
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA

IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN STATISTICA

CICLO XXXI

Sede amministrativa Università degli Studi di Firenze
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Life is what happens to you

while you’re busy making other

plans.

Jhon Lennon
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Abstract

In this thesis I consider the problem of outliers detection in univariate time series, in

particular when the assumed underlying data generating process belongs to the class of

seasonal linear processes.

In statistical literature several outliers detection techniques have been proposed in the

context of linear seasonal time series models, and lately, further techniques have been de-

veloped in the computer science literature, however, these are not base on an underlying

statistical model and will not be discussed here.

Traditional outliers detection technique may fail when a pattern of outliers contaminate

the data. In this case two effects can be observed: swamping and masking. Swamping

happens when the effect of the outlying units is so strong that the procedure classifies

good units as outlying data points. Masking, instead, results when few data points are

not detected by the diagnostics because they appear “masked” from the other outliers

units.

This work consider an extension of the Forward Search procedure to the aforementioned

class of models, with the aim of producing a detection method not affected by the mask-

ing nor by the swamping effects. In order to extend the Forward Search, the models are

first represented in their State Space form, and to deal with the missing units generated

through the search, the Kalman filter is used. During the search a series of quantities,

relevant for outliers detection and which results insensitive to the swamping and masking

effect are monitored.

The aim of this work is threefold. First, review the theory behind the class of linear sta-

tionary seasonal models and the theory behind outliers in the time series context. Second,

to extend the Forward Search to the class of seasonal linear time series models, introduc-

ing a series of new quantities whose monitoring can reveal spurious units. Third, suggest

an automatic outliers detection technique that might be used as an exploratory tool to

identify in a straightforward way anomalies in the data. In order to show the potential of

the Forward Search two real examples are considered.
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Introduction

This thesis is concerned with the application of the Forward Search to linear models for

the analysis of time series data. In particular we refer to the class of SARIMA models,

which allow to describe stationary as well as non stationary series that may contain a

trend, a seasonal component or both.

As in standard parametric techniques developed for independent data, classical time series

methods relies on the assumption of normality.

By assuming Gaussian innovations it is possible to simplify the computational aspects of

the estimation process, and take advantages of some well known results concerning the

maximum likelihood estimator and the derived quantities.

Nevertheless, when the data deviates from normality, due to few atypical observations,

traditional estimation and inferential procedures might result inconsistent and strongly

biased.

In the statistical literature, units that may badly affect the estimates and the inferential

results are called outliers. In the literature, many different definitions of outliers have

been proposed, but in general units that differ from the majority of the data or that

result inconsistent with the assumed model are identified as outliers.

Some recent references that discuss the impact of the outliers and the related statistical

methods in a detailed way are Maronna et al. (2006), Huber and Ronchetti (2009) and

Hampel et al. (2011).

In statistics the problem of outliers has been addressed in two different ways. Through

the robust approach and through the detection and identification of atypical units.

• Robust approach: in the robust approach the major aim is to develop estimators and

inferential methods that are not affected by a certain number of outliers. Thus, the

objective of a robust estimator is to obtain an estimate as close as possible to the

estimate obtained in absence of outliers. Likewise, the aim of a robust inferential

test is to obtain a statistical test that maintain its good properties when the sample

is contaminated.

• Outliers detection: outliers detection procedures have the objective to identify the

units that represent potential outliers. Generally these methods work in two steps.

9
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First a measure of deviation between the data and the assumed model is computed.

Second a statistical test is performed to check for statistical evidence against a given

units. Once the units have been flagged as potential outliers further analysis can be

done on the data.

Often the difference between robust and outliers detection procedures is very mild, how-

ever we want to emphasis that the two techniques pursue two different objectives.

Following this further, robust procedures, depending on the way they are performed can

be classified into three different categories:

• Soft Trimming : soft trimming techniques refer mainly to M , S, MM estimators and

derived methods (Huber and Ronchetti (2009)). The aim here is that observations

near the center of the distribution retain fully their value, but a function ρ(·), which

determines the form and the amount of trimming, ensures that increasingly remote

observations receive a weight that decreases with the distance from the center.

• Hard Trimming : in hard trimming procedures observations are weighted according

to a {0, 1} scheme. Units that conform with the specified model receive weight 1

and are included in the estimation process, whereas observations that do not con-

form with the assumed model, and are potential outliers, receive weight 0 and are

excluded from the estimation. The most widely used hard trimming estimators are

the LTS estimator and its extension the RLTS (Rousseeuw (1984)) that retains

high robustness while resulting more efficient.

• Adaptive Trimming : in the Forward Search (FS) (Hadi (1992), Atkinson et al.

(2010), Atkinson and Riani (2012)), the observations are again hard trimmed, but

the value of h, that is to say the number of units on which the fit is performed, is

determined by the data, being found adaptively by the search. Data analysis starts

from a very robust fit to a few, carefully selected, observations found by LMS or

LTS with the minimum value of h. The number of observations used in fitting then

increases until all are included.

A dated, but broad survey of robust theory applied to time series models is given by

Stockinger and Dutter (1987).

Differently from the iid context, in time series data, depending on the type of the con-

tamination model assumed, it is possible to identify different types of outliers. A first

classification of outliers in time series was given by Fox (1972), who introduced the in-

novative and additive outliers, respectively abbreviate by IO and AO, and two different

models that can be used to describe them and their effects on the time series.

Further types of outliers have been discussed by Tsay (1988) and Peña (1990). A detailed

discussion of the different forms out outliers and on their effects will be given in Chapter
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5. The identification and the study of the outliers in time series is an integrating part

of the analysis process. In fact, by considering, the type, the magnitude and the instant

at which an outlier occurred, it is possible to collect useful insights about the underly-

ing series. For example, an outlier might indicate a change of regime, suggesting that

a different model might be more appropriate for that problem. Further, the presence of

different outliers in a series might reveal that particular events of interest took place at

those instants. For all of these reasons the treatment of outliers is a complex subject that

requires as much common sense as theory. Methods developed for dealing with outliers

should not be seen as mere procedures that classify an observation as conform or not with

respect to the assumed model, but as an exploratory tool that may reveal interesting

characteristics of the underlying data. In my personal opinion, the exploratory nature of

the Forward Search fits really well in the context of time series.

The FS represent a powerful and flexible tool that can be applied in many different con-

text and for different purposes. Other applications beyond outliers detection are robust

inference and monitoring.

In this thesis I propose a possible extension of the Forward Search method to the class of

SARIMA models. In time series analysis, the Forward Search has been first introduced

by Grossi and Riani (2002), in the context of non-stationary structural time series models

and subsequently Grossi and Laurini (2009) and Grossi (2004) extended it to conditional

volatility models (ARCH and GARCH) models.

In particular, Riani (2004), used the Kalman filter to obtain the exact maximum likelihood

estimates of the hyper-parameters, pointing out that the missing observations generated

at the different steps of the FS are easily handled by the Kalman filter and its recursions.

Whereas, F. Laurini and L. Grossi proved how the FS can be used as a useful tool to

improve the performance of a statistical test.

In Grossi and Laurini (2009), they showed how the standard ARCH test can be greatly

affected by atypical units and next they suggested the FS as a flexible tool that can be

used to robustify the ARCH test. Recently Crosato and Grossi (2017), extended the For-

ward Search methodology to GARCH(1, 1) models. In that setting, where the Kalman

filter can not be used to handle the missing observations they adopted an adaptive soft

trimming strategy. That is, a weight function assigns a weight to each unit at each step

of the search. Next, the estimation is performed on all the units taking into account the

different wights received. On one hand, as pointed out by the authors, this procedure de-

crease the robustness properties of the search, while, on the other hand, it allows to keep

intact the natural time dependence structure of the data which is generally not considered

in the FS performed with the Kalman filter. When dealing with general ARMA(p, q)

processes one of the difficulties that might be encountered is parameters estimation.

For this reason many outlier detection techniques developed for this class of models relied

on the AR approximation. By doing so it is possible to obtain conditional maximum

likelihood estimates in an easy way. However, the AR approximations despite it is correct
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from mathematical reasoning might be inconvenient in many practical applications where

a parsimonious model is preferred, or when the observed time series is short.

By representing the ARMA process in the state space form we overcome this difficulty.

The use of the state space representation and the Kalman filter has two advantages. First

it enable us to treat exact ARMA(p, q) process without approximating the model of in-

terest with an high order AR model. Second following Riani (2004), the Kalman filter

results a formidable technique to handle the missing unit generated during the FS.

Moreover, since Kalman filter can be used to obtain maximum likelihood estimators for

every linear and non linear model that has a state space representation, the FS applied

to state space models can potentially be applied to any linear model that admits a state

space representation.

The thesis will be structured as follows. In Chapter 1 I will introduce some basic concepts

about time series models and time series analysis that lay the foundations of the topics

discussed in the subsequent chapters. Chapters 2 presents the class of ARMA processes

and their related time domain properties and characteristics. Chapter 3 presents the

class of SARIMA models that are the natural extension of ARMA model to deal with

non stationary processes that exhibit trend, seasonal component or both. In Chapter 4

I explain the state space representation of the models discussed in the previous chapters

and that are used in the Forward Search. Moreover, I will develop the theory behind the

Kalman filter which plays a key role in the Forward Search in obtaining the maximum

likelihood estimators

Next, in Chapter 5 I will present the different types of outliers that can be encountered

in time series data and in Chapter 6 I will review the outlier detections techniques, that

inspired the extension of the Forward Search to the class of SARIMA models.

Finally, in Chapter 7 starting from the linear regression model I will present the Forward

Search method and its extensions to the class of SARIMA family of processes. In or-

der to show the potential of this technique two real time series are analyzed and discussed.



Chapter 1

Introduction to stochastic processes

The objective of this first chapter is to introduce formally the concept of a time series

and review the statistical and probabilistic tools that will be used in the next chapters.

Starting from the definition of stochastic process, the properties of stationarity and er-

godicity will next be presented. Subsequently we will shortly review the main stochastic

processes generally encountered in time series literature.

1.1 Stochastic process:

definition and properties

A time series is a set of ordered observations yt, taken often at equal spaced instants in

time. In order to discuss formally the properties and the characteristics that a time series

have, it is customary to consider a time series as a finite realization of an underlying

process that generates the data.

Formally, let (Ω,F ,P) be a probability space, where Ω is the sample space, F is the

σ-algebra defined on the sample space and P is the probability measure. Take T as an

index, and without loss of generality consider T as the time.

Definition 1 A stochastic process is a collection of indexed random variables {Yt} =

{Yt(ω) : t ∈ T , ω ∈ Ω}, that is Yt : Ω→ R.

Mathematically, the index set T can be any set, but for practical applications it is usually

taken as {1, 2, . . . , n}, as N, the set of natural numbers, or as R, the set of real numbers.

Each random variable Yt(ω) in the stochastic process is a function of the two elements t

and ω, and depending on them it can assume different meanings. In particular:

1. When Yt(ω) is a function of t ∈ T and ω ∈ Ω, Yt(ω) is a stochastic process

2. When Yt(ω) is a function of t ∈ T and we fix ω = ω0, then Yt(ω0) represents a single

realization of the stochastic process, which is called sample path

13
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3. When Yt(ω) is a function of ω given t = t0, Yt(ω) is a random variable

4. When t = t0 and ω = ω0, we have a real number that represents the value assumed

by Yt(ω) when ω = ω0 at instant t = t0.

Given the previous notions it is now possible to formally define a time series.

Definition 2 A time series {yt}, t = 1, 2, . . . , n is defined as an observed sample path of

the underlying stochastic process {Yt} which is assumed to generate the data.

In order to fully describe the probability structure of a stochastic process {Yt}, all the

finite dimensional marginal distributions of the process should be known. That is to

say, we should know the distribution function FYti (yti) at each instant ti, the distribution

function FYti ,Ytj (yti , ytj) at each pair of instants ti, tj, and so on until the joint distribution

of the processF{Y }(yt1 , yt2 , . . . , ytn) is fully specified.

In practice this is hardly possible and it is customary to define the stochastic process

in terms of its first and second moments. Define the expectation operator as E[Yt] =∫
S ytdFYt(yt), where S is the support of Yt. The first and second moments are given by

E[Yt] = µt (1.1)

V(Yt) = E[(Yt − µt)2] = σ2
t (1.2)

Cov(Yt, Yk) = E[(Yt − µt)(Yk − µk)] = γ(t, k) (1.3)

If several realizations are available, the above quantities could be estimated by “ensemble”

estimators. For example an ensemble estimate for equation (1.1) is given by

µ̃t =
1

m

m∑
i=1

y
(i)
t .

where y
(i)
t denotes the ith realization of Yt and m is the total number of realizations.

However, for each random variable Yt at time t, we have at hand only a single observation

and some restrictions must be imposed on the process that generate the data. These re-

strictions are necessary both, to restrict the number of parameters needed to characterize

the probabilistic structure of the process, and to obtain meaningful estimates. Restric-

tions come in two forms: stationarity and ergodicity.

1. Stationarity : restrictions on the time heterogeneity of the process, that allows to

reduce the number of parameters needed to describe the process.
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2. Ergodicity : restrictions on the memory of the process such that the moment of the

process can be estimated in a consistent way.

1.1.1 Stationarity

Definition 3 Let {Yt} be a stochastic process and let F{Y }(yt1 , yt2 , . . . , ytn) denote the

distribution function of the process at times t1, t2, . . . , tn. The process {Yt} is defined a

strictly stationary process if for each integer {t1, t2, . . . , tk} ∈ T and k

F{Y }(yt1 , ..., ytk) = F{Y }(yt1+k, ..., ytm+k).

Strict stationarity requires that the joint distribution of the process {Yt} is invariant with

respect to time shifts. This assumption is particularly strong, and in fact, assuming strict

stationarity is equivalent to assume that all the moments of the process do not change

over time.

In many situations it can be extremely difficult, or even impossible, to verify that a

stochastic process is strictly stationary. As a consequence, this assumption is relaxed by

introducing a weaker form of stationarity that imposes restrictions only on the first two

moments of the process.

Definition 4 A process {Yt} is said to be weakly stationary or covariance station-

ary if for all t ∈ T and every k

E[Yt] = µ (1.4)

V(Yt) = E[(Yt − µ)2 = σ2 (1.5)

Cov(Yt, Yt−k) = E[(Yt − µ)(Yt−k − µ)] = γ(k) (1.6)

Literally, weak stationarity requires that the first two moments of the process are not a

function of time.

It is important to note that a strict stationary process with finite second moments is

covariance stationary, whilst a weakly stationary process where all moments remain con-

stant in time is also a strictly stationary process.

From a mathematical point of view the stationarity assumption allows us to reduce the

number of parameters needed to describe the underlying process. While, from a practical

point of view it places some regularities conditions on the process, in such a way that we

are able to predict, with a certain margin of uncertainty, future values of it.
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1.1.2 Ergodicity

Stationarity restrictions are introduced in order to decrease the number of elements needed

to characterize the distribution of the process.

Once the number of parameters has been restricted it is important to identify under what

conditions it is possible to obtain consistent estimates of the parameters using time series

averages. It turns out that these conditions are met when the process is ergodic.

In order for a process to be ergodic some measure of dependence between random variables

Yt and Yt−k must vanish as k increase. If this is satisfied a law of large numbers can be

applied.

Theorem 1 (Weak Ergodic Theorem) Let {Yt} be a covariance stationary process

with finite mean E[Yt] = µ, and Cov(Yt, Yt−k) = γ(k). If

T∑
t=1

|γ(k)| <∞ (1.7)

then

1

T

T∑
t=1

Yt
p→ µ as T →∞

The condition
∑T

k=1 |γ(k)| is known as the absolute summability of the autocovariance

function and it is obviously satisfied for iid processes. Absolute summability is sufficient

for weak ergodicity but is by no means necessary for it. A stronger result can in fact be

obtained by imposing the weaker condition 1
T

∑T
k=1 γ(k)→ 0. Processes that satisfy this

weaker condition are called mixing processes.

Definition 5 A process {Yt} is said to be mixing if for all t ∈ T and for every k,

lim
k→∞

λ(k) = 0, where λ(k) is defined as

|Cov(Yt, Yt−k)| ≤ λ(k). (1.8)

The coefficient λ(k) is commonly called the mixing coefficient. From a practical point

of view the above inequality tells us that as we consider random variables far apart in

the series their covariance becomes approximately zero. Serial dependence that is ruled

out by the standard LLN, is allowed in the ergodic theorem, provided that it disappears

in the long run. Moreover, since for each measurable function g(·), g(Yt) is ergodic and

stationary whenever Yt is, the ergodic theorem implies that any finite moment, if it exists,

can be consistently be estimated by the corresponding sample moment.
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1.1.3 Autocovariance, autocorrelation

and partial autocorrelation functions

When the process {Yt} is stationary its dependence properties can be summarized by

γ(k), whose expression for a stationary process was given in equation (1.6).

Equation (1.6) seen as a function of the time lag k is called the autocovariance function of

the process (ACVF). When the process is stationary it possible to prove that the ACVF

enjoys the following properties:

Theorem 2 Let {Yt} be a stationary process with autocovariance function γ(k). Then

γ(k) satisfies the following properties

1. σ2 = γ(0) > 0

2. |γ(k)| < γ(0) for all k ≥ 1

3. γ(k) = γ(−k)

The last property allows us to consider the ACVF only for positive lags since it is a

symmetric function of the lag value k.

In order to compare processes measured on different scales a useful transformation can

be obtained dividing γ(k) by the variance of the process. This standardized ACVF is

called the autocorrelation function (ACF ). The ACF is a normalized measure of the

autocovariance, that is

ρ(k) =
γ(k)

γ(0)
=
Cov(Yt, Yt−k)

V(Yt)
. (1.9)

For a stationary process the autocorrelation satisfies the following properties

Theorem 3 Let {Yt} be a stationary process with autocorrelation function ρ(k). Then

ρ(k) satisfies the following properties

1. ρ(0) = 1

2. |ρ(k)| < 1 for all k

3. ρ(k) = ρ(−k)

Another further summary of the linear dependence of a stationary process can be ob-

tained from the partial autocorrelation function (PACF ). The partial autocorrelation

function measures the correlation between Yt and Yt−k after their linear dependence on

the intervening random variables Yt−1, Yt−2, . . . , Yt−k+1 has been removed.

Definition 6 Let {Yt} be a stationary process. The partial autocorrelation function of

the process s defined by
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α(k) = Cor(Y1 − P{1,Y1,Y2,...,Yk}Y1, Yk−1 − P{1,Y1,Y2,...,Yk−1}Yk)

where P{1,Y1,Y2,...,Yk}Y1 and P{1,Y1,Y2,...,Yk−1}Yk are the projections of Y1 and Yk on the space

spanned by {1, Y1, Y2, . . . , Yk−1}.
The value of α(k) is the partial autocorrelation at lag k. The partial autocorrelation

therefore, corresponds to the correlation between the two sets of residuals obtained by

regressing Yt and Yk on the intermediate observations {1, Y1, Y2, . . . , Yk−1}.
When dealing with real data the true ACV F , ACF and PACF are commonly unknown

and they are replaced by their sample counterparts.

1.2 Common stochastic processes

In this section we will briefly present three of the most common stochastic processes that

are often encountered in time series literature. These are the white noise process, the

martingale process and the linear process.

The white noise process and the linear process represent the building blocks for the ARMA

models discussed in the next chapter.

1.2.1 White noise process

Definition 7 A sequence of random variables {Yt} is a white noise process with mean µ

and variance σ2, if for each t ∈ T and k

1. E[Yt] = µ

2.

γ(0) = σ2

γ(k) = 0

A white noise sequence of random variables will be denoted by Yt ∼ WN(µ, σ2).

Literally, a white noise sequence indicates a sequence of uncorrelated random variables

with mean and variance constant over time. Assuming incorrelation is much weaker than

assuming independence, as, independence imply incorrelation while the converse does not

hold.

When a white noise process is also independent it is called an independent white noise

process or strong white noise.
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1.2.2 Martingale and martingale difference processes

Martingale are commonly encountered in time series when proving asymptotic results and

theorems that involves dependence among the random variables.

To begin, let (Ω,F ,P) be a probability space with additionally, {Ft}, an increasing se-

quence of sub-σ-algebra of F . {Ft} is defined a filtration.

Literally the filtration represent the information that we gain by observing the process

for an increasing amount of time. If t is interpreted as a discrete time index, then Ft
contains the information up to time t.

Definition 8 A sequence {Yt} of random variables is Ft adapted if Yt is measurable with

respect to Ft for all t. If Ft = σ{Y1, Y2, . . . , Yt} we define {Ft} as the natural filtration

of the series.

Having defined the filtration we can give a formal definition of martingale.

Definition 9 An Ft adapted sequence of random variables {Yt} is a martingale if

E[Yt|Ft] <∞ for all t

and

E[Yt+1|Ft] = Yt a.s for all t.

In econometrics literature the σ-algebra Ft = σ{Y1, Y2, . . . , Yt} is commonly called the

information set and heuristically it contains the information provided by the random

variables Y1, Y2, . . . , Yt.

A white noise process is a particular case of martingale, however the converse it is not

necessarily true. While in a martingale the first conditional moment is assumed constant

over time, the other moments might be functions of time. Strictly connected to the

martingale there is the martingale difference.

Definition 10 An Ft adapted sequence of random variables {Yt} is a martingale differ-

ence if

E[Yt|Ft] <∞ for all t

and

E[Yt+1|Ft] = 0 a.s for all t
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1.2.3 Linear process

Definition 11 A zero mean process {Yt} is linear if it can be written as an infinite linear

combination of white noise terms. That is

Yt =
∞∑
j=0

ψjεt−j εt ∼ WN(0, σ2
ε ) (1.10)

where for convention ψ0 = 1.

The process is said linear because it does not contain mixed components of the form

εt−jεt−i. The white noise process εt may be regarded as a series of shocks that drive the

system.

When E[Yt] = µ a linear representation of the process can be obtained for Ỹt =
∑∞

j=0 ψjεt−j,

where Ỹt = (Yt − µ) is the deviation of the process from its mean.

Introducing the backshift operator B, defined as Bεt = εt−1, and the linear filter associated

to it ψ(B) =
∑∞

j=0 ψjB
j the process can be rewritten as

Yt = ψ(B)εt.

The importance of the linear process relies on the fundamental result of Wold (1938) who

established the theorem.

Theorem 4 (Wold Theorem) Any zero-mean purely non deterministic stationary pro-

cess Yt can be represented as

Yt =
∞∑
j=0

ψjεt−j εt ∼ WN(0, σ2
ε )

with
∑∞

j=0 ψ
2
j <∞.

The εt are uncorrelated with zero mean and common variance σ2
ε but need not be inde-

pendent. Throughout we will refer to linear processes for processes of the form (1.10)

in which the εt are independent. A linear process is stationary and it properties may be

expressed in terms of its first two moments.

The unconditional mean and the variance of the process are given by

E[
∞∑
j=0

ψjεt−j] =
∞∑
j=0

ψjE[εt−j] = 0

V(
∞∑
j=0

ψjεt−j) =
∞∑
j=0

ψ2
jV(εt−j) = σ2

ε

∞∑
j=0

ψ2
j
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In order order for the process to be stationary, a sufficient condition is that
∑∞

j=0 ψ
2 <∞,

which ensures that the variance of the process is bounded.

The autocovariance function is

γ(k) = E[(
∞∑
j=0

ψjεt−j)(
∞∑
i=0

ψiεt−i−k)]

=
∞∑

i,j=0

ψjψiE[εt−jεt−i−k]

= σ2
ε

∞∑
j=0

ψjψj+k

and the autocorrelation function is

ρ(k) =
γ(k)

γ(0)
=
σ2
ε

∑∞
j=0 ψjψj+k

σ2
ε

∑∞
j=0 ψ

2
j

=

∑∞
j=0 ψjψj+k∑∞

j=0 ψ
2
j

.

Under suitable conditions the linear process Yt can be expressed as a weighted sum of

past Yt’s and an added shock εt, that is

Yt = π1Yt−1 + π2Yt−2 + · · ·+ εt

=
∞∑
j=1

πjYt−j + εt (1.11)

In this alternative form the current value Yt or the current deviation Ỹt is “regressed” on

the past values Yt−1, Yt−2, . . . of the process.

A linear process that can be represented as (1.11) is said to be invertible.

Relationship between ψ and π weights

The relationship between the weights of the two forms can be established by using the

backshift operator.

Given the process Yt = ψ(B)εt where

ψ(B) = (1 +
∞∑
j=1

ψjB
j) =

∞∑
j=0

ψjB
j

we assume that the process is invertible and can be represented as
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εt = π(B)Yt

where

π(B) = (1−
∞∑
j=1

πjB
j) =

∞∑
j=0

πjB
j.

From the two representations the following equality can be derived

ψ(B)π(B)Yt = ψ(B)εt = Yt.

Hence, ψ(B)π(B) = 1 that leads to the relationship

π(B) = ψ−1(B).

This relationship can be used to recover the weights π knowing the weights ψ and vice

versa.

Stationarity and invertibility conditions for a linear process

Stationarity: The necessary condition for a linear process to be stationary is that

the series defined in (1.10) is convergent. This is guaranteed by the condition that∑∞
j=0 |ψj| < ∞. A sufficient condition for this to hold is that

∑∞
j=0 ψ

2
j < ∞ which

ensures that the variance of the process is bounded.

Alternatively the stationary condition can be embodied using the backshift operator.

Given the polynomial ψ(B) =
∑∞

j=0 ψjB
j we require that the series is convergent

for |B| < 1.

Invertibility: A similar restriction applied to the weights ψ can be applied to the π

weights to ensure that the process is invertible, that is to say, that the representation

(1.11) is admissible.

In order for the process to be invertible we require that the series π(B) =
∑∞

j=0 πjB
j

converges for all |B| < 1, which is equivalent to the condition that
∑∞

j=0 |πj| <∞.



Chapter 2

Linear stationary models

The aim of this chapter is to introduce the class of stationary linear time series models,

which are used to describe the covariance structure in the time series.

There are three sub-groups of linear models, the autoregressive models, the moving av-

erage models and the mixed autoregressive-moving average models that are obtained as

a combination of the first two. The existence and the importance of this three classes

of models depends on the Wold theorem. In the following the time domain properties of

these three classes of models will be presented and discussed.

2.1 Autoregressive models

The class of autoregressive models can be broadly considered an extension of the linear

regression model, with the difference that instead of a set of explanatory regression vari-

ables the regression is performed on the lagged values Yt−1, Yt−2, . . . , Yt−p. The number

of lagged variables used in the equation defines the order of the model.

In an autoregressive process of order p, the random variables separated by p lags are

conditionally independent.

2.1.1 Autoregressive model of order p

The autoregressive model of order p, shortly indicated with AR(p), can be obtained from

the linear representation (1.11) by setting the weights πj, for j > p equal to zero. Formally,

Definition 12 {Yt} is an autoregressive process of order p if for every t,

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt (2.1)

23
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where εt ∼WN(0, σ2
ε ) and {φ0, φ1, . . . , φp} are unknown parameters.

Using the backshift operator, the AR(p) model can be written in the equivalent form

φ(B)Yt = φ0 + εt (2.2)

where φ(B) = (1−
∑p

j=1 φjB
j).

This implies the following relation for the model

φ(B)Yt = φ0 + εt ⇒ Yt = φ−1(B)φ0 + φ−1(B)εt

=
φ0

1−
∑p

j=1 φj
+ ψ(B)εt, (2.3)

where φ−1(B) = ψ(B).

Taking expectation of (2.3) the unconditional mean of the process is

E[Yt] = E[
φ0

1−
∑p

j=1 φj
+
∞∑
j=0

φjεt−j] =
φ0

1−
∑p

j=1 φj
= µ.

Substituting φ0 = µ(1−
∑p

j=1 φj) in (2.1) and rearranging the terms, we obtain the mean

centered representation of the process, that is,

(Yt − µ) = ψ(B)εt (2.4)

where ψ(B) =
∑∞

j=0 ψjB
j.

Stationary and invertibility conditions for autoregressive processes

In order for an autoregressive process to be stationary the parameters φ1, φ2, . . . , φp must

satisfy certain conditions. These stationarity conditions are generally derived from the

roots of the polynomial in the lag operator φ(B).

The general AR(p) model can be written as (2.4) provided that the series
∑∞

j=0 ψjεt−j is

convergent. By factorizing φ(B) as

φ(B) = (1− λ1B)(1− λ2B) . . . (1− λpB)

where λ−1
1 , . . . , λ−1

p are the roots of φ(B), and following Box et al. (2015), φ−1(B) can be

expanded in partial fractions, yielding
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(Yt − µ) = φ−1(B) =

p∑
i=1

Ki

1− λiB
εt.

Consequently, in order for φ−1(B) to be a convergent series the weights ψj =
∑p

i=1Kiλ
j
i

must be absolutely summable, so that we must have |λi| < 1 for i = 1, . . . , p.

Equivalently, the roots of the polynomial φ(B) = 0 must lie outside the unit circle, that

is they must be greater than 1 in absolute value.

Equation φ(B) = 0 is called the characteristic equation of the process and the roots

of the characteristic equation are generally referred as the zeros of the autoregressive

polynomial.

Alternatively, the stationarity conditions can be verified in terms of the polynomial

zp − φ1z
p−1 − · · · − φp = 0.

By noting that the roots of φ(B) are the reciprocals of the roots of the polynomial in z,

the stationarity condition that all the roots of φ(B) = 0 must lie outside the unit circle

is equivalent to the requirement that all the roots of zp − φ1z
p−1 − · · · − φp = 0 lie inside

the unit circle. Given that π(B) = φ(B) = (1 −
∑p

j=1 φjB
j) is finite, an autoregressive

process is always invertible.

Autocovariance and autocorrelation function

To obtain the autocovariance of the process we consider the mean centered representation

of the model, that is

(Yt − µ) =

p∑
j=1

φj(Yt−j − µ) + εt.

The autocovariance is then obtained multiplying the above equation by (Yt−k − µ) and

taking expectation. Doing so we obtain

γ(k) = E[(Yt − µ)(Yt−k − µ)] = E{[
p∑
j=1

φj(Yt−j − µ) + εt](Yt−k − µ)}

= E[

p∑
j=1

φj(Yt−j − µ)(Yt−h − µ) + εt(Yt−h − µ)] (2.5)

where the expectation E[εt(Yt−k − µ)] is zero for k > 0 since (Yt−k − µ) can only involve
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the socks up to time t− k.

Thus, the covariance function results equal to

γ(k) =


∑p

j=1 φjγ(k − j) k > 0∑p
j=1 φjγ(j) + σ2

ε k = 0.
(2.6)

The autocorrelation is given by

ρ(k) =

p∑
j=1

φjρ(k − j) k > 0. (2.7)

Using the backshift operator, equation (2.7) can be rewritten as

ρ(k) =

p∑
j=1

φjB
jρ(k)⇒ φ(B)ρ(k) = 0

where φ(B) = (1−
∑p

j=1 φjB
j).

The process generates for the different lags a system of equations which is commonly

known as the Yule-Walker equations. This system of equations can be solved to obtain

the values of the autoregressive parameters starting from the autocorrelation function and

vice versa.

Next, using the factorization

φ(B) = (1− λ1B)(1− λ2B) . . . (1− λpB)

it is possible to show (Box et al. (2015) for a proof) that the general solution for φ(B)ρ(k) =

0 is

ρ(k) = A1λ
k
1 + A2λ

k
2 + · · ·+ Apλ

k
p

where Ai’s are constants.

Depending on the value assumed by the roots λi two situations can emerge.

1. A root λi is real in that case the term Aiλi decays to zero geometrically as k increase.

In literature this is referred to damped exponential.

2. A pair of roots λi and λj are complex conjugates, in this case their contribution

follows a damped sine wave.
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2.1.2 First-order autoregressive process

As a particular example we consider the AR(1) model that together with the AR(2) pro-

cess represents two of the autoregressive models most adopted in practice. Moreover the

results can be easily extended to processes of higher order.

Definition 13 Yt is an autoregressive process of order 1 if for every t,

Yt = φ0 + φ1Yt−1 + εt (2.8)

where εt ∼WN(0, σ2
ε ) and {φ0, φ1} are unknown parameters.

The unconditional mean of the process is

µ = E[Yt] = E[
φ0

1− φ1

+
∞∑
j=0

φj1εt−j]

=
φ0

1− φ1

+
∞∑
j=0

φj1E[εt−j]

=
φ0

1− φ1

(2.9)

and φ1 has to satisfy the restriction |φ1| < 1 in order for the process to be stationary.

Autocovariance and autocorrelation function

The autocovariance function of the AR(1) process is

γ(k) = E[(Yt − µ)(Yt−k − µ)]

= E[(
∞∑
j=0

φj1εt−j)(
∞∑
j=0

φj1εt−j−k)]

=
∞∑
j=0

φj1φ
j+k
1 E(ε2t−j)

= σ2
εφ

k
1

∞∑
j=0

φ2j
1 =

σ2
ε

1− φ2
1

φk1
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and setting k equal to zero the variance results

σ2 = γ(0) =
σ2
ε

1− φ2
1

.

Finally, the autocorrelation can be obtained as

ρ(k) =
γ(k)

γ(0)
=
φk1γ(0)

γ(0)
= φk1

Since |φ1| < 1, the autocorrelation decays exponentially to zero when φ1 is positive and

oscillates in sign when φ1 is negative. In particular ρ(1) = φ1.

2.2 Moving-average processes

A moving-average process (MA) is obtained by setting, in the linear process (1.10), the

parameters ψj, for j > q equal to zero. The number of parameters, q, different from zero

define the order of the moving average process process.

Conversely from autoregressive processes in a moving average process of order q, the ran-

dom variables after q lags are independent from each other. In practice moving average

models of order 1 and 2 are the most commonly used.

We will start by considering the time domain properties of a generic moving average pro-

cess of order q, MA(q), and next we will state the results for the MA(1) model.

2.2.1 Moving average process of order q

Definition 14 Yt is a moving average process of order q with mean µ if for every t,

(Yt − µ) = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (2.10)

where εt ∼WN(0, σ2
ε ) and {θ1, ..., θq} are unknown parameters.

Using the backshift operator defined previously, the model can be written in the alterna-

tive form

(Yt − µ) = θ(B)εt,

where the polynomial θ(B) is equal to
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θ(B) = 1− θ1B − θ2B
2 − ...− θqBq = 1−

q∑
j=1

θjB
j

and for convention we might assume that θ0 = −1.

Rearranging the term and taking expectation of (2.10) the unconditional mean of the

process results equal to µ. That is,

E[Yt] = µ+ E[

q∑
j=0

−θjεt−j] = µ+

q∑
j=0

−θjE[εt−j] = µ.

Stationarity and invertibility conditions for moving average processes

A key difference between AR and MA processes is that for the MA processes no restric-

tions must be imposed on the parameters to ensure stationarity. This results by noting

that the series

φ(B) = 1− θ1B − θ2B
2 − · · · − θqBq

is finite.

The condition of invertibility for a moving average process can be obtained by writing the

process as

εt = θ−1(B)(Yt − µ).

where θ−1(B) = π(B).

Expanding θ−1(B) in partial fractions we obtain

θ−1(B) =

q∑
i=1

Mi

(1− λiB)
(2.11)

where again λi are the roots of the polynomial θ−1(B) = 0.

The series defined in (2.11) converges if |λi| < 1, for i = 1, 2, . . . , q. Thus, the invertibility

condition of a moving average process of order q is that the roots λ−1
i of the characteristic

equation

θ(B) = 1− θ1B − θ2B − · · · − θqB

lie outside the unit circle or alternatively that all the roots of the polynomial

zq − θ1z
q−1 − · · · − θq = 0,
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lie inside the unit circle.

The weights πj of the linear representation can be obtained from the relation θ(B)π(B) =

1. From the equality the weights πj satisfy the equation

πj = θ1πj−1 + θ2πj−2 + · · ·+ θqπj−q,

with the convention that θ0 = −1 and πj = 0 for j < 0. The weights πj can thus be

recursively obtained in terms of the θi.

Autocovariane and autocorrelation function

The autocovariance of the MA(q) process is

γ(k) = E[(

q∑
j=0

−θjεt−j)(
q∑
i=0

−θiεt−i−k)]

= E(

q∑
i,j=0

θjθiεt−jεt−i−k)

=

q∑
i=0

θi+kθiE(ε2t−i−k)

= σ2
ε

q−k∑
i=0

θi+kθi. (2.12)

Terms involving ε’s at different lags have been dropped because they are uncorrelated,

while θ0 is assumed to be equal to −1.

Setting k = 0 in (2.12) the variance of the process is

γ(0) = σ2
ε

q∑
i=0

θ2
i .

while for k > 0, the autocovariance is

γ(k) = σ2
ε

q−k∑
i=0

θi+kθi.

Finally, the autocorrelation is
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ρ(k) =

∑q−k
i=0 θiθi+k∑q
i=0 θ

2
i

k = 1, 2, . . . , q

Therefore, the autocorrelation function of an MA(q) process is zero after the lag q. Be-

cause of this, the autocorrelation function of a moving average process is generally said

to cut off after lag q.

2.2.2 First-order moving average process

In many real applications the MA(1) and MA(2) processes provides good results.

Moreover, the properties stated for a first-order moving average model can be easily

extended to the MA(2) model. Formally,

Definition 15 Yt is a moving average process of order 1 with mean µ if for every t,

(Yt − µ) = εt − θεt−1 (2.13)

where εt ∼ WN(0, σ2
ε ) and θ is an unknown parameter.

In order for the process to be invertible the value of θ must satisfy |θ| < 1. Whereas the

process is stationary for all the values of θ.

Autocovariance and autocorrelation functions

The autocovariance of the MA(1) process is defined as

γ(k) = E[(Yt − µ)(Yt−k − µ)] = E[(εt − θεt−1)(εt−k − θεt−k−1)]

= E(εtεt−k − θεtεt−k−1 − θεt−1εt−k + θ2εt−1εt−k−1). (2.14)

From (2.14) the variance of the process results equal to
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γ(0) = E(ε2t − 2θεtεt−1 + θ2ε2t−1)

= σ2 + θ2σ2 = σ2
ε (1 + θ2)

while the lag 1 autocovariance is

γ(1) = E(εtεt−1 − θεtεt−2 − θε2t−1 + θ2εt−1εt−2)

= −θσ2
ε . (2.15)

Therefore, the behavior of the autocovariance function of the MA(1) process can be

summarized as

γ(k) =


σ2
ε (1 + θ2) k = 0

−θσ2
ε k = 1

0 k > 1.

From (2.14) and (2.15) the lag 1 autocorrelation is given by

ρ(1) =
−θσ2

ε

(1 + θ2)σ2
ε

=
−θ

(1 + θ2)

For k > 1 autocorrelations are of course equal to zero. As anticipated, the autocorrelation

of the MA(1) process cut off after lag 1 and is equal to

ρ(k) =


1 k = 0

−θ
(1+θ2)

k = 1

0 k > 1.

The correlation of the MA(1) process is completely determined by the value of θ. Positive

values of θ induces positive correlation, while negative values induce negative correlation.

The maximum possible value of ρ(1) is 0.5, which occurs if θ = 1. The smallest value is

−0.5, which occurs for θ = −1.
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For any value of ρ(1) between −0.5 and 0.5 there are two values of θ that can produce

that autocorrelation. This is explained by noting that the value of θ/(1+θ2) is unchanged

if θ is replaced by 1/θ. That is

ρ(1) =
1/θ

1 + (1/θ)2
=

θ2(1/θ)

θ2[1 + (1/θ)2]
=

θ

θ2 + 1
.

2.3 Relationships between AR and MA processes

Having discussed the properties of the autoregressive and moving average processes it is

possible to establish a duality between the two. In particular, an autoregressive process

of order p can be represented as an infinite weighted sum of past innovations, that is

(Yt − µ) = φ−1(B)εt =
∞∑
j=0

ψjεt−j.

Conversely, an invertible moving average process of order q can be written as an infinite

weighted sum of pasts (Yt − µ), that is

θ−1(B)(Yt − µ) =
∞∑
j=0

πj(Yt−j − µ) = εt.

Thus, provided that the series θ−1(B) and φ−1(B) are convergent, the above duality allows

to approximate a moving average process with an autoregressive one of infinite order, and

vice versa.

This duality is reflected also in the structure of the autocorrelation and the partial au-

tocorrelation functions of the two processes. The autocorrelation function of the MA(q)

process is zero beyond q lags, but since it is equivalent to an infinite AR process, its par-

tial autocorrelation function is infinite and it is characterized by damped sine and cosine

waves. On the other hand, the AR(p) process has a partial autocorrelation that is zero

after p lags but its autocorrelation consists of a mixture of damped exponentials and/or

sine waves.



34

2.4 Mixed autoregressive-moving average processes

Autoregressive and moving average processes can be unified together in a more general

model, the mixed autoregressive moving average process (ARMA). Its attractiveness

and wide use is given by its ability to describe a wide variety of situations with a very

parsimonious number of parameters. That is to say, an ARMA process of a low order

is generally able to describe an observed time series better, than an autoregressive or a

moving average process of higher order.

The number of autoregressive and moving average components in the equation determine

the order of the ARMA process.

Definition 16 Yt is a autoregressive-moving average process of order (p, q), if for every

t

Yt = φ0 + φ1Yt−1 + ..+ φpYt−p + εt − θ1εt−1 − · · · − θqεt−q (2.16)

where εt ∼ WN(0, σ2
ε ) and {φ0, φ1, . . . , φp, θ1, θ2 . . . , θq} are unknown parameters. It will

be written ARMA(p, q).

In terms of the backshift operator the model can be specified as

φ(B)Yt = φ0 + θ(B)εt, (2.17)

where

φ(B) = 1− φ1B − · · · − φpBp, and θ(B) = 1 + θ1B + · · ·+ θqB
q.

By taking expectation of (2.16) and assuming stationarity the unconditional mean of the

process is

µ = E[φ0 + φ1Yt−1 + ..+ φpYt−p + εt − θ1εt−1 − · · · − θqεt−q]

µ−
p∑
j=1

φjB
j
E[Yt] = φ0

µ− (1−
p∑
j=1

φj))φ0

µ =
φ0

1−
∑p

j=1 φj
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which corresponds to the mean of an autoregressive process of order p.

Substituting φ0 = µ(1 −
∑p

j=1 φj) in (2.16) we obtain the mean centered version of the

process, that leads to the following formulation,

φ(B)(Yt − µ) = θ(B)εt.

It possible to think of the ARMA(p, q) process in two ways:

1. As a pth order autoregressive process where ut follows a qth order moving average

process, that is

φ(B)(Yt − µ) = ut

with ut = θ(B)εt

2. As a qth order moving average process where at follows an autoregressive process of

order p, that is

(Yt − µ) = θ(B)at

where φ(B)at = εt, so that φ(B)(Yt − µ) = θ(B)φ(B)at = θ(B)εt.

Stationarity and invertibility conditions for the autoregressive-moving average

process

In order for the model (2.16) to be stationary the roots of φ(B) = 0 must lie outside the

unit circle, which is identical to the condition encountered for an autoregressive process

to be stationary. Likewise, the roots of θ(B) = 0 must lie outside the unit circle if the

process is to be invertible.

When both these constraints are satisfied the stationary and invertible ARMA(p, q) pro-

cess has both an infinite moving average representation given by

(Yt − µ) = ψ(B)εt =
∞∑
j=0

ψjεt−j,

where ψ(B) = φ−1(B)θ(B), and an infinite autoregressive representation, that is

π(B)(Yt − µ) =
∞∑
j=0

πj(Yt−j − µ) = εt,

where π(B) = θ−1(B)φ(B).
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The weights ψj of the autoregressive representation can be determined from the relation

φ(B)ψ(B) = θ(B) while the weights πj can be obtained from the relation θ(B)π(B) =

φ(B).

Autocovariance and autocorrelation functions for autoregressive-moving aver-

age processes

The ARMA(p, q) model defined in (2.16) can be rewritten in the mean centered version,

that is

(Yt − µ) =

p∑
j=1

(Yt−j − µ)−
q∑
i=0

θiεt−i.

where θ0 = −1.

The autocovariance function can then be obtained multiplying by (Yt−k − µ) and taking

expectation

γ(k) = E[(Yt − µ)(yt−k − µ)] = E[

p∑
j=1

φj(Yt−j − µ)−
q∑
i=0

θiεt−i](Yt−k − µ)

= E[

p∑
j=1

φj(Yt−j − µ)(Yt−k − µ)]− E[

q∑
i=0

θiεt−i(Yt−k − µ)]

=

p∑
j=1

φjγ(k − j)− E[

q∑
i=0

θiεt−i(Yt−k − µ)]︸ ︷︷ ︸
C

.

Next, replacing (Yt−k −µ) in C with its moving average representation, Yt−k = ψ(B)εt−k,

we obtain

E[

q∑
i=0

θiεt−i

∞∑
j=0

ψjεt−k−j].

By the properties of white noise processes it follows that εt at different lags are uncorre-

lated and the preceding equation for γ(k) becomes

γ(k) =

p∑
j=1

φjγ(k − j)− σ2
ε

q∑
i=k

θiψi−k.
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Hence, the autocovariance function is

γ(k) =


∑p

j=1 φjγ(k − j)− σ2
ε

∑q
i=k θiψi−k k ≥ p+ 1∑p

j=1 φjγ(j)− σ2
ε

∑q
i=0 θiψi k = 0∑p

j=1 φjγ(k − j) k ≥ q + 1.

(2.18)

(2.18) implies that the autocorrelation is

ρ(k) =


∑p

j=1 φjρ(k − j)− σ2
ε

∑q
i=k θiψi−k
γ(0)

k ≥ p+ 1∑p
j=1 φjρ(k − j) k ≥ q + 1

and hence φ(B)ρ(k) = 0 for k ≥ q + 1.

Therefore, for the ARMA(p, q) process beyond a certain number of lags, that is q− p the

ACF displays the same shape of that of an AR(p) process.

In particular if p > q the whole autocorrelation function ρ(k) for k = 0, 1, 2, . . . will

consist of a mixture of damped exponentials and/or damped sine waves whose structure

is defined by the roots of the polynomial φ(B). Conversely if q ≥ p there will be q− p+ 1

initial values of ρ(k) that do not follow this general pattern.
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Chapter 3

Linear non stationary models

The class of ARMA models introduced in the previous chapter to describe stationary

time series relies on the assumption that the underlying process is weakly stationary, that

is, that the mean and the variance are not functions of time and that the autocovariance

is a function only of the time lag. However, many time series encountered in practice are

not stationary and exhibits time-changing means and/or variances. It is hence necessary

to introduce further statistical techniques that are used when the stationarity assump-

tion is not met. In literature there are several approaches to model non stationary time

series, here we will follow the Box Jenkins approach, which relies on the ARIMA and

SARIMA models. These two further class of models represent a direct extension of the

ARMA models to non stationary time series and therefore fit well in our purpose of ex-

tending the Forward Search to time series models.

We will start by considering the two different cases of non-stationarity, non-stationarity in

variance, and non-stationarity in mean. Next we will introduce the class of ARIMA and

SARIMA models introduced to deal with non-stationary time series through differencing.

3.1 Non stationarity in variance

We begin by considering a time series that is non stationary in variance, i.e the variance

σ2
Y of the process is a function of time.

We assume that the time series is generate by a process Yt that can be decomposed into a

function that describes the behavior of the mean over time plus a random error component

with mean 0

Yt = µt + εt. (3.1)

Moreover, we assume that the variance of the innovations εt, is related to the mean level

39
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µt by some known function h(·), that is

σ2
Y = V(εt) = h2(µt)σ

2
ε

The objective in this case, is to find a transformation of the data g(Yt) that will stabilize

the variance over time. That is, the variance of the transformed variable g(Yt) should be

approximately constant over t.

Expanding g(Yt) as a first-order Taylor expansion around the mean µt yields

g(Yt) ≈ g(µt) + (Yt − µt)g′(µt).

Next, it is possible to approximate the variance of g(Yt) as

V[g(Yt)] = V[g(µt) + (Yt − µt)g′(µt)]

= [g′(µt)]
2
V(Yt)

= [g′(µt)]
2h2(µt)σ

2
ε .

Hence, in order to stabilize the variance it is necessary to chose the transformation g(·)
such that,

g′(Yt) = h−1(µt)

In real applications, when the series exhibits a non stationary behavior, it customary

to transform it taking the natural logarithm or the square root. The natural logarithm

corresponds to the case when Yt is proportional to its level, that is h(µt) = µt. The

variance-stabilizing transformation has then to satisfy g′(µt) = µ−1
t . This implies that

g(µt) = log(µt). Alternatively, when h(µt) = µ
1/2
t the transformation has to satisfy

g′(µt) = µ
−1/2
t . Thus, since g(µt) = 2µ

1/2
t the transformation

√
Yt is a proper variance-

stabilizing transformation.

These two examples are particular cases of the class of power transformations introduced

by Box and Cox (1964)

g(Yt) =
Y λ
t − 1

λ
(3.2)

where the logarithm transformation is obtained by limλ→0[(Y λ
t − 1)/λ] = log(Yt), while
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the square root is obtained by setting λ = 1/2 in (3.2).

3.2 Non stationarity in mean

The non constant mean µt in equation (3.1) can be modeled in many different ways.

It is customary to extend the representation (3.1) to

Yt = Lt + St + ut, (3.3)

where µt = Lt + St and ut is a stationary invertible zero mean process.

Lt is a slowly varying function known as the trend component while St is a function

with known period s known as the seasonal component.

When the series does not exhibits a seasonal pattern (3.3) simply reduces to

Yt = Lt + ut. (3.4)

We will first consider the case when the underlying process of the series can be represented

as (3.4), i.e no seasonal component is observed and the mean of the process corresponds

to the trend.

Moreover, restricting the attention to the model (3.4) two cases can emerge:

1. The component Lt is a deterministic trend.

2. The component Lt is a stochastic trend.

3.2.1 Deterministic trend

When the series is non stationary in mean and the trend Lt is assumed to be a deterministic

function of time, g(t), the general approach followed is to detrend the series.

In order to detrend the series it is necessary to assume a particular model for g(t). If g(t)

is represented as a linear function of time, that is

g(t) = α + βt,

the process Yt becomes

Yt = α + βt+ ut

and the trend component Lt is a linear deterministic trend (increasing in t for β > 0).

The process can be easily extended to cases where the deterministic trend is a nonlinear

function of time. As an example by using the polynomial function g(t) = α+
∑p

j=1 βjt
j it is
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possible to specify a polynomial trend. Likewise it is possible to define an exponential

trend, g(t) = exp(α+βt). In the majority of real applications polynomials of order greater

than two are rarely used. Once a proper function g(t) is identified to describe the trend

the parameters it can be fitted by standard OLS method and subsequently subtracted

from the process Yt such that an ARMA model can be used to describe the remaining

stationary component ut.

In particular by the Wold theorem the stochastic component ut can be represented as

ut =
∑∞

j=0 ψjεt−j = ψ(B)εt and the process Yt has the form

Yt = g(t) + ψ(B)εt

= g(t) + εt + ψ1εt−1 + ψ2εt−2 + . . . (3.5)

where εt ∼ WN(0, σ2
ε ).

Equation (3.5) implies the following results for the process Yt

E(Yt|Ft−1) = g(t) + εt + ψ1εt−1 + ψ2εt−2 + . . .

V(Yt|Ft−1) = V(εt) = σ2
ε .

Then, once the estimated trend component g(t) is removed from the series we refer at the

difference Yt − g(t) as the detrended series.

3.2.2 Stochastic trend

As an alternative to the trend stationary representation (3.5) we assume that the process

has the following expression

Yt = Yt−1 + g(t) + ut. (3.6)

The value of the process at time t is equal to the value of the process at previous time

plus a deterministic component g(t) and a stationary invertible zero mean process.

By noting that the process g(t) + ut is trend stationary, the process defined in (3.6) can

be reduced to a stationary process by taking the first difference, that is

∆Yt = Yt − Yt−1 = g(t) + ut
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where ∆ is called the difference operator and is defined as ∆ = (1−B). Processes that

can be made stationary after differencing the series are called difference stationary

processes. The two most common examples of stochastic trend process are the random

walk process and the random walk with drift process We will briefly consider these

two processes

Random Walk process

The simplest stochastic trend model can be obtained by setting in equation (3.6) g(t) = 0

and ut = εt, where εt ∼ WN(0, σ2
ε ), to obtain

Yt = Yt−1 + εt.

By repeated substitution up to time 0 we obtain

Yt = y0 +
t∑

j=1

εj. (3.7)

The process given in equation (3.7) is defined as the random walk process.

Conditionally on the starting value Y0 = y0 which is assumed to be deterministic, the

mean and the variance of the process are given by

E(Yt|y0) = y0 +
t∑

j=1

E(εj) = y0

V(Yt|y0) =
t∑

j=1

V(εj) = tσ2
ε

and the process is not stationary.

Likewise, we can consider the ACVF of the process, that is
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γ(k) = E[(Yt − y0)(Yt−k − y0)]

= E(
t∑

j=1

εj

t−k∑
j=1

εj) =
t−k∑
j=1

E(ε2j)

= (t− k)σ2
ε

Finally, dividing the ACVF by the variance of the process we obtain the autocorrelation

function

ρ(k) =
(t− k)σ2

tσ2
ε

=
t− k
t

. (3.8)

Letting t → ∞ the ACF (3.8) has limit equal to 1. This means that the process is

asymptotically perfectly correlated and as a consequence the memory of the process is

infinite.

A further interpretation of the random walk process can be obtained by considering an

AR(1) process

(1− φB)Yt = εt.

The random walk process can be obtained by setting φ = 1. Next, solving the character-

istic equation φ(z) = 1− z = 0 we obtain that the characteristic root is z = 1 which lies

on the unitary circle, and therefore the process is not stationary. This fact it is generally

expressed by saying that the process is a unit-root process.

Random walk with drift

By setting g(t) = µ in (3.6) we obtain the random walk with drift

Yt = µ+ Yt−1 + εt.

Assuming that the first term y0 is constant and by repeating substitution the random

walk with drift process can be rewritten as
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Yt = µ+ (µ+ Yt−2 + εt−1) + εt
... keep substituting

= y0 + tµ+
t∑

j=1

εj,

where y0 + tµ is a deterministic linear trend component. In addition to the deterministic

trend the term
∑t

j=1 εj is generally referred as stochastic trend which determines the

non stationary part of the process.

Conditioning on y0 the mean and variance of the process are given by

E(Yt|y0) = y0 + tµ,

V(Yt|y0) = tσ2
ε ,

and both diverges to infinity as the time t increase. Therefore, we can conclude that the

process is non stationary in mean and in variance.

3.3 Autoregressive Integrated Moving average pro-

cesses

The models discussed so far have all been introduced with the assumption that the un-

derlying process is stationary. That is to say that the roots of the polynomial φ(B) lie

outside the unit circle.

As introduced previously many empirical time series are non stationary. Besides non sta-

tionarity in mean or in variance Box and Jenkins introduce the concept of homogeneous

stationarity to refers to time series that apart from local level, one part of the series

behaves much like any other part. Processes that describe this type on non stationarity

can be obtained by assuming that some suitable difference d of the process is stationary.

Processes where the dth difference of the series is stationary are called autoregressive in-

tegrated moving average processes (ARIMA).

In order to introduce this class of processes lets consider the model defined as

ϕ(B)(Yt − µ) = θ(B)εt (3.9)

where ϕ(B) is a non stationary autoregressive operator, defined in such a way that d roots

of ϕ(B) = 0 are unity and the reminder lies outside the unit circle.
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The model can then be written as

ϕ(B)(Yt − µ) = φ(B)(1−B)d(Yt − µ) = θ(B)εt.

By writing (1 − B)d in terms of the difference operator ∇d, defined as ∇d(Yt − µ) =

(1−B)d(Yt − µ) we obtain that

φ(B)∇dYt = θ(B)εt

or setting υt = ∇dYt

φ(B)υt = θ(B)εt.

The model, therefore corresponds to assume that the dth difference of the process can be

represented by an invertible stationary ARMA process.

Definition 17 Yt is an autoregressive integrated moving average process of order (p, d, q),

if for every t

φ(B)∇dYt = θ(B)εt (3.10)

where ∇dYt is a stationary process and εt ∼ WN(0, σ2
ε ).

In what follows we will assume that the process is invertible and causal. In terms of the

backshift polynomials that is equivalent to say that

1. The roots φ(B) = 0, where φ(B) is defined the autoregressive operator, lie outside

the unit circle.

2. d of the roots of ϕ(B) = 0 are equal to unity, where ϕ(B) is defined the generalized

autoregressive operator.

3. The roots of θ(B) = 0 lie outside the unit circle, where θ(B) is defined the moving

average operator.

Of course, when the order of integration d is equal to 0 the process reduces to an autore-

gressive moving average model.

An extended representation of model (3.10) can be obtained by expanding the autore-

gressive operator. Thus if,

ϕ(B) = φ(B)(1−B)d = 1− ϕ1B − ϕ2B
2 − · · · − ϕp+dBp+d,
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model (3.10) can be written as

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕp+dYt−p−d + εt − θ1εt−1 − · · · − θqεt−q.

3.3.1 Stochastic and Deterministic Trends

Sometimes it is useful to consider an extension of the standard ARIMA model presented

in (3.10) by adding a constant term θ0, that is

φ(B)∇dYt = θ0 + θ(B)εt.

When the constant term θ0 is omitted, the model, is able to represent time series that

exhibits a stochastic trend characterized by random changes in the level and in the slope

of the series.

Conversely, by allowing θ0 to be non-zero we automatically allow for the presence a de-

terministic polynomial trend of degree d. Allowing θ0 to be nonzero is equivalent to

E(∇dYt) = E(υ) = µυ =
θ0

1− φ1 − φ2 − · · · − φp
,

to be nonzero. In many real applications, where the reason for a deterministic compo-

nent in the trend does not exists, the mean of υ is assumed to be equal to zero. This is

equivalent to the assumption that in the data is present a stochastic trend.

3.3.2 Different forms of the ARIMA model

Like the class of ARMA model the ARIMA model can be represented in three different

forms. Each of these allows to consider and appreciate some special aspects of this class

of models. In particular, the current value Yt of the process can be represented as:

1. In term of the pas values of Y ’s and previous values of the innovations ε’s, like in

equation (3.10).

2. In terms of the current and past innovations εt

3. In terms of a weighted sum of previous values Yt−k of the process and the current

shock εt.

Random shock form

As we have specified in chapter 1 a process is linear if it can be represented as (1.10), that

is as a linear combination of white noise terms εt.



48

However, as pointed out by Box et al. (2015), “since the non stationary ARIMA models

are not in statistical equilibrium over time, they cannot be assumed to extend infinitely

into the past, and hence an infinite linear representation will not be possible”. But a

related finite truncated form , which will be discussed subsequently always exists.

In order to find the linear representation we start from the linear process (1.10) and

operate on it with the operator ϕ(B) we obtain

ϕ(B)Yt = ϕ(B)ψ(B)εt.

Next, noting that ϕ(B)Yt = θ(B)εt, we obtain

ϕ(B)ψ(B) = θ(B).

Therefore, the weights ψj of an ARIMA process can be obtained by equating the coeffi-

cients of B in

(1− ϕ1B − · · · − ϕp+dBp+d)(1 + φ1B + φ2B
2 + . . . ) = (1− θ1B − · · · − θqBq)

and finally the weights ψj can be determined recursively through the equations

ψj = ϕ1ψj−1 + ϕ2ψj−2 + · · ·+ ϕp+dψj−p−d j > 0

with ψ0 = 1, ψj = 0 for j < 0 and θj = 0 for j > q.

It is possible to prove that the form Yt =
∑∞

j=0 ψjεt is strictly non convergent for an

ARIMA model, that is to say the weights ψj are not absolutely summable. Nevertheless,

a truncated version of the linear form is always valid.

For a detailed explanation of the truncated form see Box et al. (2015).

Inverted form of the model

As previously presented for the class of ARMA models a linear model (Yt − µ) = ψ(B)εt

can also be represented in its inverted form

ψ−1(B)(Yt − µ) = εt (3.11)

that is equal to
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π(B)(Yt − µ) = (1−
∞∑
j=1

πjB
j)(Yt − µ) = εt.

The weights of the ARIMA model can be derived by substituting (3.11) in (3.10), to

obtain

ϕ(B)Yt = θ(B)π(B)Yt.

Next, the weights π can be be obtained by equating the coefficients of B in ϕ(B) =

θ(B)π(B), that is,

(1− ϕ1B − · · · − ϕp+dBp+d) = (1− θ1B − · · · − θqBq)(1− π1B − π2B
2 − . . . ).

Finally, the π weights can be obtained recursively solving

πj = θ1πj−1 + θ2πj−2 + · · ·+ θqπj−q + ϕj j > 0

with π0 = −1, πj = 0 for j < 0 and ϕj = 0 for j > p+ d.
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3.4 Seasonal Integrated Autoregressive Moving Av-

erage process

The class of ARIMA processes has been developed with the purpose of modeling pro-

cesses of the type (3.4), when the the underlying stochastic process can be represented by

(3.3) the class of SARIMA processes can be used.

Time series of the type (3.3) exhibits a trend and a seasonal pattern. Examples of seasonal

data are sales data or geological data, such as temperature data.

In general a time series with a seasonal component exhibits a periodic behavior with pe-

riod s, that is to say, similarities in the series occur after s time intervals.

The direct extension of the ARIMA models to handle seasonal time series is given by the

SARIMA models.

The fundamental aspect about seasonal time series with period s is that observations

located at s intervals apart are similar.

When a series exhibits a certain seasonal behavior we expect that the relationships be-

tween the observations occur:

• Between observations inside the same period.

• Between the observations located in two different periods.

In order to link Yt to Yt+s, that is the between periods relationships, a model of the

following form is adopted

Φ(Bs)∇D
s Yt = Θ(Bs)ut

where ∇D
s = (1 − Bs)(1 − B)D and Φ(Bs),Θ(Bs) are polynomials in Bs of degree P

and Q that satisfy the invertibility and stationarity conditions postulated in the previous

chapter.

The error components ut will in general be correlated, that is ut will in general be corre-

lated with ut−1, ut−2 and so on. In order to account for this relationships, i.e the within

periods relationships, the model

φ(B)∇dut = θ(B)εt,

is introduced.

Here εt is assumed to be a white noise process, and φ(B) and θ(B) are polynomials in B of

degrees p and q that satisfy the invertibility and stationarity conditions and are referred

as the non seasonal polynomials.

Substituting the new defined model in the previous one we obtain the general seasonal

multiplicative model
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φp(B)ΦP (Bs)∇d∇D
s Yt = θq(B)ΘQ(Bs)εt

Formally

Definition 18 Yt is a seasonal autoregressive integrated moving average process of order

(p, d, q)× (P,D,Q)s, if for every t

φp(B)ΦP (Bs)∇d∇D
s Yt = θq(B)ΘQ(Bs)εt (3.12)

where ∇d∇D
s Yt is a stationary process and εt ∼ WN(0, σ2

ε )

3.4.1 The relation between structural component and ARIMA

models

In general a structural component time series model relies on the assumption that the

process {Yt} can be formulated as (3.3), that is as the sum of three latent components; a

trend, a seasonal and a noise component.

Even if the latent components are unobservable and cannot be specified in a unique way

they have a clear and meaningful interpretation.

In order to illustrate the nature of a structural time series model we consider the basic

structural model generally abbreviated a BSM as formulate by Harvey (1990).

The model is defined as

Yt = Lt + St + εt εt ∼ WN(0, σ2
ε )

where Lt is the trend term and follows the local linear trend model

Lt = Lt−1 + βt−1 + ηt η ∼ WN(0, σ2
η)

β = βt−1 + ξt ξt ∼ WN(0, σ2
ξ )

and St the seasonal component follows the dummy variable seasonal model, that is

(1 +B +B2 + · · ·+Bs−1)St = ωt ωt ∼ WN(0, σ2
ω)

where ηt, ξt, ωt and εt are mutually uncorrelated.

The random component ηt in the trend model allows the level of the trend to shift up and

down, while the random component ξt allows the slope to change in a stochastic way.
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As limiting cases when σ2
ξ = 0 then βt = βt−1 and so the slope is a fixed constant for all

t, and the trend reduces to a random walk with drift (1 − B)Lt = β + ηt. Conversely, if

σ2
η = 0 the linear trend model reduces to the deterministic trend model Lt = Lt−1 + β.

The dummy variable seasonal model require that the seasonal effects St sum to zero over

s consecutive values, subject to a random disturbance with mean zero that allows the

seasonal effects to change gradually over time.

Again, a special limiting case can be obtained when σ2
ω = 0. In this case St = St−1 and

St + St−1 + · · ·+ St−s+1 = 0.

The main advantage of the BSM model is that it generalizes a regression model where the

trend is represented by a fixed straight line and the seasonality by a fixed seasonal effect

using the indicator variables, by allowing the trend and seasonality to vary over time.

Structural models like the BSM model have an equivalent ARIMA representation. In

this particular case, the local linear linear trend model satisfies

(1−B)2Lt = (1−B)βt−1 + (1−B)ηt = ξt−1 + (1−B)ηt

Now, following Box et al. (2015) p.333 it can be proved that ξt−1 + (1 − B)ηt can be

represented as an MA(1) process (1− θB)at so that (1−B)2Lt = (1− θB)at and Lt has

an ARIMA(0, 2, 1) representation.

Sometimes the equivalent ARIMA representation of a structural model is referred to as

its reduced form. In this thesis we will use the term reduced form with a different mean-

ing, that is to indicate the most parsimonious representation of a given model in its state

space form.



Chapter 4

State space form and the Kalman

filter

In this chapter we will present the state space representation of a linear model and the

connected Kalman filter.

The Kalman filter in the context of the Forward Search is particularly important for

two reasons, first it provides a very efficient way to compute the maximum likelihood

estimates in the presence of several missing units in the series. Second, once the unknown

parameters have been estimated the Kalman filter gives the residuals of the model, which

are key for the Forward Search.

4.1 State space representation

The state space form is a very general representation that can be applied to many statis-

tical models. In particular, every linear model has a state space representation which is

not unique.

In the sequel we will consider the generic form of the state space representation and of

the Kalman filter which are given for multivariate time series. This does not represent a

restriction since the results can be readily extended to the univariate case where of course

some vectors and matrices degenerate to scalars.

Denote by yt an observed time series, that can be univariate as in our case or multivariate.

yt is called the observation vector. The series yt is connected to the state vector xt,

through the observation equation

yt = Ztxt + νt νt ∼ N(0,Ht) (4.1)

where E(νt) = 0 and V(νt) = Ht.

The elements of the state vector xt are not observable, however, they are assumed to be

53
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generated by a first order Markov process,

xt+1 = Ttxt + Rtηt ηt ∼ N(0,Qt) (4.2)

where E(ηt) = 0 and V(ηt) = Qt. Equation (4.2) is called state equation.

The idea underlying this model is that the evolution of the system over time is determined

by xt according to the state equation. However, because xt cannot be observed directly,

the statistician must base the analysis on the observation vector yt.

The model defined by equation (4.1) and (4.2) is defined as the general linear Gaussian

state space model.

In many circumstances the vector xt does not have a direct interpretation and it is de-

termined by construction. The major aim of the state space form is to define a model

such that xt has as few elements as possible and contains all the relevant information of

the system at time t. A state space form that minimize the number of components in the

vector xt is defined to be a minimal realization. In order to complete the specification

of the system three further assumptions needs to be specified:

(A1) The initial state vector x1 is normally distributed with mean E(x1) = m1 and

variance V(x1) = P1, that is x1 ∼ N(m1,P1)

(A2) The error terms νt and ηt are uncorrelated with the initial state, that is Cov(νt,x1) =

0, Cov(ηt,x1) = 0 for t = 1, . . . , T

(A3) The error terms νt and ηt are uncorrelated in all time periods, that is Cov(νt,ηk) = 0

for all k, t = 1, . . . , T .

The matrices Zt,Tt,Rt,Qt are called system matrices, and although they may change

with time they do so in a deterministic way and therefore they are non stochastic.

When the system matrices are invariant over time the model is said to be time invariant

and the stationary models that we will discuss represent a special case.

Examples of models where the matrices change with time are regression models with

dynamic parameters, however in the following the matrices will be assumed to be time

invariant and the index t will be dropped.

In real applications, some of the matrices Zt,Tt,Rt,Qt will depend on one ore more

unknown parameters. In the state space literature these parameters are referred as hy-

perparameters and will denoted by the vector θ.
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4.2 The state space form for the class of ARMA pro-

cesses

Before to proceed to the discussion of the Kalman filter and how it can be used to obtain

the exact likelihood function we give the state space representation of the different models

that we have discussed so far.

The state space representations illustrated in this section are the same adopted to run

the Forward Search.

4.2.1 State space form of AR(p) and MA(q) processes

Given an AR(p) process in its mean centered form,

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + · · ·+ εt,

the resulting state space representation is

(Yt − µ)︸ ︷︷ ︸
yt

= (1 . . . 0︸ ︷︷ ︸
Z

)


Yt − µ

...

Yt−p − µ


︸ ︷︷ ︸

xt


Yt+1 − µ

...

Yt−p+1 − µ


︸ ︷︷ ︸

xt+1

=



φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


︸ ︷︷ ︸

T


Yt − µ

...

Yt−p − µ


︸ ︷︷ ︸

xt

+


1
...

0


︸ ︷︷ ︸

R

εt+1︸︷︷︸
ηt

As a simple example we consider an AR(2) process. In this case the system matrices

reduces to

(Yt − µ)︸ ︷︷ ︸
yt

= (1 0︸︷︷︸
Z

)

(
Yt − µ
Yt−1 − µ

)
︸ ︷︷ ︸

xt(
Yt+1 − µ
Yt − µ

)
︸ ︷︷ ︸

xt+1

=

(
φ1 φ2

1 0

)
︸ ︷︷ ︸

T

(
Yt − µ
Yt−1 − µ

)
︸ ︷︷ ︸

xt

+

(
1

0

)
︸︷︷︸

R

εt+1︸︷︷︸
ηt
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The state space representation can next be extended to moving-average processes.

Given a mean centered MA(q) process

(Yt − µ) = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q,

its state space representation is given by

(Yt − µ)︸ ︷︷ ︸
yt

= (1 θ1 θ2 . . . θq−1 θq︸ ︷︷ ︸
Z

)


εt
...

εt−q


︸ ︷︷ ︸

xt


εt+1

...

εt−q+1


︸ ︷︷ ︸

xt+1

=



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


︸ ︷︷ ︸

T


εt
...

εt−q


︸ ︷︷ ︸

xt

+


1
...

0


︸ ︷︷ ︸

R

εt+1︸︷︷︸
ηt

For instance when a simple MA(1) process is considered the observation and state equa-

tion reduces to

(Yt − µ)︸ ︷︷ ︸
yt

= (1 θ︸︷︷︸
Z

)

(
εt

εt−1

)
︸ ︷︷ ︸

xt(
εt+1

εt

)
︸ ︷︷ ︸

xt+1

=

(
0 0

1 0

)
︸ ︷︷ ︸

T

(
εt

εt−1

)
︸ ︷︷ ︸

xt

+

(
1

0

)
︸︷︷︸

R

εt+1︸︷︷︸
ηt

4.2.2 ARMA(p, q) model

There are several alternatives representations of ARMA(p, q) processes, here we will con-

sider the form proposed in Harvey (1990) and adopted also in Durbin and Koopman

(2012). This form has the advantage that the error terms in the observation and state

equations are independent from each other. In order to express an ARMA(p, q) processes

in state space form, it is first necessary to rewrite the model as

(Yt − µ) =
r∑
j=1

φj(Yt−j − µ) + εt +
r−1∑
j=1

θjεt−j
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where r = max(p, q + 1), φj = 0 for j > p and θj = 0 for j > q. The system matrices for

the ARMA(p, q) model are given by

Z1×r =
(

1 0 0 · · · 0
)
,

xt r×1 =



Yt − µ
φ2(Yt−1 − µ) + · · ·+ φr(Yt−r+1 − µ) + θ1εt + · · ·+ θr−1εt−r+2

φ3(Yt−1 − µ) + · · ·+ φr(Yt−r+2 − µ) + θ2εt + · · ·+ θr−1εt−r+3

...

φr(Yt−1 − µ) + θr−1εt


,

Tr×r =


φ1 1 · · · 0
... 0 · · · 0

φr−1 0
. . . 1

φr 0 · · · 0

 ,

Rr×1 =


1

θ1

...

θr−1

 ,

ηt = εt+1.

Therefore the full system becomes

yt = Zxt

xt+1 = Txt + Rηt.



58

4.2.3 ARIMA(p, d, q) and seasonal extension

To obtain the state space representation for the ARIMA(p, d, q) model we follow the same

steps used in the ARMA(p, q) case. First, the ARIMA(p, d, q) process can be rewritten

as

Ẏt =
r∑
j=1

φjẎt−j + εt +
r−1∑
j=1

θjεt−j,

where now Ẏt = Od(Yt − µ), r = max(p, q + 1) and, for convenience, φ0 = 0.

The system matrices for the general ARIMA(p, d, q) model are given by

Z1×r+d =
(
1′1×d+1 0 · · · 0

)

xr+d×1 =



Yt−1 − µ
O(Yt−1 − µ)

...

Ẏt

φ2Ẏt−1 + · · ·+ φrẎt−r+1 + θ1εt + · · ·+ θr−1εt−r+2

φ3Ẏt−1 + · · ·+ φrẎt−r+2 + θ2εt + · · ·+ θr−1εt−r+3

...

φrẎt−1 + θr−1εt



Tr+d×r+d =



Z

0 1 1 · · · 0

0′1×d φ1 1 · · · 0

0′1×d
... 0 · · · 0

0′1×d φr−1 0
. . . 1

0′1×d φr 0 · · · 0
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Rr+d×1 =



0d×1

1

θ1

...

θr−1


ηt = εt+1

As an example we can consider the state space representation of the ARIMA(2, 1, 1)

model. That is,

(Yt − µ)︸ ︷︷ ︸
yt

= (1 1 0︸ ︷︷ ︸
Z

)

 Yt−1 − µ
Ẏt

φ2Ẏt−1 + θ1εt


︸ ︷︷ ︸

xt

 Yt − µ
Ẏt+1

φ2Ẏt + θ1εt+1


︸ ︷︷ ︸

xt+1

=

1 1 0

0 φ1 1

0 φ2 0


︸ ︷︷ ︸

T

 Yt−1 − µ
Ẏt

φ2Ẏt−1 + θ1εt


︸ ︷︷ ︸

xt

+


0

0

1

θ1


︸ ︷︷ ︸

R

εt+1︸︷︷︸
ηt

When the time series of interest exhibits a seasonal behavior, the seasonality and the

trend are removed by differencing repeatedly the series as presented in Chapter 3. The

final difference time series Ỹt = OdOD
s Yt can then be modeled as a proper ARMA model,

therefore the results obtained for the non seasonal ARIMA models can be extended di-

rectly to seasonal ARIMA model by substituting Ỹt instead of Yt.

4.3 The Kalman filter

Once the model of interest has been placed in the state space form it is possible to conduct

three different kind of inference with it: filtering, prediction and smoothing.

Denote by Ft the sigma algebra generated by the observations up to time t, that is

Ft = σ(Y1, . . . , Yt), that for simplicity it can be interpreted as the information available

up to time t. Further, we assume that the model parameters are known.

The three different inferences mentioned above can be described as follows:

(I1) Filtering. Filtering corresponds to recover the state vector xt given Ft, i.e all the

information available up to time t.
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(I2) Prediction. Prediction refers to forecast of xh or yh given Ft, the information

observed up to time t. h is the forecast horizon, typically h = T + 1, . . . , T + k.

(I3) Smoothing. Smoothing refers to estimating the state vector xk given FT where

k < T .

To attain the above results a major role is performed by the Kalman filter, which is based

at least in the Gaussian case on some properties of the multivariate normal distribu-

tion. The main role of the Kalman filter is to update the knowledge of the state vector

recursively when a new observation becomes available. In other words by knowing the

distribution of the state xt conditional on the information set Ft−1, the Kalman filter is

used to update the conditional distribution of xt with the updated information set Ft.

4.3.1 Some results on the multivariate normal distribution

The derivation of the Kalman filter is derived by applying important properties of the

multivariate normal distribution. Therefore, before discussing the Kalman filter we briefly

recall these results. The proofs are taken form Durbin and Koopman (2012).

Suppose, that two random vectors y and x are jointly normally distributed

(
x

y

)
∼ N(µxy,Ξ)

where,

E

(
x

y

)
=

(
µx

µy

)
= µxy, and V

(
x

y

)
=

(
Σxx Σxy

Σ′xy Σyy

)
= Ξ.

The conditional distribution of x given y is still a normal distribution,

x|y ∼ N(µx|y,Σx|y) (4.3)

with mean vector

E(x|y) = µx|y = µx + ΣxyΣ
−1
yy (y − µy) (4.4)

and covariance matrix

V(x|y) = Σx|y = Σxx −ΣxyΣ
−1
yy Σ′xy.

Now, if we define a transformation from x to the variable z = x−ΣxyΣ
−1
yy (y−µy), since
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the transformation is linear and (x,y) is normally distributed, by the properties of normal

random variables, (z,y) is still normally distributed with mean

E(z) = µx,

variance

V(z) = E[(z− µx)(z− µx)′] = Σxx −ΣxyΣ
−1
yy Σ′xy

and covariance

Cov(z,y) = Cov[x−ΣxyΣ
−1
yy (y − µy),y] (4.5)

= Cov(x,y)−ΣxyΣ
−1
yy Cov[(y − µy),y]

= Σxy −ΣxyΣ
−1
yy Σyy = 0.

Equation (4.5) shows clearly that the random vectors z and y are uncorrelated. Using the

result that if two uncorrelated normal random vectors are also independent we can state

that z is independent from y. Extending this result we obtain that x|y is independent

from y. This result is well known in multivariate regression theory, as eq. (4.4) states

that x can be predicted via regression, when x is unknown and y is known.

We take as our estimate of x the conditional expectation E(x|y), that is

x̂ = µx + ΣxxΣ
−1
yy (y − µy)

with estimation error equal to x̂−x. It is possible to show that the proposed estimator is

conditionally unbiased, E(x̂− x|y) = 0 and unconditionally unbiased E(x̂− x) = 0. For

further properties of the estimator see Durbin and Koopman (2012).
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4.3.2 Derivation of the Kalman filter

The objective of the Kalman filter is to obtain the conditional distribution of the state

vectors xt and xt+1 given the information set Ft for t = 1, . . . , T . In order to introduce the

Kalman filter some notation is first necessary. We will denote the conditional expectations

of the state vector given the information set available at time t by mt|t = E(xt|Ft),
mt+1 = E(xt+1|Ft), and the corresponding conditional variances by Pt|t = V(xt|Ft),
Pt+1 = V(xt+1|Ft).
Since all distributions are assumed normal it follows from the previous results on the

multivariate normal distribution that conditional distributions of subset of variables given

other subsets are also normal. In particular the following two results hold

xt|Ft ∼ N(mt|t,Pt|t) and xt+1|Ft ∼ N(mt+1,Pt+1).

Moreover, we assume that the initial state vector is normally distributed with mean and

variance known, that is x1 ∼ N(m1,P1).

Now, given a value of mt, by applying the multivariate normal result we can estimate yt

using the conditional expectation, that is

ŷt = E(yt|Ft−1)

= E(Ztxt + νt|Ft−1) = Ztmt

with prediction error given by

vt = yt − ŷt = yt − E(yt|Ft−1)

= yt − E(Ztxt + νt|Ft−1) = yt − Ztmt.

The quantity vt is the one step ahead forecast error of yt given the information set Ft−1,

in the case of ARMA processes vt corresponds to the the traditional residual.

Now, to derive the Kalman filter it is sufficient to consider the joint distribution of vt and

xt given Ft−1.

The distribution of vt conditional on Ft−1 is a normal distribution

vt|Ft−1 ∼ N(0,Ft)
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where the zero mean comes by

E(vt|Ft−1) = E(yt|Ft−1)− E(yt|Ft−1) = 0,

and

Ft = V(vt|Ft−1) = V(Ztxt + νt − Ztmt|Ft−1) = ZtPtZ
′
t + Ht.

Furthermore, the distribution of the state vector xt conditional on Ft−1 is also normal,

xt|Ft−1 ∼ N(mt,Pt)

and the joint distribution of (xt,vt) conditional on Ft−1 is still a normal distribution,

given by

(
xt

vt

)
|Ft−1 ∼ N

[(
mt

0

)
,

(
Pt PtZ

′
t

P′tZt Ft

)]

where,

PtZ
′
t = Cov(xt,vt|Ft−1).

Since knowing Ft−1 and vt is equivalent to know Ft, it follows that

mt|t = E(xt|Ft) = E(xt|Ft−1,vt).

This quantity can be obtained using the results of the multivariate normal distribution

by regressing xt on vt, which gives

mt|t = E(xt|Ft−1) + Cov(xt,vt|Ft−1)[V(vt|Ft−1)]−1vt (4.6)

= mt + PtZ
′
tF
−1
t vt.

Next, it is possible to obtain the conditional variance of the state vector xt conditional

on the information set Ft, that is
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Pt|t = V(xt|Ft) = V(xt|Ft−1,vt) (4.7)

= V(xt|Ft−1)− Cov(xt,vt|Ft−1)[V(vt|Ft−1)]−1
Cov(vt,xt|Ft−1)

= Pt −PtZ
′
tF
−1
t ZtP

′
t.

Equations (4.6) and (4.7) are called the updating equations of the Kalman filter since

they update the distribution of the state vector as new information becomes available.

Finally, we can make use of the knowledge of xt given Ft to predict the distribution of

xt+1. We have,

mt+1 = E(xt+1|Ft) = E(Ttxt + Rtηt|Ft) (4.8)

= TtE(xt|Ft) = Ttmt|t

= Tt(mt + PtZ
′
tF
−1
t vt) = Ttmt + Ktvt

where Kt = TtPtZ
′
tF
−1
t , and

Pt+1 = V(xt+1|Ft) = V(Ttxt + Rtηt|Ft) (4.9)

= TtV(xt|Ft)T′t + RtQtR
′
t

= Tt(Pt −PtZ
′
tF
−1
t ZtP

′
t)T

′
t + RtQtR

′
t

= TtPtT
′
t −TtPtZ

′
tF
−1
t︸ ︷︷ ︸

Kt

ZtP
′
tT
′
t + RtQtR

′
t

= TtPt(Tt −KtZt)
′ + RtQtR

′
t.

Equations (4.8) and (4.9) are referred as the prediction equations, while the matrix Kt

is called the Kalman gain.
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The above system of recursions constitute the Kalman filter. The main power of this filter

is that it enables to update the knowledge of the system in iterative way, each time a new

observation is acquired.

Kalman Filter Algorithm In summary the Kalman filter computes, for t = 1, . . . , T

the following set of recursions

1. vt = yt − Ztmt

2. Ft = ZtPtZ
′
t + Ht

3. mt|t = mt + PtZ
′
tF
−1
t vt

4. Pt|t = Pt −PtZ
′
tF
−1
t ZtPt

5. Kt = TtPtZ
′
tF
−1
t

6. mt+1 = Ttmt|t + Ktvt

7. Pt+1 = TtPt|t(Tt −KtZt)
′ + RtQtR

′
t

When time invariant systems are considered, like in the ARMA case the subscript t from

the system matrices can be dropped and the set of recursions become

1. vt = yt − Zmt

2. Ft = ZPtZ
′ + H

3. mt|t = mt + PtZ
′F−1

t vt

4. Pt|t = Pt −PtZ
′F−1

t ZPt

5. Kt = TPtZ
′F−1

t

6. mt+1 = Tmt|t + Ktvt

7. Pt+1 = TPt|t(T−KtZ)′ + RQR′

A useful shortcut to the standard Kalman filter can be obtained when we restrict our

interest to time-invariant state space models as in our case. When the system matrices

Zt,Ht,Tt,Rt and Qt are constant over time, the recursion for Pt+1 converges to a constant

matrix, P which is obtained as

P = TPT′ −TPZ′F
−1

ZPT′ + RQR′

where F = ZP + H. The advantage of this result is that after the convergence of P to

the steady space the recursive updates of Ft,Kt,Pt|t and Pt+1 are no longer required.
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Missing observations One of the most appealing characteristics of the Kalman filter

is the possibility of dealing with missing observations in an easy and straightforward way.

Suppose that observations yj for j = τ, . . . , τ ∗, with 1 < τ < τ ∗ < T , are missing.

The Kalman filter can be obtained for the missing cases simply by placing Zt = 0 for

t = τ, . . . , τ ∗ − 1.

Therefore when missing observations are present in the series, the Kalman filter results

equal to the standard case with the exception that the matrix Zt is taken equal to 0 at

those time points where observations are missing.

Therefore, the recursions for t = τ, . . . , τ ∗ − 1 becomes:

1. vτ = yτ

2. Fτ |t−1 = Ht

3. mτ |t = mτ |t−1

4. Pτ |t = Pτ |t−1

5. mτ+1|t = Ttmτ |t

6. Pτ+1|t = TtPτ |tT
′
t + RtQtR

′
t
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4.3.3 Initialization of the filter

In the derivation of the Kalman filter it was assumed that x1 ∼ N(m1,P1) and m1 and

P1 where known. In all practical applications the elements of m1 and P1 are unknown.

When this occurs it is necessary to have rules to define these initial vector for the Kalman

filter, this process is called initialization of the filter.

Stationary Initialization When the process is stationary the initialization of the

Kalman filter can be obtained with a simple closed form formula.

In order for a multivariate process to be stationary the eigenvalues of the matrix Tt must

lie all inside the unit circle. In this case it is possible to initialize the filter by taking

the unconditional mean and variance of the process xt. It is important to recall that

stationarity implies a time-invariant state space model and therefore the subscripts from

the system matrices can be dropped.

The unconditional mean is given by taking expectation of (4.2), that is

E(xt+1) = TE(xt)RE(ηt)

and since the process is covariance stationary

(I−T)E(xt) = 0.

Now, since unity is not an eigenvalue of T, see Hamilton (1994), the matrix (I − T) is

nonsingular. As a consequence, the unique solution is E(xt) = 0.

Next, the unconditional variance of xt can be found similarly. We have

E(xt+1x
′
t+1) = E[(Txt+1 + Rηt)(Txt+1 + Rηt)

′]

= TE(xtx
′
t)T

′ + E(ηtη
′
t).

Letting Ω be the variance matrix of xt the previous equation becomes

Ω = TΩT′ + Q

whose solution is given by

vec(Ω) = (I−T⊗T)−1 vec(Q)
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where ⊗ indicates the Kronecker product and vec(A) denotes the operator that stacks

the columns of the matrix A into a vector.

As a result, provided that the process of interest is stationary the Kalman filter can be

initialized by taking m1 = 0 and P1 = vec(Ω).

Diffuse Initialization When the process xt is non stationary the closed form solution

obtained for the initial state mean and variance in the stationary case cannot be recovered

and the diffuse initialization of the filter is used. This procedure comes necessary when

the ARIMA and SARIMA models are considered.

Following Durbin and Koopman (2012) the exact initialization of the Kalman filter starts

with the specification of a general model for the initial state vector x1, that is

x1 = m + Aδ + R0η0, η0 ∼ N(0,Q0). (4.10)

The vector m is known, δ is a vector of unknown quantities, and the matrices A and R0

are selection identity matrices, for some columns. They are selected in such a way that

A′R0 = 0.

The objective of the above representation is to decompose the initial state vector in three

components; a constant part m, a non stationary part Aδ, and a stationary part R0η0.

The vector δ is taken to be normally distributed, that is δ ∼ N(0, κI), where κ→∞.

The normality assumption of the vector δ act as a non-informative prior distribution for

the process x1, where the non informative part is obtained by letting the variance tending

to infinity. According to model (4.10), the expected value and the variance of the initial

state vector are given by

E(x1) = E(m + Aδ + R0η0)

= m.

V(x1) = V(m + Aδ + R0η0)

= κAA′ + R0Q0R
′

= κP∞ + P∗.

Having defined the diffuse assumption of the state process two different initialization pro-

cedures can be adopted. The first one, that we will call approximated diffuse, and is

discussed in Harvey (1990), consists in initializing the filter by assigning a large value to κ.
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However, despite this procedure is simple, and might provide good results in preliminary

analysis, it may be affected by misleading rounding errors as pointed out in Durbin and

Koopman (2012). The second initialization method, introduced by Koopman (1997), is

obtained by running the exact Kalman filter. The idea behind the exact initialization

is that after d ad-hoc steps the procedure converge to the standard Kalman filter that can

next be adopted for the remaining T − d units. A detailed proof of the converge result

can be found in Koopman (1997) and Durbin and Koopman (2012).

The exact Kalman filter is obtained by running for d steps a modified version of the

Kalman filter, whose recursions depends on the properties of the matrix F∞,t.

Once the convergence criterion is met the standard Kalman Filter is runned for the re-

maining T − d units.

The exact Kalman filter is structured as follow.

Initialize the two components of the state variance

P∞,1 = AA′

P∗,1 = R0Q0R
′
0

Case 1. F∞,t is not singular

1. v
(0)
t = yt − Ztm

(0)
t m

(0)
1 = m

2. F∞,t = ZtP∞,tZ
′
t

3. F∗,t = ZtP∗,tZ
′
t + Ht

4. M∞,t = P∞,tZ
′
t

5. M∗,t = P∗,tZ
′
t

6. F
(1)
t = F−1

∞,t

7. F
(2)
t = −F−1

∞,tF∗,tF
−1
∞,t

8. K
(0)
t = TtM∞,tF

(1)
t = TtP∞,tZ

′
tF

(1)
t

9. K
(1)
t = TtM∗,tF

(1)
t + TtM∞,tF

(2)
t = Tt(P∗,tZ

′
tF

(1)
t + P∞,tZ

′
tF

(2)
t )

10. L
(0)
t = Tt −K

(0)
t Zt

11. L
(1)
t = −K

(1)
t Zt

12. m
(0)
t+1 = Ttm

(0)
t + K

(0)
t v

(0)
t

13. P∞,t+1 = TtP∞,tL
(0)′

t

14. P∗,t+1 = TtP∞,tL
(1)′

t + TtP∗,tL
(0)′

t + RtQtR
′
t

Case 2. F∞,t = 0
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1. v
(0)
t = yt − Zta

(0)
t

2. Ft = F∗,t = ZtP∗,tZ
′
t

3. Mt = M∗,t = P∗,tZ
′
t

4. K
(0)
t = TtM∗,tF

−1
∗,t = TtP∗,tZ

′
t(ZtP∗,tZ

′
t)
−1

5. L
(0)
t = Tt −K

(0)
t Zt

6. m
(0)
t+1 = Ttm

(0)
t + K

(0)
t v

(0)
t

7. P∞,t+1 = TtP∞,tT
′
t

8. P∗,t+1 = TtP∗,tL
(0)′

t + RtQR′t

After d steps the quantity P∞,t becomes equal to 0 and the filter switch to the traditional

Kalman filter recursions which is initialized with

md+1 = m
(0)
d+1

Pd+1 = P∗,d+1.

and performed for the remaining T − d steps.

4.4 The prediction error decomposition

In the derivation of the Kalman filter we have assumed that the parameters of the model

were known. In the majority of statistical applications the parameters of the model are

unknown and must be estimated.

The estimation of the parameters is generally performed by maximizing the likelihood

function and the resulting estimator is the well-known maximum likelihood estimator.

When dealing with time series models the maximization of the exact likelihood is not

straightforward and few shortcuts are generally introduced. For instance when dealing

with autoregressive processes it is common practice to maximize the conditional likelihood

which, in the Gaussian case, reduces to the ordinary least square estimator. The same

principle can be applied to causal moving average processes, in this case it is possible to

approximate the MA process with an AR process of higher order and obtain the least

squares estimates. Next, the estimates of the MA parameters can be recovered.

The approximation provided by the conditional likelihood can affect the final estimate,

especially when the time series is short or has only few observations. Moreover, when

there are many missing observations in the time series, as in the initial steps of the For-

ward Search, the estimation becomes particularly difficult, if not impossible. One of the
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main advantages of the state space representation is the possibility to obtain exact max-

imum likelihood estimators.The Kalman filter therefore results extremely useful because

it allows to obtain the exact likelihood function through the so called prediction error

decomposition.

Assume that we observe a time series yt for t = 1, . . . , T and that it can be represented

with the Gaussian state space model. The likelihood function is then given by

L(θ) =
T∏
t=1

f(yt;θ|Ft−1)

where θ is the vector of the unknown hyperparameters and f(yt; θ|Ft−1) is the density

function of yt conditional on the information set Ft−1.

Under the assumption that the error term in the observation equation has a Gaussian

distribution, the distribution of yt given the information set Ft−1 is itself a normal dis-

tribution with mean equal to E(yt|Ft−1) = Zmt|t−1 = ŷt and varianceV(yt|Ft−1) = Ft.

Moreover, from the results obtained in the derivation of the Kalman filter the distribution

of xt conditional on the information set Ft−1 is again a normal distribution with mean

mt and variance Pt.

The Kalman filter is an extremely useful tool that can be used to obtain the exact max-

imum likelihood for every model that can be represented in state space form. Once the

likelihood has been computed it can be maximized with respect to the unknown param-

eters. The main advantage therefore is that a single routine can be adopted to estimate

a huge variety of models. We will first consider the stationary case, that is to say when

the Kalman filter can be initialized with the closed form formula. Next we will report the

exact likelihood for the non-stationary case, i.e. when the exact diffuse initialization is

performed.

Stationary case

When the model considered is stationary with a Gaussian distribution, the likelihood

function results equal to

L(θ) = 2π−
NT
2

T∏
t=1

|Ft|−1/2 exp−

[∑T
t=1(v′tF

−1
t vt)

2

]

and by taking the logarithm the resulting log-likelihood is
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`(θ) = −NT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′tF
−1
t vt (4.11)

= −NT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

(yt − Ztmt)
′F−1

t (yt − Ztmt)

Equation (4.11) is referred as the prediction error decomposition and encompasses

in a general form the likelihoods for all the models presented in Chapter 2. This is the

reason why the Kalman filter algorithm turns out to be so useful.

Once the model has been expressed in its state space form and the Kalman Filter has

been runned it is possible to maximize the exact log-likelihood with respect to the vector

of hyperparameters θ.

The maximization problem is non linear and an iterative algorithm is employed. The

standard algorithm adopted in econometrics literature is the BFGS and a detailed de-

scription of its application to the state space models is provided in Durbin and Koopman

(2012).

In order to improve the stability of the algorithm it might be important to reduce the

dimension of the vector θ.

When dealing with univariate time series it is generally possible to re parametrize the

model such that θ = (θ′∗, σ
2
∗)
′ where θ∗ contains k − 1 parameters and σ2

∗ is the error

variance. After the reparametrization, the error variances can be expressed V(νt) = σ2
∗Ht

and V(ηt) = σ2
∗Qt.

The prediction error decomposition of the likelihood and log-likelihood functions of the

reparametrized model are given by:

L(θ) = (2πσ2
∗)
−T

2

T∏
t=1

F
−1/2
t exp−

[∑T
t=1 v2

t

2σ2
∗Ft

]

and

`(θ) = −T
2

log 2π − T

2
log σ2

∗ −
1

2

T∑
t=1

log Ft −
1

2σ2
∗

T∑
t=1

v2
t /Ft (4.12)

Since vt and Ft do not depend on σ2
∗, differentiating (4.12) with respect to σ2

∗ yields to

σ̂2(θ∗) =
1

T

T∑
t=1

v2
t

Ft
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By substituting σ̂2
∗(θ∗) in (4.12) we obtain the concentrated or profile log-likelihood, that

must be maximized with respect to θ∗. That is,

`c(θ∗) = −T
2

(log 2π + 1)− 1

2

T∑
t=1

log Ft −
T

2
log σ̂2

∗(θ∗)

∝ −1

2

T∑
t=1

log Ft −
T

2
log σ̂2

∗(θ∗).

Non stationary case

When some of the elements o the initial state vector are diffuse the exact Kalman filter

is performed. As a result, the likelihood needs to take into account the first d steps in

which the exact initialization is performed.

The resulting log-likelihood function to be maximized when the exact Kalman filter is

performed is

`(θ) = −T
2

log 2π − 1

2

d∑
t=1

$t −
1

2

T∑
t=d+1

(log |Ft|+ v′tFtvt)

where,

$t =

log |F∞,t| if F∞,t is positive definite

log |F∗,t|+ v
(0)′

t F∗,tv
(0)
t if F∞,t = 0

The above expression of the log likelihood is presented in Koopman (1997).

The maximization of the log likelihood function is next performed with the BFGS algo-

rithm in the same way as in the stationary case.
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Chapter 5

Outliers and influential observations

in time series

Time series data, as many other type of statistical data, are often subject to outliers or

atypical observations.

In statistics the term outliers has a long history and generally it is referred to those units

that presents characteristics not shared by the majority of the data. Therefore, intuition

suggests that the outlying observations are those that look discordant from the bulk of

data with respect to some prescribed characteristic or measure of deviation.

In time series, and more generally in other statistical contexts the study of outliers has

been conducted with two different aims that brought to two different approaches: the

diagnostic approach and the robust approach.

1. In the diagnostic approach, diagnostic methods, based on models residuals, are

employed to identify possible outliers or atypical observations, that are tested after-

wards.

Once the outliers are discovered it is possible to formulate a model which accounts

for them or remove them from the analysis.

The target of this strategy is to estimate the effect of the outliers, that may be the

main objective of the analysis. Subsequently, it is possible to obtain an estimate of

the parameters which is updated with the updated knowledge of the outlying units.

2. In the robust approach standard estimation methods are modified or substituted

by robust ones, with the aim of obtaining a final estimate of the parameters which

is unaffected by the atypical units.

Once the robust estimate has been obtained the outlying units can be identified and

tested using the robust residuals or alternative robust measures of deviation.

75
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In the time series context, outliers have been first discussed by Fox (1972) who introduced

the innovative outliers and proposed a maximum likelihood ratio tests for their detection.

Further works by Abraham and Box (1979), Bruce and Martin (1989) and Chang et al.

(1988) extended the definition of outliers, proposing two different types of deviation the

innovation outliers (IO), that coincides with the innovative outliers proposed by Fox,

and the additive outliers (AO).

Tsay (1988), using the intervention model, generalized further the definition of outliers

including level shifts (LS) and change of variance (CV ) points.

Despite LS and CV do not represent outliers in the strict sense, these can affect and alter

the final fit of a model significantly.

As a consequence, being able to recognize which units are potential outliers and the cor-

responding type of outliers might result of great relevance in several applications.

5.1 Types of outliers

In order to describe the effect that the different outliers have on a time series we will use

the ARIMA model.

Thus, we assume that a time series vt is generated by an underlying ARIMA(p, d, q)

model

φ(B)5d vt = θ(B)εt

which have been presented in Chapter 3.

We recall that when the invertibility and causality conditions are satisfied the model can

be specified in its AR(∞) form

π(B)vt = εt

where π(B) = 5dΦ(B)/θ(B) = 1− π1B − π2B
2 − . . . or in the MA(∞) form as

vt = ψ(B)εt

where ψ(B) = θ(B)/φ(B)5d.

In order to take into account the possible contaminations that can occur we suppose that

we do not observe the real time series vt but yt which allows for different types of contam-

ination. Therefore, the series yt will differ from vt at those instants at which an outlier

occurred.



77

5.1.1 Innovation outliers

The first type of outliers that we consider, is the IO, that was first introduced by Fox

(1972) and represents the most harmless one.

The innovation outliers corresponds to the assumption that the innovation series εt, t =

1, . . . , T is contaminated. The outliers are generated by some change or endogenous effect

on the innovations of the process and the model to represent the effect of an IO can be

obtained by adding an impulse effect to the innovations of the original process.

The model for the observed series contaminated by an innovation outlier is

φ(B)5d yt = θ(B)(ωIδ
(k)
t + εt).

where ωI is the magnitude of the outlier and δ
(k)
t is an indicator variable that is zero

except at time t = k in which is equal to 1. Rearranging the model in the linear form we

obtain

yt = ψ(B)(ωIδ
(k)
t + εt)

where yt is the observed time series. The model shows that an innovation outlier propa-

gates to all the innovations of the process through the weights ψ(B), that depends on the

particular ARIMA(p, d, q) model.

It is also possible to rewrite the model in its causal form as

π(B)yt = ωIδ
(k)
t + εt.

In general IO outliers have less damaging effects on the time series than additive outliers

have. The impact of an innovation outlier is represented in Figure (5.1)

An alternative method used to introduce innovation outliers is with the contamination

model, defined as

(1− α)N(0, σ2
ε ) + αN(0, τσ2

ε )

where τ is a scalar greater than 1. The contamination model is widely used in robust

statistics and it assumes that a (1− α)% of the data is generated from the true assumed

model, while the α% one is generated by a different distribution, that induces the con-

tamination.
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Figure 5.1: The impact on an IO with magnitude ωI = 10 on four different models.
Starting from the upper left corner: Yt = 0.7Yt−1 + εt, Yt =

∑t
t=1 εt,Yt = εt − 0.7εt,

εt ∼ N(0, σ2
ε )

5.1.2 Additive outliers

An additive outlier corresponds to the assumption that there is a direct contamination on

the observed series. This could be given by an external error or an exogenous change of

the value of the observed time series at a particular time. In this case, instead of observing

the series vt we observe yt that is related to the true one as follows

yt = vt + ωAδ
(k)
t .

where ωA denotes the magnitude of the additive outlier.

The model for the observed series contaminated by an additive outlier is given by

φ(B)5d (yt − ωAδ(k)
t ) = θ(B)εt.

The MA(∞) representation is

yt = ωAδ
(k)
t + ψ(B)εt.

while, the AR(∞) is

π(B)(yt − ωAδ(k)
t ) = εt.

An additive outlier can be interpreted as a gross error that occurs in the series at time k.
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Compared to innovation outliers an additive outliers may have severe impact on the prop-

erties of the observed time series, in particular under the AO contamination the estimates

of the parameters are biased and inconsistent.

In particular, a large additive outlier will bias the estimated parameters toward zero.

Moreover it can be proved in general that an additive outlier will push all the autocorre-

lation coefficients toward zero.
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Figure 5.2: The impact on an AO with magnitude ωA = 5 on four different models.
Starting from the upper left corner: Yt = 0.7Yt−1 + εt, Yt =

∑t
t=1 εt,Yt = εt − 0.7εt,

εt ∼ N(0, σ2
ε )

5.1.3 Level shifts

A level shift (LS), represents a modification of the mean of the process, starting from

a point k and continuing until the end of the period observed. When the process is

stationary a level shift corresponds to a change in the mean of the process after some

time index and, as a consequence, the process becomes non stationary.

In presence of a level shift the observed series is related to the true one by

yt = vt + ωLS
(k)
t

where S
(k)
t is a step function that takes value 0 before k and 1 when t ≥ k.

Thus, the level shift can be seen as a sequence of additive outliers all of the same size,

starting at some point and lasting until the end of the observed time series.

The model for the series in the presence of level shifts is given by

φ(B)5d (yt − ωLS(k)
t ) = θ(B)εt.
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Rearranging the terms leads to

yt = ωLS
(k)
t + ψ(B)εt

that can also be written as

π(B)(yt − ωLS(k)
t ) = εt.
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Figure 5.3: The impact on an LS with magnitude ωL = 5 on four different models.
Starting from the upper left corner: Yt = 0.7Yt−1 + εt, Yt =

∑t
t=1 εt,Yt = εt − 0.7εt,

εt ∼ N(0, σ2
ε )

5.1.4 Intervention model

The different type of outliers presented so far, can be considered as particular cases of

interventions or deterministic effects in a time series.

The intervention model proposed by Box and Tiao (1975), to model the effect of a dynamic

change in a time series at known time, can be used as a general framework to describe

the impact that the different types of outliers have on the observed time series.

In particular, Box and Tiao (1975), studied the time series of pollution level in Los Angeles

and investigated if a known intervention, in that case diversion of traffic induced by the

opening of the Golden Gate freeway, had a significant effect on the pollution level.

Following Peña et al. (2011), the intervention model is given by

yt = ωV (B)δ
(k)
t + ψ(B)εt (5.1)

where ω is a constant and V (B) is the transfer function of the intervention at time k.
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Using equation (5.1), all the types of outliers discussed before can be described.

AO. The additive outlier can be obtained by setting V (B) = 1. In this case the inter-

vention does not have any dynamic propagation and the model reduces to

yt = ωδ
(τ)
t + ψ(B)εt

IO. The innovation outlier is obtained when V (B) = ψ(B) that leads to

yt = ωψ(B)δ
(k)
t + ψ(B)εt

= ψ(B)(ωδ
(k)
t + εt)

LS. A level shift can be obtained by setting V (B) = 1/(1−B) that leads to

yt =
ω

(1−B)
δ

(k)
t + ψ(B)εt

= ωS
(k)
t + ψ(B)εt

where S
(k)
t = (1−B)−1δ

(k)
t .

Further, adopting the intervention model it is possible to specify other types of outliers.

For instance, the effect of a level shift might be assumed to decrease with time and that

after some time it disappears. A way to model this kind of behavior is with a transitory

change (TC) proposed by Tsay (1988), with the target to describe a LS that dies out

exponentially. This effect is obtained by setting V (B) = (1− γB)−1, that is

yt =
ω

(1− γB)
δ

(k)
t + ψ(B)εt

As a special case we hat that when γ = 1 the transitory change reduces to LS, while if

γ = 0 it reduces to an additive outlier.

Another type of outlier that can be obtained is the so called ramp-shift outlier proposed

by Chen and Tiao (1990). The intervention model in this case becomes

yt = ωR
(k)
t + ψ(B)εt



82

where R(k) is the ramp effect, that is R(k) = 0 for t < k, and R
(k)
t = j for t = k + j,

j = 1, 2, . . . . The ramp shift outlier will produce a change in the slope of the series after

k times.
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Figure 5.4: The impact on an TC with magnitude ωTC = 15 on four different models.
Starting from the upper left corner: Yt = 0.7Yt−1 + εt, Yt =

∑t
t=1 εt,Yt = εt − 0.7εt,

εt ∼ N(0, σ2
ε )

It is also possible to consider the presence of multiple type of outliers in the same series

as well as the presence of several outliers at the same time. This case has been studied by

Muirhead (1986) and Abraham and Yatawara (1988). In the case of a stationary model

considering innovation and additive outliers at the same index leads to a more general

form of intervention model.



83

5.2 Estimate the magnitude of the outlier

As we have presented the intervention model provides a general framework that can be

used to evaluate the impact of an outlier on an ARIMA model and its extensions.

In particular, using the intervention model Chang et al. (1988) showed that the informa-

tion about a possible IO or AO is completely contained in the residuals.

Assuming that the parameters of the ARIMA model are known, then it is possible to

consider how to estimate the size of the outlier at a given time k for the different type of

outliers considered so far, respectively, IO, AO, LS and TC.

The model for a residual as proposed by Peña is given by

et = ωixt + εt (5.2)

where et = π(B) and i = {I, A, LS, TC}.
Depending on the structure of ωi and xt the model can be used to represent the residuals

with the presence of different types of contamination.

In particular:

AO. For an additive outlier we have

et = ωAπ(B)δ
(k)
t + εt

where, ωi = ωA and xt = π(B)δ
(k)
t .

IO. For an innovation outlier we have

et = ωIδ
(k)
t + εt

where, ωi = ωI and xt = δ
(k)
t .

LS. For a level-shift outlier we have

et = ωL
π(B)

(1−B)
+ εt

where, ωi = ωL and xt = π(B)(1−B)−1.

TC. Finally, for a temporary change the model becomes
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et = ωTC
π(B)

(1− γB)
+ εt

where, ωi = ωTC and xt = π(B)(1− γB)−1.

Assuming the model parameters known the magnitude of the outlier ωi, can be simply

estimated by least squares.

That is,

ω̂i = arg min
ωi

T∑
t=1

(et − ωixt)2. (5.3)

Differentiating (5.3) and setting the derivatives equal to zero leads to

ω̂i =

∑T
t=1 etxt∑T
t=1 x

2
t

,

with variance given by

V(ω̂i) = σ2
ε

( T∑
t=1

x2
t

)−2

.

Following the above procedure it is possible to obtain the estimators for the magnitude

of the different type of outliers considered.

These are given by

AO. In the case of an additive outlier the estimator is

ω̂A = ρ2
Aπ(F )et

where ρ2 = (1 + π2
1 + · · · + π2

T−k)
−1 and F is the forward operator defined by

Fyt = yt+1.

IO. For innovation outliers the only residual that has information about the contami-

nation is the one at k and the corresponding estimator is

ω̂I = ek

LS. For a level shift outlier the estimator of the magnitude is
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ω̂LS = ρ2
LS l(F )et

where l(F ) = π(F )/(1− F ) and ρ2
LS = (1 + l21 + l22 + · · ·+ l2T−k)

−1.

TC. Last but not least for the TC case we have

ω̂TC = ρ2
TC β(F )et

where ρ2
TC = (1 + β2

1 + β2
2 + · · · + β2

T−k)
−1, in which βi are the coefficients of

β(F ) = π(F )/(1− γF ).

5.2.1 Tests for outliers detection

A direct consequence of the possibility of estimating the magnitude of the outlier is the

possibility of constructing statistical tests.

In order to test whether an outlier of a specific type as occurred at time k the test is

H0 : ωi = 0

H1 : ωi 6= 0

where i = {A, I, LS, TC}. When the parameters are known we can use the residuals ek

derived previously, and the test under the model (5.2) is equivalent to testing the slope

in a simple regression model.

Therefore, the likelihood ratio criterion leads to the general test statistic

λi,t =
ω̂i,t
ρi,tσε

(5.4)

which has a student t distribution.

When the location of the outlier is unknown it is possible to use the alternative statis-

tics λ∗t = max{λj,t}. However, the sample distribution of λ∗j,t is particularly complicated

because of the correlation between the λj,t. The percentiles of the distribution have been

obtained by simulations by Chang et al. (1988), while subsequently Ljung (1993) sug-

gested some approximations to this distribution.

Several procedures based on these tests, or on some variation,s have been developed in

order to identify potential outliers inside a time series. The next chapter reviews the most
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common ones.

5.3 The impact of AO on the exact maximum likeli-

hood estimates: a simulation study

Having discussed, so far, the theoretical characteristics of the different outliers, we con-

ducted a simulation study to evaluate the impact that the AO might have on the estimates

of the parameters when the latter are obtained maximizing the exact likelihood.

The simulation study considers three different levels of contamination, three different

sample sizes and three different outliers magnitude. For each scenario we estimated via

Monte-Carlo method the bias of the exact maximum likelihood estimator. The estimates

are based on 10000 Monte-Carlo replicates and the simulation has been conducted for AR

and MA processes

The three autoregressive models considered in the simulation study are:

1. Yt = 0.6Yt−1 + εt

2. Yt = 0.4Yt−1 + 0.2Yt−2 + εt

3. Yt = 0.2Yt−1 + 0.3Yt−2 + 0.2Yt−3 + εt

while the three moving average models are:

1. Yt = 0.6εt−1 + εt

2. Yt = 0.4εt−1 + 0.2εt−2 + εt

3. Yt = 0.2εt−1 + 0.3εt−2 + 0.2εt−3 + εt

where εt ∼ WN(0, σ2
ε ).

We will first consider the bias introduced by the introduction of several additive outliers

in the autoregressive model and next we will consider the moving average case.
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5.3.1 Autoregressive models

Table 5.1: Yt = 0.6Yt−1 + εt

υ = 0

T Bias(φ̂1)

100 0.012
300 0.004
500 0.003

υ = 0.05

T Bias(φ̂1)

ωA = 5 100 0.229
300 0.221
500 0.221

ωA = 10 100 0.390
300 0.384
500 0.385

ωA = 15 100 0.461
300 0.456
500 0.457

υ = 0.1

T Bias(φ̂1)

ωA = 5 100 0.283
300 0.279
500 0.277

ωA = 10 100 0.416
300 0.414
500 0.412

ωA = 15 100 0.468
300 0.466
500 0.465

υ = 0.2

T Bias(φ̂1)

ωA = 5 100 0.308
300 0.305
500 0.304

ωA = 10 100 0.409
300 0.407
500 0.406

ωA = 15 100 0.447
300 0.445
500 0.444
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Table 5.3: Yt = 0.4Yt−1 + 0.2Yt−2 + εt

υ = 0

T Bias(φ̂1) Bias(φ̂2)

100 0.005 0.015
300 0.001 0.006
500 0.001 0.004

υ = 0.05

T Bias(φ̂1) Bias(φ̂2)

ωA = 5 100 0.149 0.049
300 0.146 0.039
500 0.146 0.036

ωA = 10 100 0.251 0.103
300 0.249 0.094
500 0.249 0.092

ωA = 15 100 0.298 0.134
300 0.296 0.126
500 0.297 0.124

υ = 0.1

T Bias(φ̂1) Bias(φ̂2)

ωA = 5 100 0.183 0.064
300 0.181 0.055
500 0.181 0.053

ωA = 10 100 0.268 0.114
300 0.267 0.106
500 0.267 0.104

ωA = 15 100 0.302 0.137
300 0.302 0.129
500 0.302 0.128

υ = 0.2

T Bias(φ̂1) Bias(φ̂2)

ωA = 5 100 0.199 0.071
300 0.197 0.063
500 0.196 0.061

ωA = 10 100 0.263 0.110
300 0.261 0.102
500 0.260 0.100

ωA = 15 100 0.288 0.127
300 0.286 0.119
500 0.285 0.117
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For all the three sample size considered the exact maximum likelihood estimates results

essentially unbiased when no outliers are introduced in the series, i.e when υ = 0.

For a fixed sample size, when a mild 5% contamination is introduced immediately the

bias increase considerably, this is a common and general phenomena observed for all the

three autoregressive models considered in the simulations.

Moreover, as the contamination becomes larger i.e υ = 0.1 or υ = 0.2, the bias tend to

increase more slowly. That is to say, for a given sample size, we expect to see similar bias

across different level of contamination, if the latter is particularly large. As an example, in

the AR(1) model when n = 100 and a 5% contamination is introduced the bias increases

to 0.309 while when the contamination is increased from 10% to 20% the bias increases

only by a small amount, approximately 0.20.

It is important to note that the main increase on the bias of the estimator it is not

provoked by the amount of contamination but by the magnitude of the additive outliers

introduced in the series.

To see this consider the AR(1) model and focus for example on the case with n = 300.

When υ = 0.05 and the magnitude of the additive outliers introduced is ωA = 10 the

bias is equal to 0.384. When the contamination is equal to υ = 0.2 but the magnitude

considered is ωA = 5 the bias results 0.305.

To conclude the main effect on the bias of the estimator is generated not by the amount

of outliers in the series but by their magnitudes.

Next, it is possible to consider the results for the AR(2) and AR(3) models. In these cases

it is interesting to note the bias it is different for the different parameters considered.

In the first case the bias is larger for the φ̂1 estimator while in the latter case the bias is

larger for the φ̂2 estimator.

As a general pattern across all the models as the sample size increase the bias for a given

proportion of contamination and outliers magnitude tends to decrease.

To conclude we mention an interesting tendency that emerges in all the autoregressive

models considered. For a given sample size, when the magnitude of the additive outliers

is either ωA = 10 or ωA = 15 and the contamination υ is increased from 0.1 to 0.2 the

bias tends to sensibly decrease. However this effect might be provoked by rounding errors.
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5.3.2 Moving Average Models

Table 5.7: Yt = 0.6εt−1 + εt

υ = 0

T Bias(θ̂1)

100 -0.006
300 -0.002
500 -0.001

υ = 0.05

T Bias(φ̂1)

ωA = 5 100 0.309
300 0.310
500 0.309

ωA = 10 100 0.449
300 0.449
500 0.448

ωA = 15 100 0.502
300 0.501
500 0.501

υ = 0.1

T Bias(θ̂1)

ωA = 5 100 0.358
300 0.360
500 0.360

ωA = 10 100 0.466
300 0.468
500 0.468

ωA = 15 100 0.504
300 0.506
500 0.506

υ = 0.2

T Bias(θ̂1)

ωA = 5 100 0.379
300 0.381
500 0.382

ωA = 10 100 0.460
300 0.461
500 0.462

ωA = 15 100 0.489
300 0.489
500 0.490



92

Table 5.9: Yt = 0.4εt−1 + 0.2εt−1 + εt

υ = 0

T Bias(θ̂1) Bias(θ̂2)

100 -0.004 -0.004
300 -0.001 -0.001
500 -0.001 -0.001

υ = 0.05

T Bias(θ̂1) Bias(θ̂2)

ωA = 5 100 0.174 0.096
300 0.176 0.098
500 0.176 0.097

ωA = 10 100 0.277 0.146
300 0.278 0.147
500 0.278 0.147

ωA = 15 100 0.318 0.165
300 0.319 0.166
500 0.319 0.166

υ = 0.1

T Bias(θ̂1) Bias(θ̂2)

ωA = 5 100 0.209 0.115
300 0.212 0.116
500 0.211 0.115

ωA = 10 100 0.291 0.155
300 0.293 0.154
500 0.292 0.154

ωA = 15 100 0.321 0.169
300 0.323 0.167
500 0.321 0.167

υ = 0.2

T Bias(θ̂1) Bias(θ̂2)

ωA = 5 100 0.224 0.120
300 0.224 0.122
500 0.225 0.122

ωA = 10 100 0.285 0.149
300 0.284 0.150
500 0.285 0.150

ωA = 15 100 0.307 0.159
300 0.306 0.160
500 0.306 0.160
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The conclusions obtained for the moving average models are the same as the one already

discussed for the autoregressive models.

Also in this case the main effect on the bias is provoked by the magnitude of the outlier

and few additive outliers with a large magnitude have a greater effect than a large number

of additive outliers but with a small magnitude.

When the MA(2) and MA(3) models are considered also in this case the bias depends

on the parameter that is estimated. In the first case θ̂1 is the estimator with the largest

bias, while in the latter θ̂2 is the estimator with the largest bias.



Chapter 6

Review of outliers diagnostic

procedures

In this chapter we provide a review of some of the most common outlier detection tech-

niques that have been proposed in the statistical literature. On the basis of them we

decided to try to extend the Forward Search to the time series context, in particular to

the class of SARIMA models.

The outlier detection techniques will be presented in chronological order. We want to

remark that a detailed description of these techniques is beyond the scope of this thesis

and for further results and/or explanations the reader is referred to Tsay (1988), Abra-

ham and Chuang (1989), Chen and Liu (1993b), Hendry (1999) and Marczak and Proietti

(2016).

6.1 Ruey Tsay - Journal of Forecasting (1988)

The method proposed by Tsay can be used to detect several types of outliers. In partic-

ular he considered, AO, IO, LS, TC and V C.

The number of outlying points and the corresponding time points are unknown. In partic-

ular he proposed two different techniques; one that can be applied to detect innovation,

additive and level shift outliers and the other to identify possible change of variance

points. Both of these techniques are composed by two iterative procedures for detecting

and modeling the atypical observations. The scheme elaborated by Tsay resumes in the

following steps:

(S1) Specification

(S2) Estimation

(S3) Detection

(S4) Removal

95
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were, at each iteration, the maximum of a selected test statistics is selected as the can-

didate test for that type of disturbance, and the grand maximum across the statistics is

identified as the most likely type of outlier.

The grand maximum, is then tested against a specified critical value so the existence of

the disturbance can be confirmed by statistical evidence. The procedure to detect change

of variance relies on the same structure but some modifications are made. We will start

by considering this last.

6.1.1 Procedure V: variance changes

In order to detect variance changes Tsay proposed the following scheme.

Step 1. Under the assumptions that no variance changes occurred, specify an ARMA model

for the observed time series yt and obtain the parameters estimate and the residuals

for the assumed model.

Step 2: Compute the variance ratio using the residuals obtained from the parameters esti-

mated at Step 1 and obtain the minimum and the maximum of the variance ratio,

call them λmin and λmax. Where

λmin = Min{r̂d : h ≤ d ≤ n− h}

λmax = Max{r̂d : h ≤ d ≤ n− h}

and h is a positive integer denoting the minimum number of residuals used to esti-

mate the variance.

Step 3: Let λ† = Max{λmax, λ−1
min} and compare λ† with a critical value Cα. If λ† < Cα,

there is no significance evidence of variance change at level α . Conversely, if λ† ≥ Cα

a variance change is detected. The time point at which the variance change occurs

is denoted t†.

Step 4: Adjust the variance change in the observed time series yt as

y∗t =

yt if t < t†

yt + (λ†)−1/2(yt − yt) if t ≥ t†

where yt is the sample mean of the series yt, and y∗t is the resulting corrected time

series.
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Next, go to Step 1 and consider y∗t as the observed time series and repeat the process

until no more change of variance are detected.

Since the distribution of λ† is particularly hard due to the correlation structure, based on

simulations Tsay suggests the values 3.5, 3.0 or 2.5 as possible candidate values for the

threshold Cα.

6.1.2 Procedure M: exogenous disturbances

Procedure M is concerned about the detection of disturbances that affects the mean level

of vt, the true unobservable series.

With the aim of simplifying the computation, the iteration here is divided in inner and

outer loops.

Outer Iteration:

Step A. Under the assumption that no disturbances are observed, specify an ARMA model

for the observed time series yt and obtain the parameter estimates for the postulated

model. Further, select a critical value Cα

Inner Iteration:

Step A1. Using the parameter estimates obtained at Step A compute the residuals and the

residual variance.

Step A2. On the basis of the residuals and the residual variance obtained at step A1, compute

the test statistics presented in Chapter 5 for every time t.

Next, for every test statistic, locate its maximum in absolute value, and let ti,

i = {I, A, LS, TC} be the time point where the maximum for the ith statistics

occurred.

Step A3. Find the grand maximum λ† = Max{λI,max, λA,max, λLS,max, λTC,max}, and compare

it with the critical value Cα. If λ† < Cα, no significant disturbance is found and the

procedure skips directly to Step B. On the other hand if λ† ≥ Cα a disturbance is

detected.

Step A4. Remove the effect of the identified disturbance by subtracting from yt the magnitude

ω̂i and denote the adjusted series as y∗t . Go to Step A and treat the adjusted series

as the observed one.

Step B. If there is no significance disturbance found in the inner iteration stop the proce-

dure. Otherwise, go to Step A with y∗t as the observed series.
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As in the procedure V the distribution of λ† is extremely complicated and candidates

values for the threshold Cα have been found by simulations. In particular, the values

4.0, 3.5 and 3.0, selected from simulation results of Chang et al. (1988), have provided

satisfactory results.

6.2 Abraham and Chuang - Technometrics (1989)

The procedure proposed by Abraham and Chuang relies on the assumption that a given

ARMA(p, q) process can be approximated relatively well by an AR(p+ q) process.

Their model building strategy starts by fitting a sufficiently large AR(p) model, subse-

quently, a series of iteration are repeated to identify and clean the observed time series.

A key difference from the procedure proposed by Tsay (1988), is that the method of

Abraham and Chuang focuses only on the AO and IO outliers types, furthermore, the

conditionals least squares are used to estimate the unknown parameters.

The procedure and the statistics that they use rely on the regression representation of

an autoregressive process. On one hand this simplifies the estimation of the parameters

since it allows to use the ordinary least squares and on the other hand it allows to extend

the algebra of linear regression to time series data.

Like the method proposed by Tsay (1988) also the procedure introduced by Abrahamn

and Chuang relies on a series of steps that are repeated iteratively.

The steps are performed as follows.

Step 1: Identification. Use any model-selection technique to identify a tentative model

ARMA(p′, q′) which may not be the true order, next approximate the identified

ARMA process with an AR(p∗) model, where p∗ ≥ p′ + q′.

Step 2: Outlier Detection. Estimate the parameters of the AR(p∗) process with the

conditional least squares method (CLS) and compute the statistics Qk (and or Qk2)

for k = 1 and k = p∗ + 1. The interested reader is referred to the article for the

details of these statistics. Obtain Qmax, and perform a significance test. If an outlier

is detected move to Step 3, otherwise skip directly to Step 4.

Step 3: Cleaning the series. Let t† be the position of the outlier detected at step 2. If the

outlier is an AO then delete the equations from (t†−p∗) to t† from the autoregressive

model and obtain a new estimate of the parameters. The t†th unit is then corrected

by substituting its value with E(yt†|F−t†).
If the outlier detected is an IO, delete only the t†th equation, estimate a new set of

parameters and adjust the original time series as
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y∗t =

yt − ẽ∗t if t = t†

yt − ψ̃t−d0 ẽ∗d0 if t > t†

where ẽ∗t is the residual obtained from the new parameter estimates and ψ̃∗j is the

coefficient of Bj in the causal representation of the process.

Step 4: Specification. Use the cleaned series in the last iteration to specify a new tentative

model. This model is estimated using maximum likelihood and the iterative strategy

is repeated.

The advantage of this procedure compared to the one discussed previously is that it takes

into account the fact that a model might be misspecified due to the effect of outlying

units.

However this automatic method presents several drawbacks. First, when an outlier is not

identified, that is to say, a good observation in the series is wrongly classified as an outlier

or an IO outlier is identified as an AO outlier, or vice-versa, the adjusted series may lead

to a misspecified model.

Second, the use of the autoregressive approximation used to simplify the estimation pro-

cess may lead to biased estimates especially when short time series are considered.

Last but not least, the mere use of information criteria for the specification of a model

may lead to poor results. In fact, in practice it may happen that different information

criteria lead to different model specifications.

6.3 Chen and Liu - Journal of the American Statis-

tical Association (1993)

Despite the procedures discussed previously are quite effective in detecting the location

and estimating the effects of the outliers, some issues still remain. In particular, Chen

and Liu (1993a), pointed out the following remarks:

(a) The presence of outliers may result in the specification of an inappropriate model.

(b) Even if the model is appropriately specified outliers in a time series may still produce

bias in parameter estimates and hence may affect the efficiency of outlier detection.

(c) Some outliers might not be identified due to a masking effect.

In their work Chen and Liu attempt to resolve the problems in points b and c above.

The iterative procedure that they proposed is articulated in 3 steps and the inclusion of
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an inner loop resemble an extension of Tsay’s procedure.

Furthermore, like the one introduced by Tsay (1988) this procedure does not relies on the

autoregressive approximation it makes use of some extensions of the outlying statistics

discussed in Chapter 5.

6.3.1 The Detection and Estimation Procedure

Stage 1: Initial Parameter Estimation and Outlier Detection

I.1. Compute the maximum likelihood estimates of the model parameters and obtain

the corresponding residuals et, t = 1, . . . , T .

Inner Loop of Outlier Detection for Fixed Model Parameter Estimates

I.2. For t = 1, . . . , T , compute λ̂I(t), λ̂A(t), λ̂LS(t) and λ̂TC(t) using the residuals et. and

let λ̂max(t) be

λ̂max(t) = max{|λ̂I(t)|, |λ̂A(t)|, |λ̂LS(t)|, |λ̂TC(t)|}

If λ̂max(t) > Cα, where Cα is a predetermined critical value then there is the possi-

bility of an outlier of a given type.

I.3. If no outlier is found skip directly to step I.4. otherwise correct the observation

accordingly to the type of outlier identified, and repeat step I.2. until no remaining

outliers are identified.

I.4. If no outliers are found in the inner loop the series does not contain any outlier and

the procedure can be stopped. If outliers are found in this inner loop move back to

step I.1. and revise the parameters estimate. If one or more outliers are detected in

the inner loops and no more outliers are found, move to step II.1.

Stage II: Joint Estimation of Outlier Effects and Model Parameters

II.1. Suppose that m time points t1, . . . , tm are identified as possible outliers of different

kinds. The outliers effects are then estimated jointly.

II.2. Compute the λ̂ statistics for the estimated ω̂j. If min|λ̂j| ≤ C , where C is the

same critical value used in step I.2, then delete the outlier at time point t0 from the

set of the identified outliers and go to step II.1 with the remaining m − 1 outliers,

otherwise move to step II.3.

II.3. Obtain the adjusted series by removing the outlier effects that resulted significant

at iteration II.1 and II.2.



101

II.4. Compute the maximum likelihood estimates of the model parameters based on the

adjusted time series. If the relative change of the residual standard error from the

previous estimate is greater than α go to step II.1 for further iterations; otherwise

go to step III.1. The tolerance α is chosen at the beginning by the user.

Stage III: Detection of Outliers Based on the Final Parameter Estimates

III.1. Compute the residuals by filtering the original series based on the parameter esti-

mates obtained at step II.4.

III.2. Use the residuals obtained at step III.1. and iterate through Stages I and II with

the modifications that the parameter estimates used in the inner loop of Stage I

are fixed to those obtained at step II.4 and Steps II.3 and II.4 are omitted in Stage

II. The estimated ω̂j of the last iteration at step II.1 are the final estimates of the

effects of the detected outliers.

6.4 Hendry - Methodology and Tacit Knowledge: Two

Experiments in Econometrics (1999)

The statistical procedures discussed until know were all concerned about outlier detection

in ARIMA models. However, because of its similarities with the Forward Search the

Impulse Indicator Saturation (IIS) represent an interesting method that has been first

introduced by Hendry to detect a random number of breaks of unknwon duration and

location in dynamic regression models.

The IIS and its extension, the Step Indicator Saturation (SIS), relies on a general-to-

specific approach, where a dummy variable is added for each unit in the sample, to take

into account the fact that the given unit might represent a potential outlier. The final

breaks are identified as those units for which the dummy variable result significant. Since

the number of parameters to estimate in the final model exceed or might be equal to the

number of observations, a 3-step approach is used to obtain the final fit of the model.

Formally, a dynamic linear model in its simplest form can be represented as:

Yt = µ+
T∑
t=1

δtdt + εt εt ∼ N(0, σ2)

where µ denotes the overall process mean, δt is the dummy variable added for the tth

observation and dt is the regression coefficient associated to it.

However, since the number of parameters is greater than the number of observations an

iterative procedure, the so called split-half approach, is employed.

The split-half algorithm performs the following steps.
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Step 1. First, impulse indicators are added to the first [T/2] half of the samples, i.e. impulse

indicators are added to time points t1, . . . , t[T/2]. The regression model with the [T/2]

indicator variables is estimated using the entire sample and dummies for wich the

t-statistic resulted significant at a nominal α level are then flagged as potential

outliers. The set of unit flagged as potential outliers in this first step is the given

by:

O1 = {t : t2stat,t ≤ c2
α, t = 1, . . . , [T/2]}

where tstat,t denotes the t-statistic for the tth dummy and c2
α is the t-distribution

critical value corresponding to the nominal significance level α.

Step 2. Step 1 is repeated, this time including dummies for time points tT−[T/2], . . . , tT .

The dynamic model is estimated as before using the entire sample and the set O2,

composed by the units for which the dummy resulted significant is generated. That

is,

O2 = {t : t2stat,t ≤ c2
α, t = T − [T/2], . . . , T}

Step 3. Impulse dummies are added to the units defined by the set O1 ∪O2, and the model

is re estimated using the entire sample. The set of final breaks is given by:

O∗ = {t : t2stat,t ≤ c2
α, t ∈ O1 ∪ O2}

On average in abscence of outliers, we would expect αT indicators to be retained in the

final stage by chance, so that setting α = 1/T leads to an average misclassification of one

osbervation.

Several extensions of the IIS have been proposed in literature. First several different type

of dummies might be considered such as in the SIS (Doornik et al. (2013)) where step in-

dicators are added, next different iterative procedures to estimate the final model ant the

breaks might be considered such as the split-half with sequential selection (Hendry and

Krolzig (2004)) which relies on the iterative elimination of the least significatng indicators

in each split until only the significant ones are retained. Finally, Marczak and Proietti

(Marczak and Proietti (2016)) considered an extension of the IIS the BSM structural time

series model.
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6.5 Marczak, Proietti and Grassi - Econometrics and

Statistics (2018)

Marczak, Proietti and Grassi introduced for the general class of state space models a

robust Kalman filter that can be used to clean the sample data and obtain unbiased

estimates of the parameters as well as robust state and innovation estimates.

The idea behind this extension is to use an M-estimator to shrink the observations towards

their one-step-ahead prediction by bounding the effect introduced by a new observation.

In order to control for the effect of outlying units an M-estimator is used to down weight

atypical units. Let θ be a vector of parameters, an M-estimator is then defined as the

minimizer of a prescribed ρ function, that is

θ̂ = min
θ

T∑
t=1

ρ(εt)

where εt = (yt−µt)σ−1
t . If the ρ function is differentiable the M-estimator is thus obatined

as the solution of the system of equations:

T∑
t=1

ψ (εt)
∂εt
∂θj

where ψ is the derivative of ρ. Strictly connected to the ρ and ψ function is the weight

function, defined as w(εt) = ψ(εt)/εt which represent the weight given to each residual by

the estimator during the estimation process.

Moreover, depending on the characteristics of the ψ function M-estimators can be classi-

fied in to re-descending or monotone M-estimators.

In the context of structural time series models Marczak, Proietti and Grossi used the

weight function derived from an M-estimator to down weight spurious observations.

The main idea behind this procedure is as follows. Let vt denote the one step ahead

prediction error observed from the standard Kalman filter, and let ut = F
−1/2
t vt be the

orthogonalized innovation. Furthermore, denote with ψ(ut) the ψ function applied ele-

ment wise to the vector ut and let ∆t be the diagonal matrix that contains the weight of

the elements of the vector ut.

Define ũt = ∆tut and assume that ũt N(0, σ2IN). Under this assumption ut ∼ N(0, σ2∆−2
t )

and as a final result the cleaned innovations, ṽt = F
1/2
t ũt are iid N(0,Ft), whereas the

observed contaminations, after writing vt = F
1/2
t ∆−1

t F
−1/2
t ṽt have a normal distribution

with mean zero and covariance matrix = Ft = F
1/2
t ∆−2

t F
1/2
t .

The robustification step is hence achieved by replacing F−1
t with Ft in the updating equa-

tions, in this way, the underlying innovation is distilled from the contaminated observable

innovation ut.
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Of course in the case of univariate time series models the quantities reduce to scalars.



Chapter 7

The Forward Search

As previously discussed in Chapter 5, atypical units can be treated in two different ways;

using proper diagnostics based on traditional estimation techniques or, alternatively, with

robust procedures.

The main issue, in the diagnostic approach, is its failure when data are contaminated by

groups or patches of outliers, leading to masking and/or swamping effects. On the other

hand, the properties of the robust estimators, that couple with the issues of swamping

and masking, do not match those of maximum likelihood estimators.

The Forward Search (FS) is an iterative procedure that seeks to merge highly efficient

estimators with diagnostics which are not affected by the masking and swamping effects.

The idea behind the Forward Search was first introduced by Hadi (1992) for the detection

of outliers in a linear regression fit using, approximately, half of the observations, and

different versions of the procedure are described Hadi and Simonoff (1993). Subsequently,

Atkinson, Riani and Cerioli extended this techniques. A modern treatment of the for-

ward search and its extensions can be found in Atkinson and Riani (2004), Atkinson et al.

(2010) and Atkinson and Riani (2012).

Our purpose is to extend the FS procedure to to time series data, in particular, to the

class of SARIMA models.

In this chapter we will first present the main idea behind the Forward Search, next we

will review its application to the linear regression model and, finally, we will extend the

results to the class of SARIMA models.

105
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7.1 The Forward Search method

The Forward Search is a general method that can be used to detect outliers in structured

data or to monitor the impact that single observations have on the fitting process of a

model.

Given a set of n observations y1, y2, . . . , yn, and a true generating model F ?
θ assumed to

belong to a parametric family G = {Fθ : θ ∈ Θ}, the method starts from a subset S(0)

of dimension |S(0)| = m† << n, that is robustly chosen to contain observations from a

postulated model Fθ. This subset is next used to obtain a first fit to the model. Here |· |
denotes the cardinality of the given set, i.e the number of elements inside the specific set.

Next, a prescribed measure of divergence, dFSi (· ), between the observations and the pos-

tulated model Fθ is computed for each observation. The next subset S(1), is obtained by

taking the m† + 1 observations that resulted with the smallest deviation measure. The

steps are repeater until the postulated model is fitted to all the units.

To summarize, the steps performed by the FS are three:

1. Identification of the initial subset.

2. Adding observations.

3. Monitoring the Search.

In order to introduce the Forward Search we will first examine the general iid case and

in particular its application to the linear regression model.

7.1.1 Forward Search - the linear regression model

Consider a sample yi, i = 1, . . . , n of iid observations. The observations are assumed to be

generated according the following regression model yi = x′iβ+εi. In this case θ = {β, σ2}
and εi ∼ iidN(0, σ2).

Under the normality and independence assumptions the maximum likelihood estimator

of β corresponds to the OLS estimator

β̂ = (X′X)−1X′y.

As a natural measure of deviation we consider e2
i = (yi − x′iβ̂)2, the squared residuals.

Step 1: identification of the initial subset

If the length of the vector β is equal to k, the the FS starts by selecting a subset of

m† = k units.
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In order for the Forward Search to proceed in the right direction the starting subset has

to be outlier free, therefore an highly robust estimator has to be used in the initial step.

To initialize the FS the least median of squares (LMS),Rousseeuw (1984) or the least

trimmed squares (LTS), Leroy and Rousseeuw (1987), are commonly employed.

The LMS is estimator is defined as

β̂LMS = arg min
β

Me(e2
i (β̂))

while the LTS estimator is

β̂LTS = arg min
β

h∑
i=1

e2
(i)(β̂).

where e2
(i) denotes the order statistics of the squared regression residuals and Me denotes

the median.

The LTS estimator might be preferred since it is more efficient than the LMS, however,

empirical evidence confirms that as long as the initial subset does not contain any outliers,

the FS will not be affected by the estimator used in the initialization.

If the number of observations n is small, the identification of the initial subset can be

brought out by complete enumeration of all the possible subsets of size k. That is, by

enumerating all of the
(
n
k

)
distinct ktuples. If

(
n
k

)
is too large some large number of subset

is considered instead, for example 1000.

LetMn
k be the set of all the ktuples obtained from the n observations. The initial subsets

S(0) is then defined as the set of k observations that minimize the LMS or LTS criterion.

Therefore, when the LMS criterion is adopted the initial subset is composed by the units

S(0) = {i : Me(e2
i (β̂)) = min}

while, when the LTS criterion is used the resulting initial subset is given by

S(0) = {i :
h∑
i=1

e2
(i)(β̂) = min}.

where |S(0)| = k = m†.

Step 2: adding observations during the search

Denote with S(1) the subset generated at the first step of the FS. The set S(1) contains

m† + 2 observations.

The Forward Search moves to the new subset S(2) of dimension m† + 2 by selecting the
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m† + 2 units that have the smallest squared residual.

Formally, define with S(m) the set generated at the mth step of the search, with e2
i (β̂

(m)) =

(yi−x′iβ̂(m))2, i = 1, . . . , n, the squared residuals obtained by estimating the parameters

with the units included in the subset S(m) and with e2
(i)(β̂

(m)) the corresponding order

statistics.

The new subset S(m+1) is then given by

S(m+1) = {i : e2
i (β̂

(m)) ≤ e2
(m+1)(β̂

(m))}.

From the new subset we can obtain a new set of estimates θ̂(m+1) = {β̂(m+1), (σ̂(m+1))2}
estimates, that is

β̂(m+1) = (
∑

i∈S(m+1)

x′ixi)
−1(

∑
i∈S(m+1)

x′iyi) (σ̂(m+1))2 =
1

m

∑
i∈S(m+1)

e2
i (β̂

(m+1))

The Forward Search estimator θ̂FS is then defined as the collection of estimators generated

at each step of the search, that is

θ̂FS = {θ̂(m), θ̂(m+1), . . . , θ̂(n−m†)}.

The FS, avoiding the inclusion of outliers in the initial step, seeks to provides a natural

ordering of the data in accordance to the assumed model. In the Forward Search method

a robust estimator is used only to initialize the algorithm, while in all the other steps an

highly efficient estimator is used.

In this context, the fact that the ML estimator has breakdown point equal to zero does

not represent a problem, since the inclusion of an outlier is indicated by a marked change

in the monitored quantities. The ML estimator obtained by the FS at a given step

corresponds to

θ̂(m) = arg min
θ∈Θ

`(m)(θ)

where `(m)(θ) is the log-likelihood function obtained from the units included in the mth

set, that is `(m)(θ) =
∑

i∈S(m) ln f(yi; θ).

In the Gaussian case considered here, the model likelihood obtained in the mth step of

the search is given by

L(θ)(m) =
∏

i∈S(m)

1√
2πσ2

exp−
[

(yi − x′iβ)2

2σ2

]
.
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Making use of the indicator functions the likelihood cam be rewritten as

L(θ)(m) =
n∏
i=1

{
1√

2πσ2
exp−

[
(yi − x′iβ)2

2σ2

]}1(i∈S(m))

=
n∏
i=1

{
1√

2πσ2
exp−

[
(yi − x′iβ)2

2σ2

]}1[e2i (β̂
(m−1))≤e2

(m+1)
(β̂(m−1))]

,

and by taking the logarithm the log-likelihood results equal to

`(θ)(m) =
n∑
i=1

(
−1

2
ln(2π)− 1

2
ln(σ2)− (yi − x′iβ)2

2σ2

)
1[e2

i (β̂
(m−1)) ≤ e2

(m+1)(β̂
(m−1))]

where the contribution of a single unit to the log-likelihood is given by

`(θ)
(m)
i = −1

2
ln(2π)− 1

2
ln(σ2)− (yi − x′iβ)2

2σ2
.

Therefore, the likelihood that is maximized at each step of the Forward Search can be

considered as a weighted likelihood, with weights 1 if the unit is included in the mth set

and 0 otherwise. The weight function at a given step m is given by

w
(m)
i =

1 if e2
i (β̂

(m−1)) ≤ e2
(m+1)(β̂

(m−1))

0 else

As a direct consequence the OLS estimator in the regression case discussed until now can

be generalized as a weighted least squares estimator, where the hard trimming weights at

each step are assigned by w(i)(m). The estimators can be written as

β̂(m+1) = (
n∑
i=1

x′ixiw
(m)
i )−1(

n∑
i=1

x′iyiw
(m)
i )

where now the sum is taken over all the units in the sample.

It is important to note that the sequence of subsets generated by the FS are not in general

monotone, that is

S(m) 6⊂ S(m+1)

does not generally hold as a unit which is included in the mth step can be discarded in
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the m+ 1th step and rejoin the search in the further steps.

7.1.2 Step 3: monitoring the Forward Search

Step 2 is repeated until all the units forming the dataset are included into the search.

The monitoring of at which step of the Forward Search a unit is included provides an

ordering of the data with respect to the assumed null model, with observations furthest

from it joining the search in the last steps.

As units are included into the search, different quantities are monitored by means of

different plots. The first plot monitors all the squared standardized residuals (s
(m)
i )2 =

e2
i (β̂

(m))/(σ̂(n−k))2, i = 1, . . . , n. obtained at each step of the search. Since (σ̂(m))2 is

highly affected by m all the residuals are standardized by the final estimate (σ̂(n−k))2.

Large values of the residuals among cases not in the subset indicate the presence of

possible outliers.

Two further plots of great importance are those that monitor the maximum standardized

residual in the subset, that is

e2
(m)(β̂

(m))/(σ̂(n−k))2 (7.1)

and the plot that monitors the smallest standardized residual of the units non included

in the set

e2
(m+1)(β

(m))/(σ̂(n−k))2 (7.2)

A sharp peak in the quantity (7.1) reveals that an outlier has been included in the set

S(m+1), while a sharp increase in the quantity (7.2) reveals that an outlier will be included

in the set S(m+2).

Further quantities of interests such as estimators and test statistics can be monitored as

well. The interest here might be in evaluating the impact of one or more outliers on the

monitored quantities.
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7.2 Extending the Forward Search to SARIMA mod-

els

The extension of the Forward Search to time series models, that we will denote FSTS

can be obtained following different strategies. These strategies differ in the method of

estimation and in the way the subsets of the FS are formed. The idea of extending

the FS to linear time series models derive from the similarity between the traditional

regression model and the autoregressive model. In particular, when the error terms are

assumed to be independent, identically distributed with a Gaussian distribution, the the

maximum likelihood estimator, becomes the OLS estimator. However, in order to apply

the FSTS method to the complete class of SARIMA models that encompass AR and

MA models as particular cases, a likelihood approach has to be followed. Doing this, the

use of the Kalman filter to compute the prediction error decomposition of the likelihood

plays a key role. The advantages gained from a likelihood approach are threefold. First,

the Kalman filter provides a general method that can be applied to the entire class of

linear time series models (potentially to every linear model that admits a state space

representation). As a consequence the same routine can be used for the entire class of

linear time series models (SARIMA). Second, when the size of the sample is small,

the estimates obtained by maximizing the exact likelihood have a smaller bias compared

to the conditional maximum likelihood estimates. Third, the Kalman filter provides a

natural way to handle the missing observations generated by the FSTS in the time series

case.

7.2.1 Initialization of the FSTS

Differently from the iid case where the initial subset is chosen among all the possible

subsets of dimension k, where k denotes the number of parameters of interests, in the

FSTS the a robust subset is chosen among q blocks of contiguous observations of fixed

dimension m†. In the most general case the blocks can be overlapping. The idea of

window, or block sampling, Heagerty and Lumley (2000), is to retain the same dependence

structure as in the original data set.

In order to find the initial robust subset Riani (2004) and Grossi (2004) suggested to

perform an exhaustive search over all the possible contiguous blocks of dimension k and

select the one that satisfies an LMS or LTS criterion.

Given a time series of length T let S(m†) be a set formed by m† contiguous units and let θ

be the vector of unknown parameters. The starting set corresponding the LMS or LTS

criterion are then given by

S(0)
LMS = {S(k) : Me(e2

t (θ̂S(k))) = min},
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and

S(0)
LTS = {S(k) :

T∑
t=1

e2
(t)(θ̂S(k)) = min}.

As the number of subsets increase the probability of having at least an initial subset which

does not contains outliers also increase. On the other hand, if the initial subset is too

small the estimator is inconsistent. As a rule of thumb, to find a balance between the ro-

bustness and the other statistical properties of the estimator we suggest a value m† ≈
√
T .

7.2.2 The Kalman filter in the FSTS

Denote by S(m) the subset obtained at the mth step of the search and by y(−m) the

observed time series where the units not included in the mth step have been settled as

missing. Following Riani (2004), ince |S(0)| = m† the number of units settled at missing

at the mth step is equal to m+m†. Applying the Kalman filter we obtain the prediction

error decomposition of the log-likelihood, which is subsequently maximized with respect

to the hyperparameters.

For a generic step of the FSTS the Kalman filter runs as follow:

1. Initialize m0 = 0 and Ω = (I−T⊗T)−1 vec(Q)

2. Check if 1(t ∈ S(m)) = 1, then

(a) vt = yt − Ztmt

(b) Ft = ZtPtZ
′
t + Ht

(c) mt|t = mt + PtZ
′
tF
−1
t vt

(d) Pt|t = Pt −PtZ
′
tF
−1
t ZtPt

(e) mt+1 = Ttmt|t + Ktvt

(f) Pt+1 = TtPt|t(Tt −KtZt)
′ + RtQtR

′
t

3. else if 1(t ∈ S(m)) = 0

(a) vτ = yτ

(b) Fτ |t−1 = Ht

(c) mτ |t = mτ |t−1

(d) Pτ |t = Pτ |t−1

(e) mτ+1|t = Ttmτ |t
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(f) Pτ+1|t = TtPτ |tT
′
t + RtQtR

′
t

As a result the exact log-likelihood obtained on the subset S(m) is

`(θ)(m) = −0.5 m lnσ2 +
∑
t∈S(m)

v2
t

f

=

(
−0.5

T∑
t=1

lnσ2 +
T∑
t=1

v2
t

f

)
1(t ∈ S(m))

where v2
t are the one step ahead prediction errors for the units composing the subset S(m).

7.2.3 Progressing in the FSTS search

Once the parameter θ̂(m) at a given step are estimated, these are used to run the Kalman

filter on the entire time series y in order to obtain the residuals. The FSTS moves

to dimension m + 1 by selecting the m + 1 observations with the smallest squared (or

absolute) residual. The observations are chosen by ordering all the squared residuals

e2
t (θ̂

(m)), t = 1, . . . , T and selecting the m+ 1 smallest ones.

Formally the new set is defined as

S(m+1) = {t : e2
t (θ̂

(m)) ≤ e2
(m+1)(θ̂

(m))}.

The recursion are performed until all the units are included in the search.

7.2.4 Monitoring the FSTS

As in the iid case a series of plots are produced by the search. The most important plot

is certainly the plot that monitors the standardized residuals of all the units in the series.

However, since in the first steps of the search many observations are settled as missing, the

resulting ML estimates may results unstable, leading to wild trajectories of the residuals

in the initial steps. As a solution, we simply suggest to discard the residuals obtained in

the first steps of the search.

Differently from the standard linear regression model in the FSTS, the monitoring of

the minimum standardized residuals for the units excluded, and the maximum for the

units included, does not seem useful to identify possible outliers. On the contrary, we

found that the monitoring of the diagnostics introduced in Chapter 5, might result par-

ticularly informative to discover the type of outlier of a particular unit. These statistics,

as argued in the previous chapter might suffer from swamping and masking effects, never-

theless, their monitoring in the FSTS context may reveal important patterns in the data.
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7.2.5 An automatic outlier detection procedure

The main drawback of the FSTS method is that it does not provide an automatic proce-

dure to identify the possible outlying or influential units. Therefore, we suggest a possible

method that can be employed to extract in an automatic manner the units more likely to

be flagged as candidate outliers

In order to resume the information for a given unit obtained by running the search we de-

fine the following statistics Mλ
t,i = Mem(λ̂

(1)
t,i , λ̂

(2)
t,i , . . . , λ̂

(M)
t,i ),i = {A, I, LS}, where Mem(·)

denotes the median value of the statistics , λ̂
(M)
1,i taken over the FSTS path. That is to

say, once the FSTS is terminated the selected diagnostic quantity for a given unit ob-

tained trough the search, are ordinated and the median is taken. As a rule of thumb, we

identify as possible outliers the units that have a value of the median statistic, Mλ
t,i, above

a certain threshold. A natural threshold should be a quantile form the distribution of the

given statistic. Nevertheless, the distribution of the statistic is not known and might

depend on the type of models and on the true values of the parameters. Therefore, as a

general procedure we select as a threshold the empirical quantile. Formally, let Fn,i(M
λ
t,i)

be the cumulative distribution function for the given statistic, and let q̂α,i = F−1
n,i (α) the

empirical quantile, then we can define the indicator function

1(Mλ
t,i ≤ q̂α,i) =

1 the tth unit is a possible outlier,

0 the tth unit is not an outlier,

where i = {A, I, LS}.
Once the most atypical units have been identified, we tag the unit with the most likely

type of outlier that resulted by means of the following statistics

max
i∈{A,I,LS}

|Mλ
τ,i|,

where t = τ if 1(Mλ
t,i ≤ q̂α,i) = 1.

Moreover, in order to take into account that on average the diagnostic for detecting a par-

ticular kind of outlier might result larger than the others we correct maxi∈{A,I,LS} |Mλ
τ,i|

by means of a weight, that is proportional to the distance between Mλ
τ,i and the corre-

sponding empirical quantile q̂α,i. Formally, we define a weight function w(z) that maps

a proper distance function in the range {0, 1}. Without loss of generality we take as a

proper distance function the absolute deviation, and to map the distance in the {0, 1}
range we define

w(z) =
zt −min(zt)

max(zt)−min(zt)
.
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The resulting weights are therefore given by

wτ,i =
|Mλ

τ,i − q̂α,i| −min(|Mλ
τ,i − q̂α,i|)

max(|Mλ
τ,i − q̂α,i|)−min(|Mλ

τ,i − q̂α,i|)
,

and the decision to classify an identified unit to the ith class of outliers is finally taken

using

max
i∈{A,I,LS}

(wτ,i|Mλ
τ,i|).

In the next section we will present two example of the FSTS procedure applied on real

data.
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7.3 Real data applications

7.3.1 The Airline Passenger Data

The airline passenger data, given in Box and Jenkins (1976), has often been used in the

time series analysis literature as an example of a non stationary seasonal time series. The

series consists of 144 monthly total numbers of airline passengers from January 1949 to

December 1960 and it has been used by Box and Jenkins to develop a two-coefficients

time series model of factored form that is now known as the airline model. In this section

we will analyze these data using the multiplicative seasonal model initially specified by

Box and Jenkins employed in the FSTS.

t
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Figure 7.1: The upper panel shows the airline passenger data. As it is evident, the data
show a strong seasonal behavior with period equal to 12 and non stationarity in variance,
as the variance of the series increase with time. The lower panel shows the log transformed
series. As it is evident the transformation works well and the variance is result stable over
the period considered.

Since the series exhibits non stationarity in variance, a common step taken in the analysis

of this series is to log-transform the data.

Figure 7.1 shows the series before and after the log transformation.
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In order to take into account the upward trend and the seasonal component Box and

Jenkins specified the following seasonal multiplicative model

(1−B)(1−B12)Yt = (1− θB)(1−ΘB12)εt, (7.3)

where (1− B) takes into account the stochastic up going trend while (1− B12) captures

the stochastic monthly seasonality.

Under the assumption that model (7.3) is correctly specified, Chen and Liu (1993a) by

applying the procedure of Tsay (1988), identified three outliers at time 29 (AO), 54 (LS)

and 62 (AO).

Forward Search Analysis of the Airline Passenger data

We perform the Forward Search on the logged airline passenger series. In order to initial-

ize the FSTS the initial robust subset is composed by 15 units.

The first important plot, in figure 7.2 shows the forward trajectories of the standardized

residuals.

The dotted lines corresponds to the 0.95 and 0.99 quantiles of a standard normal dis-

tribution, and, as a rule of thumb, residuals that exhibit a trajectory persistently below

or above the standard quantiles indicates that the corresponding unit may represent a

potential outlier.
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Figure 7.2: Forward trajectory plot of the standardized residuals. The dotted lines rep-
resents the 0.99 and 0.95 quantiles of the standard normal distribution. As it is evident
a group of three units clearly stem out from the bulk of data. These are unit 29, 62 and
135.

A critical inspection of the plot reveals that the majority of data remains constantly be-

tween the threshold values. Since the trajectories are particularly wild, especially at the
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beginning of the search, it is useful to focus the attention to the last 50% of the steps.

When focusing on the last half of the search, it is possible to note that the trajectories of

the units 29, 62 and 135, remain markedly outside the threshold bands for the entire path

of the search. Whereas, the trajectories of the units 38, 42 and 17 decrease slightly at the

end of the search. Of particular interests, are the trajectories associated to the group of

three units that around step 128 decrease abruptly.

This may be the indicator of some masking effect introduced by one or several units that

joined the set.
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Figure 7.3: The plot shows the forward trajectories of the standardized residuals in the
last 50% of the FSTS. As it is more clear from this plot the trajectories of the units
135, 29 and 62 remains for the entire search outside the confidence bands. Moreover the
trajectories of units 38, 42 and 17 decrease slightly in the last steps of the search.

Further information can be obtained by the forward plot of the statistics employed to test

whether a unit is an outlier or not.

Figures 7.4, 7.5 and 7.6 shows the forward trajectories of the outlying statistics.
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Figure 7.4: Trajectory plot of the λ̂A statistics
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Figure 7.5: Trajectory plot of the λ̂I statistics

The first forward plot monitors the value of the statistic used to test whether a unit is

an additive outlier. Its inspection reveals that despite λ̂
(m)
t,A remains constantly above or

below the threshold for the units 62, 135 and 29, there is a clear group of units, i.e 23,

17, 135 and 38 whose trajectories are not consistent with the bulk of data.

A similar conclusion is drawn from the forward plot of λ̂
(m)
t,I . In general, we observe that

when λ̂
(m)
t,A has a large value we will observe a large value also in λ̂

(m)
t,I . The decision be-

tween additive or innovation outlier should be done depending on the absolute magnitude

of the corresponding statistics.

An interesting pattern emerges when we focus on the forward plot of λ̂
(m)
t,LS, shown in

Figure 7.6. This plot confirms the presence of a possible level shift at time 54, the same

conclusion drawn by Chen and Liu. However, other times such as 30, 39 and 24 shows

trajectories distant from the majority of data that indicates the possible presence of other
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level shifts.
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Figure 7.6: Trajectory plot of the λ̂LS statistics

In order to summarize the different information provided in the different plots we suggest

to compute for each t, the median over the different steps of the forward search.

As an example for the outlying statistics the resuming quantity that we propose is

Mλ
t,i = Mem(λ̂

(1)
t,i , λ̂

(2)
t,i , . . . , λ̂

(M)
t,i )

where M is the total number of steps performed by the forward search and i = {A, I, LS}.
We propose the median because the trajectories might be particularly unstable at the be-

ginning of the search, and the mean might suffer from bias.

The plots for Mλ
A,M

λ
I and Mλ

LS are shown in Figure 7.7

The leaf plots in Figure 7.7 reveals a certain structure in the series. When considering

this plot it is worth focusing on the units that resulted atypical in the analysis of the

forward residuals plot. Units 29, 62 and 135 are identified as AO, while unit 136 results

identified as IO. Particularly interesting is the plot that show Mλ
t,LS. Times 30, 39, 42 and

54 results all potential level shifts, however by taking into account the natural ordering of

the series the level shift might occur at t = 30 and the subsequent units might be wrongly

identified as LS because of the swamping effect that is introduced.
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Figure 7.7: Stem plot of the Mλ
t,i statistics, for i = AO, IO, LS. By preserving the

natural ordering of the data and by making use of robust quantities the stem plot may
reveal interesting pattern in the series. Here the stem plot confirms that units 29, 62 and
135 are influential observations. Moreover a series of other potential atypical units are
identified, such as unit 38, 42 and 135. Of particular interest the stem plot in the third
panel which identifies four times as possible level shifts.

Since the step at which, a given unit joins the Search, should be interpreted as a degree

of outlyingness we show the last 5, 10 and 15 units that are added to the FSTS.

The plot confirms that units 29, 62, 135 and 136, already flagged as outliers, join the

search in the last 5 steps. Surprisingly time 42 that did not seem particularly suspicious

in the stem plot is one of the last units that is added to the Search. Additionally, when

we move to consider the last 10 units that are added to the search, units 30, 39 and 54

are in this group. All of them were enlighten previously in the stem plot as possible level

shifts.
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Figure 7.8: Last 5, 10 and 15 units that join the search

In order to conclude the analysis we employ the automatic outlier detection technique

with three different threshold values. Formally we compare |Mλ
τ,i| with q̂0.95,i, q̂0.975,i and

q̂0.99,i.

The results are report in Table 7.1, 7.2 and 7.3.

At a 1% significance level the automatic procedure detects 5 units as outliers, including

observations 29 and 135 that were flagged before as deviating units. When the statisti-

cian is willing to accept an higher degree of error and selects α = 0.05, the automatic

procedures enrich the previous set by adding 4 units. Among them observation 62 whose

residual exhibits a wild trajectory for the entire FSTS. To conclude, overall the auto-

matic method seems to flag as possible outliers all the units that were previously spotted

from a visual inspection of different plots produced by the FSTS. It is important to

remark that relying only in the automatic detection process might lead to inefficient re-

sults, moreover by doing so the true strength of the FSTS that relies in the Forward

monitoring plots it is not used.
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α = 0.01

τ |wτ,AMλ
τ,A| |wτ,IMλ

τ,I | |wτ,LSMλ
τ,LS| i

29 1.071183 1.078213 1.269853 LS
30 1.292167 0.429567 0 AO
39 1.515913 1.026921 0.032233 AO

135 0 0.293607 1.246126 LS
136 1.298258 0 0.54172 AO

Table 7.1: Outliers detected using the weighted approach with α = 0.01. Here τ denotes
the times at which an outlier was detected while i indicates the corresponding type of
outlier. The significant weighted statistics are represented in bold. Surprisingly with a
confidence level of 0.01 the unit 62 it is not detected by the automatic procedure.

α = 0.025

τ |wτ,AMλ
τ,A| |wτ,IMλ

τ,I | |wτ,LSMλ
τ,LS| i

17 0.018296 0.665099 1.221223 LS
29 3.139259 1.617112 0.991136 AO
30 0.932102 0.083338 0.819425 AO
39 1.338383 0.811188 0.859733 AO
42 0 0 0.079626 LS
54 1.327205 0.719166 0.135025 AO
62 0.483114 0.346995 0.822408 LS

135 1.722839 0.011623 0.954276 AO
136 0.940923 0.380352 0 AO

Table 7.2: Outliers detected with the weighted statistics at a confidence level equal to
α = 0.025
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α = 0.05

τ |wτ,AMλ
τ,A| |wτ,IMλ

τ,I | |wτ,LSMλ
τ,LS| i

17 1.549255 0.630808 0.840064 AO
18 0.879295 0.585536 1.099377 LS
23 0 0.752408 0.840937 LS
24 0.927784 0.210627 0.425464 AO
29 6.090761 3.544277 0.249487 AO
30 0.079549 0.984486 3.365691 LS
38 0.947416 0.064671 0.824855 AO
39 0.918031 0.121577 3.429296 LS
42 1.365187 1.108632 2.17656 LS
54 1.062315 0 2.267336 LS
62 2.252213 1.720611 0 AO

117 1.022178 0.089893 0.395204 AO
123 0.107282 0.920041 0.149188 IO
135 4.070112 1.22342 0.177679 AO
136 0.094837 1.769571 1.355147 IO

Table 7.3: Outliers detected with the weighted statistics at a confidence level equal to
α = 0.05
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7.3.2 Retail sales data

Preliminary analysis

This series consists of 150 monthly sales registered in an Supermarket shop in Parma,

starting from January 2005 until June 2017. The series is reported in Figure 7.9.

Time

y

0 50 100 150

0
5
0

1
0
0

1
5
0

Figure 7.9: Monthly sales data of an Hypermarket shop in Parma. On the time axis 0
corresponds to the 1st of January 2005 while 150 corresponds to 1st of June 2017.

Graphical inspection reveals that the series exhibits a downward trend and a seasonal

pattern with period equal to 12 months. Because of the irregularity of the seasonal pat-

tern, especially in the first half of the series, we assume that the seasonality can be well

captured by a stochastic component. While for the downward trend we take the first

difference of the data.
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Model Specification

In order the identify the proper model and the respective order we proceed with the in-

spection of the sample autocorrelation and partial autocorrelation functions, Figure 7.10.

Graphical inspection of the SACF and SPACF reveal a slow dampening behavior, with

a regular pattern observed at every 12 lags. The slow dampening is generally uncounted

in the presence of unit roots, while the 12 lags pattern confirms the seasonal component

of the series.
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Figure 7.10: From the analysis of the estimated ACF (upper panel) it is evident that the
series exhibits a seasonal behavior with period equal to 12. Moreover the slow decaying
may indicate the presence of possible unit roots

Furthermore we inspect the SACF and SPACF of (1− B)yt and of (1− B)(1− B12)yt

respectively shown in Figures 7.11 and 7.12. These show three possible options. First, the

exponential decay of the autocorrelation function at multiple lags of 12 and the cutting off

of the PACF after lag 13 suggests a possible seasonal autoregressive component, however

the identification of non seasonal components is not clear from the SACF and SPACF ,

and a first tentative model might be a SARIMA(0, 1, 1)(1, 0, 0)12 which we will refer as

M1.

The second strategy, could be to seasonally differentiate the data and specify a model on

the transformed data. The SACF an SPACF for the seasonally differenced data are re-

ported in Figure 7.12. Visual inspection suggests two candidate models: SARIMA(0, 1, 1)(0, 1, 1)12

or SARIMA(0, 1, 1)(1, 1, 0)12, that we will refer as M2 and M3.

Having decided a list of possible candidate models we can perform the FSTS and consider

the results obtained with the three specifications.
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Figure 7.11: SACF and SPACF of the differentiated data. The first difference mitigate
the slow decaying trend leaving the seasonal component of period 12. The cut off after
lag 12 of the SPACF suggest an a seasonal autoregressive component of order 1.
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Figure 7.12: SACF and SPACF of after applying the filter (1−B)(1−B12) on the retail
sales data.
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Forward Search Analysis of the Retail Sales Data

The FSTS as extensively discussed before provides some visual tools that can be used to

analyze the residuals and shed light on the presence of atypical and important observa-

tions.

The comparison of the trajectory plot of the residuals obtained with the Forward Search

performed on the different three models are reported respectively in Figure 7.13, 7.14 and

7.15.
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Figure 7.13: Trajectory plot of the standardized residuals when the Forward Search is
performed on M1. Units 40, 51, 52 and 84 show trajectories outside from the threshold
values for the entire Search.

As expected, the unit flagged as potential outliers depend on initial specification of the

model. However, a comparison of the residuals plots obtained by the three different mod-

els might reveal a common structure between the models.

In particular, a visual inspection of the residuals trajectories shows that according to all

the three models, units 40 and 51 are flagged as possible outliers.

Units 14, 16 and 116 are candidate outliers according toM2 andM3, while unit 84 results

atypical in M1 and M2. Thus, from a visual analysis of the residual plots it is therefore

possible to identify which are the influential units given a postulated model and, on the

other hand, identify the most outlying units by a direct comparison of the plots generated

by different models.

In this particular case, since the trajectories associated to units 40 and 51 appear wild

according to all of the three assumed models, we can conclude with a certain degree of

confidence that they are highly influential units and possible outliers.
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Figure 7.14: Trajectory plot of the standardized residuals when the Forward Search is
performed on M2. In agreement with M1 units 40, 51 and 84 show trajectories outside
the threshold values for the entire Search. Interestingly, when M1 is employed, the
trajectory of unit 14 increase sensibly at step 110.
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Figure 7.15: Trajectory plot of the standardized residuals when the Forward Search is
performed on M3. In accordance with M1 and M2, units 40, 51, show trajectories
outside the threshold values for the entire Search. Moreover units 14 and 16 results as
possible outliers too.
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Taking a step forward it is possible to compare the trajectory plots of the statistics used

to identify whether a given unit is an IO, an AO or a LS.
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Figure 7.18: The trajectory plots of the additive outlier diagnostics for the three models
employed. According to all of the three models unit 40 and 51 are flagged as possible
atypical units.
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Figure 7.21: The trajectory plots of the innovation outlier diagnostics for the three models
employed. According to all of the three models unit 51 is flagged as a potential innovation
outlier, while the diagnostics for unit 40 result being significant only when M3 is used.
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Figure 7.24: The trajectory plots of the level shift diagnostics for the three models em-
ployed. Clearly from the plots there is no evidence of any level shifts. Nevertheless when
M1 is employed the λ̂LS,51 remains far from the bulk of the data for a long period in the
search.

The plots confirms that the units 41 and 50 are clearly two outliers. The outlyingness

of these two units is larger when model M2 or M3 are considered, as their trajectories

remain markedly distant from the bulk for the entire path of the search.

For all of the three models there is no clear evidence of level shifts in the data, however,

when M1 is assumed, the trajectory of λ̂LS,51 remains far from the bulk of the data for
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the majority of the FSTS.

It is clear from this analysis that the degree of outlyingness of one unit depends heavily

on the underlying assumed model, and a consequence, automatic procedures that have

been developed, despite commonly employed in practical applications may lead to false

discoveries in the data or to misleading specifications.

In order to discover the nature of the different units it is possible to analyze the leaf plots

already proposed for the analysis of the Airline Passenger data, and further insights are

provided by the automatic outlier detection procedure whose results are reported din the

following tables.

Table 7.4: Outliers identified when M1 is employed

τ |wτ,AOMλ
τ,AO| |wτ,IOMλ

τ,IO| |wτ,LSMλ
τ,LS | i

2 0.13705 1.13256 0 IO
14 0.8681 0.66 0.09666 AO
28 1.0439 0.75524 0.2731 AO
38 0.21289 1.11078 0.38246 IO
39 1.60904 0.86259 0.82045 AO
40 7.16624 2.04588 5.59623 AO
49 0 0.84966 0.08 IO
50 1.26513 0.83938 1.39455 LS
51 6.0519 0.90254 0.88458 AO
52 5.4566 6.21862 1.70581 IO
58 1.46254 0.19975 1.45933 AO
70 1.18849 0 0.49671 AO
114 0.18236 1.138 0.72721 IO
116 0.29456 0.08015 0.26933 AO

Table 7.5: Outliers identified when M2 is employed

τ |wτ,AOMλ
τ,AO| |wτ,IOMλ

τ,IO| |wτ,LSMλ
τ,LS | i

14 0.9661 3.81676 0.06513 IO
16 0.86736 1.24312 1.14506 IO
28 1.20439 1.12667 0 AO
38 0.67013 0.91641 1.13919 LS
40 4.93824 2.38853 2.15645 AO
49 0 1.096 0.67089 IO
50 1.15743 0.00515 0.25214 AO
51 4.96686 4.28007 0.90189 AO
52 3.75322 3.60455 1.12051 AO
58 0.91662 0.01856 0.1795 AO
70 1.2476 0.1274 1.05914 AO
84 0.00498 0 0.03061 LS
113 0.08713 1.11721 0.91461 IO
114 0.44486 1.10192 1.18418 LS
115 0.19914 0.68908 0.58298 IO
116 0.27438 0.73842 0.98743 LS
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Table 7.6: Outliers identified when M3 is employed

τ |wτ,AOMλ
τ,AO| |wτ,IOMλ

τ,IO| |wτ,LSMλ
τ,LS | i

14 1.1212 3.9056 0.10162 IO
16 0.24242 1.45207 0.94676 IO
28 1.13403 1.07306 0.35805 AO
38 0.36856 0.88927 0.98255 LS
40 4.68789 3.67856 2.22688 AO
49 0 1.05542 0.51018 IO
50 0.858 0.00477 0.56909 AO
51 4.05254 4.76424 0.6577 IO
52 2.36999 1.34921 1.04626 AO
58 1.13229 0 0.04295 AO
84 0.04864 0.11269 0.13913 LS
113 0.00504 1.05093 0.82936 IO
114 0.66292 1.05377 1.48304 LS
115 0.50327 0.25638 0 AO
116 0.0741 0.91165 1.11312 LS

As expected despite the different models lead to different patterns of outliers it is possible

to identify a group of units that results atypical in all of the three models proposed.

The common structure is reported in Table in 7.7.

Table 7.7: Common structure identified by performing the FSTS on the three different
assumed models. All of the three model classify units 28, 40, 49 and 58 with the same
outlier type, Moreover, it is observed thatM2 andM3 that contains a seasonal difference
agree on the majority of types of outliers.

τ M1 M2 M3

14 AO IO IO
28 AO AO AO
38 IO LS LS
40 AO AO AO
49 IO IO IO
50 LS AO AO
51 AO AO IO
52 IO AO AO
58 AO AO AO

114 IO LS LS
116 AO LS LS

By looking at Table 7.7 it is clear that units 28, 40 and 58 are flagged by AO by all of

the three models. Interestingly, models M2 and M3, both of which contains a seasonal

difference, agreed on the classification of the majority of the outliers.

We conclude this analysis by showing the stem plot of the diagnostics for the three different

models. As it is evident, the stem plot en lights the same results obtained with the

automatic outlier detection procedure.
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Conclusions

In this thesis I have investigated the possibility of extending the Forward Search procedure

to the class of SARIMA models, where, the Kalman filter resulted a key ingredient. The

applications on the two real time series, despite simple, highlighted the strength and

weaknesses of this procedure applied to this class of models. Further results from a

simulation study might be needed to strengthen the findings and validate the automatic

outlier detection procedure.

However, in this starting phase, I believe that the main strength of the FSTS relies in

the series of useful plots that can be used to discover, in an exploratory analysis curious

patterns in the data.

First, the information provided by the trajectory plots obtained with the FSTS allow

the analyst to discover possible interesting patterns in the series and highlight what can

next be discovered being atypical units. Second, the leaf plot provide a robust visual tool

that can be used to shed some light on the findings discovered by the visual inspection of

the preliminary residuals plots. Since in the stem plot the natural ordering of the data

is preserved, and because the statistics are obtained in a robust way, its interpretation is

straightforward and the information that it provides is not affected by the swamping and

masking effects. Finally, the automatic outliers detection procedure, despite its need of

further tuning, seems an important step in extending the Forward Search as an automatic

outliers detection technique.

On the other hand the application of the Forward Search to the class of SARIMA models

apprise some problems. In particular, I found that the Kalman filter results unstable when

the units in a given step of the FSTS are particularly sparse in time, that is to say when

we have many missing times between one observation and the others. In extreme cases,

this may result in the non convergence of the algorithm. Next, the identification of the

type of outliers AO, IO or LS relies heavily on the natural time ordering of the data.

As a consequence, the standard trajectory plots adopted in the search cannot be used to

achieve this task. And that is why I have implemented the stem plot to try to maintain

the original natural time ordering of the series.

Last but not least, the outlying nature of a given unit relies heavily on the postulated

model. In order to overcome this problem two different paths seem natural. First, the

initial SARIMA model might be specified adopting robust procedures, such as robust

139
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ACF and PACF or robust information criteria. Second, a structural model might be

considered. By adopting a structural model the specification part should result simpler

since depending on the visual characteristics of the series the analyst should specify which

unobserved components to be included in the model.

Overall, I believe that the FSTS is an extremely flexible and useful procedure that can

be well adapted to many different statistical contexts as it is evident from the wide

range of applications that have been proposed in literature. Moreover, the analysis of

outlying units in a time series context should not be done blindly and by relying only on

the automatic procedures, but the analyst should always base his judgment on external

and/or personal knowledge on the data at hand.

Moreover, I would like to mention the possibility of extending the procedure proposed in

Crosato and Grossi (2017) to other settings. The idea of retaining all the observations in

the FSTS and assign an adaptive weight is a reasonable requirement especially in time

series analysis where the natural time ordering of the data seems particularly relevant for

the correct identification of the type of outliers.

In this direction on one hand it might be worthed to considered different weight functions

to see if the robustness properties of the search might be improved. On the other hand,

it might be interesting to correct the series when an outliers is identified and proceed the

FSTS on the cleaned series in a manner similar to the procedures discussed in Chapter

5.
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