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Abstract

Modern world brought many technological advancements. Smartphone de-

vices stand out among them, due to their popularity caused by having a

large span of options available in a small, portable device. Their usage is

increased in recent years, due to social media platforms, which became an

inevitable part of everyday life, providing the ability to share information

instantly with the selected audience. As popularity commonly causes vulner-

ability, neither smartphones, nor social media are spared of it. Multimedia

content acquired by these devices and shared with other users is often al-

tered for entertainment or malicious purposes, thus raising questions about

its originality and authenticity.

Source identification is one of the burning issues that multimedia foren-

sics copes with. Recent studies have shown that identification procedure

can be successfully conducted relying on the characteristics of camera sensor

noise, thus making it an interesting research approach. However, in order

to obtain reliable results, multimedia tools need to be tested using an ap-

propriate number and variety of multimedia information. Having in mind

the constant development of today’s portable devices, currently available

databases became outdated, making the whole procedure difficult.

This Thesis introduces three novel image and video datasets, taking into

account different types of multimedia and its alterations caused by the ex-

change through popular social media platforms. The first one is MOSES

mobile application, proposed as an elegant option for providing an expand-

able, up-to-date video database. While the initial MOSES dataset contains

SDR (Standard Dynamic Range) videos, the second dataset, named VISION,

combines both SDR and HDR (High Dynamic Range) images and videos,

thus providing the ability of comparison of different types of multimedia ac-

quired by the same device. Due to their rising popularity, special attention

is paid to HDR images. The third proposed dataset is one of the largest
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vi Abstract

currently available HDR-based datsets and it enables SDR and HDR images

comparison.

All the created datasets are used for source identification purposes, em-

ploying well-known PRNU (Photo-Response Non-Uniformity)-based meth-

ods. Exchanging multimedia content through social media platforms, using

more complex multimedia types, such as HDR, as well as different camera

movements, is shown to affect PRNU-based source identification procedure.

Its reliability is shown to be dependable on the previously mentioned factors,

thus opening space for further research in the field of multimedia forensics.
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Chapter 1

Introduction

Technology has rapidly developed in the past few decades, simplifying many

processes and providing users easier and faster options to produce desired

result. While mobile phones could offer only text messaging and voice calls

two decades ago, today’s devices have overcome providing only telecommu-

nication services. Digital camera, Internet access, mobile applications and

all the available Internet services are included in addition to the previously

existing options when smartphone devices were introduced. Having a wide

range of services available in a small, portable device, caused higher tech-

nology usage. Users started capturing more photographs, recording videos,

editing them in one of the large span of image or video processing appli-

cations and posting them to social media platforms. This enabled digital

media to become available to the world in only a few clicks.

Having in mind that first mobile phone devices did not have a digital cam-

era and that later versions started introducing ones with a very low pixel res-

olution, the only way for capturing quality photographs was using standard

digital camera devices. As most of them were big, robust and heavy, they

were not practical for every day usage, especially for non-professional pho-

tographers. Smartphones provided the advantage of having a high-resolution

in-built camera, available anytime when carrying the smartphone itself. Fur-

thermore, image and video processing software programs were available only

on computer devices and laptops until the recent times. Therefore, multime-

dia content editing was time-consuming, editing software programs were not

wide-spread among the users and more processor and memory power were

required. However, editing is now approachable to the average smartphone

1



2 Introduction

user, with very low hardware and software requirements.

Introduction of Wi-Fi network provided the ability for uploading and

downloading digital content on a specific location covered by Wi-Fi signal.

The problem of being tied to some location in order to access the Internet has

been overcome by the appearance of mobile networks, which are progressing

in terms of speed, availability and battery consumption over the years. As a

result, a big number of the world’s population has the ability to be reachable

through the Internet, regardless of their current location.

Although technology development brought many advantages, it can be

used for malicious purposes, representing more curse than blessing of to-

day’s world. Digital media is now considered to be the main source of

all the information globally. It has the coverage of almost every informa-

tion related to every case, scenario and field. Therefore, it is often used

in court, as an evidence of criminal activity or as an alibi. This fact puts

the high importance on content originality, which is often harder to examine

in comparison to non-digital evidences. In contrast to the printed media,

manipulation of digital content is much easier due to its vast exposure and

dependability. Information acquired from the digital media devices such as

smartphones, camcorders, cameras etc. can easily be transferred to other de-

vices and edited to change its perspective altogether. With the development

of various post-processing techniques and software programs, information

distortion became very common. Although the programs for digital content

manipulation were developed for simplification of jobs related to camera-

work, they are commonly used in forgery and fraud purposes. This has led

to various difficulties related to the authentication of the information shared

through the world in the form of multimedia content.

While images can be altered in terms of adding or removing an object or

a group of them, videos are easily modified by cutting out a number of frames

from the original content. This can be performed only for fun, to mislead

the public or to cause harm to an individual or a group. Digital content

altered only for the purpose of entertainment usually can be identified as

unreliable even with the bare eyes and ears, because it commonly contains

awkwardly replaced parts of an image or changed audio parts where voice

is non-synchronized with lip movements. On the other hand, misleading the

public with altered digital content is sometimes performed by journalists,

especially yellow press, to produce sensationalist news. One form of delusion

spread by media are also retouched photographs of models and celebrities,
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where their look is brought to perfection. While the last mentioned example

of alteration causes no harm to the individuals shown in the images, hiding

some objects from the image or introducing the nonexistent ones can be very

harmful in case the image represents an evidence on the court or is used for

the purposes of defamation.

Various incidents have witnessed in the recent past that a personal judg-

ment can be based only upon the seen multimedia files. Internet consumers

are often warned to keep themselves protected and to pay attention to the

information they share through the network. Despite following these secu-

rity measures ensures the safety of user’s account and allows only him to

share the information he wants, images and videos can still be endangered.

Since the shared content is commonly downloadable, it becomes accessible

for malicious users who can edit it and re-post it afterwards. Having in mind

the crucial importance of digital information security and credibility, strong

measures have to be taken in order to prevent the information manipula-

tion and to provide authentication of distributed multimedia for the efficient

communication and information storage.

Forensics is the field which investigates cases of tampering and crime.

Multimedia forensics is one of its branches, which has the important role in

investigation of information security and which acts as a key technology of

digital evidence authentication [7]. Its domain ranges from the investigation

to the recovery of damage caused intentionally or unintentionally to the

parent information [8,9]. It is one of the cornerstones to accumulate and fetch

data regarding criminal activities [10], content manipulation and security

breaches, as well as the sharing of tampered data. Moreover, it is important

to note that multimedia forensics sometimes faces the problem of information

manipulation in such high rates that it is very difficult to distinguish the

original content from the tampered or fake one. Having the information as

dynamic variable, it becomes very hard to investigate it in the minimum

time possible.

Forensics does not operate and gain the results on their own. The in-

vestigation procedures follow certain codes and links to identify the initial

information and separate it from the mixed one. Statistical analysis is often

conducted, due to the valuable results it can give in the process of detection

of data alternation. Authentication of the content involves tracing of spe-

cific links, logos, ambience lighting, or any sort of clue which was present

in the original content. This process can also include several types of in-
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formation or data preservation. Most common ones are digital watermarks,

data information console, copyright registration and trademark registration.

Previously listed techniques are used in the field of multimedia forensics as

the basis for further analysis. Information stored around the base points is

then accumulated, in order to diagnose manipulation of the images, videos

or other forms of multimedia content.

This thesis focuses on source identification procedure used in multimedia

forensics, taking into account the specifics of today’s portable devices and

popular social media platforms.

The thesis is organized as follows: Chapter 2 describes the prerequisites

for source identification process. Multimedia forensics and its tasks are pre-

sented, as well as characteristics of HDR (High Dynamic Range) multimedia,

which is of a special interest for the conducted research. In order to help

understanding the processes behind the multimedia forensics algorithms per-

formed on images and videos, the process of their formation is explained, as

well as the impacts of camera movements on the obtained multimedia files.

Chapter 3 provides literature review, focusing on the existing algorithms for

forgery detection and source identification, as well as on the existing image

and video datasets, which are of a special importance for any kind of mul-

timedia forensics analysis. PRNU-based approach in source identification is

described in Chapter 4, while Chapter 5 presents MOSES mobile application

and its initial video dataset, as well as the PRNU-based source identification

experiments conducted on the mentioned collection of videos. Chapter 6

presents a novel VISION dataset of images and videos, which are used for

source pattern noise fingerprints comparison. Similarly, Chapter 7 presents

PRNU-based source identification over a novel dataset of HDR images and

analyzes the obtained results. Finally, Chapter 8 gives the conclusion and

guidance for further research on the topics engaged in this thesis.

1.1 The objective

This thesis aims to investigate the results of multimedia source identification

in the challenging conditions caused by rapid technology development and

popularity of social media platforms. While technological progress brought

a wide range of options for capturing images and recording videos, thus in-

troducing difficulties in content originality and authenticity detection, social

media platforms enabled rapid sharing of those multimedia files. Both of
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the processes leave their marks on the original content, making it possible

to investigate if the forgeries or malversations occurred.

As the current state-of-the-art literature does not provide a large number

of multimedia files acquired by modern portable devices, the first problem

this thesis copes with is up-to-date, large enough dataset formation. Con-

sidering that modern devices introduced differences in the capturing and

recording processes, as well as novel possibilities for producing visually more

realistic and appealing multimedia, suitable dataset creation was necessary

for further multimedia forensics investigations.

Not only complexity of multimedia files introduces difficulties for mul-

timedia forensics, but also the files exchange, due to different compression

levels, algorithms and number of compression times performed. This became

a burning problem, since social media platforms reached a popularity they

have today. Due to the very easy multimedia sharing, it became of a huge im-

portance to check multimedia content’s originality. As source identification

is one of the possibilities to perform that, this thesis focuses on investigating

the impacts of possible obstacles introduced by modern multimedia on the

well-known source identification algorithms.

1.2 Contributions

During the research work for this thesis, three novel datasets were intro-

duced for the purposes of carrying out multimedia forensics algorithms for

source identification and forgery detection. Various experiments were con-

ducted using the introduced datasets, thus providing valuable results of the

well-known source identification algorithms executed on multimedia files ac-

quired by modern smartphone devices. Differences between standard SDR

(Standard Dynamic Range) multimedia and its more complex HDR (High

Dynamic Range) counterpart were specially considered during the analysis,

as well as the problems occurring on the multimedia files transferred through

social media platforms.

The first contribution is MOSES mobile application. It was developed

for the purposes of video recording and storing, hence producing up-to-date

video dataset, including a large variety of contents acquired by a wide range

of smartphone devices. Application offers choosing the capturing motion

and scenario type before recording, and stores the information about the

record and source device afterwards. The initial dataset was formed using
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the MOSES application, in order to test its usage, as well as to proceed

the multimedia forensics algorithms and investigate their results. Dataset is

then expanded by exchanging a number of original videos through social me-

dia platform (i.e. by uploading to and downloading from YouTube), which

resulted in a total of 1,209 SDR videos. By including both original and

exchanged files in the dataset, testing the influence of an introduced com-

pression and other possible modifications was enabled. PRNU-based source

identification was conducted on this dataset and obtained results have shown

significant differences between original and exchanged videos. Therefore, the

research conducted in this thesis can serve as a starting point for further in-

vestigation of impact of video exchange through social media platforms on

the original file. Moreover, MOSES shows a potential of becoming one of

the largest video datasets, due to its world-wide availability and the idea of

easy expandability. Since it enables anyone with the installed mobile appli-

cation to upload their video, not only the database can be expanded, but

the information about devices can also be obtained. This can help in coping

with the problem of unknown devices.

VISION is the second created dataset, which includes both SDR and

HDR images and videos. The number of images contained is 34,427, while

the number of videos is 1,914. Unlike the first introduced dataset, which

contains only videos, VISION provides combination of both types of multi-

media files in SDR and HDR formats, thus providing the ability to investigate

source identification based on different types of multimedia. Furthermore,

researches outside of the field of multimedia forensics can be conducted using

VISION dataset. For example, differences between image and video creation

using the same camera can be investigated for a large set of modern smart-

phone devices. The focus of this thesis was on investigation in terms of mul-

timedia forensics, specifically PRNU-based source identification, differences

in PRNU estimates between different types of multimedia files and impact of

social media exchange on images and videos contained in VISION. Storing

the same information about the multimedia files and their acquiring devices,

VISION is MOSES-compatible dataset and can therefore be extended with

videos and frames (images) obtained by MOSES in the future.

Finally, the third introduced dataset consists of total of 5,415 HDR

and SDR images and thus represents one of the largest currently available

datasets focusing on HDR images. This dataset was formed using variety

models of modern smartphone devices. Using the introduced dataset, HDR
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analysis and multimedia forensics researches can be conducted taking into

account device specifications such as resolution, operating system, camera

movements, etc. All the previously mentioned parameters can affect the final

results and there is a need for investigation of their influences. This thesis

provides an analysis of PRNU-based source identification, and confirms that

camera movements and device properties have a significant impact on iden-

tifying the acquiring device.
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Chapter 2

Image and video source

identification prerequisites

The aim of this chapter is to describe the processes that lay un-

derneath the problem of image and video source identification.

Tasks of digital forensics and its branches are described in the

first part of the chapter. Characteristics of High Dynamic Range

images are presented afterwards. Finally, principles of multime-

dia content creation using camera devices and impact of camera

movements on the obtained multimedia are explained in the last

two sections of the chapter.

2.1 Introduction

Forensic sciences can be divided by their domain of evidence, which is used

in further analysis. Since we are living in an analog world, classical analog

forensics explores physical evidences, while digital forensics traces digital

ones [11]. Digital evidences appear to be abstract to the individuals outside

the branches related to computer sciences, in contrast to physical evidences,

which are usually intuitive. Underneath the visible and audible content,

digital evidence is written, using binary system, in the form of bit sequences,

which can contain a lot more information than it can be seen or heard. This

sets a difficult task for digital forensic sciences, which analyze all the aspects

of complex digital information.

In the past, due to less exposure and interference, storage and security of

9
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the information were comfortable and less hectic. Before digital revolution,

analog evidences were the only ones that could be endangered. Numerous

of them are still thought to be in their original shape and structure, while

minority is considered as being tampered. Authentic and pure information

maintenance is the reason humans have diagnosed the true essence of life,

universe, religions, social ethics, living creatures, etc. Therefore, analog

forensics has the important task to investigate the physical evidences in order

to provide the trustworthy assessment of information authenticity. There

are two main principles used in this field of forensics: divisibility of matter

and exchange principle [12]. Divisibility of matter implies that all parts

of the same object remain having the same characteristics as the object

as a whole. Exchange principle refers to the fact that when an object is

transferred between individuals, each of them can leave some mark on it,

such as fingerprint, clothing fiber, etc. However, digital forensics is much

more complex and it has been divided to a number of branches in order to

cope with the burning issue of digital evidence investigation.

Digital revolution brought many advantages, but also provided possibil-

ity to easily perform harmful actions. Information and media manipulation

has become the greatest threat for security and storage of the original infor-

mation. Possible reason of this chaos is the ability of each individual to store,

analyze and republish information very quickly and easily. Cheap and af-

fordable devices for information recording and storage, which are widespread

and easily accessible nowadays, have largely contributed to this occurrence.

This has posed threats to information security and media credibility like

never before. As a consequence, the process of proving the originality of

any information has become very painstaking and the number of verification

points have become minimized. Digital forensics deals with this situation

and analyzes available digital evidences in order to prove their authenticity

or alteration.

The main branches of digital forensic sciences are [12]:

• computer forensics,

• mobile device forensics,

• database forensics,

• network forensics,

• multimedia forensics.

Computer forensics is often employed for piracy detection, as well as in

investigation of child pornography and in the process of tracing the source
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computer that contains controversial files which can lead to the person who

committed the crime. This process usually includes isolating the suspect’s

computer or laptop, searching through the files, hidden content and web

history, and making a copy of its hard disk to perform more complex ac-

tions which can reveal the contentious content and participation in criminal

activities.

Similarly, mobile device forensics is a branch of digital forensic science,

which deals with the problem of fraud detection by investigating the infor-

mation obtained using mobile devices. Besides from the phone call logs, SMS

(Short Message Service) messages, instant messaging logs, photographs, tex-

tual, audio and video files, mobile devices can offer GPS (Global Positioning

System) tracks, which can be of a high importance in case of kidnapping or

a mobile device theft.

Database forensics has a different approach to frauds detection in compar-

ison to the previously two described digital forensics branches. It analyzes

database properties, i.e. the data that gives more information about the

database, or so-called metadata. Using this information, it can be detected

when did some change, which is a possible fraud, occur.

Network attacks became very frequent since the Internet emerged. The

task of network forensics is to analyze and detect frauds occurred in both lo-

cal and external (Internet) networks. For those purposes, traffic capturing is

performed and the information captured in a form of small units called pack-

ets is investigated afterwards. Network security is of a high importance for

every individual, because its disruption can lead to files hijacking and iden-

tity theft. In case of companies and especially banks, endangered network

security leads to huge financial losses.

Finally, multimedia forensics analyzes multimedia files, such as images,

audios and videos, in order to check their authenticity. The Thesis focuses

on this branch of digital forensics, which is thus explained in more detail in

the following chapter.

2.2 Multimedia forensics

Multimedia forensics is a branch of digital forensic sciences which is employed

when authenticity of multimedia file is questioned [13]. It gathers various

data points upon images, audio and video files to correlate their existence

and behavior. This approach benefits the probability of assessing tampering
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performed to the investigated information.

All the approaches used in multimedia forensics can be divided into two

groups, based on the information they obtain, having a digital evidence.

Those are active and passive approaches [14]. Active ones cope with the

information added to a multimedia file, such as digital watermark, or digi-

tal signature. Watermarks are inserted by some camera devices on all the

photographs and videos recorded by that device. Digital signature is, on the

other hand, used in digital forms of textual documents. In contrast to active

approaches, passive ones do not possess an active information, and they are

based on the assumption that there is some kind of pattern included in all

the multimedia files obtained by the same device [15]. These approaches are

presented in more detail in the remainder of this section.

2.2.1 Active approaches

Inserting the additional information into original multimedia content is a

helpful technique in source identification and content authentication. The

added information is considered as active and multimedia forensics approach

for the analysis conduction based on it is therefore called active approach.

The most common form of active information in multimedia files are digital

watermarks [16] and digital signatures [17, 18].

Digital watermark refers to a digital code induced in the file before its

delivering. For example, digital cameras, whose manufacturers included wa-

termarking procedure in the photograph or video creation, add a specific

digital code to multimedia content before it gets to the final user [16]. On

the other hand, digital signature can be added to a textual document which

was previously created and available to the user [19]. By adding digital

signature to a multimedia file, the file is secured for sharing. In the first

given example, a special hardware is needed, while the second one requires

post-processing, which explains the term active approach.

Digital signature is an external digital code, which is generated from the

original content and usually encrypted to produce hash values [20]. During

the process of its generation, user’s private key is required for association of

the original content with the signature. Once a digitally signed multimedia

file is received by other user, he can verify if the content is changed by using

sender’s public key. This key in combination to the received content enables

creating another hash code. If the two created hash codes are identical,

multimedia content was not altered. On the other side, difference in only
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one bit of the two generated hash codes signalizes data alteration.

Digital watermarks and signatures are commonly added for copyright pro-

tection, but they can also serve as an element of fraud detection, content au-

thentication or source identification. Watermarks are sometimes not visible

to the eye, but they can be extracted by image or video post-processing [16].

Once the watermark is extracted, it can be compared to the original one

that was added in the process of multimedia file creation, similarly as it

was described in case of digital signatures. Approaches based on water-

marking and digital signatures are of a high importance for contents shared

through the Internet without owner’s permission. Movies are often copied

and shared among the Internet users, who download them without paying

any money [21]. Copyrights of the owner are thus violated and he has right

to sue the user for illegally handling his file. Digital watermarks and signa-

tures can serve as an evidence on the court. This applies not only to the

video files, but also to scientific papers, books [22], images [23], or any other

protected file [24]. Considering previous statements, it becomes clear that

watermarks resistance to any kind of manipulations is of a high importance.

Manipulations do not only refer to the frauds and malicious actions, but

also to compression algorithms used on social media platforms, as well as in

other programs used on Internet, that include uploading and/or downloading

options.

Although active multimedia forensic approach represent an elegant way of

proving who is the content owner and did any malicious manipulation occur,

the major drawback are high requirements. As it is mentioned earlier, either

more complex hardware, or post-processing is needed in order to embed a

watermark in the multimedia content.

It is already described in short in this section how digital signatures and

watermarks can be extracted. However, in order to understand complexity of

active multimedia forensics tasks, it is important to get to know the princi-

ples of content hiding (steganography [25]) and its revelation (steganalysis).

Therefore, the following subsection describes how digital watermarks, signa-

tures, and other hidden data can be extracted from the analyzed content.

Steganalysis - retrieving hidden files/data

Steganography is a technique of hiding information in a visual content and, as

such, is the subject of analysis in the field of multimedia forensics. Stegano-

graphic content may become visible in different ways and the aim of ste-
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ganalysis is to discover that hidden, imprinted content. A file may require

a key, stegokey, or a password to retrieve the secret information, and it is

available only to the intended recipients.

Techniques such as watermarking and digital signatures, as well as cover

channels and secret communication channels, are used to retain files secrecy.

Steganalysis enables forensic technicians to detect those kind of hidden data

embedded in multimedia files [26–30]. For example, techniques such as En-

Case and Ilook Investigator [31] can help in identification of hidden con-

tent in storage devices which contain suspicious empty space. On the other

hand, hidden messages in high-resolution digital images can be detected us-

ing higher-order magnitude and phase image statistics [32]. As they are

commonly employed in the field of multimedia forensics in general, Support

Vector Machines (SVM) and Markov chains can also be used in steganalysis.

While the empirical transition matrices of Markov chain can serve as image

features, SVM can be utilized as a classifier in steganalysis procedure per-

formed on thresholded prediction-error image [33]. This method has shown

to be able to detect more than 85% of the hidden content. Prediction-error

images are also used in combination with neural networks and wavelet de-

composition [34], in order to achieve the same result. Similarly, steganalysis

can be performed on digital video sequences using the same method [35], as

well as performing inter-frame collusion technique, that exploits the temporal

statistical visibility of a hidden message [36,37].

However, more complex steganographic techniques can even prevent recog-

nition of the existence of hidden files [38,39], putting a difficult task ahead of

steganalysis and multimedia forensics itself. Recent studies have developed

powerful steganographic algorithms resistant to the well-known staganalytic

attacks, as well as the ones used on HDR images [40–42], which are of a spe-

cial interest for this research. Having that in mind, it is very important to

keep the steganalysis methods up-to-date in order to cope with the problem

of altered data.

2.2.2 Passive approaches

In contrast to the active approaches in multimedia forensics, passive ones

do not require specific hardware, nor post-processing in order to add digital

signature to a multimedia file. Passive approaches are based on the assump-

tion that original content contains an inherent pattern introduced in the

very process of multimedia file formation. According to this assumption, all
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the originals acquired by the same device should contain the same pattern.

Deviation from the pattern leads to the conclusion that the content has been

changed.

Two main tasks of passive multimedia forensics are source identification

and tampering detection. Besides from the mentioned, passive approaches

are commonly used for discriminating between computer generated and real-

world generated multimedia content.

Process of source identification is conducted relying on the assumption

that all files obtained by the same device include a pattern specific for that

device. That pattern consists of a noise introduced in the multimedia file

formation process and is referred to as fingerprint in literature, because it

uniquely identifies device, just like fingerprint uniquely identifies human be-

ings. Source identification is of a special interest for this thesis, and its

concepts, including fingerprint estimation, are described in detail in the fol-

lowing sections.

Forgery and tampering detection are very hard processes, considering

that alterations are often invisible to the eye and can sometimes be hard to

detect even by employing post-processing algorithms. In order to understand

their complexity, wider description is provided in the following subsection.

It is worth noting that techniques used in forgery detection and in source

identification cannot be distinctively separated. Some of the algorithms de-

veloped for the purposes of forgery detection can successfully identify the

source device, and vice versa.

Forgery detection

Forgery detection enables confirmation of multimedia content authentic-

ity [43]. It largely uses techniques that can detect inconsistencies in ac-

quisition and coding fingerprints, or a total absence of acquisition and cod-

ing fingerprints. The latter is a sure way of confirming that the content of

interest had undergone tampering.

Several techniques can be employed during the forgery detection. Meta

tag data can reveal a plethora of information like source device, editing

software, time of capturing or recording, time of editing (if any), and geo

tags can identify the exact location where image or video was recorded.

However, both meta tag and geo tag data can be tampered, and hence may

provide false leads to the investigators.

Image and video processing can contain a large number of actions which
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result in changing an image or a frame, or obtaining and analyzing the

information it contains. As videos are composed of frames, which are nothing

but images themselves, all the processes that can be conducted on an image

can be performed on a video, as well. Therefore, when any sort of image

processing is mentioned in the remainder of this paper, it is important to

notice that it also applies to the video frames.

Currently operating tools for image forgery detection can be classified into

five major classes [44]:

• pixel-based techniques,

• format-based techniques,

• camera-based techniques,

• physically-based techniques,

• geometric-based techniques.

All the previously mentioned techniques are applied in the specific cir-

cumstances and they have a main contribution in the forensics analysis of

the information.

Digital images and video frames are represented as a set of points, called

pixels, with corresponding values that describe the color of that pixel. There-

fore, pixels are considered as elementary units for these multimedia files.

Pixel-based techniques investigate statistical behavior developed at that el-

ementary level of images or videos.

Malicious image pixel-level editing is often performed by using cloning

tools which enable extraction of one part of an image and cloning it to some

other location, in order to hide the original content. By using statistical

analysis and finding correlation between different picture elements, multi-

media forensics can cope with these kind of frauds, but it is not always easy

to detect them. An example of cloning forgery is shown in Fig. 2.1.

The other common pixel-level editing method is inserting fragments to an

image from the same or some other source, or combining two or more images,

which is usually called splicing. Splicing often requires resizing, rotation, or

stretching a part of an image, in order to produce realistic composite image.

This process implies that the originals have to be resampled, introducing

specific periodic correlation that is unlikely to occur naturally [44], which

helps in detection of these kind of frauds. Techniques such as higher-order

Fourier statistics and artificial intelligence can be employed for coping with

this problem. While detection of disruption of higher-order Fourier statistics

implies that splicing has occurred, techniques employing artificial intelligence
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Figure 2.1: Example of cloning. Forged image (left) is created by hiding

parts of the original content (right) [1].

Figure 2.2: Example of splicing. Original image is shown on the left and

spliced image on the right [2].

enable machines to learn how visual data may appear or change in the near

future, and hence have a predictive element inbuilt, which is used for fraud

detection. An example of splicing is given in Fig. 2.2.

Format-based techniques for forgery detection are relying on the format

of multimedia file. In case of images, the most commonly used format is

JPEG, while MPEG format is used for storing video files by most of the

camera devices. Considering that both JPEG and MPEG formats use lossy

compression, manufacturers typically configure their devices differently in

order to balance compression and quality of the resulting files [44]. This

fact can help not only in forgery detection, but can also serve for source

identification purposes [45]. Furthermore, considering JPEG and MPEG
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popularity, there is a high probability that both original and forged multi-

media files will be saved in the same format. Therefore, forged files will be

double compressed, which in case of JPEG and MPEG formats means they

will irretrievably lose on their quality twice, which is the fact multimedia

forensics uses in the forgery investigation.

Camera-based tools allow highlighting camera module’s characteristics,

artificial artifacts in the parent information, as well as contribution of specific

camera lenses and sensors. In order to understand these techniques, it is

important to know how cameras work. Detailed explanation is therefore

given in Section 2.3. All hardware parts included in the process, such as color

filter arrays and sensors, can leave their mark on a produced multimedia file

at some stage of image or video processing, before the result gets to the user

capturing an image or recording a video. Thanks to these marks, source

identification can be performed.

Physically-based procedures allow uplifting of physical characteristic of

an image or video by interlinking physical parameters such as light, lenses

and camera unit. As it is hard to balance the light from multiple different

images, these procedures are especially focused on investigation of lightning

characteristics in potentially forged image or video.

Finally, geometric-based methods calculate geometric perspective of the

parent information related to the positions and locations relative to the in-

formation recording device. Projection of the camera center onto the image

plane is called principal point [45] and it is the most interesting subject of

analysis in geometric-based forgery detection. It is shown that translation of

an object in the image causes a proportional principal point movement [46].

Comparing the estimated position of principal point to the calculated one,

tampering can be detected.

Previously mentioned editing processes can be very complicated and per-

formed at a high level, using less known and unexplored techniques, which

require higher level of investigation in order to determine the content’s orig-

inality. Latest developments in technology have brought not only visual

inputs, but also thermal and other sensory data into the gamut of what

computer vision can analyze [47]. However, multimedia forensic science con-

tinues to develop and copes with the newly introduced problems.
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2.3 Digital image formation

In order to understand how it is possible to perform source identification

based on some features extracted from an image, it is important to under-

stand the way digital capturing devices work. Although devices themselves

can have different purposes and different implementations, some processes

can be more or less generalized in case of image capturing, regardless of the

manufacturer and device type (digital camera, mobile phone, tablet, or any

other device with a capturing option).

Block diagram of a typical digital camera is given in Fig. 2.3. All the

included components can be divided into three groups: optical and mechani-

cal subsystem, an image sensor and an electronic subsystem [3]. The process

starts when the light passes through the camera lenses. It travels further

through shutter and diaphragm, anti-aliasing filters and color filter arrays,

before reaching the most important component for digital image creation -

imaging sensor or image sensor. Shutter and diaphragm are in charge for

making the exposure by briefly uncovering the camera aperture. While anti-

aliasing filters are optical low-pass filters used in order to prevent frequency

components overlapping, color filter arrays filter out some spectrum ranges

to provide that each pixel detects only one color. That way, the photons are

being prepared for the imaging sensor, which is sensitive only to monochro-

matic light. Imaging sensor then collects filtered photons and converts them

into voltages. The sensor’s output is analog signal, which needs to be pro-

cessed by analog pre-processor, which contains sample-and-hold circuits for

sampling and quantization, and performs operations such as color separa-

tion, Automatic Gain Control (AGC), tone adjustment, etc. [3]. Processed

signal is finally converted to its digital counterpart using Analog-to-Digital

(A/D) converter. For the purpose of getting the image in color, signal is

demosaiced or interpolated by digital signal processors (DSP) or micropro-

cessors. These components can also scale the signal to achieve proper white

balance [48].

Most of the capturing and recording devices include display, as well as

memory card socket and connectors. These components can be connected to

DSP through a data bus. Apart from the mentioned camera elements, block

diagram shown in Fig. 2.3 contains a system controller, which is in charge

of controlling the camera operations, such as auto-focus and automatic ex-

posure.

Mathematical formation of the previously described procedure before de-
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Figure 2.3: Block diagram of a typical digital camera [3].

mosaicking process can be described by the relation (2.1), which applies to

each pixel of an image. The equation represents a simplified output model of

the image sensor. Symbol I in the equation denotes the quantized luminance

value at analyzed pixel, K is the PRNU (Photo Response Non Uniformity)

factor, Y represents the incident light intensity, g is the channel color gain

factor, γ stands for gamma-correction factor, Θq is quantization noise, while

Λ includes combination of other noise sources. PRNU factor K is the most

interesting element for the analysis conducted in this research and will be

further explained in one of the following sections. At this place, it is only

important to note that it is a noise-like signal responsible for the finger-

print [49], which enables source identification.

I = gγ × [(1 +K)Y + Λ]
γ

+ Θq (2.1)

By performing some basic mathematical operations, the sensor output

model described by relation (2.1), can be simplified in order to calculate the

factor K. This factor can be used in further analysis for source identification.

Procedure of its calculation is described in Chapter 4.
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2.4 HDR multimedia characteristics

Images are digitally represented as a collection of tiny dots, colored and

arranged in a pattern of pixels, that a computer has to understand and

envisage as a concrete and recognizable object within the backdrop of space.

This is what a basic image recognition software does [50]. However, owing

to the complexity of digital image and video reproduction, it is likely that

an image (which can also be a video frame) itself captures only a smaller

percentage of the actual data that exists from the object.

Images are likely to be degraded, as far as the presentation of color, de-

tailing or texture is concerned. With advances in technology, it is possible to

get HDR (High Dynamic Range) images, which give a closer representation

of the natural object. Nowadays, a large number of images and videos are

captured/recorded and processed using HDR technology. This leads to the

problem of forensic detection of such images and tracing history of digital

image.

Majority of today’s multimedia devices enable HDR option when user

is capturing a photograph or recording a video. The abbreviation HDR,

which stands for High Dynamic Range, shortly describes its difference in

comparison to standard profile for capturing and recording. HDR introduces

wider range of luminance in multimedia content, providing more realistic

captures. While standard capturing profile, better known as SDR (Standard

Dynamic Range), does not allow big luminance adjustments and is therefore

sensitive in cases of bad lighting conditions and facing the source of light,

HDR profile copes with these problems and simulates the way human’s visual

system adjusts to these kind of lighting changes.

One of the examples of adjustment that HDR image introduces in case

when camera device is facing the source of light is given in Fig. 2.4. In case

of SDR images captured in the same conditions, results cannot reach the

quality of HDR ones, even with brightness and contrast adjustment.

In digital world, images and videos are represented using three color

channels: red, green and blue. Each of the channels normally employs eight

bits for color representation, having 28 = 256 possibilities for channel value.

Combination of values of all the channels results in total of 1.6 million dif-

ferent colors that can be represented using SDR profile, which seems like

an enormously big number. However, our visual system can perceive much

larger number of colors, and HDR profile provides that in multimedia files

by using floating point representation of values, instead of integers used in
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Figure 2.4: Example of SDR (left) and HDR (right) captures taken while

camera was facing light source and capturing an object against it [4].

8-bit SDR channels. Each pixel in an image or a video frame is represented

as 16-bit or 32-bit floating number in HDR representation.

In order to see the original HDR image, special devices are needed. There-

fore, it is worth noting that only a small number of devices have the ability

of showing original HDR content and that the printed HDR image always

possesses reduced dynamic range [4]. This reduction is performed by specific

algorithms and is often referred to as tone-mapping in literature.

Creation of HDR images can be performed by employing one of the following

methods:

• rendering algorithms and other digital graphics techniques,

• employing conventional SDR cameras by capturing a static scene mul-

tiple times, with varying exposure time, and combining the captures

afterwards [4].

Most of the capturing devices, especially mobile phones and tablets, create

HDR images using the latter method. It is worth noting that one HDR

image represents an HDR frame in a video, and therefore the previously de-

scribed process applies to the videos, as well. The only difference is in higher

requirements for the execution time of one HDR image creation when HDR

videos are recorded, for the purposes of real-time recording and processing.

Due to the need of combining the captures in order to obtain one HDR

image, it is important to avoid any camera movements between different

shots. If a camera device is not still, the final result will contain visible parts

of the images that were combined and displaced in relation to the other.
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2.5 Impact of camera movements on the ob-

tained multimedia files

While capturing images of a landscape at night, most people faced a problem

of getting blurry images as a result. This problem is caused by shaking

camera device in the moment of capturing and is known as camera shake.

It occurs even in the daylight images, but is less noticeable to a human eye

in case of good lighting conditions. Images captured at night or in case of

bad indoor lighting are vulnerable to motion blur because of the necessity

of longer exposure times [51]. Taking into account that HDR images are

mostly produced as a combination of SDR images captured with variable

exposure times, it is natural to assume that they are more vulnerable to

the artifacts than their standard SDR counterparts. The occurred errors

accumulate when combining SDR images, which makes the post-processing

procedures for blur suppression more complex. Therefore, the information

about camera movements is valuable in the process of source identification

using HDR images.

Camera shake can be modeled as a blur kernel, describing the camera

motion during exposure, convolved with the image intensities [52]. A large

number of post-processing algorithms for blur reduction have been created,

but in most cases, it is important for the user to capture the image without

a need for post-processing. Camera shake can be prevented by using a tri-

pod when employing conventional digital cameras, but as the light-weighted

mobile devices with high camera resolutions are available at relatively small

price nowadays, tripod is not a common equipment in case of images cap-

tured on daily basis. Moreover, tripod is not a guarantee for an artifact-free

image. Even pressing the capturing button or exposure time change causes

camera movements which can produce visible blurring effect [53].

Blur is a result of pixel offsets occurred in the process of image formation

in camera device, destroying details in the capture. It is worth noting that

offset can be produced not only in case of camera movements, but also in

case of moving the object that is being captured. The latter often produces

so-called ghost effect, because of the shades which form a ghost-alike object.

Previously mentioned side-effects of image capturing and video recording

can seriously endanger the processes carried out in multimedia forensics.

Therefore, it is important to examine their influence when the analysis in

terms of source identification or forgery detection is conducted.
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Chapter 3

Literature review

This chapter aims to discuss state-of-the-art on algorithms em-

ployed in multimedia forensics, specific tools and technologies

used in source identification and forgery detection, as well as their

applications and future trends that can be expected in both source

identification and forgery detection processes. The last section of

the chapter engages in the analysis of available datasets of images

and videos that could be used in multimedia forensics.

3.1 Forgery detection algorithms

Multimedia forensic analysts recently started to study statistical properties

of pixels, in order to improve currently available methods and algorithms

used for forgery detection. One of the results of such researches is design of

contrast enhancement detectors using pixel-graylevel histogram’s peak-gap

artifacts introduced in the process of forgery detection. Unfortunately, this

approach did not yield accurate results. However, a recent research [54] has

introduced new variants of the contrast enhancement operators that enable

better detection.

In contrast to the previously mentioned pixel-based method, format-

based techniques can use quantization tables, employed in JPEG compres-

sion, for detection of image tampering [55]. One of them is forgery detection

software that uses nine Benford features extracted from quantized Discrete

Cosine Transform (DCT) coefficients of original and morphed images, both

JPEG compressed. Features are afterwards fitted to a logarithmic curve [56].

25
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This enables tracing the changes that were imposed by morphing a fake im-

age, and even a single parameter of the logarithmic curve is sufficient to find

a difference between the original and morphed image. This software is ex-

pected to find extensive usage in security agencies, where facial recognition

is based on photo IDs, and may be compromised if the used IDs include

tampered images.

A number of scientific papers have focused on physically-based multi-

media forensics approach, using light detection methods to identify images

that have been used in tampering process. The example of this approach

are methods that detect light sources within images and can predict how an

image may appear when observed in different viewing environments. This

technology enables isolating pixel and identifying a subset of pixels associ-

ated with the same light source and then configuring a pre-determined pa-

rameter to generate the color that a reproduced image should posses. This,

in turn, enables identification of portions of image that have been faked or

morphed [57].

Malicious alteration of images is mostly performed only in some regions

(added or removed objects), which leaves a digital mark on an image, even

if it cannot be noticed with a bare eye. Forgery localization is shown to be

feasible using DCT coefficients [58–61], DWT (Discrete Wavelet Transfor-

mation) coefficients [62] and SVD (Singular Value Decomposition) [63], as

well as image matching techniques, such as SIFT (Scale-Invariant Feature

Transform) [64] and SURF (Speeded Up Robust Features) [65] descriptors.

Numerous algorithms were developed for these purposes, and they keep up

being improved by the researchers. However, all of them were created mainly

for standard SDR images.

By generating a 3D model using some digital image and juxtaposing it on

Google map, it is possible to verify if the image in question is the original and

authentic one, or it is fake. Using the backdrop of landscape, and considering

the time of the day, as well as weather conditions, it is possible to determine

if an image was taken at the time claimed and by the source claimed. 3D

modelling technology enables an accurate assessment of the genesis of an

image and also helps in differentiating between the original and tampered

version [66].

In another attempt to identify recaptured images and differentiate them

from the original ones, researchers Yin & Fang [67] found that recaptured

images posses changed statistics, which can be characterized using Markov
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process-based features. These features were extracted using DCT coefficient

arrays. SVM (Support Vector Machines) training was then employed in order

to identify differences between a dataset containing 3,994 recaptured images

and to compare them against a similar number of originals.

A large number of algorithms employed in image forensics uses a single

image in the analysis of possible frauds. However, a group of images can be

analyzed [68] to explore their mutual dependencies which can provide a valu-

able information about the image history. This approach introduced more

similarity to image and video forensics, considering the analysis is usually

performed on a set of frames in case of video forensics. While image forg-

eries usually occur on a specific image region, video tampering is commonly

performed on a frame level, either by removing the existing or introducing

new frames.

Detection of tampering in video frames is even more complicated, as

duplication is cumbersome and too time-consuming to justify its usage. Re-

searchers Wang and Farid [69] invented an algorithm that made it time-

efficient to detect duplicated frames, as well as duplicated regions within

video frames. Detection of duplicated regions that is suggested by the men-

tioned authors was based on the work of Popescu and Farid [70]. Previous

researches of the same group of authors resulted in development of tech-

niques that depended on assessing MPEG (Moving Picture Experts Group)

compression [71] and using interlaced and de-interlaced videos [69].

Besides from the above mentioned algorithms, there are numerous other

known approaches for detection of frame insertion or deletion. Some of them

are employing machine learning techniques for feature-based detection [72],

computing the total motion residual of video frame [73], using the fact that

inter-frame forgery will disturb the optical flow consistency [74] and detecting

MCEA (Motion-Compensated Edge Artifact) [75].

Despite the large number of algorithms developed for image and video

forensics purposes, they keep up being improved by the research community

and new approaches are frequently presented in the literature. However,

majority of them are created mainly for standard SDR images and videos,

which leaves the space for further investigation, especially considering the

powerful options and properties of today’s smartphone devices and other

portable devices.
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3.2 Source identification algorithms

As it was stated in one of the previous sections, source identification and

forgery detection principles can overlap, thus causing that both processes

can be performed using a single algorithm, or at least relying on the same

principle. Authors in [76] have shown that format-based approach used in

forgery detection can also serve as source identifier. By relying on the fact

that manufacturers usually develop their own algorithms for JPEG compres-

sion, it is demonstrated in [76] that choice of JPEG quantization table acts

as an effective discriminator between model series, with a high level of dif-

ferentiation. Understanding this procedure requires understanding forgery

possibilities and principles followed in order to detect them. They are there-

fore described in Sections 2.2.2 and 3.1.

In the recent times, camera model identification based on captured im-

age or recorded video became a standard procedure in multimedia foren-

sics. However, techniques that can actually identify the exact camera device

that made the capture/recording are still being explored. Most of the to-

day’s source identification techniques aim to identify the acquisition traces

from multimedia files. State-of-the-art tools available for multimedia foren-

sics analysis therefore focus on extracting the acquisition fingerprinting data

and comparing it with some pre-developed dataset of fingerprints that have

already traced genealogy to specific camera model or brand [77].

Researchers came to the conclusion that the source device, from which

HDR multimedia file originated, can be accurately determined by isolating

the fingerprint of the HDR-induced effects and running them through SVM

classifier [78]. As it is described in Section 2.3, each camera device and model

introduces its unique fingerprint through the lens, sensor and color filter

array. More specifically, each lens is unique and has certain characteristics

or aberrations, like the lateral chromatic aberration, which results in different

wavelengths of light to focus on different sections of the image plane [79].

This information can be used for the purposes of tracing to a specific camera

device.

Similarly, sensor related aberration, or noise, is unique to each camera

device as it is a result of some imperfections in the image sensor. These

imperfections create some differences between the scene and image captured

by the camera [80], leaving a unique mark. Moreover, each camera sensor

has a distinct radiometric response which is likely to be similar across the

same brand [8].
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Just like the camera sensor, color filter array contributes with its unique

mark as it enables interpolation of the color scheme in an image [81]. As

it was mentioned earlier, marks, better known as fingerprints, can be trace-

able to the exact camera device. Therefore, multimedia forensics algorithms

based on noise are of a special interest for this research. The ones based on

Photo-Response Non-Uniformity (PRNU) noise have shown the great suc-

cess in source identification and are widely used in practice. While authors

in [82–84] employed PRNU noise for source identification using images, video

source identification was performed following the same principle in [85, 86].

Characteristics of PRNU, as well as the process of PRNU-based source iden-

tification are described in more detail in Chapter 4.

Source identification can be automatized using deep learning methodol-

ogy, which is a very popular approach nowadays. In order to get reliable

results, deep learning algorithms require a large set of information about the

available devices. This fact implies that the list of known devices and their

features has to be frequently updated, so that the device can be correctly

identified. Otherwise, if source device is unknown, deep learning algorithm

can only detect a wrong device, whose features have the highest correla-

tion value with features of all the known devices. This problem is addressed

in [87], where the authors described a process of its overcoming by identifying

unknown camera models.

Learning features of source devices is conducted using convolutional neu-

ral networks, which is a complex computational model partially based on

human neural system and its functioning [88]. Features that are used in

learning process are the ones that are specific for a source device, mostly

artifacts produced during the image or video acquisition. This means that

deep learning methodology can be combined with PRNU-based source identi-

fication procedure, making it automatized. Authors in [88] have proved that

dividing an image into several patches can be useful for PRNU detection and

that deep learning methodology can result in highly reliable source identifi-

cation in this case. However, a drawback of this method is its computational

complexity and time needed for the algorithm execution.

Recent studies have shown to be able to detect and identify not only the

source capturing device, but also from which embedded camera the image

was captured [89]. Since both of the procedures can be performed with a

high accuracy, deep learning methodology employed for multimedia forensics

purposes is expected to be used even more in the future, improving currently
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existing source identification algorithms.

3.3 Data origin classification

Convolutional neural networks can be used not only for source identification

purposes, but also for data origin classification. In today’s world, where

social media has a great impact on society, it is of a huge importance to

be aware of the data origin and to distinguish if an image or a video was

downloaded or acquired by some user device. This information can be of a

crucial importance in court, when investigating digital evidences. Tracing

images back to their social network of origin is analyzed in [90, 91], where

the authors proposed methods based on convolutional neural networks to

determine whether an image originates from a social network, a messaging

application or directly from a photocamera. Features were extracted in the

image frequency domain and then used in the training phase of the process,

in order to identify the origin of the image among different social networks.

It was shown that this method is able to identify the social platform of

provenance.

Since PRNU-based techniques for source identification proved to be very

robust and accurate, researches came to an idea to use PRNU fingerprint

for origin social network detection [92], as well. It was demonstrated that

PRNU is diversely modulated by different social networks and that it can

therefore be adopted as a feature for training convolutional neural network

and later detection of the social network of origin.

3.4 Image and video datasets overview

Several projects were undertaken, and several are in progress, to develop

databases of fully annotated images [93], which can act as an evaluation

point for forensic analysts. Most of these databases are available in the

public domain and they find extensive usage in forensic analysis. Researchers

Gloe and Böhme [94] have documented an image database consisting of over

14,000 images that were acquired using controlled situations which made

them traceable to 73 different types of digital camera devices. Database was

supplemented with additional information regarding specific noise pattern

of each camera device and model-specific JPEG (Joint Photographic Experts

Group) compression. This database, known as Dresden Image Database, can
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be used by researchers and analysts as a benchmark in identifying source

camera devices.

HMDB (The Human Motion DataBase) [95] contains total of 6,766 video

clips extracted from a wide range of sources. This database was introduced in

2011 for the purposes of action recognition and its robustness under various

conditions, such as camera motion, viewpoint, video quality and occlusion.

Taking into account that a large number of source devices were used, this

database can provide some valuable information about their characteristics

and serve for the purposes of source identification.

Unlike HMDB, SULFA (Surrey University Library for Forensic Analysis)

is a video dataset created for the purposes of multimedia forensics investiga-

tions, specifically localization of cloned regions. SULFA contains 150 videos

in low resolution (320×240) pixels, with the 10 seconds duration. The orig-

inal videos included in the dataset are acquired using three different cam-

corders, while forged videos were created using Adobe software. However,

technology has rapidly developed in the recent years and there is a need of

updating the video and image databases, in order to include more complex,

high-resolutioned multimedia content, provided by today’s devices.

While many SDR image and video datasets are accessible on-line and for

free, there is a small number of image datasets which contain HDR images

and videos, due to the complexity of their formation.

One of the most commonly used HDR image dataset dates from 2007 and

was created by Fairchild, under HDR Photographic Survey project [96]. The

other known datasets mostly include several different types of images and/or

videos, not focusing only on the HDR profile. The Fairchild’s dataset consists

of a total of 106 HDR images, but its shortage is lack of information about

camera calibration, as well as the fact that it is not up-to-date anymore, since

devices have changed rapidly in the past decade. Image properties have

become more complex, starting from the resolution, over camera zooming

and filtering options, to the number of bits used for color representation and

the procedure of image creation.

DEIMOS (DatabasE of Images: Open Source) database [93] was formed

more recently, in 2011, and it contains a large number of different types of

images and videos. At the very beginning, this database contained about 70

HDR images, but it allowed the expansion of this set. In 2015, Korshunov

et al. created a database of 20 HDR images for the purposes of testing

different types of compression methods and performing subjective quality
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assessment of compressed HDR images [97]. Funt et al. created a novel HDR

dataset containing images of 105 scenes [98], providing a larger number of

available images. However, they were all captured using one single device

model - Nikon D700 professional camera. As the images are mostly created

by smartphone devices nowadays, this research did not focus on professional

cameras identification, rather on more commonly used devices.

In 2015, database of 8,156 RAW images named RAISE (RAw ImageS

datasEt) [99] was developed to aid in multimedia forensics detection of fake

images. RAISE includes complete information on image sources and meta-

data, and allows a basic benchmark for analysts to match the images under

observation and arrive at their source of origination. It is also found useful

by researchers who aim to develop detection algorithms as it provides the

basic dataset of images that they can be useful for comparisons.

DML-HDR video database [100] was introduced in 2014, due to the lack of

representative HDR video dataset. DML-HDR consists of five HDR videos,

all captured by professional camera, capable of capturing HDR videos [101].

Stuttgart HDR Video Database [102] contains a slightly bigger number of

recordings, providing a total of 16 HDR videos showing different scenes. This

dataset was formed for the purposes of evaluation of temporal tone mapping

operators and HDR-displays.

Considering the complexity of HDR videos, it is understandable that

currently available datasets include only a small number of them. However,

for the purposes of carrying out the compatible research on video source

identification, a larger number of available HDR videos is needed.

Despite the existence of a number of HDR datasets, none of the previ-

ously mentioned ones was designed for the purposes of testing the possibility

of source identification, which requires a large number of images and videos,

employment of bigger number of capturing devices and some specific cap-

turing conditions, such as the good lighting, off-flash mode and existence of

flat surfaces. This fact has been a motivation for creating the novel datasets

described in the following chapters of this thesis.



Chapter 4

Multimedia forensics based on

sensor noise

Studies have shown that one of the most successful approaches in

source identification procedure is based on camera reference noise

extraction. This chapter aims to describe how can the camera be

identified using its own generated noise and to explain the further

procedure for source identification based on noise extraction.

4.1 Photo-Response Non-Uniformity noise

Each digital camera device or any other capturing device produces so-called

pattern noise. As the name suggests, it is a characteristic noise of each

image capturing sensor, which remains approximately the same on all the

photographs of the same scene captured using that sensor. Two types of

the pattern noise can be differed: Photo-Response Non-Uniformity (PRNU)

noise and Fixed Pattern Noise (FPN). The latter is also called dark cur-

rent noise, because it appears when sensor is not exposed to the light. In

contrast, PRNU is caused by sensor’s reaction to the light and it is a domi-

nant part of the sensor pattern noise. The major PRNU component is Pixel

Non-Uniformity (PNU) noise, which appears due to different sensitivity of

pixels to the light and it has much better resistance to image processing in

comparison to fixed pattern noise collected from the sensor [103]. The other

component contains all the low-frequency defects, caused by the usage of

zooming option, light refraction, etc.

33



34 Multimedia forensics based on sensor noise

In order to investigate the characteristics of PNU, as the main part of

PRNU noise, authors in [103] have conducted an experiment on a set of im-

ages of uniformly illuminated surface, captured by the same camera device.

Low frequency components were first filtered and images were averaged after-

wards, which has shown to reduce random noise and accumulate the sensor

pattern noise. Furthermore, the experiment has proved that PNU noise is

suppressed in very dark image areas, leaving FPN noise as a dominant part

of the pattern noise. While PNU noise is not preeminent in case of dark

areas, it cannot exist at all in saturated areas.

4.2 PRNU-based source identification

The first step in source identification using PRNU noise is estimation of

PRNU factor K. In order to make a good estimation, a large number of

images captured by the same digital capturing device is needed. The reason

for this requirement is better random noise suppression, which can increase

reliability of source identification conducted using PRNU method. In case of

video analysis, it is easier to obtain the required number of images, as each

video frame represents an image itself. However, if video recordings are not

available, a large image database of N images is needed, where N should

satisfy condition N > 50 [103]. Although improved PRNU estimators [49]

require a smaller number of images, empirical results available in literature

show that reliability is higher if the larger number N is employed. As it is

shown that the image averaging results in accumulated sensor pattern noise,

the idea is to use a large number of images and to compute their average in

order to get PRNU.

The best results can be obtained if the images are smooth and do not

contain many details. Flat surfaces, such as clear sky or uniformly illumi-

nated flat objects, are the most flattering image contents when it comes to

PRNU factor estimation.

As it is stated in Chapter 2, the adopted model for image camera acqui-

sition is represented by the equation (4.1).

I = gγ × [(1 +K)Y + Λ]
γ

+ Θq (4.1)

The procedure starts with improving Signal-to-Noise Ratio (SNR) in each

employed image from the set of N images, by employing host signal rejec-

tion. This way, the difference between noisy and noiseless parts is enhanced.
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Figure 4.1: Scheme of the noise residual extraction.

After that, filtering process can be performed using wavelet-based denoising

filter [104, 105]. This process results in a denoised image, which is further

used to extract a noise component from the original image. The extraction

can be performed by subtracting the previously computed denoised image

from the original one, as it is shown in Fig. 4.1. The signal left after the

previously described procedure is noise residual W . As it contains enhanced

information about the sensor pattern noise, W is averaged instead of the raw

images.

Partial derivation of the log-likelihood L(K) of ratio W
I solved for K

is computed in order to obtain maximum likelihood estimate K̂, as it is

described by the relation (4.2). Factor σ2 in the relation denotes variance

of White Gaussian Noise (WGN). Although the real systems contain much

more complex forms of noise, WGN can be accepted as a simplified model

of the noise term, without a significant impact on the results.

δL(K)

δK
=

N∑
k=1

Wk/Ik −K
σ2/(Ik)2

= 0 =⇒ K̂ =

∑N
k=1WkIk∑N
k=1(Ik)2

(4.2)

Estimate K̂ contains a valuable information about the PRNU, but it also

includes some artifacts that are common to multiple cameras, due to the im-

plementation of image formation process and the sensor design itself. Hav-

ing the same characteristics included in the maximum likelihood estimate

of more than one device results in high possibility of false source identi-

fication. Therefore, it is advisable to reduce the unwanted similarities as

much as possible. Suppression of artifacts effect on K̂ can be performed by

manipulation of pixel values with aim of producing PRNU factor with zero

mean in each row and column of pixels [49]. This method is shown to be

able to reduce color interpolation artifacts, as well as the artifacts produced
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by row-wise and column-wise operations of sensors and processing circuits.

The result is significant reduction of correlation between PRNU factors of

different devices.

In case that the zero mean PRNU factor contains visually identifiable

patterns, it is suggested to translate the processed signal into Fourier domain

and perform Wiener filtering to filter out all the components except from the

noise [49].

Once the PRNU factor is estimated and processed in order to suppress

all the unnecessary information, source identification procedure can begin.

Computed PRNU is a unique stochastic fingerprint of imaging sensor and it

serves as a basis for further procedure. Similar procedure that has been con-

ducted on N images for calculating PRNU has to be conducted on an image

that needs to be classified as the result of capturing by specific capturing

device. The image is first processed to extract the noise which is going to be

correlated with the computed fingerprint.

The problem of image source identification is formulated as a hypothesis

testing with the aim of PRNU detection in the noise residual. As shown

in Fig. 4.2, the zeroth hypothesis H0 is that the noise residual contains

only random noise without any other components, while the first hypothesis

H1 is that there are more components related to the estimate of the same

capturing device, except from the random noise. In other words, if hypothesis

H0 is true, the image that is analyzed over a fingerprint of some capturing

device was not obtained by that device. On the other hand, if hypothesis

H1 is true, analyzed image has the same or similar characteristics as the

images which produced PRNU fingerprint of capturing device, and device is

therefore identified to be the source of the analyzed image.

Mathematical representations of the hypotheses can differ, depending on

the noise model that is taken into consideration. As white Gaussian noise

is the simplest noise type, which does not appear in the real systems, it is

better to operate with more complex ones, such as colored Gaussian noise η.

Furthermore, it is important to keep in mind that PRNU factor estimation

K̂ may be attenuated due to the previously described PRNU processing

procedure. Therefore, if the sensor output model defined by equation (4.1)

is modified in accordance to the previous statements and defined by the

relation (4.3), hypotheses can be formulated as it is presented in relation 4.4.

While T represents pixel-wise multiplicative attenuation factor, X = IK̂ is
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Figure 4.2: Scheme of the image source identification problem formulation:

hypothesis testing with the aim of PRNU detection in the noise residual.

the non-attenuated PRNU factor value [49].

W = TX + η (4.3)

H0 : W = η,H1 : W = TX + η (4.4)

At this stage, attenuation factor T and unequal variances σ2
c of Gaussian

variables that form colored Gaussian noise are the unknown variables. Their

estimation is not easy, as each pixel has its own values of the previously

mentioned factors. As it would be computationally and time exhausting to

perform the estimation procedure at each pixel of an image, it is advisable

to divide image into a number of blocks and perform the computations for

each of them. This simplification implies that all the pixels from the same

block have the same values of T and σ2
c .

Normalized Generalized Matched Filter (GMF) is the optimal detector

for the problem set up by previously formed hypotheses [49]. It is defined

by relation (4.5), where M is the total number of image blocks. Normalized

correlation between non-attenuated PRNU factor and noise residual can be

derived from this equation. Simplified form is given by the relation (4.6),

where ρb denotes the normalized correlation, which is defined in (4.7). The
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other component βb is defined by relation (4.8).

ρ =

∑M
b=1

T̂b

σ̂2
b
(Xb ×Wb)√∑M

b=1
T̂ 2
b

σ̂2
b
||Xb||2

√∑M
b=1

1
σ̂2
b
||Wb||2

(4.5)

ρ =

M∑
b=1

βbρb (4.6)

ρb =
Xb ×Wb

||Xb||||Wb||
= corr(Xb,Wb) (4.7)

βb =

T̂b

σ̂2
b
||Xb||||Wb||√∑M

i=1
T̂ 2
i

σ̂2
i
||Xi||2

√∑M
i=1

1
σ̂2
i
||Wi||2

(4.8)

The problem of estimating values for attenuation factor and variances

of Gaussian variables from the optimal detector requires a known value of

normalized correlation ρb. As it is available only under the hypothesis H1,

predictor of values ρb can be constructed based on the known PRNU factor

estimate and features from the image block of interest, under this hypothe-

sis. Finally, Neyman-Pearson approach can be employed for deciding if the

analyzed image was captured by the device whose fingerprint is used in the

described process, or not.

Due to the dependence of correlation factor on the image size, it is not

suitable parameter for further analysis of the results. Peak to Correlation

Energy ratio (PCE) is a better comparison factor [106] and it can be defined

by the relation (4.9), where speak denotes coordinates of the peak, m and

n are the image dimensions, and M is a small neighborhood around the

peak [106].

PCE =
ρ(speak;X,Y )2

1
mn−|M|

∑
s/∈M ρ(s;X,Y )2

(4.9)

PCE considers a possible special shift s between the fingerprint and the

noise extracted from the image due to a possible cropping or use of the

image. Then a correlation is conducted for each shift, and if a correlation

prove is found, corresponding shift is considered to give the correct output.

The above described procedure of PRNU-based source identification refers

to images, but having in mind that video represents a sequence of images,
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it is easy to conclude that the same procedure applies to videos, as well. N

images used in process of PRNU factor estimation are video frames in this

case, and they can be extracted from the same video, without need to record

multiple of them, as in case of images.

4.3 Advantages and vulnerabilities of PRNU-

based source identification

Due to the great performances it showed, PRNU-based source identification

became a popular approach in multimedia forensics. However, as all the

other methodologies, approaches and algorithms, source identification based

on PRNU extraction has some vulnerabilities, apart from all the advantages

it provides. This section aims to provide an analysis of both positive and

negative sides of using PRNU fingerprint for multimedia forensic purposes.

Advantages can be summarized in five major categories: stability, gen-

erality, universality, dimensionality and robustness [107]. Regardless of the

physical conditions and time lapse, PRNU fingerprint remains stable, which

represents its first advantage. Since it is contained in every image and every

video file, no matter which source device is used for multimedia acquisition,

PRNU-based source identification follows the generality principle. Having

in mind that all types of sensors exhibit PRNU, it is also universal. Further-

more, dimensionality, or uniqueness, is achieved, due to the large number of

information contained in each fingerprint. Since many features characterize

device’s fingerprint, it is unlikely that they will be similar for two different

sensors. Finally, this approach is robust, because the fingerprint can sur-

vive a wide range of multimedia manipulations, such as filtering and lossy

compression [107].

Disadvantages of PRNU-based methods are computation load and sensi-

tiveness to modifications, or so-called de-synchronization attacks [108]. Hav-

ing in mind that using PRNU fingerprint can lead to the exact source device

identification, it is clear that one of the requirements for such result has to

be familiarity of the identified source device. Since there is a huge amount

of different camera devices, which increases as time lapses, database of in-

formation about the devices and their fingerprints gets larger and larger,

requiring tremendous physical storage [108]. De-synchronization is the other

vulnerability of this method, caused by geometric distortion attacks such

as scaling and cropping, which spatially de-synchronize target PRNU with
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reference PRNU [109]. This problem is investigated and researches came to

the conclusion that using scale- and rotation-invariant transforms [109] or

using the Generalized Likelihood Ratio Test directly in the spatial domain

and finding the maximum of the test statistics using brute force [107] can

help in overcoming this issue.

Taking into account the benefits it offers, vulnerabilities of PRNU-based

approach in source identification are actively explored and research commu-

nity still develops novel, improved algorithms, which suppress the recognized

issues.



Chapter 5

MOSES mobile application for

video dataset collection

For the purposes of video dataset expandability, MOSES mobile

application is presented in this chapter. After description of the

initial dataset, impact of the social media exchange on the origi-

nal video files, as well as the ability of PRNU-based source iden-

tification on the presented dataset are investigated.

5.1 Introduction

As it is addressed in Chapter 3, one of the major problems for the research

community is the lack of convenient and up-to-date datasets which can be

used for multimedia forensic purposes. Having recognized this problem, three

novel datsets of images and videos were created as part of this thesis. First

of them is mobile application named MOSES [5]. The aim of this application

is to provide a video dataset that will contain videos from a large number of

smartphone devices, recorded using different camera specifics and showing a

large span of scenes, with the advantage of being up-to-date.

Initial dataset was made using the implemented application and it con-

tains 1,209 videos captured with 35 different devices. This dataset is expand-

able, because MOSES provides users to capture and upload their own videos

to the dataset stored on the Florence University server. Dataset is currently

not publicly accessible, but it can gain a public access for the researching

purposes.
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Previously described, up-to-date and expandable, video dataset would es-

tablish an excellent test environment for multimedia forensics techniques, es-

pecially in the field of source identification. Unlike the other datasets, which

provide a certain number of files taken under controlled conditions, MOSES

can exceed a large number of video files captured by a various smartphone

devices. Different capturing scenarios can also benefit the investigation pro-

cesses, introducing a big variety of contents.

As video frames are images themselves, this application automatically

provides a large database of images, which is of a special importance for

PRNU estimation used for source identification purposes. Although MOSES

does not initially contain HDR recordings, allowance of dataset expansion

enables users to upload HDR videos, which can easily be transferred in the

sequences of HDR images for the analysis purposes.

5.2 Guide for using the MOSES mobile appli-

cation

Currently, iOS and Android versions of the MOSES application are avail-

able. Android application can be downloaded using the following URL:

https://play.google.com/store/apps/details?id=com.vmoses.metadata (Fig.

5.1), while iOS version can easily be found under iMoses name in the Italian

Apple store. Readers are invited to download the application and follow stan-

dard installation procedure to contribute in the currently available dataset

expansion. It is worth noting that the Android version is available world-

wide, while its iOS counterpart can now be used only by the Italian users.

The Android graphical user interface for MOSES application is repre-

sented in Fig. 5.2, while Fig. 5.3 represents its iOS GUI.

After installation of MOSES mobile application and starting it, selection

of one of the three scenario types: indoor, outdoor or flat is needed. After

that, user selects one of the three camera motion types. The available choices

are: move, still and panrot. Move refers to the case when a person is walking

while recording a video. In the still movement scenario, video is recorded

by a steady hand, in a still position, while panrot scenario refers to the case

when a video is acquired while standing still, but combining pan-movements

and rotation of the device. Acquisition starts by pressing the RECORD

button, which calls the native camera application, that performs recording.
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Figure 5.1: MOSES application in Google Play Store.
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Figure 5.2: The Android interface for MOSES application [5].

Figure 5.3: The iOS interface for MOSES application.
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Considering the limited storage and bandwidth capacities, duration of

videos that users can record using MOSES is set to 30 seconds. After that

time, user can choose whether to upload a file to the existing dataset or

cancel the procedure. Uploading is performed by pressing the UPLOAD

button, which sends the content via File Transfer Protocol (FTP) to the

servers, without any further processing.

5.3 Implementation details

Besides from offering the ability of recording and storing videos in the dataset,

MOSES collects the available information about camera device from which

the video was recorded. This information is being stored in an XML file,

which is obtained by analyzing the video metadata, and can later be used in

process of source identification. Obtained information are as follows:

• manufacturer,

• operating system and its version,

• model of the device,

• frame rate in fps,

• resolution (video width and height),

• rotation of the display during the acquisition,

• acquisition timestamp (start of recording),

• creation timestamp (time of storing),

• information about video stabilization.

An example of XML metadata is given in Listing 5.1. Although it con-

tains a large variety of information, it is not useful in a form where a quick

analysis of the information cannot be performed. In order to enhance its

usefulness, an SQLite database was created through Java script that stores

the contents of XML files in the form of table, creating database of informa-

tion that can be extracted using SQL queries. In order to perform this, XML

file needs to be parsed to convert the information from the shown structure

to a relational database, which provides the ability to analyze the dataset

more efficiently. SQLite database consists of a single table that contains

information of each XML in a single row.
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Listing 5.1. An example of XML metadata from a video acquired with

MOSES in the Android version [5].

1 <track>

2 ...

3 <bitRate>5255207</bitRate>

4 <captureTime>20170525214034</captureTime>

5 ...

6 <dateCreated>20170525T194047.000Z</dateCreated>

7 <device>

8 <brand>Lenovo</brand>

9 <device>P70-A</device>

10 <deviceID>865897020799766</deviceID>

11 <display>P70-A S138 151020 16G L ROW</display>

12 <manufacturer>LENOVO</manufacturer>

13 <model>Lenovo P70-A</model>

14 <os>

15 <name>LOLLIPOP MR1</name>

16 <release>5.1</release>

17 <sdk>22</sdk>

18 </os>

19 <product>P70-A</product>

20 <user>unknown</user>

21 </device>

22 <duration>5</duration>

23 <frameRate>0.0</frameRate>

24 ...

25 <hasAudio>yes</hasAudio>

26 <hasVideo>yes</hasVideo>

27 <height>720</height>

28 <location>43.7937419,11.2304078</location>

29 <mimeType>video/mp4</mimeType>

30 ...

31 <resolution>921600</resolution>

32 <rotation>90</rotation>

33 <scene>indoor</scene>

34 <movement>flat</movement>

35 <timeSubdivision>00:00:05</timeSubdivision>

36 <title>86589702079976620170525214034 indoor</title>

37 <videoStabilizationMode>0,1</videoStabilizationMode>

38 <width>1280</width>

39 <year>2017</year>

40 </track>
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Figure 5.4: Snapshot of Java script for conversion of XML files to SQLite

database.

Following steps are followed in order to extract data from XML files to

SQLite database table:

• reading XML files,

• parsing XML files,

• inserting data in table.

Java script has been written in order to perform the previously listed

steps. The only input for the script is a path to a dataset of XML files.

The script first reads all the files available in a given path recursively. Once

the reading is done, the script parses a file according to the nodes of XML

file. When the information from XML file is retrieved, script creates an SQL

insert query based on the nodes data and creates a record, i.e. a row in the

database table. A snapshot of Java script is given in Fig. 5.4, while the

fields of SQLite table are shown in Fig. 5.5.

Once the script completes its execution, it produces a result in the form
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Figure 5.5: Partial representation of fields in created SQLite database table.

Figure 5.6: Example of XML files parsed to SQLite database table.

of the one given in Fig. 5.6. This form of a relational database allows user to

easily run queries and get results. Furthermore, aggregated results are easily

producible in a single query in this case, in contrast to a very time-consuming

process in case of raw XML files.

5.4 Initial dataset formation

The initial dataset was created using MOSES application, which was first

downloaded to devices from Google Play and Apple Store applications. All

the recorded videos were then uploaded to the server through the installed

smartphone applications.

Created dataset consists of 622 native videos and 587 videos exchanged

through YouTube social platform, resulting in total of 1,209 videos. Video

exchange had been conducted in order to provide ability for forgery detection

testing using format-based techniques, as well as to provide conducting other
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multimedia forensics tests which rely on MPEG compression. Furthermore,

exchanged videos can be used for analysis of fingerprints inserted by different

social media platforms, which can be useful in provenance analysis of the

shared data. It is worth noting that uploading video and downloading it at

the maximum resolution available is meant by the term exchange.

Obtained videos include both indoor and outdoor scenes, as well as flat

scenes. The latter scenery is provided in order to enable PRNU-based source

identification, due to the needs of this method, described in Chapter 4.

Dataset was created using 35 devices from 11 different manufacturers. The

number of devices per each manufacturer was as follows:

• 13 Apple devices,

• 8 Samsung devices,

• 5 Huawei devices,

• 2 One Plus devices,

• 1 Asus device,

• 1 Lenovo device,

• 1 LG electronics device,

• 1 Microsoft device,

• 1 Sony device,

• 1 Wiko device,

• 1 Xiaomi device.

Previously listed devices use Android and iOS operating systems. Em-

ployed versions of Android operating system span from 5.x to 7.x, while

versions span from 7.x to 10.x for the used iOS-operating devices. Depend-

ing on the device model, camera resolutions are different, and the produced

videos therefore have full HD, HD, or 480p resolution. All of them were

obtained using rear-camera at the maximum resolution possible, with the

exception of Asus device, for which the highest provided resolution was not

employed. The dataset resulted in containing videos from 24 devices that

provided full HD resolution, 9 that produced videos in HD resolution and 2

which provided 480p resolution. Summary of device and video characteris-

tics are given in the Table 5.4, which also provides distinguishing different

device models for those devices who share the same manufacturer. It is worth

noting that the majority of recorded videos last longer than 60 seconds, with

the exception of small number of videos obtained by devices D5 and D27,

which are 25 seconds long. Videos with duration longer than 30 seconds were

allowed in the initial dataset formation, but as it is stated earlier, limitation
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Figure 5.7: Video frame samples from the initial dataset obtained using

MOSES mobile application [5].

of video duration is set afterwards, due to the limited server’s storage.

For the purposes of providing the ability of testing the impact of camera

movements on the recorded videos, each scenario was captured in three dif-

ferent camera motions. As videos are mostly obtained without using tripod,

this case was not included as a test scenario. The first set of recordings was

made in the still camera motion, where only small movements due to still

hand acquisition were present. Recording of the same scene was repeated in

the walking motion, where the person was walking at the time of recording

a video. The third set of videos is recorded while the person recording a

video was standing still and simultaneously combining pan-movement and

rotation of the device. The examples of frames extracted from the recorded

videos are shown in Fig. 5.7.

Having in mind the power of social platforms in today’s world, it is of

a special interest for multimedia forensics to explore their influences on the

original content. Therefore, in addition to the native contents described

above, initial video dataset includes a subset of videos exchanged through

YouTube platform. After creating a YouTube account, native videos were

uploaded into playlists (one playlist has been created for each device) using

the Public flag. Downloading process was carried out by executing youtube-

dl 6 command-line free software. Related playlist was downloaded for each

of the employed devices by selecting the best possible resolution. Using the

above mentioned software, this can be performed by specifying the following

parameter: -f 137+140/bestvideo+bestaudio. Exchanged videos were stored

in the dataset afterwards.
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Table 5.1: Main features of the devices employed in initial MOSES dataset

and video files obtained by them [5].
Brand Model ID Video resolution #Videos

Apple iPad 2 D13 1280× 720 16

Apple iPad mini D20 1920× 1080 16

Apple iPhone 4 D09 1280× 720 19

Apple iPhone 4S D02 1920× 1080 13

Apple iPhone 4S D10 1920× 1080 15

Apple iPhone 5 D29 1920× 1080 19

Apple iPhone 5 D34 1920× 1080 18

Apple iPhone 5c D05 1920× 1080 19

Apple iPhone 5c D14 1920× 1080 19

Apple iPhone 5c D18 1920× 1080 13

Apple iPhone 6 D06 1920× 1080 15

Apple iPhone 6 D15 1920× 1080 18

Apple iPhone 6 Plus D19 1920× 1080 19

Asus Zenfone 2 Laser D23* 640× 480 19

Huawei Ascend G6-U10 D33 1280× 720 18

Huawei Honor 5C NEM-L51 D30 1920× 1080 19

Huawei P8 GRA-L09 D28 1920× 1080 19

Huawei P9 EVA-L09 D03 1920× 1080 19

Huawei P9 Lite VNS-L31 D16 1920× 1080 19

Lenovo Lenovo P70-A D07 1280× 720 19

LG electronics D290 D04 800× 480 19

Microsoft Lumia 640 LTE D17 1920× 1080 10

OnePlus A3000 D25 1920× 1080 19

OnePlus A3003 D32 1920× 1080 19

Samsung Galaxy S III Mini GT-I8190 D26 1280× 720 16

Samsung Galaxy S III Mini GT-I8190N D01 1280× 720 16

Samsung Galaxy S3 GT-I9300 D11 1920× 1080 19

Samsung Galaxy S4 Mini GT-I9195 D31 1920× 1080 19

Samsung Galaxy S5 SM-G900F D27 1920× 1080 19

Samsung Galaxy Tab 3 GT-P5210 D08 1280× 720 34

Samsung Galaxy Tab A SM-T555 D35 1280× 720 16

Samsung Galaxy Trend Plus GT-S7580 D22 1280× 720 16

Sony Xperia Z1 Compact D5503 D12 1920× 1080 19

Wiko Ridge 4G D21 1920× 1080 19

Xiaomi Redmi Note 3 D24 1920× 1080 19
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5.5 Experiments

The experiment was conducted using the obtained video files to perform

source identification based on PRNU noise. For those purposes, the same

procedure described in detail in Chapter 4 was conducted.

Camera fingerprint was first estimated from the first 100 frames of a

referent flat video in panrot camera motion. Performing the same algorithm,

fingerprint was afterwards estimated for the query video, as well, using its

available frames. PCE factor was then calculated for the query video and

compared to the threshold value of originating to the examined source device

or not. All the available matching cases (videos from the same device) and

the same number of mismatching cases (videos randomly chosen from other

devices) were considered.

In order to investigate if the compression introduced by exchanging videos

through YouTube platform influences the result of source identification, ex-

periments were run on both original and exchanged video files.

5.6 Results

The achieved results are shown in the form of ROC curve in Fig. 5.8. This

figure represents true positive (TP) and false alarm (FA) rates compared at

varying thresholds. This kind of results representation allows quantification

of the performance drop when YouTube compression was involved in the

process.

It can be noticed that the results are not as good as expected, considering

usually very good performances of PRNU-based methods in source identi-

fication, especially in case of original multimedia files. The possible reason

for results degradation is the fact that several employed devices contain in-

camera digital stabilization, which has a negative impact on fingerprints

alignment during the process of its estimation. Therefore, the experiment

was repeated using only devices without this feature. The obtained results

for this case are shown in Fig. 5.9.

Experiment which excluded devices with in-camera digital stabilization

has produced better results for both native and YouTube exchanged videos.

This confirms the assumption that the previously mentioned feature intro-

duces some difficulties in the PRNU-based source identification. Therefore,

it is important to take this characteristic into account when performing tech-
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Figure 5.8: ROC curve of video source identification performances on native

and YouTube exchanged videos [5].

Figure 5.9: ROC curve of video source identification performances on na-

tive and YouTube exchanged videos with limitation of the analysis to non-

stabilized videos [5].
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niques for identification of video source device.

However, YouTube exchanged videos showed relatively low TP rate even

in case when only devices without in-built digital stabilization were em-

ployed. While native videos were shown to have TP rate in the range from

0,94 to 1, TP rate of the exchanged videos dropped even to 0,58 in some

cases. This result leads to the conclusion that exchanged videos are harder

to trace to their original source device. Moreover, it confirms the assumption

that social media platforms induce their own fingerprint to the exchanged

content, which makes it different from the original. This fact opens up an in-

teresting topic of types and characteristics of the marks created by different

social media platform and their possible recognizability, which should be fur-

ther investigated. MOSES mobile application provides research community

a large span of videos which can be used for these purposes.



Chapter 6

VISION dataset

A novel dataset of images and videos is presented in this chapter.

Having different types of multimedia files obtained by the same

devices, VISION dataset provides investigation of differences be-

tween PRNU estimates obtained using image and video files. Be-

sides from the estimation analysis, the chapter describes results

of source identification based on PRNU estimates and impact of

the social media exchange on the original files.

6.1 Introduction

Motivated by the results and derived conclusions after conducting the source

identification analysis on initial MOSES video dataset, described in Chapter

5, a novel database including both images and videos exchanged through the

social network platforms was created. The dataset is named VISION and its

characteristics are described in more detail in this chapter.

Creation of a novel dataset of images and videos was performed due to the

lack of an adequate dataset of this type, which can be used for source iden-

tification purposes. Although many image and video databases are available

in state-of-the-art, as described in Section 3.4, to the best of our knowl-

edge, none of them is up-to-date database with large variety of scenarios

and multimedia types acquired by diverse modern smartphone devices.

One of the largest and newest datasets which includes both images and

videos is IARPA Janus Benchmark-B Face Dataset, presented in [110]. How-

ever, as the dataset’s name suggests, it is designed for the face analysis and

55
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therefore includes relatively similar scenery in all the included multimedia

files. Since there is an assumption that most of the source identification algo-

rithms, including PRNU-based method, depend on an image/video content

at some extent, this kind of database is not adequate for source identification

purposes, even though it includes a large number of multimedia files, having

21,798 still images and 7,011 videos.

DEIMOS (DatabasE of Images: Open Source) database [93] is expand-

able set of images and videos, briefly described in Section 3.4. Although this

dataset includes variety of scenes, not many of the multimedia files included

are acquired by modern smartphone devices, especially in HDR mode. Hav-

ing in mind that HDR capturing and recording options gets more and more

popular with the abilities provided by the newest capturing and recording

devices, it is of a big importance for multimedia forensics to have an access

to a large variety of such multimedia.

Furthermore, none of the known image and video datasets include both

regular, spontaneously obtained multimedia files, taken in different condi-

tions and using different scenarios and a large number of flattish, untextured

surfaces, which could enable better PRNU estimation. Considering all the

obstacles encountered analyzing state-of-the-art databases, a novel database

named VISION was created. This database provides both image and video

files in standard and HDR mode, as well as a large variety of captured

and recorded scenes, including flattish, monotonous surfaces, convenient for

PRNU-based methods.

Using VISION, multimedia forensics tests based on PRNU factor estima-

tion for source identification were run in order to investigate the impact of

social media platform exchange on the obtained images. The analysis also

includes comparison of PRNU factors estimated from video frames and from

images acquired by the same devices. PRNU factors estimated from different

multimedia types are usually hard to match, which can represent a problem

in source identification field. Therefore, this analysis can show dependability

of PRNU factor on the multimedia files used for its estimation. Considering

that both original (generic, native) images and videos, as well as their ex-

changed counterparts are included in the analysis, influence of compression

procedures can also be investigated in this case.
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Figure 6.1: Structural organization of VISION dataset [6].

6.2 Dataset formation

VISION dataset employs all 35 devices used for creation of initial videos

included in MOSES application. For the purposes of image capturing and

video recording, the best-quality camera available was employed. While the

structure of video part of the dataset remained the same as for the MOSES,

including three types of recorded scenarios (indoor, outdoor and flat), image

part of the dataset included two scenarios: flat and nat. Flat scenario implies

captures of flattish, uniform surfaces, such as walls or skies, just as it was case

for the same scenario in the video part of the dataset. On the other hand,

nat scenario involves both indoor and outdoor scenes. The abbreviation

nat refers to native, original images. Separation of the images based on the

environment they were captured in (indoor or outdoor) was not performed

in this case. Furthermore, three camera motions: still, moving and panrot

available in MOSES application are available in videos part of the VISION

dataset, making it compatible with MOSES-obtained videos.

Total of 11,732 native images were collected for the purposes of VISION

dataset creation. 7,565 of them were shared through Facebook, in both high
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and low quality, as well as through WhatsApp. This resulted in a total of

34,427 images. It is worth noting that HDR images were obtained from

devices which have had the ability of HDR capturing, while the remaining

images were obtained in standard SDR mode provided by other employed de-

vices. For the purposes of videos collection, 648 originals were recorded. 622

of them were also shared through YouTube at the maximum available resolu-

tion, while 644 originals were shared through WhatsApp, resulting in a total

of 1,914 videos. It should be noted that images and videos shared through

social media platforms were rescaled by them, leading to lower multimedia

files resolutions than the ones shown in Table 6.1 for original multimedia.

The structure of VISION dataset is shown in Fig. 6.1. The obtained im-

ages and videos were first sorted by the device model, then after the obtained

multimedia type (image or video), and finally, by categories implying the sce-

narios in which the files were obtained. The explanation of each category

name is given below:

• flat in images category: images of flat scenes,

• nat : native images including both indoor and outdoor scenes,

• natFBH : native images exchanged through Facebook platform in high

quality,

• natFBL: native images exchanged through Facebook platform in low

quality,

• natWA: native images exchanged through WhatsApp platform,

• flat in videos category: videos of flat scenes,

• indoor : videos recorded in the indoor environment,

• outdoor : videos recorded in the outdoor environment,

• flatYT : videos of flat scenes exchanged through YouTube in high qual-

ity,

• indoorYT : videos recorded in the indoor environment exchanged through

YouTube platform in high quality,

• outdoorYT : videos recorded in the outdoor environment exchanged

through YouTube platform in high quality,

• flatWA: videos of flat scenes exchanged through WhatsApp,

• indoorWA: videos recorded in the indoor environment exchanged through

WhatsApp,

• outdoorWA: videos recorded in the outdoor environment exchanged

through WhatsApp.

Summarized features of the complete dataset are provided in Table 6.1.
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As it can be seen from the table, duration of videos obtained in this dataset

is much shorter in comparison to the duration of videos from initial MOSES

dataset. Moreover, it should be noticed that this research takes into account

some of the inherit camera device characteristics, such as the ability of au-

tomatic digital stabilization and HDR capturing. Special attention should

be paid on differences between image and video resolutions, although both

types of files were captured and recorded by the very same devices, using

the same camera and its configuration.

The example of images included in the VISION dataset is shown in Fig.

6.2. Differences in image and video resolutions were the main cause of PRNU

factor estimate nonconformity, which was investigated afterwards and is de-

scribed in the following sections.

6.2.1 Multimedia files exchange through social media

platforms

For the purposes of exchanging images through Facebook, two photo-albums

were opened on this social platform. Both of them were used only for nat

images, but one of the albums contained images uploaded in low quality

(natFBL), while the other one contained their counterparts uploaded in high

quality (natFBH ). Uploading processes significantly differ for these two qual-

ity levels, due to different compression methods employed, which is explained

in detail in [111].

Downloading images was performed in two different manners: single im-

age and a whole album. This test has been conducted in order to explore

if the internally set downloading processes differ for these two cases. It was

shown that there is no difference between the downloaded contents.

The exchanged images were saved in the same format as the originals and

they follow the analogous naming convention, thus providing that the na-

tive image and its exchanged counterpart can be immediately recognized.

For example, the first native image captured by D01 device was named

D01 I nat 0001.jpg, while the same image exchanged through the Facebook

platform with high quality upload was named D01 I natFBH 0001.jpg. It is

easily noticeable that the format of storing was deviceID multimediaType

sceneType ordinalNumber.fileFormat. Variable deviceID takes a value from

the ID tab of the Table 6.1, while multimediaType can be set to ”I” or ”V”,

which stands for image and video, respectively. Argument sceneType can

take any value from the last branch of the dataset structure hiererarchy rep-
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Figure 6.2: Samples of images from the VISION dataset [6].
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resented in Fig. 6.1. Finally, ordinalNumber represents the ordinal number

of multimedia file captured or recorded by the device with specified devi-

ceID, while fileFormat represents a format in which the images or videos

were stored by the concrete device. The most common value of fileFormat

for images is JPEG, while MPEG is most frequently used format for videos.

It is important to note that the previously described naming convention

includes one more parameter in case of videos, because they were obtained

using three different camera motions and can be sorted thereafter. For ex-

ample, if the previously mentioned device D01 had recorded a video of indoor

scenario, using panrot camera motion, stored as a fifth file, its name would

have been D01 I indoor panrot 0005.mpeg.

YouTube web platform was used for uploading and downloading original

videos obtained by the employed camera devices. This process is referred

to as exchanging, just as it was case for images. Exchanging was performed

in the same manner as it was conducted for the purposes of creating initial

video dataset for MOSES mobile application. Public privacy flag was used

for uploading in the high resolution mode.

Besides from youtube-dl tool used in case of downloading the exchanged

videos obtained by MOSES application, ClipGrab1 tool was employed in

order to investigate are there any differences between the resulting contents

in case of downloading using two different tools. Previously mentioned tools

produced the same downloading results.

Except from the Facebook and YouTube web platforms, WhatsApp mo-

bile application was employed for exchanging both image and video files. All

the multimedia files included in this process were exchanged via WhatsApp

v2.17.41, using an iPhone7 A1778 device with iOS v10.3.1. The reason for

choosing mobile application instead of a desktop one in this case is that

the latter does not make compression computations during the exchange

process, while the mobile one does. An interesting fact about WhatsApp

exchanging processes is that they differ in regards to the device type. For

example, iPhone devices obtain a less compressed multimedia file in the ex-

change process, in comparison to the Android devices. In case of images, this

level of compression can be placed somewhere in the range between com-

pression achieved by using low and high quality image uploading through

the Facebook platform. Taking that into account, by transferring image

files over WhatsApp in addition to the previously two exchanging methods

1ClipGrab v3.6.3, available on URL: www.clipgrab.org
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which used Facebook as a social media platform, results from a large span

of processing methods performed on the same set of images were obtained.

Furthermore, as YouTube and WhatsApp do not use the same compression

methods, diversity of processing methods was provided for the video files, as

well.

6.3 Experiments and results

The introduced VISION dataset was used for multimedia forensics test eval-

uations in the similar manner as it was performed using the initial dataset

created for MOSES mobile application. In other words, source identifica-

tion based on PRNU fingerprint estimation was performed using obtained

multimedia files. One of the differences between the previously conducted

experiments and the ones whose execution was provided by VISION dataset

is a larger number of differently processed images and videos, in comparison

to the dataset used in the experiments described in the previous chapter.

Moreover, VISION gives the ability of PRNU factor estimates comparison.

As this dataset contains both images and videos acquired from the same

source devices, it provides the opportunity to investigate the differences be-

tween the estimations produced using video frames and using image files.

Fingerprint computation for each source was conducted using the well-

known PRNU method on flat multimedia files. Single image and video files

were then processed in order to estimate their fingerprints and conduct source

identification based on the obtained PCE values. For each device of interest,

two fingerprints were computed: one based on 100 images obtained from

that device and the other based on the first 100 frames recorded by the

same. For each device, all available matching cases (images/videos from

the same device) and the same number of mismatching cases (images/videos

randomly chosen from other devices) were considered.

6.3.1 Image and video source identification

In the case of images, four experiments were performed for source identifi-

cation purposes. Each of them employed different types of images: native,

WhatsApp exchanged, Facebook high-quality exchanged, and Facebook low-

quality exchanged, as shown in Fig. 6.3. The results obtained by the exper-

iments execution are shown in Fig. 6.4, in the form of ROC curve of true
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Figure 6.3: Scheme of image source identification using VISION.

positive against false alarm rate. It can be seen from the figure that the

worst results were obtained using Facebook low-quality exchanged images,

which implies that the compression used in this case of image transfer has a

large impact on the ability of reliable source identification. Results for the

other three types of images were relatively close and were slightly better for

the case of native, natural images, in comparison to the other ones employed.

As it was shown in the previous chapter that digital stabilization highly

affects the results of source identification in the case when videos are pro-

cessed, the experiment was repeated on the video dataset provided by VI-

SION, in order to check the behavior of different videos included in the

analysis. Scheme of video source identification using VISION is shown in

Fig. 6.5. The results when videos from all the employed devices were used is

shown in Fig. 6.6, while Fig. 6.7 provides the results obtained for the case

when devices which inherently provide automatic stabilization were excluded

from the analysis. The repeated experiment has confirmed the conclusions

derived using initial MOSES video dataset: performances strongly drop when

digitally stabilized videos are involved.
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Figure 6.4: ROC curve of image source identification performances on native,

WhatsApp exchanged, Facebook high-quality exchanged, and Facebook low-

quality exchanged images [6].

Figure 6.5: Scheme of video source identification using VISION.
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Figure 6.6: ROC curve of video source identification performances on native,

YouTube exchanged and WhatsApp exchanged videos [6].

Figure 6.7: ROC curve of video source identification performances on na-

tive, YouTube exchanged and WhatsApp exchanged videos, excluding de-

vices with automatic digital stabilization [6].
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6.3.2 Source Pattern Noise fingerprint comparison: im-

ages vs. videos

Most of the state-of-the-art researches focus only on image or video source

identification, but not both, even in cases of available datasets of both of

these types of multimedia files. The reason for that is the fact that finger-

prints computed using images and videos from the same devices are highly

different. Even if the imaging sensor is the same, videos are usually acquired

at a much lower resolution than images. While today’s smartphones can eas-

ily capture 20-megapixel images, 4K video resolution is the highest reachable

one. For the comparison purposes, 4K video has 8 megapixels per frame.

Having different maximum possible resolutions for images and videos

acquired by the same camera implies having different processes of their ac-

quisition. When recording a video, central crop is first carried to adapt the

sensor size to the desired aspect ratio, which is commonly 16:9. Selected pix-

els are scaled to match the desired video resolution afterwards. This process

introduces fingerprint changes, because scaling and other geometrical opera-

tions generally affect PRNU-based fingerprint, regardless of multimedia type

of interest. Since the process of image acquisition does not require central

crop and scaling, it is justified that fingerprints are different for images and

videos acquired from the same device.

In case of source identification when both images and videos acquired

by the same source device are taken into account, fingerprints of different

multimedia need to be adjusted in order to correctly identify source device.

For those purposes, image-based and video-based fingerprints are linked by

cropping and scaling factors between image and video sensor portion, which

usually changes across different device models [6]. The authors in [112]

investigated and described the geometrical relation between image and video

acquisition processes, which explains this procedure. We invite reader to

find more details about it in the aforementioned paper. Procedure described

in [112] is used in so-called Hybrid Source Identification (HSI) approach,

which combines image- and video-based fingerprints.

For the purposes of supporting HSI approach in the analysis conducted in

this thesis, cropping and scaling factors for linking the corresponding finger-

prints were estimated for several devices. Non-stabilized devices were chosen

for this analysis, due to the complexity of devices with the automatic digital

stabilization. Estimation was performed on flat types of images and videos

from VISION dataset. After computation of reference fingerprint, based
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Table 6.2: Estimated cropping and scaling factors for non-stabilized videos

from VISION dataset [6].
ID D01 D03 D07 D08 D09 D11 D13 D16 D17 D21

Scaling 0.5 0.48 0.27 1 0.61 0.59 1 0.46 0.59 n.a.

Cropping

[x y]
[0 228] [0 372] [0 7] [408 354] [227 411] [0 307] [-160 0] [8 396] [0 1] n.a.

ID D24 D26 D27 D28 D30 D31 D32 D33 D35 D22

Scaling 0.5 n.a. 0.5 0.36 0.47 0.46 0.59 0.52 0.39 0.49

Cropping

[x y]
[0 240] n.a. [0 228] [0 0] [39 10] [9 397] [0 0] [464 693] [0 306] [0 246]

on 100 images and the same number of video frames, cropping and scaling

factors were estimated by brute force search, as suggested in [107]. This

approach was used in order to avoid de-synchronization attacks, described

as a well-known vulnerability of PRNU-based approach in Section 4.3.

The obtained results are shown in Table 6.2. In case the obtained max-

imum PCE was lower than the threshold value, the parameter search is

considered unsuccessful and denoted as ”n.a.” in the table. Threshold value

was accepted to be equal to 45, as it is proposed in [49], due to the obtained

empirical results.

It is worth noting that cropping factor is represented in the form of co-

ordinates of corresponding cropping corner, which is the upper-left corner

along x and y axes. The reported scaling factors and cropping corners rep-

resent the values which cause yielding to the maximum PCE for examined

devices. For example, the information given in Table 6.2 can be read as

follows: device D07 showed the best performances in terms of PCE values

when its fingerprint was scaled for the factor of 0.27 and then cropped on

the upper-left side by 7 pixels along the y axis.



Chapter 7

PRNU-based source

identification using HDR images

This chapter presents a novel dataset of HDR and SDR images

and tests the performances of well-known PRNU-based source

identification algorithm. Analysis in terms of image and finger-

print type, as well as reliability of source identification using this

method are presented. PCE optimization algorithm is finally pro-

posed in the last section of the chapter.

7.1 Dataset formation

The procedure conducted during the process of creation VISION dataset [6]

is adopted for the novel dataset of HDR images. As in VISION, camera

that provides the best quality, usually located at the back side of the mobile

device, was used for capturing in case of all the used devices.

A novel dataset of HDR and SDR images was created using 23 different

portable devices, including Huawei, Apple, Samsung, Xiaomi, Asus, Gionee

and One Plus. Devices were configured for capturing in default camera

mode. In case of Apple devices, default mode is usually the one that provides

the highest quality and resolution available, while that is not necessarily

a rule for Android devices. Captures were taken without using flash, in

different atmospheres, including both indoor and outdoor scenes. Twenty

three models of mobile devices produced by seven different manufacturers

were employed. Besides HDR images, created dataset contains standard

69
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SDR images captured by the same devices, in order to enable comparison of

PRNU-based source identification between different image types.

Conducted research took into account different possibilities of capturing

motions in order to investigate the possible impacts of the pixel artifacts

caused by the camera shake on the PRNU estimation and the final source

identification. Therefore, the introduced dataset contains images captured

using tripod, by a steady hand, and by a shaky hand.

The number of used devices per each manufacturer is as follows:

• 7 Huawei devices,

• 6 Apple devices,

• 4 Samsung devices,

• 3 Xiaomi devices,

• 1 Asus device,

• 1 Gionee device,

• 1 One Plus device.

Seventeen of the employed devices use Android operating system (OS), while

the remaining six operate using iOS. Characteristics of the devices can be

seen in Table 7.1, which also provides information about the resolution of

captured images, their number in accordance to the type (SDR or HDR), and

camera movement mode at the time of capturing. Information listed in the

table are sorted by brands, and then ordered by models, from the oldest to

the newest. Devices are shortly named based on their operating system, e.g.

”A” stands for the device that uses Android, while ”I” represents the device

that uses iOS operating system. Captures were named descriptively, follow-

ing the format ”device category movement number”. Abbreviated name of

the device model is represented by the ”device”, ”category” refers to the

image type: HDR or SDR, ”movement” describes the camera movements,

which can be TRIPOD, HAND or SHAKING, while ”number” represents the

ordinal number of the captured image for the device of interest. More infor-

mation about the meaning of each camera movement type will be provided

in the remainder of this section.

Dataset structure is shown in Fig. 7.1. All the captures were first di-

vided into two groups: FLAT and NAT images. The term FLAT refers to

the images of flattish, monotonous surfaces, such as walls and skies, which

are valuable for PRNU estimation, detection, and the final source identi-

fication using PRNU factor. The other category, NAT, consists of images

of natural scenes, which can be very detailed, textured, colorful and with
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large illumination alternations. FLAT set of images wes created in order

to enable PRNU extraction, while NAT images represent a set of real-case

scenario images, whose source camera identification could be needed.

As the images were captured in both SDR and HDR mode, they can

be further classified in accordance to their type. For the case of NAT set,

it is useful to differ images based on camera movements that occurred at

the time of capturing. They were therefore sorted as shown in Fig. 7.1.

Naming convention used for the movements description is intuitive, where

TRIPOD stands for the images captured when camera device is fixed on the

tripod, HAND category contains the images taken by hand, while SHAKING

category involves images captured by shaky hand. Tripod enables camera

steadiness, which minimizes possibility of pixel artifacts. On the other hand,

captures taken by steady hand include only small pixel artifacts, mostly

invisible to the human eye. Blurring effect becomes visible if the capturing is

performed while shaking a camera device, due to the pixel shifting. As HDR

images are created as a combination of multiple SDR captures, it is expected

that the artifacts will be accentuated and make the source identification

procedure more difficult.

The examples of captures are given in Fig. 7.2.

7.2 Experiments

7.2.1 Fingerprint computation

Camera fingerprints were computed based on PRNU estimation for all 23

devices employed in the novel dataset. For the purposes of testing the quality

of PRNU estimation, three fingerprints were produced for each device, based

on different sets of flat images.

The first group of fingerprints was computed using flat HDR images,

where the number of images deviated from 50 to 87 for different devices. As

the improved method for PRNU factor estimation requires at least 30 im-

ages [49] for successful procedure conduction, the chosen number of images

employed in the analysis ensures reliable estimation results. Considering the

specifics of HDR images, it is expected that source identification based on

PRNU factor would produce better results when both fingerprint of the de-

vice and the image taken by the same are of HDR type. Analogy applies to

the SDR images. In order to test this assumption, second group of finger-
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Figure 7.1: The dataset structure.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.2: Sample pictures from the Dataset: (a) SDR FLAT, (b) HDR

FLAT, (c) SDR TRIPOD, (d) HDR TRIPOD, (e) SDR SHAKING, (f) HDR

SHAKING, (g) SDR HAND, (h) HDR HAND.



7.2 Experiments 75

prints was calculated from the set of 50 to 59 flat SDR images, where the

concrete number of images differed between the devices.

Finally, mixing SDR and HDR images, a group of captures called MIX

was formed. Including both types of images of interest, MIX category pro-

vides the most reliable results for source identification, considering that it

is not common in the real-case scenario that users possess an information

about the image properties. Fingerprints from MIX set were obtained using

100 to 137 images per device, thus ensuring even higher reliability of the

fingerprint estimation results.

7.2.2 Test images processing

Camera photo response non-uniformity detector was obtained using the gen-

eralized likelihood test based on cross-correlation maximization. Following

the PRNU procedure presented in Chapter 4, test images from the NAT part

of the dataset were processed. After the noise extraction was performed, it

was correlated with the PRNU factor estimate, in accordance to relation 4.7.

Maximum of the normalized correlation ρb is considered to be a good ap-

proximation of the generalized likelihood ratio test [113] and it was therefore

computed.

7.2.3 Parameter of comparison

Peak to Correlation Energy (PCE) ratio was used in the experiments as the

measure of relevance of PRNU-based source identification. It was computed

over all the images acquired by the device of interest and values for single

images were compared to the threshold value that separates acceptance of

hypotheses H0 and H1. Threshold value was accepted to be equal to 45, as

it is proposed in [49], due to the obtained empirical results. For more details

about choosing the threshold value, we invite readers to refer to the analysis

conducted in [49]. If the value was higher than threshold, hypothesis H1

(matching image for the source device) was accepted. Otherwise, accepted

hypothesis was H0 (non-matching image for the source device).

It is worth noting that PCE computation was performed for all the an-

alyzed images captured by a certain camera model, and was subsequently

averaged. Results have shown that averaged PCE was less prone to result

variations and camera movements have had less impact on the results in the

case of using this parameter.
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Figure 7.3: The framework of PRNU-based algorithm.

The framework of PRNU-based algorithm is shown in Fig. 7.3.

7.3 Results

This section provides description of multiple stages of analysis during the

process of final PRNU-based source identification. Since two type of images

were used, the one with the standard dynamic range - SDR, and the one

with wider dynamic range - HDR, the first aim was to conclude if there is

a noticeable difference between the types of the images. The analysis was

further expanded on the fingerprints created from multiple images of the

same type, as well as on the groups of images of different types. This step

was conducted with the same purpose of revealing the differences between

SDR and HDR captures and to finally conclude if their fingerprints converge

to the same result, or they differ despite numerous images captured by the

same device were included in the analysis. During the analysis, the impact

of image and fingerprint types, as well as the impact of motions occurred in

the time of image capturing were observed.

After the first step of types and fingerprints difference recognition, there

was a need of analyzing PCE values produced for single devices. The aim was

to find a reason for low PCE values for single images or a set of images and

to find the correlation between the images with low PCE values, if the one

exists. The final step of the analysis deals with the problem of defining how

reliable were the produced results for source identification and the methods

for the reliability increase.



7.3 Results 77

7.3.1 Analysis in terms of image type: SDR vs. HDR

Theoretical introduction to differences between SDR and HDR images is

provided in the previous chapters. Following that knowledge, correlation

was first computed between the noise extracted from SDR image and finger-

print computed on multiple images of SDR type. Analogously, correlation

was computed between HDR-based components. This experiment was con-

ducted in order to define if the complexity of HDR images creation is an

aggravating factor in PRNU-based source identification. Furthermore, it

aimed to determine the difference between SDR and HDR images in terms

of digital image processing procedure.

Correlation of noise, extracted from SDR images, with flat SDR-based

fingerprint resulted in generally higher PCE values in comparison to the

case when noise from HDR images was employed. The results can be seen in

Fig. 7.3.1-7.7. Android devices A01-A06 have shown the biggest difference

between PCE values in case when the captures were taken by a tripod.

While results obtained for SDRs correlation were characterized with high

PCE values in that case, PCEs of most of the HDRs were low. In some

cases, they were even below the threshold. Difference in terms of higher

PCE value for SDRs in comparison to HDRs is noticeable in the case of

captures taken by steady hand, as well. In case of captures made by shaky

hand, analogy to the previous two cases cannot be applied. While devices

A02, A04 and A05 were shown to have similar PCE values for both cases,

when noise is extracted from SDR and HDR images, the other half of the

devices was shown to have higher PCE values when SDR components are

correlated.

Similar results were obtained with devices A07-A17. Differences between

PCE values of SDR and HDR images were not as emphasized as for the

previously considered set of devices, rather minor in case of devices A07-

A10. On the other hand, A11-A17 followed the same behavior as A01-

A06 devices. Images captured by shaky hand did not show to follow any

pattern. While PCEs were similar for devices A08-A11 and A15, they were

distinctively higher for SDR than HDR images captured by other devices

from the analyzed set.

Finally, iPhone devices I01-I06 have shown to obtain similar PCE values

for both of the image types, regardless of the camera motion. While PCE

values computed during the analysis of SDR images coming from devices I02-

I06 were slightly higher than the ones corresponding to the HDR images, I01
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Figure 7.4: PCE values obtained by SDR and HDR images when compared

with a flat SDR - based fingerprint (devices A01-A06).
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Figure 7.5: PCE values obtained by SDR and HDR images when compared

with a flat SDR - based fingerprint (devices A07-A12).
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Figure 7.6: PCE values obtained by SDR and HDR images when compared

with a flat SDR - based fingerprint (devices A13-A17).
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Figure 7.7: PCE values obtained by SDR and HDR images when compared

with a flat SDR - based fingerprint (devices I01-I06).
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device has shown the unexpected results. With this device, PCE values for

images captured by steady and by shaky hand are shown to be higher for

HDR images correlated with the SDR-based fingerprint.

At this stage of analysis, it is already noticeable that camera motions

have an impact on the image noise. However, the results did not show the

best performances in case of complete steadiness during the image capturing,

nor that the motions have the same impact on all the devices. Taking into

account different possibilities of image creation and different types of imaging

sensors, it is expected to obtain results that cannot be generalized to all the

camera devices.

The analysis was further conducted by comparison of PCE values when

noise from SDR and HDR images was correlated with HDR-based finger-

print. Results are shown in Fig. ??. All the devices have shown the analo-

gous behavior as the previously described one. It was noted that the majority

of PCE values obtained by correlation of two image components (noise and

fingerprint) of the same type was higher than the threshold value, while cor-

relation of components of different types results in high or low PCE values,

depending on the employed camera device. This fact lead to the conclu-

sion that manufacturers choice of camera hardware has a great impact on

possibility and reliability of PRNU-based source identification.

It is worth to show and to discuss the atypical result cases. An example

obtained by a single I02 device is shown in Fig. 7.12. It is noticeable that

PCE values of HDR images captured by this device model were above the

threshold value for all the tested images, when they were correlated with

the fingerprint of SDR set of images. This occurred regardless of the camera

movements. Similar was obtained by employing SDR images captured by

completely different device model, A07, and correlating the relevant noise

to fingerprint of HDR images. Obtained result is given in Fig. 7.13. These

two examples show that some of the devices can be identified easier than

others, and that the correct identification of those devices can be provided

regardless of the type (HDR or SDR) of the images. On the other hand,

most of the devices have shown significantly different PCE values of images,

depending on their type.

7.3.2 Analysis in terms of fingerprint type

Previous section describes the analysis which focuses on the impact of single

image type on the obtained results. While fingerprints were the constant,
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referent components of analysis, sets of images belonging to different de-

vices were variables. On the other hand, this section analyses the impact of

different fingerprints on the same sets of images.

Comparing results shown in figures 7.3.1-7.7 with 7.3.1-7.11 for the same

set of devices, it is noticeable that SDR images have had higher PCE value

when HDR-based fingerprint was employed in case of A01, A05, I01 and I03

devices, for all three motion scenarios. Difference in terms of PCE value

enhancement in case of motion change cannot be seen for these devices. On

the other hand, images captured by devices A11, A15 and A17 have had

significantly higher PCE value when the noise extracted from SDR images

was correlated with SDR-based fingerprint. Images captured by all the other

devices were shown to have similar PCE values for both of the fingerprints.

Therefore, only seven of the employed devices were shown to have a no-

ticeable impact of fingerprint on the obtained results. This lead us to the

conclusion that a combination of bigger number of images, regardless of their

type, can suppress the anomalies and specific characteristics of different im-

age types to produce a reliable PRNU estimate in case of most of the devices.

It is assumed that PRNU estimate converges to the same estimation result

in case of both HDR and SDR images for these devices.

To confirm the previous statement, analysis of fingerprint impact on PCE

values was performed for HDR images, as well. It was shown that images

from devices A11 and A15 have had higher PCE values in correlation to SDR-

based fingerprint. While A11 device showed no differences in the amount of

PCE improvement for different motion scenarios, images from A15 device

have had significantly higher PCE in case of capturing by shaky hand. Im-

provements were noticeable for images captured using tripod, but there were

no differences in case of images captured by steady hand. In contrast to the

previously mentioned devices, A01, A17, I01 and I03 have had better per-

formances when the noise extracted from their HDR images was correlated

with corresponding HDR-based fingerprint. Differences in terms of camera

motions were not noticeable in these cases. All the other employed devices

were shown to have similar results for PCE values of HDR images, regardless

of the fingerprint type. Considering the fact that the majority of devices did

not show a big difference between the fingerprints based on HDR and SDR

images, the conclusion derived for previously described SDR images analysis

can be confirmed.

Comparing devices that deviate from the conclusion for SDR and HDR
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images at this stage of analysis, it can be seen that the same devices appear

in both of the cases. This makes a total of 7 out of 23 devices which produce

a noticeably different fingerprint when different types of images are used in

the process of fingerprint computation.

Having conducted the analysis of both image types and fingerprint types

separately, it is worth paying attention to the overall results. The ones

obtained for devices A13 and A14 are of a special interest because they

show a distinctive difference between SDR and HDR images taken by those

devices. In those cases, SDR images have had high PCE values, no matter

if the correlation was performed using flat SDR- or HDR-based fingerprint,

while HDR images have had low PCE value, except from the images captured

while shaking the camera device. Therefore, fingerprint type did not show

to have a big influence on the results in this case, but the type of the images

did. Moreover, camera movements were confirmed to have an impact on the

results.

7.3.3 MIX category results analysis

The previous research stages considered separately HDR and SDR images,

not only as single objects used for the purposes of source identification test-

ing, but also in the process of fingerprint computation. This section deals

with combined sets of HDR and SDR images captured by the same device,

which are contained in the MIX category. At this stage, fingerprints were

computed based on the relevant MIX set of images for all the employed

devices. Results from the previously described analysis served as a motiva-

tion for this step, because it was shown that sources are identifiable even

in the cases when correlation was computed between the HDR image noise

and SDR image fingerprint and vice versa. Considering the fact that the

original image properties are rarely available in the real-case scenarios when

source identification is needed, MIX category of images can provide the most

reliable results for source identification.

The obtained results are shown in Fig. 7.14-7.17. It can be seen that the

averaged PCE value of images captured by most of the devices was above

the threshold when MIX category of images was used as a reference.

SDR images from devices A01-A06 have shown better performances than

their HDR counterparts when they were captured by steady hand or using

tripod. On the other side, images taken by shaky hand using devices A02,

A04 and A05 have had similar PCE values, regardless of the image type, in
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correlation to the MIX flat fingerprint. The other half of the devices from

this set have shown better results for SDR images in case of shaking motion.

In this case, captures taken by shaky hand lead to bigger variations in results,

comparing to more steadily captured images. This observation is justified

by the fact that camera movement shifts the fingerprint matrices, making

different offsets for the analyzed images. The offset depends on the velocity

of the camera, which has not been measured during the dataset formation

process.

Difference between SDRs and HDRs in terms of PCE value was not sig-

nificant for devices A07-A10 when the MIX-based fingerprint was employed.

SDRs have shown better performances for devices A11 and A12, with the

exception of images taken by shaky hand using A11 device. In that case,

PCEs were comparable for SDR and HDR images. Similar conclusions can

be conducted by analyzing results obtained for devices A13-A17, where only

captures taken by devices A15 and A17 in shaking motion have similar PCE

values for both SDRs and HDRs, while the rest of the devices and motion

scenarios show the advantage of SDR images in source identification process

using PRNU method.

Deviation from the previous results occurred in the analysis of iPhone

devices. Images captured by I01-I06 in different motions have shown com-

parable PCE values for both SDR and HDR images. All the values were

above the threshold, with the exception of one part of the images taken by

I04 device using tripod. These results lead us to the conclusion that iPhone

devices are easier to identify than other devices included in this research, no

matter of the type of the analyzed image. This conclusion corresponds to

the one conducted after analyzing impact of using different types of images

and the same SDR- or HDR-based fingerprint for PRNU computation.

7.3.4 Reliability of source identification

The final stage of analysis was determining reliability of PRNU-based source

identification. As it is stated in the previous sections, reliability of the pro-

cedure results was decided based on calculated PCE values. The threshold

PCE value was chosen to be equal to 45.

Results have shown that both SDR and HDR image sources can be de-

tected using this threshold, with the exception of HDR images taken from

devices A12, A14 and partially A6 and A17. Considering this fact, it is

clear that PRNU method cannot be generally applied, because the devices
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themselves can introduce variable hidden digital content to the images they

produce or affect the procedure in other manner.

The most reliable source identification was provided for devices A07, A09,

A10, I01, I02, I03, I05 and I06. Camera movements and usage of flat images

were shown to have a minimal effect to PCE value for the previously men-

tioned devices. On the other hand, devices A06, A12 and A16 were shown

to produce higher PCE values for SDR, than HDR images. Furthermore,

source identification from SDR images was less prone to camera movements

for those devices. Taking the previous statements into account, it can be

concluded that complexity of HDR images introduces difficulties in source

identification for some devices. This phenomenon requires further analysis

of the HDR images creation procedure for the devices of interest.

7.3.5 Analysis of low PCE values

During the image analysis using standard PRNU method, it was noticed

that PCE value is unexpectedly low for some of the captures, in comparison

to the PCE values of other analyzed images from the same set. Guided by

this fact, it was decided to post-process the results in order to determine the

reason of poor PCE values for single cases.

The result obtained from A01 model is provided in Fig. 7.18. Twenty

groups of images were captured in different motions and modes. Each group

was provided the same image content as controlled variable. Considering

the differences in acquisition process of SDR and HDR images, it can be

concluded, by comparing the PCE values among three different motions,

that image alignment has a serious impact on performances of the PRNU-

based method. As shown in Fig. 7.18, PCE values of SDR images are higher

than the ones of HDR images captured in hand motion. However, situation

is opposite in tripod motion. The reason could be that the image alignment

operation in hand motion changes positions of pixels, which leads to the

mismatch between the noise image extracted from HDR image and R-PRNU.

In the case of tripod motion, multiple images with perfect alignment are used

to extract noise image. It is well-known that the more images are employed,

the more precisely the PRNU is calculated. Therefore, higher PCE values

could be obtained for HDR images in this case. In case of shaking motion,

depending on the algorithms used in each device, on the one hand, the shift

among the images would be too big to align images, which improves the

PCE value of HDR images. On the other hand, image alignment is executed



7.3 Results 87

reducing the PCE value of HDR images.

In order to further explore the reason behind the change of PCE value be-

tween SDR and HDR images, PRNU method based on the pixel patches was

applied. Firstly, the images and R-PRNU were cropped into non-overlapping

pixel patches with 128×128 size. Then, the PCE values for each pixel patch

were calculated and for each image pair (SDR and HDR images), they were

mapped into the same scale with log function to obtain the PCE map. PCE

maps of SDR and HDR images captured in hand motion (Fig. 7.19) are

shown in Fig. 7.20.

An interesting phenomenon occurs at smooth image regions with low

luminocity, such as ground with low brightness. PCE values of HDR images

have had higher values than their SDR counterparts in that case. The same

results were obtained for both over- and under-exposed image regions. On

contrary, PCE values were decreased for the pixel patches with smooth and

high luminance, such as the blue sky. The reason could be that HDR images

keep balance between the dark and bright areas and the PRNU-based method

performs better for the images with much smoother and higher luminance.

According to the previously described analysis, it can be concluded that, for

the smooth pixel patches with higher luminance, but not saturation, HDR

and SDR images both have high PCE values. Moreover, image regions with

over/under-exposure usually lead to low PCE value. In addition, the images

captured with strong amount of noise, such as the night scene shown in the

last column of Fig. 7.20, also have low PCE value.

The above presented analysis is more specific, rather general, due to the

fact that each device has its own specifics which directly influence the results

of PCE values obtained on images acquired by them. Considering that,

the further analysis in terms of image acquisition [114] and sensor pattern

noise specifics [80] is required. Proposed dataset provides the ability for this

and wider researches, such as estimation of displacement fields from pairs

of digital images [115] and characterization of the dynamic behaviour of a

mechanical chain tensioner by functional tolerating [116].
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Figure 7.8: PCE values obtained by SDR and HDR images when compared

with a flat HDR - based fingerprint (devices A01-A06).
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Figure 7.9: PCE values obtained by SDR and HDR images when compared

with a flat HDR - based fingerprint (devices A07-A12).
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Figure 7.10: PCE values obtained by SDR and HDR images when compared

with a flat HDR - based fingerprint (devices A13-A17).
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Figure 7.11: PCE values obtained by SDR and HDR images when compared

with a flat HDR - based fingerprint (devices I01-I06).
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Figure 7.12: Example of result obtained correlating noise from HDR images

captured by I02 model with SDR images fingerprint.

Figure 7.13: Example of result obtained correlating noise from SDR images

captured by A07 model with HDR images fingerprint.
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Figure 7.14: PCE values obtained by SDR and HDR images when compared

with a flat MIX- based fingerprint (devices A01-A06).
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Figure 7.15: PCE values obtained by SDR and HDR images when compared

with a flat MIX- based fingerprint (devices A07-A12).
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Figure 7.16: PCE values obtained by SDR and HDR images when compared

with a flat MIX- based fingerprint (devices A13-A17).
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Figure 7.17: PCE values obtained by SDR and HDR images when compared

with a flat MIX- based fingerprint (devices I01-I06).
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Figure 7.18: Example of result obtained correlating noise from HDR images

captured by A01 model with SDR images fingerprint.
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(a) Examples of SDR images

(b) Examples of HDR images

Figure 7.19: Examples of (a) SDR and (b) HDR images.
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(a) PCE map for examples of SDR images

(b) PCE map for examples of HDR images

Figure 7.20: PCE maps for examples of SDR and HDR images.
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Chapter 8

Conclusion

In order to obtain reliable results in multimedia forensics investigations, hav-

ing a properly formed dataset with all the information needed is of a crucial

importance. During the research activities conducted within this thesis,

three novel datasets of images and videos were introduced. Datasets were

further used in source identification procedure based on the well-known algo-

rithms, in order to investigate the impact of acquisition processes of modern

smartphone devices on the procedure. Different camera motions, multime-

dia types and compression algorithms used in several social media platforms

were taken into account.

As most of the available databases face the problem of non-expandability,

they suffer from becoming out-dated and inadequate for investigations in the

field of multimedia forensics. MOSES was introduced as a solution in the

form of mobile application able to record and store videos in the dataset

already containing a large number of video files. Being easily accessible and

simple for using, MOSES has a good potential for creating a large, con-

tinuously updated and expanded video dataset. As it is relatively novel

application, its popularity and success should be traced in order to make im-

provements and optionally include possibility for uploading images alongside

of videos. Moreover, for enabling further researches on the created dataset,

it will become publicly available on-line in the near future.

VISION was introduced as the second proposed dataset, containing both

images and videos. PRNU-based source identification was tested on this

dataset and PRNU estimates computed on the basis of videos and images

acquired by the same devices were compared. Comparison has shown that
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the estimates have significant differences and that some manipulations have

to be performed in order to match them. Considering the adequate algorithm

has not been developed up to this date, VISION can serve as a suitable

testing dataset in the researching process, due to the large span of multimedia

and information it contains.

Furthermore, previously mentioned datasets include images and videos

exchanged through the most popular social media platforms, thus enabling

investigation of the exchanging impact on the original files. The research

conducted in this thesis has shown that this procedure introduces difficulties

in source identification based on PRNU estimation, lowering the correlation

between the exchanged multimedia and its acquiring device. The thesis in-

troduced an analysis of ROC curves produced for original multimedia and

multimedia exchanged through WhatsApp, Facebook and YouTube, provid-

ing comparison of source identification reliability. However, deeper analysis

of the impact of different compression algorithms, factors and the number of

compression times on source identification procedure is required.

PRNU-based source identification algorithm was shown to have obstacles

in case of MOSES and VISION datasets, although they contained multime-

dia files which were mostly obtained using standard capturing profile. For

the purposes of investigating other possible obstacles introduced with mod-

ern smartphone devices, HDR images were analyzed as well, due to their

complexity and wider dynamic range. It was shown that HDR images, in

most cases, are harder to correlate with the source device, comparing to SDR

images. As their popularity increases, this can become a burning problem

and research topic not only for HDR images, but also for HDR videos.

Different camera motions and device characteristics were also shown to

affect the results. As the obtained results could not be generalized to all the

capturing devices, the need for deeper analysis in terms of acquisition pro-

cesses of the employed devices is imposed. Further researches on this topic

can also include photographic devices, which use different capturing pro-

cedures than smartphones. This investigation can help in obtaining more

generalized results in terms of reference pattern noise-based source identifi-

cation possibilities.

Considering the scope and content of datasets presented in this thesis,

they can be employed in various multimedia forensics investigations, but also

in other scientific fields related to image and video files.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. Al Shaya, O, Yang. P, Ni. R, Zhao. Y, and Piva. A. “A new dataset for

source identification of High Dynamic Range images”, Sensors, 2018

1. Shullani. D, Fontani. M, Iuliani. M, Al Shaya, O and Piva. A.“VISION:

a video and image dataset for source identification”, EURASIP Journal on

Information Security, 2017

National Conferences

1. Shullani, D., Al Shaya. O, Iuliani. M, Fontani. M, and Piva. A. “A

Dataset for Forensic Analysis of Videos in the Wild”, in International Tyrrhe-

nian Workshop on Digital Communication (pp. 84-94) Springer,Cham, Italy,

September 2017

1The author’s bibliometric indices are the following: H -index = 1, total number of

citations = 14 (source: Google Scholar on Month 1, 2019).
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