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We present a general method to determine the entropy current of relativistic matter at local
thermodynamic equilibrium in quantum statistical mechanics. Provided that the local equilibrium operator
is bounded from below and its lowest lying eigenvector is non-degenerate, it is proved that, in general, the
logarithm of the partition function is extensive, meaning that it can be expressed as the integral over a three-
dimensional space-like hypersurface of a vector current, and that an entropy current exists. We work out a
specific calculation for a nontrivial case of global thermodynamic equilibrium, namely, a system with
constant comoving acceleration, whose limiting temperature is the Unruh temperature. We show that the
integral of the entropy current in the right Rindler wedge is the entanglement entropy.
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I. INTRODUCTION

In recent years there has been a considerable interest in the
foundations of relativistic hydrodynamics. One of the key
quantities is the so-called entropy current sμ, which is one of
the postulated ingredients of Israel’s formulation [1]. Therein,
the entropy current plays a very important role because, as its
divergence ought to be positive, its form entails the con-
stitutive equations of the conserved currents (stress-energy
tensor, charged currents) as a function of the gradients of the
intensive thermodynamic parameters. Over the last decade,
there have been a very large number of studies where the
structure of the entropy current in relativistic hydrodynamics
was involved; see, for example, Refs. [2–9]. On the other
hand, there have been attempts [10] to formulate relativistic
hydrodynamics without an entropy current.
In most of these studies, the structure of the entropy

current is postulated based on some classical form of the
thermodynamics laws supplemented by more elaborate
methods to include dissipative corrections [11,12], but,
strictly speaking, it is not derived. The ultimate reason for
the apparent insufficient definition is that the entropy
current (unlike the stress-energy tensor or charged cur-
rents) in the familiar quantum field theory is not the mean
value of a local operator built with quantum fields (in the
generating functional approach, this difference can be
rephrased by saying that the entropy current cannot be

obtained by taking functional derivatives with respect to
some external source).1 Another reason for this indeter-
minacy is the fact that, while in quantum statistical
mechanics the total entropy has a precise definition in
terms of the density operator (von Neumann formula)
S ¼ −trðρ̂ log ρ̂Þ, the entropy current, which should be a
more fundamental quantity than the total entropy in a
general-relativistic framework, does not.
In this work, we will show that it is indeed possible to

provide a rigorous definition of the entropy current in
quantum-relativistic statistical mechanics and thereby to
derive its form in a situation of local thermodynamic
equilibrium, which is the underlying assumption of relativ-
istic hydrodynamics. The method is based on the definition
of a density operator at local thermodynamic equilibriumput
forward in the late 1970s by Zubarev and vanWeert [14,15]
and reworkedmore recently in Refs. [16,17]. The key step in
showing that an entropy current exists is the proof that, in a
relativistic theory, the logarithm of the partition function is
extensive, i.e., it can be expressed as an integral over a three-
dimensional (3D) space-like hypersurface of a four-vector
field. Wewill provide, to the best of our knowledge, the first
general proof of this usually tacitly understood hypothesis
under very general conditions.
After the general method, we will present a specific,

nontrivial calculation of the entropy current which is
especially interesting as it is related to the Unruh effect.
Indeed, we will show that in the Minkowski vacuum an
acceleration involves a nonvanishing finite entropy current

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Indeed, in Ref. [8] the authors proposed a method to obtain an
entropy current from a supersymmetric generating functional,
which was also the idea of Ref. [13].
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in some region which, once integrated, gives rise to its total
entanglement entropy.

A. Notation

In this paper we adopt the natural units, with ℏ ¼
c ¼ K ¼ 1. The Minkowskian metric tensor is g ¼
diagð1;−1;−1;−1Þ and for the Levi-Civita symbol we
use the convention ε0123 ¼ 1. Operators in Hilbert space
will be denoted by an upper hat, e.g., R̂.
We will use the relativistic notation with repeated indices

assumed to be saturated, and contractions of indices will
sometimes be denoted with dots, e.g., b · P̂ ¼ bμP̂

μ or
ϖ∶Ĵ ¼ ϖμνĴ

μν.
∇μ denotes the covariant derivative in curved space-time.

II. EXTENSIVITY AND ENTROPY CURRENT

In quantum statistical mechanics, the state of a physical
system is described by a density operator ρ̂. At global
thermodynamic equilibrium, ρ̂ is determined, according to
the maximum entropy principle, by maximizing the entropy
S ¼ −trðρ̂ log ρ̂Þ with a set of constraints, such as fixing
the value of the energy and some possible charges. Similarly,
in a situation of local thermodynamic equilibrium (LTE),
the density operator ρ̂LE is determined by maximizing the
entropy constrained with energy-momentum and charge
densities. In a relativistic framework, the LTE density
operator definition depends on a 3D space-like hypersurface
Σwhere thedensities are given; the fully covariant expression
reads [14]

ρ̂LE ¼ 1

ZLE
exp

�
−
Z
Σ
dΣμðT̂μνβν − ζĵμÞ

�
; ð1Þ

where

ZLE ¼ tr

�
exp

�
−
Z
Σ
dΣμðT̂μνβν − ζĵμÞ

��

is the partition function. In Eq. (1), T̂μν is the stress-energy
tensor, ĵμ is a conserved current,2 βν is the time-like four-
temperature vector, whose magnitude is the inverse comov-
ing temperature

T ¼ 1ffiffiffiffiffi
β2

p ð2Þ

while its direction defines a flow velocity [16]

uμ ¼ βμffiffiffiffiffi
β2

p ; ð3Þ

and ζ is a scalar that represents the ratio between the
comoving chemical potential and comoving temperature, i.e.,

ζ ¼ μ

T
:

With the density operator (1), one can calculate the total
entropy as a function of the four-temperature, which turns
out to be

S ¼ logZLE þ
Z
Σ
dΣμðhT̂μνiLEβν − ζhĵμiLEÞ; ð4Þ

where by hiLE we mean the expectation value calculated
with ρ̂LE. The expectation value of a local operator ÔðxÞ is
then a local intensive quantity depending only on x
provided that x belongs to the hypersurface Σ in the
definition of the operator (1). In particular, if Σ is a
hyperplane t ¼ const, this means that the time component
x0 of xmust be equal to t. This condition will be henceforth
understood. For an entropy current to exist, meaning that

S ¼
Z
Σ
dΣμsμ; ð5Þ

it can be readily seen from Eq. (4) that logZLE must be
extensive, namely, that there must be a four-vector ϕ, called
the thermodynamic potential current, such that

logZLE ¼
Z
Σ
dΣμϕ

μ

so that, comparing Eqs. (4) and (5),

sμ ¼ ϕμ þ hT̂μνiLEβν − ζhĵμiLE:

Notice that both ϕ and s are defined up to an arbitrary four-
vector tangent to the space-like hypersurface Σ.
The existence of the thermodynamic potential current

and (as a consequence) the entropy current is usually
assumed. One of the goals of this work is to show that
its existence can be proved under very general hypotheses.
To begin with, let us modify the LTE density operator by
introducing a dimensionless parameter λ,

ρ̂LEðλÞ ¼
1

ZLEðλÞ
exp

�
−λ

Z
Σ
dΣμðT̂μνβν − ζĵμÞ

�
; ð6Þ

so that for λ ¼ 1 we recover the actual LTE density
operator. Since

ZLEðλÞ ¼ tr

�
exp

�
−λ

Z
Σ
dΣμðT̂μνβν − ζĵμÞ

��
;

by taking the derivative of the trace we obtain

2We do not consider anomalous currents in this work. How-
ever, we reckon that the proposed method can be extended to
anomalous currents as well by using the approach of Ref. [18].
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∂ logZLEðλÞ
∂λ ¼ −

Z
Σ
dΣμðhT̂μνiLEðλÞβν − ζhĵμiLEðλÞÞ;

and, by integrating both sides,

logZLE − logZLEðλ0Þ

¼ −
Z

1

λ0

dλ
Z
Σ
dΣμðhT̂μνiLEðλÞβν − ζhĵμiLEðλÞÞ ð7Þ

for some λ0, where logZLEð1Þ is the actual logZLE. If we
then exchange the integrations in Eq. (7), we get

logZLE − logZLEðλ0Þ

¼ −
Z
Σ
dΣμ

Z
1

λ0

dλðhT̂μνiLEðλÞβν − ζhĵμiLEðλÞÞ:

Thus, if there exists a particular λ0 such that
logZLEðλ0Þ ¼ 0, it is proved that logZLE is extensive
and, at the same time, we have a method to determine
the thermodynamic potential current:

logZLE ¼
Z
Σ
dΣμϕ

μ;

ϕμ ¼ −
Z

1

λ0

dλðhT̂μνiLEðλÞβν − ζhĵμiLEðλÞÞ:

At a glance, one would say that λ ¼ þ∞ can make
ZLEðλÞ very small. More thoroughly, one should study the
spectrum of the local equilibrium operator in the exponent
of Eq. (1), defined as

ϒ̂≡
Z
Σ
dΣμðT̂μνβν − ζĵμÞ: ð8Þ

It is easily realized that this operator, if ζ ¼ 0, is simply the
Hamiltonian divided by the temperature in the special case
where β ¼ 1=Tð1; 0Þ. Suppose that the local equilibrium
operator ϒ̂ is bounded from below, i.e., there exists a
minimum eigenvalue ϒ0 with a corresponding eigenvector
j0i, which is supposedly nondegenerate. In this case, by
ordering the eigenvalues ϒ0 < ϒ1 < ϒ2…, and if the
lowest eigenvector is nondegenerate, the trace can be
written as

ZLEðλÞ ¼ trðe−λϒ̂Þ
¼ e−λϒ0ð1 − e−λðϒ1−ϒ0Þ − e−λðϒ2−ϒ0Þ − � � �Þ;

so, if ϒ0 ¼ 0 and we let λ → þ∞, we obtain the sought
solution, that is,

lim
λ→þ∞

ZLEðλÞ ¼ 1 ⇒ lim
λ→þ∞

logZLEðλÞ ¼ 0:

One can now take advantage of the invariance of the density
operator (1) by subtraction of a constant number in the

exponent. What we mean is that ρ̂ (as well as the entropy) is
invariant if we replace ϒ̂ in Eq. (8) with

ϒ̂ ↦ ϒ̂ −ϒ0 ¼ ϒ̂ − h0jϒ̂j0i

¼
Z
Σ
dΣμ½ðT̂μν − h0jT̂μνj0iÞβν

− ζðĵμ − h0jĵμj0iÞ�

and calculate the partition function accordingly, that is,
Z0 ¼ trðexp½−ϒ̂þϒ0�Þ. Hence, the new λ-dependent par-
tition function reads

Z0
LEðλÞ ¼ tr

�
exp

�
−λ

Z
Σ
dΣμ½ðT̂μν − h0jT̂μνj0iÞβν

− ζðĵμ − h0jĵμj0iÞ�
��

:

We note in passing that the subtraction of the expectation
value of T̂μν in the lowest-lying eigenvector of ϒ̂ does not
imply that the thereby obtained operator T̂μν − h0jT̂μνj0i is
the physically renormalized one. In fact, in the accelerated
thermodynamic equilibrium case, the physical operator is
obtained by subtracting the expectation value in the
Minkowski vacuum [19], whereas the lowest-lying eigen-
vector is the so-called Rindler vacuum, as we will see
in Sec. IV.
The new partition function is such that Z0

LEð∞Þ ¼ 1, and
the thermodynamic potential current is thus given by

ϕμ ¼
Z þ∞

1

dλ½ðhT̂μνiLEðλÞ − h0jT̂μνj0iÞβν
− ζðhĵμiLEðλÞ − h0jĵμj0iÞ�: ð9Þ

Consequently, the entropy current will be

sμ ¼ ϕμ þ ðhT̂μνiLE − h0jT̂μνj0iÞβν − ζðhĵμiLE − h0jĵμj0iÞ:
ð10Þ

These formulas show that the thermodynamic potential
current is obtained by effectively integrating the temper-
ature dependence of the currents, as λ multiplies β and ζ.
Even in the presence of first-order phase transitions, with
discontinuities in the mean values of the stress-energy
tensor and charged current as a function of the temperature,
the integral is still feasible and makes perfect sense.
We can finally draw an important conclusion regarding

the existence of the entropy current.
Theorem. If the spectrum of the local equilibrium

operator (8) is bounded from below, and if the eigenvector
corresponding to its lowest eigenvalue is nondegenerate,
the logarithm of the partition function is extensive. Thus, we
can obtain a thermodynamic potential current by integrating
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the difference between the expectation values of the stress-
energy tensor and conserved currents and their expectation
values in the lowest-lying eigenvector of the local equilib-
rium operator.
So, to solve the problem, one just needs to determine the

mean values of the stress-energy tensor and the currents.
We will see how this can be accomplished in a nontrivial
case in Sec. IV.

III. THERMODYNAMIC EQUILIBRIUM WITH
ACCELERATION IN MINKOWSKI

SPACE-TIME

The local thermodynamic equilibrium density operator
(1) can be promoted to global thermodynamic equilibrium
when it becomes time independent or, in covariant lan-
guage, independent of the space-like hypersurface Σ. This
has been studied in detail elsewhere [20]. Global thermo-
dynamic equilibrium occurs when ζ is constant and the
four-temperature β is a Killing vector, that is,

∇μβν þ∇νβμ ¼ 0: ð11Þ

It is readily seen from Eqs. (9) and (10) that, in this case, if
the stress-energy tensor and the currents are conserved, so
are the thermodynamic potential current and the entropy
current,

∇μϕ
μ ¼ 0; ∇μsμ ¼ 0;

in agreement with the general condition that at global
thermodynamic equilibrium the entropy production rate
vanishes.
In Minkowski space-time the general solution of the

Killing equation (11) is

βμ ¼ bμ þϖμνxν; ð12Þ

where b is a constant four-vector and ϖ is a constant
antisymmetric tensor called the thermal vorticity. The latter
can be expressed as the exterior derivative of the four-
temperature, i.e., ϖμν ¼ − 1

2
ð∂μβν − ∂νβμÞ.

By using Eq. (12), one can obtain the general form of the
density operator (1) in Minkowski space-time, that is,

ρ̂ ¼ 1

Z
exp

�
−bμP̂μ þ 1

2
ϖμνĴ

μν þ ζQ̂

�
; ð13Þ

where P̂ is the four-momentum operator, Ĵ is the boost-
angular momentum operator, and Q̂ is the conserved charge
associated to the current ĵ. Among the various solutions, a
noteworthy one is the pure acceleration one,

bμ ¼
1

T0

ð1; 0Þ; ϖμν ¼
a
T0

ðg0νg3μ − g3νg0μÞ; ð14Þ

with constant parameters a and T0. This case has been
studied in detail in Ref. [19] and corresponds to a fluid with
four-temperature field

βμ ¼ a
T0

ðz0; 0; 0; tÞ; ð15Þ

where z0 ≡ zþ 1=a, and a four-acceleration field

Aμ ¼ 1

z02 − t2
ðt; 0; 0; z0Þ: ð16Þ

It is readily found that the β field (15) is time-like for
jz0j > t, light-like for jz0j ¼ t, and space-like for jz0j < t.
Hence, the hypersurfaces jz0j ¼ t are two Killing horizons
for β and they break the space-time into four different
regions: the region jtj < z0 is called the right Rindler wedge
(RRW), the region jtj < −z0 is called the left Rindler wedge
(LRW), while the regions jtj > jz0j are not of interest here.
The proper temperature (2) in the RRW is singular on the
light-cone boundary:

T ¼ T0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z02 − t2
p :

It is also very useful to decompose the thermal vorticity
tensor ϖ into two space-like vector fields α and w [21]
by projecting onto the velocity field (3). In the global
equilibrium case, they turn out to be parallel to the four-
acceleration and the kinematic vorticity, respectively, and
both are orthogonal to u or β. In the pure acceleration case,
it turns out that the kinematic vorticity vanishes and we are
left with

ϖμν ¼ αμuν − ανuμ; ð17Þ

where αμ ¼ Aμ=T is the four-acceleration divided by the
comoving temperature. By using Eqs. (16), (15), and (2) to
calculate T, it turns out that

α2 ¼ A2

T2
¼ β2A2 ¼ −

a2

T2
0

; ð18Þ

that is, α2 is constant.
In the pure acceleration case (14) with ζ ¼ 0, the density

operator (13) becomes

ρ̂ ¼ 1

Z
exp

�
−
Ĥ
T0

þ a
T0

K̂z

�
ð19Þ

where K̂z ¼ Ĵ30 is the boost generator along the z direction.
The operator Ĥ − aK̂z is stationary and can be regarded
as the generator of translations along the flow lines of
Eq. (15) [22].

F. BECATTINI and D. RINDORI PHYS. REV. D 99, 125011 (2019)

125011-4



The peculiarity of the four-temperature field (15) is that it
vanishes altogether on the two-dimensional (2D) surface
t ¼ 0; z0 ¼ 0, which makes it possible to factorize the
density operator into two commuting operators involving
the quantum field degrees of freedom on either side of
z0 ¼ 0, i.e.,

ρ̂ ¼ ρ̂R ⊗ ρ̂L; ½ρ̂R; ρ̂L� ¼ 0;

ρ̂R ¼ 1

ZR
exp

�
−
Π̂R

T0

�
; ρ̂L ¼ 1

ZL
exp

�
Π̂L

T0

�
; ð20Þ

with

Π̂R;L ≡�T0

Z
z0≷0

dΣμT̂
μνβν ð21Þ

being the generator of translations along the flow lines,
playing the role of the Hamiltonian. The factorization
implies that, if ÔðxÞ is a local operator with x in the
RRW, its expectation value is independent of the field
operators in the LRW.
Quantum field equations of motion, such as the Klein-

Gordon equation, are solved in the RRW and LRW
separately by introducing proper hyperbolic coordinates—
the Rindler coordinates ðτ; x; y; ξÞ—where the “transverse”
coordinates xT ≡ ðx; yÞ are the same as the Minkowski
coordinates, and ðτ; ξÞ are related to ðt; z0Þ by

τ≡ 1

2a
log

�
z0 þ t
z0 − t

�
; ξ≡ 1

2a
log ½a2ðz02 − t2Þ�

in the RRW. Inverting and plugging them into the
Klein-Gordon equation, one finds the positive-frequency
modes [23]

uω;kT
ðτ; ξ;xTÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4π4a
sinh

�
πω

a

�s

× Kiωa

�
mTeaξ

a

�
e−iðωτ−kT ·xTÞ;

where ω is a positive real number, kT ≡ ðkx; kyÞ is the
“transverse” momentum, the K’s are the modified Bessel
functions, and m2

T ≡ ω2 − k2
T . The real scalar field can

thus be expanded as

ψ̂ðτ; ξ;xTÞ ¼
Z þ∞

0

dω
Z
R2

d2kTðuω;kT
âRω;kT

þ u�ω;kT
âR†ω;kT

Þ;

ð22Þ

where âR† and âR are the creation and annihilation
operators, respectively, and they satisfy the usual com-
mutation relations. A similar field expansion holds in the
LRW, with the important difference that the role of the
creation and annihilation operators is interchanged, as a

consequence of the fact that the boost generator, which
plays the role of a time-translation generator, is past-
oriented therein. The “Hamiltonians” Π̂ turn out to be [19]

Π̂R;L ¼
Z þ∞

0

dω
Z
R2

d2kTâ
†R;L
ω;kT

âR;Lω;kT
: ð23Þ

The vacuum in the RRW is obtained by requiring it to be
annihilated by all the operators âR, and it is denoted as
j0Ri. Similarly, the vacuum j0Li in the LRW is the state
annihilated by all âL, and the overall vacuum state j0iR ≡
j0Ri ⊗ j0Li is the so-called Rindler vacuum. As first
pointed out by Fulling in Ref. [24], the Rindler vacuum
does not coincide with the Minkowski vacuum. In fact, the
Minkowski vacuum is a thermal state of free bosons with
temperature a=2π—the well-known Unruh effect [25].
The thermal expectation values of relevant physical

quantities in the RRW, for a free field, with the density
operator (20) can be obtained once the thermal expectation
values of products of creation and annihilation operators
are known. In Ref. [19] the following expressions were
found:

hâR†ω;kT
âRω0;k0

T
i ¼ 1

eω=T0 − 1
δðω − ω0Þδ2ðkT − k0

TÞ; ð24aÞ

hâRω;kT
âR†ω0;k0

T
i ¼

�
1

eω=T0 − 1
þ 1

�
δðω − ω0Þδ2ðkT − k0

TÞ;

ð24bÞ

hâRω;kT
âRω0;k0

T
i ¼ hâR†ω;kT

âR†ω0;k0
T
i ¼ 0: ð24cÞ

It was also shown that normal ordering with respect
to the Rindler vacuum corresponds to neglecting the
þ1 in Eq. (24b), which arises from the commutation
relations of creation and annihilation operators. From
Eqs. (24a)–(24c), the following normally ordered expres-
sion can be calculated:

h∶ψ̂2∶Ri ¼
Z þ∞

0

dω
Z
R2

d2kT juω;kT
j2 2

eω=T0 − 1
;

where the subscript R stands for the normal ordering of
Rindler creation and annihilation operators and corre-
sponds to the subtraction of the expectation values in the
Rindler vacuum. For a massless field, the above integra-
tion can be carried out analytically, yielding

h∶ψ̂2∶Ri ¼
T2
0

12

1

a2ðz02 − t2Þ ¼
1

12β2
;

where Eq. (15) has been used. Another useful expression
which was obtained in Ref. [19] is

h∶u · ∂ψ̂u · ∂ψ̂∶Ri ¼ π2

30β4
: ð25Þ
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IV. ENTROPY CURRENT FOR A FREE
SCALAR FIELD

We are now in a position to calculate the thermodynamic
potential current and the entropy current for a relativistic
fluid at global thermodynamic equilibrium with acceler-
ation in the RRW.
The basic ingredient to determine the entropy current,

according to Eqs. (9) and (10), is the mean value of the
stress-energy tensor. The general form of the mean value of
a symmetric rank-two tensor at global thermodynamic
equilibrium with acceleration is constrained by the sym-
metries of the density operator (19), as well as by the
parameters at our disposal. In general, looking at Eq. (13),
the mean value of any local operator Ô can be a function of
b, ϖ, and x; however, the dependence on x is constrained
by the form of the density operator. Denoting by T̂ðxÞ the
translation operator exp½ix · P̂�, we have

hÔðxÞi ¼ hT̂ðxÞÔð0ÞT̂−1ðxÞi ¼ trðT̂−1ðxÞρ̂ T̂ðxÞÔð0ÞÞ

¼ 1

Z
trðe−b·P̂þ1

2
ϖ∶T̂−1ðxÞĴ T̂ðxÞÔð0ÞÞ

¼ 1

Z
trðe−βðxÞ·P̂þ1

2
ϖ∶ĴÔð0ÞÞ ¼ hÔð0ÞiβðxÞ; ð26Þ

where we have used the known relation from Poincaré
algebra,

T̂−1ðxÞĴμνT̂ðxÞ ¼ Ĵμν − xνP̂μ þ xμP̂ν;

and Eq. (12). Equation (26) implies that the expectation
value of any local operator at global thermodynamic
equilibrium depends on the space-time point only through
the four-temperature vector field βðxÞ. Therefore, we can
build up the most general expectation value of tensor fields
of any rank just by combining β, the constant antisymmetric
tensorϖ, and the metric tensor g. Note that ∂μβν ¼ ϖνμ and
∂2β ¼ 0, so that derivatives of β cannot enter as independent
variables.
Likewise, any scalar function F, which is the mean value

of a local operator or derived from the mean value of a local
operator or derived from it, at global thermodynamic
equilibrium with acceleration can only be a function of
the two scalars formed with β andϖ, that is, β2 ¼ 1=T2 and
α2, taking into account that α · β ¼ 0. Therefore a rank-two
symmetric tensor such as the stress-energy tensor must
have the following form:

hT̂μνi ¼ F1β
μβν þ F2gμν þ F3α

μαν þ F4ðαμβν þ ανβμÞ;
ð27Þ

with Fi ¼ Fiðβ2; α2Þ. Furthermore, if the Hamiltonian Ĥ in
Eq. (19) is invariant under time reversal, so is the density
operator itself; as a consequence, the mixed components

of the stress-energy tensor at t ¼ 0 must vanish, that is,
hT̂0ið0;xÞi ¼ 0. Since at t ¼ 0 we have αi ≠ 0 and β0 ≠ 0,
the term proportional to F4 in Eq. (27) breaks time-reversal
invariance, and F4 must then vanish. Similarly, it can be
shown that the most general expression for the expectation
value of a vector field should be of the simple form

hV̂μi ¼ Fðβ2; α2Þβμ;

where the terms linear in αμ are forbidden by time-reversal
invariance.
According to Eqs. (9) and (10), one also needs to

determine the expectation value in the eigenvector of ϒ̂
with the lowest eigenvalue. Looking at Eqs. (20) and (23), it
is easy to realize that for a free field this eigenvector is just
the Rindler vacuum j0iR ¼ j0Ri ⊗ j0Li, whose eigenvalue
is zero. Then, since it is not degenerate, the Rindler vacuum
expectation value of any operator must have the same
symmetries as its expectation value with the density
operator (20), and we can thus write

h∶T̂μν∶Ri≡ hT̂μνi − Rh0jT̂μνj0iR
¼ F1β

μβν þ F2gμν þ F3α
μαν: ð28Þ

Contracting Eq. (28) with the four-temperature twice, we
obtain

h∶T̂μν∶Riβν¼ðF1β
2þF2Þβμ;

F1β
2þF2¼h∶T̂μν∶Ri

βμβν
β2

¼h∶T̂μν∶Riuμuν ¼ ρ;

where ρ is the energy density. In summary, we have

h∶T̂μν∶Riβν ¼ ρβμ

and, as a consequence,

ϕμ ¼ βμ
Z þ∞

1

dλρðλÞ; ð29Þ

with ρðλÞ obtained from h∶T̂μν∶RiðλÞ.
For the free real scalar field (22) we can obtain the

canonical stress-energy tensor from the Lagrangian density,

L ¼ 1

2
∂μψ̂∂μψ̂ −

1

2
m2ψ̂2;

that is,

T̂μν
CAN ¼ ∂μψ̂∂νψ̂ −

1

4
□ψ̂2gμν; ð30Þ

where we have used the equations of motion
ð□þm2Þψ̂ ¼ 0. The energy density thus reads
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ρ ¼ h∶T̂μν∶Riuμuν ¼ h∶u · ∂ψ̂u · ∂ψ̂∶Ri − 1

4
□h∶ψ̂2∶Ri:

ð31Þ

By using the β expression in Eq. (15), we obtain

□h∶ψ̂2∶Ri ¼
α2

3β4
;

which, when plugged into Eq. (31) and combined with
Eq. (25), gives the energy density of a free real scalar field
in the RRW,

ρ ¼ π2

30β4
−

α2

12β4
: ð32Þ

This expression is precisely what was found in
Refs. [21,26] with a perturbative expansion of the density
operator (19) in α at order α2. Hence, we find that the
perturbative series for the real scalar field is simply a
polynomial in α of order 2.
We now need the function ρðλÞ to calculate the thermo-

dynamic potential current. From Eqs. (6) and (19) it turns
out that the introduction of the dimensionless parameter λ
corresponds to the rescaling T0 ↦ T0=λ. To make the full
dependence of ρ on T0 apparent, it is convenient to
introduce the Killing vector γ ≡ T0β which is independent
of T0 [see Eq. (15)] and, taking into account Eq. (18), write
the above energy density as

ρ ¼ π2

30γ4
T4
0 þ

a2

12γ4
T2
0:

Rescaling T0, we readily obtain

ρðλÞ ¼ π2

30γ4
T4
0

λ4
þ a2

12γ4
T2
0

λ2
¼ π2

30β4
1

λ4
−

α2

12β4
1

λ2
:

Plugging this into Eq. (29), we get the thermodynamic
potential current

ϕμ ¼
�

π2

90β4
−

α2

12β4

�
βμ

and, consequently, the entropy current in the RRW

sμ ¼
�
2π2

45β4
−

α2

6β4

�
βμ: ð33Þ

It should be pointed out that the above formulas depend
on the stress-energy quantum operator. Indeed, for the
improved stress-energy tensor, which is traceless for a
massless field,

T̂μν
IMP ¼ T̂μν

CAN −
1

6
ð∂μ∂ν − gμν□Þψ̂2; ð34Þ

we obtain a different expression for the energy density at
equilibrium. This is an expected feature of thermodynamic
equilibrium with rotation or acceleration, as was exten-
sively discussed in Ref. [27]. Indeed, the additional term in
the energy density pertaining to the canonical stress-energy
tensor in Eq. (34) turns out to be

−
1

6
ðuμuν∂μ∂ν −□Þh∶ψ̂2∶Ri ¼ −

1

6
ðuμuν∂μ∂ν −□Þ 1

12β2

¼ α2

12β4
;

as can be shown by using Eq. (15). Thus, adding the above
contribution to Eq. (32), we find

ρIMP ¼
π2

30β4
;

that is, the energy density calculated with the improved
stress-energy tensor for the massless free real scalar field
depends only on β2 and not on α2, which is a somewhat
surprising feature. Likewise, the entropy current gets
modified and one is left with only the first term of Eq. (33),

sμIMP ¼
2π2

45β4
βμ: ð35Þ

V. ENTANGLEMENT ENTROPY, AREA LAW,
AND UNRUH EFFECT

Equation (33) is the entropy current in the RRW, and
therefore its integral on a space-like hypersurface whose
boundary is the 2D surface z0 ¼ 0; t ¼ 0 (see Fig. 1) is

SR ¼
Z
z0>0

dΣμsμ ¼ −trRðρ̂R log ρ̂RÞ ð36Þ

according to Eqs. (20) and (21) and by means of the
previous construction of the current. As the density
operator is factorized, this entropy is also the entanglement
entropy obtained by tracing out the field degrees of freedom
in the LRW. At global thermodynamic equilibrium we have
∂μsμ ¼ 0, and the entropy (36) can be calculated on any
space-like hypersurface provided that the boundary flux
vanishes. Indeed, this is the case for the RRW, as the time-
like boundary is tangent to the entropy current (see Fig. 1).
A straightforward calculation of the entanglement

entropy on the hypersurface t ¼ 0 with the canonical
entropy current (33) yields

SR ¼
Z
R2

dxdy

�
2π2

45
−
α2

6

�
T3
0

a3
lim
z0→0

1

2z02
: ð37Þ
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Thus, the entropy turns out to be proportional to the area of
the 2D boundary surface separating the RRW from the
LRW but with a divergent constant, owing to the fact that
the comoving temperature T diverges for z0 ¼ 0. This result
is in full agreement with that of Bombelli et al. and
Srednicki [28,29].
The same result can be obtained with a more general and

more elegant derivation which applies to general space-
times. As the entropy current s is divergenceless,∇μsμ ¼ 0,
it can be expressed as the Hodge dual of an exact three-
form. If the domain is topologically contractible (as is the
RRW), this form in turn can be expressed as the exterior
derivative of a two-form [30–33], which eventually
amounts to stating that the original vector field can be
written as the divergence of an antisymmetric tensor field,

sμ ¼ ∇νς
μν;

whence, because of Stokes’ theorem,

S ¼
Z
Σ
dΣμsμ ¼

Z
Σ
dΣμ∇νς

μν ¼ 1

2

Z
∂Σ

dS̃μνςμν

¼ −
1

4

Z
∂Σ

dSρσ
ffiffiffiffiffiffi
−g

p
ϵμνρσς

μν; ð38Þ

where dSρσ is the measure of the 2D boundary surface ∂Σ.
Hence, the total entropy is expressed as a surface integral of
a potential of a conserved current [30]. For our specific
problem of equilibrium with acceleration, the general
expression of the potential turns out to be

ςμν ¼ s
2α2

ðβμαν − βναμÞ; ð39Þ

where s≡ sμuμ is the entropy density. Plugging Eq. (39)
into Eq. (38), we get

S ¼ −
1

4

Z
∂Σ

dSρσ
ffiffiffiffiffiffi
−g

p s
2α2

ϵμνρσðβμαν − βναμÞ:

The boundary of the hypersurface t ¼ 0 is the plane t ¼ 0;
z0 ¼ 0 and the plane t ¼ 0; z0 ¼ þ∞. In the latter, the
integrand vanishes for s ∝ z0−3, α2 is constant, and
β0α3 ∝ z0. We are thus left with the xy plane and, taking
into account that the ρ, σ indices can only take on the values
1,2 and the dependence of β and α on ðz0; tÞ, we end up
with Eq. (37).
A remarkable consequence of the entropy current

method is the determination of the entanglement entropy
in the Minkowski vacuum, when the state of the system is
pure ρ̂ ¼ j0Mih0Mj. It is well known that [23]

ρ̂R ¼ trLðj0Mih0MjÞ ¼
1

ZR
exp

�
−
2π

a
Π̂R

�
;

that is, the Minkowski vacuum for a system with accel-
eration a corresponds, in the RRW, to a mixed state
with density operator (20) with T0 ¼ a=2π, which is in
essence the content of the Unruh effect. It was observed in
Ref. [19] that, from a statistical thermodynamics viewpoint,
this corresponds to a limiting comoving temperature of
TU ¼ jAj=2π, where jAj is the magnitude of the four-
acceleration field. Because of Eq. (18), we thus have an
upper bound for jα2j ¼ ð2πÞ2 in the Minkowski vacuum,
and so Eq. (33) becomes

sμ ¼ 32π2

45
T3
Uu

μ;

while for Eq. (35)

sμIMP ¼
2π2

45
T3
Uu

μ;

which means that we have a nonvanishing entropy current
in the Minkowski vacuum, owing to having traced out
the field degrees of freedom in the LRW. Remarkably,
the above expressions differ by a factor of 16, which is
apparently an unexpected and odd feature. Yet, as it has
been mentioned, at global thermodynamic equilibrium the
mean value of the stress-energy tensor does depend on
the specific quantum operator [in the case at hand, either
Eq. (30) or Eq. (34)] and the entropy current as well. On the
other hand, the total integrals like P̂μ and Ĵμν should not
depend on it (see the discussion in Ref. [27]) and, as a
consequence, the entanglement entropy should also be
independent because ρ̂R can be written as a trace over the
field degrees of freedom of a density operator which is a
function of the Poincaré generators [see Eq. (19)],

FIG. 1. Two-dimensional section of Minkowski space-time
with the Killing field β in Eq. (15) splitting the plane tz into
the Rindler wedges bounded by the light cone at z ¼ −1=a. The
integrals of the conserved currents on the space-like hyper-
surfaces Σ1 and Σ2 in the RRW are the same due to Gauss’
theorem and taking into account that the time-like hyperbolic
boundary Σt yields no contribution, as β is perpendicular to its
normal unit vector.
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ρ̂R ¼ trLðρ̂Þ ¼
1

Z
trL

�
exp

�
−
Ĥ
T0

þ a
T0

K̂z

��
:

Nevertheless, the expressions for Π̂R and Π̂L [see Eqs. (20)
and (21)] may inherit a dependence on the quantum stress-
energy tensor because of the truncation at z0 ¼ 0. This issue
will be the subject of further investigation.

VI. SUMMARY AND OUTLOOK

In summary, we have presented the condition of exist-
ence of an entropy current and a general method to
calculate it. An entropy current can be obtained if the
spectrum of the local equilibrium operator—which boils
down to the Hamiltonian multiplied by 1=T in the simplest
case of global homogeneous equilibrium—is bounded from
below. We have applied our method to the case of a fluid
with a comoving acceleration of constant magnitude, which
is a known instance of nontrivial global thermodynamic
equilibrium in Minkowski space-time. We have also shown
its connection to the entanglement entropy in the vacuum,
and its relation with the Unruh effect. Furthermore, we have
shown that, at least at global equilibrium, the total entropy
can be expressed as a surface integral, in agreement with
Ref. [30]. We expect this method to be applicable to other
problems where the total entropy has to be determined, like,
e.g., relativistic hydrodynamics or thermodynamic equilib-
rium in general curved space-time.
The entropy current is expectedly dependent on the

specific form of the stress-energy tensor operator. Besides,
for the free scalar field, it seems that the total entanglement
entropy also depends on the particular stress-energy tensor
operator. This is a subject for future studies.
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APPENDIX: CALCULATION OF THE ENTROPY
POTENTIAL

The search for a potential for the entropy current uses the
same method as for the stress-energy tensor. To form an
antisymmetric tensor we can just use the four-vectors β
and α, and hence the only possible combination is

αμβν − ανβμ:

In turn, this is just proportional to the thermal vorticity,
according to Eq. (17), so we can write the general form of
the potential as

ςμν ¼ Gðβ2; α2Þϖμν; ðA1Þ

where G is a general scalar function such that

sμ ¼ ∂νðGϖμνÞ:

By introducing the proper entropy density s such that
sμuμ ¼ s, we have

s ¼ sμuμ ¼
1ffiffiffiffiffi
β2

p sμβμ ¼
1ffiffiffiffiffi
β2

p βμϖ
μν∂νG;

as ϖ is constant. Now, ϖμνβμ ¼ −
ffiffiffiffiffi
β2

p
αν from Eq. (17),

and so

s ¼ −αν∂νG ¼ −αν∂νβ
2
∂G
∂β2 ðA2Þ

because α2 is a constant in the pure acceleration case.
The Killing equation (11) implies [21]

∂νβ
2 ¼ −2

ffiffiffiffiffi
β2

q
αν;

so that Eq. (A2) becomes

s ¼ 2α2
ffiffiffiffiffi
β2

q ∂G
∂β2 ;

whose solution is

G ¼
Z

dβ2
s
2α2

1ffiffiffiffiffi
β2

p :

For the massless case, we have s ¼ CðαÞ2=
ffiffiffiffiffi
β2

p
3 from

Eq. (33), and thus

G ¼ Cðα2Þ
2α2

Z
dβ2

1

β4
¼ −

Cðα2Þ
2α2

1

β2
¼ −s

2α2ffiffiffiffiffi
β2

p :

Plugging the above result into Eq. (A1) and using Eq. (17),
we obtain

ςμν ¼ −
s

2α2

ffiffiffiffiffi
β2

q
ϖμν ¼ −

s
2α2

ffiffiffiffiffi
β2

q
ðαμuν − ανuμÞ

¼ s
2α2

ðανβμ − αμβνÞ;

which is precisely Eq. (39).
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