
1 
 

 

 

DOTTORATO DI RICERCA IN SCIENZE 

AGRARIE E AMBIENTALI - CICLO XXXI 

SSD: Zoocolture – AGR/20 

 

 

 

 

 

Application of the Mechanical Separation Process 

in Different Fish Species for the Development of a 

New Product Based on Fish 

 

 

 

 

 
PhD student 

Yara Husein 

 

 

 

 

Tutor 

Prof. Giuliana Parisi 

 

 

 

 

Coordinator 

Prof. Giacomo Pietramellara 

 

 

ACADEMIC YEARS 2015-2019 



2 
 

 

 

 

  



3 
 

 

 

 

 

 

 

Declaration 

I hereby declare that this submission is my own work and that, to the best of my knowledge and 

belief, it contains no material previously published or written by another person nor substantially 

overlapping with material submitted for the award of any other degree or diploma of the university 

or other institute of higher learning, except where due acknowledgment is made in the text. 

A copy of the thesis will be available by DISPAA 

 

at http://www............unifi. it/ 

   



4 
 

  



5 
 

AKNOWLEDGEMENTS  



6 
 

Table of contents 

 

PART 1 ............................................................................................................................................................ 11 

1. Introduction ................................................................................................................................................. 14 

1.1 The fish sector ...................................................................................................................................... 14 

1.1.1 The importance of fish as a source of nutrients ......................................................................... 14 

1.1.2 Fish production: a global overview ............................................................................................. 15 

1.1.3 Fish production in the EU ............................................................................................................ 18 

1.1.4 Fish production in Italy ................................................................................................................ 20 

1.1.5 Fish consumption: an overview ................................................................................................... 21 

1.1.6 Main cultured fish species in Italy .............................................................................................. 22 

1.1.7 Discard fish- species of low commercial value ........................................................................... 28 

1.2. Mechanical separation of the meat (MSM) ...................................................................................... 29 

1.2.1 Historical background of mechanically separated meat ........................................................... 29 

1.2.2. Definition and legislative requirements of mechanically separated meat .............................. 30 

1.2.3. Methods for meat recovery ......................................................................................................... 33 

1.2.4 Meat recovery through other than mechanical methods .......................................................... 36 

1.2.5. Composition and characteristics of mechanically separated meat and fish ........................... 37 

1.2.6. Oxidative instability of mechanical separated fish and the supporting mechanism ............. 41 

1.2.7. Health and safety characteristics of the MSM and productive limitations ............................ 44 

1.3. Ready to Eat products ........................................................................................................................ 46 

1.3.1 Consumer attitude towards fish products .................................................................................. 46 

1.3.2 Ready-to-eat seafood products .................................................................................................... 50 

1.3.3 Fishburger derived from fish MSM and their acceptability ..................................................... 51 

1.3.4 Characteristics of ready-to-eat (RTE) and ready-to-cook (RTC) fish ..................................... 52 

2. Aims of the study ......................................................................................................................................... 55 

3. Materials and Methods ................................................................................................................................ 56 

3.1 Physical analyses .................................................................................................................................. 59 

3.1.1 Texture ........................................................................................................................................... 59 

3.1.2 pH ................................................................................................................................................... 59 

3.1.3 Colour ............................................................................................................................................ 60 

3.1.4 Water Holding Capacity (WHC) ................................................................................................. 61 

3.2 Chemical analyses ................................................................................................................................ 62 

3.2.1 Proximate composition ................................................................................................................. 62 

3.2.2 Total lipids and Fatty acid composition...................................................................................... 62 



7 
 

3.2.3 TBARS ........................................................................................................................................... 63 

3.2.4 Conjugated dienes......................................................................................................................... 64 

3.2.5 Antioxidant power ........................................................................................................................ 64 

3.2.6 Mineral composition ..................................................................................................................... 65 

3.3 Sensory analysis ................................................................................................................................... 65 

3.4 Statistics ................................................................................................................................................ 66 

References ....................................................................................................................................................... 68 

PART 2 .............................................................................................................................................................. 84 

Paper 1 ........................................................................................................................................................ 85 

Paper 2 ...................................................................................................................................................... 106 

Paper 3 ...................................................................................................................................................... 128 

Other contributions ....................................................................................................................................... 155 

ASPA 22nd Congress ................................................................................................................................... 156 

WEFTA 48th Congress ................................................................................................................................ 160 

General conclusions....................................................................................................................................... 164 

 



8 
 

TABLE OF FIGURES 

Figure 1. Fish as a source of nutrients………………………………………………………...……………15 

Figure 2. Comparison of world capture and aquaculture in the total production of aquatic animals 

(excluding algae)…………………………………………………………………………………………….16 

Figure 3. Farmed aquatic animal production in 2014: regional production and top 5 producers…….17 

Figure 4. Aquaculture production and fish catches in EU-28, in 2015………………………….……….18 

Figure 5. Ten major species of the aquaculture production in EU-28, in 2014…………………………19 

Figure 6. Production of portion-size trout (tonnes) in Europe and Turkey (FEAP, 2015)……………..23 

Figure 7. Rainbow trout (Oncorhynchus mykiss)…………………………………………………………24 

Figure 8. European sea bass (Dicentrarchus labrax)……………………………………………………..26 

Figure 9. Gilthead sea bream (Sparus aurata)…………………………………………………………….27 

Figure 10. Low pressure (left) and high-pressure (right) obtained MSM………………………………32 

Figure 11. Scheme of belt-drum system……………………………………………………………….…..34 

Figure 12. Scheme of endless screw technology…………………………………………………………..35 

Figure 13. Scheme of hydraulically pressed batch……………………………………………………….36 

Figure 14. Texturometer with the appropriate blade used……………………………………..………59 

Figure 15. The relationship among hue, lightness and chroma…………………………………..…….61 

Figure 16. Colour distribution on CIELab scale………………………………………………….…….61 

Figure 17. Filter inserted in the centrifuge tube (left). Weighed samples to put in the oven (on the 

right)………………………………………………………………………………………………….……62 

 

 



9 
 

LIST OF TABLES 

Table 1. Positive and negative characteristics of fish ready-to-eat products in the market………….54 

Table 2. List of the analyses conducted in each research………………………………………………57 

Table 3. List of papers derived from PhD research activities………………………………………….58 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

PART 1 



12 
 

Abstract 
This PhD thesis is based on three main trials. The overall aim was to investigate the feasibility of 

using discard fish by adopting mechanical separation process to different fish species for creating 

new fish products (fish burgers). Different formulae of fish burgers were evaluated physically, 

chemically, nutritionally, and sensorily. 

The first research was conducted in order to investigate the impact of exploiting fish waste by 

mechanical separation process (MS) in order to produce ready-to-eat/cook foods based on fish. The 

aim was to evaluate the effect of MS process on physical and chemical characteristics, and on the 

nutritional value of the three farmed species: the European sea bass (Dicentrarchus labrax), gilthead 

sea bream (Sparus aurata), and rainbow trout (Oncorhynchus mykiss). Specifically, mechanically 

separated meat (MSM) burgers were compared with manual minced-burgers and whole fillets by 

evaluating yield, colour, pH, dienes, proximate composition, fatty acid profiles, and mineral 

composition. Results revealed that rainbow trout showed the highest yield for both manually and 

mechanically separated meat (53 and 50 g/100 g, respectively). The yield of MS process of sea bass 

and sea bream was higher than the manual operation yield (42 and 45 g/100 g, respectively against 

39 and 40 g/100 g). The proximate composition, pH, colour, and mineral compositions are differently 

affected by MS process in the different fish species. However, MS slightly increased water content 

in sea bream and trout (71.12, and 70.65 g/100 g, respectively against 68.05, and 68.11 g/100 g of 

fillets) and decreased minerals, especially in trout, which showed loss of Ca, Mg, Na, and P. 

Interestingly, the fatty acid profiles of whole fillet, MS burger, and minced burger did not change. In 

conclusion, the MS process enabled manufacturing products with good characteristics in terms of 

yield and maintained nutritional value. 

In the second research, non-directly marketable specimens of European sea bass (Dicentrarchus 

labrax) and rainbow trout (Oncorhynchus mykiss) were used in order to produce healthy clean label 

products, and to examine the instrumental, chemical and sensory properties of raw and cooked fish 

burger recipes obtained from MSM characterized by differences in the recipe composition. Consumer 

attention towards healthy and more natural foods and producer attempts to reduce food loss have 

become more popular nowadays. For this reason, shear stress, proximate composition, fatty acid 

composition, and sensory characteristics of four formulations of fish burgers were examined. The 

four formulae differed in the ratios of European sea bass to rainbow trout (50:50 and 30:70) and the 

ratios of fish to potato flakes (dry matter ratio, DMR: 2.5:1 and 1.5:1). Results showed that the sensory 

attributes were affected mostly by the potato content of fish burger, whereas the effect of sea bass to 

trout ratio was negligible. The recipes with higher DMR were related to sandy, crusty, and dry 
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features, salty taste and the flavour of raw fish, while the lower DMR recipes were distinguished by 

soft texture, and a starchy flavour and a flavour of fish cooked in the oven. Moreover, shear stress 

was unaffected by the different ratios of fish or potato flakes in raw and cooked burgers. However, 

raw burgers with lower DMR had higher moisture and ash, and lower protein content, while cooked 

burgers with lower DMR had higher moisture and lower protein content. Interestingly, the fatty acid 

profiles of the four cooked burger recipes were not significantly different, and a quantity of 100 g of 

burger provided more than the recommended daily intake of the essential fatty acids. In brief, 

development of ready-to-cook products based on under-utilized fish through four clean label recipes 

of high nutritional value and good sensory attributes was attained, irrespective of prevalence of 

rainbow trout over the more expensive sea bass, or using higher ratio of potato flakes. 

In the third study instead, two mechanically separated meat from two fish species, the European sea 

bass (Dicentrarchus labrax), and rainbow trout (Oncorhynchus mykiss), were used for obtaining fish 

burgers submitted to a frozen storage. Recently ready-to-cook fish products, which are generally 

marketed as frozen and need some culinary preparation, stimulated the fish consumption. Therefore, 

the target of this research was to study the effect of two recipes, distinguished by the ratios of 

European sea bass to rainbow trout (50:50 and 30:70), and storage duration at sub-zero temperatures 

for obtaining convenient, easy-to-prepare, and good quality products. Particularly, the physical, 

chemical, and nutritional properties of raw and cooked fish burger of different formulations were 

assessed during storage. Results revealed that raw recipes with more trout have higher moisture, shear 

stress, yellowness, and intense colour. Conversely, they have lower values of primary (conjugated 

dienes) and secondary (TBARS) oxidation products. On the other hand, cooked recipes with more 

trout have more moisture, but lower protein content, and higher water holding capacity, yellowness, 

and intense colour. Furthermore, storage was found to significantly affect the shear stress, water-

holding capacity and colour in raw and cooked fish burgers, causing their values to decline at the end 

of the storage. Excitingly, the nutritional value of raw and cooked fish burgers was decent and was 

not altered by the different formulae and storage durations. The highest oxidative stability was 

obtained in fish burger containing a high proportion of rainbow trout, which could be a matter of 

importance for the seafood industry because to the lower economical value of this species than sea 

bass. 
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1. Introduction 

1.1 The fish sector 

1.1.1 The importance of fish as a source of nutrients 

Fish has always been one of the essential elements for the nourishment of humankind. From the 

beginning of human history, humans worked to provide themselves and their families with this 

precious food, acquiring the techniques and skills for fishing from the water along the rivers as in the 

open sea. Coastal civilizations had always a direct access to fish capture, enjoying seasonality and 

natural availability. However, peoples who lived in the hinterland could not benefit by the same scale. 

Only with the birth of trades, fish became a food of greater enjoyment for everyone, and is still one 

of the most traded food products worldwide (Allison, 2011). 

Nowadays, hunger and malnutrition are the world’s most devastating problems, and inextricably 

linked to poverty. About 795 million people are globally undernourished (FAO, IFAD & WFP, 2015). 

Fish and other aquatic animals make an indispensable contribution to food and nutrition security in 

many Asian and African countries and the aquaculture sector, especially the capture fisheries that 

provide a vast majority of livelihood opportunities, highly nutritious fresh and processed fish of the 

poor (Belton & Thilsted, 2014). However, the global population is increasing and, in order to maintain 

at least the current level of per-capita consumption of aquatic foods, which was equal to 20.3 kg in 

2016 (FAO, 2018), the world will require an additional 23 million tonnes thereof by 2020. 

Fish is acknowledged as an integral component of a well-balanced diet, providing a healthy source 

of energy, high-quality proteins, vitamins and a wide range of other important nutrients as it is shown 

in Figure 1. Fish protein accounts to about 17% of the protein in the diet at the global level but 

exceeding 50% in many least-developed countries. In addition, fish is rich of long-chain 

polyunsaturated fatty acids, particularly omega-3 fatty acids, and in particular of docosahexaenoic 

acid (DHA) and eicosapentaenoic acid (EPA) which have shown beneficial effects for optimal 

neurodevelopment in children and for improving cardiovascular health (FAO, 2016; FAO, 2018). 

Moreover, fish consumption is accompanied with many health outcomes: reducing the risk of death 

from coronary heart disease; improving neurodevelopment in infants and young children, when 

mothers consume fish before and during pregnancy and during breastfeeding; and playing a major 

role in correcting unbalanced diets (FAO, 2014). Fish not only provide macronutrients, but also 

micronutrients that are not widely available from other sources in the diets of the poor people. 

Micronutrient deficiencies affect hundreds of million people, especially women and children in the 

developing world. More than 250 million children worldwide are at risk of vitamin A deficiency, 200 
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million people have goitre, and 20 million are mentally retarded, as a result of the iodine deficiency. 

Almost 2 billion people (nearly 30% of the world’s population) are iron deficient, and 800 000-child 

deaths per year are attributable to zinc deficiency (FAO, 2014). 

Fish products are considered among the main sources of vitamins and minerals. Small-sized fish 

species are consumed as a whole, with heads and bones, and can be an excellent source of many 

essential minerals such as iodine, selenium, zinc, iron, calcium, phosphorus, potassium, and vitamins 

such as vitamins A, D and B (Roos et al., 2007). The levels of these nutrients are also high in larger 

fish, but the highest contents are in the parts that are usually not eaten, such as heads, bones and 

viscera. Fatty fish can also be an important and unique source of vitamin D, which is essential for 

bone health. In areas lacking sun in winter where the skin is not exposed to sunshine, vitamin D 

deficiency is increasingly acknowledged as a serious health problem, but it can potentially be 

corrected by increased consumption of fatty fish. 

 

 

Figure 1. Fish as a source of nutrients (FAO, 2017). 

 

1.1.2 Fish production: a global overview 

As mentioned above, fisheries and aquaculture are important sources of food, nutrition, income and 

livelihoods for hundreds of millions of people around the world, thanks to its contribution to eliminate 

hunger and poverty, promote health, and create employment. Recently, fish production is not only 

based largely on fish capture, but also on aquaculture production that is steadily growing in many 

parts of the world. Figure 2 shows that within the last four decades, the aquaculture production has 
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substantially increased, almost by four times from less than 20 million tons in the 1990s to almost 80 

million tons in 2016, and it is projected to further go up and to exceed 100 million tons by 2025. In 

fact, its contribution to the total world production of aquatic animals has recently (in 2014) exceeded 

that of capture destined for human consumption (OECD/FAO, 2017). 

 

 

Figure 2. Comparison of world capture and aquaculture in the total production of aquatic animals (excluding 

algae) (OECD/FAO, 2017). 

 

World production from fishing in 2014 was 93.4 million tons, from which 81.5 million tons came 

from marine waters, while the remaining 11.9 million tons from inland waters. The main groups of 

species produced from inland aquaculture and marine aquaculture differ across continents. They 

include 362 species of finfish (including hybrids), 104 of molluscs, 62 of crustaceans, 6 of frogs and 

reptiles, 9 of aquatic invertebrates, and 37 of aquatic plants. Figure 3 shows the aquaculture 

production by continent and for the ten top producing countries. All continents display a general trend 

of an increasing share of aquaculture, with Asia having the highest percentage of fish production 

(89%), while Oceania’s share has declined in the last three years (FAO, 2016). 

Worldwide, 35 countries produced more farmed than wild-caught fish in 2014. These countries have 

a population of 3.3 billion (45% of the world’s population), including the five major producers 

namely: China, India, Viet Nam, Bangladesh, and Egypt (FAO, 2016). In terms of marine fishery 

capture, the top four producers in the world are China (14,811,390 tons), Indonesia (6,016,525 tons), 

the United States of America (4,954,467 tons) and the Russian Federation (4,000,702 tons) (FAO, 

2016; FAO, 2018). 
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Production of aquatic animals from aquaculture in 2016 was 80 million tons, with an estimated sales 

value of 231.6 million USD dollars (FAO, 2018). In 2014, China produced more than 60% of world 

aquaculture production, amounting to 45.5 million tons. Other important producing countries were 

India (4,884 tons), Vietnam (3,411.4 tons), Bangladesh (1,956.9 tons) and Egypt (1,137.1 tons) (FAO, 

2016). 

Fish populations are highly exploited by biologically unsustainable capture systems leading to 

excessive fishing and risking the depletion of this precious natural resource. According to FAO 

(2016), there have been recent declines in the captured fish quantities due to several factors, from 

which the most important may be the restrictions imposed on illegal and over-fishing in order to 

safeguard fish resources and enhance their sustainability, which may have also encouraged the 

adoption of biologically sustainable fishing systems, leading to further decline in fishing. However, 

these recent declines were not translated into significant improvements in fish marine stocks, despite 

the progress achieved in some geographical areas in monitoring and controlling the capture systems 

(FAO, 2016). 

 

 

Figure 3. Farmed aquatic animal production in 2014: regional production and top 5 producers (FAO, 2017). 

 

The proportion of world fish production used for direct human consumption has increased 

considerably in the last few decades, from 67% in the 60s of the last century to 87% in 2014. In that 

year, more than 146 million tons were destined for direct human consumption, while the remaining 

21 million were destined for non-food consumption, of which 76% was in the form of fish meal and 
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fish oil. Almost half of the fish (46%) used for direct human consumption was in the form of live, 

fresh or chilled fish (equal to 67 million tons), which are the most popular forms and have higher 

prices. The other half was in processed forms with about 12% (17 million tons) processed through 

drying, salting, and smoking, 13% (19 million tons) processed in other preserved forms, and 30% (44 

million tons) frozen (FAO, 2016). 

 

1.1.3 Fish production in the EU 

In 2015, the volume of aquaculture production in the EU was estimated at 1.3 million tons, equating 

to one fifth of total EU fisheries production (Figure 4). Globally, the EU aquaculture sector was 

classified ninth, with a 1.2% share in volume. The value of aquaculture production accounted for 4 

billion €. This equates to 1% of the output value of agricultural production. However, the EU is the 

world’s largest importer of fisheries and aquaculture products (Eurostat, 2018a). 

 

 

Figure 4. Aquaculture production and fish catches in EU-28, in 2015 (Eurostat, 2018). 

 

Five members Countries (Spain, the United Kingdom, France, Italy and Greece) form three quarters 

of both production value and production volume at the EU level, where the sector shows a high 

diversity. In 2015, within the EU-28, 137 different species were farmed in aquaculture. However, 
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only 10 species make up 90% of the EU production in volume, in 2015. The most produced species 

is the Mediterranean mussel that accounted for nearly one fourth (24.7%), followed by Atlantic 

salmon (14.8%), rainbow trout (13.8%) and blue mussels (10.2%). They are followed by gilthead 

seabream, Pacific cupped oyster, common carp and European seabass, with each of them having an 

individual share of around 6% (Figure 5). At the country level, there is a tendency for specialization 

in only a few species (Eurostat, 2018b). 

 

Figure 5. Ten major species of the aquaculture production in EU-28, in 2014 (in % of the total aquaculture 

production, expressed in tons live weight; Eurostat, 2018b). 

 

The main producing countries in EU’s aquaculture production in 2015 were Spain, the United 

Kingdom and France, producing together more than half of the EU’s production volume (with shares 

of 23.3%, 16.8 % and 13.0%, respectively). In addition, Italy and Greece were considered major 

producers with shares of 11.8% and 8.4%, respectively. From the aspect of economic value, the 

United Kingdom had the highest share (24.1%), followed by France (15.0%), Spain (12.4%), Greece 

(11.2%) and Italy (10.6%). Therefore, only five EU countries were responsible for almost three 

quarters of the aquaculture production volume and value (Eurostat, 2018a). 

Norway in 2015 was by far the biggest aquaculture producer in Europe, exceeding the EU in volume 

and value. This country produced 1.4 million tons, worth 5.2 billion €, making it the world’s eighth 

largest producer in farmed fisheries, with a 1.3% share. Furthermore, Norway in 2013 was classified 

as the world’s largest producer of marine finfish, according to Food and Agriculture Organisation of 

the United Nations, due to its salmon production (Eurostat, 2018a). 
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In general, aquaculture plays a major role in the countries around the Mediterranean and the Black 

Sea: Slovenia, Malta, Cyprus, Romania, Greece, Bulgaria and Italy. Those Member States tend to 

catch fish mostly along their coasts, using small-scale vessels with an average capacity lower than 

the EU average (equal to 18.9 gross tons, in 2015). As a counterbalance, their aquaculture activity 

plays a major role, representing 81.6% (Malta), 78.7% (Cyprus), 69.5% (Romania), 62.2% (Greece), 

54.9% (Bulgaria) and 43.6% (Italy) of their respective total fisheries production. 

In 2014, finfish and molluscs formed 98.2% of all aquaculture production in the EU. Whilst, the 

production of crustaceans, algae and other organisms was small. More than 130 species were farmed 

in the EU in 2014, however the most three common species were the Mediterranean mussel (Mytilus 

galloprovincialis), Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), which 

accounted for over half of all production (53.5%) and two-fifths (42.4%) of the value. Figure 5 

illustrates the most10 major species in terms of aquaculture production. 

These three common species formed about 90% of production and 87% of value. The Atlantic salmon 

was the leading species in the European aquaculture, although it ranked second for volume (15.1%). 

However, rainbow trout was the most widespread: it was grown in 24 European countries, both in 

inland freshwaters (84.2%) or in the saltwater of the North East Atlantic (15.8%), where this species 

is reared mainly in tanks (64.9%). Three countries together accounted for more than half of the total 

weight: Italy (17.9%), Denmark (17.3%) and France (16.8%). 

 

1.1.4 Fish production in Italy 

As mentioned above, Italy is one of the five major aquaculture producers in both production value 

and production volume at the EU level. Aquaculture sector contributes approximately 48% to total 

national fish production, amounting to about 162,600 tons, of which 38,800 tons derive from 

freshwater aquaculture (24%) and 123,800 tons from marine and brackish aquaculture (76%) (FAO, 

2015). Nevertheless, fisheries and aquaculture sectors not occupy a gross position in the Italian 

economy. 

In 2010, these sectors accounted for less than 0.1% of the Italian Gross Domestic Product (GDP) and 

5.7% of the Agricultural Added Value. The total production of the fishing sector was 340,000 tons in 

2013. The control policy of the European Union (EC Reg. 1967/2006) led to a significant reduction 

in the Italian fleet capacity with a consequent reduction in catches of about 44% between 2006 and 

2013. During this period, the budget deficit was aggravated not only owing to reduction in exports 

and great increase in imports, but also to lower domestic production. The estimated commercial value 
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of fish product imports was 5.8 billion US dollars in 2013, while exports were of only 760 million 

US $ (FAO, 2015). 

The aquaculture sector in Italy includes both marine and freshwater farming with about forty species 

of fish, shellfish and crustaceans. However, 97% of the production is based on five species: rainbow 

trout in freshwater and European seabass, gilthead seabream, Mediterranean mussel, and Japanese 

carpet shell in marine waters (FAO, 2015). In 2013, there were 820 Italian aquaculture companies, 

mainly situated in the north (64%), while the remaining was located in the south and the Islands (26%) 

and in the centre (10%). Since 2002, the companies’ numbers increased by 22%; however, in the 

recent years this number decreased due to the reform of enterprises (especially shellfish) and the 

temporary or permanent closure of some mariculture farms (FAO, 2015). 

Presently, the aquaculture sector encounters several problems including the intense price competition 

in the seabass and seabream markets coming from some Mediterranean countries such as Turkey and 

Greece, while there has been an increasing production cost for the Italian fish farmers due to the 

elevation of energy price and to the running costs especially for fish meals, as important ingredient 

for aquafeeds. The lack of a close connection with the public research sector, which can play an 

important role in creating innovative solutions to reduce the costs and enhance the sector 

competitiveness, is another constraint. 

1.1.5 Fish consumption: an overview 

Global fish per capita consumption has dramatically grown from 9 kg in the 1961 to 20.2 kg in 2015 

at an average rate of about 1.5% per year, and the initiatory estimates for 2016 and 2017 referred to 

continuous growth to about 20.3 and 20.5 kg respectively. Various factors played a role in this 

increased consumption, including: production increases, reduced wastage, better utilization, 

improved distribution channels, and growing demand interlinked with population growth, rising 

incomes, and urbanization (FAO, 2018). The increases in fish consumption, in terms of quantity and 

variety consumed per head, are distributed differently among and within countries and regions. For 

example, the fish per capita consumption decreased in some countries of sub-Sahara Africa, while 

increased in Japan. In addition, it is noted that the consumption is usually higher in the coastal, 

riverine and inland water areas. Moreover, fish consumption is also unequal between the developed 

and developing countries. There was an evident increase in the annual per capita consumption of 

fishery products in developing countries (from 5.2 kg in 1960 to 18.8 kg in 2013) and in countries 

with low income and food deficit (from 5.2 kg to 7.6 kg). However, the previous values are still 

markedly lower than the consumption recorded in the developed countries (23 kg/ per capita of fish 

in 2013) and in industrialized countries (26.8 kg / per capita) (FAO, 2016). 
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In 2014, the EU annual fish per capita consumption reached to 25.5 kg, with an increase equal to 1 

kg compared the figure in 2013. The growth was mainly for farmed products (19.05 kg of per capita 

consumption) rather than for fisheries products (6.48 kg of per capita consumption) (EUMOFA, 

2016). Croatia, France, Greece, Italy, Slovenia, Spain and Portugal (European Mediterranean) are 

among the world’s top consumers of seafood in the Mediterranean (Eurostat, 2014), but Italy, Spain, 

and France amounted for more than half of the EU consumption, despite having only around one third 

of the EU’s population (Eurostat, 2014). 

Italy was characterized by an apparent per capita fish consumption of 28.9 kg in 2014, slightly above 

the EU average (EUMOFA, 2016). It is worth mentioning that, in 2014, 3.6 kg/year per capita 

consumption of seafood in Italy were in the form of packaged/processed fish and seafood products 

(Inside Italy, 2014). Italy is the third-largest market for fish and seafood suppliers among the 

European Union countries, just after Spain and France, and the sixth-largest in the world. Italy 

imported US$5.6 billion worth of seafood products in 2015. Spain, the Netherlands, and Denmark 

were the Italy’s top three suppliers, and the top imported products were prepared or preserved tuna, 

skipjack or bonito (Inside Italy, 2016). 

In 2016, Italy ranked second in volume of fresh fish consumed by EU households, with 330,000 

tonnes, and ranked third in its value of 2.8 billion €, after Spain and the UK. In volume, mussel was 

the most important species consumed in Italy, whereas the most valued species consumed were 

seabream, squid, octopus, cod and European seabass, which covered 30% of the total consumption 

(EUMOFA, 2017a). The most used purchasing channel for fish products was the supermarkets with 

an incidence of approximately 35.4% of the total volumes consumed by households, in 2015. 

However, this percentage mainly includes the purchases of processed products such as frozen foods, 

canned, salted, and smoked products. The presence of the fresh fish counters in the retail outlets such 

as fishmongers is considered a very effective and competitive element for specialized shops. Yet in 

2015, specialized stores with 33% of total sales in volume of the fresh fish products have a share 

close to that covered by supermarket sales (ISMEA data, 2015). 

1.1.6 Main cultured fish species in Italy 

Three species for European aquaculture are considered in this study, which are rainbow trout 

(Oncorhynchus mykiss), European sea bass (Dicentrarchus labrax), and gilthead sea bream (Sparus 

aurata). 

In the following section, the major characteristics of these three species are presented, with European 

sea bass and gilthead sea bream being presented together because they are both carnivorous marine 

finfish that have very similar biology and life history. 
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Rainbow trout (Oncorhynchus mykiss) 

Rainbow trout is cultured on every continent, except Antarctica, and it is the most farmed fish species 

within the European Union. Historically, the major EU producers were Denmark, France, Germany, 

Italy, and Spain. According to FAO data, world production of rainbow trout has grown exponentially 

since the 1950s, especially in Europe and more recently in Chile and Iran as well as in Turkey, whose 

production exceeded that of all European countries, as shown in Figure 6. The annual world 

production (2014-2016) is estimated at about 800 000-820 000 tons. In 2015, the EU production of 

farmed rainbow trout was estimated at 240 000 tons (FEAP, 2015). 

 

 

Figure 6. Production of portion-size trout (tonnes) in Europe and Turkey (FEAP, 2015). 

 

The name of rainbow trout (Oncorhynchus mykiss) refers to the rainbow-coloured line on its skin. 

Rainbow trout is salmonid, which has a fusiform body shape with 60-66 vertebrae, 3-4 dorsal spines, 

10-12 dorsal soft rays, 3-4 anal spines, 8-12 anal soft rays, and 19 caudal rays. The body size is 

generally 5 times greater than the height with blue to olive green and a pink colouration along the 

lateral line (Figure 7). The head has a conical shape and the mouth is slightly sloping, with teeth 

arranged in one or two series. 

 

http://en.wikipedia.org/wiki/Salmonid
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Figure 7. Rainbow trout (Oncorhynchus mykiss) (http://www.featheredhook.com). 

 

Fish colours in freshwater are dark green, yellow-green or brown with dark spots on the body, the 

dorsal fin and the tail. In salt or brackish water, rainbow trout is silvery with the top half of the fish 

body being darker and having dark spots above the lateral line. Traditionally, rainbow trout is farmed 

in freshwater systems for production of portion size fish (300 g), while larger fish (3-5 kg) can be 

produced when fish are kept in seawater for the major grow-out period (Dhamotharan et al., 2018). 

The rainbow trout is highly adaptable and possesses desirable characteristics that contribute to their 

culture and their worldwide distribution. The fish spawns easily with the fry being large compared to 

most other aquaculture species. They readily accept prepared feeds from their first feeding on. They 

grow rapidly, a little over 2.54 cm per month at the ideal water temperature of 15 °C and reach market 

size (400 to 650 g) from 10 to 13 months of age (Gary, 2002). In addition, rainbow trout has the 

capability of living in different type of habitats, extending from permanently inhabiting lakes to an 

anadromous life cycle. This means that some strains, such as steelhead, are migratory, spending most 

of their life in seawater and returning to its original freshwater only to breed. The anadromous strain 

is characterized by its rapid growth, achieving 7-10 kg within 3 years, whereas the freshwater strain 

can only reach 4.5 kg in the same time span (FAO-Cultured Aquatic Species Information Programme- 

Oncorhynchus mykiss). 

Moreover, rainbow trout is tolerant to a wide range of temperatures and environmental variables as it 

can withstand vast ranges of temperature variation (0-27 °C). However, spawning and growth occurs 

in a narrower range (9-14 °C), and the optimum water temperature for rainbow trout culture is below 

21 °C (FAO-Cultured Aquatic Species Information Programme - Oncorhynchus mykiss). Therefore, 

growth rate depends on temperature and food availability, causing variation in maturity age, which is 

usually attained at one year for males and two years for females (Skelton, 2001). One more important 

thing is that rainbow trout needs well-oxygenated water to survive. The dissolved oxygen level 

needed for survive is as low as 3 mg/l, but it is recommended to keep minimum levels above 5 mg/l, 

and ideally above 7 mg/l (Gary, 2002). 
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Rainbow trout is a predatory species, feeds on terrestrial and aquatic invertebrates, other small fish, 

and fish eggs. In the wild, the fish can eat also freshwater shrimps, which contain the carotenoid 

responsible for the fish’s pink flesh. In aquaculture, this pink colour is produced artificially by feeding 

the fish with aquafeed including synthetic or natural pigments (FAO-Cultured Aquatic Species 

Information Programme - Oncorhynchus mykiss). This pink pigment is the most important for the 

appeal of consumers and is recognized as an important characteristic and selection criterion for food 

choice by consumers (Koteng, 1992). 

 

European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) 

European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) are both predatory 

marine finfish that are often cultured together, with similar production systems at the same farming 

site. They also have similar biology and life histories as they both have been historically cultured in 

coastal lagoons and saltwater ponds because they are euthermic (5-28 °C) and euryhaline (from 3‰ 

to full strength seawater). The culture of sea bass and seabream is an important production sector in 

the Mediterranean Sea area, and these two species combined represent the largest volume of 

aquaculture production in that region. In 2015, a total of 181,442 tons of gilthead seabream was 

produced. Greece is the main producer, followed by Turkey, Egypt, Tunisia, Italy, and Spain. In the 

same year, 176,970 tons of European sea bass were produced, mainly in Turkey, Greece, and Spain 

within the Mediterranean Sea (FAO, 2016). 

 

European sea bass (Dicentrarchus labrax) 

Sea bass was the first marine non-salmonid species to be commercially cultured in Europe and 

presently is one of the most important commercial cultured fish species in the Mediterranean areas. 

It is a worldwide species that grows all over the Mediterranean, the Black Sea and the North Eastern 

Atlantic, from Norway to Senegal. In the late 1960s, reliable mass-production techniques of juvenile 

seabass were developed in France and Italy. By the late 1970s, these techniques were well developed 

in most Mediterranean countries to provide hundreds of thousands of larvae. Greece, Turkey, Italy, 

Spain, Croatia and Egypt are the main producers worldwide (FAO-Cultured Aquatic Species 

Information Programme - Dicentrarchus labrax). 

A picture of European sea bass is represented in Figure 8. The species has rather oblong body with a 

well-developed caudal peduncle. The head is quite long, and the mouth is terminal, wide, and 

provided with thin pointed teeth on both jaws, on the palate, and on the tongue. The jaw is slightly 

prominent and further small teeth are present on the vomer. The sea bass has two separate dorsal fins. 

The first one has 8-10 hard spines, while the second has one spine and 12-13 soft rays. In addition, it 
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has a slightly concave caudal fin and the anal fin with 3 spines and 10-12 soft rays. Colour of dorsal 

portion is silvery grey to bluish, the sides are silvery, and the belly is whitish. Some dark spots on 

body of juveniles are distinct, while adults are never spotted (FAO-Cultured Aquatic Species 

Information Programme - Dicentrarchus labrax). 

 

 

Figure 8. European sea bass (Dicentrarchus labrax) 

(https://ec.europa.eu/fisheries/marine_species/farmed_fish_and_shellfish/seabass_en). 

 

European sea bass is eurythermic (tolerant to a wide range of temperature, 5-28 °C), and euryhaline 

(tolerant to the water salinity of 3‰). Thus, it can live in very different environments such as coastal 

inshore waters and estuaries and brackish water lagoons. Sometimes, it moves upstream into 

freshwater. Sea bass enters the sea from brackish environments and from the estuary areas of the 

rivers, adapting itself to waters characterized by very low salinity (FAO-Cultured Aquatic Species 

Information Programme - Dicentrarchus labrax). 

The European sea bass is an opportunistic predator and is known to attack the prey species quite 

violently. Sea bass utilize as food mainly small pelagic fish such as sardines, sprats, and sand smelts. 

They also feed on sand-eels and other bottom-living species, crustaceans, and squids. Young fish tend 

to eat more invertebrates than do the older fish (Pickett & Pawson, 1994). 

In Europe and in particular in the Mediterranean basin (except Italy), the sea bass is reared totally by 

intensive methods, in ground tanks or in sea cages. In Italy, both methods are applied, the intensive 

method and the semi-extensive ones in certain areas such as Veneto valleys, some lagoons of central 

Italy, some Sardinian ponds, and in the "cold" pools of the saltpans of Puglia and Western Sicily 

(FAO-Cultured Aquatic Species Information Programme- Dicentrarchus labrax). 
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Gilthead sea bream (Sparus aurata) 

The sea bream, whose latin name refers to a golden band on its head (Figure 9), has compressed oval 

body with a thin caudal peduncle. Head profile is regularly curved, and in the middle of the small 

eyes, it has a black band and another golden one. The mouth is low, the buccal apparatus has 4 to 6 

frontal teeth similar to the canines, followed posteriorly by less sharp teeth up to be molar-like. Colour 

of the sea bream’s back is silvery grey, and the sides have silver colour, covered with greyish 

longitudinal lines. The gill operculum has a reddish margin, while the dorsal fin has bluish shades 

and the caudal has grey-greenish one. 

 

 

Figure 9. Gilthead sea bream (Sparus aurata) 

(https://ec.europa.eu/fisheries/marine_species/farmed_fish_and_shellfish/seabream_en). 

 

As the sea bass, sea bream is spread along the Atlantic coasts, from Senegal to England, in all 

Mediterranean coasts but, differently from sea bass, it rarely exists in the Black Sea. Sea bream is a 

species that can live in waters with different temperature up 4 °C. In addition, it is tolerant to a wide 

range of salinity, although less than the sea bass. Therefore, its habitat ranges from the marine 

environment to the coastal lagoons, where it enters during the summer season. It feeds mainly on 

molluscs and benthic organisms. 

In the past, this species was cultured only extensively in the coastal lagoons and salt-water basins. In 

the 80s of the last century, the first forms of intensive farming were developed and become today the 

most used production technology in most the Mediterranean areas, including Italy. This was mostly 

achieved by using cages in sea, and the tanks in the ground. The Italian production is lower than the 

Greek one, which is the largest European producer, but in the recent years, Italy’s production has 

increased, the regions of Tuscany, Puglia and Sicily showing the highest production of sea bream in 

the country (FAO-Cultured Aquatic Species Information Program - Sparus aurata). 
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1.1.7 Discard fish- species of low commercial value 

Discards fish are considered the species that have no commercial value (even 

rare/endangered/protected species) as well as the species with low market value (Tsagarakis et al., 

2008). Low commercial value appears to be the main reason for the discarding of commercial species 

in small-scale fisheries (Tzanatos et al., 2007) as well as in trawl fisheries (Machias et al., 2001). 

The FAO reports that 35% of global catches are wasted. About a quarter of these wastes are by-catch 

or discards, mostly from trawlers where unwanted fish are thrown back dead because they are too 

small or an unwanted species (FAO, 2018). 

Fish are wasted or discarded for a number of reasons (Clucas, 1997), including:  

  wrong fish species (not of the particular operator’s target species); 

 wrong size or wrong sex (where sex is important from the processing and marketing point of 

view); 

 damaged fish or deformed fish (caused by gear or predation in nets or mishandling, etc.); 

 fish with no local market value and not desirable by the consumers. 

Fish discards come also from the considerable amount of leftover raw materials generated by the 

filleting process of the fish, including viscera, heads, fins, skins, scales, and bones (Rustad et al., 

2011). The discards from the processing plants account for 20 million tons, which is equivalent to 

25% of the world’s total production from marine capture fisheries (AMEC, 2003). These wastes can 

be used to produce fishmeal, fish oils and enzymes (such as pepsin and chymotrypsin) as well as other 

value-added products. 

Many studies showed that the nutritional value of the low commercial fish is very close to that of the 

more valuable ones. The chemical composition of discarded species presented in trawling discards 

demonstrates how the protein content of these minor species is similar to that of the more valuable 

ones and with the same nutritional value (Ferro, 2000). The oily discard fish also have considerable 

nutritional benefits due to the content of ω3 and a high content of phosphorus, vitamins, minerals and 

iron. In addition, the discarded species are small, with low risk of the mercury accumulation that can 

be found in oily fish species of higher commercial value (Simeone & Scarpato, 2014). 

Fish mince is produced by mechanically or chemically recovering flesh, either from the filleting waste 

process or from the whole fish, where the eviscerated and beheaded fish or fish waste pass through a 

machine that separates the meat from the bones (Oliveira et al., 2010). 

Using the residuals from the fish filleting raised the profitability in the industry and encouraged the 

producers to exploit them (Tomczak-Wandzel et al., 2015). In addition, fish waste uses in terms of 

noncommercial- sized fish could be profitable for the aquaculture farmers and the industry. The fish 

farmers could gain profit through selling trash fish at good price to fish meal-processing plants (Heng 
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& Lai Kim, 2008). Fish industry profits could be raised through presenting innovative products for 

the human consumption, thereby decreasing the environmental impact, adding value by using fish 

wastes, providing easy-to-prepare and nutritious foods for consumers, and increasing industrial 

profits (Palmeira et al., 2016). 

 

1.2. Mechanical separation of the meat (MSM) 

1.2.1 Historical background of mechanically separated meat 

Recovery of meat from the bones of filleted fish was the first application of mechanical flesh 

separation, which started in Japan at the end of the ‘40s of the last century, with the aim of increasing 

the amount of filleted fish produced and thus increasing the yield of the process. In fact, the 

effectiveness of the separation process was demonstrated by the increase in yields of 10-20% for fish 

and 40% for carcasses of crustaceans such as lobster, crab and shrimp. Hence, even the less requested 

species such as small fish or fish with a significant incidence of bones could be considered preciously 

recoverable and could find a commercial outlet (Paulsen & Nagy, 2014). 

At the end of the ‘50s of the last century, this technique spread to the poultry to obtain further meat 

that can be used for human nutrition from the neck, back and other bones of the animal. While, it was 

applied on the carcasses of pigs and red meat species only at the end of the 70s for the purpose of 

obtaining meat from the vertebral column and other bones after boiling (Field, 2004). 

Over years, the technology of mechanical separation of meat has been applied for multiple purposes. 

The first one was the increasing yields through exploiting the specimens that do not comply with the 

standards, and so to make them thus suitable to be allocated for the market. Secondly, it aimed to 

reduce the rate of repetitive strain injury of workers caused by short cyclic boning work in cutting 

rooms of meat operations. The use of a press was developed for this purpose, and this technology was 

quite successful and spread all over Europe and the USA within a reasonably short period (CEN, 

2010). 

The term “Mechanically Separated Meat” was adopted at the 10th Session of the Codex Committee 

on Processed Meat and Poultry Products, held in Copenhagen in 1978 (Field, 1988). Nevertheless, 

other terms remain in common usage for such products including “Mechanically Recovered Meat”, 

“Mechanically Deboned Meat”, and “Mechanically Deboned Poultry”. Furthermore, this technology 

has taken various names according to meat type on which it is applied. Thus, when it is applied to 

obtain meat from fish, it can be called "minced" mechanically separated fish or mechanically 

recovered fish. While, mechanically deboned chicken or mechanically deboned turkey are some of 
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common names that are used to designate mechanically separated meat from poultry. The multiple 

names of this technology can lead to confusion among consumers. Hence, the Food Safety and 

Inspection Service of the US Department of Agriculture (USDA) in 1995 modified the regulations 

aiming to clarify and standardize the identity and the composition of products obtained from carcasses 

and parts of chickens recovered by mechanical separation process (Field, 2004). 

1.2.2. Definition and legislative requirements of mechanically separated meat 

Mechanically Separated Meat (MSM), and more rarely Mechanically Deboned Meat (MDM), is thus 

a technology used to obtain meat products by removing the remaining meat from the skeleton and the 

carcasses of animals of various kinds, and it is considered as important raw material of animal origin 

for the manufacture and preparation of food products. The exploitation of this type of industrial 

process turns out to be a valid tool to increase the economic advantages related to food sector 

(European Commission, 2010). Instead, “Mechanically Recovered Meat” (MRM) is meat obtained 

by mechanical means from flesh bearing bones apart from the bones of the head, the extremities of 

the limbs below the carpal and tarsal joints and, in the case of swine, the coccygeal vertebrae. It is 

intended for establishments approved in accordance with the Article 6 of the European Directive 

77/99/EEC. European Directive 64/433/EEC was applicable only to ruminant animals (cattle, sheep 

and goats), pigs and horses. Council Directive 71/118/EEC on fresh poultry meat did not provide a 

definition of MRM although a requirement was added to that Directive by Council Directive 

94/65/EC, in December 1994. This requirement stipulated that mechanically recovered poultry meat 

could be traded only if it had previously undergone heat treatment, in accordance with the European 

Directive 77/99/EEC on meat products in the establishment of origin or any other establishment 

designated by the competent authority. 

The current EU legislation (Annex I, point 1.14 to Regulation (EC) No. 853/2004 and Article 3 (Point 

1) to Regulation (EC) No. 999/2001) defines MSM as follows: Mechanically separated meat or MSM 

is a product obtained by removing meat from flesh-bearing bones after boning or from poultry 

carcasses using mechanical means resulting in the loss or modification of the muscle fiber structure. 

Moreover (Annex I, Point 3.4), the same legislation defines the concept of "mechanically separated 

fishery product" as a product obtained by removing meat from fishery products using mechanical 

means leading to the loss or modification of the meat structure. Since the mechanically separated 

meat is a technique that destroys or modifies the muscle-fibrous structure and consequently contains 

parts of the bones and of the periosteum (fibrous layer that covers the bones), this type of meat is not 

comparable to the meat normally obtained. Therefore, it is appropriate to review their use for human 

consumption (Regulation (EC) No. 1923/2006). 
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The main topics of the legislative procedure are the characteristics of the production system, the 

requirements that producers must have, and the chemical, physical and microbiological parameters 

of the finished product (European Union, 2015). The Regulation (EC) No 853/2004 (Annex III, 

Section V) describes the specific legal requirements for MSM production as follows. 

Requirements for raw materials and production establishments 

The raw materials used to produce mechanically separated meat submitted to requirements defined 

by the Annex 3, Section V, Chapter II, must meet the following requirements: 

 it must meet the requirements for fresh meat derived from skeletal muscles, including adherent 

fat tissues 

 poultry used must not come from the feet, neck skin and the head, whereas for other animals 

they must not come from the bones of the head, feet, tails, femur, tibia, fibula, humerus, radius 

and ulna 

 fishery products could be used only in the case of whole gutted washed fish and fish carcasses 

obtained from the filleting operation. 

 

Hygiene requirements during and after production 

The Community Regulation, according to the used production techniques, identified two MSM 

subtypes: low pressure MSM (obtained at <100 bar) and high pressure MSM (obtained at 100-400 

bar). Low pressure MSM process does not alter the structure of the muscle. Thus, the product obtained 

from low pressures does not differ much in terms of structure from the minced meat, as seen in Figure 

11. In addition, the calcium content in low pressure MSM is often not significantly higher than that 

of minced meat. In particular, the calcium content for MSM, as referred to in Regulation (EC) No 

2074/2005, shall not exceed 100 mg/100 g (=0.1% or 1000 ppm) of fresh product as it was determined 

by a standardized international method. Conversely, the high pressure MSM process alters the 

structure of the muscle fibers, giving a pasty aspect to the product that lost almost its structure, as can 

be seen in the Figure 10. 
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Figure 10. Low pressure (left) and high-pressure (right) obtained MSM (EFSA, 2013). 

 

Hygiene requirements of MSM during and after production were defined in the Annex 3, section V, 

Chapter III. The legislator also defined the requirements to be met for each of the two types of 

mechanically separated meat, i.e. low pressure and high pressure MSM (Annex 3, Section V, Chapter 

3, Points 3 and 4) as follows: 

 for low-pressures MSM, the raw materials derived from on-site slaughterhouse must not have 

more than seven days of storage, except of poultry carcasses that must not be stored for more 

than three days. Other raw materials from other site must not be stored for more than five 

days. The MSM has to be done after de-boning, otherwise it must be packaged and 

refrigerated at a temperature not exceeding 2 °C, or frozen at a temperature not exceeding -

18 °C. These temperatures must be maintained during the storage and transport. Then, the 

use of MSM depends on the microbiological criteria for the minced meat demonstrated by 

the analyses. When MSM complies with microbiological criteria, according to the Regulation 

(EC) no. 853/2004, it can be used in meat preparations, which are clearly not intended to be 

consumed without first undergoing heat treatment. Otherwise, it can be used only in heat-

treated meat products before consumption. In all cases, the obtained meat must have a 

calcium content, as reported in Reg. EC 2074/2005, not more than 100 mg/100 g (1000 ppm) 

of fresh product. 

 For high-pressures MSM: the raw materials from on-site slaughterhouse must not have more 

than 7 days of storage. Otherwise, they must not have more than 5 days of storage. However, 

poultry carcasses must not have more than 3 days of storage. The MSM is not necessarily to 

be separated after deboning, but in this case must be stored and transported at refrigerated 
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temperature (not higher than 2 °C) or frozen temperature (not higher than -18 °C). When the 

mechanical separation is done, it must be packaged and refrigerated at 2 °C if processed within 

1-24 hours. Otherwise, it must be frozen within 12 hours after production, reaching an internal 

temperature of -18 °C within six hours. The maximum time of frozen storage is three months 

and can only be used for heat-treated meat products before consumption, in approved 

establishments. The calcium content in high pressure MSM is not defined. 

Particularly MSM fishery products must comply with the following requirements (Annex 3, Section 

VIII, Chapter 3, Part c, Points 1 and 2): 

 mechanical separation must be carried out directly after threading and, if the whole fish are 

used, they must first be gutted and washed 

 when mechanical separation is completed, fishery products must be frozen to kill the live 

pests: at -20 °C for at least 24 hours or at -35 °C for at least 15 hours. Otherwise, fishery 

products must be incorporated into products undergoing heat treatment before consumption. 

Frozen fishery products must be kept at a temperature of no more than -18 °C; however, the 

whole fish initially frozen in brine and used for the manufacture of preserves may be kept at 

a temperature of no more than -9 °C (Annex 3, Section VIII, Chapter 7, Point 2). 

 

1.2.3. Methods for meat recovery 

In the beginning, primitive presses derived from other types of industries were used to separate the 

meat from the bones, using high pressures of up to 200 bar. High pressure MSM presents 77% of the 

European production (European Commission, 2010), and yields a fine textured meat paste suitable 

for use only in cooked sausages. After time, technological improvements were introduced, and flesh-

bearing bones were pressed at much lower pressure (up to 20 bar). Low pressure MSM represents 

23% of the European production (European Commission, 2010) and produces a coarse texture higher 

quality meat that could no longer be distinguished from traditional minced meat (so called 3 mm or 

Baader meat) (EFSA, 2013). 

Generally, there are two types of separators: press type and sieve type, with different names. The 

basic separators in the market are: 1) drum & belt system, 2) endless screw system, 3) hydraulically 

powered presses. 

The pressure used may vary with the machine type and the specific settings used. Most machines can 

operate at low or high pressure, but some types of machine are more normally used at low pressure 

than other types. For example, drum & belt separators normally operate at low pressure, but endless 

screw separator can operate at both low and high pressures, while hydraulically powered presses 

typically operate at high pressures but can be used at low pressures as well. 
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Therefore, most of the machines used for MSM production may produce both MSM (low pressure) 

and MSM (high pressure) by adjusting the pressure settings (EFSA, 2013). 

Drum & belt system (Baader type) 

This method was firstly developed for fish (Figure 11) but it is also used for poultry and red meat 

species. The conveyer rubber belt transfers the product and presses the carcass on the surface of the 

perforated steel drum (holes diameter from 1 to 10 mm). The softer material passes through the holes, 

while the hard parts such as connective tissues, bones, skin, nerves, tendons and thicker layers remain 

outside the drum and are ejected through a discharge chute (Barbut, 2002).  

 

Figure 11. Scheme of belt-drum system (EFSA, 2013). 

 

Pressure on the belts can be adjusted, and sometimes pressure rollers are used to ensure an even 

distribution of the tissue on the belt. The derived mince after deboning may be refined by passing it 

through a filter (hole diameter from 1 to 2 mm) that removes most particles and small pieces of belly 

lining. The mince can range from a coarse texture to a fine paste depending on source material, 

machine type and setting, and processing method (EFSA, 2013). Drum & belt system can operate at 

low pressure to produce the low pressure MSM or Baader meat or 3 mm or “desinewed meat”, 

according to different terminologies used in the meat sector (EFSA, 2013). This meat has the 

appearance of traditional minced meat (EFSA, 2013), and the quality of minced meat is better than 

the endless screw style, because the product is exposed to less mechanical rubbing; however, the yield 

is lower. 

Endless screw system (Beehive type) 

Endless screw system (Figure 12) is used for fish, poultry and red meat species. This separator uses 

a rotating auger inside a perforated cylinder to force the meat through holes in the perforated cylinder 
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(Field, 1988; Barbut, 2002; EFSA, 2013), similar to the action of a standard meat mincer. The 

perforated cylinder acts like a sieve with the meat passing through the holes while the bone remaining 

in the cylinder and being pushed out at the end by the auger. The size of the holes can be adjusted 

and are usually around 0.5 mm in diameter (Barbut, 2002). The extracted yields are very high and are 

correlated to the pressure values that can be reached, but the quality is not the best. Meat recovered 

by auger separators set at high pressure falls within the definition of mechanically separated meat 

(MSM) given in Section V, Annex III of Regulation (EC) No. 853/2004, because of the high pressure 

used that causes bone disruption and loss or extensive modification of the muscle fiber structure. 

 

Figure 12. Scheme of endless screw technology (EFSA, 2013). 

 

Hydraulically pressed batch (Protecon type) 

Press separators system (Figure 13) is used mainly for red meat species, and also for fish and poultry. 

It uses a hydraulic piston to force flesh-bearing bones under low or high pressure to the separation 

chamber while crushing them and squeezing the meat puree through thin slits between the concentric 

rings. Recovered meat is transferred to a desinewing step where it passes between a belt and a drum 

with holes 1.0-1.3 mm in diameter (Barbut, 2002; EFSA, 2013). Sinews, cartilage and bone particles 

are removed at this stage and the product is ready for use (Field, 2004; EFSA, 2013). 
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Figure 13. Scheme of hydraulically pressed batch (EFSA, 2013). 

 

Meat recovered by hydraulically powered press separators, as the auger separators, fall within the 

definition of high pressure mechanically separated meat (MSM) given in Section V, Annex III of 

Regulation (EC) No. 853/2004, because of the high pressure often used that causes bone disruption 

and loss or extensive modification of the muscle fiber structure. 

The MSM production process is conducted in a two-phase technology, by joining press or endless 

screw technology followed by belt-drum separation. In the first phase, the meat is extracted from the 

crushed bones by pressure; then the belt-drum system refines the material by eliminating cartilages 

residues and thick connective tissue layers. 

Machine settings and parameters needed for MSM production include discharge plate hole diameter, 

drum perforation diameter, machine speed, machine tension, pressure in various modules, pressure 

time yield, and meat cut fed. 

 

1.2.4 Meat recovery through other than mechanical methods 

Recovery of meat from bones could be accomplished by other technologies, such as biochemical, 

chemical, and physical methods, apart from mechanical methods. Newman (1981) reported a brief 

description of each, and why most of them are not preferable to the mechanical methods as follow. 

Biochemical methods: Various proteolytic, collagenolytic and elastolytic enzymes are used in meat 

separation from bones, but control of the process is difficult because the enzyme needs to be 

inactivated in the final product. This could also modify the properties of the derived product. Further, 

the enzymes presently available are not optimal for this use. 
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Chemical methods: Alkalis and dilute acids are effective in flesh elimination, but the process leads 

to breakdown of proteins as well as thawing of bones, especially the acid treatments. The resulting 

products are suitable only for use in the manufacture of sausages and similar formulated products. 

Physical methods: Can be classified as follow, according to the technique utilized: 

Thermal technique: Cooked meat is separated from bones through pressure generated by paddles 

forcing it against a perforated grid. The disadvantage is that the material has been cooked and has lost 

its binding capacity; however, it still finds uses in the processed food industry. 

Ultrasonic technique: This involves ultrasonic vibration of ground meat-bone homogenates in the 

presence of an extraction solvent. The product has the consistency of thin honey and has been 

successfully incorporated into frankfurter emulsions. 

Cryogenic techniques: The meat is frozen to temperatures of -70 °C to -110 °C and comminuted under 

known impact loadings. The different structural and mechanical properties of the meat and the bone 

result in a differential fragmentation and a selective comminution of the mixture. Electrostatic forces 

are then used as a method of separation. 

Cutting techniques: Numerous patents have been granted for utilizing fine liquid or gas jets to cut 

meat from bones. It is claimed that this assures the complete deboning of whole joints such as legs, 

whilst maintaining the meat almost intact and not denatured totally. 

 

1.2.5. Composition and characteristics of mechanically separated meat and fish 

The composition of mechanically separated meat can present several variations due to the type of the 

mechanical separator equipment used, bone location, temperature, animal species, and amount of lean 

meat (Field, 1988). Therefore, a clear distinction of the different types of MSM based on objective 

and measurable parameters of the final product is a difficult task owing to the high variability of these 

products in their chemical and physical properties (EFSA, 2013). 

During the production process of MSM, particularly in the case of the high pressure MSM, bones are 

crushed and then higher quantity of bone particles, which contain high level of calcium, are found in 

such meat. While, the drum-belt system provides lower calcium content than the endless screw 

system, since it is used under low pressure (Josefowitz, 2008). Therefore, the bone content and 

consequently the calcium content in MSM are generally higher than the content found in the minced 

meat (Mayer et al., 2007). The calcium content is frequently used as one of the criteria to identify this 
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MSM. In some countries, the calcium content of meat is controlled; in Europe, the maximum calcium 

content allowed for low pressure MSM is 100 mg/100 g of MSM (1000 ppm). In addition, the size of 

bone particles is also important because the larger the fragments are, the more they can cause a sandy 

texture and potential dental problems for consumers. The presence of the skeleton in the mechanical 

separation operations affects the calcium content and the presence of bones fragments in the finished 

product. The sizes of these residues vary and depend not only on the part of the skeleton involved but 

also on holes diameter of separator drum and on the applied pressure. The elements found in these 

products may be longer than 6 mm, which can be reduced by controlling the holes diameter of the 

drum and the pressure of the belt. However, these operating modifications in the separating machine 

affect the texture and the degree of fragmentation in the finished product. Bone residues from 

terrestrial animals of a size equal or less than 2 mm are considered not dangerous to the consumer 

health (Paulsen & Nagy, 2014). 

The iron content increases in the meat obtained by mechanical separation, especially if high pressures 

are applied. Iron content is twice as high as of the manually deboned meat due to bone marrow 

incorporation (Komrska et al., 2011). This increase is due to the presence of hemoglobin (EFSA, 

2013; Froning, 1981). The hem content varies considerably depending on the bone-meat ratio, the 

setting of the mechanical separator, the skin content and the age of the animal (Froning, 1981). 

Furthermore, as reported by Lee & Toledo (1977), separator steel components contain metal particles, 

which could merge with the MSM meat. Iron, like other metal ions, acts as a catalyst for lipid 

oxidation, so the extent of its presence can compromise the quality of MSM meat during the storage. 

The phosphate content is not considered a health matter for the food safety by the European Food 

Safety Authority (EFSA) and only subject to quantitative limits in the finished meat products, so no 

limits are set in particularly for MSM. The phosphorus content of MSM depends on animal species, 

age of the slaughtered animals, cuts of meat, presence of cartilage, bone type (necks, wings, bones, 

back), previous treatment of the bones (trimming, freezing, etc.), and the machine type and operating 

conditions used in the recovery process (Froning, 1981; Michalski, 2009). 

The moisture content of the MSM varies according to the raw material subjected to mechanical 

separation but, in general, the MSM has a lower moisture than the hand-deboned meat because of the 

higher lipid content. However, water activity is in a range allowing growth of all microorganisms in 

all types of such products, if unfrozen (EFSA, 2013). 

The lipid component of MSM has an important role in the organoleptic characteristics and the stability 

of the product, determining its future shelf life and the modulation of its sensory features (Robb et 

al., 2002). The composition of MSM has higher lipid content than that of the manually deboned meats. 

These extra lipids originate mainly from bone marrow and bone tissue, but they may also come from 
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fat under the skin, the skin or abdominal fat, which depends on the animal species and method used 

(Trindade et al., 2004). The fatty acid content in MSM varies, ranging from 7% to 48% in relation to 

the animal species and the type of bone. The MSM fat is rich of polyunsaturated fatty acids thanks to 

the presence of phospholipids from the fraction of bone and accompanying the spinal marrow (Viuda-

Martos et al., 2012). Mott et al. (1982) compared the MSM of whole hens with the MSM of skinned 

hens and found higher concentrations of unsaturated fatty acids in the first. On the other hand, 

according to Moerck & Ball (1974), the composition of fatty acids in the marrow and in the MSM of 

chicken was similar to that of the breast, thigh and skin. 

Cholesterol content of mechanically separated pork and poultry meat is usually higher than that of 

hand-boned meat. Cholesterol is an indicator of the obtained matrix characteristics and an important 

element in the definition of the nutritional value of the product. The cholesterol can be found in some 

tissues at concentrations of 40 times greater than in the lean meat of the same animal (Paulsen & 

Nagy, 2014). Cholesterol’s increase is basically related to the increase in fat and the released marrow 

from the bones resulted from mechanical deboning. Serdaroglu and Yildiz Turp (2005) compared the 

composition of mechanical deboned and hand deboned turkey and beef meat. They found that 

mechanical deboned beef and mechanical deboned turkey had higher fat content (31.8% and 14.0%, 

respectively) than the hand-deboned beef and hand-deboned turkey (19.6% and 4.8%, respectively). 

In addition, the moisture contents of hand deboned beef and hand deboned turkey were 63.4% and 

74.4%, which were significantly higher than those of the mechanical deboned beef and mechanical 

deboned turkey (54.9% and 69.2%). 

The process of mechanical separation not only affects the lipid composition, but also makes the meat 

very liable to lipid oxidation since this technique induces cell damage and subsequently the release 

of oxidative enzymes. In addition, during the process, the surfaces are widely exposed to the air, 

accompanied by the inevitable production of heat, so the extraction of hemoglobin and lipids from 

bone marrow can make the meat more susceptible to rancidity (Froning, 1981; Field, 1988; Ostovar 

et al., 1971). Moreover, MSM fat is rich of polyunsaturated fatty acids (PUFA) and phospholipids, 

which make the meat more susceptible to oxidation. The application of adequate refrigeration to 

maintain the temperature at values below 10 °C limits the microbial development and oxidation of 

lipids and hemoglobin (Ostovar et al., 1971). 

Protein content of MSM is related to the type of mechanical separation technique applied and 

correlated with the lipid content of raw material because often fatty raw materials are used, such as 

skin and subcutaneous fat that reduce the protein content in favor of lipids content in separated meat 

(EFSA, 2013; Trindade et al., 2004). MSM protein quality depends on the material used, which is 

usually rich in connective tissues and the collagen. High contents of collagen in MSM is negatively 
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correlated with technological and nutritional characteristics. Al-Najdawi & Abdullah (2002) assessed 

the collagen contents in manually and mechanically deboned meats of whole and skinned hens and 

observed higher contents of collagen in the MSM (3.45% for whole carcass and 3.0% for skinned 

carcasses) in comparison to the meat of manually deboned hens (1.60% for whole carcass and 0.85% 

for skinned carcasses). Mello et al. (2010) estimated the moisture value and the protein content of 

80.69% and 16.5%, respectively, for the minced tilapia, whereas Melo et al. (2011) obtained a 

moisture value of 72.75% and a protein content of 14.29% for MSM tilapia. 

The content of lipids and proteins also varies greatly in the same individual fish (dorsal and abdominal 

area, nearness to the fins, etc.). Therefore, fillet composition will be different from MSM fish 

composition, since it could be obtained not only from the fillets, but also from whole fish (Bordignon 

et al., 2010; Ogawa & Maia, 1999; Oliveira et al., 2015). In addition, the content of lipids and proteins 

in fish also varies according to species, age, reproductive cycle and diet (Oliveira et al., 2015). The 

mechanically separated meat is characterized by a low quantity and quality of proteins because they 

have more collagen and less myofibrillar proteins than the minced meat. This, in turn, decreases the 

ability to retain water during processing and storage, and reduce the capability to emulsify lipids and 

to form stable gels during cooking (EFSA, 2013). 

The modification on the structure of the muscle fibers results from the mechanical separation process 

as it is assured by the Regulation (EC) No 853/2004, and this is considered a criterion to distinguish 

the MSM meat from other types of meat. The mechanical separation process includes crushing of the 

bones and destruction of muscle fibers, leading to changes in the sensorial characteristics of the 

product such the loss of the fresh taste, mainly due to preservation at low negative temperatures, 

which cause the dryness of the matrix. In addition, the presence of blood causes colour changes from 

white-pink to red that tends to brown colour with cooking. Furthermore, the sensation of a "metallic" 

taste due to the excessive presence of iron is a common consequence of the mechanical separation 

implemented on the fish matrix (Paulsen & Nagy, 2014). The final product is also more vulnerable 

to the chemical, physical, microbiological, and functional properties changes (Abdullah & Al-

Najdawi, 2005). These changes include the development of undesirable aromas (rancidity), loss of its 

characteristic red colour because of lipid and pigments oxidation, loss or modification of the muscle 

fiber structure, reduced stability during storage as well as the functionality and processing ability 

(Mielnik et al., 2002; Bodner & Sieg, 2009). 

Quality loss can result from heavily contaminated MSM with microorganisms coming from the 

carcass and raw material, which, in turn, are contaminated when bacteria primarily on the feathers 

and in the gastrointestinal tract or on the skin are transferred to the carcasses during slaughter. Storage 

and transport of the raw material to processing plants are considered as a critical point for microbial 
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contamination and microbial growth. The degree of muscle fiber destruction is more extensive, 

especially in the case of the high pressure MSM than in the minced fresh meat. Such damage releases 

intracellular fluids rich in nutrients and of low acidity that supports bacterial growth (Field, 1988; 

Froning, 1981). In addition, cross-contamination and redistribution of contamination mainly because 

of poor hygienic measures (environment, handlers, and equipment) can contribute to the quality loss. 

Although MSM products may be stored in frozen conditions and/or heat treated, MSM is considered 

more perishable than fresh and minced meat (Viuda-Martos et al., 2012). Thus, minimizing the 

microbial risks associated with MSM depends on the operation of effective HACCP plan and a 

supporting prerequisite programme of Good Manufacturing Practices/Good Hygienic Practices 

(GMP/GHP) in the slaughterhouse and boning hall, and the efficient chilling of low pressure MSM 

and frozen storage of high pressure MSM. As required by Regulation, MSM must be used exclusively 

to produce products that must be consumed after cooking (EFSA, 2013). 

Lipid oxidation in the washed MSM fish had lower value of TBARS compared to the non-washed 

MSM fish (close to 0.2 mg/kg and close to 0.5 mg/kg of malondialdehyde, respectively). After the 

fish mechanical separation, the sequence processes involve washing the minced flesh fish with chilled 

water (5-10 °C). The washing technique used is an important key in determining the quality of the 

product because it results in removing most of the primary and secondary lipid oxidation products 

and helps to reduce them during the storage (Kirschnik et al., 2013). Therefore, washing process for 

fish MSM is an used technique that aims to remove blood, pigments, soluble components, lipids and 

other impurities that can catalyze protein degradation and lipid oxidation. Washing process is useful 

for the production of surimi and similar products leading to higher stability, better quality, and 

conserved flavour characteristics of the obtained meat (Jesus et al., 2001; Oliveira Filho et al., 2012; 

Tenuta-Filho & Jesus, 2003). However, this process also leads to the loss of proteins and fluids and 

other soluble nutrients (Kirschnik et al., 2013). 

 

1.2.6. Oxidative instability of mechanical separated fish and the supporting mechanism 

Fish lipid content is considered an important constituent in the human diet. This fact is mainly due to 

the high levels of PUFAs, low levels of linoleic acid (C18:2ω6) and linolenic acid (C18:3ω3) and 

high levels of the long-chain ω3 PUFAs, especially EPA (C20:5ω3) and DHA (C22:6ω3). These 

latter fatty acids have a positive influence on human health, including prevention of the coronary 

heart disease, improving retina and brain development, and having anti-inflammatory and anti-

carcinogenic effects (Huang et al., 2012; Linseisen et al., 2011; Lund et al., 2011; Stevanato et al., 

2010; Tacon & Metian, 2013). However, these unsaturated fatty acids are very susceptible to be 
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oxidized especially during post-mortem, handling and storage (Chaijan, 2008; Mapiye et al., 2012). 

Oxidation has negative consequences on both food properties and on human health such as off-flavour 

development, rancid odour, loss of pigments, loss of vitamins, change of meat colour, loss of 

nutritional value, decrease in shelf life and formation of toxic compounds (Contini et al., 2014; Farvin 

et al., 2012; Secci & Parisi, 2016; Palmieri & Sblendorio, 2007). Therefore, the control of oxidation 

is greatly important in order to prevent the possible waste of nutrients, especially in the phases of 

production, handling and conservation of MSM, which is particularly relevant in the case of fish 

MSM. 

Autoxidation is the major mechanism that causes lipid oxidation in meat products, and it starts by 

reactive oxygen species (ROS) (Gray & Monhan, 1992; Kanner, 1994; Min & Ahn, 2005). Light, 

oxygen, metal, and high temperature are common free radical initiators for this process, and only 

trace amounts of initiators or catalysts are enough to start the lipid oxidation process. Autoxidation 

involves the reaction of unsaturated fatty acids with the oxygen resulted in production of free radicals, 

and it consists of three steps: initiation, propagation and termination (Chaijan, 2008; Mapiye et al., 

2012). The initiation step requires low activation energies and it starts by reactive oxygen species that 

remove hydrogen atoms from the fatty acid and form a fatty acid (alkyl) radical (R•), where the energy 

source can be heat, light or high-energy radiation or metal ions (e.g., copper ions) (Pegg & Shahidi, 

2012). This lipid free radical will react rapidly with oxygen to form peroxy radical (ROO•) and this 

is the final product of the initiation reaction. The peroxy radical (ROO•) eliminates hydrogen atom 

from another hydrocarbon chain (unsaturated fatty acids) and yields hydroperoxides (ROOH), which 

characterizes the propagation step (Chaijan, 2008; Enser, 1987; Mapiye et al., 2012; Pearson et al., 

1977). In the final step, i.e. the termination step, free radicals such as lipid peroxyl radicals (ROO•) 

interact each other to produce non-radical products. Whereas, hydroperoxide will be decomposed at 

high temperature or in the presence of metal ions (Choe & Min, 2006; Halliwell & Gutteridge, 1990). 

The decomposition of hydroperoxide results in secondary compounds such as aldehydes, alkanes and 

conjugated dienes, which lead to unwanted effects on the sensory properties of the foods (due the 

production of volatile aromatic compounds), and others resulting in injurious health effects (e.g., the 

malondialdehyde production) (Chaijan, 2008; Zaki et al., 2014). 

Another kind of lipid oxidation is the enzymatic oxidation. In this situation, muscle lipoxygenases 

(peroxidases) is the main endogenous enzyme associated with fatty acids oxidation, which remains 

active at low temperature (-20 °C) (Abreu et al., 2010). 

Many factors along the chain of fish play a fundamental role in maintaining the quality of muscle. At 

the beginning of the production chain, the enriched aquafeed with antioxidants such as vitamin E or 

astaxanthin can help preventing lipid oxidation (Secci & Parisi, 2016). The protection against lipid 
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oxidation and attaining long-term stability of any material could be achieved through several 

strategies including the elimination, or at least the inhibition, of the initial alkyl radical production in 

lipids (Schaich, 2005). The antioxidant defense mechanisms are essential to keep the balance between 

the generation of ROS and their inactivation by the antioxidant body systems (Gülçin, 2006). ROS 

are produced normally during the physiological processes of the animal and include free radicals such 

as superoxide anion radicals (O2
•−), hydroxyl radicals (OH•) and non-free radical species such as H2O2 

and singlet oxygen (1O2), which are various forms of activated oxygen (Gülçin, 2006). The inequity 

between antioxidant and ROS defense mechanisms causes oxidative modification in the cellular 

membrane or intracellular molecules (Buyukokuroglu et al., 2001; Duh et al., 1999). The degree of 

lipid oxidation in fresh and processed meat products relies on different internal factors such as fat 

content, fatty acid composition, and antioxidant content (Addis, 1986; Choe & Min, 2006; Du et al., 

2000; Min et al., 2008). 

In recent years, antioxidants are added in aquafeeds, and in the meat during processing or at packaging 

time (Iglesias et al., 2009; Medina et al., 2007; Sánchez-Alonso et al., 2007) in purpose of inhibiting 

the lipid oxidation, retarding development of off‐flavours, and improving the stability of frozen meat 

products. Abdel-Aal (2001) found that 0.5% ascorbic acid and 0.1% Na2EDTA were effective 

antioxidants in retarding the MSM oxidation in African catfish (Claries lazera) stored at -18 °C for 

6 months. Also, Hussein & Hayam (2012) reported that the addition of essential oils of marjoram and 

rosemary at level of 200 mg/kg reduced significantly the TBARS and increased the sensory scores of 

beef patties, formulated by incorporating 200 g/kg of mechanically deboned poultry meat, during 

frozen storage period at -18 °C. 

Sodium erythromate, which is an ascorbic acid isomer, has a strong antioxidant effect and has the 

capability of preventing the development of oxidation when it applied to concentrations above 100 

mg/L (Trindade et al., 2008). Polyphosphates, such as sodium tripolyphosphate (STPP), are additives 

used especially in seafood industry. The most important advantages of seafood phosphate treatments 

are the increase of the water holding capacity of protein in fish and the reduction of the drip loss 

during freeze/thaw that occurs during processing and storage. Consequently, STPP contributes to 

save nutrient loss and reduces deterioration of the quality during storage (Turan et al., 2003). Crapo 

& Crawford (1991) studied the influence of polyphosphate soak and cooking procedures on the 

quality and yield of Dungeness crab. They found that soaking the crab meat in a 10% of STTP solution 

for more than 60 minutes resulted in optimum meat yield, quality, and frozen storage stability. 

Polyphosphates also have sequestration function of some ions (Ca+2, Mg+2, Fe+2), which lower the 

WHC (water holding capacity) by reduction the electrostatic repulsion between negative groups, 

causing contraction and thickening of the protein structure. In addition, phosphate compounds rise 
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the pH further away from the isoelectric point of the muscle proteins, enhancing the water binding 

capacity of protein because larger electrostatic repulsive forces create large gaps between actin and 

myosin with subsequent bounding larger amount of water in the muscle fibers (Puolanne et al., 2001; 

Young et al., 2005). 

Using non-fresh raw material leads to poor quality MSM (Keay, 1979), characterized by short shelf 

life, and compromises the organoleptic profile (EFSA, 2013). Organoleptic characteristics of MSM 

can be very different when compared to those of whole carcass or fillets from the same species of 

fish. Firstly, the product consistency changes making it doughier and more elastic, while the colour 

tends to the red because of the pigment incorporation, resulting from the inclusion of rich hem tissues 

(e.g. kidney). The taste alters because of the breaking of the muscle structure and the consequent 

diffusion of substances in the mixture. The factor that mostly affects the aroma is the lipid fraction of 

the animal's tissues. The variation of the lipid content and the modification of the proportions between 

the different elements can lead to a relevant alteration of the flavour. 

 

1.2.7. Health and safety characteristics of the MSM and productive limitations 

The amount of MSM produced in the EU Member States is around 70,0000 tons a year (2006/2007), 

of which 77% is obtained by MSM high pressures, while the remaining 23% is obtained with MSM 

low pressures. The most used species for MSM production is chicken which represents about 88% of 

the total product, followed by the swine by about 11%, while the MSM production from other species 

is negligible. Financially, the total value of MSM production is estimated at between 400 and 900 

million € a year (www.eur-lex.europa.eu). Only 20% of the total production is exported, and the 

annexed revenue is negligible. In 2008, MSM production (mainly by high pressure) was 150,000 tons 

(higher of 32% compared to the previous year), oriented for export to the East Europe and Russia, 

with a value of around 80 million € (Eur-lex.europa.eu/legal-

content/EN/TXT/?=CELEX%3A52010DC0704). 

MSM is a food matrix that is very different from meat, as it is normally understood by consumers. 

The common "minced meat", i.e. "boned meat which are subjected to a fragment grinding process” 

(Regulation (EC). No. 853/2004) is very different from MSM. Although the most modern 

technologies obtain MSM very similar in appearance to the common ground meat (at macroscopic 

level), it differs greatly at the microscopic (histological) characteristic level. One example is the more 

valuable Desinewed Meat (DSM), which is deboned meat and tendons obtained from process carried 

out at very low pressures. Initially this meat is equated to real meat, but depth studies carried out by 

the European Commission in 2012 recognized it as a separate ingredient, belonging to MSM type 

http://www.eur-lex.europa.eu/
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(EFSA, 2013). The structure of the fibers, the concentration of dissolved and mineral substances, and 

the lipid content are some aspects that make the difference. 

For clearer and transparent communication for the consumer, labeling represents an important 

element of redefinition, especially with the recent entry into force of Regulation (EC). No. 1169/2011, 

relating to provide food information to consumers. According to the referee of the Regulations, the 

MSM must be labeled following specific instructions, since they have been legally recognized as 

different from the regular/normal meat. When MSM is present in the food, it must be mentioned in 

the label with the name of the derived animal species (possibly with relative proportions) and the 

quantity of incorporated MSM on the finished product (Regulation (EC). No. 1169/2011). 

Healthy and security features of the whole fish and the MSM fish is the same, i.e. the mechanical 

separation of a fresh gutted and beheaded fish produces MSM fish with the same hygiene and safety 

properties of the animal from which the meat is derived. Differently from fish, the MSM meat derived 

from the terrestrial animals does not have the same microbiological and healthy characteristics of the 

original animal. The evisceration and removal of all parts of the animal are responsible for great 

contamination (Paulsen & Nagy, 2014). Nevertheless, in the case of fish, the negative part is, in 

greater importance, the presence of the skeleton fragments that can be found in the mass obtained by 

mechanical separation. The fish skeletal structure is less consistent and more delicate and distinct; 

therefore, the discovery of physical residues is a common incident. These residues are considered as 

major problem in the case of fillets or slices products obtained from manual operations, rather than 

the MSM, which is statistically proven to contain a lower quantity (Paulsen & Nagy, 2014). Since 

cooking treatments are mostly able to make these fragments harmless, the presence of danger residues 

to the consumer can be judged to be reduced. However, the fragments evaluated as dangerous must 

always be removed from the mass as they leave a space when pressed axially between the fingers 

(Patashnik et al., 1974). 

Considering the various types of meat intended for human consumption, the meat deriving from some 

species is subjected to restrictions relating to their use for mechanical separation. After the diagnosis 

of the first case of Bovine Spongiform Encephalopathy (BSE) in 1986 in the United Kingdom and 10 

years later of the first transmission of this pathology to humans, the world attention is increased a lot 

to Transmissible Spongiform Encephalopathies (TSE). Since the consideration that the consumption 

of contaminated meat is the source of contagion, very restrictive measures are put to safeguard 

consumers health (EFSA, 2016). These measures were initially prepared for controlling and 

eradicating the diseases. After that, the objective was to minimize the risk of new outbreaks. 

According to article 9 paragraph 2 of the Regulation (EC) n. 1923/2006, that modified the EC 

Regulation n. 999/2001, "the bones of bovine, sheep and goat animals coming from countries or 
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regions, which have a controlled or undetermined risk of BSE, must not be used for the production 

of mechanically separated meat" (Regulation  EC. 1923/2006). Therefore, this instruction prohibited 

the use of ruminant bones and carcasses for the production of MSM since 2001. 

 

1.3. Ready to Eat products 

1.3.1 Consumer attitude towards fish products 

Recently, consumers’ trend in choosing food is becoming more complex than in the past. The idea 

about the choice of food is more dynamic and varied as consumers’ interest in safe food is growing 

and affecting food acceptance and choice. Cultural differences can also influence food preferences 

since food tastes usually differ across countries. Therefore, people perceptions of healthy food, 

convenience, versatility, cost, quality and quantity may substantially differ. In some countries, for 

example, people may pay a little attention to products’ quality, while in other countries the consumers 

consider food quality for human health. Furthermore, other consumers are interested in the 

technological innovation in the food field, which can be considered as a rational approach to the food 

choice (Conte et al., 2014; Grunert et al., 2001). 

Fish and seafood have always been considered as an important part of a balanced and healthy human 

diet (Trondsen et al., 2003), having significant health benefits including lower instances of 

cardiovascular disease (Sidhu, 2003; Verbeke & Vackier, 2005). Consumers expect good quality 

products to be derived from animals raised in a healthy environment, so they are natural, fresh tasting 

and nutritious (Kennedy et al., 2004). Particularly, a critical driver of consumer food preferences is 

better taste and nutrition while production processes may have a minor impact on that (Cardello et 

al., 2007). However, new production processes can be regarded as a potential that can be taken into 

consideration for creating new markets and developing new products (Grunert, 2006). In the seafood 

market, consumers use experiences combined with a reliance on retailers’ reputation in order to obtain 

information on the credibility of purchased food products (Anderson, 1995). They seem to pay more 

attention to fish general state, the visual aspects of the product, the fish origin, the prices, the product 

form, and the freshness (Brécard et al., 2009). 

According to EUMOFA (2017b), who conducted survey and analyses of the EU consumer attitudes 

and habits, the main factors for consuming fish and fish products can be categorized into two main 

groups: (1) personal preferences and (2) external factors. 

The main personal factors derived from Eurobarometer survey include “wellness and health”, which 

combines three elements: “healthy”, “contain little fat”, and “easy to digest”; “hedonism”, which 
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combines the elements: “good taste”, “products for special occasions” and “look good looking on the 

table”; and “convenience and ease of preparation”,  which combines the elements: “easy to prepare” 

and “quick to prepare”. 

Health consciousness has been found to be positively related to seafood consumption (Olsen, 2003; 

Ragaert et al., 2004, Trondsen et al., 2004a; 2004b). Likewise, health perception appears to influence 

satisfaction and pleasure associated with eating seafood (Brunsø et al., 2009). Taste has also 

consistently been found to be a driver of seafood consumption (Bredahl & Grunert, 1997; Olsen, 

2004). In addition, taste is an important factor in explaining food consumption because “food is a 

matter of pleasure, and few people eat things if they do not like their tastes” (Brunsø et al., 2009). 

The convenience has also been found to influence seafood consumption, in particular for younger 

consumers (Kittler & Sucher, 2004; Ryan et al., 2004). The convenience is becoming more and more 

important as consumers are more and more seeking for time savings, as well as, reduce effort and 

mental exertion for meal acquisition process. The meal acquisition process involves planning the 

meal, sourcing and purchasing ingredients, storing and preparing food, consuming the meal, cleaning 

up and disposing of, or storing any leftover food (Beck, 2007; Brunsø et al., 2009; Olsen et al., 2007). 

The personal preferences differ highly on the EU countries and sub-regions. For example, the 

consumption motivations for the Central EU countries rely more on the factor wellness and health, 

while the factor hedonism is more important for the Eastern EU countries and Northern EU countries. 

At socio-demographic category level, elderly people are more sensitive to health aspects and their 

fish consumption is linked to the positive effects on their personal well-being, whereas the highest 

socio-professional classes are more sensitive to elements of hedonism, especially during special 

occasions. 

The main external factors are those not linked to personal preferences but still affecting (in a positive 

or negative way) the purchasing behavior, and they mostly regard young consumers, including price 

levels, products assortment, and promotional strategies. 

Perceptions of high prices have been found to be key barriers to seafood consumption in many 

European studies, as about 68% of EU consumers would increase their consumption if their price 

level were lower (Brunsø et al., 2009; Myrland et al., 2000; Olsen, 2004; Trondsen et al., 2003; 

Verbeke & Vackier, 2005). Therefore, price represents a factor slowing the consumption growth and, 

consequently, promotional strategies could encourage the consumption. Moreover, 51% of 

consumers would increase their consumption if they could choose within a wider products assortment. 

Rortveit & Olsen (2009) revealed that the variety or the number of considered dinner alternatives 

have a significant positive effect on consumption frequency. Variety can also be considered in terms 

of whether people can purchase seafood in the form they want, in the desired portion size, and whether 



48 
 

pre-packaged seafood products are available. Therefore, the diversification of the supply, 

independently from the price level and in connection with promotional strategies, would encourage 

the consumption. 

The Italian Institute of Services for Agricultural and Food Market (ISMEA, 2014) has conducted a 

study to analyze the behaviour of habitual and non-habitual consumers of fish, showing the various 

aspects concerning the barriers and the motivations to purchase. Besides, the study clarified the 

features that affect the tendency to purchase and the ways to stimulate the purchase of fish products 

that can be summarized as follows: 

 the lack of confidence in the shopkeeper, mainly relative to freshness (for example, the 

consumer is not sure if the fish is really fresh and not defrosted). In some cases, the 

uncertainties about freshness is linked to possible negative health consequences 

 absence of complete trust in the labels and in the available written or oral information. The 

fact that fish is a highly perishable product makes the consumers fear (at least at emotional 

level) of negative health effects to a greater extent than in the case of other foods. These health 

fears are aggravated in the case of mollusks and raw fish 

 the difficulties in preparation and cooking the product ("it is difficult to do it well"), and the 

worries of cleaning it (a problem that could be resolved, at least partially, by buying already 

cleaned fish). In addition, there is the intensive smell when cooking fish 

 the family habits and local traditions. In some cases, fish is consumed only on Fridays. 

Besides, many inland areas have a poor culture of consuming fish, being away from the coastal 

areas where fish is produced and can be purchased fresh and less costly. In such cases, the 

recipes are limited to the simplest and the most common ones. 

 the low acceptance of fish taste by some members of the family (children's tastes are often a 

hindrance to purchase). This is accompanied by the presence of thorns (for some, non-

negligible source of fear) and therefore the inconvenience for consumption. Children under 

ten age, and the adolescents are consumers showing a great dislike of fish products 

consumption. Hence, they are one of the main barriers to consumption on the families 

(Altintzoglou et al., 2010; Birch & Lawley, 2012; Grieger et al., 2012; Myrland et al., 2000; 

Neale et al., 2012; Olsen , 2001; Scholderer & Trondsen, 2008; Trondsen et al., 2003; Verbeke 

& Vackier, 2005). Nevertheless, Myreland et al. (2000) and Trondsen et al. (2004b) thought 

that families with young children, under twelve age, have a high consumption of processed 

fish products compared to families with teenagers or without children. Myreland et al. (2000) 

explained this by the fact that the fish within these families is breaded or processed in another 

way, rather than fresh fish that has characteristics children may not like. Olsen et al. (2008) 
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and Story et al. (2002) affirm that parents show a significant motivation and a greater ability 

to consume a new fish product compared to their children. 

Food labeling is an effective instrument for consumers’ information. An increased consumers’ 

awareness and trust towards fish, together with information on the label, can have a noticeable impact 

on food choice. In all countries, labeling is considered an essential guarantee for safe fish, and quality 

marks are considered of consumers’ interest. For fish products, consumers correlate information to 

product safety and quality mark, and they put their trust in information when the mark is supported 

by plausible controls and by guarantees deriving from a good traceability system (Pieniak & Verbeke, 

2008; Verbeke et al., 2007). 

Regulation (EU) No 1379/2013 of the European Parliament and of the Council on the common 

organization of the markets in fishery and aquaculture products stated (Article 35, point b) that fish 

must be labeled according the production method, in particular by following words (caught or 

farmed). This compulsory rule can help those consumers wishing to avoid intensively farmed fish 

(European Commission, 2000). Labeling and traceability can be considered two of the most important 

means to safeguard consumers’ safety, and these attributes will help people to differentiate and choose 

food products. 

Eco-labeling or environmental label product, which is a logo, symbol, text, or seal of approval given 

to the products, inform consumers about environmental production attributes or the impact of the 

product on the environment (Bjerner et al., 2006; Bonilla et al., 2008). Thus, it conveys to consumer 

unobservable information about the environmental attribute of fishery goods and consequently may 

influence consumer-purchasing decision towards environmentally friendly products (Roheim et al., 

2011; Salladarré et al., 2010). 

Briefly, the main factors for promoting fish products according to Focus Group proposed by ISMEA 

(2011) are: 

 lowering sales price; 

 improving the availability of products by increasing the distribution of fishmongers or street 

sealer, or by promoting openings of more specialized shops; 

 expanding the consumption target to include the children and young adults (18-35) categories 

through the development of new distribution and selling systems (street food and fast food), 

new cooked products (ready-to-eat) or ready to be cooked (ready-to-cook) of high ease of use; 

 promoting strategies of ready meals in order to reduce consumption barriers, through 

television programs, fishmongers and fish section in supermarket, and packaging. 

The trend is to make the fish-based products rely on economically sustainable food. The consumer 

point of view for the label is to be simple and clean, free of complicated ingredients, and not cooked 
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in a way that could weaken the nutritional value. In fact, it is underlined that complex products, which 

are made of many ingredients, such as panata products, induce distrust in consumers who consider 

them artificial (ISMEA, 2011). 

In short, the market moves towards creating range of fashionable products oriented towards the 

youngest. This can be an encouraging factor for children to consume fish in general due to both the 

absence of thorns, and the less perceptible taste of the fish. 

 

1.3.2 Ready-to-eat seafood products 

Currently the consumers, particularly the urban ones, show more and more interest in food products 

that are available in ready-to-eat or ready-to-cook forms such as fish fillets, fingers, cutlets, patties, 

burgers, sausages and fish balls (Kolekar & Pagarkar, 2013). Ready-to-eat (RTE) products are a group 

of food products that are pre-cleaned, precooked, mostly packaged and ready for consumption without 

further washing, cooking, or additional preparation, except for a possible thawing. According to FDA 

(2009), RTE foods should be in an edible form without an additional preparation step to achieve food 

safety. While, the ready-to-bake products are called ready-to-cook (RTC). 

RTE products enable utilizing by-products fish or unfavorite fish species among consumers due to 

some of the factors like small/unconventional size, ugly shape, too much spiny body, and unfavorable 

flavour/taste (Datta, 2015). This, in turn, enhances their acceptability, their nutritious value, their 

sensory characteristics, and their shelf life and convenience (Pagarkar et al., 2011). 

The development of new eating habits (snacks, fast food, etc.) versus the traditional meal is pushed 

by the loss of culinary expertise due to the reduced time spent in the kitchen, the change in family 

structures with an increasing number of singles. The new status of women today, having a higher 

education level and enjoying a higher employment rate with less time to spend in culinary 

preparations stimulated the demand for RTE foods. Thus, pre-packed fixed weight portions with no 

waste and pre-prepared items such as fish portions with some culinary content (sauce, bread-crumb, 

pre-cooked) are increasingly appreciated (FAO, 2010). 

As previously mentioned, fish sector is increasingly focused on proposing and promoting RTE 

products. These products are derived either from fish itself including beheaded, gutted, and filleted 

products, or from processed fish such as fish burger, meatballs, nuggets, fish sticks, and different 

formulations of breaded fish. Presently, the RTE products on the market are obtained mainly from 

codfish (Gadus morhua) or from pollock (Gadus pollachius) captured from the North Sea (Oetterer, 

2002). From the health prospect, consumers differently perceive the diverse types of RTE products. 

Fillet is considered the healthiest product, followed by fish burgers and fish nuggets. This is because 



51 
 

the fish burgers and nuggets are considered as processed products and are composed of the same basic 

formulation of fish but differently prepared. Fish nuggets are breaded, pre-fried, and frozen, but need 

to be fried before consuming, while fish burgers are shaped in round form, and consumed after grilling 

(Mitterer-Daltoé et al., 2014). Although burgers are considered healthier than nuggets since they are 

not fried, they still have a lower penetrating capacity in the market (Olsen et al., 2008). The different 

presentation of fish products leads to different responses by consumers, and the healthy characteristics 

of a product is expected to be only one of the decisive factors for choosing a food product. 

As demonstrated by the ISMEA (2011) surveys, the time required for the preparation of fresh fish 

products may discourage some consumers from buying them and consequently they prefer RTE fish 

products (Brunsø et al., 2009). For example, consumers prefer fish patty and fish croquettes made of 

carp rather than the traditional preparations of the fresh carp (Sehgal & Sehgal, 2002). However, this 

cannot be generalized because the perceptions about food products can vary considerably depending 

on geographical origin (Olsen et al., 2008). For example, in Spain there is a strong culinary tradition, 

and it is a part of the Spanish culture to spend a lot of time cooking and eating, so the concept of 

convenience and solutions for saving time are not important and not appreciated. In Belgium, on the 

contrary, the consumers are familiar with these concepts and consider them important (Brunsø et al., 

2009). 

The RTE products are expensive and this could be a great barrier to consumption. However, it is 

proved that the current consumers are willing to pay more for this type of product, thus new business 

opportunities could be suggested for the fish industry (Cosmina et al., 2012). 

 

1.3.3 Fishburger derived from fish MSM and their acceptability 

The mechanical separation of meat (MSM) is considered an alternative way for the diversification of 

new products derived from fish meat and also as a solution for the use of residuals from the fish 

filleting industry (Freitas et al., 2012; Secci et al., 2016a; Secci et al., 2017). The filleting residues 

from the process represent, in some cases, more than 60% of the total weight of production. Therefore, 

the use of edible leftovers from traditional filleting or slicing becomes highly important. The 

importance could be at the three different levels: i) economically for the industry, through reducing 

the cost and gaining additional income; ii) environmentally through minimizing the pollution matters 

associated with the disposal of processing by-products (Jaczynski, 2005); and iii) nutritionally 

through presenting nutritional value equivalent to that of the entire muscle (Boscolo, 2001; Lima et 

al., 2015). In addition, the use of this technique in the aquaculture sector would optimize the 

production costs through exploitation of undersized and damaged specimens, which cannot be 

commercialized directly as whole fish. Even the species that are considered to be waste of the catch, 
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such as horse mackerel (Trachurus trachurus), could find a fair but interesting economical value 

(Secci et al., 2017). 

Moreover, MSM technique would offer to the market different types of products with high capacity 

for use (Secci et al., 2016a). Various types of products could be got by using processed mechanical 

separated fish, including fishburgers, nuggets and breaded steaks (Marengoni et al., 2009). The 

products obtained from MSM system can be considered new, so it is recommended to evaluate their 

acceptance by potential consumers (Freitas et al., 2012). Several researches studied the fishburger 

obtained from mechanical separation process (Bochi et al., 2008; Di Monaco et al., 2009; Fogaça et 

al., 2015; Marengoni et al., 2009), evaluating their acceptability from a part of consumers and 

concluding that this type of product has, in general, a good consumer acceptance. 

 

1.3.4 Characteristics of ready-to-eat (RTE) and ready-to-cook (RTC) fish 

In this paragraph, we will compare the characteristics of RTE and ready-to-cook (RTC) fish products, 

which could be divided in different categories: sticks, crisps and flowers, fillets, fishburgers and 

nuggets. 

Fish sticks (fish fingers) 

Fish sticks are fish processed products characterized by a rectangular form, breaded, pre-fried and 

frozen. Many products, present in the market, contain several codfish species: Pacific cod (Merluccius 

gayi and Merluccius productus), Atlantic cod (Merluccius hubbsi), South African cod (Merluccius 

capensis and Merluccius paradoxus), New Zealand cod (Macruronus novaezelandiae), and Alaska 

pollock (Theragra chalcogramma). Fish sticks may be prepared from a single species of fish or from 

a mixture of species with similar sensory properties. The percentage of codfish in the products is 

around 60% and the ingredients used for the breading include mainly wheat flour, starch, vegetable 

oil of sunflower or rapeseeds, water, yeast, salt and spices including turmeric and paprika. For free-

gluten-products, intended for people intolerant to gluten, wheat flour is replaced with other types of 

flour such as rice flour, corn flour, and chickpeas flour. There were two methods of cooking these 

products: baking or cooking in a pan. The first way requires the use of a preheated oven at around 

200 °C and cooking for 13-15 minutes, while the second way requires frying the products in butter 

or oil, with around 5 minutes of cooking time. 

Crock and hearts of fillet 

The crock and heart fillets are produced directly from fish fillets, cut into smaller sizes. These 

products could be in natural form or in a breaded form (pre-fractions). Crock and heart of fillets derive 

particularly from the hearts of the fillets. The main fish species used in the market for these products 

are, as in the previous products, species of codfish: Pacific cod (Merluccius gayi and Merluccius 
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productus), Atlantic cod (Merluccius hubbsi), South African cod (Merluccius capensis and 

Merluccius paradoxus), New Zealand cod (Macruronus novaezelandiae), and pollock of Alaska 

(Theragra chalcogramma), beside species of pink salmon (Oncorhynchus gorbuscha), Atlantic 

salmon (Salmo salar), Keta salmon (Oncorhynchus keta), and yellowfin tuna (Thunnus albacares). 

Breaded products contain generally the following ingredients: wheat and maize flour, sunflower or 

canola oil, wheat and potato starch, water, salt, yeast, dextrose and spices such as mustard, paprika 

and turmeric. Products in natural form could be cooked in different ways, including cooking in 

preheated oven at around 220 °C (about 25 minutes), in a pan with a little quantity of oil (for about 

15 minutes), and in a pot with boiling water (for about 6 minutes). Other cooking methods are grilling 

and steaming, particularly utilized for salmon. In some commercial products, the cooking ways are 

not specified, advising to cook the product as if it was fresh. However, for breaded products, the 

culinary methods are either cooking in preheated oven at around 220 °C for about 15-25 minutes or 

cooking in the pan for 8-10 minutes. Some cooking guidelines propose frying the product instead of 

using a pan. Other cooking guidelines, especially with a salmon, propose grilling in the oven. 

Fillets 

Frozen fish fillets, present in the market, mainly include fillets form the following species: European 

sea bass (Dicentrarchus labrax), Alaska cod (Merluccius hubbsi), Atlantic cod (Merluccius hubbsi), 

hake (Merluccius capensis), gilthead sea bream (Sparus aurata), plaice (Pleuronectes platessa), pink 

salmon (Oncorhynchus gorbuscha) and yellow fin tuna (Thunnus albacares). Fish fillets are available 

in different shapes, such as natural breaded gratinated, and as a ready dish. The natural fillets are sold 

either in packages containing a couple of fillets, or in bags containing a larger quantity of product. 

These products are recommended to be defrosted before cooking, and then the culinary methods are 

either cooking in preheated oven at 200-220 °C for 10-15 minutes or cooking in a pan with a small 

amount of oil for 6 minutes. White paper is usually left to the consumer to treat the product as if it 

were a fresh product. Breaded fillets are products that are breaded and pre-fried. The ingredients used 

for breading are: wheat and corn flour, sunflower or canola oil, wheat and potato starch, water, salt, 

yeast, dextrose and spices such as mustard, paprika and turmeric. The culinary ways include cooking 

in preheated oven at around 220 °C for 15-17 minutes, and cooking in a pan for 6-8 minutes. 

Gratin fillets are products that have a breading only on one side of the fish fillet. The ingredients of 

the breading are similar to those of breaded products. However, they have more breadcrumbs to give 

specific crispness to these products, more spices such as parsley, basil and white pepper. These 

products could be cooked in a preheated oven at 200 °C for 30-40 minutes. The products as ready 

meals are composed of fish fillet, and often accompanied by a side dish of vegetables and various 

seasonings including extra virgin olive oil, lemon juice, and different spices. The products can be 
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cooked in preheated oven at 170 °C for 22-25 minutes, in the pan for 12 minutes, and in microwave 

at 750 W for 6 minutes. 

Fish burgers 

Fish burgers are products characterized by a circular form and could be breaded and pre-fried or they 

can be without breading. The fish species used in the market for these products are the following: 

European sea bass (Dicentrarchus labrax), codfish (Gadus morhua), Alaska cod (Merluccius hubbsi), 

Atlantic salmon (Salmo salar) and yellowfin tuna (Thunnus albacares). These kinds of products are 

mainly obtained from fish fillets or from fish pulp. The breaded products are coated with crumbs, 

which consist of wheat flour, sunflower or canola oil, wheat starch, lemon juice, water, yeast, salt, 

dextrose, mustard and turmeric. The culinary methods are in a preheated oven at 220 °C for 20 

minutes or in a pan with plenty of oil for 7-10 minutes. Often, the products without breading are made 

from the pulp of two fish species, and codfish (Gadus morhua) is often one of them. The ingredients 

that accompany the products are sunflower oil, wheat flour, potato flakes, egg white, salt, lemon juice 

and natural flavors. The culinary styles for unbreaded products are cooking in a preheated oven at 

250 °C for 10-12 minutes, in a non-stick pan and opened flame plate for 1.5 minutes for each part, 

and in electric toaster at the highest temperature for 7 minutes. 

Nuggets 

The nuggets are processed products based on fish and are breaded, pre-fried and deep-frozen. The 

products found on the market contain codfish (Gadus morhua), Alaska cod (Merluccius hubbsi) and 

surimi fish. The based fish in these products are mainly made up of fish fillets or fish pulp. The used 

ingredients for breading include mainly wheat flour, starch and potato starch, vegetable oil from 

sunflower or canola seeds, water, yeast, salt and spices including turmeric and paprika. Cooking can 

be done in preheated oven at around 200 °C for 13-15 minutes or in a pan with oil for 4-8 minutes. 

From the comparison of all the types of RTE products on the market, it is possible to observe the 

positive and negative characteristics of this type of products that are summarized in Table 1. 

 

Table 1. Positive and negative characteristics of fish ready-to-eat products in the market. 

Positive Negative 

Nutritional value Breaded and pre-fried 

Convenience of use Presence of alien species 

Conservation High cost 
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2. Aims of the study 

As revealed from the former chapters, the world and Italian per capita fish consumption increased. 

Currently, the Italian fish and fish products market encountered high competition from other 

European and Mediterranean countries, and the consumers’ wants and needs changed according 

to the socio-economic situation and lifestyle items. 

Application of the mechanical separation technique enabled transformation of undersized fish or 

/and fish waste in partially processed foods with added value for human consumption (Ferraro et 

al., 2010; Monteiro et al., 2012; Monteiro et al., 2014). Using the discards fish could be beneficial 

for both the aquaculture farmers through increasing industry profit, and for the fish consumers 

through creating innovative product, ready to eat and ready to cook. The former products are 

characterized by convenience, easiness to prepare, and nutritious value, and can contribute to keep 

competitiveness on the market and meet the new needs of consumers. 

Fish and fish products are highly perishable. Therefore, the general aim of this study was to 

evaluate the physical, compositional and sensory properties of fish-burgers obtained from fish 

coming from the aquaculture farms of Tuscany and from the wild in order to create new fish 

products (fish burgers) by using mechanical separation system, and to open new market for the 

aquaculture products. 

The specific goals were to study: 

• Advantages of mechanical separation treatment technologically and nutritionally, when applied 

on European sea bass, gilthead sea bream, and rainbow trout. Specifically, assessing the physical 

and chemical properties and nutritional quality of mechanical separation and manual mincing 

techniques applied for the interest species, and comparing the results between them. (Research I). 

•Utilization of the nonmarketable specimens from European sea bass and rainbow trout by 

studying the physical, nutritional, and sensory properties of ’clean label’ fish burgers. Specially, 

the evaluation of four clean label recipes of fish burgers obtained from mechanically separated 

meat, that differed in the ratios of sea bass to rainbow trout (50:50 and 30:70), and in the ratios of 

fish to potato flakes (2.5:1 and 1.5:1). (Research II). 

•Effects of cooking and frozen storage on nutritional and physico-chemical characteristics of fish 

burger formulation based on mechanically separated meat. In particular, studying two recipes of 

fish burger prepared from different ratios of European sea bass to rainbow trout (50:50 and 30:70), 

and enhanced with lemon, salt, water, and potato flake. (Research III).
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3. Materials and Methods 

Fish were obtained from different fish farms. The two species of sea water, European sea bass 

(Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) were bought from a fish farm 

located in Orbetello (Grosseto, Italy). Whilst, the fresh water rainbow trout (Oncorhynchus 

mykiss) specimens were acquired from a farm located in the north west of Tuscany (Lucca, Italy). 

All the considered fish species were killed by percussion method. Immediately after death, fish 

were transferred to the company for processing, in polystyrene boxes and covered by ice. After 

being washed, the fish specimens were eviscerated and decapitated, then minced by the soft belt-

drum separator (BAADER Mod. 601; Baader, Lübeck, Germany). 

Generally, the following analyses were conducted: physical analyses concluding texture, colour, 

pH, water holding capacity, and chemical analyses comprising proximate composition, fatty acid 

(FA) profiles, lipid oxidation product (conjugated dienes, thiobarbituric acid reactive substances, 

TBARS), antioxidant capacity, and mineral composition. In the different research activities, some 

of the previously listed analyses were carried out. An overview of these assessments is given in 

the Table 2 and described in depth in the following Sections of this Chapter. 

Finally, experimental set-up for each research is described in the Part II, which collects the papers 

that have been originated from the three researches performed during the PhD period, that are 

summarised in Table 3.
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Table 2. List of the analyses conducted in each research. 

  Research I Research II Research III Method 

CHEMICAL 

ANALYSES 

Proximate composition ● ● ● AOAC (2012) 

Fatty acids composition ● ● ● Morrison & Smith (1964), by GC 

Lipid oxidation products 

(conjugated dienes, TBARS) 
  ● 

Srinivasan et al. (1996); Vyncke 

(1970) by Spectrophotometer 

Antioxidant capacity 

(ABTS, DPPH, FRAP) 
  ● 

Re et al. (1999); Blois (1958) 

mod. by Jung et al. (2010); 

Descalzo et al. (2007) by 

spectrophotometer 

Mineral composition ●   by ICP-AES spectrophotometer 

 

PHYSICAL 

ANALYSES 

Yield ●   
g of deboned meat /100g whole 

fish 

Texture  ● ● Texturometer 

pH ●  ● pH-meter 

Colour ●  ● Colorimeter 

Water Holding Capacity   ● Centrifuge system 

SENSORY 

ANALYSES 
  ●  Panellists 
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Table 3. List of papers derived from the PhD research activities. 

Study Type Obtained Publication Type Status Journal/Congress 

Research I Paper I Article Published LWT-Food Science and Technology 

Research II Paper II Article Published International Journal of Food Science and Technology 

Research III Paper III  Article  Submitted Journal of Food Processing and Preservation 

 Annex I Oral communication Published 22nd Congress of Animal Science and Production Association, 2017 

 Annex II Poster Published 78th West European Fish Technologist’Association, 2018 
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3.1 Physical analyses 

3.1.1 Texture 

The texture can be defined as a group of characteristics that arise from the structural elements of 

food and are related to deformation, disintegration and flow of the food under a force (Bourne, 

2002). In this experimentation, the measure of the texture of raw and cooked fishburger was carried 

out by using a texturometer (Mod. 109 texturometer Zwich Roell, Germany) equipped with a 200 

N load cell and the Text Expert® II software. The cutting and compression stress tests were carried 

out on cube-shaped sub-samples (3.5 cm on each side), which are taken from the centre of each 

raw and cooked fishburger. The appropriate Warner Bratzler blade was used for these tests (Figure 

14). 

 

Figure 14. Texturometer with the appropriate blade used. 

 

3.1.2 pH 

The pH is an important index to determine meat quality. The pH value in fish varies according to 

the biochemical muscular processes and the bacterial and enzymatic activity during the storage, 

which have an effect on the concentration of free hydrogens and promote the decomposition of 

molecules (Ogawa & Maia, 1999; Okeyo et al., 2009). The pH measurement was carried out on 

the fillets and on raw fishburgers using a pH-meter (Columbus, OH, USA) equipped with an 

inserted probe. The pH value was examined in three different points of the epaxial region of the 

whole fillet and of the burger's diameter. 
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3.1.3 Colour 

A Dr Lange Spectro-color® colorimeter (Keison International Ltd, UK) equipped with a Spectral 

qc 3.6 software was utilised for colorimetric measurement. Colour was measured in triplicate on 

the epaxial-cranial fillet position and on three surface points placed along the diameter of the raw 

and cooked fishburgers. Colour measurements were carried out according to the CIELab system 

(CIE, 1976). CIELab is the second of two systems adopted by CIE (Commission Internationale de 

l'Éclairage) in 1976 as models that better showed uniform colour spacing in their values. CIELab 

is an opponent colour system based on the earlier (1942) system of Richard Hunter called L*, a*, 

b*. Colour opposition correlates with discoveries in the mid-1960s that somewhere between the 

optical nerve and the brain, retinal colour stimuli are translated into distinctions between light and 

dark, red and green, and blue and yellow. CIELAB indicates values of L*, a*, b*, chroma, and 

hue. The colour is the result of three components; hue, lightness, and saturation. 

Hue describes a primary colour such as red, green, or blue. 

Lightness or luminosity describes the brightness of the colour. 

Chroma or saturation describes how vivid or dull the colour is. 

Figure15 illustrates the relationship among the hue, lightness and saturation presented in a three-

dimensional space. In the CIElab space, the hue and chroma values are obtained by using the 

following formulas: 

Hue = arctg2 (b*, a*) 

Saturation = (a2+b2)(1/2) 

The CIE system is one of the most popular system currently used by the meat industry and is 

known as the CIE L*, a*, and b*, colour space system as it is shown in Figure 16. The vertical 

axis represents the lightness of the surface (L*), whose values are in the range from 0 (black) to 

100 (white). The other two axis values range from positive to negative. The redness index (a*) 

spans from -60 (green) to +60 (red), while the yellowness index (b*) spans from -60 (blue) to +60 

(yellow). The zero represents neutral grey. 
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Figure 15. The relationship among hue, lightness 

and chroma. 

Figure 16. Colour distribution on CIELab scale. 

 

3.1.4 Water Holding Capacity (WHC) 

The capacity of water retention is the ability of meat to retain the water even though external 

pressure (e.g. gravity, heating) are applied to it and is related to the amount of free water. The 

WHC of the samples was determined by gravimetric method, in which the liquid is lost from a 

sample by application of centrifugal force. Approximately 2 g of sample were weighed on a special 

filter (Figure 17) and then inserted in a centrifuge glass tube. The samples were centrifuged (Mod. 

Sorvall Superspreed RC 2-B Automatic Refrigerated Centrifuge, Walthan, MA, USA) at 510 × g 

for 5 minutes. Next, the difference between the two weights (before and after centrifugation) is 

calculated to determine the amount of water lost. The water content of the sample was determined 

by weighing 2 g of the sample and putting it in the oven at 105 °C overnight; after that, the sample 

was re-weighed after cooling in the dryer (Figure 14). The water retention capacity was then 

calculated by comparing the amount of water lost to the amount of water initially presented in the 

sample and expressed as a percentage. The higher the percentage is, the greater the water retention 

capacity of the sample. 
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Figure 17. Filter inserted in the centrifuge tube (left). Weighed samples to put in the oven (on the right). 

 

3.2 Chemical analyses 

3.2.1 Proximate composition 

The proximate analysis was conducted on the whole fillet and both raw and cooked burgers to 

determine the moisture, crude proteins, crude fat, and ash contents by using the official methods 

950.46, 976.05, 991.36 and 920.153, respectively, of AOAC (2012). 

The AOAC oven drying method was used for moisture analysis. 

Approximately 4 g of lyophilized samples were weighed in a special porcelain capsules 

(previously calibrated and weighed), then dried for 4-5 hours at 105 °C in drying oven. The 

moisture percentage (M, %) formula was: M (%) = [(wet weight – dry weight) / wet weight] × 

100. 

The ash content was obtained by combustion of the samples, which are used in the analysis of the 

moisture content, on the heating plate at 300 °C for 10 minutes. After that, the samples are placed 

in the muffle for about 5 hours at a temperature of 500 °C. The ash percentage formula used was 

Ash (%) = (weight of crucible and ash – weight of crucible)/ sample weight) × 100. 

Crude protein content, expressed as nitrogen content, was determined by the Kjeldahl method, 

which consists of three main steps: sample digestion, distillation, and titration to get ammonia 

determination. The Kjeldahl method uses 98% sulfuric acid and a variety of catalysts and salts to 

convert the organically bound nitrogen of the samples to ammonium with its subsequent 

measurement. The percentage of protein was calculated by multiplying the total nitrogen 

percentage by a factor of 6.25. 

 

3.2.2 Total lipids and Fatty acid composition 

Total lipids were extracted using the Folch method (Folch et al., 1957). 
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Approximately 2 g of sample were homogenized in 2:1 chloroform to methanol solution. The 

homogenate was then filtered through filter paper. A quantity of 10 ml of 0.88% KCl was added 

to the filtered sample, and the sample was placed in a refrigerator for at least 2 hours. As a result, 

the filtrate is separated into two phases, the lower phase was then taken and dissolved in 5 ml of 

chloroform and placed in sealed amber bottles, which are treated with nitrogen to prolong the 

stability of the lipids against the risk of oxidation, and then stored in the freezer at -20 °C. About 

0.5 ml of lipid extract was put into a pre-weighed aluminium crucible and was then placed in an 

oven at 105 °C for 5 minutes. The crucible was weighed again, and the total quantity of lipids are 

calculated by applying the following formula: 

Fat (%) = (crucible and lipid weight - crucible weight /5 ml × ml weighed)/sample weight] × 100. 

The FA composition was determined according to Morrison & Smith (1964), depending on the 

trans-esterification methods by using a Varian GC 430 gas chromatograph (Agilent, Palo Alto, 

CA, USA) equipped with a flame ionization detector (FID) and a Supelco Omegawax™ 320 

capillary column (30 m × 0.32 mm i.d., 0.25 μm film and polyethylene glycol bonded phase; 

Supelco, Bellefonte, PA, USA). The oven temperature was held at 100 °C for 2 min, increased to 

160 °C over 4 min at the rate of 12 °C/min, and then increased to 220 °C over 14 min at the rate 

of 3 °C/min and kept at 220 °C for 25 min. The injector and the detector temperatures were set at 

220 °C and 300 °C, respectively. One µL of the sample in hexane was injected into the column 

with the carrier gas (helium) kept at a constant flow of 1.5 mL/min. The split ratio was 1:20. The 

chromatograms were recorded with the Galaxie Chromatography Data System 1.9.302.952 

(Agilent) computing integrator software. 

 

3.2.3 TBARS 

The 2-thiobarbituric acid reactive substances (TBARS) were measured according to Vyncke 

(1970) method. About 2 g of sample were homogenised with 10 mL of 5% trichloroacetic acid 

(TCA) solution for 60 sec using an Ultraturrax® (Mod. Ultra-Turrax T25, IKA®-Werke GmbH 

and CO, KG, Germany). Samples were stored at -30 °C for 10 min in order to precipitate the 

protein fraction. Then the samples were centrifuged and filtered. Five mL of the extracts were 

added with 2 mL of 0.02 M thiobarbituric acid (TBA) and incubated at 93 °C for 40 min. The 

absorbance was read at 532 nm with a spectrophotometer (Mod. Lambda EZ 150 UV/VIS 

Spectrometer, Perkin Elmer, Norwalk, USA). The results were expressed as mg of 

malonaldehyde/kg sample using a calibration curve determined with eight standard solutions of 

TEP (1,1,3,3,-tetra-ethoxypropane) at concentration ranging from 0.2 to 3.1 μM. 
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3.2.4 Conjugated dienes 

Conjugated dienes (CD), considered the primary lipid oxidation products, were measured 

according to Srinivasan et al. (1996). Briefly, 2 g of sample were homogenate in 6 mL water, then 

0.5 mL of that extract were added to 5 mL hexane:isopropanol (3:2, v/v). Before reading the 

absorbance at 233 nm, the samples were centrifuged 5 min at 2000 × g. The concentration of 

conjugated dienes was obtained by using the molar extinction coefficient of 25200 mL/ (mmol-1 

cm-1). The results were expressed as mol hydroperoxides/kg muscle. 

 

3.2.5 Antioxidant power 

The samples were analyzed to determine their antioxidant power, by determining the reducing 

activity of 2,2-azino-bis (3-ethylbenzothiazolin-6-sulphonic acid) (ABTS), the radical scavenging 

activity 1,1-diphenyl-2-picrilhydrazyl (DPPH) and iron-reducing ability (FRAP). A quantity of 3 

g of sample was homogenized with 7 mL of ethanol using an Ultraturrax. Subsequently, the 

homogenized samples were centrifuged, at 6500 × g for 10 minutes to separate the solid material; 

then the extract obtained was filtered. 

 ABTS 

7 mM of ABTS molecule reacted with 2.45 mM potassium persulphate in distilled water in order 

to obtain the stable radical cation ABTS•+ (Re et al., 1999). This solution was incubated in the 

dark, at room temperature, for 12 to 16 hours before use. 

The solution of ABTS•+ was diluted with ethanol to obtain a solution with absorbance equal to 

0.70 ± 0.02 at 734 nm. Then, the sample, the control, and the blank were prepared by adding 3 mL 

of ABTS•+ to 30 μL of sample extract, 3 mL of ABTS•+ to 30 μL of ethanol, and the ethanol 

respectively. The readings were taken after 6 minutes at the spectrophotometer (at 734 nm) for 

each of the sample, the control, and the blank. The reaction resulted in elimination the colour from 

intense blue to an almost transparent blue, and termination of ABTS• + radical by the possible 

antioxidants of the sample. The reduction of ABTS•+ is calculated as a percentage of removing 

colour according to the following formula: [(control Abs - sample Abs) / control Abs] × 100. The 

final result was expressed as mmol of trolox/kg of sample. 

 DPPH 

According to Blois (1958) method, later modified by Jung et al. (2010), a solution of 0.2 mM of 

DPPH in ethanol was prepared. Then, 1 mL of the prior solution was added to 0.5 mL of distilled 
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water and 1 mL of sample extract. Readings were taken after 30 minutes at the spectrophotometer 

(at 517 nm) for each of the sample, the control (1 mL of DPPH, 0.5 mL of distilled water and 1 

mL of ethanol), and the blank (ethanol). The reaction resulted in changing the colour from purple 

to yellow and reacting between DPPH radicals molecules with the antioxidant molecules presented 

in the sample. The reduction of the DPPH is calculated as a percentage of colour elimination. The 

final result was expressed as mmol of trolox/kg of sample. 

 FRAP 

The solution of FRAP containing TPTZ (2,4,6-tris (2-pyridyl) -striazine 10 mM in 40 mM of HCl) 

was prepared according to the method of Descalzo et al. (2007). The previous solution reacts with 

Fe3+ giving a yellow to orange colour. 2.5 mL of FRAP were added to 83 μL of sample extract, 

and then readings were taken after 4 minutes at the spectrophotometer (593 nm) of each of the 

samples, the control (2.5 mL of FRAP and 83 μL of ethanol) and the blank (ethanol). The reaction 

resulted in reduction of Fe3+ to Fe2+ by the possible antioxidants presented in the sample, and in a 

change of colour tending to intense blue/violet. The final result was expressed in mmol Fe2+/ kg 

of sample. 

 

3.2.6 Mineral composition 

The analysis of the mineral contents (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Na, P, Pb, Se, Zn) was 

carried out exclusively on the lyophilized samples of the whole fillet and burgers analysed at time 

t = 0 (immediately after their obtention). For this purpose, 100 mg of sample were weighed and 

transferred to special Teflon tubes. A quantity of 10 ml of 67% nitric acid (HNO3) was added and 

the tubes were placed in a microwave oven (Mod. Mars - CEM Corp., North Carolina, USA). The 

samples were subjected to a mineralization program at 200 °C for 15 minutes, at 1600 W. After 

cooling, the tubes contents were dissolved in 25 ml of bi-distilled water, then the samples were 

analyzed at the ICP-AES spectrophotometer (Mod. IRIS Intrepid II ICP Spectrometer, Thermo 

Electron Corporation-Massachusetts, USA). The light radiation emitted from each element was 

measured for three consecutive times. 

3.3 Sensory analysis 

In the Research III, the Sensory analysis was perfomed by the Descriptive Analysis. 

In details, 10 subjects (5 males and 5 females, mean age 31 years) were recruited as panellists. 

They were regular fish consumers, had no history of disorders of oral perception and were paid to 

take part in the study. Written informed consent was obtained from each after the experiment had 

been described to them. 
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The burgers, each consisting of a 25 g portion served at 50 °C, were used for training and 

evaluation sessions. Panellists participated in three training sessions of about 60 minutes each. The 

subjects developed a vocabulary describing differences and similarities between experimental 

samples in two different sessions, according to a simplified version of the repertory grid method. 

A main list of 15 attributes was developed which described aroma (ortho-nasal odour), texture, 

taste and flavour (retro-nasal odour) of burgers. A nine-point scale (1-9 from extremely weak to 

extremely strong, respectively) was used for intensity ratings. Assessors and panel performance 

were validated by evaluating two repetitions of a subset of three samples. 

The evaluation of samples of each recipe was replicated three times in two sessions. In each 

session, each panellist evaluated 6 samples identified by a three-digit code. Samples were 

presented singly, and presentation order was randomized between subjects and sessions. The order 

of attributes was randomized between subjects for each sensory mode, the attributes “overall 

aroma” and “overall flavour” were always at the end of the corresponding list. 

Subjects were asked to evaluate aroma, then to take a first bite to evaluate taste and flavour and a 

second bite for texture evaluation. After evaluation of each sample, subjects rinsed their mouths 

with water for 30 s, ate plain crackers for 30 s and rinsed their mouths a second time with water 

for a further 30 s. They took a 15 min break after every three samples. Data was collected with the 

software Fizz (ver. 2.47.B, Biosystemes, Couternon, France). 

 

3.4 Statistics 

Data obtained from the different researches were statistically analysed. 

Briefly, results of Research I were obtained by using SPSS version 17.0 software. A one-way 

ANOVA tested the treatment as fixed effect on pH, colour parameters, proximate composition, 

micro-elements, and fatty acid composition. The Bonferroni post-hoc test was applied to check the 

significance of the differences among treatments. The PLS-DA model defining a dummy variable 

for each type of flesh treatment. 

In the Research II, data related to sensory attributes of four burger recipes were analysed by multi-

block PCA (Tucker-1) and by p*MSE plot (Panel Check software, ver. 1.4.0, Nofima, Norway). 

Intensity ratings were analysed independently by a two-way ANOVA mixed model (sample as 

fixed and assessors as random factors), followed by a Fisher LSD post hoc test. 

The result of texture and chemical characteristics were submitted to ANOVA (two-way) by the 

PROC GLM of the SAS (SAS, 2004), were the sea bass to rainbow trout ratio (MSMR, 50:50 and 

30:70), the fish to potato ratio (DMR, 2.5:1 and 1.5:1), and the interaction MSMR × DMR were 

included in the model as fixed effects. Multiple comparisons among means were performed using 
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the Tukey's test and were considered significant for p values <0.05. Finally, sensory, physical and 

chemical data set (sensory aroma&flavour, sensory texture, saturated fatty acids, polyunsaturated 

fatty acids, laboratory determined texture) were subjected to multiple factor analysis (Escofier & 

Pagès, 1994). 

The statistical analysis of data collected during Research III was performed using the General 

Linear Model procedures of the Statistical Analysis Software SAS (2004) for Windows. A two-

ways ANOVA, where the recipes with different ratio of European sea bass to rainbow trout (R: 

50:50, R1; 30:70, R2), storage time (S: T0, T30, T60, T90), and the Recipes × Storage time (R × 

S) interaction were included in the model as fixed effects. 
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Abstract 

Recently, mechanical separation (MS) process has been applied on fish sector, however, its impact on 

fish quality is scarcely investigated. Aim of the present study was to compare the impact of 

mechanical separation with manual mincing applied on European sea bass, gilthead sea bream, and 

rainbow trout by evaluating physico-chemical properties and nutritional quality. MS process yield 

was found higher than the manual one when applied to sea bass, and sea bream (42, and 45g/100g, 

respectively against 39, and 40g/100g). Rainbow trout had the highest processing yield even if the 

high presence of residual on the drum (5g/100g) lead a lower MS yield than the manual processing. 

MS seemed to slightly increase water content in sea bream and trout (71.12, and 70.65g/100g, 

respectively against 68.05, and 68.11g/100g of fillets) and decrease minerals, especially in trout, 

which showed loss of  Ca, Mg, Na, and P. Hopefully, lipid fraction of the three species remained 

unaltered, indeed no significant differences were found in the fatty acid composition of the products, 

and consequently for the calculated atherogenicity and thrombogenicity indexes. In sum, 

manufacturing of products by exploiting fish without altering the nutritional value of whole fish is a 

goal reached adopting mechanically separation process. 
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Introduction 

Fish represent a source of high-quality protein, essential fatty acids, and a range of macro- and 

micronutrients that have shown beneficial effects on human health. Fatty acids of ω3-series, 

especially eicosapentaenoic acid (C20:5ω3, EPA) and docosahexaenoic acid (C22:6ω3, DHA), have 

been proved to be involved in anti-inflammatory responses, anti-carcinogenic, and anti-thrombogenic 

effects (Maskrey, Megson, Rossi, & Whitfield, 2013). Furthermore, fish muscle includes a large 

variety of mineral (Alasalvar, Taylor, Zubcov, Shahidi, & Alexis, 2002; Asghari, Zeynali, & Sahari, 

2013), from K to Se. The main functions of essential minerals include skeletal structure, maintenance 

of colloidal system, and regulation of acid–base equilibrium. Minerals also compose hormones, 

enzymes, and enzyme activators (Belitz, Grosch, & Schieberle, 2001). Despite the high nutritive 

value of fish, the time for their preparation and the price can discourage some consumers from 

purchasing, leading to a preference for ready to cook or ready to eat products (Palmeira et al., 2016). 

The edible proportion of fish represents approximately 45% of total fish weight (depending on fish 

species); thus, 55% is composed by head, fins, guts, bones, frame, and meat adhered to bones and 

skin which are considered as fish waste from processing (Arvanotoyannis & Tserkezou, 2014). 

Numerous technological strategies have been adopted in the recent years in order to trade on wastes, 

such as the production of functional ingredients from bones and skin, semi-ready or ready to cook/eat 

products obtained by meat adhered to bones and skin. The latter is commonly named mechanically 

separated meat (MSM) and it derives from the removal of the remaining meat from bones applying 

low (<104 kPa) or high pressure (>104 kPa). Fish burgers (Marengoni et al., 2009), surimi (Fogaça, 

Otani, Portella, dos Santos Filho, & Sant'Ana, 2015), and flour (Oliveira, Lourenço, Sousa, Joele, & 

Amaral Ribeiro, 2015) have been developed using MSM from Nile tilapia (Oreochromis niloticus), 

and Brazilian catfish (Brachyplatystoma vaillantii) wastes (Freitas, Resende, Furtado, Tashima, & 

Bechara, 2012; Kirschnik, Trindade, Gomide, Moro, & Viegas, 2013; Marengoni et al., 2009; Fogaça 

et al., 2015; Oliveira et al., 2015). On the other hand, not only residual from commercial fish 

processing, but also damaged and noncommercial sized fish are considered discards even if they 

might be shifted to human consumption. 

Seafood represents an important component of the food supply for the Italian population. However, 

the loss of high quality food image, the saturation of internal market, and the strong foreign 

competition have been responsible for the seafood industry stagnation, from which new marketing 

approaches, such as products diversification, might help to be turned out 
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(http://www.fao.org/fishery/countrysector/naso_italy/en). Therefore, current innovations could be 

directed towards the manufacturing of new products, also by exploiting fish wastes, without altering 

the nutritional value of whole fish. 

For this reason, this study aimed to compare the impact of mechanical separation process and manual 

minced technology applied on three aquacultured species of interest for European aquaculture. 

Physico-chemical properties and nutritional quality of European sea bass, gilthead sea bream, and 

rainbow trout derived products were evaluated immediately after the fish treatments. 

 

Materials and methods 

Preparation of fish samples and storage conditions 

Thirty-three European sea bass (Dicentrarchus labrax) and 33 gilthead sea bream (Sparus aurata) 

were purchased from a fish farm located in Orbetello (Grosseto, Italy) whereas 33 pigmented rainbow 

trout (Oncorhynchus mykiss) were purchased from a farm located in the north west of Tuscany (Lucca, 

Italy). All the fish were killed by percussion. Immediately after death, fish were transferred in 

polystyrene boxes, covered by ice, and moved to the industry where 18 fish for each species were 

minced by the soft belt-drum separator (BAADER Mod. 601; Baader, Lübeck, Germany) after being 

washed, eviscerated and decapitated, and washed again in order to eventually remove blood and gut 

residuals. In details, fish were manually inserted into the MSM machine, previously sanitized, where 

a conveyer belt pressed the carcass on the surface of a perforated drum (hole diameter: 5 mm). Bones, 

skin and thicker layers of connective tissue remained outside from the drum and were ejected through 

a discharge chute, while meat (MSM) passed through the holes and conveyed in a plastic box. A one-

step separation was conducted without any washing or centrifugation additional phases. The remained 

whole fish and the MSM were immediately brought, in refrigerated condition, to the Agri-Food and 

Environmental Science Department laboratories (University of Florence, Firenze, Italy) where all the 

whole fish were filleted. Fifteen fillets (right) for each species were analysed as such (control, C 

samples) while fifteen fillets (left) for each species were grounded by using a manual mincer (Mod. 

Tritacarne New Style; Westmark Gmbh, Elspe, Germany) and the minced meat was shaped in 15 flat 

round cakes, similar to burger (FB samples) made with 100% of fish (referred as fish burger in this 

paper) that were manually formed with a plastic stamp. Fifteen MSM-fish burgers were directly 

obtained by forming MSM with the same plastic stamp (MSM samples). Three replicates of C, FB, 

and MSM were analyzed for pH, color, proximate composition, fatty acid profile, and mineral 

composition. 
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Processing yield 

The whole, headed and gutted weights of each fish, as well as the minced meat weight were recorded. 

Similarly, the fillet yield of manually filleted fish was calculated considering the whole fish, headed 

and gutted weights and the weight of the two fillets from each fish. Yield was calculated as g/100g of 

deboned meat weight relative to whole fish weight (Booman, Márquez, Parin, & Zugarramurdi, 

2010). 

 

Physical analyses 

pH and color were measured on C, FB, and MSM samples. The pH value was monitored in three 

different points of the epaxial region of the whole fillets and of the burger’s (FB and MSM) diameter 

by using a pH-meter (Columbus, OH, USA). 

Lightness (L*), redness index (a*) and yellowness index (b*) were measured according to the CIELab 

color space system (CIE, 1976) by a Spectro-color® colorimeter (Keison International Ltd, 

Chelmsford, Essex, UK) and data were recorded by the software Spectral qc 3.6. 

Proximate composition 

Moisture, crude protein (N×6.25), crude fat, and ash contents were determined by using 950.46, 

976.05, 991.36, and 920.153 A.O.A.C. (2012) methods, respectively. For total lipid analysis, 

approximately 2 g of sample were ground and extracted using chloroform and methanol according to 

Folch, Lees, & Sloane Stanley (1957) method. Total lipids were measured gravimetrically. 

 

Fatty acid profile 

Fatty acids (FAs) were determined in the lipid extract after trans-esterification to methyl esters 

(FAME) using the method proposed by Morrison and Smith, 1964. The FA composition was 

determined by gas chromatography (GC) using a Varian GC 430 gas chromatograph (Varian Inc., CA, 

USA) equipped with a flame ionization detector (FID) and a Supelco Omegawax™ 320 capillary 

column (30 m × 0.32 mm i.d., 0.25 μm film and polyethylene glycol bonded phase; Supelco, PA, 

USA) set as previously described in Secci et al. (2016). Fatty acids were quantified through 

calibration curves using tricosanoic acid (C23:0) (Supelco, PA, USA) as internal standard. This 

analysis was carried out on C and MSM samples, but not on FB samples, because they were obtained 

from minced (left) fillets of the same fish from which the C samples were obtained and consequently 

they were considered with the same characteristics of C samples in term of FA composition. 

Atherogenicity index (AI), according to the formula [C12:0 + (4 × C14:0) + C16:0] / (ΣPUFAω3 + 

ΣPUFAω6 + ΣMUFA), and thrombogenicity index (TI), according to the formula [C14:0 + C16:0 + 
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C18:0] / [0.5 × ΣMUFA) + (0.5 × ΣPUFAω6) + (3 × ΣPUFAω3) + (ΣPUFAω3/ΣPUFAω6)] were 

calculated as suggested by Ulbricht and Southgate (1991); 

hypocholesterolaemic/hypercholesterolaemic FA ratio (h/H), as (C18:1ω9 + C18:2ω6 + C20:4ω6 + 

C18:3ω3 + C20:5ω3 + C22:5ω3 + C22:6ω3) / (C14:0 + C16:0) was also calculated (Santos-Silva, 

Bessa, & Santos-Silva, 2002). 

 

Mineral composition 

Three samples for each treatment were lyophilized (Vacuum Pump Welch Directorr; Welch Vacuum 

Technology Inc., Skokie, IL, USA) and utilized for determination of mineral composition. The 

contents in calcium (Ca), phosphorous (P), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), 

chromium (Cr), sodium (Na), potassium (K), selenium (Se), arsenic (As), cadmium (Cd), and lead 

(Pb) were determined. One-hundred mg of lyophilized samples was dissolved in 10 mL of 

concentrated nitric acid (67% Suprapur®; Merck, Darmstadt, Germany) in Teflon tubes. The tubes 

were mineralized in a microwave (Mod. Mars; CEM Corporation, NC, USA) by applying the 

mineralization stages at 1600 Watt: 200 °C (ramp time 20 min, hold time 15 min). After cooling, the 

volume was made up to 25 mL with bi-distilled water. Minerals were measured by inductively 

coupled plasma - optical emission spectrometry (ICP-OES) (Mod. IRIS Intrepid II ICP Spectrometer; 

Thermo Electron Corporation, MA, USA). Trace minerals were quantified on the basis of peak areas 

and comparison with a calibration curve obtained with the corresponding standards. The elements 

were read in triplicate for each sample. 

 

Statistical analysis 

The statistical analysis was performed using SPSS version 17.0 software (SPSS Inc., IL, USA). 

Normality of data distributions was tested by the Kolmogorov-Smirnov test. The analysis was 

performed independently for each evaluated species. Firstly, one-way analysis of variance (ANOVA) 

with ‘treatment’ (C, FB, MSM) as a fixed effect was performed on pH, color parameters (L*, a* and 

b*), proximate composition, micro-elements, and fatty acid composition data. The Bonferroni post-

hoc test was applied to check the significance of the differences among treatments. 

The PLS-DA model was built between the proximate composition, color variables and micro-

elements (X-matrix) and the C, FB and MSM variable (Y) that was made by defining a dummy 

variable for each type of flesh treatment. The species of fish was not taken into account. Classification 

performance was assessed in terms of sensitivity, specificity and total accuracy (Kjeldahl & Bro, 

2010). 
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Results and Discussion 

Yield of separation process compared to the manual operation 

From Figure 1 emerged that flesh removal yield seemed to be species-specific. Generally, rainbow 

trout showed the highest flesh removal yield by raising 53 g/100 g (on whole weight), and 50 g/100 

g when manually or mechanically separated, respectively. Interestingly, despite an overall lower 

processing yield obtained for seawater species (around 40 g/100 g) than for trout, MS operation 

increased the yield by raised from 39 to 42 g/100 g in sea bass and from 40 to 45 g/100 g in sea bream, 

in agreement with Setiady, Lin, Younce, and Rasco (2007). However, as previously underlined by 

Souza, Melo, Moreira, and Souza (2015) numerous factors, such as species, size, gender, age and 

condition of fish might affect operation yields thus explaining the difference between sea water 

species and rainbow trout. Indeed, looking at the composition of MS output reported in Figure 2, 

emerged that the residual meat on the drum was sensibly higher in rainbow trout than in sea bass and 

sea bream thus suggesting that trout muscle is less prone to be MS processed maybe because of its 

thickness and bones structure. Such high residual quantity on the drum found for trout moreover may 

be responsible for the lower processing yield than the manual filleting process. 

 

.  

Figure 1. Graph bars of mechanical (grey bar) and manual (dark bar) yield (g/100 g whole fish) for each studied species 

(European sea bass, gilthead sea bream and rainbow trout). *p < 0.05. 
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Figure 2. Graph bars of MS output composition (mechanical separated meat: dark grey bar; bones and skin: grey bar; 

drum residual: bar; process error: dark bar), expressed as g/100 g clean fish, for each studied species (European sea bass, 

gilthead sea bream and rainbow trout). Mean ± standard deviation is reported near to the corresponding bars. 

 

Qualitative differences among treatments 

The basic compositional traits and physical parameters results of products obtained is reported in 

Table 1. The treatments differently affected the products from the three species of fish. Sea bass whole 

fillet (C) and burger (FB) showed a lower fat and protein content (p>0.05), with higher amount of 

moisture, and significantly higher ash values compared to MSM. Proximate composition of sea bass 

was in line with previous papers where cultured sea bass composition of fillets resulted in 68-70 g/100 

g of moisture, 20-22 g/100 g of protein, 8-10 g/100 g of lipids and 1.3-1.5 g/100 g of ash (Alasalvar 

et al., 2002; Badiani et al., 2013). In sea bream, the MSM samples were significantly different 

(p<0.05) from C and FB samples. Indeed, the moisture resulted higher in MSM with a significantly 

lower content of protein and fat. The basic compositional traits of sea bream MSM were well within 

the range presented by Grigorakis (2007) in his review encompassing fifteen years of research on 

nutritional quality of farmed specimens, but the results obtained for C and FB resulted with a lower 

moisture contents. Cellular disruption could be responsible for the increase in water content of MSM 

samples, especially considering the possible release of water soluble protein, and this trend confirms 

previous data obtained on MSM from Brazilian catfish (Olivera et al., 2015). However, the species-

specific effect of the mechanical process is underlined by the presence of significant differences in 

water content differently distributed between treatments. Hence, sea bream and trout appeared to be 

the most susceptible to be damaged by the mechanical separator thus suggesting the fragility of the 

matrix. 
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The mean contents of moisture, protein, lipids, and ash in the analyzed trout fillets were in the ranges 

70-72, 19-21, 6-7.5 and 1.45-1.55 g/100 g of product, respectively. The proximate composition of the 

rainbow trout reported in literature (Gokoglu, Yerlikaya, & Cengiz, 2004) showed some differences 

in fat content, mostly dependent on the animal diets (González-Fandos, García-Linares, Villarino-

Rodríguez, García-Arias, & García-Fernández, 2004). 

The pH value is an important index for determining the fish quality as bacterial and enzymatic activity 

affects pH and is affected by pH in fish fillets like in other meats. The pH values were not affected 

by treatment in sea bass, indeed no significant differences were highlighted, as reported in Table 1. 

As expected, C, FB and MSM products resulted with the same pH, because of the employment of 

whole fish in MSM production instead of residues as reported by other authors (Oliveira et al., 2015) 

and all the products were in the same freshness condition of the matrix. However, differences in pH 

were found in both sea bream and rainbow trout. The differences in pH could be easily explained by 

the moisture content, indeed the higher the moisture, the higher the pH as reported in previous papers 

(Ruiz-Ramírez, Arnau, Serra, & Gou, 2005; Rebouças, Rodrigues, Castro, & Vieira, 2012). 

The results of one-way ANOVA for color parameters were reported in Table 1, that highlights that for 

the three species the color was significantly affected by treatment. In the case of the seawater species, 

the differences were similar, indeed L*, a* and b* of C samples resulted significantly lower than in 

FB and MSM burgers. In the case of rainbow trout, the fillets presented a significantly lower lightness 

(L*) and higher redness (a*) compared to MSM and minced fillet burgers. 

Macronutrients (Ca, K, Mg, Na, P), essential trace elements (Cu, Fe, Se, Zn), as well as potentially 

toxic elements (As, Cd, Cr, Pb) were searched in samples, notwithstanding the content of As, Cd, Cr, 

Cu, Pb, and Se was below the instrument detection limit (1 mg/kg wet weight). The mineral 

composition of C, FB, and MSM samples is reported in Table 2. The inclusion of macronutrients is 

an important facet of the nutrient profile. In accordance to their categories, high levels of K and P 

were found together with low amounts of Fe and Zn in all the considered species. Similar values were 

proposed for European sea bass (Alasalvar et al., 2002), gilthead sea bream (Erkan & Özden, 2007) 

and rainbow trout (Asghari et al., 2013). Specifically, K ranged from 1212 mg/kg in trout to 4240 

mg/kg in sea bream, whilst P levels were found around 3000 mg/kg in sea bass, sea bream, and trout. 

Nevertheless, the huge variation in mineral composition is confirmed by the fact that frequently 

authors expressed the results as 5th and 95th percentile instead of the mean (Olmedo et al., 2013). 
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Table 1. Proximate composition (g/100 g product), pH and color of European sea bass, gilthead sea bream, and rainbow 

trout fillets (C), minced (FB) and MSM, analysed immediately after treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1RMSE: Root Mean Square Error. 

Within criterion, a, b, c: p<0.05. 

Data were obtained from three replicates. 

 

Such as high difference however may be attributed to the diet, to origin (wild or farmed) (Alasalvar 

et al., 2002), as well as age, gender, salinity, handling processes (Yilmaz, 2003; Erkan & Özden, 

2007), and type of muscle, i.e. white or red (Erkan & Özden, 2007). Interestingly, treatments 

differently affected the mineral content of the analyzed species. Sea bass was almost unaffected by 

manual and mechanical separation processes (Table 2) being only Na to significantly decrease in 

MSM samples. The macronutrient P was significantly reduced by MS treatment when applied to sea 

bream. Finally, even Ca, and Mg were highly affected by the treatment. In all cases, separation process 

induced a reduction of mineral concentration in samples. Two aspects have to be underlined. The first 

one is the unexpected reduction of Ca, confirming the efficiency of the mechanical separation process 

Species Parameter C FB MSM RMSE1 

Sea bass 

Moisture 70.00 71.18 68.79 1.00 

Lipid 9.59 7.67 10.49 1.30 

Protein 18.86 19.68 19.17 0.22 

Ash 1.25b 1.38a 1.23b 0.03 

pH 6.30 6.34 6.33 0.02 

L* 42.93c 49.54b 51.19a 0.44 

a* -1.20b 0.17a -0.31a 0.16 

b* -0.69b 3.77a 4.06a 0.18 

Sea bream 

Moisture 68.05b 70.21a 71.12a 1.03 

Lipid 9.87a 7.15b 7.76b 0.59 

Protein 20.34a 20.82a 19.35b 0.20 

Ash 1.43a 1.45a 1.28b 0.02 

pH 6.15ab 6.12b 6.18a 0.01 

L* 42.39b 48.05a 47.75a 0.33 

a* -1.25b 0.33a 0.87a 0.22 

b* -0.42c 3.36b 4.41a 0.23 

Rainbow 

trout 

Moisture 68.11b 67.71b 70.65a 0.44 

Lipid 8.06 7.89 6.65 0.59 

Protein 22.01 22.31 21.00 0.34 

Ash  1.52 1.53 1.50 0.02 

pH 6.37b 6.37b 6.48a 0.01 

L* 31.91b 46.87a 48.12a 1.05 

a* 5.13a 0.95b 1.28b 0.84 

b* 9.54b 11.27a 12.51a 0.47 
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in muscle separation from the skeletal part of the fish, which is the main source of Ca. The second 

aspect is that, despite the tendency to decrease mineral fraction, mechanical operations did not 

severely compromise it, that is an important result from the nutritional point of view. Indeed look at 

the recommended daily intake (Tolonen, 1990) it is possible to find out that 100 g of MSM burger of 

all the considered species supplied for 100% K, Mg, and P, and it might represent a good source of 

Fe, Zn, and Na. 

The fatty acid (FA) composition of the fillets and MSM samples, taken immediately after treatment, 

is reported in Table 3. No statistical differences were found in the fatty acid profile between fillets 

and MSM nor for seawater or freshwater species. All the considered fish had more than 8 g of fat for 

100 g of product, but their fatty acid composition varied as follow. Linoleic (C18:2ω6), oleic 

(C18:1ω9) and docosahexaenoic (DHA, C22:6ω3) acids were the majority of FA for trout, whereas 

oleic, DHA, and palmitic (C16:0) acids were the main constituents of sea bass and sea bream lipid 

fraction. These major three fatty acids represented around 47% of the total fatty acids in trout, and 

sea bass whilst 43% in sea bream. As expected, in what concerns PUFAs, the level of ω3 was higher 

than that of ω6 in seawater species whilst rainbow trout contained two times the level of PUFAω6 

and lower PUFAω3 content than sea bass and sea bream. These results are in agreement with previous 

findings about the differences between marine and freshwater fish species (Tocher, 2003; Li, Sinclair, 

& Li, 2011). 

Despite the high percentage of fat contained in 100 g of product, the characteristics of intramuscular 

fat are very interesting for human nutrition as a consequence of the predominance of PUFA fraction, 

particularly ω3, on both MUFA and SFA ones especially in seawater species. Moreover, also the 

values of other health indexes as ω3/ω6 PUFA ratio, AI, TI, and h/H confirmed the optimal nutritional 

characteristics of fat. In addition, these characteristics seemed to be conveniently preserved during 

the mechanical separation process, as revealed by the absence of statistical differences between MSM 

and C samples. 

Particularly, the ω3/ω6 ratio was found to be around 3 in sea bass and sea bream, in agreement with 

previous findings for intensive farmed sea bass (Orban et al., 2002), and sea bream (Orban et al., 

2003b). Trout instead had the lowest ratio by staying under 1. In this case, the calculated value was 

inferior at what previously reported for pigmented rainbow trout (Orban et al., 2003a) because of the 

widest presence of ω6, certainly due to the feeding composition. This difference is not particularly 

surprising, since the dietary fish meal and fish oil inclusion in aquafeeds is dramatically decreased in 

the last decades, mainly in feed for salmonids (Tacon & Metian, 2008). The use of more sustainable 

diets has produced relevant changes in fatty acids profile, seriously affecting ω3/ω6 PUFA ratio. 
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Table 2. Mineral composition of European sea bass, gilthead sea bream, and rainbow trout fillets (C), minced (FB) and 

MSM samples immediately after treatment (mg/100 g). 

  C FB MSM RMSE1 

Sea bass 

Ca 26.59 27.67 85.47 36.78 

Fe 0.81 0.91 0.46 0.35 

K 346.09 358.71 358.65 7.50 

Mg 36.27 36.84 36.51 1.52 

Na 38.35a 36.07a 27.45b 1.25 

P 230.02 239.49 248.18 14.75 

Zn 0.54 0.48 0.53 0.08 

Sea 

bream 

Ca 79.41 22.92 29.00 19.19 

Fe 0.50 0.33 0.59 0.12 

K 385.06ab 406.47a 363.43b 9.07 

Mg 37.49 37.08 33.30 0.98 

Na 32.15 30.50 29.59 2.21 

P 275.12a 258.52ab 224.39b 9.38 

Zn 0.57 0.47 0.53 0.06 

Rainbow 

trout 

Ca 44.29a 15.99b 16.72b 5.74 

Fe 0.49 0.75 0.67 0.12 

K 438.61 459.98 442.91 7.52 

Mg 36.07a 35.42a 32.41b 0.57 

Na 47.98a 46.10a 32.88b 1.34 

P 238.75a 228.48b 217.75c 1.94 

Zn 0.56 0.50 0.43 0.05 

1RMSE: Root Mean Square Error. 

Within criterion, a, b, c: p<0.05.  

Data were obtained from three replicates. 

 

 

Recently, the attention toward EPA+DHA content has been increased. An intake of 250 mg per day 

has been suggested as the labeling reference intake value for EPA plus DHA, which is in agreement 

with the most recent evidence on the relationship between the intake of these fatty acids and 

cardiovascular health in healthy populations (EFSA, 2010). However, the intake of fish flesh with 

similar EPA+DHA content but with different ω3/ω6 ratio was shown to have varied effects on lipid 

quality in a group of healthy subjects. Specifically, a significant decrease of total cholesterol, LDL, 

and triglycerides as well as an improve of inflammatory variables such as interleukins 6 and 8 were 

found in subject weekly fed for 10 weeks with 12 g of EPA+DHA, and 2.4 ω3/ω6 PUFA ratio (Sofi 

et al., 2013). The present findings revealed that a portion (100 g) of MSM and C of all the considered 

species may provide more than the suggested quantity of EPA+DHA together with a high ω3/ω6 
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ratio, except for rainbow trout. Again, MSM might represent an optimum way to propose fish to 

people traditionally not well available for fish consumption, such as children or elderly people. 

Finally, AI, TI, and h/H values are presented in Table 3. As reported by Valfrè (2008), AI and TI 

represent factors of promotion and protection against coronary disease, and their low values suggest 

a high cardio-protective effect. Very low values and in agreement with those proposed by Orban et 

al. (2003a; 2003b) were calculated for MSM and C samples. In conclusion, considering both the fatty 

acid profile and the calculated indexes, MSM seemed to be an optimum lipid sources, especially if 

obtained by seawater species 

However, the higher ω3/ω6 PUFA ratio of the seawater species, regardless the different treatments 

tested in this trial, is an element of nutritional relevance as an index of the lipid quality. 

 

Table 3. Total lipid (g/100 g of product), and fatty acids profile (g/100 g of total fatty acids) of European sea bass, gilthead 

sea bream, and rainbow trout fillets (C) and MSM samples immediately after treatment. 

 Sea bass Sea bream Rainbow trout 

 C MSM Sign. RMSE1 C MSM Sign. RMSE C MSM Sign. RMSE 

Total lipids  9.59 10.49 NS 1.83 9.87 7.76 NS 0.64 8.06 6.65 NS 0.84 

Fatty acids             

C14:0 3.56 3.43 NS 0.04 4.24 4.10 NS 0.14 1.45 1.44 NS 0.01 

C16:0 13.42 13.72 NS 0.30 12.58 12.59 NS 0.44 10.75 10.40 NS 0.26 

C16:1ω7 4.80 4.43 NS 0.04 6.39 6.36 NS 0.16 2.47 2.37 NS 0.11 

C18:0 2.31 2.46 NS 0.03 2.83 2.61 NS 0.057 3.24 2.98 NS 0.09 

C18:1ω9 17.98 18.94 NS 0.72 14.94 14.83 NS 0.41 24.39 23.77 NS 0.31 

C18:2ω6 9.05 8.67 NS 0.13 8.17 8.02 NS 0.32 25.82 26.24 NS 0.33 

C18:3ω3 1.86 1.91 NS 0.02 1.29 1.31 NS 0.09 4.12 4.23 NS 0.09 

C20:1ω9 3.49 3.73 NS 0.09 1.42 1.53 NS 0.06 1.38 1.36 NS 0.12 

C20:5ω3 10.12 9.52 NS 0.16 10.41 10.32 NS 0.31 3.08 3.13 NS 0.14 

C22:1ω11 3.03 3.38 NS 0.10 1.25 1.41 NS 0.09 0.71 0.70 NS 0.07 

C22:5ω3 3.05 2.85 NS 0.13 7.66 7.37 NS 0.22 1.81 1.64 NS 0.05 

C22:6ω3 15.91 15.75 NS 0.81 15.83 16.90 NS 0.52 11.00 11.95 NS 0.36 

ΣSFA 20.17 20.47 NS 0.30 20.72 20.32 NS 0.63 16.00 15.35 NS 0.34 

ΣMUFA 33.43 34.68 NS 0.88 27.99 28.07 NS 0.41 31.70 30.94 NS 0.56 

ΣPUFAω6 11.40 10.89 NS 0.17 10.59 10.44 NS 0.31 29.68 30.17 NS 0.24 

ΣPUFAω3 33.53 32.67 NS 1.02 38.06 38.71 NS 0.15 21.83 22.76 NS 0.38 

ΣPUFA 46.39 44.85 NS 1.18 51.29 51.60 NS 0.25 52.30 53.71 NS 0.33 

AI 0.35 0.35 NS 0.00 0.39 0.38 NS 0.01 0.20 0.17 NS 0.01 

TI 0.15 0.16 NS 0.01 0.14 0.14 NS 0.00 0.16 0.15 NS 0.01 

h/H 3.48 3.42 NS 0.02 3.54 3.60 NS 0.10 5.84 6.08 NS 0.15 

ω3/ω6 2.94 3.00 NS 0.04 3.59 3.71 NS 0.10 0.74 0.75 NS 0.02 

C12:0, C13:0, C14:1ω5, C15:0, C15:1, C16:1ω9; C16:2ω4, C16:3ω4, C16:4ω1, C17:0, C17:1, C18:1ω7, C18:3ω6, C18:3ω4, 

C18:4ω1, C20:0, C20:1ω11, C20:1ω7, C20:2ω6, C20:3ω6, C20:3ω3, C20:4ω6, C20:4ω3, C21:0, C21:5ω3, C22:0, C22:1ω9, 

C22:1ω7, C22:2ω6, C22:4ω6, C22:5ω6, C24:0, and C24:1ω9 were also detected but not reported because <3%.  

They were utilized to calculate Σ. 
1RMSE: Root Mean Square Error. 

Within criterion, a, b, c p<0.05. NS, Not Significant (p> 0.05). Data were obtained from three replicates. 
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Discriminant analysis 

To identify differences among C, FB and MSM, the discriminant analysis was performed and the 

results for the PLS-DA classification model (leverage validation method) were satisfactory. 

Considering all fish treatments, the coefficients of prediction were over 0.98 and over 0.75 for 

calibration (R2 C) and for validation (R2 V), respectively; calibration root mean square errors were 

under 0.06 and the validation root mean square errors were under 0.23, after six latent variables for 

all treatments (i.e. C, FB and MSM). In the validation phase, all samples deriving from the three 

different treatments were correctly predicted (sensitivity, or true positive rate, i.e. number samples 

correctly detected by the model divided by the total number of C, FB or MSM samples = 1.00), were 

correctly classified in the related group (specificity = 1.00), with an overall correct classification 

(accuracy) of 100%. The main variables that contributed to fish treatment classification resulted the 

proximate composition, L* and b*, and minerals (with exception of Fe content), as shown in Figure 

3. The main differences between samples were accounted along the first component where C resulted 

well discriminated from FB and MSM, especially for moisture. Few differences appeared between 

the two minced meats, indeed MSM and FB were separated on the second component characterised 

by ash, protein, K and Na contents. 

 

 

Figure 3. Correlation loadings of PLS e DA performed using proximate composition, mineral content and color parameter 

at T0 in the X matrix and treatment of fish in Y dummy variable. 
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Conclusion 

The manufacturing of new products by exploiting unmarketable fish without altering the nutritional 

value of whole fish is a goal well reached adopting the mechanically separated process. This process 

allowed having a good performance in terms of yield without deeply altering the micro- and macro- 

nutrient contents. However, some limitations have to be taken into account. The species-specific 

characteristics, such as the muscle composition and bones structure, seemed to lead to different results 

in terms of yield and nutritional values. In this sense, sea bream and trout appeared to be the most 

susceptible to be damaged by the mechanical separator thus suggesting the fragility of these matrixes. 

The whole fillet of all the considered species slightly differs from the minced meat, in both manual 

or mechanical separation, however the advantages related to the utilization of no directly marketable 

specimens, so limiting the waste production, and to the “ready to cook” product by using the 

mechanical separation process was highlighted in this study. Moreover, further studies could focus 

on sensory properties of MSM in order to understand if the modification in nutritional value will 

impact the sensory profile or the acceptability of the transformed fish. Microbiological aspects, such 

as the microbial growth during the shelf life at different storage conditions might be investigated. 
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Abstract 

Four “clean label” formulations for fish burgers made with mechanically separated fish meat were 

characterised in sensory, textural and chemical terms. The formulations differed in the ratios of 

European sea bass to rainbow trout (50:50 and 30:70) and the ratios of fish to potato flakes (dry matter 

ratio, DMR: 2.5:1 and 1.5:1). The sensory profile was mainly influenced by DMR. Recipes with the 

higher DMR were positively correlated with sandy, dry and crusty attributes, salty taste and overall 

flavour. Soft texture was perceived for recipes with the lower DMR, although no differences in texture 

were detected by a texturometer. Lowering DMR increased ash and water content and decreased 

protein content, as expected. The results indicated that 100 g of burger provided more essential fatty 

acids than the recommended daily intake, irrespective of formulation. In conclusion, multiple factor 

analysis indicated that the main changes detected and perceived were due to DMR. 

Keywords: European sea bass; rainbow trout; descriptive analysis; texture; essential fatty acids. 
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Introduction 

Awareness of the food we eat and sustainable consumption are topical subjects. The food industry 

and consumers are increasingly concerned about sustainable production, health and wellness. The 

industry, for example, has been trying to reduce food wastage, a significant contributor to 

unsustainability, while consumers are demanding healthy minimally processed food. As underlined 

by Balasubramaniam et al. (2016), consumers often read food labels to check whether the ingredients 

on the label can be found in their own kitchens. If so, they are prepared to purchase the product. The 

movement away from artificial chemical ingredients is known in the industry as ‘clean label’ 

(Saltmarsh, 2014). 

Parallel to this movement, health claims are gaining importance in western countries. They refer to a 

food’s ability to prevent, manage or treat illness (Martirosyan & Singh, 2015) through known or 

unknown functional molecules that modulate one or more metabolic processes or pathways in the 

body. For example, the long-chain omega-3 polyunsaturated fatty acids (PUFA), especially 

eicosapentaenoic acid (C20:5ω3, EPA) and docosahexaenoic acid (C22:6ω3, DHA), can reduce the 

risk of cardiovascular disease, improve mental and visual functions, and are involved in inflammatory 

responses (Abuajah et al., 2014; Hong et al., 2005; Merched et al., 2008). They may also theoretically 

lead to a decrease in body fat over time and reduce obesity risk (Wildman, 2016). 

Fish are an important source of EPA and DHA and can therefore be regarded as natural functional 

food. Fish also contain high-quality protein and essential micronutrients for humans. However, much 

precious food is lost in the production chain due to processing-related fish waste (up to 55% of the 

fish body is typically inedible) and the fact that damaged and non-commercial sized specimens are 

discarded. 

The literature indicates that such fish waste can be viable, sustainable, easy-to-prepare and nutritious 

food (Palmeira et al., 2016). Mechanical separation process has been successfully applied to the major 

aquaculture species on the European market in the case of specimens of that cannot be marketed 

directly due to damage or size (Borgogno et al., 2017b; Secci et al., 2016). The authors found that 

due to its fatty acid composition, mechanically separated meat (MSM) of European sea bass 

(Dicentrarchus labrax), gilthead sea bream (Sparus aurata) and rainbow trout (Oncorhynchus 

mykiss) was a suitable raw material for high quality fish-based products. 

The present study was inspired by consumer demand for healthy clean label products, the need to 

enhance the value of discarded fish and the desire to provide new opportunities for the 

fishery/aquaculture sector. We focused on testing four “clean label” formulations for fish burgers 

made using mechanically separated fish. The sensory, textural and chemical properties of the four 

formulations were assessed. 
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Material and Methods 

Fish burgers 

Product recipe development 

Fish burgers were developed according to three main ideas that emerged from a preliminary Focus 

Group conducted with Italian consumers (Secci et al., 2017): fish burgers should be based on a 

mixture of fresh mechanically separated fish, having a texture resembling minced meat, not meat 

emulsion, with very few other natural ingredients. We therefore prepared fish burgers from the 

following materials chosen for their functional properties: 

• fresh mechanically separated fish of European sea bass (Dicentrarchus labrax) and pigmented 

rainbow trout (Oncorhynchus mykiss) as protein and lipid sources; 

• rehydrated potato flakes as starch providing texture; 

• clear lemon juice as natural source of the antioxidants ascorbic and citric acid; 

• sodium chloride as flavour enhancer. 

Moisture content (MC), fish to potato ratio (dry matter ratio, DMR) and mechanically separated fish 

ratio (MSMR) between pigmented rainbow trout and sea bass were chosen as operating parameters 

to set up the recipes. Moisture content was set at 72 g 100 g-1 to make the mixture workable. The 

DMR was decided on the basis of burger taste: the higher the DMR, the greater the fish taste and the 

less the potato taste and vice versa. Pigmented rainbow trout and sea bass were chosen because they 

are species of interest in European aquaculture, good sources of PUFAω3 and PUFAω6, and less 

vulnerable to mechanical separation than other previously tested species (Secci et al., 2016). 

Four fish burger recipes (R1, R2, R3, R4) were set up with constant moisture, sodium chloride and 

lemon juice contents, two values of DMR (fish:potato, 2.5:1 and 1.5:1), and two values of MSMR 

(sea bass:trout, 50:50 and 30:70). These ratios were chosen after preliminary optimisation based on 

the workability and appearance of the mixture. The complete composition of the four recipes is 

reported in the supplementary material (Table S1). A mass balance was used to weigh the amounts 

of the ingredients according to an original spread sheet (shown as Supplementary material Table S2) 

which can solve the problem of the usual moisture variations of fish and potato flakes (and any other 

ingredient chosen by the industry) and should make the experiment more reproducible. 

 

Mechanically separated fish and burger preparation 

A total quantity of 18.5 kg of rainbow trout (average individual weight 450 ± 50 g) was purchased 

from a farm in northern Tuscany (Lucca, Italy) and 15.5 kg of sea bass (Dicentrarchus labrax, average 

individual weight 550 ± 30 g) was purchased from a local farm near Orbetello (Grosseto, Italy). The 

fish were processed on the premises of a fish-processing company (Grosseto, Italy) where they were 
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gutted and headed before being fed manually into a soft separator (Baader 601, Lübeck, Germany). 

In a one-step process, the fish carcasses were pressed (level 2.5 machine setting) by the conveyer belt 

onto the surface of the perforated drum (5 mm hole diameter). Mechanically separated meat passed 

through the holes, while bones, skin and thicker layers of connective tissue remained on the outside 

of the drum and were ejected through a discharge chute. Without washing or centrifuging, the MSM 

was used for burger preparation. 

Potato flakes were puréed with cold water in a semi-automatic kitchen mixer for 10 s, then MSM of 

the two species was added and mixed for other 20 s. Five seconds before the end of the mixing time, 

lemon juice and salt were added without stopping the mixer. The mixture was divided into 100 g 

portions which were pressed manually in a burger-press (La Pressella Rigamonti, Lecco, Italy). Each 

burger was wrapped individually in cellophane. A total of 120 burgers were produced and frozen at -

80°C until sensory, physical and chemical analysis on raw and cooked (oven-baked at 180°C for 35 

min, core temperature 80°C) burgers. Three replicates per recipe (i.e. 12 burgers) were set aside for 

physical and chemical analysis of raw and cooked samples. The other 96 burgers were used for 

sensory evaluation. 

 

Sensory evaluation 

Descriptive Analysis 

Ten subjects (5 males and 5 females, mean age 31 years) were recruited as panellists. They were 

regular fish consumers, had no history of disorders of oral perception and were paid to take part in 

the study. Written informed consent was obtained from each after the experiment had been described 

to them. 

The burgers, each consisting of a 25 g portion served at 50 °C, were used for training and evaluation 

sessions. Panellists participated in three training sessions of about 60 minutes each. The subjects 

developed a vocabulary describing differences and similarities between experimental samples in two 

different sessions, according to a simplified version of the repertory grid method. A main list of 15 

attributes was developed (Table 1) which described aroma (ortho-nasal odour), texture, taste and 

flavour (retro-nasal odour) of burgers. A nine-point scale (1-9 from extremely weak to extremely 

strong, respectively) was used for intensity ratings. Assessors and panel performance were validated 

by evaluating two repetitions of a subset of three samples. Data was analysed by multiblock PCA 

(Tucker-1) and P/MSE plot to assess panel calibration and assessor performance, respectively, using 

Panel Check software (ver. 1.4.0, Nofima, Trømso, Norway). 
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Table 1. List of the attributes describing fish burger sensory properties and their relative significance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evaluation of samples of each recipe was replicated three times in two sessions. In each session, 

each panellist evaluated six samples identified by a three-digit code. Samples were presented singly 

and presentation order was randomized between subjects and sessions. The order of attributes was 

randomized between subjects for each sensory mode, the attributes “overall aroma” and “overall 

flavour” were always at the end of the corresponding list. 

Subjects were asked to evaluate aroma, then to take a first bite to evaluate taste and flavour and a 

second bite for texture evaluation. After evaluation of each sample, subjects rinsed their mouths with 

water for 30 s, ate plain crackers for 30 s and rinsed their mouths a second time with water for a 

further 30 s. They took a 15 min break after every three samples. Data was collected with the software 

Fizz (ver. 2.47.B, Biosystemes, Couternon, France). 

 

Laboratory analysis of texture and of proximate and fatty acid compositions 

Texture measurements were performed using a Zwick Roell® texturometer model KAF-TC 0901279 

(Zwick GmbH & Co. KG, Ulm, Germany) equipped with a 1 KN load cell and a blade probe. Shear 

Attribute P 

Texture (TxS)  

   Crusty < 0.05 

   Soft < 0.05 

   Doughy NS 

   Dry < 0.05 

   Sandy < 0.05 

   Fatty < 0.05 

Taste  

   Salty < 0.05 

   Umami NS 

Aroma/Flavour (A&F)  

   Fish < 0.05 

   Backed fish < 0.05 

   Fatty < 0.05 

   Starch < 0.05 

   Vegetable broth NS 

   Overall aroma NS 

   Overall flavour < 0.05 
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force was determined on the middle part of the burger. Data was collected and analysed by Test-

Xpert2 of the Zwick Roell® software version 3.0. 

Moisture, crude protein and ash contents were determined (AOAC, 2012) in raw and cooked burgers. 

The total lipid content of the samples was determined according to Folch et al. (1957) and fatty acid 

composition was determined by gas chromatography (GC) using a Varian GC 430 instrument (Varian 

Inc., Palo Alto, CA, USA), equipped with a flame ionization detector (FID) and a Supelco 

Omegawax™ 320 capillary column (30 m × 0.32 mm i.d., 0.25 μm film and polyethylene glycol 

bonded phase; Supelco, Bellefonte, PA, USA), as described in Secci et al. (2016). Tricosanoic acid 

(C23:0) (Supelco, Bellefonte, PA, USA) was used as internal standard for fatty acid (FA) 

quantification through calibration curves (standard Supelco 37 component FAME mix; Supelco, 

Bellefonte, PA, USA). Proximate composition and fatty acid profiles of MSM of sea bass and rainbow 

trout are published in Borgogno et al. (2017b). 

 

Statistical analysis 

Intensity data from the trained panel was analysed by multi-block PCA (Tucker-1) and by P*MSE 

plot (Panel Check software, ver. 1.4.0, Nofima, Norway) to assess panel calibration and assessor 

performance, respectively. The Tucker-1 plots did not detect any cases of disagreement between 

panellists for any attribute. P*MSE plots indicated that all subjects were reliable in terms of product 

differentiation ability and consistency across replicates. All panellists were therefore retained for data 

analysis.  

Intensity ratings were analysed independently by a two-way ANOVA mixed model (sample as fixed 

and assessors as random factors), followed by a Fisher LSD post hoc test (significant for P ≤ 0.05). 

PCA was computed on panel averages of each significant attribute arising from the ANOVA models 

using The UnscramblerX 10.3 software (Norway). Full cross validation was computed to validate 

interpretation of the first two components. 

Data related to texture and chemical characteristics was processed by two-way ANOVA using PROC 

GLM of SAS statistical software (SAS, 2004), where the effects considered were the species of fish 

ratio (MSMR, two levels: 50:50 and 30:70 sea bass to rainbow trout, respectively) and fish to potato 

ratio (DMR, two levels: 2.5:1 and 1.5:1 fish to potato, respectively). The interaction MSMR × DMR 

was also included in the statistical model. Comparison of means was performed by Tukey’s test (SAS, 

2004) at P < 0.05. 

Multiple Factor Analysis (Escofier & Pagès, 1994) was applied to the sensory and laboratory data set 

(five data blocks: sensory aroma&flavour, sensory texture, saturated fatty acids, polyunsaturated fatty 

acids, laboratory determined texture). Product spaces and correlation plots were constructed to 
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visualise sample differences and/or similarities according to sensory, chemical and physical 

characteristics. 

 

Results and Discussion 

Sensory Evaluation 

Overall, sensory assessment indicated that potato content can significantly modify the perceived 

profile of fish burgers, while the sea bass to trout ratio only marginally affected sensory properties. 

Indeed, the PCA bi-plot (Figure 1) showed that samples were mainly discriminated along the first 

component (PC1: 73% explained variance) in relation to DMR. Recipes with the highest DMR (R1 

and R3) clustered on the right side of the map, while those with the lowest DMR (R2 and R4) clustered 

on the left. Texture varied in relation to DMR: R1 and R3 were positively correlated with sandy, dry 

and crusty attributes, while soft texture characterized R2 and R4 samples related to their higher potato 

flake content. Potato flakes are composed of starch, frequently used as a binding agent in meat 

preparations (Totosaus, 2009). It is widely accepted that sensory profile has a key role in consumer 

acceptance and favour. In this sense, recent studies have shown that texture attributes are clear 

hedonic drivers of fresh fish and fish-derived products (Alexi et al., 2018; de Quadros et al., 2015). 

Specifically, juiciness and crumbliness/crunchiness seem to increase consumer hedonic response to 

different fish species (Alexi et al., 2018) and Serra Spanish Mackerel burgers (Scomberomorus 

brasiliensis; de Quadros et al., 2015). On the other hand, attributes like firmness and tenderness do 

not generate a single response among consumers (Alexi et al., 2018; de Quadros et al., 2015), 

probably due to specific attitudes of consumers towards different products, including familiarity. 

The high proportion of fish in the R1 and R3 recipes was positively associated with salty taste, higher 

overall flavour and “fish” notes (typical aroma and flavour of fresh/raw fish). On the contrary, “baked 

fish” (typical aroma and flavour of fish cooked in the oven) and “starch” (typical aroma and flavour 

of boiled starchy foods such as rice and potatoes) were the main descriptors of R4 sample flavour. As 

found for texture, salty taste and fish flavour are other proven drivers of liking for fresh fish and ready 

to cook fish products (Alexi et al., 2018; de Quadros et al., 2015). However, when considering tilapia 

burgers, Ali et al. (2017) showed that the overall acceptability increased significantly (P < 0.05) up 

to 20% of mashed potato. Considering the present results, it is possible to say that not only can the 

four recipes be divided into two groups on the basis of fish to potato ratio, but they are also 

characterized by sensory attributes which are mainly linked to hedonic response. Hence, R1 and R3 

as well as R2 and R4 could be baselines for the development of products directed at different 

consumer target groups. 
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Finally, the variation in sea bass to trout ratio only marginally influenced burger sensory properties 

along the second component (15% of explained variance). This fact could be of economic and other 

interest for the fish industry: firstly, a high ratio of potato flakes did not induce negative attributes, so 

recipes can be developed starting with 1.5:1 DMR; secondly, the prevalence (70%) of rainbow trout 

over sea bass (30%) only weakly affected burger sensory profile. Higher proportions of relatively 

economical ingredients as potato and trout (cheaper than sea bass) are therefore feasible. 

Figure 1. Principal Component Analysis of attributes significantly discriminating the four recipes (R1: sea bass:rainbow 

trout 50:50, fish:potato 2.5:1; R2; sea bass:rainbow trout 50:50, fish:potato 1.5:1; R3: sea bass:rainbow trout 30:70, 

fish:potato 2.5:1; R4: sea bass:rainbow trout 30:70, fish:potato 1.5:1) (correlation loading plot). F: flavour; A: aroma. 

 

Laboratory analysis 

Shear stress was not significantly affected by different percentages of the two fish species or of potato 

flakes in raw (mean value 8.09 ± 0.05 N) and cooked fish burgers (mean value 9.73 ± 0.32 N). Potato 

starch is commonly used as an emulsifier in meat products because it boosts the gel strength of protein 

gel matrix structure (Aktaş & Gençcelep, 2006) determining an increase in shear force (Bushway et 

al., 1982), although its percentage seems to have different effects on the texture of the mixture to 

which it is added. Many authors report that starch is more effective in increasing matrix gel strength 

when its concentration is less than 3% (Yoon et al. 1997; Zhang et al., 2013). In addition, Ali et al. 

(2017) showed that tilapia burgers with 10% or 15% (w/w) of potato starch did not differ in hardness. 

The present results are in line with those of Ali et al. (2017) since dry potato flakes in recipes with 

DMRs of 1.5:1 and 2.5:1 were 11.6% and 8.3% (w/w), respectively, and therefore similar to those 

tested by these authors. 
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Table 2 shows the results of proximate analysis of raw and cooked burger samples. Among the various 

constituents, significant differences were found for crude protein and ash content, which were only 

affected by DMR. Recipes with more potato and less fish (DMR 1.5:1) had significantly lower values 

of crude protein and ash than those with a higher proportion of fish. In line with this, Ali et al. (2017) 

found that addition of carbohydrate-rich ingredients obviously decreased the protein content of tilapia 

burgers. Total lipid content did not differ significantly with changes in fish species ratio or DMR. 

Addition of 10, 15 or 20% mashed potato did not significantly modify the crude fat content of tilapia 

burgers (Ali et al., 2017). 

Concerning cooked burger composition (Table 2), water content was significantly higher in the 

recipes with DMR 1.5:1 than in those with DMR 2.5:1. This may be attributed to the high capacity 

of potato starch to retain water, in comparison with other types of flour used in cooked meatballs 

from mechanically deboned quail meat (Ikhlas et al., 2011). The authors found that potato starch had 

the second highest moisture retention capacity at 64.67%, exceeded only by cassava flour (64.99%). 

Crude protein was significantly higher in DMR 2.5:1 burgers than in DMR 1.5:1, due to the paucity 

of potato protein. Moreover, ash and total lipid content did not show any significant differences 

among the recipes, as illustrated in Table 2. 

Figure 2 is a biplot of texture and proximate analysis results for cooked burgers.  

 

 

Figure 2. Biplot (F1 and F2 axes: 98.76%) of laboratory analyses conducted on cooked burgers made with the four recipes 

(R1: sea bass:rainbow trout 50:50, fish:potato 2.5:1; R2: sea bass:rainbow trout 50:50, fish:potato 1.5:1; R3: sea 

bass:rainbow trout 30:70, fish:potato 2.5:1; R4: sea bass:rainbow trout 30:70, fish:potato 1.5:1). 
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As found for the sensory data, the four recipes were separated along the first component according to 

DMR. Samples with the higher fish content (R1 and R3) associated positively with total lipids, protein 

and ash content, whereas R2 and R4 clustered on the opposite side of the map, showing a positive 

association with moisture content. Interestingly, the positions of R2 and R4 indicated a positive 

association of potato flake content with shear stress due to the composite reinforcing effect of starch 

in the meat gels, whereby absorption of water embedded in the protein gel matrix by starch granules 

tends to compress the matrix as the starch swells during cooking, thus resulting in a more compact 

product (Tee & Siow, 2017). 

Table 2 shows the fatty acid composition (g 100 g-1 of total fatty acids) of differently formulated raw 

fish burgers. 

Only a few differences emerge, despite the different fish species ratios and DMRs. Specifically, the 

recipes containing more trout (MSMR 30:70) were significantly poorer in certain MUFA (C16:1ω7, 

C20:1ω9) which however did not reduce the overall MUFA content. 

No differences emerged in the fatty acid composition of cooked burgers (Table 2), apart from 

C18:3ω3, which was lower in 30:70 than in 50:50 burgers. The overall fatty acid profile of these 

products was good: SFA did not exceed 16 g 100 g-1 of total fatty acid and the MUFA fraction was 

mainly composed of oleic acid (C18:1ω9), the nutritional importance of which has been highlighted 

in relation to its role in controlling the processes responsible for development of colorectal cancer 

(Llor et al., 2003). Furthermore, the present results revealed that a portion (100 g) of all four recipes 

contained around 0.400 g of EPA+DHA. According to FAO/WHO (2008), the recommended daily 

intake of EPA+DHA for adult males and non-pregnant/non-lactating adult females is 0.250 g/day, 

which rises to 0.300 g/day for pregnant and lactating women. One burger (100 g) obtained with any 

of the MSM-based recipes tested therefore provides more than the suggested daily intake of 

EPA+DHA. 
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Table 2. Moisture, crude protein, ash, total lipid (g 100 g-1 of burger) and fatty acid composition (g 100 g-1 total fatty 

acid) of raw and cooked fish burgers distinguished by the ratios of the two fish species used (sea bass:rainbow trout 50:50 

and 30:70) and fish to potato ratios (2.5:1 and 1.5:1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The percentages of fatty acids C12:0, C13:0, C14:1, C15:0, C16:2ω4, C17:0, C16:3ω4, C17:1, C16:4ω1, C16:1ω9, C18:2ω4, C18:3ω6, 

C18:3ω4, C18:4ω3, C18:4ω1, C20:0, C20:1ω11, C20:1ω7, C20:2ω6, C20:3ω6, C20:3ω3, C20:4ω3, C20:4ω6, C22:0, C22:1ω11, 

C22:1ω9, C22:1ω7, C22:2ω6, C21:5ω3, C24:4ω6, C22:5ω6, C24:0, present at a level lower than 1.5 g 100 g-1 of total FAs were 

utilized to calculate Σ of the lipid fractions, but were not reported in the table. 1 RMSE: Root Mean Square Error. NS: Not Significant. 

 Sea bass:R.trout (MSMR) Fish:Potato (DMR)  MSMR DMR 
RMSE1 

 50:50 30:70 2.5:1 1.5:1  Significance 

Raw         

   Moisture 73.17 72.72 72.46 73.44  NS NS 0.75 

   Crude protein 12.54 12.65 13.62 11.57  NS < 0.001 0.27 

   Ash 1.83 1.88 1.93 1.79  NS < 0.01 0.07 

   Total lipids 4.58 4.25 4.07 4.13  NS NS 1.21 

   C14:0 1.53 1.44 1.47 1.50  NS NS 0.064 

   C16:0 10.27 9.99 10.06 10.20  NS NS 0.168 

   C16:1ω7 2.42 2.29 2.34 2.37  < 0.05 NS 0.064 

   C18:0 2.92 2.95 2.92 2.95  NS NS 0.087 

   C18:1ω9 30.10 30.08 30.23 29.94  NS NS 0.334 

   C18:1ω7 2.30 2.28 2.30 2.29  NS NS 0.022 

   C18:2ω6 15.44 15.52 15.49 15.47  NS NS 0.196 

   C18:3ω3 4.14 4.08 4.09 4.13  NS NS 0.053 

   C20:1ω9 2.28 2.16 2.20 2.23  < 0.01 NS 0.044 

   C20:5ω3 (EPA) 4.70 4.43 4.49 4.64  NS NS 0.235 

   C22:5ω3 2.46 2.35 2.38 2.44  NS NS 0.065 

   C22:6ω3 (DHA) 12.87 13.90 13.49 13.28  < 0.01 NS 0.374 

   ΣSFA 15.60 15.23 15.31 15.53  NS NS 0.234 

   ΣMUFA 39.43 38.86 39.29 38.99  NS NS 0.335 

   ΣPUFAω3 25.80 26.40 26.08 26.12  NS NS 0.458 

   ΣPUFAω6 18.40 18.68 18.59 18.48  NS NS 0.266 

Cooked         

   Moisture 67.76 67.26 66.95 68.08  NS < 0.01 0.49 

   Crude protein 15.15 14.98 16.40 13.73  NS < 0.001 0.48 

   Ash 2.40 2.41 2.52 2.29  NS NS 0.19 

   Total lipids 4.37 4.34 4.68 4.02  NS NS 0.85 

   C14:0 1.58 1.45 1.58 1.45  NS NS 0.133 

   C16:0 10.36 10.09 10.38 10.07  NS NS 0.479 

   C16:1ω7 2.43 2.27 2.39 2.31  NS NS 0.103 

   C18:0 2.91 3.03 2.97 2.97  NS NS 0.089 

   C18:1ω9 30.26 30.62 30.63 30.26  NS NS 0.282 

   C18:1ω7 2.30 2.28 2.30 2.28  NS NS 0.026 

   C18:2ω6 15.59 15.92 15.76 15.75  NS NS 0.239 

   C18:3ω3 4.17 4.08 4.10 4.15  < 0.01 NS 0.042 

   C20:1ω9 2.22 2.05 2.11 2.17  NS NS 0.112 

   C20:5ω3 (EPA) 4.55 3.98 4.16 4.38  NS NS 0.300 

   C22:5ω3 2.39 2.15 2.18 2.36  NS NS 0.165 

   C22:6ω3 (DHA) 12.72 13.55 12.96 13.32  NS NS 0.434 

   ΣSFA 15.73 15.43 15.80 15.36  NS NS 0.685 

   ΣMUFA 39.49 39.33 39.59 39.22  NS NS 0.246 

   ΣPUFAω3 25.46 25.38 25.00 25.85  NS NS 0.814 

   ΣPUFAω6 18.56 19.17 18.88 18.85  NS NS 0.292 
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Differences according to sensory and laboratory characterization 

Multiple factor analysis provides useful information on the main associations between the different 

groups of variables and was successfully used to explore the contribution of the sensory and 

laboratory data sets for food sample characterization (Morvan et al., 2003; Valente et al., 2011). It 

was carried out on the combined data, namely intensity of sensory attributes describing aroma and 

flavour, intensity of sensory descriptors of texture, PUFA and SFA concentrations and laboratory 

descriptors of texture. Figure 3 summarizes differences and similarities across samples. The four 

recipes were distributed along the first component (F1) in relation to DMR. RV coefficients, reported 

in Table 3, indicated a shared sample configuration across sensory data (aroma&flavour, A&F, and 

texture, TxS), and fatty acid categories. Borgogno et al. (2017a) recently showed that SFAs positively 

correlated with metallic aroma/flavour, overall flavour and tenderness of boiled rainbow trout 

(Oncorhynchus mykiss) and that MUFAs correlated positively with boiled fish flavour and overall 

aroma, thus confirming the relations found in the present trial. In addition, sample discrimination 

according to sensory texture (TxS) had a low RV coefficient with respect to laboratory determined 

texture (TxI) which means that the two parameters did not discriminate samples in the same way. 

This fact agreed with Ali et al. (2017) who found a discrepancy between measured textural 

parameters, such as hardness, and the texture sensory descriptors in tilapia burgers containing 

different percentages of mashed potato (10% and 15%). Specifically, laboratory analysis did not 

reveal any difference in hardness of burgers while panellists were able to discriminate samples on the 

basis of texture sensory properties. 

 

Table 3. RV coefficients obtained from Multifactorial Analysis of sensory and instrumental datasets. 

   
A&F TxS TxI SFA PUFA MUFA 

A&F 1.000 0.814 0.655 0.768 0.320 0.853 

TxS 0.814 1.000 0.571 0.913 0.322 0.870 

TxI 0.655 0.571 1.000 0.635 0.481 0.801 

SFA 0.768 0.913 0.635 1.000 0.662 0.959 

PUFA 0.320 0.322 0.481 0.662 1.000 0.675 

MUFA 0.853 0.870 0.801 0.959 0.675 1.000 

A&F: Aroma and Flavour; TxS: Texture from Sensory analysis; TxI: Texture from Instrumental analysis; SFA: Saturated Fatty Acid; 

PUFA: Polyunsaturated Fatty Acid; MUFA: Monounsaturated Fatty Acid. 
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Figure 3. Multiple factor analysis (F1 and F2 axes: 91.20%) of sensory and laboratory data obtained for cooked burgers 

made with the four recipes (R1: sea bass:rainbow trout 50:50, fish:potato 2.5:1; R2: sea bass:rainbow trout 50:50, 

fish:potato 1.5:1; R3: sea bass:rainbow trout 30:70, fish:potato 2.5:1; R4: sea bass:rainbow trout 30:70, fish:potato 1.5:1). 

 

Conclusion 

Enhanced use of normally discarded fish through the development of fish burgers based on four clean 

label formulations of high nutritional value was achieved in this study with a mixture of fresh 

mechanically separated fish meat. The ready-to-cook products, thus achieved, prevent waste of not 

directly marketable specimens through recipes containing only simple natural ingredients. The four 

formulations used gave rise to products with different characteristics in terms of sensory properties 

and protein content, while high nutritional value was guaranteed by their fatty acid composition. The 

main changes detected and perceived seemed to be due to the fish to potato ratio, as underlined by 
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multiple factor analysis, while the prevalence of rainbow trout over the more expensive sea bass did 

not substantially modify burger characteristics. This finding is certainly of interest to the fish industry 

as it reduces production costs. In addition, these results could help optimize fish burger formulations 

to match the tastes and expectations of different consumer groups. Indeed, consumers less familiar 

with fish (such as children) would prefer the formulation higher in potato content, with its softer 

texture and more delicate flavour. On the other hand, consumers who like fish would prefer the 

formulation higher in fish content and characterized by fresh/raw fish olfactory notes. Further 

research on shelf life and consumers studies are suggested. 
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SUPPLEMENTARY MATERIAL 

Table S1. Fish burger recipes; MC = moisture content, DMR = dry matter ratio between fish and potato, MSMR = mechanical separated meat ratio 

between pigmented rainbow trout and European sea bass. 

 

Fish 

burger 

code 

MC  

(g 100 g-1 fish 

burger) 

DMR  

(g dry matter 

from fish 

g-1 dry matter 

from potato) 

MSMR  

(% of 

pigmented 

rainbow 

trout/ 

% of 

European sea 

bass) 

Total fresh 

fish meat  

(g 100 g-1 fish 

burger) 

Potato  

flakes  

(g 100 g-1 fish 

burger) 

Added water 

for potato 

flakes 

rehydration 

(g 100 g-1 fish 

burger) 

Sodium 

chloride 

(g 100 g-1 fish 

burger) 

Lemon juice  

(g 100 g-1 fish 

burger) 

R1 72 2.5 50:50 71.75 8.31 18.11 0.83 1.00 

R2 72 1.5 50:50 60.27 11.64 26.26 0.83 1.00 

R3 72 2.5 70:30 75.25 8.31 14.60 0.83 1.00 

R4 72 1.5 70:30 63.21 11.64 23.32 0.83 1.00 
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SUPPLEMENTARY MATERIAL 

Table S2. Mass balance spreadsheet of fish burger recipes. 

 

An original Excel spreadsheet was set up to determine the amount of fish burger ingredients by a mass balance. The following system of equations in 

three variables was written (assuming that the lemon juice and the sodium chloride were only taken into consideration as water and dry matter amounts, 

respectively): 

𝐹 + 𝑃 +𝑊 + 𝐿 + 𝑆 = 𝐵   [1] 

𝐹 ∙ 𝑥𝑤𝐹 + 𝑃 ∙ 𝑥𝑤𝑃 +𝑊 + 𝐿 = 𝐵 ∙ 𝑥𝑤𝐵    [2] 

𝐹∙𝑥𝑑𝑚𝐹

𝑃∙𝑥𝑑𝑚𝑃
= 𝐷𝑀𝑅   [3] 

where: 

F = fish mixture mass (g) 

P = potato flake mass (g) 

W = water mass to rehydrate potato flakes (g) 

L = lemon juice mass (g) 

S = sodium chloride mass (g) 

B = fish burger mass (g) 

xw = water mass fraction of F or P 
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MASS BALANCE TO DETERMINE FISH BURGER RECIPES

DATA IN

Fish moisture (%) MSMR

Trout 76.1 70

Sea bass 69.8 30

Fish burger mass (g) Fish mixture moisture (%) Potato flakes moisture (%) MC DMR Fish mass fraction Potato flakes mass fraction Sodium chloride Lemon juice

350 74.21 6.64 72 1.5 0.258 0.934 0.83 g/100 g 1 g/100 g

2.905 g 3.5 g

DATA OUT

Potato flakes mass (g) 40.7

Fish mixture mass (g) 221.2 of which: Trout mass (g) 154.9 Sea bass mass (g) 66.4

Water for potato flakes rehydratation (g) 81.6

MASS BALANCE VALIDATION

Fish burger mass (g) 350.0

Fish burger moisture (%) 72.0
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Abstract 

Two clean label burgers were formulated based on different ratios of mechanically separated fish 

(European sea bass to rainbow trout: 50:50 and 30:70, R1 and R2), and on few simple ingredients. 

Their physical (shear force, pH, color and water holding capacity), chemical (proximate and fatty 

acid composition) and oxidative stability was assessed during 90 days of frozen storage (-18oC) on 

raw and cooked samples. The shear force, b* and Chroma of raw R2 were higher than R1 ones (P < 

0.05), while a* index, found -1.49 and -2.03 in raw R1 and R2, respectively. Cooked samples were 

similarly affected by the formulation. The proximate and fatty acid compositions of both raw and 

mailto:giuliana.parisi@unifi.it


131 
 

cooked burgers were slight affected by the recipe. The R2 showed a greater (P < 0.05) oxidative 

stability of R1 at the end of the storage. Overall, the recipe R2, with more trout, better preserved its 

physic-chemical and oxidative status than R1. 

 

Keywords: European sea bass, rainbow trout, baking, PUFA, antioxidant capacity. 

 

Practical application 

The study showed the feasibility to produce clean label fish burger starting from not directly 

marketable species through the process of mechanical separation. Few and simple ingredients such 

as lemon, salt and potato flakes were utilized for the preparation of high nutritional quality fish burger 

which were here demonstrated stable during frozen storage. The fact that the highest stability was 

obtained in fish burger containing a high proportion of rainbow trout could be of interest for seafood 

industry due to the lower economical value of this species than sea bass. 

 

Introduction 

Population growth and the growing concerns over healthy food habits in developed countries have 

induced an increase in the fish demand (Food and Agriculture Organization, FAO, 2016) which has 

made the world fish production grow in the last five decades. Fishery products accounted for one 

percent of all global merchandise trade in value terms, representing more than nine percent of total 

agricultural exports. Worldwide exports amounted to USD 148 billion in 2014, up from USD 8 billion 

in 1976. Developing countries were the source of USD 80 billion of fishery exports, providing higher 

net trade revenues than meat, tobacco, rice and sugar combined (FAO, 2016). 

Consumer health awareness has boosted growing demand for fortified and rich foods in recent 

decades such as fruit juice that is fortified with vitamin C, eggs enriched with omega-3 fatty acids, 

and yogurt milk enriched with probiotic culture (Vicentini, Liberatore, & Mastrocola, 2016). Fish and 
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fishery products naturally represent very valuable sources of protein and essential micronutrients for 

balanced nutrition and good health. Regarding lipid fraction, fish represents a significant source of 

polyunsaturated fatty acids (PUFAs), especially the eicosapentaenoic (EPA, C20:5ω3) and 

docosahexaenoic (DHA, C22:6ω3) acids. These two fatty acids are supplied solely by the diet (i.e., 

they cannot be synthesized by the human metabolism) and seem to be involved in the reduction of 

the risk factors associated with cardiovascular disease, hypertension, general inflammation, asthma, 

arthritis, psoriasis and various types of cancer (Calder & Yaqoob, 2009; Hooper et al., 2006). 

Strategic initiatives to promote fish consumption, mainly among the young people, are represented 

by the ready-to-cook fish products, such as burgers, patties and fillets (Altieri, Speranza, Del Nobile, 

& Sinigaglia, 2005; Boskou & Debevere, 2000; Corbo et al., 2008; Gildberg, 2001; Mahmoud, 

Kawai, Yamazaki, Miyashita, & Suzuki, 2007; Poli, Messini, Parisi, Scappini, & Vigiani, 2006). 

These products are generally pre-fried and commercialized as frozen meeting the consumers need for 

food easy to store and prepared. Pre-fried fish products anyhow are characterized by a high level of 

fat and, as fried foods, they are not very easily digestible (Oke et al., 2018). The surface can be 

carbonized or burnt very easily, if the temperature is too high. Besides, the high temperature of the 

cooking may radically affect the characteristics and composition of food by enhancing the oxidation 

of polyunsaturated fraction of lipids, consequently causing a depletion of the fish nutritional value 

(Secci & Parisi, 2016). On the other hand, frozen fish storage products are commonly used because 

of their consistent, reliable quality, ease of transportation and the fact that they are very close to fresh 

equivalents (Bavitha, Dhanapal, Madhavan, Vidyasagar Reddy, & Sravani, 2016). However, the 

labile PUFA fraction of fish can be also altered by the processing and storage conditions (Taheri, 

Motallebi, Fazlara, Aghababyan, & Aftabsavar, 2012). Indeed, oxidative rancidity is a critical factor 

that limits the fish shelf life during storage (Dellarosa, Laghi, Martinsdóttir, Jónsdóttir, & 

Sveinsdóttir, 2015; Karlsdottir et al., 2014). 

In this regard, Secci et al. (2016) have shown that despite mechanically separated meat (MSM) from 

fish could represent a good source of PUFAω3, the mechanical process might enhance lipid oxidation 
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both immediately after the process and during frozen storage. This fact must be considered while 

utilizing MSM as ingredient for new fish derived products as in those recently proposed by Husein et 

al. (2018). Thus, the objective of this study was to investigate how the nutritional quality of raw and 

oven-baked fish burger containing MSM from European sea bass (Dicentrarchus labrax) and rainbow 

trout (Oncorhynchus mykiss) could be affected by the formulation of burger recipe and the frozen 

storage. 

 

Materials and methods 

Fish burgers preparation 

Two clean label recipes of fish burgers made with mechanically separated fish meat were formulated. 

The recipes differed in the ratio of European sea bass to rainbow trout (50:50, R1; 30:70, R2) and 

they were added with lemon, salt, water, and potato flakes to obtain products containing 72% of 

moisture (Table 1). Specimens of European sea bass were obtained from a fish farm located in 

Orbetello (Grosseto, Italy), while the pigmented rainbow trout were obtained from a farm located in 

the north west of Tuscany (Lucca, Italy). Fish were killed by percussion and immediately moved to 

the industry, where the fish were beheaded, degutted, and minced by the MSM machine Baader 60-1 

(Lübeck, Germany). More details about the MS process and the formulation of the recipes can be 

retrieved in Husein et al. (2018). Overall, 5 and 3.5 kg of MSM from rainbow trout and sea bass were 

obtained. The ingredients were mixed by a kitchen mixer in the following order: potato flakes, water, 

MSM sea bass, MSM trout, salt, and lemon. Once ready, they were formed in burger pieces of 100.4 

± 0.5 g. 
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Table 1. Ingredients (g) of the two formulated recipes, R1 (ratio sea bass: rainbow trout 50:50) and R2 (ratio sea bass: 

rainbow trout 30:70). 

 

 

 

 

 

 

 

 

 

 

 

For each recipe, 24 replicates were prepared and subdued to the experimental design showed in Fig. 

1. Six burgers for each treatment were immediately analyzed (three as raw and three as cooked). The 

cooking was performed in an oven at 180 °C for 35 min (core temperature: 72 °C) without fat or oil 

addition nor on the burgers surface or on their bottom. The other 18 samples were vacuum-packaged 

in plastic bags (Vacuum Pump S.p.A, Como, Italy), put overnight at -80 °C to obtain a fast freezing, 

and then stored at -18 °C for 90 days. Every 30 days (T30, T60 and T90), six samples (three as raw 

and three as cooked) for each recipe were subdued to the physical analyses (shear force, pH, color, 

water holding capacity-WHC). Proximate composition (moisture, crude protein, ash, and total lipids) 

and fatty acid composition were evaluated in six samples for each recipe (three as raw and three as 

cooked) immediately after burger’s preparation and at the end of the storage time (T90). Oxidation 

items (primary and secondary oxidation products, and antioxidant capacity) were evaluated only in 

raw R1 and R2 burgers. 

 

Ingredients (g) R1 R2 

MSM sea bass 35.875 52.675 

MSM trout 35.875 22.575 

Potato flakes 8.31 8.31 

Water 18.11 14.61 

Lemon 1 1 

Salt 0.83 0.83 

Total 100.00 100.00 
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Figure 1. The experimental design of the trial. 

 

 

Physical and chemical characterizations 

Shear force, pH, color, WHC 

A Zwick Roell® texturometer model KAF-TC 0901279 (Zwick GmbH & Co. KG, Ulm, Germany) 

equipped with a 1 kN load cell was utilized for shear force (N) determination by using a blade. 

Textural attribute was determined on the middle part of fish burger. Data were collected by the Test-

Xpert2 by Zwick Roell® software version 3.0. 

The pH values of the samples were measured by a Mettler Toledo pH-meter (Columbus, OH, USA) 

in three different points of the burger's diameter. 

A Dr Lange Spectro-color® colorimeter (Keison Product, Chelmsford, UK) equipped with a Spectral 

qc 3.6 software was utilized for colorimetric measurement. The color values were measured in three 

points of the burgers and reported in the CIELab scale (CIE, 1976) as lightness (L*), redness and 

yellowness indexes (a* and b*, respectively), Chroma (C*) and color hue (H°). 

The Water Holding Capacity (WHC), performed only on the raw burger, was determined according 

to Iaconisi, Bonelli, Pupino, Gai, and Parisi (2018). The WHC was calculated as the percentage of 

water loss after centrifugation (5 min at 210 × g) in relation to the water content of the sample. This 

Burger 

preparation

(T0)

N = 3 raw burgers

N = 3 cooked burgers

Physical anaysis

Proximate composition

Fatty acid composition

Oxidation items

N = 3 raw burgers

N = 3 cooked burgers

Physical anaysis

Storage

30 days at -18 C

(T30)

N = 3 raw burgers

N = 3 cooked burgers

Physical anaysis

Storage 

60 days at -18 C

(T60)

N = 3 raw burgers

Storage 

90 days at -18 C

(T90)

Physical anaysis

Proximate composition

Fatty acid composition

N = 3 cooked burgers

Physical anaysis

Proximate composition

Fatty acid composition

Oxidation items

Physical anaysis

Proximate composition

Fatty acid composition



136 
 

last value was obtained gravimetrically on 2 g of each minced sample by weighing the samples before 

and after 24 h at 105 °C. Two measurements for each sample were performed. 

 

Proximate and fatty acid composition 

Water content was determined using 2 g of sample by heating at 105 °C until constant weight (AOAC, 

2012). Total nitrogen was determined by the Kjeldahl procedure (Kjeltec, 1035 Analyzer, Foss 

Tecator, Denmark) and converted to crude protein by multiplying by 6.25 (AOAC, 2012). Ash was 

determined as the remnant weight after calcination of a 5 g sample at 550 °C during 3 h (AOAC, 

2012). The results were expressed as g/100 g product. 

The total lipid content of the samples was determined according to Folch, Lees, and Sloane Stanley 

(1957) method and fatty acids (FA) were determined in the lipid extract after trans-esterification to 

methyl esters (FAME) using a base-catalyzed trans-esterification (Morrison & Smith, 1964). The FA 

composition was determined by gas-chromatography (GC) using a Varian GC 430 gas chromatograph 

(Varian Inc., Palo Alto, CA, USA), equipped with a flame ionization detector (FID) and a Supelco 

Omegawax™ 320 capillary column (Supelco, Bellefonte, PA, USA). The condition of analysis (oven, 

injector, and detector temperatures as well as the carrier gas and the split ratio utilized) was set as 

mentioned in Secci et al. (2016). Chromatograms were recorded with the Galaxie Chromatography 

Data System 1.9.302.952 (Varian Inc., Palo Alto, CA, USA). Fatty acids were identified by 

comparing the FAME retention time with the ones of the standard Supelco 37 component FAME mix 

(Supelco, Bellefonte, PA, USA). Fatty acids were quantified through calibration curves, using 

tricosanoic acid (C23:0) (Supelco, Bellefonte, PA, USA) as internal standard. 

 

Oxidative status 

Primary and secondary oxidative products were quantified in raw burgers as conjugated dienes (CD) 

and thiobarbituric acid reactive substances (TBARS), respectively. CD content was measured by the 
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colorimetric method (Srinivasan, Xiong, & Decker, 1996) using hexane as solvent. Conjugated dienes 

were quantified in 0.5 µL of lipid extract dissolved in 3 mL of pure hexane. The absorbance at 232 

nm (50 Scan spectrophotometer Varian, equipped with a Cary Win UV Software; Palo Alto, CA, 

USA) was determined and the mmol hydroperoxides/kg sample were calculated by using a molar 

extinction coefficient of 29,000 mL/mmol × cm. 

The TBARS content was measured at 532 nm, by the colorimetric method described by Secci et al. 

(2016), using trichloroacetic acid (5%) as solvent and then added with TBA 0.02 mol/L. After 40 min 

of incubation at 97°C, the oxidation products were quantified with reference to calibrations curves of 

TEP (1,1,3,3-tetra-ethoxypropane) in 5% (w/v) TCA (from 0.2 to 3.1 mmol/L). 

The antioxidant capacity was measured by the radical cation decolorization assay (ABTS, 2,2'-azino-

bis(3-ethylbenzthiazoline-6-sulphonic acid)), the radical scavenging activity (DPPH, 2,2-diphenyl-1-

picrylhydrazyl), and the ferric reducing ability assay (FRAP). The antioxidant capacity was 

performed on ethanol extracted samples (3 g of sample in 10 mL of ethanol), according to Mancini 

et al. (2015). 

 

Statistical analysis 

The statistical analysis was performed using the General Linear Model procedures of the Statistical 

Analysis Software SAS (2004) for Windows. A two-way ANOVA, where the recipes with different 

ratio of European sea bass to rainbow trout (R: 50:50, R1; 30:70, R2), storage time (S: T0, T30, T60, 

T90), and the Recipes × Storage time (R × S) interaction were included in the model as fixed effects. 

 

Result and Discussion 

Physical characteristics 

Shear force values of raw and cooked fish burgers are reported in Table 2. Raw samples were 

significantly affected by the recipes and by the storage time. The R2 showed a higher shear force than 
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R1, coherently with the fact that texture of fish muscle is affected by the species (Dunajski, 1980). 

Indeed, fish species are different in the muscle fibers in terms of contractile and metabolic types, size 

and number, the content, composition and distribution of the connective tissue, and the content and 

lipid composition of intramuscular fat, which play a relevant role in the texture profile (Listrat et al., 

2016). The shear force decreased dramatically during the storage, being the first 30 days critical for 

this parameter that from that moment forward remained unaltered until 90th day. The same results 

were found by Ocaño‐Higuera et al. (2011) who measured the textural properties of ray fish (Dasyatis 

brevis) and recorded a significant decrease in texture with prolonging the storage time. Also, the 

ready-to-eat pineapple chicken curry showed a decrease in shear force values during frozen storage 

at -18oC for 6 months (Sunooj & Radhakrishna, 2013). 

The shear force of cooked samples did not show any effect because of recipes. However, the effect 

of storage was even clear in cooking samples, causing a significant decrease of the shear force after 

30 days of frozen storage. The interpretation could be attributed to the relationship between texture 

and heat-induced denaturation of the meat proteins (Bertola, Bevilacqua, & Zaritzky, 1994). The 

texture of cooked meat is generally affected by heat-induced changes in connective tissue, soluble 

and myofibrillar proteins. The cross-linkage between the collagen molecules within the connective 

tissue is associated with collagen solubility (Zayas & Naewbanij, 1986). Eilert and Mandigo (1993) 

found that the changes in collagen solubility with heating temperature could affect the textural and 

water-binding properties in the ground chicken breast patties. 

Table 2 presents the results of ANOVA even for pH and color parameter values. For the raw samples, 

the recipes did not affect the pH values. However, the samples stored at negative temperature for 90 

days exhibited slight but significant changes in terms of pH. Specifically, the values of pH increased 

significantly during storage time between 0 and 30 days, remained unvaried until the 60th day, then a 

significant reduction was evident at the end of the storage. The increase in the pH value during the 

first 60 days of storage could be explained by the decomposition of nitrogenous compounds due to 

endogenous enzymes causing an increase in volatile bases, thus increasing the pH value 

https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12043#crf312043-bib-0055
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(Chomnawang, Nantachai, Yongsawatdigul, Thawornchinsombut, & Tungkawachara, 2007; Özyurt, 

Polat, & Tokur, 2007). Meanwhile, the decrease in pH at the 90th day of storage might be due to the 

presence of carbon dioxide, which solubility increases at low temperatures and produces a drop in pH 

value (Adams & Moss, 2000). CO2 is the product of the consumption of the residual oxygen provoked 

by natural muscle respiration, which occurs in meat even at negative temperatures (Osman & Zidan, 

2014). In agreement with the present results, Osman and Zidan (2014) reported an increase in the pH 

values during the first two month of frozen storage of fish burger prepared from silver carp 

(Hypophthalmichthys molitrix), followed by decreasing pH value during the storage at -18 oC. 

Color is one of the most important quality criteria for consumers, which determines the acceptability 

and marketability of many fish minced products (Sachindra & Mahendrakar, 2010). The color 

parameters differed significantly due to fish ratio effect, except for the lightness (L*), and hue values. 

Indeed, the b* index and the color intensity (Chroma) of R2 burgers resulted significantly higher than 

those of R1 ones. The opposite was for the redness index, since R1 samples had higher a* value than 

the R2 burgers. Storage time considerably affected the color parameters. The lightness and redness 

values decreased, as previously also stated by Choubert and Baccaunaud (2006), while the 

yellowness, Chroma, and hue values increased significantly after 30 days of storage, and then 

remained unchanged. The color regression during storage time might be related to enzymatic and 

non-enzymatic reactions resulting in degradation of myofibrillar proteins and disorganization of 

myofibrils (Cheret, Chapleau, Delbarre-Ladrat, Verrez-Bagnis, & Lamballerie, 2005), in agreement 

with the texture evolution during the storage time. 

Table 2 also shows the results of color of cooked fish burgers. Like the raw samples, the lightness 

and hue values did not change significantly in the two recipes. Nevertheless, the redness value of R1 

burgers was significantly higher than those of R2 ones, meanwhile the yellowness and chroma values 

were significantly higher in R2 comparing to R1 samples. In addition, the effect of the storage was 

evident in the color parameters, except for the redness value. A significant decrease in L* value at 60 

and 90 days was observed, while b* and C* values increased significantly in the second part of the 

https://scialert.net/fulltext/?doi=ijmeat.2011.62.69#580797_ja
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storage period. The development of color in cooked frozen food are related to the reactions that 

occurred during heating including Maillard reaction, protein denaturation, fat and water exudation 

(Fennema, 1996). The same results were found by HassabaAlla, Mohamed, Ibrahim, and 

AbdElMageed (2009) who showed change of color parameters for the frozen cooked catfish burgers 

stored at -18 oC for four months, especially the lightness value, which decreased at the end of the 

storage. Consumers liking and acceptability of the color of raw and cooked burgers deserve further 

investigation. 

Water holding capacity is another quality attribute of meat, especially for the ready and processed 

meat products. Low WHC can represent significant loss of weight from carcasses and cuts and may 

affect the yield and quality of processed meat (Aaslyng, 2002; Woelfel, Owens, Hirschler, Martinez-

Dawson, & Sams, 2002). In addition, low WHC can negatively affect the appearance of meat, and 

this can influence consumer willingness to purchase the product. Table 2 illustrates the water holding 

capacity of the two recipes and its changes during storage time. The WHC of raw fish burger did not 

show significant differences either due to the influence of recipes, nor due to storage time even though 

the numerical changes from the 30th day onwards were relevant. Differently, the WHC of the cooked 

burgers was significantly affected by the recipes and storage time. Firstly, WHC of R2 had higher 

value than the WHC of R1. This could be because water holding capacity differs according to species 

(Adam & Abugroun, 2010). Secondly, the WHC of cooked samples decreased significantly after 30 

days of storage because of the storage effect on muscle fiber integrity and the muscle protein 

denaturation during cooking, leading to a decrease in their WHC and to shrinkage of the protein 

network. The shrinking network applies a mechanical force on the water between fibers, resulting in 

expelling the water to the surface of the meat (Van der Sman, 2007). 
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Table 2. Physical properties of raw and cooked fish burger as affected by the formulation and the storage time (T0, T30, 

T60 and T90). Data are expressed as mean values (n=3) and the Root Mean Square Error (RMSE) is reported for each 

item. 

 Recipes (R) Storage (S, days) R S R × S RMSE 

RAW R1 R2 0 30 60 90       

Shear force, N 4.09 4.99 7.62a 4.55b 2.70b 3.30b ** *** NS 0.625 

pH 6.09 6.10 5.97b 6.18a 6.21a 6.03b NS *** NS 0.058 

Color           

L* 56.93 56.78 59.08b 63.42a 53.46c 51.47c NS *** * 1.181 

a* -1.49 -2.03 -0.88a -1.78b -2.00b -2.37b ** *** NS 0.399 

b* 12.99 14.21 11.61b 12.22b 15.21a 15.37a ** *** NS 0.871 

C* 13.12 14.38 11.69b 12.35b 15.36a 15.56a ** *** NS 0.869 

H° 96.39 97.95 94.24b 98.27a 97.52a 98.66a NS ** NS 1.809 

WHC, % 73.54 70.72   75.24 70.35 70.79 NS NS NS 6.008 

COOKED                     

Shear force, N 7.54 7.64 9.11a 8.85a 6.74b 5.66b NS *** NS 0.951 

Color           

L* 60.75 61.51 64.94a 65.17a 55.56c 58.83b NS *** ** 1.266 

a* -0.46 -0.71 -0.75a -0.44a -0.44a -0.70a * NS NS 0.268 

b* 18.44 19.98 15.45c 18.28c 22.40a 20.73b *** *** *** 0.845 

C* 18.45 20.00 15.47c 18.29c 22.41a 20.74b *** *** *** 0.841 

H° 91.55 92.09 92.91a 91.27b 91.15b 91.99a NS ** NS 0.876 

WHC, % 83.23 87.02   88.36a 83.93b 83.09b ** ** *** 2.808 

Within criterion, a, b, c are significant different means. 

* P < 0.05; ** P < 0.01; *** P < 0.001; NS, Not Significant (P > 0.05). 

 

 

Proximate and fatty acid composition 

Results of proximate composition analyses of raw and cooked fish burgers were shown in Table 3. 

The considered constituents (moisture content, crude protein, ash, and total lipids) did not show any 

significant differences due to the recipes or due to the storage time. After cooking, water content in 

the cooked samples was significantly higher in the recipe R2, containing more trout, than in the R1 

one. This might be due to the difference in water content of the mechanical separated meat from the 

species of fish that compose the recipes, since the water content in the MSM from trout was higher 

than the water content in the MSM from seabass (70.65% against 68.79%), as highlighted by 

Borgogno, Husein, Secci, Masi, and Parisi (2017). In addition, the moisture content in the cooked 

fish burgers increased significantly from T0 to T90 of the storage. The increase in water content of 
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frozen burgers is probably due to the decrease in water holding capacity, which might be due to the 

hydrolysis of muscle proteins or aggregation of myofibrillar proteins during frozen storage. This 

increase was in line with Kirschnik, Viegas, Valenti, and de Oliveira (2006) who found that the 

moisture content in iced stored samples of tail meat of the giant river prawn (Macrobrachium 

rosenbergii) increased approximately of 6% comparing to the samples at zero time. An increase in 

the protein content was observed in the cooked R1 compared to R2 probably because of the lower 

moisture in the R1 comparing to the R2. Nevertheless, the storage time did not have any significant 

effect on the protein values. Moreover, the content of ash did not show any significant difference 

between the two recipes, but the effect of storage was evident in this parameter since it caused a 

significant decrease at T90. These results are consistent with those obtained by Okeyo, Lokuruka, 

and Matofari (2009), who observed that the ash content of the frozen raw Nile perch (Lates niloticus) 

decreases with the storage time. Moreover, the content of total lipids in raw and cooked sample did 

not show any significant differences due to the recipes or the storage period. 

 

Table 3. The proximate composition (g/100 g product), of raw and cooked fish burger recipes at T0 and after 90 days of 

frozen storage (90). Data are expressed as mean values (n=3) and the Root Mean Square Error (RMSE) is reported for 

each item. 

 Recipes (R) Storage (S, days) R S R X S RMSE 

 R1 R2 0 90     

RAW         

Moisture 72.17 72.55 72.45 72.27 NS NS NS 0.27 

Protein 13.77 13.74 13.62 13.89 NS NS NS 0.39 

Ash 1.85 1.93 1.92 1.86 NS NS NS 0.17 

Total lipids 5.56 4.52 4.70 5.38 NS NS NS 0.31 

COOKED         

Moisture 66.87 67.86 66.94 67.78 * * * 0.53 

Protein 16.73 15.79 16.40 16.13 *** NS ** 0.32 

Ash 2.44 2.34 2.52 2.25 NS * NS 0.18 

Total lipids 5.01 4.91 4.68 5.24 NS NS NS 0.63 
* P < 0.05; ** P < 0.01; *** P < 0.001; NS, Not Significant (P > 0.05). 

 

 

https://scialert.net/fulltext/?doi=jfas.2013.686.696#1140893_ja
https://scialert.net/fulltext/?doi=jfas.2013.686.696#1140893_ja
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Table 4 shows the fatty acid composition (g/100 g of total fatty acids) of the products and highlights 

that few differences can be noted as affected by the recipe. Indeed, the recipe containing more 

European sea bass (R1) resulted significantly richer in saturated acid (C14:0 and C16:0), EPA, 

linolenic acid (C18:3ω3) and some monounsaturated fatty acid (C16:1ω7, C18:1ω7, C20:1ω9, 

C22:1ω11). Meanwhile, the recipe with more rainbow trout (R2) was significantly richer in DHA, 

PUFA and especially PUFAω6. These differences reflect the differences found in the MSM from 

both sea bass and trout, as previously published by Borgogno et al. (2017) and Secci et al. (2016). 

Concerning the storage, the amounts of the fatty acids and their sum into the corresponding fractions 

were PUFA > MUFA > SFA, this assuring that the storage time had a neglectable effect on the 

nutritional quality of the raw fish burger. 

Table 4 illustrates also the fatty acid composition of the cooked burger as affected by the recipes and 

the frozen storage. Overall, the same observations and differences in the monounsaturated fatty acid 

composition of raw samples were also maintained in the cooked samples. However, it appeared also 

that the cooked recipes R2 were richer in oleic acid (C18:1ω9), beside in DHA and PUFAn6. 

However, no significant differences between the two recipes in terms of PUFA, MUFA, and SFA 

emerged. Considering the storage time, a significant decrease of oleic acid and MUFA fraction can 

be discerned. 

The predominance of the PUFA fraction, which accounted for 45 g/100 g of total fatty acids, on both 

MUFA and SFA fractions was discerned in cooked burger as affected by the recipes and storage. 

Moreover, PUFA fraction was mainly composed of n3 fatty acids, with the n3/n6 ratio being around 

1.4. There is agreement regarding the need to increase the n3/n6 ratio in the food consumed by the 

western modern consumers and, according to some authors, the ideal ratio may be 1:1 (Granados, 

Quiles, Gil, & Ramírez-Tortosa, 2006). 
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Table 4. The fatty acid composition (g/100 g of total fatty acids) content of raw and cooked fish burger recipes after 90 

days of frozen storage (T90). Data are expressed as mean values (n=3) and the Root Mean Square Error (RMSE) is 

reported for each item. 

 Recipes(R) Storage (S, days) R S RMSE 

RAW R1 R2 0 90    

C14:0 1.53 1.37 1.47 1.44 *** NS 0.030 

C16:0 10.25 9.85 10.06 10.03 ** NS 0.141 

C16:1ω7 2.41 2.21 2.34 2.29 *** NS 0.038 

C18:0 2.90 2.96 2.92 2.94 NS NS 0.065 

C18:1ω9 30.24 30.28 30.23 30.29 NS NS 0.327 

C18:1ω7 2.31 2.27 2.29 2.29 * NS 0.020 

C18:2ω6 15.38 15.62 15.48 15.51 * NS 0.116 

C18:3ω3 4,15 4.04 4.09 4.11 * NS 0.057 

C20:1ω9 2.30 2.10 2.20 2.19 *** NS 0.039 

C20:4ω6 0.94 1.04 0.99 0.98 ** NS 0.036 

C20:5ω3 (EPA) 4.69 4.19 4.49 4.39 *** NS 0.137 

C22:1ω11 1.08 0.94 1.02 1.01 *** NS 0.016 

C22:5ω3 2.45 2.27 2.38 2.34 *** NS 0.051 

C22:6ω3 (DHA) 12.79 14.30 13.49 13.60 *** NS 0.440 

Σω3 25.71 26.45 26.08 26.08 * NS 0.489 

Σω6 18.36 18.86 18.59 18.63 *** NS 0.116 

ΣSFA 15.56 15.02 15.31 15.28 ** NS 0.194 

ΣMUFA 39.60 38.98 39.30 39.29 * NS 0.365 

ΣPUFA 44.83 46.00 45.40 45.43 ** NS 0.499 

EPA+DHA 17.49 18.49 17.98 17.99 ** NS 0.463 

COOKED        

C14:0 1.58 1.46 1.58 1.47 NS NS 0.125 

C16:0 10.36 10.06 10.38 10.04 NS NS 0.447 

C16:1ω7 2.45 2.28 2.39 2.33 * NS 0.101 

C18:0 2.92 2.96 2.97 2.91 NS NS 0.073 

C18:1ω9 30.23 30.64 30.63 30.25 ** * 0.231 

C18:1ω7 2.31 2.28 2.30 2.29 ** NS 0.013 

C18:2ω6 15.60 15.77 15.75 15.61 NS NS 0.239 

C18:3ω3 4,17 4.06 4.10 4.13 ** NS 0.043 

C20:1ω9 2.22 2.07 2.11 2.19 * NS 0.106 

C20:4ω6 0.92 1.00 0.96 0.96 *** NS 0.026 

C20:5n3 (EPA) 4.56 4.05 4.16 4.45 ** NS 0.277 

C22:1ω11 1.04 0.93 0.96 1.01 * NS 0.073 

C22:5ω3 2.38 2.19 2.18 2.40 NS * 0.159 

C22:6ω3 (DHA) 12.69 13.66 12.96 13.39 ** NS 0.468 

Σω3 25.41 25.59 25.00 26.01 NS NS 0.757 

Σω6 18.57 18.99 18.88 18.69 * NS 0.289 

ΣSFA 15.75 15.33 15.80 15.28 NS NS 0.634 

ΣMUFA 39.49 39.37 39.59 39.27 NS * 0.213 

ΣPUFA 44.76 45.30 44.61 45.44 NS NS 0.706 

EPA+DHA 17.24 17.72 17.12 17.84 NS NS 0.593 
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C12:0, C13:0, C14:1ω5, C15:0, C15:1, C16:1ω9; C16:2ω4, C16:3ω4, C16:4ω1, C17:0, C17:1, C18:1ω7, C18:3ω6, C18:3ω4, C18:4ω1, 

C20:0, C20:1ω11, C20:1ω7, C20:2ω6, C20:3ω6, C20:3ω3, C20:4ω6, C20:4ω3, C21:0, C21:5ω3, C22:0, C22:1ω9, C22:1ω7, C22:2ω6, 

C22:4ω6, C22:5ω6, C24:0, and C24:1ω9 were also detected but not reported because <3%. They were utilized to calculate Σ. 

* P < 0.05; ** P < 0.01; *** P < 0.001; NS, Not Significant (P > 0.05). 

R×S interaction was not significant and, therefore, it is not reported in the present table. 

 

 

A high ω3/ω6 PUFA ratio is an important feature for nutrition as an index of the lipid quality, and it 

was accompanied by the reduction in chronic inflammatory diseases such as cardiovascular disease, 

obesity, non-alcoholic fatty liver disease, inflammatory bowel disease, rheumatoid arthritis, and 

Alzheimer's disease (Patterson, Wall, Fitzgerald, Ross, & Stanton, 2011). 

Furthermore, the relationship between the intake of EPA+DHA fatty acids and cardiovascular health 

in healthy populations was recently underlined by the EFSA (2010). Likewise, Swanson, Block, and 

Mousa (2012) assured the importance of EPA and DHA for proper fetal development and its effects 

on many aspects of cardiovascular function including inflammation, peripheral artery disease, major 

coronary events, and anticoagulation. According to World Health Organization (WHO, 2008), the 

recommended daily intake of EPA+DHA for adult males and non-pregnant/non-lactating adult 

females is 0.250 g/day, with insufficient evidence to set a specific minimum intake of either EPA or 

DHA alone. For adult pregnant and lactating females, the minimum intake for optimal adult health 

and fetal and infant development is 0.3 g EPA+DHA/day. The present finding revealed that a portion 

(100 g) of the raw or cooked burger, even though affected by the two different recipes and by the 

duration of the frozen storage time, however contained EPA+DHA that accounted for 0.400 g, of 

which almost 0.300 g was represented by DHA and about 0.100 g by EPA. Therefore, our results 

emphasized that one piece of cooked burger (100 g) could provide more than the suggested daily 

intake of EPA and DHA with a higher percentage of DHA than EPA, as suggested. 

 

Lipid oxidation patterns 

Regarding lipid stability in the raw samples, Table 5 illustrates the CD and TBARS values according 

to the recipes and the storage time. Results revealed that the recipe significantly affected lipid 
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oxidation in terms of both the primary and secondary oxidation products here considered. The R1, 

with more European sea bass, had higher CD value and TBARS than R2. Since the formulations only 

differed for the fish species amount, it seemed reasonable to attribute the difference in the oxidative 

status to the kind of flesh utilized for burgers’ production. Indeed, a previous study showed that sea 

bass meat is much more prone to be oxidized than that of trout by the mechanical treatment (Secci et 

al., 2016). Besides, the dominance of trout in R2 recipe, which was characterized by lower oxidative 

status property due to carotenoid content, could be the responsible for these differences (Secci et al., 

2016). Concerning the storage, CD values of the raw samples increased significantly during the 

storage period in line with Piccolo et al. (2014). Nevertheless, TBARS value significantly decreased 

at the end of the storage. This could be related to a delay in the occurrence of secondary oxidation, 

assured by the fact that PUFA did not change at the end of the storage, resulting from the antioxidant 

properties of lemon juice added in both the recipes. Moreover, the low storage temperatures are 

optimal for preserving fish from oxidative deterioration, as highlighted by other studies (Baron, 

Kjærsgård, Jessen, & Jacobsen, 2007; Choubert, Brisbarre, & Baccaunaud, 2011). Another 

explanation could be the undetectable interaction of malondialdehyde with the decomposition 

products of protein (Hernández-Herrero Roig‐Sagués, López‐Sabater, Rodríguez‐Jerez, & Mora‐

Ventura, 1999) which determined a decrease in MDA-eq. level in samples analysed. Tokur, Polat, 

Beklevik, and Özkütük (2004) who evaluated the lipid stability in fish burgers of tilapia (Oreochromis 

niloticus) during eight months of storage at -18 °C noticed that TBARS value did not change 

significantly during the first 7 months of storage. After that, a sharp increase was found. They 

explained this fluctuation by the TBARS likelihood to combine with some biological compounds in 

the fish muscle. The present results concerning TBARS were in line with Mahmoudzadeh et al. 

(2009), who noticed a significant reduction in TBARS value of deep flounder (Pseudorhombus 

elevatus) fish burger at the end of five months of frozen storage at -18oC. 
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Table 5. Primary (CD, mmol Hp/kg sample) and secondary (TBARS, mg MDA/kg sample) oxidation products of raw 

fish burger recipes at T0 and after 90 days of frozen storage. Data are expressed as mean values (n=3) and the Root Mean 

Square Error (RMSE) is reported for each item. 

* P < 0.05; ** P < 0.01; *** P < 0.001; NS, Not Significant (P > 0.05). 

R×S interaction was not significant and, therefore, it is not reported in the present table. 

 

 

The ABTS, DPPH, and FRAP parameters have been widely used to check the ability of compounds 

to act as free radical scavengers, hence to assess the antioxidant activity in food matrix (Mancini et 

al., 2015). Table 6 shows the antioxidant capacity for raw fish burger recipes immediately after their 

preparation (T0) and after 90 days of frozen storage (T90). The R1 and R2 raw burgers had 

significantly different values of ABTS and DPPH. Although these differences could be attributed to 

the specific essential antioxidant system of the muscle of the two fish species that compose the recipes 

(Martínez-Álvarez, Morales, & Sanz, 2005), it should be noted that R2 samples presented significant 

lower level of ABTS and a lower oxidative status than R1 samples. This let hypothesize that the 

antioxidant capacity of R2 acted during the early stages of MSM handling, i.e. during the preparation 

f fish burgers, thus defending the food matrix from oxidative damages from the beginning. 

 

Table 6. Antioxidant capacity expressed as ABTS (mmol Trolox /kg sample). DPPH (mmol Trolox /kg sample) and 

FRAP (mmol Trolox /kg sample) for raw fish burger recipes at different storage time (T0 and T90). Data are expressed 

as mean values (n=3) and the Root Mean Square Error (RMSE) is reported for each item. 

 

 

 

 

 
** P < 0.01; *** P < 0.001; NS, Not Significant (P > 0.05). 

R×S interaction was not significant and, therefore, it is not reported in the present table. 

 

 Recipes (R) Storage (S, days) R S RMSE 

 R1 R2 0 90    

CD 0.200 0.176 0.178 0.197 ** * 0.010 

TBARS 0.980 0.810 1.310 1.020 ** *** 0.150 

 Recipes (R) Storage (S, days) R S RMSE 
 R1 R2 0 90    

ABTS 0.82 0.65 0.83 0.64 *** *** 0.055 

DPPH 0.31 0.32 0.32 0.31 ** ** 0.006 

FRAP 0.44 0.44 0.46 0.41 NS *** 0.017 
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The storage at negative temperature for 90 days significantly reduced the antioxidant capacity of raw 

burgers by reducing the values of the three parameters assessing the antioxidant activity. The same 

trend was also reported by Secci et al. (2016) for European sea bass and rainbow trout meat during 

the frozen storage. 

 

Conclusions 

The physical and nutritional quality and the lipid stability of the ready-to-cook products differently 

formulated based on two different relative amounts of MSM fish species have been investigated 

during frozen storage and after the oven-cooking. The formulated recipes differed for color, fatty acid 

composition, and oxidative status. Overall, the recipe containing more rainbow trout appeared redder 

than the other, as indeed expected, and contained less MUFA and SFA. However, while looking at 

the amount of EPA + DHA contained in 100 g of raw and cooked burger, a value of ~ 0.400 g was 

found irrespective to the recipe formulation and storage. Frozen storage was confirmed as a suitable 

method for preserving fish products from the loss of nutritional quality due to the oxidative 

phenomena. Further studies could focus on the development and enhancement of the recipes taking 

due account of the acceptance characteristics of the different niches of consumers. 
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The overall purpose of this study was to produce new fish products (fish burger) obtained by means 

of mechanical separation (MS) process applied to non-directly marketable different species of fish 

from Italian aquaculture (European sea bass, gilthead sea bream and rainbow trout), and evaluate 

the physical, chemical, nutritional and sensory properties of the obtained fish burgers. 

In conclusion, the present PhD thesis showed that: 

 Mechanical separation process presented good results in terms of yield without much 

modification of the micro- and macro-nutrient contents. Nevertheless, yield of the process and 

nutritional values of the meat recovered by MS differed according to species-specific characteristics. 

In this regard, rainbow trout had the highest processing yield in both manual separation and MS 

processes compared to European sea bass, and gilthead sea bream. The yield of MS process was 

higher than the manual one in these species (42 and 45 g/100 g, respectively for sea bass and sea 

bream against 39 and 40 g/100 g) on the contrary to rainbow trout (50 g/100 g against 53 g/100 g) 

due to high residual left on the drum (5 g/100 g). 

 Fatty acids composition and, consequently, the calculated atherogenicity and thrombogenicity 

indexes did not alter in the whole fish, minced fish burger, and MSM-fish burger of the three fish 

species. 

 Four products resulting from four clean label formulations could emerge from a mixture of 

fresh mechanically separated fish meat and simple natural ingredients, which are characterized by 

high nutritional value and are different in sensory properties and protein content. The differences in 

sensory profile resulted from the fish to potato ratio, while the prevalence of rainbow trout over the 

sea bass did not considerably modify the burger characteristics. 

 The fish burger formulations could meet the tastes and expectations of different consumer 

groups, and a burger of 100 g provided more essential fatty acids than the recommended daily intake, 

regardless of the formulation. 

 Ready-to-cook products can be developed from two different ratios of MSM rainbow trout 

and sea bass fish. The two burger formulas had a good quality and a high nutritional value. However, 

the recipes with more trout showed superior physical features and better oxidative stability. 
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 Storage at -18 °C for 90 days of the burgers obtained with the clean label recipes confirmed 

to be a good way to preserve burgers from oxidative deteriorations and maintain their nutritional 

quality despite some changes in physical and chemical characteristics. 

 

In conclusion, the study carried out through different steps of the research showed the feasibility to 

produce clean label fish burgers starting from not directly marketable species through mechanical 

separation process. Few and simple ingredients such as lemon, salt and potato flakes were utilised for 

the preparation of high nutritional quality fish burgers which demonstrated to be stable during frozen 

storage. The fact that the highest stability was obtained in fish burgers containing a high proportion 

of rainbow trout could be of interest for seafood industry due to the lowest economical value of this 

species in comparison with the more expensive seawater aquacultured species (European sea bass). 


