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Shift Aggregate Extract Networks
Francesco Orsini*, Daniele Baracchi and Paolo Frasconi

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Firenze, Firenze, Italy

We introduce an architecture based on deep hierarchical decompositions to

learn effective representations of large graphs. Our framework extends classic

R-decompositions used in kernel methods, enabling nested part-of-part relations. Unlike

recursive neural networks, which unroll a template on input graphs directly, we unroll a

neural network template over the decomposition hierarchy, allowing us to deal with the

high degree variability that typically characterize social network graphs. Deep hierarchical

decompositions are also amenable to domain compression, a technique that reduces

both space and time complexity by exploiting symmetries. We show empirically that

our approach is able to outperform current state-of-the-art graph classification methods

on large social network datasets, while at the same time being competitive on small

chemobiological benchmark datasets.

Keywords: relational learning, neural networks, social networks, supervised learning, representation learning

1. INTRODUCTION

Structured data representations are common in application domains such as chemistry, biology,
natural language, and social network analysis. In these domains, one can formulate a supervised
learning problem where the input portion of the data is a graph (possibly with attributes on vertices
and edges) and the output portion is a categorical or numerical label. While learning with graphs of
moderate size (tens up to a few hundreds of vertices) can be afforded withmany existing techniques,
scaling up to large networks poses new significant challenges that still leave room for improvement,
both in terms of predictive accuracy and in terms of computational efficiency.

Devising suitable representations for graph learning is crucial and nontrivial. A large body of
literature exists on the subject, where graph kernels (GKs) and recurrent neural networks (RNNs)
are among the most common approaches. GKs follow the classic R-decomposition approach of
Haussler (1999). Different kinds of substructures [e.g., shortest-paths (Borgwardt and Kriegel,
2005), graphlets (Shervashidze et al., 2009) or neighborhood subgraph pairs (NSPDK) (Costa
and De Grave, 2010)] can be used to compute the similarity between two graphs in terms of the
similarities of their respective sets of parts. RNNs (Goller and Kuechler, 1996; Sperduti and Starita,
1997; Scarselli et al., 2009) unfold a template (with shared weights) over each input graph and
construct the vector representation of a node by recursively composing the representations of its
neighbors. These representations are typically derived from a loss minimization procedure, where
gradients are computed by the backpropagation through structure algorithm (Goller and Kuechler,
1996). Micheli (2009) proposed the architecture neural networks for graphs (NN4G) to learn from
graph inputs with feedforward neural networks. One advantage of RNNs over GKs is that the vector
representations of the input graphs are learned rather than handcrafted.
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Most GK- and RNN-based approaches have been applied
to relatively small graphs, such as those derived from
molecules (Bianucci et al., 2000; Borgwardt and Kriegel,
2005; Ralaivola et al., 2005), natural language sentences (Socher
et al., 2011) or protein structures (Baldi and Pollastri, 2003;
Vullo and Frasconi, 2004; Borgwardt et al., 2005). On
the other hand, large graphs (especially social networks)
typically exhibit a highly-skewed degree distribution that
originates a huge vocabulary of distinct subgraphs. This
scenario makes finding a suitable representation much harder:
kernels based on subgraph matching would suffer diagonal
dominance (Schoelkopf et al., 2002), while RNNs would face the
problem of composing a highly variable number of substructure
representations in the recursive step. Recent work by Yanardag
and Vishwanathan (2015) proposes deep graph kernels (DGK)
to upgrade existing graph kernels with a feature reweighing
schema that employs CBOW/Skip-gram embedding of the
substructures. Another recent work by Niepert et al. (2016) casts
graphs into a format suitable for learning with convolutional
neural networks (CNNs). These methods have been applied
successfully to small graphs but also to graphs derived from
social networks.

A related but distinct branch of research focuses on the
problem of predicting relations in relational structures. For
example, classifications of nodes in a graph can be seen as
the problem of predicting relations of arity one. Similarly,
link prediction Liben-Nowell and Kleinberg (2007) can be seen
as the problem of predicting relations of arity two. Methods
for solving problems in this class include statistical relational
learning Getoor and Taskar (2007), probabilistic inductive logic
programming De Raedt et al. (2008), kernel methods (e.g.,
Frasconi et al., 2014), and convolutional neural networks (e.g.,
Atwood and Towsley, 2016; Kipf andWelling, 2017). Few of these
methods are also suitable for graph classification or regression
problems. Exceptions include Frasconi et al. (2014), which
however does not learn representations from data, and Atwood
and Towsley (2016).

In this paper, we introduce a novel architecture for learning
graph representations (and therefore suitable for solving the
graph classification problem), called shift-aggregate-extract
network (SAEN). Structured inputs are first decomposed in
a hierarchical fashion. A feedforward neural network is then
unfolded over the hierarchical decompositions using shift,
aggregate, and extract operations (see section 4). Finally, gradient
descent learning is applied to the resulting network.

Like the flat R-decompositions commonly used to define
kernels on structured data (Haussler, 1999), H-decompositions
are based on the part-of relation, but allow us to introduce a deep
recursive notion of parts of parts. At the top level of the hierarchy
lies the whole data structure. Objects at each intermediate level
are decomposed into parts that form the subsequent level of the
hierarchy. The bottom level consists of atomic objects, such as
individual vertices, edges, or small graphlets.

SAEN compensates some limitations of recursive neural
networks by adding two synergetic degrees of flexibility. First, it
unfolds a neural network over a hierarchy of parts rather than
using the edge set of the input graph directly; this makes it easier

to deal with very high degree vertices. Second, it imposes weight
sharing and fixed size of the learned vector representations on
a per level basis instead of globally; in this way, more complex
parts may be embedded into higher dimensional vectors, without
forcing to use excessively large representations for simpler parts.

A second contribution of this work is a domain compression
algorithm that can significantly reduce memory usage and
runtime. It leverages mathematical results from lifted
linear programming (Mladenov et al., 2012) in order to
exploit symmetries and perform a lossless compression of
H-decompositions.

The paper is organized as follows. In section 2we introduceH-
decompositions, a generalization of Haussler’sR-decomposition
relations (Haussler, 1999). In section 4 we describe SAEN, a
neural network architecture for learning vector representations
of H-decompositions. Furthermore, in section 5 we explain
how to exploit symmetries in H-decompositions in order to
reduce memory usage and runtime. In section 6 we report
experimental results on several number of real-world datasets.
Finally, in section 7 we discuss some related works and draw
some conclusions in section 8.

2. H-DECOMPOSITIONS

In this section, we define a deep hierarchical extension of
Haussler’sR-decomposition relation (Haussler, 1999).

An H-decomposition is formally defined as the triple
({Sl}

L
l=0

, {Rl,π }
L
l=1

,X) where:

• {Sl}
L
l=0

are disjoint sets of objects Sl called levels of the
hierarchy. The bottom level S0 contains atomic (i.e., non-
decomposable) objects, while the other levels {Sl}

L
l=1

contain
compound objects, s ∈ Sl, whose parts s′ ∈ Sl−1 belong to the
preceding level, Sl−1.

• {Rl,π }
L
l=1

is a set of l,π-parametrized Rl,π -convolution
relations, where π ∈ 5l is a membership type from a finite
alphabet 5l of size n(l) = |5l|. At the bottom level, n(0) = 1.
A pair (s, s′) ∈ Sl × Sl−1 belongs to Rl,π iff s′ is part of s with
membership type π . For notational convenience, the parts of s
are denoted asR−1

l,π
(s) = {s′|(s′, s) ∈ Rl,π }.

• X is a set {x(s)}s∈S0 of p-dimensional vectors of attributes
assigned to the elements s the bottom layer S0.

The membership type π is used to represent the roles of
the parts of an object. For L > 1, an H-decomposition
is a multilevel generalization of the classic R-convolution. It
represents structured data as a hierarchy of π-parametrized parts.

An example of a 4-level H-decomposition is shown in
Figure 1where a top-level graph in S3 is decomposed into a set of
r-neighborhood (for radius r ∈ {1, 2}) subgraphs Ball ∈ S2 (see
Figure 2 for a pictorial representation of the parts) and the radius
r is used as the membership type. Level S1 consists of edges from
the r-neighborhood subgraphs. Finally, each edge is decomposed
as pairs of vertices V ∈ S0. The elements of theRl,π -convolution
are pictorially shown as directed arcs. Since membership types
π for edges and vertices would be all identical their label is not
represented in the picture.
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FIGURE 1 | Pictorial representation of a sample H-decomposition. We produce a 4-level H-decomposition by decomposing graph Graph ∈ S3 into a set of

radius-neighborhood (radius ∈ {1, 2}) subgraphs Ball ∈ S2 and employ their radius as membership type. Furthermore, we extract edges Edge ∈ S1 from the

radius-neighborhood subgraphs. Finally, each edge is decomposed in vertices V ∈ S0. The elements of the Rl,π -convolution are pictorially shown as directed arcs.

Since membership types π for edges and vertices would be all identical their label is not represented in the picture.

Additional examples of H-decompositions are given in the
following section.

3. INSTANCES OF H-DECOMPOSITIONS

We describe twoH-decompositions based on ego graphs and on
nested ego graphs. They are inspired from closely related graph
kernels.

Definition 1. The subgraph of G = (V ,E) induced by Vg ⊂ V is
the graph g = (Vg ,Eg) where Eg = {(u, v) ∈ E : u ∈ Vg , v ∈ Vg}.

Definition 2. The ego graph gv,r of G = (V ,E) with root v ∈ V
and radius r is the subgraph of G induced by the set of vertices
whose shortest path distance from v is at most r.

3.1. Ego Graph Decomposition
The ego graphH-decomposition (EGD) has L = 3 levels defined
as follows (see Figure 3):

• Level 2 consists of the whole attributed graph G = (V ,E, x)
where x is a labeling function that attaches a p-dimensional
vector of attributes x(v) to each vertex v.

• Level 1 consists of all ego graphs gv,r with roots v ∈ V and
r ∈ [0,R]. The π-type of gv,r is simply r. Note that for r = 0,
all ego graphs gv,0 consist of single vertices.

• Level 0 consists of single vertices with two possible π-types:
ROOT and ELEM to specify whether a vertex v is the root gv,r
or not.

3.2. Nested Ego Graph Decomposition
The nested ego graphH-decomposition (NEGD) has L = 3 levels
defined as follows:

• Level 2 (S2) consists of the whole attributed graph G =

(V ,E, fV , fE) where fV and fE are two labeling functions that
attach respectively a p-dimensional vector of attributes fV (v)
to each vertex v and a symbol fE(u,w) from a finite alphabeth
51 to each edge (u,w).

• Level 1 (S1) consists of all ego graphs gv,1 = (Vv,Ev) with roots
v ∈ V . The π-type of gv,1 is the number of vertices |Vv|.

• Level 0 (S0) consists of the ego graphs gw,1, ∀w ∈ Vv, with
π-type ROOT if w = v, or π-type fE(v,w) otherwise.

• A bijection x : S0 → N associates a different identifier to each
distinct ego graph in S0, i.e., x(s1) = x(s2) ⇐⇒ s1 =

s2, ∀s1, s2 ∈ S0.
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FIGURE 2 | Pictorial representation of the substructures that are contained in each node of the H-decomposition showed in Figure 1. The objects of the

H-decomposition are grouped to according their Sl sets (l = 0, . . . , 3). For each radius-neighborhood subgraph we show the root node in red.

4. LEARNING REPRESENTATIONS WITH
SAEN

A shift-aggregate-extract network (SAEN) is a composite

function that maps objects at level l of an H-decomposition into

d(l)-dimensional real vectors. It uses a sequence of parametrized

functions {f0, . . . , fL}, for example a sequence of neural networks

with parameters θ0, . . . , θL that will be trained during the
learning. At each level, l = 0, . . . , L, each function fl :R

n(l)d(l) →

R
d(l+1) operates as follows (see Figure 4 for an illustration):

1. It receives as input the aggregate vector al(s) defined as:

al(s) =











x(s) if l = 0
∑

π∈5l

∑

s′∈R−1
l,π

(s)

zπ ⊗ hl−1(s′) if l > 0 (1)

where x(s) is the vector of attributes for object s.
2. It extracts the vector representation of s as

hl(s) = fl(al(s); θl) (2)
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FIGURE 3 | The EGD is an H-decomposition structured in 3 levels. Level 2 contains the input attributed graph G = (V,E,X ) where V is the set of vertices and E is the

set of edges and X is a set of p-dimensional vectors of attributes assigned to the vertices v ∈ V of the graph G. The input graph G is then decomposed into ego

graphs g of radius r = 0, . . . ,R where R is the maximum radius that we allow in the decomposition. The ego graphs g are elements of level 1 and are parts of G with

π-type r. Ego graphs g are further decomposed into vertices v. We use the π-types ROOT and ELEM to specify whether a vertex v is the root of the ego graph g or

just an element respectively. The vertices v which are the elements of level 0 and are labeled with vectors of vertex attributes.

FIGURE 4 | Pictorial representation of the SAEN computation explained in Equations 1 and 2. The SAEN computation is unfolded over all the levels of an

H-decomposition. On the top-right part we show an object obj ∈ Sl decomposed into its parts {parti}
5
i=1 ⊆ Sl−1 from the level below. The parametrized “part of”

relation Rl,pi is represented by directed arrows, we use colors (red, blue and green) to distinguish among π-types. In the bottom-left part of the picture we show that

each part is associated to a vectorial representation. In the bottom-right part of the picture we show the shift step in which the vector representations of the parts are

shifted using the Kronecker product in Equation 1. Then the shifted representation are summed in the aggregation step and in the extract step a feedforward neural is

applied in order to obtain the vector representation of object obj.
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The vector al(s) is obtained in two steps: first, previous level
representations hl−1(s′) are shifted via the Kronecker product ⊗
using an indicator vector zπ ∈ R

n(l). This takes into account
of the membership types π . Second, shifted representations
are aggregated with a sum. Note that all representation sizes
d(l), l > 0 are hyper-parameters that need to be chosen or
adjusted.

The shift and aggregate steps are identical to those used
in kernel design when computing the explicit feature of a
kernel k(x, z) derived from a sum

∑

π∈5 kπ (x, z) of base
kernels kπ (x, z), π ∈ 5. In principle, it would be indeed
possible to turn SAEN into a kernel method by removing the
extraction step and define the explicit feature for a kernel on H-
decompositions. Removing the extraction step from Equation (1)
results in:

al(s) =











x(s) if l = 0
∑

π∈5l

∑

s′∈R−1
l,π

(s)

zπ ⊗ al−1(s′) if l > 0 (3)

However, that approach would increase the dimensionality of
the feature space by a multiplicative factor n(l) for each level
l of the H-decomposition, thus leading to an exponential
number of features. When the number of features is exponential,
their explicit enumeration is impractical. A possible solution
would be to directly define the kernel similarity and keep
the features implicit. However, this solution would have space
complexity that is quadratic in the number of graphs in the
dataset.

When using SAEN, the feature space growth is prevented
by exploiting a distributed representation (via a multilayered
neural network) during the extraction step. As a result, SAEN
can easily cope with H-decompositions consisting of multiple
levels.

5. EXPLOITING SYMMETRIES FOR
DOMAIN COMPRESSION

In this section, we propose a technique, called domain
compression, which allows us to save memory and speed up the
SAEN computation. Domain compression exploits symmetries
in H-decompositions to compress them without information
loss. This technique requires that the attributes x(s) of the
elements s in the bottom level S0 are categorical.

Definition 3. Two objects a, b in a level Sl are collapsible, denoted
a ∼ b, if they share the same representation, i.e., hl(a) = hl(b)
for all the possible values of the parameters θ0, . . . , θl.

According to Definition 3, objects in the bottom level S0 are
collapsible when their attributes are identical, while objects at any
level {Sl}

L
l=1

are collapsible if they are made of the same sets of
parts for all the membership types π .

A compressed level S
comp

l
is the quotient set of level Sl with

respect to the collapsibility relation∼.
Before providing a mathematical formulation of domain

compression we provide two examples: in Example 1 we explain

the intuition beyond domain compression showing in Figure 5

the steps that need to be taken to compress a H-decomposition,
in Example 2 we provide a pictorial representation of the H-
decomposition of a real world graph and its compressed version.

Example 1. Figure 5A shows the pictorial representation of an
H-decomposition whose levels are denoted with the letters of
the alphabet A, B, C, D. We name each object using consecutive
integers prefixed with the name of the level. We use purple
and orange circles to denote the categorical attributes of the
objects of the bottom stratum. Directed arrows denote the “part
of” relations whose membership type is distinguished using the
colors blue and red.

Figure 5B shows the domain compression of the H-
decomposition in Figure 5A. When objects are collapsed the
directed arcs coming from their parents are also collapsed.
Collapsed arcs are labeled with their cardinality.

Figures 5C–F describe the domain compression steps starting
from level A until level D.

• In Figure 5C, A3 and A4 have the same categorical attribute of
A1 (i.e., purple) and they are therefore grouped and collapsed
to A1. Furthermore, the arrows in the fan-in of A3 and A4 are
attached to A1 with the consequent cardinality increase of the
red arrows that come from B3 and B4.

• In Figure 5D we show the second iteration of domain
compression in which objects made of the same parts with
the same membership types are collapsed. Both B1 and B2

in Figure 5C were connected to A1 with a blue arrow and to
A2 with a red arrow and so they are collapsed. In the same
way, B3 and B4 are collapsed because in Figure 5C they were
connected to A1 with a red arrow with cardinality 2.

• In Figure 5E C1 and C3 are collapsed because in Figure 5D

they were both connected to B1with a blue arrow and B3with
a red arrow.

• Finally in Figure 5F since C1 and C3 were collapsed in the
previous step, we increase to 2 the cardinality of the red arrow
that connects D1 and C1 and remove the red arrow from D1

to C3 since C3 was collapsed to C1 in Figure 5E.

The final result of domain compression is illustrated in
Figure 5B.

Example 2. In Figure 6 we provide a pictorial representation
of the domain compression of an H-decomposition (EGD,
described in section 3.1). On the left we show the H-
decomposition of a graph taken from the IMDB-BINARY dataset
(see section 6.1) together with its compressed version on the
right.

In order to compress H-decompositions we adapt the lifted
linear programming technique proposed by Mladenov et al.
(2012) to the SAEN architecture. AmatrixM ∈ R

n×p withm ≤ n
distinct rows can be decomposed as the product DMcomp where
Mcomp is a compressed version ofM in which the distinct rows of
M appear exactly once.

Definition 4. The Boolean decompression matrix,D, encodes the
collapsibility relation among the rows ofM so that Dij = 1 iff the
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FIGURE 5 | Intuition of the domain compression algorithm explained in Example 1. (A) H-decomposition, (B) compressed H-decomposition, (C) compression of

level A, (D) compression of level B, (E) compression of level C, (F) compression of level D.

Frontiers in Robotics and AI | www.frontiersin.org 7 April 2018 | Volume 5 | Article 42

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Orsini et al. Shift Aggregate Extract Networks

FIGURE 6 | Pictorial representation of the H-decomposition of a graph taken from the IMDB -BINARY dataset (see section 6.1) together with its compressed version.

ith row of M falls in the equivalence class j of ∼, where ∼ is the
equivalence relation introduced in Definition 31.

Example 3. (Example 1 continued)
The bottom level of the H-decomposition in Figure 5A has 4

objects A1, A2, A3, and A4 with categorical attributes indicated
with colors.

Objects A1, A2, A4 have a purple categorical attribute while
A3 has a orange categorical attribute. If we give to purple the
encoding [0, 3] and to orange the encoding [4, 1] we obtain an
attribute matrix

X =









0 3
0 3
4 1
0 3









(4)

in which each row contains the encoding of the categorical
attribute of an object of the bottom stratum and objects were
taken with the order A1, A2, A3, A4.

Since the rows associated to A1, A3, A4 are identical we can
compress matrix X to matrix

Xcomp =

[

0 3
4 1

]

(5)

as we can notice this is the attribute matrix of the compressed
H-decomposition shown in Figure 5B.

Matrix X can be expressed as the matrix product DXcomp

between the decompressionmatrixD and the compressed version
of Xcomp where

D =









1 0
1 0
0 1
1 0









(6)

and was obtained applying Definition 4.

1 Mladenov et al. (2012) lifts linear programming and defines the equivalence

relation induced from the labels obtained by performing color passing on a

Gaussian random field. We use an the equivalence relation in Definition 3 because

we are working withH-decompositions.

As explained inMladenov et al. (2012) a pseudo-inverseC ofD
can be computed by dividing the rows ofD⊤ by their sum (where
D⊤ is the transpose of D).

However, it is also possible to compute a pseudo-inverse C′ of
D by transposingD and choosing one representer for each row of
D⊤. For each row ofD⊤ we can simply choose a nonzero element
as representer and set all the other to zero.

Example 4. The computation of the pseudo-inverse C of the D
matrix of Example 3 results in the following equation:

C =

[

1/3 1/3 0 1/3

0 0 1 0

]

(7)

the matrix multiplication between the compression matrix C and
the X leads to the compressed matrix Xcomp (i.e., Xcomp = CX).

In the first row of matrix C there are 3 nonzero entries that
correspond to the objects A1, A2, A4, while on the second row
there is a nonzero entry that corresponds to object A3.

As we said above, since we know that the encodings of those
objects are identical instead of making the average we could just
take a representer.

For example in Figure 5C we chose A1 as representer for A2
and A4, obtaining the compression matrix

C′ =

[

1 0 0 0
0 0 1 0

]

(8)

In the first row of matrix C′ there is a nonzero entry that
correspond to the object A1 (which is the chosen representer),
while on the second row there is a nonzero entry that corresponds
to object A3 (as in C).

While from the compression point of view we still have
Xcomp = C′X, choosing a representer instead of averaging
equivalent objects is advantageous when using sparse matrices
because the number of nonzero elements decreases.

We apply domain compression to SAEN by rewriting
Equations (1, 2) in matrix form.
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We rewrite Equation (1) as:

Al =

{

X if l = 0
RlHl−1 if l > 0

(9)

where:

• Al ∈ R
|Sl|×n(l−1)d(l) is the matrix that represents the shift-

aggregated vector representations of the object of level Sl−1;
• X ∈ R

|S0|×p is the matrix that represents the p-dimensional
encodings of the vertex attributes in V (i.e., the rows of X are
the xvi of Equation 1);

• Rl ∈ R
|Sl|×n(l)|Sl−1| is the concatenation

Rl =
[

Rl,1, . . . ,Rl,π , . . . ,Rl,n(l)
]

(10)

of the matrices Rl,π ∈ R
|Sl|×|Sl−1| ∀π ∈ 5l which represent the

Rl,π -convolution relations of Equation (1) whose elements are
(Rl,π )ij = 1 if (s′, s) ∈ Rl,π and 0 otherwise.

• Hl−1 ∈ R
n(l)|Sl−1|×n(l)d(l) is a block-diagonal matrix

Hl−1 =







Hl−1 . . . 0
...

. . .
...

0 . . . Hl−1






(11)

whose blocks are formed by matrix Hl−1 ∈ R
|Sl−1|×d(l)

repeated n(l) times. The rows of Hl−1 are the vector
representations hj in Equations (1).

Equations (2) is simply rewritten to Hl = fl(Al; θl) where
fl(·; θl) is unchanged w.r.t. Equation (2) and is applied to its input
matrix Al row-wise.

Algorithm 1 DOMAIN-COMPRESSION

DOMAIN-COMPRESSION(X,R)

1 C0,D0 = COMPUTE-CD(X)
2 Xcomp = C0X
3 Rcomp = {}

4 for l = 1 to L

5 Rcol_comp = [Rl,πDl−1, ∀π = 1, . . . , n(l)]

6 Cl,Dl = COMPUTE-CD(Rcol_comp)
7 for π = 1 to n(l)

8 R
comp

l,π
= ClR

col_comp
π

9 return Xcomp,Rcomp

Domain compression in Equation (9) is performed by the
DOMAIN-COMPRESSION procedure (see Algorithm 1), which
takes as input the attribute matrix X ∈ R

|S0|×p and the part-of
matrices Rl,π , and returns their compressed versions Xcomp and

the R
comp

l,π
, respectively. The algorithm starts by invoking (line 1)

the procedure COMPUTE-CD on X to obtain the compression
and decompression matrices C0 and D0, respectively. Matrix C0

is used to compress X (line 2). We then iterate over the levels

l = 0, . . . , L of the H-decomposition (line 4) to compress the
Rl,π matrices. Matrices Rl,π are compressed by right-multiplying
them by the decompression matrix Dl−1 of the previous level
l − 1 (line 5). In this way, we collapse the parts of relation Rl,π

(i.e., the columns of Rl,π ) as these were identified in level Sl−1 as
identical objects (i.e., those objects corresponding to the rows of
X or Rl−1,π collapsed during the previous step). The result is a list
Rcol_comp = [Rl,πDl−1, ∀π = 1, . . . , n(l)] of column compressed
Rl,π -matrices. We proceed collapsing equivalent objects in level
Sl, i.e., those made of identical sets of parts: we find symmetries
in Rcol_comp by invoking COMPUTE-CD (line 6) and obtain a
new pair Cl, Dl of compression, and decompression matrices
respectively. Finally, compression matrix Cl is applied to the
column-compressed matrices in Rcol_comp in order to obtain the
5l compressed matrices of level Sl (line 8).

Algorithm 1 allows us to compute the domain compressed
version of Equation (9) which can be obtained by replacing X
with Xcomp = C0X, Rl,π with R

comp

l,π
= ClRl,πDl−1, and Hl

with H
comp

l
. Willing to recover the original encodings Hl we just

need to employ decompression matrix Dl on the compressed
encodings H

comp

l
. Indeed, Hl = DlH

comp

l
. As we can see by

replacing Sl with S
comp

l
, the more symmetries are present (i.e.,

when |S
comp

l
| ≪ |Sl|) the greater the domain compression will be.

6. EXPERIMENTAL EVALUATION

We perform an experimental evaluation of SAEN on graph
classification datasets and answer the following questions:

Q1 How does SAEN compare to the state of the art?
Q2 Can SAEN exploit symmetries in social networks to reduce

the memory usage and the runtime?

6.1. Datasets
In order to answer the experimental questions we tested
our method on six publicly available datasets first proposed
by Yanardag and Vishwanathan (2015). These datasets are
representative of a wide variety of node degree distributions.
While we do not provide a statistical analysis on the node-degree
distributions of these datasets, in Figures 7, 8 we empirically
show the scatter plots of their node-degree frequencies.

• COLLAB

is a dataset where each graph represent the ego-network of a
researcher, and the task is to determine the field of study of
the researcher betweenHigh Energy Physics, Condensed Matter
Physics, and Astro Physics.

• IMDB-BINARY, IMDB-MULTI

are datasets derived from IMDB where in each graph
the vertices represent actors/actresses and the edges
connect people which have performed in the same movie.
Collaboration graphs are generated from movies belonging
to genres Action and Romance for IMDB-BINARYand
Comedy, Romance, and Sci-Fi for IMDB-MULTI, and for each
actor/actress in those genres an ego-graph is extracted. The
task is to identify the genre from which the ego-graph has
been generated.
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FIGURE 7 | Scatterplot of the node degree frequencies in biological datasets visualized in log-log scale.

• REDDIT-BINARY, REDDIT-MULTI5K, REDDIT-

MULTI12K

are datasets where each graph is derived from a discussion
thread from Reddit. In those datasets each vertex represent
a distinct user and two users are connected by an edge
if one of them has responded to a post of the other
in that discussion. The task in REDDIT-BINARY is to
discriminate between threads originating from a discussion-
based subreddit (TrollXChromosomes, atheism) or from
a question/answers-based subreddit (IAmA, AskReddit).
The task in REDDIT-MULTI5K and REDDIT-MULTI12K
is a multiclass classification problem where each graph
is labeled with the subreddit where it has originated
(worldnews, videos, AdviceAnimals, aww, mildlyinteresting
for REDDIT-MULTI5K and AskReddit, AdviceAnimals,
atheism, aww, IAmA, mildlyinteresting, Showerthoughts,
videos, todayilearned, worldnews, TrollXChromosomes for
REDDIT-MULTI12K).

Even if our objective was to build a method suitable for large
graphs, for the sake of completeness we also tested our method
on some small bioinformatic datasets.

• MUTAG Debnath et al. (1991) is a dataset of 188 mutagenic
aromatic and heteroaromatic nitro compounds labeled
according to whether or not they have a mutagenic effect
on the Gramnegative bacterium Salmonella typhimurium.
PTC (Toivonen et al., 2003) is a dataset of 344 chemical
compounds that reports the carcinogenicity for male and
female rats and it has 19 discrete labels. NCI1 (Wale et al.,
2008) is a dataset of 4,100 examples and is a subset of
balanced datasets of chemical compounds screened for ability
to suppress or inhibit the growth of a panel of human tumor
cell lines. PROTEINS (Borgwardt et al., 2005) is a binary
classification dataset made of 1,113 proteins. Each protein is
represented as a graph where vertices are secondary structure
elements (i.e., helices, sheets and turns). Edges connect vertices
if they are neighbors in the amino-acid sequence or in the 3D
space.

6.2. Experiments
6.2.1. E1

We experiment with SAEN applying the EGD H-
decomposition on PROTEINS, COLLAB, IMDB-BINARY ,
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FIGURE 8 | Scatterplot of the node degree frequencies in social network datasets visualized in log-log scale.

IMDB-MULTI, REDDIT-BINARY , REDDIT-MULTI5K, and
REDDIT-MULTI12K, and the NEGD H-decomposition on
MUTAG, PTC, and NCI1. We used the colors resulting from
4 iterations of the Weisfeiler-Lehman algorithm (Shervashidze
et al., 2011) as identifiers for the ego graphs contained in the
bottom level of NEGD.

In order to perform classification we add a cross-entropy loss
on the extraction step hL(s) (see Equation 2) of the top level L
(i.e., L = 2) of the EGNN H-decomposition. We used Leaky
RELUs (Maas et al., 2013) as activation function on all the units
of the neural networks {fl(.;2l)}

2
l=0

of the extraction step (cf.
Equation 2).
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SAEN was implemented in TensorFlow and in all our
experiments we trained the neural network parameters {2l}

2
l=0

by using the Adam algorithm (Kingma and Ba, 2015) tominimize
a cross-entropy loss.

For each dataset, we manually chose the number of layers and
units for each level of the part-of decomposition, the coefficient
for L2 regularization on the network weights, and the number
of training epochs. We ran 10-times 10-fold cross-validation
keeping the hyperparameters fixed, measured 10 accuracy values
(one for each of the 10 runs of 10-fold cross-validation) and
computed mean and standard deviations.

In Table 2 we provide the results obtained by running our
method, Yanardag and Vishwanathan (2015) (DGK), Niepert
et al. (2016) (PATCHY-SAN), and Atwood and Towsley (2016)
(DCNN) on social network data, while in Table 5 we provide the
results obtained running our method, PATCHY-SAN and DCNN
on bioinformatic datasets. For each experiment we provide
mean accuracy and standard deviation obtained with the same
statistical protocol.

In Table 3 we report for each dataset the radiuses r of the
neighborhood subgraphs used in the EGD decomposition and
the number of units in the hidden layers for each level.

6.2.2. E2

In Table 4 we show the file sizes of the preprocessed datasets
before and after the compression together with the data
compression ratio2. We also estimate the benefit of domain
compression from a computational time point of view and report
the measurement of the runtime for 10 epochs with and without
compression together with the speedup factor.

For the purpose of this experiment, all tests were run on
a computer with two 8-cores Intel Xeon E5-2665 processors
and 94 GB RAM. SAEN was implemented in Python with the
TensorFlow library.

6.3. Discussion
6.3.1. A1

As shown in Table 2, EGD performs consistently better than the
other three methods on all the social network datasets, with the
only exception of COLLAB where DCNN outperforms SAEN.
This confirms that the chosen H-decomposition is effective on
this kind of problems. Table 1 shows that the average maximum
node degree (AMND)3 of the social network datasets is in the
order of 102. SAEN can easily cope with highly-skewed node
degree distributions by aggregating distributed representation of
patterns while this is not the case for DGK and PATCHY −

SAN. DGK uses the same patterns of the corresponding non-
deep graph kernel used to match common substructures. If the
pattern distribution is affected by the degree distribution most
of those patterns will not match, making it unlikely for DGK
to work well on social network data. PATCHY − SAN employs
as patterns neighborhood subgraphs truncated or padded to a

2The size of the uncompressed files are shown for the sole purpose of computing

the data compression ratio. Indeed the last version of our code compresses the files

on the fly.
3The AMND for a given dataset is obtained by computing the maximum node

degree of each graph and then averaging over all graphs.

TABLE 1 | Statistics of the datasets used in our experiments.

Dataset Size Avg. vertices Avg. max. degree

COLLAB 5, 000 74.49 73.62

IMDB-BINARY 1, 000 19.77 18.77

IMDB-MULTI 1, 500 13.00 12.00

REDDIT-BINARY 2, 000 429.62 217.35

REDDIT-MULTI5K 5, 000 508.51 204.08

REDDIT-MULTI12K 11, 929 391.40 161.70

MUTAG 188 17.93 3.01

PTC 344 25.56 3.73

NCI1 4, 110 29.87 3.34

PROTEINS 1, 113 39.06 5.79

size k in order to fit the size of the receptive field of a CNN.
However, since Niepert et al. (2016) experiment with k = 10, it is
not surprising that they perform worst than SAEN on COLLAB,
IMDB-MULTI, REDDIT-MULTI5K, and REDDIT-MULTI12K
since a small k causes the algorithm to throw away most of the
subgraph; a more sensible choice for k would have been the
AMND of each graph (i.e., 74, 12, 204, and 162 respectively,
cf. Tables 1, 2). DCNN obtained the best results on COLLAB
and was competitive on IMDB-BINARY and IMDB-MULTI.
However, this method needs to compute and store the power
series P2, . . . , PH where P is the transition matrix of a graph
and so it has space complexity O(|V|2H). While the memory
usage of the algorithm did not lead to out-of-memory errors,
we noticed a huge increase of the runtime when dealing with
larger graphs. In fact, the algorithm was not able to complete
the execution on REDDIT-BINARY, REDDIT-MULTI5K, and
REDDIT-MULTI12K in a time budget of 10 days.

Table 5 compares the results of SAEN with the best
PATCHY − SAN instance on chemoinformatics and
bioinformatics datasets. Results obtained by SAEN are
comparable with the ones obtained by Niepert et al. (2016)
on NCI1 and PROTEINS, confirming that SAEN is best suited
for graphs with large degrees. Moreover, SAEN does not perform
well on MUTAG and PTC, as these datasets are too small to
afford the highly expressive representations that SAEN can learn
and in spite of regularization with L2 we consistently observed
significant overfitting.

6.3.2. A2

The compression algorithm has proven to be effective in
improving the computational cost of our method. Most of
the datasets halved their runtimes while maintaining the same
expressive power. Moreover, we reduced the memory usage on
the largest datasets to less than 40% of what would have been
necessary without compression.

7. RELATED WORKS

When learning with graph inputs two fundamental design
aspects that must be taken into account are: the choice of the

Frontiers in Robotics and AI | www.frontiersin.org 12 April 2018 | Volume 5 | Article 42

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Orsini et al. Shift Aggregate Extract Networks

TABLE 2 | Results on social network datasets (taken from Yanardag and

Vishwanathan, 2015; Niepert et al., 2016, for DGK and PATCHY-SAN,

respectively, and run using the implementation made available by Atwood and

Towsley, 2016, https://github.com/jcatw/dcnn, for DCNN).

Dataset DGK PATCHY-SAN DCNN SAEN

COLLAB 73.09± 0.25 72.60± 2.16 79.60± 0.28 78.50± 0.69

IMDB-BINARY 66.96± 0.56 71.00± 2.29 70.48± 0.29 71.59± 1.20

IMDB-MULTI 44.55± 0.52 45.23± 2.84 47.92± 0.56 48.53± 0.76

REDDIT-BINARY 78.04± 0.39 86.30± 1.58 – 87.22± 0.80

REDDIT-MULTI5K 41.27± 0.18 49.10± 0.70 – 53.63± 0.51

REDDIT-MULTI12K 32.22± 0.10 41.32± 0.42 – 45.27± 0.30

Missing values indicate that the algorithm did not complete in the given time budget.

TABLE 3 | Parameters used for the EGD decompositions for each datasets.

Dataset Decomposition Hidden units

S0 S1 S2

COLLAB EGD, r = 1 15− 5 5− 2 5− 3

IMDB-BINARY EGD, r = 2 2 5− 2 5− 3− 1

IMDB-MULTI EGD, r = 2 2 5− 2 5− 3

REDDIT-BINARY EGD, r = 1 10− 5 5− 2 5− 3− 1

REDDIT-MULTI5K EGD, r = 1 10 10 6− 5

REDDIT-MULTI12K EGD, r = 1 10 10 20− 11

MUTAG NEGD 20 40− 20 40− 20− 1

PTC NEGD 50 100− 50 100− 50− 1

NCI1 NEGD 50 100− 50 100− 50− 1

PROTEINS EGD, r = 3 3 3 9− 6− 1

TABLE 4 | Comparison of sizes and runtimes (for 10 epochs) of the datasets

before and after the compression.

Dataset Size (mb) Runtime

Original Comp. Ratio Original Comp. Speedup

COLLAB 337 119 0.35 2′ 27′ ′ 1′ 06′ ′ 2.23

IMDB-BINARY 24 18 0.75 8′ ′ 6′ ′ 1.33

IMDB-MULTI 31 25 0.81 19′ ′ 17′ ′ 1.12

REDDIT-BINARY 129 47 0.36 47′ ′ 16′ ′ 2.94

REDDIT-MULTI5K 368 132 0.36 2′ 10′ ′ 55′ ′ 2.36

REDDIT-MULTI12K 712 287 0.40 4′ 25′ ′ 2′ 02′ ′ 2.17

pattern generator and the choice of the matching operator. The
former decomposes the graph input in substructures while the
latter allows to compare the substructures.

Among the patterns considered from the graph kernel
literature we have paths, shortest paths, walks (Kashima et al.,
2003), subtrees (Ramon and Gärtner, 2003; Shervashidze et al.,
2011) and neighborhood subgraphs (Costa and De Grave,
2010). The similarity between graphs G and G′ is computed
by counting the number of matches between their common
substructures (i.e., a kernel on the sets of the substructures).

TABLE 5 | Comparison of accuracy on bio-informatics datasets (taken from

Niepert et al., 2016 for PATCHY-SAN, and run using the implementation made

available by Atwood and Towsley, 2016, https://github.com/jcatw/dcnn, for

DCNN).

Dataset PATCHY-SAN

Niepert et al. (2016)

DCNN

Atwood and Towsley (2016)

SAEN

(our method)

MUTAG 92.63± 4.21 64.18± 2.97 82.48± 1.43

PTC 62.29± 5.68 55.81± 0.00 56.80± 1.40

NCI1 78.59± 1.89 60.57± 0.35 78.62± 0.40

PROTEINS 75.89± 2.76 66.06± 0.57 72.73± 0.96

The match between two substructures can be defined by using
graph isomorphism or some other weaker graph invariant.
One advantage of graph kernels such as the Weisfeiler-Lehman
subtree kernel (WLST) (Shervashidze et al., 2011) and the
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK)
(Costa and De Grave, 2010) is the possibility to efficiently
compute explicit feature vectors, thus avoiding to solve the
optimization problem in the dual. As we explained in section 4,
we could in principle turn SAEN into a graph kernel by
removing the extraction step; this approach however would be
impractical because of the exponential growth of the number
of features. Additionally, the corresponding feature map would
be fixed before observing data, as it happens with all graph
kernels. SAEN, like other neural networkmodels, can learn graph
representations.

Micheli (2009) proposed neural networks for graphs (NN4G),
a feedforward neural network architecture for l-attributed graphs
that first applies a single layer neural network to the vertex
attributes l(v) to produce the an initial encoding x1(v) for the
vertices v in the graph G and then iteratively find new vector
representations xi(v) for the vertices of the input graphG. During
the successive iterations the state encoding xi(v) of a vertex v is
obtained by stacking a single neural network layer with sigmoid
activation functions that take as input the continuous attributes
l(v) of v and the state encodings xi′ (u) of the neighbors u of
v during all the previous iterations i′ < i. Finally, NN4G can
either learn an output representation yo(p) for the vertices (i.e.,
p = v) or for the whole graph (i.e., p = G). While the
former is obtained by stacking a single layer neural network over
the encoding of the vertices produced across all the iterations,
the latter is obtained by aggregating for each iteration i the
vertex representations xi(v) over the vertices v of G, producing a
graph representation Xi(G) for each iteration i and then stacking
stacking a single layer neural network. Differently from RNNs,
both SAEN and NN4G can learn from graph inputs without
imposing weight sharing and using feedforward neural networks.
However, while in both NN4G and RNNs the computation is
bound to follow the connectivity of the input graph, SAEN
has a computation model that follows the connectivity of H-
decompositions which can be specified by the user. Moreover,
the SAEN user can specify how the vector encoding should be
shifted before the aggregation by using the π-membership types
of the H-decompositions. Furthermore, SAEN can be trained
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end-to-end with backpropagation while NN4G was not. Indeed,
at each iteration of the computation of a state encoding NN4G
freezes the weights of the previous iterations.

Deep graph kernels (DGK) (Yanardag and Vishwanathan,
2015) upgrade existing graph kernels with a feature reweighing
schema. DGKs represent input graphs as a corpus of
substructures (e.g., graphlets, Weisfeiler-Lehman subtrees,
vertex pairs with shortest path distance) and then train vector
embeddings of substructures with CBOW/Skip-gram models4.
Each graph-kernel feature (i.e., the number of occurrences
of a substructure) is reweighed by the 2-norm of the vector
embedding of the corresponding substructure. Experimental
evidence shows that DGKs alleviate the problem of diagonal
dominance in GKs. However, DGKs inherit from GKs a flat
representation (i.e., just one layer of depth) of the input graphs
and the vector representations of the substructures are not
trained end-to-end as SAEN would do.

The use of CNNs for graphs has been initially proposed by
Bruna et al. (2014) and subsequently improved by Defferrard
et al. (2016). These works extend convolutions from signals
defined on time or regular grids to domains defined by arbitrary
undirected graphs. These methods can not be directly applied to
the graph classification problem where each graph in the dataset
has a different size and structure. PATCHY− SAN (Niepert et al.,
2016) is able to apply CNNs to the graph classification problem
by decomposing graphs into a fixed number of neighborhood
subgraphs and casting them to fixed-size receptive fields. Both
steps involve either padding or truncation in order to meet
the fixed-size requirements. The truncation operation can be
detrimental for the statistical performance of the downstream
CNN since it throws away part of the input graph. On the
other hand SAEN is able to handle structured inputs of variable
sizes without throwing away part of the them. A related neural
network architecture was recently introduced by Tibo et al.
(2017) to extend the multi-instance learning framework to data
represented as bags of bags of instances. That network can be
seen as a special case of SAEN using maximum as the aggregation
operator and no π-types (i.e., no shifts).

Atwood and Towsley (2016) proposed a diffusion-
convolutional neural network (DCNN) that can be used
for both whole-graph and node classification. A transition matrix
P (derived by normalizing the graph adjacency matrix) is used
to propagate learned representations of vertices for H iterations.
In the node classification setting a neural network is applied
on the nodes representations, while in the graph classification
setting a neural network is applied on the aggregation of the
node representations. While this method can be applied to both
node and graph classification, it has some scalability issues.
Indeed it requires to store the power series P, P2, . . . , PH and this
operation has O(|V|2H) space complexity. For this reason this
method can lead to out-of-memory errors when dealing with
large graphs.

4 The CBOW/Skip-gram models receive as inputs cooccurrences among

substructures sampled from the input graphs.

Several other researchers have studied methods for computing
node features and thus solving the node classification problem
over graphs. These methods have not been applied to the whole-
graph classification problem. On the other hand, SAEN, as
described in this paper, cannot be directly applied to the node
classification problem.

One approach to learn node representations was introduced
in Kipf and Welling (2017) within the semi-supervised learning
setting using convolutional networks. GRAPHSAGE (Hamilton
et al., 2017a) generates representations for vertices of a
graph using an algorithm inspired by the Weisfeiler-Lehman
isomorphism test. The initial representation h0v of each node
v is set to the corresponding attribute vector xv. Then, for a
fixed number of times K, a new representation for v is built
by applying a single neural network layer to the concatenation
of the node’s previous representation hk−1

v and an aggregated

representation hk
N (v)

of the neighborhood of v (according

to a neighborhood function N (v)). The approach used by
GRAPHSAGE to propagate representations is similar to the
application of SAEN’s shift-aggregate operators between level
0 and 1 of ego graph decompositions; unlike SAEN, however,
the new node descriptor is built via a single neural network
layer instead of a generic extract operation. Furthermore,
the algorithm in GRAPHSAGE is forced to use a fixed
neighborhood function for all the propagation steps, whereas
SAEN is explicitly designed to be able to handle different “part
of” relationships at different levels of the hierarchy. Finally,
while the special handling of the neighborhood’s center is
hardcoded in GRAPHSAGE, in SAEN the more generic π-
types mechanism is used to describe the role of each node
in the ego graphs, and of each ego graph in the whole
graph.

Hamilton et al. (2017b) proposed a comprehensive review of
methods to embed vertices and graphs. Sum-based approaches
such as the ones proposed by Dai et al. (2016) and Duvenaud
et al. (2015) build graph representations by summing node
embeddings or edge embeddings; these approaches however
cannot represent more complex decompositions and cannot
distinguish between vertices with different roles.

The exploitation of symmetries that we have proposed
in section 5 for compressing relational structures is related to
some algorithmic ideas that have been previously proposed for
lifted inference in graphical models.

In particular, counting belief propagation (CBP) (Kersting
et al., 2009) exploits symmetries in factor graphs in order to speed
up belief propagation. Our goal is instead to improve space and
time requirements for the SAEN computation.

In CBP, nodes and factors that send the same messages
are grouped into clusternodes and clusterfactors, respectively,
leading to a compressed factor graph. In Algorithm 1 we group
together objects in the H-decomposition that produce identical
representations under the computation defined by SAEN.

As noted in (Mladenov et al., 2014), the compressed
factor graph approach of CBP finds the same clusternodes
and clusterfactors that would be obtained by running the 1-
dimensional Weisfeiler-Lehman algorithm on the uncompressed
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factor graph. Domain compression in Algorithm 1 is also
obtained by a special form of message passing but in
this case finalized at exchanging results of the intermediate
representations computed by SAEN.

8. CONCLUSIONS

Hierarchical decompositions introduce a novel notion of depth
in the context of learning with structured data, leveraging
the nested part-of-parts relation. In this work, we defined
a simple architecture based on neural networks for learning
representations of these hierarchies. We showed experimentally
that the approach is particularly well-suited for dealing with
graphs that are large and have high degree, such as those that
naturally occur in social network data. Our approach is also
effective for learning with smaller graphs, such as those occurring
in chemoinformatics and bioinformatics, although in these cases
the performance of SAEN does not exceed the state-of-the-art

established by other methods. A second contribution of this work
is the domain compression algorithm, which greatly reduces
memory usage and allowed us to halve the training time on the
largest datasets.
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