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It is shown that the description of a relativistic fluid at local thermodynamic equilibrium depends on the 
particular quantum stress-energy tensor operator chosen, e.g., the canonical or symmetrized Belinfante 
stress-energy tensor. We argue that the Belinfante tensor is not appropriate to describe a relativistic fluid 
whose macroscopic polarization relaxes slowly to thermodynamic equilibrium and that a spin tensor, like 
the canonical spin tensor, is required. As a consequence, the description of a polarized relativistic fluid 
involves an extension of relativistic hydrodynamics including a new antisymmetric rank-two tensor as 
a dynamical field. We show that the canonical and Belinfante tensors lead to different predictions for 
measurable quantities such as spectrum and polarization of particles produced in relativistic heavy-ion 
collisions.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The measurement of a finite global polarization of particles in 
relativistic heavy-ion collisions [1], in agreement with the pre-
dictions of relativistic hydrodynamics [2,3] (see also [4–11]), has 
opened a new perspective in the phenomenology of these colli-
sions as well as in the theory of relativistic matter, showing for the 
first time a direct manifestation of quantum features in this realm. 
While a formula relating mean polarization with thermal vortic-
ity (see Sec. 3) at local thermodynamic equilibrium was obtained 
in Ref. [12], based on an educated ansatz, an exact formula is still 
missing even at global thermodynamic equilibrium with rotation. 
Meanwhile, the experiments have proved to be able to probe po-
larization differentially in momentum space [13,14] and, from the 
theory standpoint, the issue has been raised [15] about the rele-
vance of the spin tensor in the description of a relativistic fluid.

Indeed, the problem of the physical significance of the spin ten-
sor — mostly in relativistic gravitational theories, notably in the 
Einstein–Cartan theory — is a long-standing one [16] and has been 
rediscussed more recently in Refs. [17,18], where it was demon-
strated that well known thermodynamic formulae for transport 
coefficients such as viscosity do depend on the presence of a spin 
tensor. However, up to now, its relevance for the polarization mea-
sured in relativistic heavy-ion collisions has not been discussed in 
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detail, even though it was used to derive the polarization formula 
in Ref. [12]. It is one of the main goals of this paper to present and 
fully explore this theoretical issue in detail.

Our conclusion is that for a general relativistic fluid the spin 
tensor is significant, if spin density “slowly” relaxes towards equi-
librium, where slowly means on a time scale which is comparable 
to the familiar hydrodynamic time scale of evolution of charge and 
momentum densities. In this case, we will see that the descrip-
tion of the polarization of particles and the calculation of its final 
value requires a new thermodynamic potential, akin to chemical 
potential or temperature, coupled to the spin tensor. Accordingly, 
relativistic hydrodynamics should be extended to include the spin 
tensor among the evolved densities.

The paper is organized as follows: In Sec. 2 we define the spin 
tensor and its close relationship with the stress-energy tensor. Sec-
tion 3 describes the local thermodynamic equilibrium density op-
erator and its dependence on the pseudo-gauge transformations 
of the stress-energy and spin tensors. In Sec. 4 we discuss the 
physics of different local thermodynamic equilibria, while in Sec. 5
we consider consequences of using a spin tensor for measurable 
quantities such as spectra and polarization. We summarize and 
conclude in Sec. 6.

Notation: In this paper we adopt the natural units, with h̄ =
c = kB = 1. The Minkowski metric tensor is diag(1, −1, −1, −1); 
for the Levi-Civita symbol we use the convention ε0123 = 1. We 
use the relativistic notation with repeated indices assumed to be 
saturated. Operators in Hilbert space are denoted by an upper hat, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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e.g., Â. Although we work in flat space-time, in many equations 
we use covariant derivative ∇μ instead of partial derivative ∂μ to 
emphasize the validity of the relations in general coordinates.

2. Pseudo-gauge transformations

In relativistic quantum field theory in flat space-time, according 
to Noether’s theorem, for each continuous symmetry of the action 
there is a corresponding conserved current. The currents associ-
ated with the translational symmetry and the Lorentz symmetry1

are the so-called canonical stress-energy tensor and the canonical
angular momentum tensor:

T̂ μν
C =

∑
a

∂L
∂(∂μψ̂a)

∂νψ̂a − gμνL, (1)

Ĵ μ,λν
C = xλ T̂ μν

C − xν T̂ μλ

C + Ŝμ,λν
C . (2)

Here L is the lagrangian density, while ŜC reads

Ŝμ,λν
C = −i

∑
a,b

∂L
∂(∂μψ̂a)

D( Jλν)a
bψ̂

b (3)

with D being the irreducible representation matrix of the Lorentz 
group pertaining to the field. The above tensors fulfill the following 
equations:

∇μ T̂ μν
C = 0, ∇μĴ μ,λν

C = T̂ λν
C − T̂ νλ

C + ∇μŜμ,λν
C = 0. (4)

It turns out, however, that the stress-energy and angular mo-
mentum tensors are not uniquely defined. Different pairs can be 
generated either by just changing the lagrangian density or, more 
generally, by means of the so-called pseudo-gauge transformations 
[16]:

T̂ ′μν = T̂ μν + 1

2
∇λ

(
�̂λ,μν − �̂μ,λν − �̂ν,λμ

)
,

Ŝ ′λ,μν = Ŝλ,μν − �̂λ,μν, (5)

where �̂ is a rank-three tensor field antisymmetric in the last 
two indices (often called and henceforth referred to as superpoten-
tial). In Minkowski space-time, the newly defined tensors preserve 
the total energy, momentum, and angular momentum (herein ex-
pressed in Cartesian coordinates):

P̂ν =
∫
�

d�μ T̂ μν, Ĵλν =
∫
�

d�μĴ μ,λν, (6)

as well as the conservation equations (4).2 In the equation (6) � is 
a general space-like hypersurface.

A special pseudo-gauge transformation is the one where one 
starts with the canonical definitions and the superpotential is the 
spin tensor itself, that is, �̂ = Ŝ . In this case, the new spin tensor 
vanishes, Ŝ ′ = 0, and the new stress-energy tensor is the so-called 
Belinfante stress-energy tensor T̂ B ,

T̂ μν
B = T̂ μν

C + 1

2
∇λ

(
Ŝλ,μν

C − Ŝμ,λν
C − Ŝν,λμ

C

)
. (7)

1 By Lorentz symmetry transformations we understand here Lorentz boosts and 
rotations.

2 This statement only applies to Minkowski space-time, in generally curved space-
times it is no longer true [16].
3. Local equilibrium density operator

The density operator describing local thermodynamic equilib-
rium in quantum field theory was obtained in ref. [19,20] and 
has been rederived more recently in refs. [21,22]; herein, we 
briefly summarize the derivation. The local thermodynamic equi-
librium density operator is obtained by maximizing the entropy 
S = −tr(ρ̂ log ρ̂) with the constraints of given mean densities of 
conserved currents over some space-like hyper-surface �, a covari-
ant generalization of a hyperplane in special relativity. The projec-
tions of the mean stress-energy tensor and charge current onto the 
normalized vector perpendicular to � must be equal to the actual 
ones:

nμtr
(
ρ̂ T̂ μν

) = nμT μν, nμtr
(
ρ̂ ĵμ

) = nμ jμ, (8)

where the operators are in the Heisenberg representation. In ad-
dition to the energy, momentum, and charge densities, one should 
include the angular momentum density amongst the constraints in 
Eq. (8), namely:

nμtr
(
ρ̂ Ĵ μ,λν

) = nμtr
[
ρ̂

(
xλ T̂ μν − xν T̂ μλ + Ŝμ,λν

)]
= nμJ μ,λν . (9)

However, it is clear that if we have Belinfante’s stress-energy ten-
sor T̂ B with associated vanishing spin tensor, equation (9) is re-
dundant, since the angular momentum density constraint is im-
plied in (8). Hence, Eq. (8) remains the only relevant condition. The 
resulting operator reads (the subscript LE stands for Local Equilib-
rium):

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν

B βν − ζ ĵμ
)⎤⎦ , (10)

where β and ζ are the relevant Lagrange multiplier functions for 
this problem, whose meaning is the four-temperature vector and 
the ratio between local chemical potential and temperature, re-
spectively [21]. The ZLE factor is the partition function whose def-
inition is implied by the constraint trρ̂LE = 1.

We note that the operator (10) is not the actual density op-
erator, because it is not generally stationary as required in the 
Heisenberg picture. In fact, the true density operator for a system 
in local thermodynamic equilibrium coincides with that given by 
Eq. (10) at the initial time τ0, that is, with � ≡ �(τ0),

ρ̂ = 1

Z
exp

⎡
⎢⎣−

∫
�(τ0)

d�μ

(
T̂ μν

B βν − ζ ĵμ
)⎤⎥⎦ . (11)

Provided that fluxes at some timelike boundary vanish, it is possi-
ble to rewrite the actual density operator ρ̂ by using Gauss’ theo-
rem [21],

ρ̂ = 1

Z
exp

⎡
⎢⎣−

∫
�(τ)

d�μ

(
T̂ μν

B βν − ζ ĵμ
)

+
∫


d
(
T̂ μν

B ∇μβν − ĵμ∇μζ
)⎤⎦ , (12)

where the first term is the local thermodynamic equilibrium term 
at time τ and  denotes the space-time region encompassed by 
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the space-like hypersurfaces �(τ), �(τ0), and the time-like bound-
aries. Formula (12) is the essence of Zubarev’s formalism [19,20,23]
and it nicely separates the non-dissipative part (the first term in 
the exponent) from the dissipative one (the second term).3

The operator (12) becomes stationary, that is independent of 
the hypersurface �, when the four-temperature is a Killing vector 
field and the ratio between chemical potential and temperature is 
constant:

∇μβν + ∇νβμ = 0, ∇μζ = 0. (13)

The first equation above follows from the fact that Belinfante’s 
energy-momentum tensor is symmetric. In a flat spacetime, it im-
plies that the second order gradients of β vanish and β itself is 
given by the expression

βν = bν + �νλxλ, (14)

where b is a constant vector and � is a constant antisymmetric 
tensor. The conditions (13) define global thermodynamic equilib-
rium. One can also check that the (redundant) inclusion of the 
conservation of angular momentum (9) in Belinfante’s case (where 
it is reduced to the conservation of the orbital part only) does not 
change the form of global equilibrium, as this leads to a change of 
the tensor �νλ which remains constant.

One can now use the pseudo-gauge transformations of Sec. 2 to 
rewrite the local thermodynamic equilibrium density operator as a 
function of, e.g., canonical tensors. Using Eq. (7), we find:

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν

B βν − ζ ĵμ
)⎤⎦

= 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν

C βν

+1

2
βν∇λ

(
Ŝλ,μν

C − Ŝμ,λν
C − Ŝν,λμ

C

)
− ζ ĵμ

)]
. (15)

We now work out the integral involving the spin tensor. Integrat-
ing by parts we obtain

− 1

2

∫
�

d�μ

[
∇λ

(
βν Ŝλ,μν

C − βν Ŝμ,λν
C − βν Ŝν,λμ

C

)]

+ 1

2

∫
�

d�μ

[
∇λβν

(
Ŝλ,μν

C − Ŝμ,λν
C − Ŝν,λμ

C

)]
. (16)

The first term is a divergence of an antisymmetric tensor (with re-
spect to the λ ↔ μ exchange), so it can be turned into a boundary 
integral,

−1

4

∫
∂�

d S̃μλ

(
βν Ŝλ,μν

C − βν Ŝμ,λν
C − βν Ŝν,λμ

C

)
, (17)

which vanishes for suitable boundary conditions imposed on β

and/or Ŝ . The second term, on the other hand, can be rewritten 
as

−1

2

∫
�

d�μ

[
∇λβν Ŝμ,λν

C − ∇λβν

(
Ŝλ,μν

C + Ŝν,μλ

C

)]
(18)

3 We note in passing that equation (12) is basically the one used to obtain the 
first derivation of the Kubo formula of the shear viscosity [24].
by taking advantage of the antisymmetry of the last two indices. 
In this way, we finally obtain

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν

C βν − 1

2
�λν Ŝμ,λν

C

−1

2
ξλν

(
Ŝλ,μν

C + Ŝν,μλ

C

)
− ζ ĵμ

)⎤
⎦ , (19)

where

�λν = 1

2
(∇νβλ − ∇λβν) (20)

is the thermal vorticity, compare Eq. (14), and

ξλν = 1

2
(∇νβλ + ∇λβν) (21)

is the symmetric part of the gradient of the four-temperature vec-
tor.4

The conclusion we can draw from Eq. (19) is apparent. If we 
had used the canonical stress-energy tensor instead of Belinfante’s 
form, enforcing only the constraints (8) with T̂C replacing T̂ B to 
maximize the entropy, we would have obtained a formally analo-
gous expression for the local thermodynamic equilibrium density 
operator, i.e., Eq. (10) with T̂ B replaced by T̂C . However, as shown 
above, the new local thermodynamic equilibrium operator would 
have not been the same as that given by Eq. (19). Therefore, in 
general, there is no equivalence of description of local thermody-
namic equilibrium with different sets of tensors. This conclusion 
is not surprising after all because densities rather than integrated 
quantities are fixed by the constraints in local thermodynamic 
equilibrium and densities do depend on the pseudo-gauge choice 
(5): the concept of local thermodynamic equilibrium is not pseudo-
gauge independent.

One may wonder, however, if the use of canonical tensors sim-
ply requires the inclusion of Eq. (9) besides Eq. (8). In fact, since 
Eq. (10) is equivalent to Eq. (19), by inclusion of the spin tensor 
within the canonical approach, one can indeed obtain the same ρ̂LE

for the canonical and Belinfante’s schemes. This issue will be dis-
cussed in greater detail in the next section. Nevertheless, at global 
thermodynamic equilibrium, the equivalence is fully restored: the 
tensor (21) vanishes according to (13), the four-temperature vector 
is given by (14), � is constant and the density operator becomes:

ρ̂ = 1

Z
exp

[
−bμ P̂μ + 1

2
�μν Ĵμν + ζ Q̂

]
, (23)

where P̂μ and Ĵμν are given by Eq. (6) and Q̂ is the total charge 
defined as

Q̂ =
∫
�

d�μ̂ jμ. (24)

The form (23), depending on the generators, is manifestly invariant 
under any pseudo-gauge transformation.

4 It is worth noting that for the free Dirac field, the canonical spin tensor has the 
form

Ŝμ,λν
C = i

8
ψ̂{γ μ, [γ λ,γ ν ]}ψ̂, (22)

which is completely antisymmetric, the term proportional to ξ in Eq. (19) vanishes. 
It has been recently pointed out that a non-completely antisymmetric spin tensor 
can be connected to a non-vanishing energy dipole moment [25].
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4. Local thermodynamic equilibrium with spin tensor and spin 
hydrodynamics

As it has been mentioned at the end of the previous sec-
tion, it seems compelling to include angular momentum density 
amongst the constraints defining local thermodynamic equilibrium, 
see Eq. (9), in case one starts from the canonical set of tensors or 
any other set linked to the canonical set by a pseudo-gauge trans-
formation. Indeed, as the orbital part of J in Eq. (9) is already 
taken into account in the energy-momentum density constraints, 
the only effective additional equation is

nμtr
(
ρ̂ Ŝμ,λν

) = nμSμ,λν . (25)

For the above to be actually an independent constraint, the intro-
duction of an antisymmetric tensor field �λν is necessary. Below it 
is dubbed a spin tensor potential or shortly a spin potential.5 In anal-
ogy with the chemical potential, the components of � play a role 
of Lagrange multipliers coupled to the spin tensor. Including the 
further constraint (25) the construction of local equilibrium den-
sity operator by means of entropy maximization yields:

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μνβν − 1

2
�λν Ŝμ,λν − ζ ĵμ

)⎤
⎦ .

(26)

One can now seek for the conditions required for the density op-
erator to be stationary, i.e., for global thermodynamic equilibrium. 
By requiring that the integrand has zero divergence, one always re-
trieves the condition (13), i.e., β ought to be a Killing vector and ζ
to be a constant. Furthermore, if � = � , the form of the density 
operator (23) depending on integral generators is also recovered.6

If we now carry out a pseudo-gauge transformation with �̂ =
Ŝ in Eq. (5) to eliminate the spin tensor and recover Belinfante’s 
stress-energy tensor (by Belinfante’s tensors we now understand 
those obtained by the pseudo-gauge transformation with �̂ = Ŝ
of any original tensors T̂ μν and Ŝμ,λν ) by means of a derivation 
analogous to that presented in the previous section one obtains

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν

B βν − 1

2
(�λν − �λν)Ŝμ,λν

+1

2
ξλν

(
Ŝλ,μν + Ŝν,μλ

) − ζ ĵμ
)⎤

⎦ , (27)

where � is the thermal vorticity. Consequently, the local ther-
modynamic equilibrium operator (26), hence (27), is equivalent to 
that built directly from Belinfante’s tensor, see Eq. (10) if the fol-
lowing conditions are met:

1. the field β is the same in both cases;

5 In Ref. [15], where a hydrodynamic model of particles with spin 1/2 was pro-
posed, this quantity was denoted as ωλν and dubbed the spin-polarization tensor.

6 We note that the requirement of vanishing divergence, that is, stationarity in 
Eq. (26), may imply additional forms of global equilibrium with � �= � . The ap-
pearance of these solutions depends on the symmetry features of the stress-energy 
and spin tensors. In particular, if the stress-energy tensor is symmetric, ̂T μν = T̂ νμ , 
and yet the spin tensor does not vanish, the spin potential can be constant and 
independent of � or even can be non-constant, provided that it fulfills the con-
traction (∇μ�λν) ̂Sμ,λν = 0. The reason for the appearance of such solutions is that 
if T̂ is symmetric and Ŝ �= 0 then ∇μŜμ,λν = 0, hence, there exists an additional 
conserved charge — the integral of the spin tensor.
2. the tensor � always coincides with thermal vorticity con-
structed from the β field;

3. the term involving the symmetric combination in λ and ν in-
dices of the spin tensor vanishes.

The first condition is less trivial than it might look at a first glance. 
When imposing the constraints (8) with different tensors, the field 
β being a solution of the constraints, like e.g.

tr(ρ̂[β, ζ, . . .]T̂ μν)nμ = T μνnμ,

depends on the choice of the stress-energy tensor, namely the 
pseudo-gauge, and it is thus generally different.

The same conclusion can be reached for a more general pseudo-
gauge transformation (5). The formal invariance of the operator 
(26) holds if β ′ = β , �′ = � = � , where β ′ and �′ are the new 
thermodynamic fields for the new set of stress-energy and spin 
tensors, and if the term proportional to ξ vanishes.

Finally, we would like to point out that a density operator such 
as (27) involves the appearance in the entropy current expression 
of a term depending on the spin potential and the spin tensor. 
Following the argument given in Ref. [21] and assuming the ex-
tensivity of log ZLE,

log ZLE

= log tr

⎛
⎝exp

⎡
⎣−

∫
�

d�μ

(
T̂ μνβν − 1

2
�λν Ŝμ,λν − ζ ĵμ

)⎤
⎦

⎞
⎠

=
∫
�

d�μφμ,

it is possible to readily obtain an entropy current sμ from the total 
entropy S = −tr(ρ̂LE log ρ̂LE),

sμ = φμ + T μν
LE βν − ζ jμLE − 1

2
�λνSμ,λν

LE , (28)

where the LE subscript stands for the mean value with the den-
sity operator (26). This vector is, however, not uniquely defined 
as it is possible to add vectors orthogonal to nμ to obtain the 
same total entropy. In spite of this ambiguity, the entropy current 
ought to be conserved when T μν = T μν

LE and Sμ,λν = Sμ,λν
LE at any 

time, a condition which is apparently the natural extension of the 
definition of an ideal fluid. The entropy current conservation is a 
consequence of the equation (5.8) in ref. [20] which can be readily 
extended to the case with spin tensor.

4.1. Discussion

It is now time to pause and reflect about the physical inter-
pretation of the discussed formalism. The notion of local thermo-
dynamic equilibrium requires the existence of two separate space-
time scales: a microscopic one over which information is not ac-
cessible and a macroscopic one which is used to observe system’s 
evolution towards global equilibrium. It is understood in the choice 
of the operator (26) that the spin density appears among densities 
which “slowly” evolve towards global equilibrium, just like a con-
served charge density or energy density. The dissipative, entropy-
increasing processes must drive the system to global equilibrium, 
hence (at least for systems with non-symmetric stress-energy ten-
sor) the spin potential � should converge to the thermal vorticity 
(see [26] for a similar discussion). Yet, this process may be slow 
enough so that the spin relaxation takes place on the same time 
scale as the typical dissipative hydrodynamic process. In this case, 
spin density can be thought as hydrodynamically relevant, and the 
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Fig. 1. (Color online) a) a macroscopic fluid at rest with polarized particles (black 
arrows) and antiparticles (red arrows). This situation, even if metastable, requires a 
spin tensor to be described, b) if the spin tensor vanishes, the fluid must be rotating 
(non-vanishing thermal vorticity) to have polarized particles and antiparticles in the 
same direction.

spin potential would be a relevant hydrodynamic field. Conversely, 
if the density operator were chosen to be (10), this would imply 
that the spin relaxation time is microscopically small and the value 
of the spin potential agrees with thermal vorticity.

The two situations described above can be effectively rephrased 
in a kinetic picture with colliding particles: in the first case, we 
would say that the spin-orbit coupling of the particles is much 
weaker than other processes responsible, for example, for local 
equilibration of their momentum. In the second case, the spin-
orbit coupling would be as strong as any other coupling so that 
the spin degrees of freedom locally equilibrate within the same 
time scale as momentum.

For the purpose of illustration of the facts described above, one 
can envisage a fluid temporarily at rest with a constant temper-
ature T , hence β = (1/T )(1, 0), wherein both particles and an-
tiparticles are polarized in the same direction (see Fig. 1). Such 
a situation cannot be described as local thermodynamic equilib-
rium by the density operator (10) because the only way to have 
particles and antiparticles polarized in this case is through a non-
vanishing thermal vorticity [12] which vanishes if β is constant. 
In fact, if we only had Belinfante’s stress-energy tensor at our dis-
posal and were able to force the system to be in such an initial 
configuration, we could describe it only after a microscopic time 
scale, when a rotating configuration is established, with � �= 0. 
Conversely, with the density operator (26) such a metastable situ-
ation, evolving in time, can be described by a non-vanishing spin 
potential even though thermal vorticity is vanishing.

This situation is reminiscent of the Einstein and de Haas effect: 
angular momentum conservation induces a rotation of the body 
because of the polarization brought about by a magnetic field. 
Yet, there is an important difference: even though the rotation oc-
curred on a “long” time scale, for the Einstein and de Haas effect 
to be described there is no need of a spin tensor nor of a spin 
potential, because of the absence of antimatter: the magnetization 
tensor Mμν as a macroscopic density (which, for the Dirac field, is 
proportional to iψ̂[γ μ, γ ν ]ψ̂ ) and the magnetic field as thermo-
dynamic conjugate variable would suffice. Only when antimatter is 
involved, that is in a quantum relativistic field theory, do the spin 
tensor and the spin potential become necessary to describe a slow 
equilibration process of the polarization. In the limiting case of a 
completely neutral fluid at rest, with the same number of parti-
cles and antiparticles, the magnetization tensor would be zero and 
yet a metastable state with particles and antiparticles can exist. 
Mathematically, this is reflected in the linear independence of spin 
tensor (which is the dual of the axial current) and magnetization 
tensor in the Dirac theory.

4.2. Relativistic hydrodynamics with spin tensor

If we are then to describe a relativistic fluid where polarized 
configurations are not governed only by thermal vorticity, one has 
to introduce a spin potential tensor � among the conjugate ther-
modynamic fields, besides β and ζ (the first steps in this direction 
have been done in Refs. [15,27–29]). In the associated relativistic 
hydrodynamics, its 6 independent components have to be deter-
mined from the solutions of the 6 additional partial differential 
equations

∂λSλ,μν = T νμ − T μν, (29)

which appear besides the familiar ones, describing the continuity 
of stress-energy tensor and current. Of course, one needs the con-
stitutive equations of the spin tensor, the stress-energy tensor, and 
the current in terms of � to be able to solve all hydrodynamic 
equations. In general, they are functional relations

jμ = jμ[β, ζ,�], T μν = T μν [β, ζ,�],
Sλ,μν = Sλ,μν [β, ζ,�]. (30)

At the lowest order of approximations, the constitutive relations 
are obtained by calculating the mean values with the local equilib-
rium density operator (26). Dissipative corrections depending on 
gradients of β and � can be calculated with the same method 
outlined when discussing Eqs. (11) and (12).

5. Polarization in relativistic heavy-ion collisions

Does the introduction of a spin tensor in a fluid have any mea-
surable consequence? This is an intriguing question with possible 
far-reaching consequences. Even though the hydrodynamic model 
has become one of the most useful tools for modeling of heavy-
ion collisions, it should be stressed that neither the stress-energy 
tensor nor any other density in space and time can be directly 
measured or accessed. The actual measurements, like in any high-
energy physics experiment, involve momentum and polarization 
of asymptotic particle states; the hydrodynamic model is just an 
intermediary between some initial state and the final particle spec-
tra. In fact, strictly speaking, even in astrophysics one can only 
measure the radiation emitted by the plasmas and not the den-
sities themselves.

In fact, measurable quantities in these experiments can be gen-
erally expressed as expectation values of some number of creation 
and destruction operators of asymptotic states, specifically, of final 
hadrons in the case of relativistic heavy-ion collisions. For instance, 
the single-particle polarization matrix of a particle with momen-
tum p reads

W (p)σ ,σ ′ = tr(ρ̂ a†(p)σ a(p)σ ′), (31)

where ρ̂ is the actual density operator. From the above matrix, 
well known quantities such as the mean spin vector, the alignment, 
etc. can be calculated, including the momentum spectrum itself by 
just taking the trace. Equation (31) makes it apparent that – if any 
– the dependence of measured particle spin and momenta on hy-
drodynamics with spin tensor is encoded in the density operator.

It has been discussed in Sec. 3, that the actual density operator 
is the initial local thermodynamic equilibrium obtained from Eq. (11), 
which includes dissipative effects, as it is clear from Eq. (12). The 
form (11) is hardly fit to calculate quantities like (31) because 
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field operators are to be evaluated at the initial time τ0 while the 
creation and destruction operators are those of asymptotic states. 
In particular, for relativistic heavy-ion collisions, the operators at 
the initial time are those of the quark-gluon fields while the cre-
ation and destruction operators are those of final hadrons. Thus, 
it is necessary to make use of the form (12) involving the ef-
fective fields at the final time τ , where the effective fields are 
the hadronic ones, to carry out the calculation of Eq. (31). Nev-
ertheless, the effect of pseudo-gauge transformations on the actual 
density operator, written in any of its equivalent forms, can be as-
sessed by studying its effect on the initial-time form (the latter is 
more convenient to use because of its compactness).

In a hydrodynamic approach based on Belinfante’s scheme, the 
actual density operator would be precisely given by (11), while in 
a canonical-based hydrodynamics with relevant spin densities it 
would read

ρ̂ ′ = 1

Z
exp

⎡
⎢⎣−

∫
�(τ0)

d�μ

(
T̂ μν

C βν − 1

2
�λν Ŝμ,λν

C − ζ ĵμ
)⎤

⎥⎦ .

(32)

Equation (32) can be transformed in the same way as in the pre-
vious section and turned into an expression like Eq. (27), namely

ρ̂ ′ = 1

Z
exp

⎡
⎢⎣−

∫
�(τ0)

d�μ

(
T̂ μν

B βν − 1

2
(�λν − �λν)Ŝμ,λν

C

+1

2
ξλν

(
Ŝλ,μν

C + Ŝν,μλ

C

)
− ζ ĵμ

)⎤
⎥⎦ . (33)

Therefore, for any measurable quantity X̂ , there would be a differ-
ence between the mean values calculated with the density opera-
tors (11) and (33). Defining:

Â =
∫

�(τ0)

d�μ

(
T̂ μν

B βν − ζ ĵμ
)

(34)

and

B̂ =
∫

�(τ0)

d�μ

[
−1

2
(�λν − �λν)Ŝμ,λν

C

+1

2
ξλν

(
Ŝλ,μν

C + Ŝν,μλ

C

)]
, (35)

one has

�X = tr(ρ̂ ′ X̂) − tr(ρ̂ X̂) = 1

Z ′ tr(e Â+B̂ X̂) − 1

Z
tr(e Â X̂)

�
1∫

0

dz tr
[
ρ̂ X̂ez Â

(
B̂ − tr(ρ̂ B̂)e−z Â

)]
, (36)

where the right-hand side is the leading term in the linear re-
sponse theory. If ŜC is the canonical spin tensor of the Dirac field, 
the term in ξ vanishes because ŜC is a completely antisymmetric 
tensor and, hence, the difference in the theoretical value depends 
on the correlator between X̂ and B̂ , that is the integral of the spin 
tensor weighted by the difference between spin potential and ther-
mal vorticity. The evaluation of (36) is not an easy task but it can 
be envisaged that this difference will be a quantum effect and a 
tiny one for most observables which mostly depend on the β field, 
namely velocity and temperature field, such as the momentum 
spectra. In fact, the difference could be significant for observables 
which depend linearly on the thermal vorticity, such as polariza-
tion.

6. Conclusions

In summary, we have shown that the non-equilibrium or local-
equilibrium thermodynamics is sensitive to the pseudo-gauge 
transformation of the stress-energy and spin tensors in quantum 
field theory. This conclusion is a considerable extension of previ-
ous arguments [17,18], as we have shown here that pseudo-gauge 
transformations quantitatively affect theoretical values of mea-
surable quantities in high-energy physics experiments, especially 
polarization of final particles created in relativistic heavy-ion colli-
sions.

The inequivalence of different stress-energy tensors arises most 
clearly in the description of a completely neutral fluid at rest 
with finite polarization of both particles and antiparticles — this 
corresponds to a metastable local equilibrium state that has a fi-
nite value of some spin tensor and zero (thermal) vorticity. If the 
stress-energy tensor used is Belinfante’s symmetrized one, finite 
polarization should always be accompanied by a macroscopic rota-
tion.

This pseudo-gauge inequivalence has a hydrodynamic coun-
terpart. Hydrodynamics of metastable polarized neutral fluids re-
quires a rank two spin potential tensor �μν as conjugate thermo-
dynamic field to the spin tensor. This addition of course compli-
cates the standard hydrodynamic equations to be solved.

Finally, it should be pointed out that the question remains how 
to determine the “right” spin tensor among all possible ones. In-
deed, the canonical spin tensor obtained from Eq. (3) is one par-
ticular option; other spin tensors can be obtained by applying a 
pseudo-gauge transformation and they will not yield the same 
local thermodynamic equilibrium operator, according to the dis-
cussion in Sect. 4 following Eq. (27). Apparently, the issue cannot 
be settled theoretically, but experimentally comparing measured 
quantities to the different predictions. We note that similar issues 
have been very intensively studied in the context of the proton 
spin decomposition, for example see Refs. [30,31].
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