3.2 Thermodynamic prediction and RLS estimation

Gas compression can be completely described from a physical point of view.

Equation (1.14) is valid for a polytropic process and by the inversion of this

equation it is easy to achieve an analytic formulation for the thermodynamic

prediction of Ts, ps, Td and pd.

T̂s = Td ·

(
ps
pd

)σ
; (1.16)

p̂s = pd ·

(
Ts
Td

) 1
σ

; (1.17)

T̂d = Ts ·

(
pd
ps

)σ
; (1.18)

p̂d = ps ·

(
Td
Ts

) 1
σ

. (1.19)

Using these prediction formulae it is possible to achieve an estimation of

these variables. Figure 1.16 represents the results of these thermodynamic

predictions. Note that the differential pressure across the orifice can not be

estimated in this way, indeed this quantity is not involved in equation (1.14).

Figure 1.16 clearly shows that the thermodynamic predictions provide a

first approximation, but the error can be significant (up to 10%). This is due

to the non-idealities that move the real CC behaviour far away from ideal

polytropic compression. This means that the performance of this estimation

method is strictly connected with the particular features of the compressor

and its operating conditions. The more the compressor is far from the ideal

one, the larger the prediction errors will be. A great advantage of this

method is that it never relies on the measurement of the possibly unavailable

quantity, indeed it does not require any calibration phase and it achieves an

estimation exploiting only physical relationships. Even if this method does

not guarantee a great accuracy it gives however a first information, indeed

the error is nearly constant. This means that the prediction somehow follows
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Figure 1.16: Percentage errors of thermodynamic predictions.
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the changing of the unknown variable, therefore the natural improvement is

to start from this result and try to compensate in some way the prediction

error. This can be made exploiting again RLS, as shown in figure 1.17. In this

case, the purpose of RLS is not the absolute estimation of one measurement,

but it aims to estimate the difference between the thermodynamic prediction

and the measured value.

37 
Ge Confidential 

 

This second method does not give an absolute estimation of the unavailable measurement, 

indeed it takes as starting point the thermodynamic prediction and then it tries to estimate the 

prediction error by the identification of the linear parametric model that describes the relation 

between the input variables and the estimation error. 

𝑇𝑑 
prediction 

𝝑

_

Estimation 

error 

- 

+ 

𝑒𝑇𝑑 

Parametric 

Linear Model 

𝛴(𝝑) 

𝑒Ƹ𝑇𝑑 

Least 

squares 

method 

- 

+ 

𝑇𝑑 

 Thermodynamic 

formulae 

𝑝𝑠 

𝑇𝑠 

𝑝𝑑 

∆𝑝 

𝑁 

Figure 1.17: Schematic of Td prediction error estimation based on RLS the-

ory.



1.3 Robustness with respect to measurements 39

In practice, the idea is to estimate εTs , εps , εTd and εpd , defined as

εTs = Tmeass − T̂s;

εps = pmeass − p̂s;

εTd = Tmeasd − T̂d;

εpd = pmeasd − p̂d.

Figure 1.18 shows that this second method leads to significantly lower errors

with respect to simple predictions. Moreover, even if the magnitudes of the

estimation errors are similar to the ones obtained with absolute RLS estima-

tion, this method deserves to be preferred because it is not only a “blind”

estimation but it starts from a reasonable results based on compression the-

ory.
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Figure 1.18: Percentage errors obtained estimating the thermodynamic pre-

diction error with RLS. Blue line (10% of total data) refers to calibration

phase, while orange line (last 90% of data) refers to validation interval.
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1.4 Results analysis and conclusions

The methods proposed in this chapter have been developed to meet practical

and technological needs. Concerning typical CC applications power measure-

ment is not strictly required. On the other hand, the knowledge about GT

power is fundamental to figure out the GT operating point. Thus, consider-

ing that CCs are usually driven by GTs, the information about the absorbed

power can be exploited as GT delivered power estimator.

The power absorbed by the CC can be directly measured by torque-

meters, but such sensors have many drawbacks, indeed they are expensive,

bulky and they need to be frequently calibrated in order to guarantee ac-

ceptable accuracy. The proposed techniques provide an estimation of the

absorbed power avoiding torque-meter installation, and this is the reason

why they are so appreciable.

This chapter can be broadly split in two different parts:

i. in the first part some suitable model-based methods to estimate the

power needed to drive a centrifugal compressor have been proposed. As

mentioned in paragraph 1.2.4, methods [A], [B] and [C] lead to nearly

constant percentage error, even if different tests are characterised by

different errors. However, method [A] seems to guarantee better re-

sults, while the performances of methods [B] and [C] are strictly con-

nected to the goodness of the empirical maps that try to describe

the CC behaviour. In this framework the importance of introducing

As-Tested maps instead of Expected maps is crucial, and it can bring

many benefits. Moreover, an additional method [C2] is proposed: this

method tries to enhance method [C] by introducing a model-based

correction of the polytropic efficiency. Even in this case it is hard to

define a general pattern, indeed different datasets lead to different re-

sults. Nevertheless, method [C2] generally guarantees better results

with respect to method [C];

ii. in the second part some methods to compensate the potential unavail-

ability of some sensors are investigated. The main idea is that CC
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measurements taken from suction and discharge are not independent,

indeed they are linked with each other by thermodynamic relationships

that describe gas compression. The proposed methods exploit RLS

theory and thermodynamic relationships in order to achieve a suitable

estimation of the potentially unavailable measurement. Empirical re-

sults based on real trend data show that the minimum estimation error

can be achieved exploiting at the same time both the thermodynamic

predictions and RLS theory.



Chapter 2

Sub-Synchronous Torsional

Interactions in Electrical Networks

Turbo-generators (TGs) interact with electrical network and sig-

nificant torsional vibrations at shaft natural frequencies can be

produced. The first part of this chapter introduces sub-synchronous

torsional interactions, with a brief survey of the main causes and

effects of this phenomenon. The second part suggests a possible

solution to mitigate this issue and some theoretical results are

presented.

2.1 General description

SSTI (Sub-Synchronous Torsional Interaction) is an instability phenomenon

mainly associated with synchronous machines and various power electronic

devices that are widely used in oil and gas industry, such as HVDC converters

(High Voltage Direct Current) or large industrial motor drives that create

and sustain the oscillations ([90], [81], [11] and [41]). The presence of these

devices has grown exponentially in the last decade, particularly for Variable

Frequency Drive application (VFD); these equipments are mainly used in

electro-mechanical systems to control AC motor speed and torque by varying

43
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motor input frequency and voltage. VFDs can produce a massive current

and voltage harmonic distortion, and this is the first step to trigger SSTI

oscillations.

SSTI as a non-linear phenomenon has been widely studied in the past

decades ([45]), and it can not be understood by considering the electrical

and mechanical parts as separated worlds: looking at these two systems

one by one the mechanical/electrical fluctuations can not be explained, they

seem to be self-generated and self-sustained oscillations. The causes and the

reasons behind this very critical behaviour of electric generation plants have

to be searched considering a single system where the electric part (electric

network and electronic devices) and the mechanical part (gas turbines and

generators) transfer energy to each other. Figure 2.1 depicts a very schematic

electric grid powered by turbo-generators (even if the grid is a three-phase

network, for the sake of simplicity the schematic is represented as a single-

line diagram).
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Figure 2.1: Schematic explanation of SSTI phenomenon.

As any other rotating mechanical component, TGs have their own Tor-

sional Natural Frequencies (TNFs). Usually, the first torsional mode is dom-

inant, and in correspondence of this frequency the behaviour of the mechan-

ical system becomes very unstable. If an external source of energy feeds a

TGs in correspondence of the first TNF (1TNF) the system will begin to
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oscillate with undamped vibrations. The oscillation ∆ω of the shaft line, i.e.

variations in rotational speed with respect to the reference speed, is defined

as

∆ω = ωact − ωref ,

where ωact is the actual angular speed of the shaft line, while ωref is the

reference angular speed which is directly connected to the reference frequency

of the network (50 or 60Hz). ∆ω creates voltage oscillation ∆V . Electric

network sees these voltage variations as disturbances, thus it injects in the

grid significant current oscillations ∆i. On the contrary, TGs see the current

oscillations as electric torque oscillations (∆Te), and this is the external

source of energy that excites the mechanical system exactly where it is more

sensitive, i.e. in correspondence of 1TNF. This is a very intuitive explanation

of how the SSTI phenomenon can be produced and self sustained: obviously

each single plant has its own peculiarities, and they have to be considered

in order to assess the actual SSTI risk and, possibly, its mitigation.

SSTI vibrations can cause cumulative fatigue damage and result in re-

duced component life of parts such as shafts, buckets (blades), retaining

rings, and rotors. However, in addition to physical damages on the plant,

this phenomenon heavily affects the operability of the system, indeed when

seismic sensors detect too large oscillations the system is automatically shut

down in order to protect itself and preserve the surrounding workers’ safety.

In order to avoid this critical situation SSTI causes have to be studied and

some mitigation techniques need to be introduced (e.g. see [90], [79], [52],

[85] and [91]).

2.2 SSTI electro-mechanical causes

TGs shafts have to transmit driving torque to the load (i.e. electric net-

work) and they have also to absorb the transient torque that characterises

step events or faults. As mentioned in the previous paragraph, under certain

conditions they can experience self-sustained or growing oscillations due to

SSTI. In order to find out SSTI main causes first of all it is necessary to
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introduce a mechanical model of TG to better understand why the system

tends to oscillate in correspondence of specific frequencies. Then, it is nec-

essary to analyse the electric grid in order to explain why certain devices in

some configurations create disturbances that feed the torsional oscillations.

2.2.1 Turbo-generators mechanical model

The first step to explain this phenomenon is the introduction of a mathe-

matical model of TG mechanics. The modal approach (see e.g. [44], [46] and

[104]) allows the calculation of the characteristic TNFs of the train usually

composed of a GT, a gear box and an EG.

As shown in figure 2.2, TG shaft can be seen as a sequence of N in-

ertias Ji characterised by damping coefficients Di, with i = 1, · · · , N , and

interconnected by equivalent stiffness coefficients kj , j = 1, · · · , N − 1.

ϑ1 ϑ2 ϑ𝑁−1 ϑ𝑁

𝑘1
𝐽1

𝑘𝑁−1 𝑇

𝐷1

𝐽2 𝐽𝑁−1 𝐽𝑁

𝐷2 𝐷𝑁−1 𝐷𝑁

Figure 2.2: Physical model of TG shaft.

The shaft torsional dynamic behaviour is completely described by the

following set of second order differential equations

Jϑ̈+Dϑ̇+Kϑ = T . (2.1)

Where:

J = diagonal matrix of physical inertias

D = diagonal matrix of physical damping coefficients

K = symmetric matrix of equivalent stiffness coefficients
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ϑ = vector of angular positions of each inertia

T = torques vector (both electric and mechanical)

In a power generation system, in addition to mechanical damping there is

also an electrical damping which is acting on the generator shaft; this electri-

cal damping is linked to the electrical torque which is due to the interaction

between the network and the generator magnetic flux. In practice, consider-

ing small oscillations in correspondence of a certain frequency fn, electrical

torque and speed oscillations can be seen as rotating phasors, respectively

∆T e(fn) and ∆ω(fn).

Electrical damping acts on generator shaft windings, and it describes the

amplification and the phase delay between speed oscillations and electrical

torque. Mathematically, it is defined as

De(fn) = −|∆T e(fn)|
|∆ω(fn)|

cosα, (2.2)

where α is the phase delay between the phasors. De obviously depends on α

and it can be either positive or negative. Since the total damping coefficient

is a combination of the mechanical and electrical damper coefficients, it is

clear that a negative De can lead the system towards instability.

The drawback of equation (2.1) is that it is very complex to figure out

the numerical values of its coefficients. In order to overcome this issue it

is possible to represent the same equation in the modal reference system

through this coordinate transformation

ϑ = Φ · q. (2.3)

Where:

Φ = modal shapes matrix (calculated as the eigenvectors of J−1K)

q = modal coordinates vector

Theory fundamentals about modal analysis can be found in many hand-

books such as [5], [86] or [69].

By applying this transformation, equation (2.1) becomes

M eqq̈ +Deqq̇ +Keqq = T eq. (2.4)
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Where:

M eq = ΦTJΦ is a diagonal matrix

Deq = ΦTDΦ is a diagonal matrix

Keq = ΦTKΦ is a diagonal matrix

Solving this new set of differential equations it is possible to figure out all

torsional modes relative to each single TNF. The major criticality is related

to the first mode, thus it is reasonable to focus the attention only on 1TNF,

which considering common size and inertias in practical applications in the

oil and gas industry usually is lower than 10Hz. The normalised amplitude

of this first torsional mode gives a first quantitative information on how the

mechanical system amplifies the torque/speed oscillations at 1TNF. Torque

and speed oscillations are linearly connected by equivalent stiffness, thus if

one gets larger also the other one is amplified by the same factor.

Therefore, the higher is this amplification the lower will be the total

equivalent damping coefficient; this is due to the fact that if the electric

torque is more amplified in correspondence of generator windings then the

electric damping coefficient has a greater weight in the calculation. In some

cases the amplitude of the first torsional mode is particularly large, thus the

total equivalent damping coefficient can be lower than 0, and this means

that the system is not able to damp the oscillations with frequency equal to

1TNF, thus the stability is not guaranteed.
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2.3 Harmonic distortion in the electric net-

work

It is well-known that a three-phase electric power transmission and distri-

bution system is theoretically characterised by a balanced and symmetric

configuration, where each line carries an alternating current of the same fre-

quency f and amplitude I; the reason why the system is perfectly balanced

is that in the phase plane the three phase currents present a phase delay

equal to 2π/3, and this forces the sum of the three currents to zero. Obvi-

ously, also the three line voltages have the same amplitude V and the same

frequency f , and they are delayed each other in the phase plane of 2π/3.

Indicating with “a”, “b” and “c” each line, equations (2.5) and (2.6) describe

the ideal currents and voltages of a symmetric three-phase system.
va(t) = V sin(2πft);

vb(t) = V sin(2πft− 2
3π);

vc(t) = V sin(2πft− 4
3π).

(2.5)


ia(t) = Isin(2πft− ϕ);

ib(t) = Isin(2πft− ϕ− 2
3π);

ic(t) = Isin(2πft− ϕ− 4
3π).

(2.6)

Where the additional phase delay ϕ between each current and the corre-

sponding voltage is due to the power factor (PF) that is lower than one,

thus the real power delivered to the load is lower than the apparent power1.

This would be the behaviour of a linear electric network with a perfectly

balanced load.

Actually, as introduced in section 2.1, many modern industrial applica-

tions are based on non-linear electronic devices such as VFD, LCI (Load

Commutated Inverter) and HVDC. These equipments usually rely on con-

trolled micro-electronics components (e.g. diodes, transistors and thyristors)

1PF is defined as PF = cosϕ therefore it is equal to 1 only when ϕ = 0, i.e. when the

load is completely resistive (for further details see [3]).
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that are very useful to shape the current or voltage profiles in order to adapt

them to the load needs. These devices bring many benefits, but one of the

drawback is that they introduce a significant harmonic distortion within the

electric network; this means that line currents and voltages consist of many

other frequencies in addition to the standard frequency f (usually equal to

50 or 60Hz). THD (Total Harmonic Distortion), as defined in equation

(2.7), is an index that allow the quantification of the total distortion with

respect to the first harmonic.

THD =

√
A2

2 +A2
3 +A2

4 + · · ·
A1

(2.7)

Where Ai with i = 1, · · · , N is the RMS (Root Mean Square) amplitude of

the i-th harmonic. In practice, THD defines how significant are the higher

harmonics with respect to the fundamental one.

Harmonic distortion can be one of the conditions that may cause SSTI

phenomenon; as depicted on the left side of figure 2.3 when the amplitude of

the line currents varies with frequency fD (top), its spectrum is characterised

by two side-bands in correspondence of f − fD and f + fD (bottom). On

the right side of figure 2.3 the three-phase power (top) and its spectrum

(bottom) are represented, and it is possible to see that if current line has

two side-bands in correspondence of f − fD and f + fD then the power

oscillates with frequency fD, indeed its spectrum has a peak exactly at fD.

In this situation also the electric torque seen by the generator oscillates at

the same frequency.
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Figure 2.3: Frequency analysis of SSTI phenomenon (example). The figure is

composed of two rows and two columns: first row is relative to time domain

while the second is relative to frequency domain, first column is relative to

current while the second is relative to power.
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In the following, a few additional details and remarks about figure 2.3

are listed:

• This is only a simulated example built in MATLAB®, where all the

quantities are normalised in per-unit (pu);

• the only purpose of this figure is to clarify some possible SSTI causes,

the magnitude of the oscillations has been intentionally amplified to

enhance the distortion;

• in order to achieve more realistic results the three line currents have

been noised with an AWGN (Additive White Gaussian Noise);

• the reason why the peak of power spectrum is definitely lower than 1 pu

is that the main component of the spectrum is the DC component, thus

the y-axis has been scaled in order to highlight the peak at fD.

From the previous simple example comes out that if fD is equal to the first

TNF of TG, then this particular load would excite the mechanical system

in correspondence of its resonance frequency, therefore it should be able to

activate and feed SSTI phenomenon. However, someone can note that in

a real electric network it would be a very unlucky situation to have two

perfect side-bands as the ones showed in this example, perfectly centered

in f − 1TNF and f + 1TNF . The fact is that the distortion introduced

by non-linear load leads to disturbances in a wide range of frequencies that

can include also the two side-bands, but the mechanical system is sensitive

only to these specific frequencies and does not respond to the other ones.

Therefore, it is clear that to trigger SSTI oscillations it is not strictly required

to have a spectrum of line currents exactly equal to the one showed in figure

2.3, indeed it is just enough to have a continuous disturbance that insists

within a frequency interval that contains the critical frequencies f − 1TNF

and f + 1TNF .
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2.4 SSTI mitigation: damping system proposal

In section 2.2 the causes of Sub-Synchronous Torsional Interaction have been

explained. The oscillations in the absorbed currents ∆i lead to oscillation in

the electric torque ∆Te that finally leads to oscillations in the TG rotational

speed ∆ω. In turn, mechanical oscillations ∆ω produce oscillations ∆V and

∆i within the electrical network, thus the loop is closed.

Figure 2.4 represents a schematic of a power generation unit with a SSTI

damping system included.

GT

Gear Box

G

3~

1TNF

SSTI damping system

∆ω

ω

Electric 

Network

idamp

Turbo-generator

Band-pass 

filter

Figure 2.4: Schematic of SSTI mitigation system.

As shown in figure 2.4, the proposed SSTI damping system should be

inserted within the electric network, indeed the main purpose is not a me-

chanical damping of the torsional vibrations but it aims to compensate the

electric oscillations by introducing an active load. The active load is a con-

trolled load that adapts its own request of power in function of the measured

mechanical oscillations ∆ω. As described in [1] and [2], the measurement

of the angular velocity of a rotating shaft is based on a cogwheel installed

on the shaft itself. Once the angular velocity ω of the shaft is known, the

harmonic at 1TNF can be isolated by introducing a simple band-pass filter

centered in 1TNF . Therefore, the main purpose of the damping system is to

balance the fluctuations of electric power within the electric network. In this
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way the power transfer at 1TNF between the electric grid and TG should

be avoided, indeed the oscillations are bounded within the electric network.

In practice, this damping system has the same function of a capacitor in an

electric circuit or an accumulator in a hydraulic circuit, indeed it alterna-

tively accumulates and releases energy in order to keep the power request as

constant as possible. The only difference is that this damping system should

behaves in this way only at 1TNF , while it should be transparent to all the

other frequencies.

The schematic of the proposed damping system and its control logic are

represented in figure 2.5.
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Figure 2.5: Schematic of SSTI damping system.

Note that the firing angle control usually is based on a classical PID con-

troller (Proportional-Integral-Derivative controller), and it can be included

inside the three-phase thyristor rectifier bridge. Practical guidelines to de-

sign and tune a PID controller can be found in many technical manuals or

article, e.g. see [4], [48] or [98].

Some additional observations are needed to completely understand the
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high level logical diagram in figure 2.5:

• As shown in section 2.2, the electric torque oscillations ∆Te are strictly

related to torsional oscillations ∆ω, thus ∆Te and ∆ω contain exactly

the same information. Since angular speed ω is a measurement always

available and quite accurate (see [1] and [2]), it is a reasonable choice

to use a band-pass filter to isolate ∆ω from ω, and use this information

as input of the damper logic.

• the phase shifter and the gain are needed in order to maximise the

reduction of electric torque oscillation at 1TNF . ∆ω has to be ampli-

fied and delayed in order to compensate the electric oscillations within

the network. The gain and the delay can be constant values computed

offline during design phase or they can be optimised with online calcu-

lations based on adaptive model. ∆ω needs to be properly amplified

and delayed in order to compensate the differences between the phasors

∆T e(fn) and ∆ω(fn) described in paragraph 2.2.1;

• R-L load should be characterised by a resistance as small as possible

in order to minimise the power dissipation and a very large inductance

(L ' 1÷5mH). The inductor should be able to accumulate and release

energy, exactly as a spring does in a mechanical system. In this way the

inductor should filter the fluctuations of energy with frequency nearby

1TNF, thus the mechanical trains, i.e. TGs, should not be excited in

correspondence of their first torsional resonance peak;

• the average voltage VDC produced by the three-phase thyristor rectifier

bridge can be controlled by modifying the firing angle of the thyristors.

In practice, the rectifier bridge does not directly impose the current,

but it moves the firing angle modifying the voltage VDC until the cur-

rent is equal to the desired value. The rectifier bridge is able to follow

the reference current IDC,ref only if the frequency of the reference cur-

rent is definitely lower than the network frequency. Since the objective

of this damper system is the mitigation of SSTI oscillations at 1TNF



56 Sub-Synchronous Torsional Interactions in Electrical Networks

(that usually are lower than 10Hz) and the standard electric network

frequency is 50 or 60Hz, the above condition is satisfied, therefore the

rectifier bridge should be able to follow the reference.

2.5 Simulations and results

SSTI instability has been experienced for a long time and many studies

have highlighted that this phenomenon is mainly influenced by the grid size

and configuration, the number and the localization of the electrical gen-

erators and the features of the power electronic equipment used as input

stage and/or to control the large electric loads connected to the grid (e.g.

motors, pumps, fans and heaters). Many simulations have been performed

exploiting dedicated toolbox available in MATLAB®and Simulink®; in par-

ticular the modelling and simulation of the electric grid has been performed

in PLECS®2.

Several configurations have been tested, but all of them can be sum-

marised as shown in figure 2.6, where GA and GB are two separated elec-

tric generators, ZA and ZB are the two isochronous reactances, while Zc,A,

Zc,B , ZD and ZL are the line impedances. It is worth noticing that when

two or more TG units are running in an isolated system where frequency is

not dictated by a prevalent network, isochronous/droop control is the tra-

ditional and simplest way to control each train. Only one TG train has to

be controlled in isochronous mode, thus this unit is controlled to maintain

a constant speed (due to 50 or 60Hz), regardless of the load. The value

of the active power supplied to the load can not be set and the machine

faces to all load variations; i.e., if an increase in load power demand oc-

curs, GT consequent response is a speed reduction, immediately corrected

by the speed controller increasing the gas quantity supplied to the machine.

If more TGs operate in parallel, the other units have to be controlled in

2 PLECS®is a very interesting tool for high-speed simulations of power electronics and

thermodynamics that can be easily integrated in MATLAB®and Simulink®environment.

More details can be retrieved from the PLECS user manual, available at [75].
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droop mode. In droop control mode the speed is not imposed, indeed the

power supplied to the load follows the droop load control curve, i.e. a linear

curve that describes the connection between the turbine speed variation and

the corresponding variation in the load power request. Detailed description

of isochronous/droop mode control can be retrieved in many manuals, see

e.g. [9], [99], [74] and[44] .
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ZL

31.5/1.2 kV

ZD
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Figure 2.6: Schematic of electric power generation and distribution system.

Note that the SSTI oscillations are imposed by introducing a fake load

that absorbs power at 1TNF ; in this way it is simple to activate/deactivate

SSTI during the simulation.

As explained previously, different configuration of electrical grid can bring

to different risk of incurring in SSTI phenomenon; this is the reason why

several network configurations have been simulated and tested. In particular,

the set of simulations has been studied aiming to consider different line

impedances, critical events such as load steps and different torsional models

of TGs. In the following some results that provide general features of SSTI

are reported.

Figure 2.7 shows the torsional oscillations of the isochronous GT in three

different cases (normalised in pu). In figure 2.7a, the disturbing load and the

passive load are inserted at t = 0 s, indeed there is an initial undershoot due

to the electric passive load that makes the GT speed decrease. However,

in a few seconds the GT governor brings the average speed towards 1 pu.

Moreover the disturbing load at 1TNF induces larger and larger torsional

oscillations, and when the damping system is activated (t = 10 s) the oscil-
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(a) Damping of torsional oscillations.
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(b) Damping of torsional oscillations with load step.
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(c) Damping of torsional oscillations with load rejection.

Figure 2.7: Simulation results of three examples of torsional oscillations

damping.



2.5 Simulations and results 59

lation magnitude is ' 7.5 10−4 pu. When the damping system is turned on

the oscillation are reduced of ' 60% in about 5 s.

This behaviour is approximately equal to what happens in figures 2.7b

and 2.7c: besides that, these tests simulate how the system responds to a

load step (figure 2.7b) and to a load rejection (figure 2.7c), both of them at

t = 20 s. Note that load step indicates that the load gets increased, while

load rejection indicates that the load decreases. In addition to the initial

undershoot/overshoot due to load changes, it is worth noticing that when

the system gets a greater load the oscillations are reduced, while when the

system rejects a part of the load the oscillations are intensified. This is a

general rule, indeed many researchers has experienced that unloaded electric

generation plants are more sensitive to SSTI issues.

Moreover, it has been observed that in very large electric networks it

is less frequent to have SSTI; this is due to the fact that in wider electric

grids there are more dissipations, thus the disturbances at 1TNF (as all the

other disturbances) are automatically reduced. Similar reasonings can justify

also the fact that generation plants composed of several TGs in parallel

(more than 3/4 TGs) are not interested by SSTI, indeed in this case the

disturbances at 1TNF are distributed between several trains, thus each TG

does not receive enough energy at 1TNF to trigger SSTI phenomenon, and

dangerous torsional oscillations are avoided.

Figure 2.8 shows how the three-phase thyristor rectifier bridge works. As

shown in figure 2.8a each phase current (briefly indicated as idamp in figure

2.5) has several discontinuities when the relative thyristor is turned on/off.

By controlling the firing angle it is possible to make the DC link current

follow the reference current (figure 2.8b). Note that the DC link can only

absorb a positive current, and this is the reason why it is necessary to add

a constant offset to the reference current.
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(a) Damper current absorbed by each three-phase line.
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(b) Current on damper DC link: blue line represents reference current,

orange line is the actual current and the yellow one is the RMS value.

Figure 2.8: Example of damper line currents and DC link current.

From a theoretical point of view thyristors are able to immediately open

up or close off the current flow, in practice the switches will be always grad-

ual; this is due to the fact that every electrical circuit is characterised by a

certain inductance, thus it is not possible to have discontinuities on current,

indeed this would require an infinite voltage peak. This highly non-linear be-

haviour has to be taken into account in a real power generation plant, indeed

a deep analysis to evaluate the total distortion introduced in the network

by the damper system should be carried on. In particular each country has
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its own regulations (grid code) about the maximum THD allowed in a grid,

thus the damper system has to be designed considering these legal limits.

The last observation is about the power that needs to be dissipated by

the damper system. If the damper were composed of an ideal inductor it

would exchange with the network only reactive power: this means that the

absorbed power would be a zero-mean power, without any real transfer of

energy. On the contrary, the real damper system is characterised by a certain

resistance: it should be as small as possible but always greater than the ideal

0Ω.

Theory of electrical engineering (see e.g. [3]) states that the power as-

sociated to a current i(t) that flows through an inductor L in series with

resistance R is equal to

PRL(t) = PL(t) + PR(t) = L · ∂i(t)
∂t︸ ︷︷ ︸

VL

·i(t) +R · i(t)2. (2.8)

By consequence, the energy absorbed by the damper should be equal to

ERL(t) =

∫ t

0

(PL(t) + PR(t)) dt =
1

2
Li(t)2 +

∫ t

0

(R · i(t)2)dt. (2.9)

Equation (2.9) clearly states that the energy diverges in time, thus the

system sizing and above all the cooling system has to be designed in order

to be able to manage this quantity of energy. Indeed, the cooling system

is supposed to be able to dissipate enough energy in order to prevent the

damper system from overheating.

2.6 Results analysis and conclusions

As mentioned in the previous sections, SSTI phenomenon is deeply influ-

enced by several features both of mechanical and electrical systems. As

a consequence, it is quite hard to provide general rules to quantitatively

compute SSTI risk. Each particular site would require a dedicated analysis

in order to assess the risk of occurrence of this unstable phenomenon and,
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if necessary, to quantify the goodness of a damping system introduced to

mitigate the oscillations.

However, simulations have highlighted some SSTI general features and

some guidelines that should be taken into consideration during design phase

in order to minimise the occurrence of this events. They can be summarised

in these points:

i. Larger electric networks (thus larger values of impedances ZC,A and

ZC,B referring to figure 2.6) are less compatible with SSTI instability.

In very wide electric grid, e.g. a prevalent network, the power of the

disturbs that can lead to SSTI is negligible with respect to the network

power capacity, and the physical sizes of the grid allow the dissipation

or the temporary storage of all the harmonics different from the stan-

dard one;

ii. ∆ω can be measured either from the isochronous GT or the droop

mode controlled GT. Sometimes it can happen that the optimal values

for the gain and the phase delay depend on the source of ∆ω. Nev-

ertheless, the proposed damper logic is effective independently from

where ∆ω is taken. This means that in an electric generation plant

composed of several TGs, the damper system can take the angular

speed measurement from any TG, without restrictions. Obviously, the

numerical calibration of the damper logic will be connected to the par-

ticular choice of the source of ∆ω;

iii. the most critical situation concerning SSTI phenomenon has been ex-

perienced when the electrical power request is very small. Once again,

this behaviour can be explained considering the relative weight of dis-

turbing load with respect to the total power request;

iv. in some simulations two different TGs (i.e. with different mechanical

size and TNFs) have been considered. The results have highlighted

that when the damping system mitigates the torsional oscillations in-

duced in one TG, the other one is not affected by the damper action.
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Since very different TNFs means that the two TGs are sensitive to

very distant frequencies, this result is reasonable; however, it is very

important to be sure that the damper system, in addition to mitigate

SSTI, does not introduce any negative effect within the system;

v. load step and load rejection events do not represent critical events by

themselves. However, as described in bullet (iii), it has to be consid-

ered that SSTI criticality changes with the total power request, thus

during load rejection events the system moves towards a configuration

characterised by a major SSTI risk.
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Chapter 3

Gas Turbine Modelling and

Model-Based Estimation

Many different types of GTs have been developed in the past years

and they can be broadly classified as single-shaft GT, mainly

generator drive application, or two-shaft GT, mainly mechanical

drive application. In this chapter the characterisation and the

modelling of a particular two-shaft GT will be addressed; first

of all a static a-priori model has been proposed and it has been

trained with a massive dataset, then all the measurements and

equations have been merged within a Kalman filter. Finally, the

quality of the model has been evaluated also by exploiting field

data and conclusions have been drawn.

3.1 Gas turbine general description

The first operating gas turbine was proposed in the beginning of twentieth

century and it had a very low thermal efficiency. In a few decades the gas

turbines technology has been deeply enhanced and they have been introduced

in a wide range of practical and industrial applications, such as:

• electric power generation: a gas turbine is directly connected to an

65
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electric generator running at constant speed. The speed depends on

the number of magnetic poles of the generator and the standard elec-

tric grid frequency, that can be 50 or 60Hz. Sometimes a gearbox is

required to scale the GT speed to the generator speed;

• compressor drive application: in this case GT can be designed in order

to have the same rotational speed of the compressor, thus gearbox

is not always strictly required. Compressor rotating speed is usually

asked to vary within a certain operating range, thus the GT that drives

the compressor has to be designed in order to be able to adapt its own

rotational speed;

• aircraft propulsion: the basic development in this field took place for

high-speed military aircrafts. In this case the engine is asked only to

produce enough power to drive the compressor, then the gas leaving the

turbine at high pressure and temperature is expanded to atmospheric

pressure in a propelling nozzle to produce a high velocity jet. Only in

the early 1950s GTs started to be used in civil aircraft applications;

• marine and land transportation: GTs have been used as prime mover

for ships, trains and trucks1. Usually GTs for these applications are

derived from aircraft engines and for this reason they are often referred

to as aero-derivative GTs. Aero-derivative GTs are generally lighter

weight, physically smaller and have a better partial load performance

with respect to industrial GTs (which are usually referred to as heavy-

duty GTs), but they are characterised by more frequent maintenance

intervals.

When GTs are required to operate at a fixed speed and fixed load the single-

shaft configuration is the most suitable (figure 3.1), indeed the engine has

not to be flexible and ready to changes of rotational speed.

1Due to several technical reasons, GTs did not provide a significant contribution to

land transportation; current proposals would use GTs to generate electricity with separate

electric motors on the driving wheels.
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Figure 3.1: Single-shaft GT schematic.

On the contrary, when flexibility in operation is of great importance, e.g.

when driving a variable speed load such as a centrifugal compressor, the use

of a mechanically free power turbine is appreciable. In this two-shaft config-

uration (figure 3.2) the High-Pressure Turbine (HPT) drives the compressor

and the combination acts as a Gas Generator (GG) for the Low-Pressure

Turbine (LPT). LPT is the free power turbine which is aerodynamically but

not mechanically coupled to HPT. Aircraft engine may be used as gas gen-

erator for driving an electric generator or a mechanical load, indeed it is just

enough to make exhaust gas expand through a power turbine such as LPT

rather than the original exhaust nozzle.
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Combustion 

chamber

Fuel

High Pressure 

Turbine

Load

Low Pressure 

Turbine
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Figure 3.2: Two-shaft GT with separated power turbine schematic.
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Figures 3.3 shows an example of two-shaft GT that has been heavily

installed worldwide both in mechanical drive and power generation applica-

tions.

Figure 3.3: GE LM2500+G4, a two-shaft aero-derivative GT. This GT be-

longs to GE LM series, where LM states for Land & Marine. Courtesy of

BHGE (source www.bhge.com).

On the other hand, figure 3.4 shows an example of single-shaft GT,

mainly used in power generation plants.

www.bhge.com
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(a) Single-shaft gas tubine, first view.

(b) Single-shaft gas tubine, second view.

Figure 3.4: Two different views of a single-shaft GT. Courtesy of BHGE

(source www.ge.com).

www.ge.com
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3.1.1 GE LM2500 overview

The LM2500 gas turbines are simple cycle, two-shaft, high-performance en-

gines. They derived from GE TF39 and CF6− 6 aircraft engines, and they

consist of a gas generator and a power turbine. These gas turbines are single

rotor GTs which are aerodynamically coupled with a power turbine. Power

turbine operates at a nominal speed of 3600 rpm, making it ideal for 60Hz

electric generation service. Alternatively, it can also operate efficiently over

a cubic load curve for mechanical drive applications.

Depending on the model, AC is composed of 16 or 17 stages, while the

power turbine can have 2 or 6 stages. AC does not have Inlet Guide Vane

(IGV), but it has the Variable Stator Vane (VSV), i.e. a particular system

that modifies the geometry of the first AC stages in order to allow it to

properly work at any load and speed. LM2500 GTs are usually suitable for

two types of power turbines:

1. a six-stage low speed power turbine, with a nominal speed of 3600 rpm;

2. a two-stage high speed power turbine, with a nominal speed of 6100 rpm

(this power turbine is usually preferred in mechanical drive applica-

tions).

Typical power of these GTs is between 25MW and 33MW .

There are three GTs that belongs to LM2500 family, whose peculiarities

are summarised in table 3.1:

i. LM2500 (see [29]);

ii. LM2500+ (see [30]);

iii. LM2500+G4 (see [31]).
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LM2500 LM2500+ LM2500+G4

Max power [kW ] 25060 30200 35320

Fuel cons.
[

g
kW ·h

]
227 215 214

Heat rate
[

kJ
kW ·h

]
9705 9227 9150

Exhaust gas flow [kg/s] 70.5 85.9 93

Exhaust gas temp. [K] 839 791 822

Turbine speed [rpm] 3600 3600 3600

Thermal efficiency [ ] 36 % 38 % 39 %

Weight [kg] 4700 5250 5250

Table 3.1: LM2500 GT family characteristics.

Moreover, depending on combustion chamber type, LM2500 GTs can be

classified as Singular Annular Chamber (SAC), where there are not limita-

tions on NOx emissions, or Dry Low Emission (DLE), where NOx emissions

are limited to 25 ppm.

This thesis work will focus on a particular two-shaft aero-derivative GT

which belongs to LM2500 family, i.e. LM2500+G4 DLE.
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3.2 GE LM2500+G4 DLE detailed modelling

based on NPSS

Figure 3.5 depicts in a qualitative temperature-entropy diagram the differ-

ence between the ideal and the real thermodynamic cycle of a single-shaft

GT. This thermodynamic cycle is the well-known Brayton cycle. The real

cycle tends to move away from the ideal one because of many non-idealities

such as dissipations, frictions, not ideal combustion, engine ageing or degra-

dation, mechanical losses and so on.

T

S

1

2is
2real

3is 3real

4is

4real

Figure 3.5: Schematic representation of ideal/real Brayton cycle of a single-

shaft GT.

Since every GT model has its own peculiarities, in the past decades many

efforts have been made to develop computational methods for the definition

and the resolution of the very complex non-linear differential equations that

aerodynamically, mechanically and thermodynamically describe the GT en-

gine. National Aeronautics and Space Administration (NASA) has intro-

duced the so-called Numerical Propulsion System Simulation (NPSS), i.e.

an object-oriented, multi-physics, engineering design and simulation envi-

ronment. There are many detailed technical reports about NPSS, see e.g.



3.2 GE LM2500+G4 DLE detailed modelling based on NPSS 73

[62], [49] and [20]. NPSS is a full engine multidisciplinary simulation tool

developed for aerospace industry but also used in oil and gas power industry,

indeed it provides an environment for the analysis and the design of aircraft

propulsion systems, rocket cycles and many other thermodynamic processes.

Actually, NPSS implements and solves all the differential equations that de-

scribe in a detailed and rigorous way the system; for this reason, in this work

NPSS model will be considered as reference.

NPSS is currently managed by a consortium including research institutes

and industrial members. Different licensing scheme are available both for

academic and commercial use. The NPSS software exploited in this work has

been made available by Nuovo Pignone - Baker Hughes, a GE Company and

it provides expected values about the GE LM2500+G4 DLE main physical

quantities.

In order to adapt the average engine model to real conditions it contains

six corrective parameters (CPs) useful to modify the thermodynamic and

flow efficiency respectively of AC, HPT and LPT. Four CPs are relative to

thermodynamic and flow efficiency of AC and HPT, while the other two CPs

are relative to thermodynamic and flow efficiency of LPT. In the next sec-

tions some mathematical models regarding each section of GE LM2500+G4

DLE (presented in paragraph 3.1.1) will be introduced: these models have

been both tuned and validated using NPSS model as a reference. In par-

ticular, the datasets used to tune/validate mathematical models are listed

below:

i. nominal NPSS dataset : this dataset has been obtained using NPSS by

exploring all the feasible operating conditions (different fuel compo-

sitions, delivered power and inlet conditions), always maintaining the

six CPs equal to 1. This dataset has been used during validation phase

in order to figure out the nominal behaviour of the machine;

ii. GG extended NPSS dataset : this dataset has been obtained using

NPSS by exploring all the GG feasible operating conditions; each sin-

gle CP relative to GG has been moved from 0.98 to 1.02 with step
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of 0.01 (i.e., each operating condition has been simulated in 54 = 625

different configurations of CPs). On the contrary the two CPs relative

to LPT have always been kept equal to 1, in turn this dataset ranges

within all the possible configurations of the gas generator maintaining

the nominal model concerning the LPT. This dataset has been used

to validate the proposed models in all the possible configurations of

the GG. The reason why this dataset is significant is that the GG of

this gas turbine can be coupled with different type of LPT, thus it

would be very useful to validate the proposed model with respect to

GG variations and then introduce the LPT as an additive model.

iii. full extended NPSS dataset : this dataset has been obtained using NPSS

by exploring all the feasible operating conditions, and moving each

single CP from 0.98 to 1.02 with step of 0.01. This means that each

operating condition has been simulated in 56 = 15625 different config-

urations of CPs. This massive dataset has been used to validate the

proposed models in all the possible configurations. Figures 3.6 and

3.7, referring to the nomenclature reported in table 3.2, show the per-

centage variations introduced by CPs changes on each quantity with

respect to nominal NPSS dataset. It is worth noticing that GG ex-

tended NPSS dataset is a subset of full extended NPSS dataset, indeed

the former is completely included within the latter;

iv. real trend dataset : some datasets taken from existing LM2500+G4

DLE running sites have been used to validate the proposed models.

Obviously these datasets are very important because they allow the

validation with respect to real data; however these trends contains

only quantity that can be measured by available sensors, thus it is not

trivial to use these datasets to validate the model.
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Figure 3.6: NPSS temperatures percentage deviation: full extended NPSS

dataset versus nominal NPSS dataset.
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Figure 3.7: NPSS flows percentage deviation: full extended NPSS dataset

versus nominal NPSS dataset.
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3.3 A-priori static model of GE LM2500+G4

DLE

In parallel with the technical improvement of GTs, many researchers have

understood the importance of developing a mathematical model able to de-

scribe how the system acts in each operating point. Such a model could

be very useful to estimate quantities that can not be directly measured by

transducers, to provide validation and redundancy of quantities measured

by physical sensors, or to enhance control law that could be based not only

on the direct measurements but also on the knowledge of the plant inter-

nal model that describes from a mathematical point of view the physical

laws on which the system is based on. GTs operating principles and theory

has been widely studied and many handbooks and technical manuals about

this topic have been written (see e.g. [24], [19], [72], [16], [73], [87] and

[32]). Besides, in literature there are many examples of GTs models based

on thermodynamic relationships, both for aero-derivative and heavy duty

GTs (see e.g. [40], [106], [53] and [23]). A common issue in GTs modelling,

as shown in [108], is that the system is very complex and highly non-linear,

thus it is difficult to develop a general method with validity extended to all

the possible operating conditions. For instance, in [55] at first a GT model

is implemented in MATLAB®and Simulink®, then the model is tested and

validated in many different operating and environmental conditions. In the

last years GT control and identification through neural networks has been

proposed (e.g. [107] and [54]). Also GT MPC (Model Predictive Control),

although it is not widely used in industrial applications, has been addressed

by many researchers (see e.g. [80], [17] and [50]).

In this chapter an a-priori static model of the GE LM2500+G4 DLE will

be introduced. Details of this particular aero-derivative GT are described

in paragraph 3.1.1, while figure 3.3 is a picture of this GT. Referring to the

nomenclature reported in table 3.2, and considering the usually available

measurements in typical oil and gas applications, the inputs and outputs

lists for the overall static model are:
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• Inputs: T inAC , pinAC , T outAC , poutAC , LHV , Tfuel, cp,fuel, T
out
HPT , poutHPT ;

• Outputs: W in
AC , T outAC , W in

CC , pinHPT , T inHPT , W in
HPT .

Note that, concerning the static model, T inAC can be considered both as input

and output at the same time. This is due to the fact that in correspondence of

the last AC section thermocouples are always inserted to directly measure the

AC discharge temperature, but this quantity can also be estimated regardless

its measurement by the static model that will be introduced in paragraph

3.3.1. Furthermore, as will be explained in the next paragraphs, flows can

be estimated in two different ways. This features about T inAC and the flows

through the GT will be exploited to improve the estimation accuracy and to

enhance the model performance.

Symbol Unit Definition

pinAC [kPa] AC inlet pressure

T inAC [K] AC inlet temperature

poutAC [kPa] AC outlet pressure

T outAC [K] AC outlet temperature

W in
AC [kg · s−1] AC inlet airflow

Wbleed [kg · s−1] Bleed airflow

W in
CC [kg · s−1] Combustion chamber inlet airflow

Wfuel [kg · s−1] Total fuel flow

W in
HPT [kg · s−1] HPT inlet airflow

W out
HPT [kg · s−1] HPT outlet airflow

cp, cv [J · (K · kg)−1] Isobaric/Isochor heat capacity

γ [ ] Isobaric/Isochor heat capacity ratio

T inHPT [K] First HPT section temperature

pinHPT [kPa] First HPT section pressure
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T outHPT [K] Last HPT section temperature

poutHPT [kPa] Last HPT section pressure

LHV [kJ · kg−1] Fuel lower heating value

NHPT [rpm] HPT rotational speed

NLPT [rpm] LPT rotational speed

ηisAC [ ] Isentropic AC efficiency

ηisHPT [ ] Isentropic HPT efficiency

ηCC [ ] Combustion efficiency

Tfuel [K] Fuel temperature

JGG [kg ·m2] GG inertia

Table 3.2: GE LM2500+G4 DLE main quantities nomenclature

3.3.1 Axial compressor model

The first mathematical model able to describe the behaviour of an axial

compressor was introduced by Moore and Greitzer (see [66] and [67]). In

the past decades many researchers have enhanced this model (see e.g. [13],

[95], [63] [34]); this is a very complete model and it allows the simulation

of AC behaviour even when it operates near instability regions (i.e. stall,

surge or choking). However, Moore-Greitzer model requires an accurate

identification of many machine-dependent parameters, thus it is particularly

linked to the specific compressor under analysis. In this work an alternative

model is used, indeed AC modelling is split in two separated modules: the

first one provides a calculation of the flow through the inlet stage of the AC,

while the second addresses the AC discharge temperature calculation.

Table 3.3 shows the inputs and the outputs of the proposed AC a-priori

static model.
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Inputs Outputs

T inAC W in
AC

pinAC T outAC

poutAC

Table 3.3: Inputs and outputs of the proposed AC model.

Axial compressor inlet airflow

The Law of the Ellipse, which is usually referred to as Stodola’s Law, provides

a simple method for calculating the airflow through a multi-stage AC (more

details can be retrieved in [39] and [37]). Obviously this is a highly non-linear

phenomenon and it can describe the AC behaviour only within nominal

operating range, thus it is not suitable to model the AC flow when stall,

surge or choking occur. Equation (3.1) is an approximation of the Law of

the Ellipse which can be exploited to compute AC inlet flow

W in
AC = cAC ·

pinAC√
T inAC

·

√
1−

(
pinAC
poutAC

)2

, (3.1)

where cAC is a variable coefficient that assumes different values in different

operating conditions. Several NPSS simulations have been performed to

find out a map that describes how it changes when the inlet AC conditions

and the GG speed change. In particular nominal NPSS dataset has been

exploited, and it has underlined that inlet pressure pinAC does not affect too

much this coefficient, thus the map showed in figure 3.8 is a family of curves

that describes how cAC changes in function of T inAC and NHPT .

Note that one of the reason why coefficient CAC is not constant is that

the AC under analysis can change its geometry thanks to VSV (Variable

Stator Vanes), whose angle is scheduled in function of NHPT , pinAC and T inAC .

Since VSV are controlled in open-loop mode and their position depends only

on NHPT , pinAC and T inAC , it is possible to include their effects on the global

system inside the static model; in this way, VSV modelling is not required,
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Figure 3.8: AC flow coefficient map.

indeed it is automatically considered by CAC map.

Axial compressor discharge temperature

Air temperature obviously increases between AC suction and discharge.

Considering an ideal isentropic compression, the relation between suction

and discharge thermodynamic properties is given by equation (3.2).

T outAC,is

T inAC,is
=

(
poutAC

pinAC

) γair−1

γair

(3.2)

where γair is defined as the isobaric and isochor heat capacity ratio relative to

air (thus it is known and almost constant) and the subscript “is” states that

the quantity is referred to an ideal isentropic transformation. The previous

equation can be generalised introducing the isentropic efficiency ηAC,is. As

shown in figure 3.5, the temperature at the end of AC in real cycle is greater

than the temperature at the same section in the ideal cycle. In turn, it is

possible to define the isentropic AC efficiency ηAC,is as

ηAC,is =
T outAC,is − T inAC
T outAC − T inAC

. (3.3)
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By merging and manipulating equations (3.2) and (3.3), it is immediate to

obtain

T outAC

T inAC
= 1 +

1

ηAC,is

[(
poutAC

pinAC

) γair−1

γair

− 1

]
. (3.4)

Starting from known inlet conditions, equation (3.4) describes the rela-

tionship between temperature and pressure at AC discharge. This means

that poutAC and T outAC are strictly connected, thus it is sufficient to measure

only one of them to compute the other one.

Isentropic efficiency ηAC,is is not constant. Even without considering

efficiency degradation due to ageing, it is necessary to know how it changes in

different operating conditions. Once again, nominal NPSS dataset has been

exploited in order to find out a map that describes how it varies with T inAC

and NHPT . As seen for cAC , inlet pressure does not affect this coefficient,

thus the map can be simplified (figure 3.9).

Note that this map takes as input the corrected axial compressor airflow

W in
AC,c, defined as

W in
AC,c = W in

AC ·

√
T inAC,nom
T inAC

· pinAC
pinAC,nom

,

where T inAC,nom and pinAC,nom are the ambient nominal value of temperature

and pressure, respectively equal to 288.15K and 1013 kPa. Corrected air-

flow is a very useful normalisation that allows to consider all the possible

combinations of flow, temperature and pressure in a single quantity.

3.3.2 Combustion chamber model

In literature there are many examples of combustion models that were intro-

duced to describe the gas-dynamics and the combustion process of particular

GTs (see e.g. [7], [101] and [82]). Other models, such as the ones proposed

in [64], [18], [100] and [8], are aimed to control combustion instabilities (e.g.

acoustic pressure oscillations) and harmful emissions (mainly NOx and CO

emissions). These models are very specific and they have been introduced
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Figure 3.9: AC isentropic efficiency map.

to face certain well defined issues connected to combustion; the objective

of this work is to achieve a global energetic characterisation of the combus-

tion chamber, thus it is not required a detailed model able to describe the

thermodynamic and aerodynamic behaviour of the whole system.

Table 3.4 shows the inputs and the outputs of the combustion chamber

model considered in this work. Fuel isobaric heat capacity needs to be known

in order to produce an energy balance based on real fuel chemical properties.

Unlike what happens in AC, the flow through the combustion chamber is not

composed only by air, indeed it is a mixture; as shown in [14], isobaric heat

capacity of a mixture is equal to a linear combination of the single isobaric

heat capacities, weighted by the mole fractions of each gas.

Combustion chamber airflow

In the particular aero-derivative gas turbine under analysis, before entering

the combustion chamber there is a bleed valve that is used as actuator to

control the GT. Thanks to this valve it is possible to avoid GT unstable

behaviour, indeed it can move the AC operating point away from surge

region of the characteristic compressor map (see e.g. figure 1.4). Clearly



84 Gas Turbine Modelling and Model-Based Estimation

Inputs Outputs

W in
AC W in

CC

poutAC pinHPT

T outAC T inHPT

LHV

Tfuel

cp,fuel

Table 3.4: Inputs and outputs of the proposed combustion chamber model.

this kind of control safeguards integrity of the equipment, but it wastes

energy, indeed a part of high temperature and pressure compressed air is

blown out. In practice, combustion chamber inlet airflow W in
CC can be easily

computed by subtracting the total bled air from the AC inlet airflow.

Combustion chamber pressure drop

Because of non-idealities, there is a pressure drop between the first and

the last stage of combustion chamber. This is due to frictions, dissipations

and turbulent flows. In first approximation the combustion chamber can be

considered as an orifice, thus this pressure drop can be evaluated taking into

account theory presented in section 1.1. The mass flow through an orifice can

be described by equation (1.1). Considering the perfect gas law ρ = p/RT ,

it is easy to develop equation (1.1) and obtain the relationship

∆pCC = poutAC − pinHPT ' kp,drop ·
W in
CC

2 · T outAC

poutAC

. (3.5)

Once again, the coefficient kp,drop is computed thanks to a map shown

in figure 3.10.
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Combustion efficiency

From a thermodynamic point of view what happens during the combus-

tion can be seen as an energy exchange between the fuel and the total flow

through the combustion chamber. The chemical energy stored in the fuel

is totally described by LHV (Lower Heating Value), which expresses the

energy released by the unit mass of fuel after a complete combustion. In

turn, ideal power introduced in the system thanks to the fuel is equal to

Pideal = LHV ·Wfuel. (3.6)

The previous equation holds the true only in the ideal case. Real power

transferred from fuel to the system is lower than Pideal, and this is mainly

due to turbulence, frictions and mixing. This phenomenon can be described

introducing the combustion efficiency ηCC

Preal = ηCC · LHV ·Wfuel. (3.7)

This efficiency is characterised by a map similar to the one showed in

figure 3.9. Considering the air and fuel isobaric specific heat capacity (re-

spectively cp,air and cp,fuel), the power balance can be expressed as follows
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ηCC · LHV ·Wfuel = W in
CC · (T inHPT − T outAC ) · cp,air+

+Wfuel · (T inHPT − Tfuel) · cp,fuel
(3.8)

Equation (3.8) considers air and fuel as two separated systems that gain

energy. By manipulating equation (3.8) it is immediate to find out a rela-

tionship to calculate the temperature T inHPT

T inHPT =
LHV · ηCC + Tfuel · cp,fuel + T outAC ·AFR · cp,air

cp,air ·AFR+ cp,fuel
, (3.9)

where AFR (Air-to-Fuel Ratio) is defined as

AFR =
W in
CC

Wfuel
.

Note that introducing the assumption T outAC = Tfuel equation (3.9) can

be drastically simplified

T inHPT = T outAC +
LHV · ηCC

cp,gas · [1 +AFR]
. (3.10)

Where cp,gas, as showed in [14], is the weighted sum of cp,air and cp,fuel

cp,gas =
Wfuel · cp,fuel +W in

CC · cp,air
Wfuel +W in

CC

.

The assumption T outAC = Tfuel is unrealistic, however equations (3.9) and

(3.10) usually return very similar values: this is due to the fact that W in
CC �

Wfuel, thus the relative weight of Tfuel is negligible with respect to the

relative weight of T outAC .

3.3.3 High Pressure Turbine model

From a thermodynamic point of view AC and HPT are very similar: the

former compresses air, the latter expands combusted gases. Thus, it is rea-

sonable to compute HPT inlet airflow by introducing an equation very similar

to (3.1)

W in
HPT = cHPT ·

pinHPT√
T inHPT

·

√
1−

(
poutHPT

pinHPT

)2

. (3.11)
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As done for AC, even concerning HPT it is possible to define an isentropic

efficiency

ηHPT,is =
T inHPT − T outHPT

T inHPT − T outHPT,is

. (3.12)

Equation (3.2) can be written also regarding HPT

T outHPT,is

T inHPT,is
=

(
poutHPT

pinHPT

) γgas−1

γgas

. (3.13)

Merging equations (3.12) and (3.13) it comes out

T outHPT

T inHPT
= 1− ηHPT,is

[
1−

(
poutHPT

pinHPT

) γgas−1

γgas

]
. (3.14)

Inputs and outputs of a-priori static HPT model are summarised in table

3.5.

Inputs Outputs

T outHPT W in
HPT

pinHPT T inHPT

poutHPT

γgas

Table 3.5: Inputs and outputs of the proposed HPT model.

It is important notice that equations (3.14) and (3.9) are two indepen-

dent methods to calculate T inHPT : in order to discern between these two

calculations, T inHPT computed exploiting equation (3.14) will be referred to

as backward, while the one derived from equation (3.9) as forward.
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3.4 GE LM2500+G4 DLE: Kalman Filter-based

model

Simulations have shown that the a-priori static model introduced in section

3.3 is able to match and reproduce the nominal NPSS dataset (i.e. NPSS

dataset relative to CPs equal to 1). This is not a surprising result, indeed

this model has been tuned exploiting nominal NPSS dataset. On the other

hand, for the same reason, a-priori static model leads to significant errors

with GG extended NPSS dataset and full extended NPSS dataset, and above

all with real trend dataset, where non-idealities of real plants prevent it from

providing correct estimations of GT quantities. By definition, a-priori static

model can not adapt itself to match a dataset that does not fit nominal NPSS

expected calculations. By way of example, figure 3.11 shows the percentage

error of the a-priori static estimation of T inHPT with respect to full extended

NPSS dataset.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

T
HPT
in  est err. [%]

0

0.005

0.01

0.015

Figure 3.11: A-priori static T inHPT percentage estimation error with respect

to full extended NPSS dataset.

Comparing figure 3.11 and 3.6b it is clear that the error of the a-priori

static estimation is much greater than the variability introduced by the CPs,

thus the a-priori static model is not suitable to estimate the quantity of a

system that is different from the nominal one.

Even if this first a-priori static model is not suitable as online GT estima-
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tion system, it is a good starting point to develop a more general GT model,

capable of catching potential deviation of the real system with respect to

the nominal one. A-priori static GT model is strongly based on physical re-

lationships, thus it is just necessary to correct the first estimations provided

by this model trying to move the mathematical model towards real data.

Kalman Filter (KF), introduced in 1960 by Rudolf Kalman [51], is a

powerful mathematical approach to target this purpose. A complete intro-

duction to KF theory is available in appendix C. KF weights measurements

equations with dynamic model equations and it continuously provides up-

dated state variables estimations. The performance of KF strongly depends

on the quality of the model, and optimality is achieved when the actual mea-

surement process (calibration error aside) behaves as a linear system subject

to white Gaussian noise. In practice, estimations optimality is guaranteed

under very restrictive conditions. These assumptions, which are reasonable

in many applications, may turn out naive when dealing with very complex

system as GTs actually are.

In literature, many other works apply KF to similar turbomachinery

applications, even if they do not address exactly the same problem. For the

time being, KFs have been widely used in the turbine engine community for

health monitoring purpose, i.e. for fault detection and identification, false

alarms and isolation (see e.g. [47], [77], [26], [15]). In this framework, KF

is implemented to solve a different issue, i.e. the estimate of all the GT

quantities, even the ones that usually can not be directly measured.

Since GTs are highly non-linear systems, in order to turn around this

limitation it is necessary to use an Extended Kalman Filter (EKF), i.e. an

extension of classical KF oriented to non-linear systems. Non-linearities can

be located in the process model or in the measurement equations, EKF in

practice applies a classic KF to an approximated model obtained by local

linearisation of non-linear global model.

Obviously the final results are strictly dependent on the numerical choices

relative to covariance matrices P 0, Q and R, defined as follows (deeper ex-

planations about these matrices and their mathematical and physical mean-
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ing can be found in appendix C):

• P 0 is the covariance matrix of initial state variables estimation;

• Q is the covariance matrix relative to process equations;

• R is the covariance matrix relative to measurement equations.

Figure 3.12 represents a high level scheme of the KF based GT model

that will be analysed in-depth in the next paragraphs.
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Figure 3.12: Schematic of GT estimation based on Kalman Filter.

Note that the proposed model is a discrete-time model with scan time

Ts, where KF is fed both with measurements inputs and static estimations

provided by a-priori static model, while KF final estimations are used to-

gether with measurements inputs to feed the subsequent static estimation
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step. Clearly the lower is Ts the more accurate will be the final KF estima-

tions; however, considering the very high mechanical and thermal inertias of

the studied GT, it is not strictly required to have a Ts as small as possible.

This configuration creates a closed-loop arrangement, where the outputs of

each block are inputs of the other one and vice versa.

Moreover, a-priori static model represented in figure 3.12 is slightly dif-

ferent from the one described in section 3.3, indeed AC model takes as input

two additional inputs ϑWAC and ϑeffAC . These variables are used to make the

AC static model adaptive; as a matter of fact they modify and generalise

equations (3.1) and (3.4) in this way

W in
AC = cAC · ϑWAC ·

pinAC√
T inAC

·

√
1−

(
pinAC
poutAC

)2

; (3.15)

T outAC

T inAC
= 1 +

1

ηAC,is · ϑeffAC

[(
poutAC

pinAC

) γair−1

γair

− 1

]
. (3.16)

These variables allow the static model to adapt itself to observed real

system. These additional coefficients can be computed since T outAC and W in
AC

can be calculated in two independent ways.

• T outAC is estimated by a-priori static model and it is also directly mea-

sured by thermocouples;

• W in
AC is estimated by a-priori static model exploiting Stodola’s Law, but

it is also involved in the flow conservation law (air is bled in many dif-

ferent sections, these airflows are computed thanks to dedicated maps).

The errors between the two values respectively of T outAC and W in
AC are the

inputs of two integrators that are used to compute the numerical value of

ϑWAC and ϑeffAC . These are very simple PID controllers (Proportional-Integral-

Derivative controllers), where the proportional and the derivative gains are

set equal to 0. Thanks to these two loops it is possible to adjust the values

of ϑWAC and ϑeffAC until the outputs of equations (3.15) and (3.16) are equal

respectively to the value of flow computed with the flow balance and the

value of temperature measured by dedicated sensors.
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Note that in figure 3.12 the two integrators are represented as continuous-

time integrators; actually this is only a qualitative diagram of the proposed

method, in practice discrete-time integrators have been implemented.

3.4.1 Kalman filter definition

Kalman filter can be implemented in many different ways. In particular to

define the whole KF structure it is necessary to choose suitable state vari-

ables and to specify a proper dynamic model and a complete measurement

equations set.

Although several KF structures have been tested and evaluated during

this thesis work, in this chapter only the most effective and accurate version

will be presented.

Kalman filter state variables

KF state variables vector xk is composed of the variables that have to be

estimated step after step by exploiting both the knowledge of the process

equations that describe how the system evolves and the measurement equa-

tions.

In this particular case KF state is composed of 8 variables:

i. NHPT,k - HPT rotational speed;

ii. αHPT,k - HPT rotational acceleration;

iii. T inAC,k - AC inlet temperature;

iv. T outAC,k - AC outlet temperature;

v. T inHPT,k - HPT inlet temperature;

vi. T outHPT,k - HPT outlet temperature;

vii. ϑWHPT,k - HPT flow efficiency;

viii. ϑeffHPT,k - HPT thermodynamic efficiency.
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Where the subscript “k” states that the quantity is relative to k-th dis-

crete step. The exact meaning of the last two variables will be explained in

detail in the next paragraphs.

Many of these variables are not really unknown quantities (NHPT , αHPT ,

T inAC and T outHPT are measured by dedicated sensors)2, but they have been in-

cluded within KF state for mathematical convenience; however, by a proper

definition of matrices Q and R, it is possible to force KF just to smooth

these variables in order to avoid high-frequency noise without introducing

great deviations from the measured or calculated values.

It is fair to say that from a practical point of view the main interest is

focused on T inHPT . Many sensitive mechanical parts, such as stator and rotor

HPT blades of AC, HPT and LPT, are exposed to very high temperature,

and the most restrictive situation is relative to first stage HPT blades. GT

governor3 has to meet many requirements, such as reference speed tracking,

limitation of harmful emissions and AC stall and surge avoidance: in addition

there are other control logics that prevent GT from operating in unsafe or

unhealthy conditions. T inHPT is the real limitation to GT operative range,

indeed this temperature has to be lower than a specific threshold in order to

avoid GT residual life drastic reduction or even serious mechanical damages.

Since T inHPT can not be directly measured by sensors, it is clear that an

accurate estimation of this quantity would be very appreciated to achieve

good control performances and reduce safety margins.

2 HPT rotational acceleration is not directly measured, indeed it is calculated as nu-

merical derivative of NHPT . Starting from a discrete signal uk (sample time T ) the

derivative calculated as dk =
uk−uk−1

T
leads to a very noisy signal because of the am-

plification of high frequencies. To avoid this issue there are many numerical approach

to achieve a smoother derivative. In this work the numerical derivative is low-passed by

applying the following method

dk =
1

2

(
uk − uk−2

2T
+
uk−1 − uk−3

2T

)
=
uk + uk−1 − uk−2 + uk−3

4T
. (3.17)

3 GT governor means the set of control laws and procedures, both digital and analogic,

that are implemented in order to regulate and control the GT steady-state behaviour and

dynamical response.
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State equations

Always referring to notation of appendix C, the dynamical evolution of the

state variables is described by matrix Ak, indeed the proposed process dy-

namical model is very simple and linear.



NHPT,k+1

αHPT,k+1

T inAC,k+1

T outAC,k+1

T inHPT,k+1

T outHPT,k+1

ϑWHPT,k+1

ϑeffHPT,k+1


︸ ︷︷ ︸

xk+1

=



1 Ts 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Ak



NHPT,k

αHPT,k

T inAC,k

T outAC,k

T inHPT,k

T outHPT,k

ϑWHPT,k

ϑeffHPT,k


︸ ︷︷ ︸

xk

+



wNHPTk

wαHPTk

w
T inAC
k

w
T outAC

k

w
T inHPT
k

w
T outHPT

k

w
ϑWHPT
k

w
ϑeffHPT

k


︸ ︷︷ ︸

wk

where wk is an AWGN vector with covariance matrix Q that describes

the uncertainties on the process model. For the sake of simplicity it has

been preferred to use a trivial process model, in which the only “physical

relationship” is the connection between HPT rotational speed and accelera-

tions (first row in matrix Ak). In all the other equations each state variable

remains equal to itself, except for the uncertainty introduced by the additive

noise: this leads to a very flexible model in which the dynamical evolution

of the estimations is guaranteed by measurement equations.

Measurement equations

Before defining measurement equations it is necessary to describe in detail

the last two state variables, i.e. ϑWHPT and ϑeffHPT defined in bullets (vii) and

(viii). These quantities are very similar to ϑWAC and ϑeffAC , indeed equations

(3.11) and (3.14) can be updated and generalised as follows
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W in
HPT = cHPT · ϑWHPT ·

pinHPT√
T inHPT

·

√
1−

(
poutHPT

pinHPT

)2

;

T outHPT

T inHPT
= 1− ηHPT,is · ϑeffHPT

[
1−

(
poutHPT

pinHPT

) γgas−1

γgas

]
.

By consequence, it is possible to define two virtual measurement equations,

i.e. measurements that are not actually provided by sensors but are com-

puted as combination of other quantities which are related to ϑWHPT and

ϑeffHPT .

ȲWHPT,k = hWHPT (xk) =

√
T inHPT,k

ϑWHPT,k
=

= cHPT ·
p̄inHPT,k
W in
HPT,k

·

√√√√1−

(
p̄outHPT,k

p̄inHPT,k

)2
(3.18)

Ȳ effHPT,k = heffHPT (xk) =
T inHPT,k − T outHPT,k

T inHPT,k · ϑ
eff
HPT,k

=

= ηHPT,is ·

[
1−

( p̄outHPT,k

p̄inHPT,k

) γgas−1

γgas

] (3.19)

where the bar over the variable denotes that the value is directly measured

by sensors or obtained by combination of direct measurements.

Furthermore, the global power balance concerning the whole GG can

be addressed by introducing a third virtual measurement equation. This

is a fundamental equation in the proposed KF, indeed it describes from a

dynamical point of view how the thermodynamic quantities influence the

power balance of the GG. In practice, this additional virtual measurement

equation defines a link between thermodynamic and mechanical quantities,

thus it is essential to keep a global view on the system. This means that

this equation allows the KF to find out the optimal estimations of the in-

volved variables, taking into account both direct measurements with their
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own uncertainties and virtual measurement that describe the global shaft

power balance. Therefore, the third virtual measurement equation is

Ȳ GGk = hGG(xk) =

rpm2

s to rad
2

s︷ ︸︸ ︷(
π

30

)2

N̄HPT,k · ᾱHPT,k =

=
W in
HPT,k · cp,gas · (T inHPT,k − T outHPT,k)

JGG
+

−
W in
AC,k · cp,air · (T outAC,k − T inAC,k)

ηm · JGG

(3.20)

where JGG is the value of the whole GG inertia, while ηm is the AC mechan-

ical efficiency. As described in [102], delivered/absorbed power is propor-

tional to flow and temperature jump. AC and HPT are on the same shaft

mechanically connected, thus equation (3.20) in practice states that the GG

whole acceleration/deceleration is proportional to the difference between the

HPT delivered power and the AC absorbed power. Reasonably, if the HPT

delivered power is greater than AC absorbed power then NHPT will increase,

on the contrary if the HPT delivered power is lower than AC absorbed power

then NHPT will decrease.

Finally, measurement equations can be written as



N̄HPT,k

Ȳ GGk

T̄ outAC,k

T̄ inHPT,k

T̄ outHPT,k

T̄ inAC,k

ȲWHPT,k

Ȳ effHPT,k


=



NHPT,k

hGG(xk)

T outAC,k

T inHPT,k

T outHPT,k

T inAC,k

hWHPT (xk)

heffHPT (xk)


︸ ︷︷ ︸

h(xk)

+



ηN̄HPTk

ηȲ
GG

k

η
T̄ outAC

k

η
T̄ inHPT
k

η
T̄ outHPT

k

η
T̄ inAC
k

η
ȲWHPT
k

η
Ȳ effHPT

k


︸ ︷︷ ︸

ηk

(3.21)

where T̄ inHPT,k is the backward value of inlet HPT temperature provided by

equation (3.14) , thus it is considered to be retrieved from a virtual sensor.
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The uncertainties on measurement equations are described by ηk, which is

an AWGN vector with covariance matrix R. Note that h(xk) is a vector

composed of 8 measurement equations, some of which are non-linear with

respect to state variables xk.

Since equations (3.21) are not linear, as explained in appendix C, it is

necessary to linearise h(xk) in order to use EKF.

Ck =
∂h(xk)

∂xk
=



1 0 0 0 0 0 0 0

0 0 c2,3k c2,4k c2,5k c2,6k 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 c7,5k 0 c7,7k 0

0 0 0 0 c8,5k c8,6k 0 c8,8k


(3.22)

where the matrix elements are analytically calculated by evaluating in cor-

respondence of the last KF estimations these quantities:

• c2,3k =
W in
AC,k·cp,air
ηm·JGG ;

• c2,4k = −W
in
AC,k·cp,air
ηm·JGG ;

• c2,5k =
W in
HPT,k·cp,gas

JGG
;

• c2,6k = −W
in
HPT,k·cp,gas

JGG
;

• c7,5k = 1

2
√
T inHPT,k·ϑ

W
HPT,k

;

• c7,7k =
−
√
T inHPT,k

ϑWHPT,k
;

• c8,5k =
T outHPT,k

ϑeffHPT,k·(T
in
HPT,k)2

;

• c8,6k = −1

T inHPT,k·ϑ
eff
HPT,k

;

• c8,8k =
T outHPT,k−T

in
HPT,k

T inHPT,k·(ϑ
eff
HPT,k)2

.
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In this way, even if the model is linearised, step by step it is approximated

around the last estimation, thus it is reasonable to suppose that in a certain

neighbourhood of the last estimation this approximation is acceptable.

3.4.2 Kalman Filter results

In this section the results relative to the Kalman filter proposed in 3.4.1 are

reported and commented. The proposed Kalman filter has been validated

both with respect to GG extended NPSS dataset and with respect to full

extended NPSS dataset.

Kalman Filter results with respect to GG extended NPSS dataset

Figures 3.13, 3.14 and 3.15 represent respectively the percentage estimation

error relative to T outAC , T outHPT and T inHPT with respect to GG extended NPSS

dataset. Figure 3.13 clearly shows that the error on T outAC is negligible, and

this is due to the fact that T outAC is either measured and estimated. The error

relative to T outHPT of 3.14 is slightly greater, but is still acceptable.
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Figure 3.13: KF T outAC percentage estimation error with respect to GG ex-

tended NPSS dataset.
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Figure 3.14: KF T outHPT percentage estimation error with respect to GG ex-

tended NPSS dataset.

Figure 3.15 is the most important, indeed it represents the estimation

error of T inHPT , that is the temperature that can not be measured in real

plants. The error distribution is nearly Gaussian with a mean value µ '
−0.3% and a standard deviation σ ' 0.15%.
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Figure 3.15: KF T inHPT percentage estimation error with respect to GG ex-

tended NPSS dataset.

Figures 3.16, 3.17 and 3.18 represent the percentage error of the flows

estimations, always with respect to GG extended NPSS dataset. The three
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distributions are quite similar and they are very close to Gaussian distribu-

tions. It is worth noticing that the GG extended NPSS dataset takes into

account only the gas generator. Nevertheless, before introducing the LPT

variability, it is important to be sure that the KF guarantees good results

even in this simplified case.
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Figure 3.16: KF W in
AC percentage estimation error with respect to GG ex-

tended NPSS dataset.
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Figure 3.17: KF W in
HPT percentage estimation error with respect to GG

extended NPSS dataset.
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Figure 3.18: KF W in
CC percentage estimation error with respect to GG ex-

tended NPSS dataset.

Kalman Filter results with respect to full extended NPSS dataset

In this paragraph the percentage errors relative to temperatures and flows

of the Kalman filter with respect to the full extended NPSS dataset are

reported. These results are more significant, indeed they show how the

proposed estimation algorithm works considering a dataset in which all the

six CPs change. In particular it can be noticed that the percentage errors

are quite lower with respect to the ones depicted in figures 3.6 and 3.7. This

means that the KF is able to compensate the variation introduced by the

changing of CPs, thus it is able to adapt itself to the particular model under

analysis.

In figures 3.19, 3.20, 3.22, 3.23 and 3.24 the error distribution is clearly

composed of the sum of five Gaussian distributions: this is due to the fact

that the algorithm tries to evaluate the modification introduced by the LPT

CP of the relative quantities, but it is not able to totally compensate it.

Only figure 3.21 is characterised by a single Gaussian distribution with a

mean value µ ' −0.3% and a standard deviation σ ' 0.2%, and this is due

to the fact that there is not a CP that directly affects T inHPT , thus the global

effect on this quantity is the sum of the single effect that results in a single

Gaussian distribution. Note that the error distributions in figures 3.15 and
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3.21 are comparable; considering that T inHPT is the most critical quantity this

is a very appreciable feature, indeed it states that the proposed KF behaves

similarly with respect to GG extended NPSS dataset and full extended NPSS

dataset.
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Figure 3.19: KF T outAC percentage estimation error with respect to full ex-

tended NPSS dataset.
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Figure 3.20: KF T outHPT percentage estimation error with respect to full ex-

tended NPSS dataset.
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Figure 3.21: KF T inHPT percentage estimation error with respect to full ex-

tended NPSS dataset.
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Figure 3.22: KF W in
AC percentage estimation error with respect to full ex-

tended NPSS dataset.
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Figure 3.23: KF W in
HPT percentage estimation error with respect to full

extended NPSS dataset.
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Figure 3.24: KF W in
CC percentage estimation error with respect to full ex-

tended NPSS dataset.
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Finally, it is immediate to notice that errors on flows estimations are

definitely greater with respect to the errors on temperatures estimations; this

is due to the fact that there are not suitable measurements that make the

proposed model directly aware about flows deviations from nominal values,

thus it is very complex to reduce these errors.

3.5 Kalman Filter LHV estimation

KF model estimation introduced in section 3.4 does not rely on equation

(3.9), indeed it exploits only the “backward” estimation of T inHPT provided

by equation (3.14). This feature of the KF can be exploited to allow the

estimation of an additional fundamental quantity, i.e. LHV.

LHV is a property of a fuel, and it is defined as the amount of heat

released by combusting a unit mass of fuel; thus, this quantity is needed to

characterised the fuel from an energetic point of view. LHV is very important

to control the GT, indeed its knowledge is required in order to compute

the exact quantity of fuel to be injected in combustion chamber. In fact

GT governor at first considers the nominal value LHV nom to compute the

normalised fuel request, then the actual fuel request is calculated multiplying

by the ratio LHV nom/LHV meas; if LHV meas > LHV nom it means that the

unit mass of fuel “contains” more energy, thus it is sufficient to inject a lower

fuel flow, on the contrary if LHV meas < LHV nom a greater quantity of fuel

is required.

By inverting equation (3.9) it is easy to achieve an estimation of LHV

based on the estimation of T inHPT provided by KF.

ˆLHV =
1

ηCC

[
T inHPT,KF ·

(
cp,airAFR+ cp,fuel

)
+

− T̄fuel · cp,fuel − T outAC,KF ·AFR · cp,air
] (3.23)

Where the bar over the variable states again that the quantity is directly

measured, while the additional subscript “KF” states that the quantity is

the estimation provided by KF.
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The introduction of LHV estimation is very useful from two points of

view:

i. As explained in the previous sections an accurate knowledge of T inHPT

and LHV is fundamental to control the GT. T inHPT can not be mea-

sured and it needs to be estimated, while LHV is usually measured

by a gas chromatograph, that is a very complex and expensive trans-

ducer. This estimation method of LHV can be seen as a virtual sensor

able to work in parallel with the physical sensor (or even substitute it).

This soft sensor would bring many benefits, indeed it would increase

the operability and the reliability of the system, reducing at the same

time the total cost and instrumentation complexity;

ii. Concerning GG extended NPSS dataset and full extended NPSS dataset

both LHV and T inHPT numerical values are available, thus it is possible

to define an estimation error for both of them. In real trend datasets

the measured value of T inHPT is not available, thus it is necessary to

find out another index to evaluate the goodness of the method. LHV

is a perfect quantity to do this, indeed it is almost always available

on aero-derivative GTs and it is directly connected to T inHPT , thus it

is reasonable to suppose that if LHV estimation is accurate then also

the T inHPT estimation will be acceptable (even if it is not possible to

directly evaluate it).

3.5.1 Kalman Filter LHV estimation: results

Kalman Filter LHV estimation results with respect to GG ex-

tended NPSS dataset

Figure 3.25 represents the LHV percentage estimation error relative to GG

extended NPSS dataset. The error distribution is almost Gaussian and it

is not biased (µ ' 0%, σ ' 0.5%). Standing from equation (3.23) it is

clear that the estimation of LHV is strictly connected with the estimation

of T inHPT : the reason why the standard deviation of the distribution in figure
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3.25 is significantly greater than the standard deviation of the distribution

in figure 3.15 is that equation (3.23) depends also on ηCC , thus it is much

more affected by the GG CPs.
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Figure 3.25: KF percentage error on LHV estimation with respect to GG

extended NPSS dataset.

Kalman Filter LHV estimation results with respect to full ex-

tended NPSS dataset

Figure 3.26 represents the LHV percentage estimation error relative to full

extended NPSS dataset. Once again, the distribution of figure 3.26 seems

to be the sum of several nearly-Gaussian distributions. The motivation, as

mentioned in paragraph 3.4.2, is that the proposed model-based on KF is

not able to follow the variations introduced by the CPs relative to LPT: this

means that KF is almost blind with respect to variations of LPT model, thus

the more it varies the more the error will grow.
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Figure 3.26: KF percentage error on LHV estimation with respect to full

extended NPSS dataset.

Kalman Filter LHV estimation results with respect to real trend

dataset

Figure 3.27 and 3.28 represent the LHV percentage estimation error relative

to six real trend datasets. In these six different examples the errors have

different mean values, and this is due to the fact that each single plant

has its own characteristics that should be taken into account to compensate

the particular mean error. Nevertheless, all the tests on real data have

underlined a periodic component on the percentage error with period Te '
1440 minutes, which is surprisingly near to 1 day. Actually, this can be

easily explained considering that all the atmospheric phenomena and weather

quantities have a periodicity equal to 1 day. For example air humidity has

this periodic component and it is not considered in the proposed algorithm

even if it affects the GT response: this is the reason why the error has always

this specific harmonic component.
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(a) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 1).
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(b) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 2).
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(c) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 3).

Figure 3.27: LHV estimation percentage errors (real trend datasets, 1Step

corresponds to 1minute).
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(a) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 4).

0 1000 2000 3000 4000 5000
Step #

-6

-5

-4

-3

-2

LH
V

 e
st

. e
rr

. [
%

]

(b) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 5).
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(c) LHV estimation error with respect to gas chromatograph measurements (real

trend dataset 6).

Figure 3.28: LHV estimation percentage errors (real trend datasets, 1Step

corresponds to 1minute).
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3.6 Results analysis and conclusions

In this chapter a suitable mathematical model of the aero-derivative twin-

shaft gas turbine GE LM2500+G4 DLE has been proposed. In particular,

the gas generator of this GT has been modelled introducing an iterative

double-step method:

1. the first step is based on generalised maps and thermodynamic laws

that allow an a-priori static estimation of flows, temperatures and pres-

sures of each GG section;

2. the second step provides dynamic estimations based on a Kalman Filter

that corrects the a-priori estimations exploiting all available measure-

ments and the thermodynamic/mechanical equilibrium of the system.

The model has been trained and validated with respect to several datasets

obtained exploiting NPSS. Moreover, concerning the estimation of LHV ,

also real trend datasets have been used to validate the GT mathematical

model.

The main results can be summarised as follows:

i. a-priori static model is able to reproduce the nominal NPSS dataset,

but it is characterised by large inaccuracies when the system moves far

away from the nominal one;

ii. the introduction of the second step based on KF allows the compen-

sation of many non-idealities of the system, above all regarding the

estimation of T inHPT . Figure 3.21 shows that the error with respect to

full extended NPSS datased has a Gaussian distribution with maximum

percentage value lower the 1%;

iii. in order to reduce installation costs, flow transducers are not available

in the GT under analysis. In turn, there are not direct measurements

that allow the reduction of the error on flows estimation, and this is

the reason why flows estimations are characterised by greater errors.
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In view of the foregoing, the proposed model represents a comprehensive

method to describe the behaviour of the GT under analysis in all the rea-

sonable operating conditions, both in steady state and transient conditions.

This mathematical model can be used as soft sensor able to provide in-

direct measurement of LHV . This soft sensor has been validated also with

respect to real trend datasets, and results have shown that the estimation

error is composed of a systematic and a periodic component of 24 hours.

The former is due to modelling inaccuracies, while the second is linked to

the oscillation of meteorological quantities such as atmospheric humidity.

The goodness of the results paves the way for a wider field of application

of this approach. As mentioned previously, the immediate use of such a

model is as soft sensor to achieve indirect measurement of all the relevant

quantities that characterise the GT operating point. Concerning the usu-

ally unavailable measurements, this would lead to an increased awareness

about the whole system; among many unmeasured quantities, an accurate

estimation of T inHPT allows a more effective control of the machine, reducing

at the same time the amplitude of the margin needed to assure the physical

integrity of the system. Moreover, this soft sensor could also be used to

reduce the installation cost by estimating other quantities (such as LHV )

that are normally measured by expensive, bulk and invasive sensors that

generally need to be physically redounded. A second field of application

of this estimation method is the offline prediction of the GT performances:

this would guarantee a realistic evaluation of the GT response under specific

conditions without relying on a real running machine.

Finally, a deep knowledge about the system can help in estimating the

ageing and the physical decay of each engine component. Indeed, the aug-

mented knowledge about all the GT quantities can be exploited also to feed

proper algorithms to estimate the residual life of the system. An estimation

of the residual life closer to reality can be used to avoid premature and need-

less maintenance operations that on the contrary would be performed only

when strictly required.



Chapter 4

Conclusions and Final Remarks

The analysis and the techniques proposed in this work have highlighted

the potential of the model-based approach in oil and gas applications. A

mathematical model based on a deep knowledge of the system physics leads

to the improvement of existing oil and gas plants without requiring the

modification of already installed equipment.

As shown in Chapters 1 and 3, a reliable modelling of the particular

subsystem under analysis unlocks the full capabilities of the available equip-

ment. By introducing proper models focused on specific behaviour of the

system it is possible to develop suitable methods which are aimed to the

enhancement of the system reliability, operability and robustness. Thanks

to these models it is possible to compensate and overcome system lacks or

limitations without introducing expensive or overkill solution. A common

issue of many algorithms is that they are time consuming and high resources

demanding methods, thus they are scarcely applicable in a real plant. On

the contrary one of the main purposes of this work has been to keep each

algorithm “as simple as possible”. Indeed, each procedure has been con-

ceived to be able to work on a potentially available CPU, thus the run-time

complexity of each method should be as small as possible.

Furthermore, concerning the topic introduced in Chapter 2, the mathe-

matical modelization both of the mechanical and the electric part of a power
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generation plant has drawn the attention to the real features of the plant

that are at the basis of torsional instability. The awareness of the root causes

of this unstable phenomenon has allowed the implementation of an effective

mitigation technique able to force to system to maintain stability.

Nowadays, in order to keep pace with the scientific and technological

practices, it is clear that it is necessary to lean forward to embrace, develop

and rapidly adopt these new solutions. Model-based techniques indeed rep-

resent a unique opportunity to unleash the whole potential of the available

equipment without requiring additional and expensive installations.



Appendix A

Thermodynamics of Real Gases

Almost all of the gases handled by process practical applications (such as

compressors) are characterised by a pronounced real gas behaviour. This is

the reason why it is required to modify the well-known equation of perfect

gas introducing the parameter Z, i.e. the compressibility of the real gas.

Therefore, the real gas equation becomes

Z =
pv

RT
, (A.1)

where:

• Z is the gas compressibility;

• R ' 8.31 J
mol·K is the universal gas constant;

• p is the gas pressure;

• T is the gas temperature;

• v is the gas specific volume.

Note that Z ∈ [0; 1] is a pure number, and the perfect gas equation can be

achieved by imposing Z = 1.

In 1873 Van der Waals proposed the first technique to compute Z

Z =
v

v − b
− aRTv, (A.2)
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with a and b coefficients to be determined connected to real gas peculiarities

and intermolecular dynamics.

In the second half of twentieth century many effective approaches to

calculate a generalised real gas equation of state have been introduced by

several scientists. Four real gas equations are described below.

A.1 BWRS equation of state

Benedict, Webb, Rubin and Starling published a new procedure to calculate

Z in 1973.

Z = 1 +
B

v
+
C

v2
+
D

v5
+
E

v2

(
1 +

γ

v2

)
e−γ/v

2

, (A.3)

where

B =

(
1

RT

)(
B0RT −A0 −

C0

T 2
+
D0

T 3
− E0

T 4

)
;

C =

(
1

RT

)(
bRT − a− d

T

)
;

D =

(
1

RT

)
α

(
α+

d

T

)
;

D =

(
1

RT

)(
c

T 2

)
.

(A.4)

The unknown coefficients of equation (A.4) can be retrieved in [56].

A.2 RKS equation of state

Redlich, Kwong and Soave in 1949 suggested a modification to Van Der

Waals equation (A.2).

Z =
v

v − b
− a[

RT (v + b)
] . (A.5)

Even in this case, unknown coefficients of equation (A.5) can be retrieved in

[56].
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A.3 LKP equation of state

Lee, Kesler and Prausnitz proposed a new method to calculate Z in 1976.

Z = Z0 +
ω

ωr
(Zr − Z0). (A.6)

The compressibility factors of the ”simple fluid” Z0 and the ”reference

fluid” Zr are calculated separately by a modified BWRS equation. ωr repre-

sents the non-sphericity of a molecule, expressing how a molecule is complex

(geometry and polarity). ωr ranges from zero for simple monatomic gases

to approximately 0.9 for complex molecule structures.

In order to find out the numerical value of Z0 and Zr there are some

coefficients that can be retrieved in [56].

A.4 PR Equation of State

Peng and Robinson published their modification of the Van Der Waals equa-

tion (1976), known as the PR equation of state.

Z =
v

v − b
− v

RT

a[
v(v + b) + b(v − b)

] . (A.7)

Once again, unknown coefficients of equation (A.7) can be retrieved in [56].
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Appendix B

Least Squares Theory

Let’s consider the parametric linear model

Σ(ϑ): yk = ϕTk ϑ = ϕ1
kϑ

1 + ϕ2
kϑ

2 + · · ·+ ϕnkϑ
n, (B.1)

where:

• subscript k states that the quantity is referred to the k-th step;

• ϑ ∈ Rn is the coefficient vector that needs to be identified;

• ϕ ∈ Rn is the input vector;

• y ∈ R is the output value.

In practice, model (B.1) states that output y can be seen as a linear com-

bination of inputs. Identification of parameters vector ϑ is based on the

minimization of a cost function JN . If data are acquired in N steps, the cost

function is defined as

JN (ϑ) =
1

N

N∑
k=1

(yk −ϕTk ϑ)2, (B.2)

and the coefficient vector ϑ is equal to

ϑ ∈ argmin
ϑ
JN (ϑ). (B.3)

There are two analytic methods to solve this minimization:
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1. Classic least squares: once all the data have been acquired from step

1 to step N , it computes vector ϑ̂ (a complete analysis of classic least

squares can be found in many manuals such as [58], [27] or [25]);

2. Recursive least squares (RLS): step by step it updates the coefficient

vector ϑ̂k, and it is possible to prove that ϑ̂N is exactly equal to the

value ϑ̂ that classic least squares method would return with the same

inputs (further details about RLS can be found e.g. in [42]).

B.1 Classic least squares

It is possible to demonstrate that the vector ϑ̂ that minimises the cost func-

tion JN is equal to

ϑ̂ = S(N)−1
N∑
k=1

ϕk yk, (B.4)

where

S(N) =

N∑
k=1

ϕk ϕ
T
k . (B.5)

B.2 Recursive least squares (RLS)

This method updates the estimation after each step by repeating the follow-

ing recursive equations (the algorithm can be initialised with the first step

data):

i. Sk = Sk−1 +ϕk ϕ
T
k ;

ii. Kk = S−1
k ϕk;

iii. εk = yk −ϕTk ϑ̂k−1;

iv. ϑ̂k = ϑ̂k−1 +Kkεk.
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In practice, these equations are not used due to computational problems.

Indeed it is possible to define other equations mathematically equivalent to

these ones that avoid the calculation of inverse matrix. Theory ensures that

these new equations lead to the same result, but they are more robust from

a numerical and computational point of view:

i. βk−1 = 1 +ϕTk V k−1ϕk;

ii. V k = V k−1 − β−1
k−1V k−1ϕkϕ

T
k V k−1;

iii. εk = yk −ϕTk ϑ̂k−1;

iv. Kk = V kϕk;

v. ϑ̂k = ϑ̂k−1 +Kkεk.

Where the matrix V and the vector ϑ̂ can be initialised with

V 0 =αI, α > 0

ϑ̂0 = 0.

In some special cases, it is useful to introduce a forgetting factor µ ∈ (0; 1]

(FF), that is a coefficient that allows the recursive least squares method to

be less influenced by the older data. Additional information about forgetting

factor RLS can be found in many handbooks or manuals, e.g. see [57] or

[10]. The forgetting factor makes the estimation more “nervous”, indeed it

is more influenced by the recent acquisitions and it forces the algorithm to

“forget” the older data. Defining the cost function in correspondence of the

k-th step as

Jk(ϑ) =
1

N

k∑
i=1

µk−i(yi −ϕTi ϑ)2, µ ∈ (0; 1]. (B.6)

The weighting factor µk−i reduces the influence of older errors on the esti-

mation.

The coefficient that minimises the cost function Jk can be achieved with

these recursive equations:
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i. βk−1 = µ+ϕTk V k−1ϕk;

ii. V k = µ−1(V k−1 − β−1
k−1V k−1ϕkϕ

T
k V k−1);

iii. εk = yk −ϕTk ϑ̂k−1;

iv. Kk = V kϕk;

v. ϑ̂k = ϑ̂k−1 +Kkεk.

On the contrary, if it is necessary to smooth the coefficient estimation,

a low-pass solution can be adopted. In practice, the coefficient vector ϑ̂k is

estimated in the same way, but the final estimation is

ϑ̃k = (1− λ)ϑ̂k−1 + λϑ̂k, (B.7)

where λ ∈ [0; 1]. The lower λ the higher the low pass effect.



Appendix C

Kalman Filter

This appendix provides a panoramic on Kalman Filter (KF), however further

details can be retrieved in many academic handbooks or articles, e.g. see

[51], [88], [35] and [22].

C.1 Kalman filtering: linear quadratic esti-

mation (LQE)

A discrete-time stochastic process Σ can be described by the system shown

in (C.1)

Σ :

xk+1 = fk(xk,uk,wk)

yk = hk(xk,ηk)
(C.1)

where xk and uk are respectively the state and the input at time Tk, f(·) is

the function that describes the evolution of the state, h(·) is the observation

function and wk and ηk are the process and the observation noises.

If the process and the observation equations are linear equations both

with respect to the state xk, the input uk and the noises, then the process
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Σ becomes:

Σ :

xk+1 = Akxk +Bkuk +Dkwk

yk = Ckxk + ηk

(C.2)

In the Kalman Filter theory, in addition to the linearity of the process,

there are also other fundamental assumptions:

• wk and ηk have to be white noises with covariance matrices equal to

Qk and Rk and expected value 0. This means that E{wk] = 0

E[wkw
T
i ] = Qkδk−i

,

 E[ηk] = 0

E[ηkη
T
i ] = Rkδk−i

∀k, i ∈ Z

where δk−i is equal to 1 if k = i and equal to 0 in all the other cases.

These conditions are usually abbreviated as

wk ∼ wn(0,Qk) ηk ∼ wn(0,Rk)

• wk⊥ηk, so wk and ηk have to be uncorrelated between each other;

E[wkη
T
i ] = 0 ∀k, i ∈ Z

• the initial state x0 has to be a stochastic variable with expected value

x̂0 and covariance matrix P 0;

E[x0] = x̂0 E[x0x
T
0 ] = P 0

• x0⊥wk and x0⊥ηk, so the initial state x0 has to be uncorrelated with

wk and ηk

E[x0η
T
k ] = 0, E[x0w

T
k ] = 0 ∀k ∈ Z.
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These last assumptions can be summarised in this way:

E


x0

wk

ηk

 =


x̂0

0

0

 , ∀k ∈ Z

E


x0

wk

ηk

[xT0 wT
i ηTi

]
=


P 0 0 0

0 Qkδk−i 0

0 0 Rkδk−i

 , ∀k, i ∈ Z

(C.3)

Defining x̂k as the estimation of the state at k-th step, the estimation error

can be written as

x̃k = xk − x̂k. (C.4)

The idea of the Kalman Filter is to look for the estimation of the state that

in correspondence of each step minimises the Mean Square Error (MSE)

E[(xk − x̂k)(xk − x̂k)T ] = E[x̃kx̃
T
k ].

The previous mean square error is equal to the covariance matrix of the state

in the k-th step, that is P k = E[x̃kx̃
T
k ]. Considering the state observer

x̂k+1 = Akx̂k +Bkuk +Kk(yk −Ckx̂k)

and using the definition given in (C.4) it is possible to find out the value of

Kk that minimises P k ∀k. Indeed it is correct to write

x̃k+1 = xk+1 − x̂k+1 = Akxk +Bkuk +Dkwk −Akx̂k+

−Bkuk −Kk(yk −Ckx̂k)

and since yk = Ckxk + ηk, it yields

x̃k+1 =
(
Ak −KkCk

)
x̃k +Dkwk −Kkηk.

Therefore, the mean square error P k+1 can be computed as

P k+1 = E[x̃k+1x̃
T
k+1] = E[

(
Ak −KkCk

)
x̃kx̃

T
k

(
Ak −KkCk

)T
]+

+ E[Dkwkw
T
kD

T
k ] + E[Kkηkη

T
kK

T
k ]
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where the last equality is due to the fact that the variables are uncorrelated,

so the covariance of the sum is equal to the sum of the single covariances.

Therefore P k+1 is given by

P k+1 =
(
Ak −KkCk

)
P k

(
Ak −KkCk

)T
+DkQkD

T
k +KkRkK

T
k .

As mentioned before Kk has to be computed as

Kk = arg min
K

{(
Ak −KCk

)
P k

(
Ak −KCk

)T
+DkQkD

T
k +KRkK

T

}
= arg min

K

{
K
(
Rk +CkP kC

T
k

)
KT −KCkP kA

T
k −AkP kC

T
kK

T+

AkP kA
T
k +DkQkD

T
k

}
.

Defining Sk=̂Rk +CkP kC
T
k the previous equation becomes

Kk = arg min
K

{(
K −AkP kC

T
kS
−1
k

)
Sk
(
K −AkP kC

T
kS
−1
k

)T
+M

}
.

Where M = AkP kA
T
k +DkQkD

T
k −AkP kC

T
kS
−1
k CkP kA

T
k does not de-

pend on K, so

Kk = arg min
K

{(
K −AkP kC

T
kS
−1
k

)
Sk
(
K −AkP kC

T
kS
−1
k

)T}
.

This equation finally leads to

Kk = AkP kC
T
kS
−1
k = AkP kC

T
k

(
Rk +CkP kC

T
k

)−1
. (C.5)

If Kk assumes the value described in (C.5), then P k+1 is equal to

P k+1 = AkP kA
T
k +DkQkD

T
k −AkP kC

T
kS
−1
k CkP kA

T
k =

= AkP kA
T
k +DkQkD

T
k +

−AkP kC
T
k

(
Rk +CkP kC

T
k

)
CkP kA

T
k .

(C.6)

Therefore, the best estimation for xk+1 corresponding to P k+1 is

x̂k+1 =
(
Ak −KkCk

)
x̃k +Bkuk −Kkyk =

= Akx̂k +Bkuk +Kk

(
yk −Ckx̂k

)
.

(C.7)
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Variable Meaning

x̂k|k The updated state estimation at time

k given observations up to and includ-

ing time k

P k|k The updated error covariance matrix

(a measure of the accuracy of the state

estimation)

x̂k+1|k The predicted state estimation at time

k+ 1 given observations up to and in-

cluding time k

P k+1|k The predicted error covariance matrix

Table C.1: A new notation for the estimated state and its covariance matrix.

It should be noted that Kk can be also expressed as AkLk with Lk =

P kC
T
kS
−1
k . In this way it is possible to divide the whole algorithm in two

separated steps: prediction and updating.

Indeed, introducing the notation reported in table C.1, the (C.7) can be

written as

x̂k+1|k = Akx̂k +Bkuk +Kk

(
yk −Ckx̂k

)
=

= Ak

(
x̂k|k−1 +Lk(yk −Ckx̂k|k−1)

)︸ ︷︷ ︸
x̂k|k

+Bkuk. (C.8)

Similarly, it is possible to separate the calculus of the covariance matrix

P k+1 in a step of prediction and one step of updating.

P k+1|k = AkP kA
T
k −AkLk︸ ︷︷ ︸

Kk

SkL
T
kA

T
k +DkQkDk =

= Ak

[
P k|k−1 −LkSkLTk

]︸ ︷︷ ︸
P k|k

AT
k +DkQkD

T
k .

(C.9)

Using (C.8) and (C.9) it is possible to completely define the two steps of

prediction and updating as shown in C.2
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Updating Prediction

x̂k|k = x̂k|k−1 +Lk(yk −Ckx̂k|k−1) x̂k+1|k = Akx̂k|k +Bkuk

P k|k = P k|k−1 −LkSkLk P k+1|k = AkP k|kA
T
k +DkQkD

T
k

Table C.2: Updating and prediction step for the state estimation and its

covariance matrix.

Kalman filter algorithm

Therefore, the Kalman filter can be applied to reach the best estimation of

the state of the stochastic process Σ following these recursive steps:

1. the first step is necessary to define the initial condition of the state

estimation x̂1|0 and its covariance matrix P 1|0;

2. updating steps (for k = 1, 2, . . . )

Sk = Rk +CkP k|k−1C
T
k ;

Lk = P k|k−1C
T
kS
−1
k ;

ek = yk −Ckx̂k|k−1;

x̂k|k = x̂k|k−1 +Lkek;

P k|k =
(
I −LkCk

)
P k|k−1

(
I −LkCk

)T
+LkRkL

T
k .

Where the last equation for P k|k is equivalent to the previous one,

even if this formulation is more robust for practical implementation;

3. prediction steps (for k = 1, 2, . . . )

x̂k+1|k = Akx̂k|k +Bkuk;

P k+1|k = AkP k|kA
T
k +DkQkD

T
k .

Even in the case where the process Σ is stationary (Ak = A, Bk = B, Ck =

C, Dk = D, Qk = Q, Rk = R), the Kalman gain Kk is not constant,

indeed it would be equal to

Kk = AP kC
T
(
R+CP kC

T
)−1

. (C.10)
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To reach the optimal constant value for the Kalman gain K it is necessary to

introduce without demonstration that, under suitable hypothesis, a solution

to the Algebraic Riccati Equation is

P = ATPA−ATPB(R+BTPB)−1BTPA+Q

such that

lim
t→∞

P k = P ∀P 0.

It is possible to demonstrate that the observer with Kalman gain equal to

K = APCT
(
R+CPCT

)−1
(C.11)

is the optimal observer with constant gain.

C.2 Approximated Kalman filter algorithm for

non-linear process

The classic Kalman filter algorithm has many assumptions. Some of these

assumptions, such as that the noises have to be zero-mean white noise mutu-

ally uncorrelated, can be relaxed changing the system. However the strongest

assumption is that the process Σ has to be linear. If Σ is not linear there

are many approximated methods that attempt to find the best estimation

of the state xk ∀k ∈ Z. Some of the most important methods are:

• Extended Kalman filter (EKF);

• Unscented Kalman filter (UKF);

• Particle filter (PF).

In the next paragraph the Extended Kalman filter (EKF) will be presented.

C.2.1 Extended Kalman filter (EKF)

This method considers a linear approximation of the process Σ around the

estimations of the state in order to transform the complete process Σ in a
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linear process Σ which can be used in a classic Kalman filter. Let’s consider

a non-linear process Σ with additive noises such as

Σ :

xk+1 = fk(xk,uk) +wk

yk = hk(xk) + ηk

Moreover, concerning the updating steps, let consider the Taylor series of

the function hk(·) around the state estimation x̂k|k−1

hk(xk) = hk(x̂k|k−1) +
∂hk
∂xk

(x̂k|k−1)(xk − x̂k|k−1) + · · · '

' hk(x̂k|k−1) +Ck(xk − x̂k|k−1)

where

Ck =
∂hk
∂xk

(x̂k|k−1). (C.12)

In addition to this, concerning the prediction steps, let’s consider the Taylor

series of the function fk(·) in the neighbourhood of the state estimation x̂k|k

fk(xk) = fk(x̂k|k) +
∂fk
∂xk

(x̂k|k)(xk − x̂k|k) + · · · '

' fk(x̂k|k) +Ak(xk − x̂k|k)

where

Ak =
∂fk
∂xk

(x̂k|k). (C.13)

Once introduced these approximations, it is possible to define the EKF al-

gorithm suitable for all the non-linear process:

1. The first step is necessary to define the initial condition of the state

estimation x̂1|0 and his covariance matrix P 1|0. This algorithm does

not provide any guarantee of convergence, the only way to be quite

sure of reaching the convergence to the real state is to choose an initial

estimation as close as possible to the real one;
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2. updating steps (for k = 1, 2, . . . )

Sk = Rk +CkP k|k−1C
T
k ;

Lk = P k|k−1C
T
kS
−1
k ;

ek = yk − hk(x̂k|k−1);

x̂k|k = x̂k|k−1 +Lkek;

P k|k =
(
I −LkCk

)
P k|k−1

(
I −LkCk

)T
+LkRkL

T
k .

3. prediction steps (for k = 1, 2, . . . )

x̂k+1|k = fk(x̂k|k);

P k+1|k = AkP k|kA
T
k +QT

k .

where the last equation is due to the fact that Dk = 1.
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