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We report on the study of binary collisions between quantum droplets formed by an attractive mixture
of ultracold atoms. We distinguish two main outcomes of the collision, i.e., merging and separation,
depending on the velocity of the colliding pair. The critical velocity vc that discriminates between the two
cases displays a different dependence on the atom numberN for small and large droplets. By comparing our
experimental results with numerical simulations, we show that the nonmonotonic behavior of vcðNÞ is due
to the crossover from a compressible to an incompressible regime, where the collisional dynamics is
governed by different energy scales, i.e., the droplet binding energy and the surface tension. These results
also provide the first evidence of the liquidlike nature of quantum droplets in the large N limit, where their
behavior closely resembles that of classical liquid droplets.
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Collisions between self-bound objects have been studied
in the most diverse physical systems. The best known
example is that of classical liquids. When they approach
each other with a certain relative velocity, liquid drops can
either merge in a single droplet (coalescence) or separate
into two or more drops after collision, depending on
whether or not the surface tension is sufficient to counteract
the kinetic energy of the colliding pair [1–3]. Analogous
studies have been carried out in the context of atomic nuclei
to understand the dynamics of nuclear reactions and fission
[4–7]. In the latter, for example, the transition from a single
compound nucleus to the formation of two separate nuclei
is governed by the interplay of collective macroscopic
effects, described by the so-called liquid-drop model, and
single-particle microscopic effects, related to shell correc-
tions and pairing. Quantum effects in the collision of liquid
droplets have been observed in the coalescence of helium
clusters, where the merging dynamics occurs on a faster
timescale with respect to classical fluids, due to the
vanishing viscosity in their superfluid bulk [8–10]. In all
of these cases the study of binary collisions has proved
to be a powerful tool to probe the dynamical properties of
self-bound systems.
In this Letter, we consider a new entry in this class of

self-bound objects, i.e., quantum droplets formed by a
mixture of ultracold atoms. They consist in dilute samples
of bosonic atoms with attractive interactions, stabilized
against collapse by the repulsive effect of quantum fluc-
tuations [11–13]. This novel quantum phase was first
predicted a few years ago [12] and it has drawn increasing
attention in the community since then. Besides being a

macroscopic manifestation of quantum fluctuations, quan-
tum droplets are predicted to display a number of interest-
ing features. Despite being extremely dilute, for a large
number of atoms they enter a liquidlike incompressible
phase, highlighted by a uniform bulk density. Another
exotic property is related to their excitation spectrum in the
small atom number regime, where the discrete collective
excitations are much higher in energy than the particle
emission threshold [12], which gives rise to a self-
evaporation mechanism that continuously cools the droplet,
in close analogy with the decay of giant resonances in
nuclei (see, e.g., Ref. [14] and references therein).
The first experimental observations of quantum droplets

in atomic mixtures have been reported recently [15–17].
Besides proving the existence of a self-bound phase in a
mixture of 39K atoms, they also presented a first charac-
terization of its phase diagram and equilibrium properties.
In order to further look into its peculiar nature, in this
work we study collisions between two quantum droplets.
Analogous experimental studies in the context of ultracold
atoms have been performed on bright solitons [18,19] and
dipolar quantum droplets [20–22]. While in the latter case
the result of collisions is mainly determined by dipolar
interactions and the droplets repel each other [23], colli-
sions of bright solitons in one-dimensional waveguides
directly probe their intrinsic properties, being influenced by
their relative phase or by deviations from one dimension-
ality [24,25]. Theoretical studies about collisions of self-
bound atomic clouds have been carried out in Refs. [26,27]
for one and two-dimensional mixture droplets and in
Refs. [28,29] for analogous self-bound quantum balls
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stabilized by repulsive three-body interactions. In this
Letter we show how the study of collisions between
Bose-Bose mixture droplets is a powerful tool to verify
the existence of a liquid regime at large atom numbers and
to gain information about the energy scales of the system.
The experimental setup is analogous to the one described

in Ref. [17], with a modified trap geometry adapted to the
creation of two colliding droplets. We first create two
separate Bose-Einstein condensates (BECs) of 39K atoms in
the j1;−1i hyperfine state (state 2) in a double-well
potential, created by the superposition of a crossed dipole
trap with a repulsive thin barrier that splits the BEC along
the x direction [Fig. 1(a)]. By applying a radio-frequency
(rf) pulse of 10 μs, we transfer ∼50% of the atoms in the
j1; 0i state (state 1), so as to create the desired attractive
mixture. As already shown in Ref. [15] and Ref. [17], in a
specific range of magnetic fields B, the Feshbach reso-
nances of these two hyperfine states are such that the
intraspecies scattering lengths a11 and a22 are positive,
while the interspecies a12 is negative. When the effective
scattering length δa ¼ a12 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

becomes negative,
for B < Bc ¼ 56.85 G, the attractive mean-field energy
would lead to a collapse of the BEC, while the repulsive
energy provided by quantum fluctuations, the so-called
Lee-Huang-Yang energy [11], stabilizes the mixture and
leads to the formation of self-bound atomic clouds. At the
end of the rf pulse we thus have two quantum droplets
separated by the repulsive barrier. In order to provide them
a controlled and tunable velocity, we apply the following
strategy [sequence sketched in Fig. 1(b)]. We first switch
off the radial dipole trap and the repulsive barrier, leaving
the atoms in the vertical dipole trap plus the optical

levitating potential introduced in Ref. [17]. Because of
the harmonic confinement provided by the vertical beam
along the x direction [ωx ¼ 2π × 93ð5Þ Hz], the droplets
move towards the center of the trap, acquiring an increasing
velocity. After a time interval Δt we switch off the vertical
beam and the two clouds keep moving towards each other
along the x direction, at a constant velocity v. The value of
v is tuned by changingΔt: forΔt < π=ð2ωxÞ, increasingΔt
corresponds to a larger v. Via absorption imaging along the
y direction, we record the density profiles after a variable
waiting time and observe the collisional dynamics.
We distinguish two different outcomes of the collision, as

reported in Figs. 2(a), 2(d). When the droplets collide with
velocities smaller than a critical value vc, they merge in a
single droplet, while for v > vc they separate after collision
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FIG. 1. Production of two colliding droplets. (a) Schematic
representation of the geometry of the optical potentials. (b) Ex-
perimental sequence used to provide a controlled velocity to the
droplets.
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FIG. 2. Examples of two collision measurements resulting in
merging (a) and separation (d) of the droplets. In (b) and (e) we
report the corresponding evolution of the distance d between the
droplets and in (c) and (f) of the total atom numberN. A linear fit of
dðtÞ before collision is used to measure vrel and tcoll. Ncoll is then
deduced from a linear interpolation between the two data points
adjacent to tcoll, as shown in (c) and (f). The data correspond to the
average over four experiment repetitions. The error bars represent
the statistical uncertainty and correspond to 1 standard deviation.

PHYSICAL REVIEW LETTERS 122, 090401 (2019)

090401-2



and keep moving in opposite directions. To measure the
velocity of the collision, we fit the density profiles as a
function of time t, using either a two-dimensional (2D)
double-Gaussian or a single-Gaussian function, depending
on whether there are two or one visible density peaks. In the
former case we measure the distance between the droplets
as d ¼ jxL − xRj, where xL and xR are the centers of the left
and right Gaussians along the x direction. In the single
Gaussian case, we define d ¼ 0. In Figs. 2(b), 2(e) we
plot dðtÞ for the two experimental sequences reported in
Figs. 2(a), 2(d): in the merging case d stabilizes to zero after
collision, while it linearly increases with time when the
droplets separate. Performing a linear fit of dðtÞ in the early
stages of the collision, when the droplets are approaching
each other, we can measure the relative velocity vrel and thus
the velocity of each droplet v ¼ vrel=2 [Figs. 2(b), 2(e)].
Another relevant parameter to characterize the observed
collisional dynamics is the total atom number at collision
Ncoll. We estimate the collision time as tcoll ¼ d0=vrel, where
d0 ¼ dðt ¼ 0Þ, and then we determine Ncoll ¼ NðtcollÞ by
performing a linear interpolation between the two closest
data points, as in Figs. 2(c), 2(f).
We take several datasets as a function of v and Ncoll.

Note that, due to strong three-body losses in the system
[as visible in Figs. 2(c), 2(f) and already described in
Ref. [17] ], we can tune Ncoll by changing the initial
distance between the droplets and thus the collision time
tcoll. In the sequences reported in Fig. 2, for example, in
order to have a similar Ncoll in spite of the different v, d0
was increased proportionally to v. In order to explore a
broader range of atom numbers, we can also tune an
additional parameter, i.e., the magnetic field B. As shown in
Ref. [12], the proper variable for the description of quantum
droplets is indeed the rescaled atom number

Ñ ¼ N

ð1þ 1=αÞnð0Þ1 ξ3
; with ξ2 ¼ 3ℏ2

2m
1þ α

jδgjnð0Þ1

; ð1Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
, δg ¼ 4πℏ2δa=m, and nð0Þ1 is the

equilibrium density for the atoms in state 1, whose
definition is reported in Ref. [30]. Ñ defines the shape
of the droplet wave function, thus distinguishing between a
compressible regime, where there is no distinction between
the bulk and the surface, and an incompressible regime,
where the wave function displays a clear flattop at the
center, indicating the existence of a bulk with a fixed
saturation density [Fig. 3(a)]. Ñ depends on B via the
scattering lengths aij, so that we can control Ñcoll by tuning
B in a range between 56.23 and 56.44 G. Using the same
rescaled units introduced in Eq. (1), the velocity of each
droplet becomes ṽ ¼ vmξ=ℏ. In Fig. 3(b) we report the
results of the collision measurements as a function of Ñcoll
and ṽ, distinguishing between the two different outcomes:
merging (red diamonds) and separation (blue squares).

We observe a nonmonotonic behavior of the critical
velocity ṽc, setting the threshold between the two regimes:
for small droplets, ṽc increases with Ñcoll, while for larger
droplets the trend is inverted.
In order to get a deeper insight in the physics of the

collision and understand the observed behavior, we sim-
ulate numerically the dynamics of the collision by means of
a modified Gross-Pitaevskii equation (GPE), equivalent to

N(a)

(d)

(b)

(c)

SEPARATION

MERGING

FIG. 3. Outcomes of the collision measurements (b) and
simulations (c) as a function of ṽ and Ñcoll. In (a) we draw the
droplet wave function for increasing values of Ñ, which shows
the crossover from compressible to incompressible droplets. In
(c) the results of simulations in the ideal case without losses are
represented as a color plot of the ratio R introduced in the text,
while the data points represent the results of the simulations with
3BL, distinguishing between merging (red diamonds) and sepa-
ration (blue squares). The solid lines in (b) and (c) represent the

expected trend ṽc ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jẼdropj=Ñ

q
at small Ñ, while the dotted in

line in (c) is ṽc ∝ ðÑ − Ñ0Þ−1=6, which is the predicted scaling at
large Ñ. The dashed lines in (b) and (c) correspond to the same
Ñ−1=6 scaling, but in this case they are simply used as a guide to the
eye. In (d) we report the timescale of the collision τ̃ as a function of
Ñcoll and, in the insets, two examples of the collisional dynamics
observed in the simulations without 3BL, in the two opposite cases
of small and large Ñ. A detailed description of the estimation of the
error bars in (b) is reported in Ref. [30].
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a time-dependent density functional theory within local
density approximation [12,31] (see Ref. [30] for details).
Similar approaches have been recently used to study both
dipolar and mixture droplets [17,22,32]. Their validity for
the ground state was also tested against Monte Carlo
simulations [33,34]. In our case, we assume the density
ratio n1=n2 to be frozen, which is justified by the exper-
imental results reported in Ref. [17], where a fast stabili-
zation of n1=n2 to its equilibrium value was observed. We
can then write an equation for a single macroscopic wave
function [12]. Using the rescaled units r̃ ¼ r=ξ and
t̃ ¼ ℏt=mξ2, the modified GPE reads simply

i
∂
∂ t̃ψ ¼ −

1

2
Δr̃ψ − 3jψ j2ψ þ 5

2
jψ j3ψ ; ð2Þ

where the second term on the right-hand side corresponds
to the negative mean-field energy and the last term is the
positive Lee-Huang-Yang correction due to quantum fluc-
tuations [30]. The initial state is represented by two
quantum droplets with Ñ=2 atoms each, separated by a
certain distance to ensure that no overlap exists between
them. We provide them a certain velocity ṽ, so that they
move towards each other, and then we observe the result of
the collision. In order to distinguish between merging and
separation, we measure, at large times after the collision,
the ratio R ¼ ncm=ðncm þ noutÞ, where ncm is the density at
the center of mass and nout is the peak density of the
outgoing clouds. The results are reported in Fig. 3(c). We
observe a qualitative agreement with the experimental
outcomes of Fig. 3(b), but a quantitative difference in
the position of the maximum of ṽcðÑÞ, which is here
shifted to Ñ ∼ 200. To understand the origin of this
discrepancy, we perform a new set of simulations including
the effect of three-body losses (3BL). They are inserted in
Eq. (2) as an imaginary term −iðK̃=2Þjψ j4ψ , where the
parameter K̃ ¼ 0.53 is determined by fitting the exper-
imental atom number decay. In Fig. 3(c) we compare the
new results (red diamonds and blue squares) with those
obtained for the ideal case of no losses. While at small Ñ
the position of ṽc is basically unaffected by losses, at larger
Ñ, 3BL shift the maximum of ṽc to Ñ ∼ 120, in good
agreement with the experimental results.
We can qualitatively understand the two opposite trends

of ṽcðÑÞ at small and large Ñ and the effect of losses, by
drawing a simple argument. The possibility of forming
a single droplet during the collision is related to the
capability of the resulting merged droplet to absorb the
excess kinetic energy Ẽkin ∝ ṽ2Ñ. In the liquid regime at
large Ñ, we can decompose the energy of the droplet
using the so-called liquid-drop model [35]: ẼdropðÑÞ ¼
EBÑ þ ESÑ2=3 þ ECÑ1=3, where the three terms represent
the bulk, surface, and curvature energies, respectively.
The first and the last term can be neglected, since the bulk

energy scales linearly with Ñ, and is thus conserved during
the collision, and the curvature energy is negligible for
large Ñ. The only relevant energy scale is thus provided by
the surface, which can also host discrete excitations to
absorb the collision kinetic energy. Analogously to the
Weber number criterion for classical liquid droplets [2], we
can thus conclude that the condition for merging should
be given by Ẽkin ≲ ESÑ2=3, which means ṽc ∝ Ñ−1=6. In the
opposite case of small Ñ, there is no distinction between
the bulk and the surface and one would expect the whole
binding energy of the droplet to be the relevant energy
scale. By imposing Ẽkin ∼ Ẽdrop one gets a critical velocity

ṽc ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jẼdropj=Ñ

q
. In Fig. 3(c) we compare these expected

trends with the numerical simulations performed in the
absence of 3BL and we find that these simple energetic
considerations qualitatively justify the observed behavior.
The crossover from compressible to incompressible drop-
lets, governed by the two different energy scales, is high-
lighted by the timescales of the collision. In the simulations
without 3BL, we consider collisions with ṽ slightly above
ṽc and we estimate the time interval τ̃ between t̃coll and the
time when the distance between the two density peaks
along x becomes larger than the radial size of the droplets,
for different Ñ [Fig. 3(d)]. We observe a clear slowing
down of the collisional dynamics as the droplet enters the
liquid regime, where the surface tension dominates. In that
limit, our simulations show a behavior closely analogous to
the reflexive separation known in the context of classical
drops (see, e.g., Ref. [1]): after colliding, the two droplets
form a single excited cloud for a certain time interval, but
they eventually separate when the surface tension is not
sufficient to compensate for the kinetic energy of the
internal flow [right inset of Fig. 3(d)]. In the compressible
case, instead, the separation occurs on a much shorter
timescale, since the two droplets basically pass through
each other [left inset of Fig. 3(d)]. The reason for the
different importance of 3BL in the two regimes lies exactly
in the different timescale of the collision. The longer τ̃ in
the incompressible regime implies that, in the presence of
3BL, the atom number decreases significantly during the
relevant time interval, so that the final surface tension is
reduced. This corresponds to a smaller ṽc and thus to a shift
in the position of the backbending, as highlighted by the
dashed lines in Figs. 3(b), 3(c), used in this case as a simple
guide to the eye, since a proper scaling in the presence of
3BL is harder to deduce.
As a final remark, it is worth mentioning that the

experimental procedure used to prepare the two initial
droplets is such that there is no definite relative phase
between them. In order to reproduce the incoherent
preparation of the experiment, in the numerical simulations
we set the initial phase difference to zero, which corre-
sponds to minimizing the effects of phase gradients during
the collision, thus recovering the proper hydrodynamic
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equations. Studying the effect of a finite relative phase is an
interesting perspective of this work and it is the subject of
ongoing investigations.
In conclusion we have shown that binary collisions are a

good probe of the dynamical properties of 3D mixture
droplets. By comparing our experimental results with the
outcomes of numerical simulations, we found evidence of a
crossover from compressible to incompressible quantum
droplets driven by Ñ. This is highlighted by the different
trend of ṽcðÑÞ, which is well justified by simple energetic
considerations. In the future it would be interesting to study
the coalescence dynamics of two droplets colliding at very
small velocities, which, in analogy to previous studies on
helium clusters [8–10], could be a probe of their superfluid
properties. One could also investigate the formation of
vortices during the collision and characterize the collective
excitations of the merged droplets.
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