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ABSTRACT: 

Nowadays advanced multi-temporal interferometric approaches such as PSI (Persistent Scatterers Interferometry) derived from the 
processing of space-borne SAR (Synthetic Aperture Radar) images represent an effective tool to detect terrain movements and provide 
millimetric ground measurements over large scenes thanks to their wide-area coverage, non-invasiveness, and high accuracy. 
Nevertheless, PSI data lack of absolute reference both in time and space, as they are relative estimates measured along the sensors-to-
target line of sight and referred to a chosen stable motionless reference point. In this work, a methodology to fix relative InSAR results 
into conventional geodetic reference systems through calibration with GNSS (Global Navigation Satellite System) data acquired from 
permanent stations is proposed. In particular, mean yearly velocities of PSI radar benchmarks are corrected with GNSS values by 
means of procedures commonly used in geodesy for combining crustal and local deformation studies. The operative method is tested 
in the area of Ravenna and Ferrara cities on the north-western Adriatic coast within the eastern alluvial plain of Po River, extensively 
affected by subsidence with strong spatial and temporal variations. The outcomes reveal the usefulness of the presented methodology 
for generating unique ground deformation maps over wide are using geodesy for aligning PSI data before SAR maps stacking. 

1. INTRODUCTION*

Land subsidence is commonly defined as sudden sinking or 
gentle and gradual lowering or sudden sinking of the ground 
surface (Galloway & Burbey, 2011). Natural or anthropogenic 
processes, as well as their combination, and endogenic or 
exogenic phenomena, which refer to geological-related motions 
and the removal of underground materials, respectively, 
(Prokopovich, 1979) can be caused subsidence, sometimes with 
consequences. Subsidence phenomena mainly affect urban and 
greenhouses or nurseries areas (Tomas et al., 2014; Del Soldato 
et al., 2018) because of water overexploitation, with serious 
consequences such as damage to linear infrastructures, e.g., 
bridges, roads or railways, and building stability issues due to 
differential settlement (Del Soldato et al., 2016; Tomas et al., 
2012). The monitoring of these phenomena plays a key role in 
the management of natural hazards for mitigating and minimizing 
the disaster losses and consequences. For land subsidence 
monitoring, classical techniques such as levelling networks 
(Teatini et al., 2005) or GNSS/GPS (Global Positioning System) 
techniques (Béjar-Pizarro et al. 2016) are traditionally used. In 
the last several decades, the Earth Observation (EO) technique, 
especially SAR (Synthetic Aperture Radar) remote sensing 
methods have rapidly grown. These techniques can profitably 
support risk reduction strategies by taking advantage of their 
wide area coverage associated with a high cost/benefit ratio. The 
PSI (Persistent Scatterers Interferometry) techniques (e.g. 
Ferretti et al., 2001and 2011), has been successfully adopted for 
a wide range of applications in disaster management, and it has 
extensively proven to be a valuable tool to detect ground 
deformations due to landslides (Solari et al., 2018; Del Soldato et 
al., 2018a; Ciampalini et al., 2016) or subsidence (Bonì et al., 
2017; Da Lio & Tosi, 2018a). 

* Corrisponding author

PSI is commonly applied to satellite SAR images based on the 
recognizing on ground points characterized by long-term stability 
of the electromagnetic backscattered signal and high reflectivity 
Persistent Scatterers (PS) (Ferretti et al., 2001, Crosetto et al. 
2016). By using the interferometric technique on the signal phase 
reflected by PS, the velocities of these points can be studied 
thought the time-series analysis of their displacements. Such as 
all the interferometric techniques, the velocity measured are 
relative to some points of the SAR image that is supposed to be 
stable.The lack of an absolute reference frame can be supplied by 
GNSS (Global Navigation Satellite System) measurements 
(Farolfi et al., 2018, 2019) as this is a geodetic network that 
provides rates and precise geographic location. In literature, 
many works exploited both SAR and GNSS data (i.e. Bovenga et 
al., 2012; Casu et al., 2006; Del Soldato et al., 2018b) for local 
terrain movements. In this work, we exploit SAR data acquired 
by historical ENVISAT data supported and calibrated by means 
of GNSS data throughout a methodological procedure for 
combining the two source datasets. We apply this approach to 
Ravenna and Ferrara cities located in the Po Plain in Central Italy, 
as this area is historically affected by subsidence due to natural 
and anthropogenic causes (Carminati and Martinelli, 2002). The 
merging of SAR products with GNSS reveals to be fundamental 
especially in the case of land subsidence where the velocity rates 
play an important role to understand and quantify the phenomena. 

1. AREA OF STUDY

The paper focuses on the eastern portion of the Po River plain, a 
narrow area of Italian peninsula between Northern Apennines, 
Southern Alps and along the northern Adriatic coast where 
Ravenna and Ferrara cities are located. The Po River sedimentary 
basin is filled by Alpine and Apennine sediments. From the 
structural point of view, the north-verging Apennine fold-and-
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thrust belt system is overlapped by Plio–Quaternary sediments 
(Carminati, 2002). In this area, vertical deformation is known and 
the subsidence is driven by the combination of anthropogenic, 
geological and tectonic processes. The main factor responsible 
for land subsidence in the Po plain is the human extraction of 
deep no-rechargeable ground waters (Gambolati et al., 1999). 
The industrial growth, the modern extensive agricultural and 
zootechnical techniques and the population increase that took 
place in the second half of the 20th century in Italy induced a 
dramatic intensification in groundwater demand. Some authors 
state that these factors produced a near quadrupling of 
groundwater withdrawal compared with the first half of the 
century (Gonella et al., 1998). In addition to water pumping, gas 
exploitation is also greatly performed in this area during the last 
century (Teatini et al. 2005, Tosi et al. 2010). Regarding the 
components of natural subsidence in the Po Plain, the ground 
lowering is also sediment loading and compaction (Sclater and 
Christie, 1980) as well as post-glacial rebound and tectonic 
loading. Geologically, Holocene sediments include sandy and 
clayey silty level often rich in organic matter and they can suffer 
from compaction problems by loads and in case of water over-
pumping (Rizzetto et al., 2003). Moreover, the effects of the last 
deglaciation, still impacting the Po Plain (Mitrovica and Davis, 
1995), and active tectonics linked to a buried anticline under the 
Ferrara area are considered additional factors to the long-term 
geological subsidence (Carminati et al. 2003). 

2. DATASETS

2.1 GNSS Dataset 

The velocity field for the eastern Po Plain area was derived by 
the combination of two independent solutions (Palano 2014, 
Farolfi et al., 2016, 2017) consists of a subset of 35 sites 
determined for a period that runs from 2008 to 2014. The two 
velocity solutions were combined involving a rigid Helmert 
transformation that minimizes the differences of GNSS site 
velocities that the two datasets have in common, by using a least 
squares approach. The resulting horizontal velocity field were 
referred into the European Terrestrial Reference Frame 
ETRF2008. 

2.2 PS dataset 

The velocity field determined with SAR satellites were calculated 
by involving with using PSInSAR technique (Ferretti et al., 2001) 
by using all available ENVISAT data from the Italian peninsula 
resulting from the program “Not-Ordinary Plan of Remote 
Sensing” developed by the Italian Ministry of the Environment 
available from the Italian Geoportale Nazionale 
(www.pcn.minambiente.it). The European ENVISAT mission 
covered a long-term continuous period from 2003 to 2010 with a 
temporal solution or satellite’s repeating cycle of 35 days.  

3. METHODOLOGY

The PS displacements and velocities calculated with GNSS and 
SAR show differences due to the different LOS direction in 
which they are recorded. Since the deformation PS velocity is 
acquired a LOS of the satellites with determined parameters, it 
must be re-projected and decomposed in vertical and horizontal 
components to be compared with the velocity components 
derived by GNSS. For this reason, the LOS displacements and 
velocities of the ENVISAT PS data was decomposed into 
horizontal and normal components with respect to the 
international ellipsoid. After this procedure, the InSAR 
displacements and velocities can be compared to GNSS dataset.  

The velocity𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿 measured by the SAR satellite for a ground 
velocity 𝑣𝑣 with components 𝑣𝑣 = [𝑣𝑣𝑁𝑁 , 𝑣𝑣𝐸𝐸 ,𝑣𝑣𝑉𝑉] is determined by 
the direction cosine or unit vector 𝑆𝑆 = [𝑆𝑆𝑁𝑁, 𝑆𝑆𝐸𝐸 ,𝑆𝑆𝑉𝑉] in the 
direction from the ground to the satellite along the LOS direction: 

𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑉𝑉𝑁𝑁𝑆𝑆𝑁𝑁,𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑉𝑉𝐸𝐸𝑆𝑆𝐸𝐸,𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉,𝐿𝐿𝐿𝐿𝐿𝐿 . (1) 

The unit vector 𝑆𝑆 for ascending (SA) and descending (SD) orbits 
are derived by the inclination of the orbits with respect to the 
equator 𝛿𝛿 = 98.5°, and the mean off-nadir 𝜃𝜃: 

�𝑆𝑆𝐴𝐴𝑆𝑆𝐷𝐷
� = �− sin𝜃𝜃𝐴𝐴 cos 𝛿𝛿 − sin𝜃𝜃𝐴𝐴 sin 𝛿𝛿 cos 𝜃𝜃𝐴𝐴

sin𝜃𝜃𝐷𝐷 cos𝛿𝛿 sin𝜃𝜃𝐷𝐷 sin𝛿𝛿 cos𝜃𝜃𝐷𝐷
� (2) 

For ENVISAT mission the LOS angles for both ascending and 
descending geometry is given the same value of θ =23.3° Eq. 1 
can be written for the ascending (VA) and descending (VD) 
velocities with the direction cosine: 

�𝑉𝑉𝐴𝐴𝑉𝑉𝐷𝐷
� = �

𝑆𝑆𝑁𝑁,𝐴𝐴 𝑆𝑆𝐸𝐸,𝐴𝐴 𝑆𝑆𝑉𝑉,𝐴𝐴
𝑆𝑆𝑁𝑁,𝐷𝐷 𝑆𝑆𝐸𝐸,𝐷𝐷 𝑆𝑆𝑉𝑉,𝐷𝐷

� �
𝑉𝑉𝑁𝑁
𝑉𝑉𝐸𝐸
𝑉𝑉𝑉𝑉
� (3) 

Eq. 3 is a system of two equations with three variables and is thus 
not solvable. Considering that the displacements along the north–
south direction are almost parallel to the ENVISAT satellite orbit 
and for this reason cannot be detected along the LOS for both the 
ascending and descending orbits, then eq. 3 can be approximated 
as: 

�𝑉𝑉𝐴𝐴𝑉𝑉𝐷𝐷
�≅�

𝑆𝑆𝐸𝐸,𝐴𝐴 𝑆𝑆𝑉𝑉,𝐴𝐴
𝑆𝑆𝐸𝐸,𝐷𝐷 𝑆𝑆𝑉𝑉,𝐷𝐷

� �𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉
� (4) 

and be solved. The two components of velocity v can be derived 
as follows: 

𝑉𝑉𝐸𝐸 ≅
𝑉𝑉𝐷𝐷−𝑉𝑉𝐴𝐴
2.|𝐿𝐿𝐸𝐸| , 𝑉𝑉𝑉𝑉 ≅

𝑉𝑉𝐷𝐷+𝑉𝑉𝐴𝐴
2.|𝐿𝐿𝑉𝑉| (6) 

where the modules of unit vectors of S for ENVISAT are 
𝑆𝑆 = [𝑆𝑆𝑁𝑁, 𝑆𝑆𝐸𝐸 ,𝑆𝑆𝑉𝑉]= [0.05,0.38,0.92] . The availability of GNSS 
site velocity in the Area of Interest (AoI) permits to align the PS 
velocities to the ETRS89 reference frame. In fact, PS velocities 
are calculated respect to one or more reference points chosen 
during the processing phase of the SAR images. 

Figure 1 - Map of PS vertical velocity from InSAR images. 
Green represents represents stable points, yellow represents 

points with mild downward movement around -2mm/a, and 
red represents points of downward movement lower than 

-8.0 mm/a. Black circles represent the position of GNSS sites. 

The lack of an absolute reference frame of PS dataset can be 
supplied by the comparison of ground point velocities determined 
using both techniques (Fig.2). The differences between the two 
velocity datasets were interpolated with an exponential inverse 
distance weighting to determine the map of correction for PS 
velocities (Fig.3). 

G. Farolfi et al.
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Figure 2 - Comparison of vertical velocities and their circles 
of uncertainties determinate with GNSS (black arrows) 

and PSInSAR (red arrows) for each GNSS site (black circles). 

4. RESULTS

The GNSS stations displaced in the Po River Delta and in the city 
of Ravenna record important values lower than -5 mm/a of 
subsidence. The limit of this lowering ~ -2 mm/a is close to 
Ferrara. The GNSS stations present in Bologna are stable since 
they are located out from the wide subsidence area. Rimini show 
mild values of subsidence ~ - 2mm/y. The comparison between 
the PS and GNSS vertical velocity shows different rates (Fig. 2) 
that reach -5 mm/a in the area of Po River Delta and Ravenna, -2 
mm/a around Ferrara and Rimini. 

Figure 3 - Calibration map for PS vertical velocity to apply to PS 
to obtain “absolute” and corrected vertical velocity rates. 

The area of the Po River Delta shows subsidence rate with values 
~ - 5 mm/y (Figure 4). The coastal area from the north of Ravenna 
town to the city of Rimini shows a bend of subsidence with values 
variable from -8 mm/a to -4 mm/a confined by stable sector. In 
the western area of Bologna, is located a big bowl with 
subsidence rates lower than - 10 mm/a. The area of Ferrara town 
and its surrounding show values of velocity of displacement into 
the stable span (~2 mm/a). 

Figure 4 - Vertical velocities of PSI points after the calibration 
performed by GNSS (absolute velocity). Green represents points 
with a stable or light uplift, yellow represent points with a mild 
downward movement, orange represent points with downward 
movement less than -4 mm/a and red represents points of 

downward movement less than -8.0 mm/a.

5. CONCLUSIONS

The combination of the GNSS with the PS data deeply improved 
the investigation of the displacement of the ground. In this way, 
all the problem of the choice of a stable points for PS processing 
based on geological and signal features, can be an overpass. The 
determination of correct vertical velocity rates play an important 
role in subsiding areas for avoiding damage to structures and 
infrastructure (e.g. Bianchini et al., 2015; Del Soldato et al., 
2016). Moreover, the combination of GNSS and SAR produces 
new maps of surface movements where velocities at both a 
detailed and a wider scale are geodetically correct.  
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