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Abstract 
 

Fashion is one of the world’s most important industries, driving a significant part of the global 

economy representing, if it were a country, the seventh-largest Gross Domestic Product (GDP) 

in the world in terms of market size. According to the high complexity that has to be managed 

by companies operating in the fashion Supply Chain (SC), Production Planning and Control 

(PP&C) represents a relevant issue that these companies have to face with, especially 

considering the dynamic context where they work and, consequently, the high occurrence of 

stochastic events (e.g. unexpected sample production, changes in production priority, raw 

material arrivals delay, rush orders) they have to manage. 

Even if this is a well-debated topic both from an academic and an industrial point of view, related 

tools are no widely adopted along companies working along the fashion SC, especially 

considering Small and Medium Enterprises (SMEs). The few implementations mainly refer to 

their adoption by brand owners for a single-step planning on a strategic and tactical level, while 

SMEs are discouraged because of the related complexity and high costs. 

According to this, the present work aims to present an iterative simulation-optimization 

framework for the fashion SC industry to be used by all the actors of the SC, both brand owners 

and suppliers, in order to continuously control, reallocate and optimize the production plan, 

considering their Critical Success Factors (CSFs) and the unexpected events that may occur. 

The reason why optimization and simulation are jointly used within this framework is twofold: 

on the one hand, using optimization algorithms allows companies to find an optimal allocation 

for their production considering the parameters, constraints and objectives they have defined 

during the model setting; on the other hand, with simulation stochastic events, such as rush 

orders or delays in the expected components delivery date, are taken into account, moving the 

production allocation analysis from a deterministic scenario to a not-deterministic one. 

Moreover, the comparison among simulated outputs coming from different scenarios, each one 

characterized by a specific set of input parameters (e.g. enabled resources, occurrence of 

stochastic events), can be conducted considering how a pre-defined set of Key Performance 

Indicators (KPIs), such as customers’ due dates compliance, advances in production and total 

processing cost, varies moving from a scenario to another one. 

Finally, the implementation of an iterative simulation-optimization framework into three 

different sectors (i.e. metal accessories, leather goods and footwear) has been presented, 

highlighting its relevance from an industrial perspective due to the fact that it represents a 

decision-support tool for production planners and managers that need to rapidly understand 

how evaluate the alignment between the gained PP&C performances and the company’s CSFs 
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to, eventually, reallocate the already scheduled production to remain competitive in a such 

dynamic SC. 

As a future step, the information needed as input for the framework implementation could be 

automatically gathered through several technologies, such as Internet of Things (IoT) sensors, 

track and trace systems, and Radio Frequency Identification (RFId). According to this, integrating 

the framework implementation with third part real-data acquiring sources could allow to update 

in real-time the inputs and, consequently, the outputs, creating a digital twin model for the 

operational planning within the fashion SC.  
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Acronyms 
 

The Table 1 lists all the acronyms that have been used in the present work. 

 

Table 1 - Acronyms 

Acronym Meaning 

ABS Agent-based Simulation 

ALB Assembly Line Balancing 

APS Advance and Planning Scheduling 

CNC Computer Numerical Control 

COTS Commercial Off-The-Shelf 

CSFs Critical Success Factors 

DES Discrete Event Simulation 

EDD Earliest Due Date 

ERP Enterprise Resources Planning 

GALB Generalized Assembly Line Balancing 

GDP Gross Domestic Product 

IoT Internet of Things 

JIT Just In Time 

KPI(s) Key Performance Indicator(s) 

LSCM Logistics and Supply Chain Management 

LT Lead Time 

MALB Mixed Assembly Line Balancing 

MIS Management Information System 

MRP Material Requirements Planning 

MSP Mixed-Model Sequencing Problem 

OF(s) Objective Function(s) 

OR Operational Research 

PP&C Production Planning and Control 

RFId Radio Frequency Identification 

RQ Research Question 

SALB Single Assembly Line Balancing 

SC Supply Chain 

SCM Supply Chain Management 

SD System Dynamics 

SKU(s) Stock Keeping Unit(s) 

SMEs Small and Medium Enterprises 

TMS Transportation Management System 

VBA Visual Basic for Application 
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1. Introduction 

 

 

The present work aims to define a framework to improve production planning performances 

within companies working along the fashion industry. 

In the following paragraph (see paragraph 1.1 Industrial background), an overview of the 

research context has been done, including both the characteristics of the market and its impact 

on the economics. 
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1.1 Industrial background 

The following paragraphs give an overview on the fashion industry, the sector this work has been 

focused on. 

Firstly, the main peculiarities related to the fashion industry have been highlighted, focusing on 

the characteristics of the final products and the complexity related to the market environment 

that companies have to face with (see paragraph 1.1.1 The Fashion Industry: a general 

overview). 

In the last paragraph, the relevance of this industry, both in the global and local markets, has 

been highlighted, underlining the economics related to this sector (see paragraph 1.1.2 The 

Fashion Industry: the economics perspective). 

 

1.1.1 The Fashion Industry: a general overview 

Fashion industry is characterized by a complex environment, with a SC composed by several 

actors that differ each other in terms, for example, of company’s dimension, moving from big 

brand owners to small-medium suppliers working along the SC. 

These differences reflect into different CSFs these companies have to satisfy for being 

competitive on the market, such as delivery on-time or minimize production costs, that means 

different strategies and actions even for companies that belong to the same SC. 

Moreover, within the same SC, composed by all the companies that work around a single brand 

owner, it is quite common that most of the included suppliers have not-exclusive labour-

relationships with the brand owner itself, who has to share each supplier’s available capacity 

with one or more other brand owners. This intricate supply base, that includes both exclusive 

and not-exclusive labour-relationships between brand owners and suppliers, makes managing 

both the information and production flows along the SC even more complex and unpredictable. 

 

 

Figure 1 - Fashion SC network 
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Moving from the complexity related to the SC to the one referred to the product, according to 

the Fisher classification (Fisher, 1997) the fashion industry is mostly characterised by selling 

“innovative products”, that are products with an unpredictable demand, a short life-cycle and a 

really high variety. In particular, the product life-cycle has become even shorter than the past 

according to the market changes in terms of increasing number of seasons and flash collections 

per year. The even faster rhythm of the fashion cycle, in fact, represents one of the main 

challenges highlighted by McKinsey & Company and The Business of Fashion in their report 

“State of Fashion 2017”1, underling also that speed and flexibility bring new challenges. On the 

other hand, shortening Lead Time (LT) requires major changes to the traditional business model 

and SC setup to accelerate the time from design to shelf. 

According to this, technology will also be seen as the solution to addressing sourcing and SC 

challenges in an effort to improve margins, considering the IT capacity as one of the main 

sources for value chain digitisation. 

On the other hand, market itself still requires outstanding quality levels that have to be 

guaranteed in a shorted time to market, because higher quality in longer time means being out 

of the market. 

These evidences, jointly with the ones related to the SC structure, represent the main issues that 

increase the complexity related to both the types of products to be sell and actors that work 

together to realize them. 

 

1.1.2 The Fashion Industry: the economics perspective 

The Fashion Industry represents one of the main industries in the global scenario, driving a 

significant part of the global economy. Supporting this, in 2017 it represents, if the fashion 

industry were a country, the seventh-largest GDP in the world in terms of market size2. 

Most of the industry value is captured by a small percentage of players, with the top 20 percent 

creating 100% of total economic profit. 

  

 

Figure 2 - Profit share for fashion industry (adapted from McKinsey Global Fashion Index 2016) 

                                                           

1 McKinsey & Company and The Business of Fashion “State of Fashion 2017”. 
2 International Monetary Fund, “List of Countries by Projected GDP”, October 21, 2016, 
http://statisticstimes.com/economy/countries-by-projected-gdp.php. 



13 
 

An average growth between 3.5% and 4.5% (+ 4% or 5% for the luxury segment) have been 

registered for a total sales volume that could reach €2,100 billion3. The main sources of growth 

have been the emerging-market countries across Asia–Pacific, Latin America, and other regions; 

they have been forecasted to grow at rates ranging between 5% and 7.5% in 2018. Meanwhile, 

the economic outlook in the mature part of Europe has been stable, and fashion-industry sales 

growth has been likewise expected to remain at a modest but steady 2% to 3%. 

In this scenario, Italian fashion industry revenue has been grown 2.5% in 2017 for a total amount 

of €64.8 billion, reaching 2.8% if also the fine and costume jewellery, eyewear and cosmetics 

sectors are taken into account. According to the described global perspective, growth in 2017 

has been mainly export-driven, with a 4.5% upturn, generating a trade surplus of €17.6 billion, 

€1.1 billion higher than in 2016. Including the fine and costume jewellery, eyewear and 

cosmetics sectors, previous upturn value moves from +4.5% to +6%, reaching a trade surplus of 

€27.9 billion. 

Considering the market segments involved in the fashion industry, the metal accessories has 

covered more than €3.5 billion of revenues in 2015, including more than 250,000 companies 

(most of them SMEs) and occupying more than 14,000 employees4. 

Moving from the metal accessories to the Italian leather industry, it has increased about the 

6.4% comparing the results of the first 10 months of the 2017 with the ones of the previous 

year5. Again, this has been mainly related to the boom of the export abroad of leather goods, 

with €6.1 billion (+14.1% compared to the 2016) and bags, more than others luxury bags, as 

best-selling category. 

Considering the footwear market segment, Italy represents the first producer in the European 

Union and the 11th in the world, while is the 3rd in the world in term of export value. The total 

revenue is around €14.2billion, with 4,800 companies and 77,000 employees6. 

All the previous results related to the Italian fashion market are quite confidentially related to 

the increased attention that consumers give to the high quality guaranteed by the Made in Italy 

products, pushing fashion companies to focus their attention on compensating higher 

processing time, related to the outstanding quality levels to be guaranteed, with the 

compression of the time to market needed to be competitive on the market. 

  

                                                           

3 McKinsey & Company and The Business of Fashion “State of Fashion 2018”. 
4 Italian Chamber of Commerce, www.camcom.gov.it 
5 Italian Leather Goods Association, www.aimpes.it 
6 Italian Footwear Producer Association, www.assocalzaturifici.it 

http://www.camcom.gov.it/
http://www.aimpes.it/
http://www.assocalzaturifici.it/
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In Table 2, data on the exports considering the 30 Italian districts with the higher exports’ value 

are listed7. 

 

Table 2 - Exports’ growth for the 30 most relevant Italian districts (2016 vs 2017, 2nd trimester) 

 Billion € % 

 
2° trim. 

2016 
2° trim. 

2017 
Δ 

2° trim. 
2017 

1° sem. 
2017 

Valenza goldsmithery 440 660 219.6 49.9 39.5 

Boat district of Viareggio  158 244 85.9 54.3 59.8 

Metal industry of Brescia 840 911 70.3 8.4 11.3 

Leather and Footwear districts of Florence 892 949 57.1 6.4 10.4 

Metalworker of Lecco 590 644 53.4 9.1 12.1 

Leather and Footwear districts of Arezzo 109 157 47.8 43.8 36.6 

Instrumental metalworker of Vicenza 562 608 46.1 8.2 6.9 

Metalworker of the Basso Mantovano 238 280 42.1 17.7 12.5 

Taps, valves and cookware from Lumezzane 822 861 39.3 4.8 4.1 

Inox valley appliances 304 338 34.6 11.4 12.5 

Apparel district of Empoli 284 316 32.1 11.3 9.3 

Tanning of Arzignano 615 644 29.4 4.8 4.7 

Taps, valves and cookware from Cusio-Valsesia 333 359 25.3 7.6 10.5 

Mechatronics of Bari 279 304 25.3 9.1 22.5 

Jeweler's of Arezzo 464 489 24.5 5.3 5.1 

Wine from Langhe, Roero and Monferrato 307 332 24.4 7.9 9.6 

Fruit and Vegetables of Bari  63 88 24.2 38.1 9.2 

Wood machinery from Rimini 77 100 22.4 29 22.8 

Packaging machines of Bologna 585 606 20.5 3.5 8 

Textile and Apparel of Prato 498 517 19.1 3.8 3.8 

Termomeccanica of Padova 265 284 18.9 7.1 8.9 

Plastic materials from Treviso, Vicenza, Padova 373 391 18.2 4.9 7.1 

Textile from Biella 362 380 17.7 4.9 8.7 

Marble from Carrara 184 201 17.5 9.5 7.6 

Termomeccanica scaligera 331 348 17.2 5.2 12.7 

Textile and Apparel of Arezzo 61 78 16.5 26.9 17.7 

Dairy from Parma 54 69 15.7 29.2 16.1 

Meat from Verona 123 137 14.5 11.8 14.3 

Mobile from Livenza and Quartieri del Piave 615 629 13.8 2.2 4.8 

Meats and cured meats of Cremona-Mantova 41 55 13.3 32.1 32.9 

TOTAL 24,121 25,165 1,043.4 4.3 5.3 

 

  

                                                           

7 Intesa San Paolo “Monitor dei Distretti – Novembre 2017” 
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In this context, Italian districts working in the fashion SC have registered a relevant growth in 

terms of exports (+6.7%), leaded by the ones from Tuscany with leather goods and footwear 

producers from Florence and Arezzo, as shown in Figure 3. Considering data in Table 2, in fact, 

these districts cover the fourth and sixth positions in the Italian scenario. 

 

 

Figure 3 - Exports’ growth per districts for the Italian fashion industry (2017, 2nd trimester) 
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2. Objective 

 

 

Due to the high relevance of the fashion industry, moving from the global economics to the 

Italian one, manage the complexity of its SC has become a key challenge within the Italian 

scenario. 

In the following paragraphs, the reasons why this research is focused on PP&C in the fashion SC 

are deeply explained (see paragraph 2.1 Motivation of the thesis), followed by their declination 

on the three research questions to be answered (see paragraph 2.2 Research scope).  
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2.1 Motivation of the thesis 

The high complexity of the SC network that characterizes most of the industries, included the 

fashion one, makes PP&C optimization a quite known and debated topic, both from an 

academical and an industrial point of view. 

In fact, according to the main evidences come from the industrial background, the fashion SC 

network collects companies that have daily to face with a high level of complexity to be 

managed. This evidence is also widely recognized by the literature, that confirms the high 

uncertainty of the demand as one of the main criticalities of the fashion industry (Ait-Alla et al., 

2014; d’Avolio et al., 2015; Hu et al., 2013). 

Moreover, in the recent years, fashion product lifecycle has become even shorter than in the 

past with a higher number of fashion season and special collections to be managed, increasing 

the need of quickly reacting to changes in customers’ desires and, consequently, of compressing 

time to market for being in the right moment with the right product on this fast-changing 

market. 

On the other hand, fashion customers ask for a higher service level, mainly in terms of 

outstanding quality and sustainable products (May et al., 2015), pushing brand owners to stress 

their suppliers, most of them SMEs with a low investment capability and consequently focused 

on production costs reduction, in terms of compliance with the delivery dates required for high-

quality products (Brun et al. 2014). 

This evidence reflects the fact that these results cannot be obtained operating at a single-

company level, but considering the entire SC, because the outstanding quality of a final product 

is strictly linked to that one of its components and, in the same way, the delay of the final 

product depends on components’ delays (Caniato et al. 2013). Moreover, this correlation is even 

more critical in industries, such as the fashion one, where “time” represents the key word for 

being competitive on the market in a complex environment characterized by short product 

lifecycles, high product variety and fragmented supply bases. 

Finally, the high product variety and a fragmented supply base increase even more the 

complexity of the SC network and, consequently, the need of a structured production planning 

at all the supply chain levels, because all the actors should be perfectly aligned to the delivery 

date for fulfilling the demand on-time and this alignment should reflect the one between the 

physical and the information flows (Caniato et al. 2015). 

Both for managing this complexity and balancing these opposite aspects (i.e. shorter time to 

market and higher service level), several authors have developed scheduling models for 

production process in the fashion SC, even if most of the cases are focused on the retail 

companies’ perspective (Ait-Alla et al., 2014; Hu et al., 2013), highlighting the need to promote 

a more structured scheduling culture along these companies. 

Even if the idea and needs related to an optimization tool for the fashion SC are not innovative 

from a research point of view, from an industrial one none of the actual solutions are quite often 

used by companies operating in the fashion SC. 

First of all, the high number of SMEs working along this SC have a low investment capability that 

forces them to often implement, at least, a unique management information system that mainly 

covers the administrative functionalities, such as pricing and invoicing. 
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Secondly, most of the optimization tools allows to set input parameters and generate an optimal 

solution without making possible the comparison between different optimal solutions 

generated starting from different inputs, such as available resource capacity, or working not in 

a deterministic scenario but including also stochastic events, such as rush orders or delays on 

the delivery of critical components. The importance of including rush orders is due to the 

uncertainty and high variability of the brand owners’ production orders, representing one of the 

main critical issues to be managed considering their occurrence in the fashion industry, that can 

reach the 20% of the total capacity. In fact, these unexpected events that characterized this 

industry have a high impact on being or not compliant with the requested delivery date, delaying 

the production of the already-scheduled items. In detail, phenomena such as rush orders reflects 

the evidence that brand owners usually ask to their suppliers to include in their pre-defined 

production plans extra-orders having priority on the others. Moreover, also the availability of 

critical components and the delays in their expected delivery date have to be taken into account, 

because their criticality reflects the impossibility to process the referred article, interrupting its 

production and requiring changes on the validated production plan. These unexpected 

phenomena are quite common along companies operating in the fashion SC because fashion 

brand owners, due to the high variability of the demand, are reducing the suppliers’ orders 

visibility in a context where production time is compressed, consequently increasing the 

frequency of production plan re-scheduling. According to this, these events cannot be avoided 

because of their strict dependency on the industry nature, but have to be managed, in order to 

quickly readapt the production plan. 

Finally, even considering available information along the fashion SC, it is needed to move from 

an implementation of the simulation-optimization model at the single-company level, that 

generates local and misaligned optimal solutions, to a wider application along the different 

involved SC actors, in order to define sub-optimal local solutions that guarantee higher overall 

SC performances. In fact, in real contexts every brand owner independently defines a production 

plan and communicates it to its suppliers (both exclusive or not), that collect the received 

production plans usually from more than one brand owner and, according to their objectives 

and their real production capacity, define each one its own optimized production plan. The 

supplier’s optimized production plan can differ from the original one developed by the brand 

owner, mainly due to two different reasons. On the one hand, the Objective Functions (OFs) 

included to define the optimized production plan from the brand owner’s and the supplier’s 

perspective can be different because the CSFs related to the strategical objectives for the two 

SC actors cannot be equal (e.g. the brand owner may include only the minimization of delays 

while the supplier of both delays and advances). On the other hand, even if the OFs for brand 

owners and suppliers were perfectly aligned, differences between their production scheduling 

could be related to the influence of stochastic events (e.g. failures, rush orders) that can occur 

during the week. In fact, if rush orders have to be managed by the supplier or failures occur to 

its machines, a negative impact on the overall performances, for example in terms of delays on 

expected delivery dates, will probably follows. In this context, coming back to the brand owners’ 

perspective, they know if their production plans will be respected or not only when due dates 

occur, with no possibility to change their production plan or re-scheduling a part of it before. 

Summing up, even if PP&C for the fashion SC is a debated topic both from an academical and an 

industrial point of view, no optimization tools are widely applied in the industry. Due to this fact,  

the main challenge that this work aims to reach is to define an iterative framework enabling a 

set of decision-making tools to be given to all the SC actors, in order to preventively highlight 

the criticalities related to the feasibility of optimized production plan and the way to manage 
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them, comparing different optimized production plans that differs each other in terms of inputs 

and that can be more or less influenced to the occurrence of stochastic events. Moreover, the 

framework implementation facilitates the interaction between the different actors, in order to 

achieve a global optimization performance of the entire fashion SC. 

In a first scenario, the framework can be applied to a single SC level, in order to optimize the 

production at that level as shown in Figure 4. 

 

 

Figure 4 - Single-level iterative optimization framework 

 

In a second scenario, the framework can be applied to the all fashion SC to determine the global 

optimized production plan as shown in Figure 5. 

 

 

Figure 5 - Global SC iterative optimization framework 
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2.2 Research scope 

Considering the main evidences come from the previous section, the high complexity that 

characterized the fashion SC requires to manage, in a very short time, the information flows 

exchanged between different SC actors that belong to a multiple-layers network, most of them 

SMEs with a low informatization level. Moreover, the even shorter lifecycle that the wide fashion 

products’ varieties have and the high quality to be guaranteed to the final customer push these 

companies to be focused on how manage their own production in order to on-time deliver the 

required items and, on the other hand, quickly give back to their direct clients a feedback about 

the feasibility of the orders they received. In fact, according to the evidence that different SC 

actors may have different CSFs, the way each one of them defines the optimal scheduling may 

vary and, consequently, the scheduled orders production plans of the two suppliers may differ, 

even if the delivery dates requested are the same ones. 

According to this, the first research question (RQ) aims to investigate how fashion companies 

usually manage their production planning process in order to define the optimal output in terms 

of production allocation that better fits their own CSFs and how this process can be improved in 

order to be implemented by all the SC actors, both in terms of usability and affordability. 

 

The RQ1 is then summed up as follows: 

RQ1: How fashion companies may include their CSFs during the production planning process in 

an easy-to-use and affordable way? 

 

Even these companies, most of them SMEs, hypothetically had an optimizing tool, the ones 

commonly used run under deterministic conditions, giving as output a list of assigned quantities 

per item per resource and the related delivery dates starting from a list of static parameters 

used to configure the tool. The weakness of the on-field implementation of these models is then 

represented by the fact that static best-performant allocations under deterministic conditions 

can be rarely used due to the high-dynamicity of the context where these companies work, that 

requires quick responses to the frequent changes on the key production-related parameters. 

According to this, one of the main challenges for these companies has become to understand 

how stochasticity, generated by both themselves (e.g. resources’ failures) and the SC actors 

working up- and down-stream (e.g. unexpected priority orders), can be included into the 

production planning process. Moreover, due to the need to be quick-respondent in a such 

dynamic industry, these companies should be able to rapidly compare different scenarios that 

vary each other in terms of input parameters, occurrence and type of stochasticity to be included 

or a combination of them. 

 

The RQ2 is then summed up as follows: 

RQ2: How fashion companies may manage the occurrence of stochastic events during the 

production planning process and conduct scenario analysis to support the related decision-

making process? 
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Optimal production plans are usually defined at the single-companies level, mainly because the 

objectives for the optimization reflect the CSFs that usually change moving from one to another 

SC actor, even if they belong to the same SC. This evidence produces unsuitable production 

plans. 

As a result, companies have to face with a continuous production re-scheduling from the 

beginning of the SC (e.g. brand owners) to the last actors (e.g. sub-suppliers), in order to fix 

misaligned production plans. 

According to this, a challenge for a such dynamic industry, mainly characterised by a multiple-

layers supply base, is not to define a unique global optimized production plan but applying local 

optimization models in an iteratively way, in order to include feedbacks coming from different 

SC actors to define sub-optimal feasible production plans. 

 

The RQ3 is then summed up as follows: 

RQ3: How fashion companies may define an optimized production plan managing the feasibility 

feedbacks coming from all the actors in order to increase the overall SC performances? 
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3. Methodology 

 

 

In order to answer the three research questions listed above, different methodologies, deeply 

described in the following paragraphs, have been involved. 

First of all, the action research methodology (see paragraph 3.1 Action research) has been used 

with a twofold aim: on the one hand, to identify the main issues companies working in the 

fashion SC have to face with in the PP&C field; on the other hand, to validate the results related 

to the models developed within the boundary of the present work through their on-field 

implementation. 

Secondly, a literature review (see paragraph 3.2 Literature review) has been conducted to 

support and integrate the evidences came from the application of the action research 

methodology to identify the main issues of the analysed industry. Moreover, it has been used 

to understand how the identified issues have been solved, both in general and in the fashion 

industry. 
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3.1 Action research 

In order to answer the research questions, the action research methodology has been followed, 

coherently to the fact that the starting point of this work comes from an industrial input. In fact, 

the main reason why the action research has been chosen in the present work is because it 

merges research and praxis, and several contributions about how action research can be applied 

in case of systems development can be found in the literature (Baskerville and Wood-Harper, 

1996). 

The action research method has been developed by Lewin (1951) at the Research Centre for 

Group Dynamics, in the University of Michigan. In his original model, six stages are included: (1) 

analysis, (2) fact-finding, (3) conceptualization, (4) planning, (5) implementation of action, and 

(6) evaluation. 

Years later, Blum (1955) has explained the action research as a two-step method, with a first 

diagnostic stage followed by a more practical one where hypothesised changes are included and 

related effects studied. 

In order to achieve scientific rigor, the Blum’s model has been enlarged by Susman and Evered 

(1978) in their cyclical five-steps process, formalized in 1983 and showed in Figure 6. 

 

 

Figure 6 - The action research cycle (adapted from Susman, 1983) 

 

As step “0”, their approach requires the identification of a client-system infrastructure or 

research environment, that represents a sort of agreement that allows researchers to define 

and apply the actions they identify as beneficial to the client or host organization. At this point, 

the boundaries of research have to be defined and also the steps of collaboration needed 

between researchers and client’s practitioners have to be declared. 

After the client-system infrastructure has been defined, the five steps that have to be iteratively 

conducted are the following: (1) diagnosing, (2) action planning, (3) action taking, (4) evaluating, 

(5) specifying learning. 

“Diagnosis” is the identification of the primary problems, strictly related to the reason why the 

organization looks for a change. 
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Starting from the identified primary problems, researchers and practitioners collaborate to 

define the organizational actions that should be implemented to solve or reduce them in the 

“Action planning” step. The definition of the planned actions is driven by the desired future state 

for the organization and the changes needed to achieve it. 

The “Action taking” phase follows to implement the planned actions defined at the previous 

point. The researchers and practitioners collaborate in changing the client organization in order 

to improve the actual state. 

When actions implementation is concluded, the researchers and practitioners evaluate its 

outcomes during the “Evaluating” step. This includes the comparison between the real and the 

expected effects of actions’ implementation, considering their effectiveness in terms of 

problems solving. At this point, if changes are successfully made, the real actions that generate 

success have to be identified. On the other hand, in case of unsuccessful change adjustments 

and hypotheses on the implemented actions have to be established as inputs to run the next 

iteration of the action research cycle. 

The “Specifying learning” is the activity usually represented at the end, while it is usually an 

ongoing process. In fact, the knowledge gained from the action research can be collected during 

the research and both in case of successful or unsuccessful actions implementation. Where the 

change is unsuccessful, what involved actors have understood from the errors in the problems 

analysis represents additional knowledge useful to define better bases for conducting the 

diagnosis step for the following iteration of the action research cycle. Finally, the results of each 

of these iterations provide further knowledge to both the organization and the scientific 

community for future researches. 

Summing up, Hult and Lennung (1980) have defined action research as a methodology that 

simultaneously assists in practical problem solving and expands scientific knowledge, increasing 

competences of both researchers and practitioners through a collaborative approach that is 

cyclically replicated according to the feedbacks collected at the end of each iteration. 

In the present work, action research has been firstly used in order to develop the optimization 

model, starting from the comparison between the theory on scheduling optimization in the 

fashion industry and the requirements gathered on-field from both the analysed brand owners 

and suppliers. In particular, the model has been developed integrating the evidences coming 

from the literature review with the analysis coming from the on-field interviews to the 

production manager of the companies included as pilots. Starting from the pilot on a metal 

accessories supplier, the list of collected requirements has been included into the optimization 

model and then enlarged moving the analysis to the leather suppliers and, finally, to the 

footwear ones, considering both the suppliers’ and the brand owners’ perspective for all the 

analysed market segments. 

Moreover, the same procedure has been replicated for developing the simulation model and 

identifying the KPIs dashboard to allow the scenario analyses. 

Finally, through the action research methodology has been tested the usability of both the 

proposed optimization and simulation models in a real scenario. 
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3.2 Literature review 

During the conduction of the “Action planning” step within the action research cycle, a literature 

review has been done in order to support and integrate the evidences and ideas come from the 

analysed companies and to establish a solid theoretical basis for the present work. 

As suggested by Flynn (1990), for conducting the literature review three main components has 

been evaluated: 

• Search engines (see paragraph 3.2.1 Search engines) 

 

• Research keywords (see paragraph 3.2.2 Research keywords) 

 

• References overview (see paragraph 3.2.3 References overview) 

 

 

3.2.1 Search engines 

Looking to the search engines, several of them that are especially designed for the purpose of 

academic research, helping to get relevant information without going through irrelevant or low-

quality pages. 

Considering the industrial engineering, the most important scientific search engines available 

nowadays can be considered Scopus and Science Direct, both of them published by Elsevier. 

On the other hand, Google Scholar has to be also mentioned due to the wide range of results 

obtained using it, allowing to reach a high number of scientific papers that, on the other hands, 

require more time to be read and then selected. 

 

 

3.2.2 Research keywords 

Using the research engines described above, the literature review has been conducted 

considering as subject areas related to the present research engineering, computer science and 

operations. Moreover, the literature review includes both sector-oriented papers, focused on 

the fashion industry, and general ones. 

The selected publications refer to the last 15 years, without any constraint in terms of 

geographical area. 

The used keywords are the following, each of them also searched adding “fashion industry” or 

“leather” or “apparel”: Optimization, Scheduling, Simulation-Optimization, Production planning 

and control, Simulation, Optimization and Simulation, Balancing, Sequencing. 
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3.2.3 References overview 

The most relevant results of papers collected using the search engines showed in paragraph 

3.2.1 Search engines and inserting the keywords listed in paragraph 3.2.2 Research keywords 

has been classified and collected into two different states of the art. The first one, reported in 

4.1.1 Literature review on scheduling model for the fashion industry, deals on the application of 

optimization models to the production and it has been used in order to develop the optimization 

tool based on OpenSolver. The second one, reported in 4.2.1 Literature on simulation model in 

the fashion industry, is focused on the application of the simulation in the fashion industry, 

distinguishing between System Dynamics (SD), Agent-based Simulation (ABS) and Discrete Event 

Simulation (DES), and it has been used in order to develop the simulation model, adopting 

AnyLogic® as commercial simulation tool. 
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4. Implementation 

 

 

The main results of the present work aim to answer the three previously described research 

questions (see paragraph 2.2 Research scope). 

In particular, the following section can be summed up as follows: in order to answer to RQ1, in 

the first paragraph (see 4.1 Scheduling model for the fashion industry) the steps for developing 

the proposed optimization model have been described, starting from the evidences come from 

the literature review followed by the validation of the proposed model through on-field 

implementations; in the second one (see paragraph 4.2 Simulation model for the fashion 

industry), the same approach has been followed to develop the proposed simulation model in 

order to answer the RQ2; finally, in the last section (see paragraph 4.3 Simulation-optimization 

framework for the fashion industry) it is illustrated how optimization and simulation models can 

be jointly used in an iterative way to improve the defined set of production planning KPIs, in 

order to answer the RQ3. 
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4.1 Scheduling model for the fashion industry 

Optimizing production planning is a quite relevant issue especially for companies working in 

industries, such as the fashion one, characterised by selling a high variance of product type, with 

an outstanding quality level, in a really short time. 

In order to answer to the RQ1, an optimization tool that enables companies operating in the 

fashion SC has been developed to define the optimal output in terms of production allocation. 

One of the critical points that had to be considered in this step has been to define model in a 

parametrical way, in order to be easily readapted to fit each one of the SC actors’ peculiarities. 

According to this, a literature review on scheduling model has been done as first step (see 

paragraph 4.1.1 Literature review on scheduling model for the fashion industry), in order to 

analyse the different approaches taken into account both in general and specifically for the 

fashion industry. Starting from the evidences coming from the literature review, the first draft 

of the proposed optimization model has been developed and then iteratively readapted until 

the definition of its final version, according to the feedbacks collected from its implementations 

(see paragraph 4.1.2 Proposed scheduling model for the fashion industry). Once the proposed 

optimization model had been explained, the chosen tool for the model implementation has been 

described in the last sections (see paragraph 4.1.3 Implementation of the proposed scheduling 

model in the fashion industry). 

 

4.1.1 Literature review on scheduling model for the fashion industry 

PP&C optimization of a multi-level SC, composed by several small companies, mostly SMEs, 

coordinated by a big company, which usually is the brand owner in the fashion industry, is a 

widely discussed topic, analysed by researchers from different point of view. 

In the scientific literature, several different approaches in the definition of scheduling 

formulation can be found. Published reviewing papers on scheduling (Maravelias, 2012; Méndez 

et al., 2006; Phanden et al., 2011; Mula et al., 2010; Ribas et al., 2010) study different problems, 

moving from single to parallel machines, job or flow shop, and considering different level of data 

aggregation (i.e. strategical, tactical and operative), even if only few of them deals with the 

fashion industry. 

Focusing on contributions regarding the fashion industry, the reviewed papers consider many 

different parameters, which sometimes are not calculated in the same way moving from one to 

another works. For example, scheduling model can include finite or infinite capacity, and finite 

capacity can be considered in terms of hours per resource (Rahmani et al., 2013) or units per 

resource (Ait-Alla et al., 2014), both referred to a single period. 

Ait-Alla et al. (2014) presented a mathematical model for production planning applied to a case 

study represented by a fashion apparel supplier. The presented model can help the fashion 

suppliers in the decision-making process, considering the orders’ allocation on different 

production plants in order to define the correct time scheduling and sequencing of these 

production orders. 

Looking at other parameters, differently from the majority of the other works, Rahmani et al. 

(2013) distinguish between regular-time and overtime production, having different relative 
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capacity and costs. In their model, setup times and costs are also included, but setup times are 

independent from jobs sequence. 

A mathematical model for production planning in the fashion industry considering the orders’ 

allocation on different production plants, characterized by different LTs and production costs, 

has been presented by Ait-Alla et al. (2014). The case study they have conducted involves a 

fashion apparel supplier. 

Guo et al. (2015) and Wong et al. (2014) have studied how to increase manufacturers’ 

performances improving production visibility and decision-making performances by 

implementing effective production monitoring and scheduling through the RFId technology. The 

pilot manufacturing company included in the work of Guo et al. (2015) is a medium-sized 

clothing manufacturer producing casual wear and sportswear, while Wong et al. (2014) have 

collected experimental data from a Chinese labour-intensive manufacturing company producing 

knitwear. 

Rose and Shier (2007) have investigated a particular cut scheduling problem that arises in the 

apparel industry. They have presented two different integer-programming models, 

implemented with a two-stage approach, using a mixed integer linear program in order to 

optimize the processes of cutting and packaging. 

Considering the OFs, costs minimization represents the main purpose of the reviewed works, 

even if several authors consider multi-objective production planning problem in the labour-

intensive manufacturing industry, in general (Betrand and Van Onijen, 2008; Wong et al., 2014; 

Wu et al., 2011) or specifically in the fashion market (Ait-Alla et al., 2014; Hu et al., 2013). The 

OFs included in the reviewed works are several, moving from minimize the production costs (Ait-

Alla et al., 2014), to minimize the tardiness (Ait-Alla et al., 2014; Betrand and Van Onijen, 2008; 

Guo et al., 2015; Wong et al., 2014), the throughput and the idle time (Guo et al., 2015; Wong 

et al., 2014), the hiring and layoff costs associated with the change of the workforce level 

(Rahmani et al., 2013), and the total setup, inventory and backorder costs (Bevilacqua, 2016; 

Rahmani et al., 2013). 

Analysing real world industrial problems, it is usual the co-existence of multiple optimization 

objectives (Wong et al., 2014), that can be translated into both linear and not linear OFs that 

include costs, time and plant performance optimization (Betrand and Van Onijen, 2008). 

Considering multiple OFs per model (i.e. multi-objectives scheduling problems), these are often 

solved translating all the OFs in monetary terms, defining a total cost that has to be minimized. 

For example, time measures are converted in holding or penalty costs that companies have to 

sustain for advances and delays respectively (Ait-Alla et al., 2014). Guo et al. (2008) use weighted 

sum method to turn multi-objective problems to single-objective ones. 

All of these models consider the optimization of a single level of the SC, using as input the 

production plan received from the upper lever and producing as output the scheduling and the 

delivery plan for the lower level of the SC. 

Considering the challenges that fashion companies have to face with, the ones that work using 

assembly lines have to be focused also to the relative balancing problem. 

There are two different types of assembly lines. The first one requires that the product moves 

from one station to another, whilst the second one assume that the product is fixed and the 
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materials move to the product. In the footwear producers, the assembly lines that will be taken 

into account are the first one. 

Assembly lines can be single-model, multi-model and mixed-model, as shown in Figure 7. 

 

 

Figure 7 - Assembly lines configurations 

 

The fashion system assembly lines are usually configured as the mixed-model one, where 

multiple items are alternated and have no significant setup time. 

Starting from this boundary, it is possible to define the following terms: 

- Task: it is a fraction of the total work needed to get a finished product. 

- Station: it is a part of the assembly line, where one or more tasks are carried out. 

- Cycle time: it is the total amount of time that a single item should stop into a station. 

- Balancing: it represents the sub-division of the tasks among the different station, in 

order to maximize an objective function, that typically refers to the maximization of the 

production or the minimization of the costs (Sadeky et al., 2017). 

Starting from the terminology describe above, the Assembly Line Balancing (ALB) problem can 

be summarized into the optimization of an objective function that consider all the stations of an 

assembly line, in order to maximize the performances according to the requirements of the 

production manager. 

Considering, for example, an objective function referred to maximizing the total number of 

items produced per day, it can be translated into strategical or operative objectives (Sadeghi et 

al., 2018): on the one hand, in the medium or long terms it can refer to the optimization of the 

layout design or the tasks’ allocation on the assembly line stations; on the other hand, in the 

short period the goal can be the optimization of the daily production scheduling, considering 

fixed cycle times and number of stations, in order to maximize the saturation of each station, 

starting from the bottle neck of the line. 

The problem of the line balancing has been discussed several times in the literature. The first 

published paper of the ALB problem has been the one of Salveson (1955), who suggested a linear 

programming solution. After that, two articles by Scholl and Becker (2006) and Becker and Scholl 

(2006) provide the state-of-the-art about exact and heuristic solution procedures for Single 
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Assembly Line Balancing (SALB) problems and a survey on problems and methods in Generalized 

Assembly Line Balancing (GALB) respectively. Considering the schema in Figure 7, SALB problems 

refer to the assembly lines configured as single-model, while the GALB to the ones configured 

as multi- or mixed-models. 

As reported by Pachghare et al. (2014), SALB problems can be divided into the following 

categories: 

- SALBP-1: Assigning tasks to stations minimizing the number of stations themselves for a 

given production rate (i.e. fixed cycle time). 

- SALBP-2: Minimizing the cycle time (i.e. maximizing the production rate) for a given 

number of stations. 

- SALBP-E: Maximizing the line efficiency minimizing, at the same time, the cycle time and 

the number of stations, considering their interdependency. 

- SALBP-F: Establishing whether or not a feasible line balancing exists for a given 

combination of number of stations and cycle time. 

- SALBP-3: Maximising the workload smoothness for a given number of stations. 

- SALBP-4: Maximising workload relatedness. 

- SALBP-5: Taking into account multiple objectives. 

 

Among the GALB problems, the leather assembly line can be described as a Mixed Assembly Line 

Balancing (MALB) problem. 

MALB problems can be classified in the same way of the previous one, having: 

- MALBP-1: Assigning tasks to stations minimizing the number of stations themselves for 

a given production rate (i.e. fixed cycle time). 

- MALBP-2: Minimizing the cycle time (i.e. maximizing the production rate) for a given 

number of stations. 

- MALBP-E: Maximizing the line efficiency minimizing, at the same time, the cycle time 

and the number of stations, considering their interdependency 

- MALBP-F: Establishing whether or not a feasible line balancing exists for a given 

combination of number of stations and cycle time. 

 

According to the literature, any of the GALB problems can be classified according to two 

dimensions: the OF that has to be optimized and the methodology used in order to solve it. 

Looking at the first dimension, it is possible also to optimized more than a single OF 

simultaneously, moving from a single- to a multi-OFs. 

The OFs that can be taken into account are: 

- Minimization of the number of stations, once fixed the desired output, specifying the 

cycle time. 

- Minimization of the cycle time, once determined the number of stations. 

- Maximization of the line efficiency. 

- Minimization of the costs. 

- Maximization of the profit, calculated as the difference between the revenues and the 

costs. 



32 
 

- Minimization of the deviation between the production time of every different type of 

item for every single station (i.e. horizontal balancing). 

- Minimization of the deviation of the production time in every single station (i.e. vertical 

balancing). 

- Minimization or maximization of different scores related to line bottle necks, efficiency 

and quality of components. 

 

The methodologies that can be used in order to solve ALB problems are: 

- Linear optimization. 

- Not linear optimization. 

- Limit value. 

- Heuristic procedure. 

- Analytic value. 

- Simulation. 

- Iterative procedure. 

- Metaheuristic procedure. 

 

In Table 3 a comprehensive table of the papers approaching different OFs and methodologies in 

ALB problems, adapted from several authors (Battaia, 2013; Becker, 2006; Faccio, 2008; 

Pachghare, 2014), is reported.  

 

Table 3 - Literature reivew on ALB problems 

Authors Objective Function Methodology I* 
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Aase et al. 
(2003, 2004) 

X       X  X  X X    

Amen (2000, 
2001, 2006) 

   X    X  X X X     

Bautista and 
Pereira 
(2002,2006) 

X X     X X      X X  

Boysen and 
Fliedner (2006) 

    X    X  X X   X  

Bukchin and 
Rabinowitch 
(2005) 

   X    X  X  X     

Bukchin and 
Tzur (2000) 

   X    X  X  X     

Bukchin et al. 
(2002) 

      X X   X    X  
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Capacho and 
Pastor (2004) 

X       X         

Carnahan et al. 
(2001) 

 X     X    X    X  

Chen et al. 
(2012) 

               X 

Chen et al. 
(2014) 

               X 

Chica et al. 
(2016) 

  X    X X        X 

Erel et al. (2001, 
2005) 

X   X       X    X  

Germanes et al. 
(2017) 

  X        X     X 

Guimarães et al. 
(2014) 

X            X   X 

Karabati and 
Sayin (2003) 

      X X   X      

Kucukkot et al. 
(2014) 

X       X        X 

Lapierre and 
Ruiz (2004) 

X          X      

Lee et al. (2001)       X  X  X      

Matanachai and 
Yano (2001) 

     X     X      

Miltenburg et al. 
(2002) 

X     X X  X  X X     

Nicosia et al. 
(2002) 

   X      X  X     

Pastor and 
Corominas 
(2000) 

      X  X X  X     

Quyen et al. 
(2017) 

X            X   X 

Rekiek et al. 
(2001, 2002) 

   X  X         X  

Sadeghi et al. 
(2017) 

X            X   X 

Sadeghi et al. 
(2018) 

X            X   X 

Scholl and 
Becker (2005) 

   X    X  X  X     

Scholl et al. 
(2006) 

X       X X   X     

Ulutas and Islier 
(2015) 

X               X 

Vilarinho and 
Simaria (2002) 

X     X  X       X  

Zamani et al. 
(2011) 

X            X   X 

Zangiacomi et al. 
(2004) 

X            X   X 

 
* Industry 

                



34 
 

Most of the publications in line balancing deal with SALB problems, in which only one type of 

product is processed in the assembly line (Sewell and Jacobson, 2012). On the other hand, as 

reported by Sivasankaran and Shahabudeen (2014), most of the papers dealing with MALB 

problems are academic, and only few deals with a real-world environment. Moreover, in order 

to solve MALB problems on real assembly lines they are usually translated into SALB problems, 

assuming a single “equivalent item” to be produced having as processing time the average value 

of the different processing times of the original items. 

Regarding the fashion industry, the footwear market segment is the analysed one where the 

balancing problems are applied and, according to this, where most of the academic contribution 

for the fashion industry have been found. For example, in their work Guimarães et al. (2014) talk 

about workers’ macro-ergonomic evaluation, while Zangiacomi et al. (2004) dealing with 

production planning and scheduling for mass customisation. Concerning the design of assembly 

lines, Chen et al. (2014) use simulation to configure the layouts of stitching lines, Ulutas and 

Islier (2015) work on the layout problem and Dang and Pham (2016) design an assembly line 

using simulation. Other works are the ones of Chen et al. (2012), that propose a heuristic 

approach for scheduling problems in parallel sewing lines, and Quyen et al. (2017), that study 

the resource constrained assembly line balancing problem in a single model line. 

In conclusion, there is an extensive literature about ALB problems, but only few articles include 

applications in the fashion industry (Sadeghi et al., 2018). 

Together with the long-term balancing problem, there is also the Mixed-Model Sequencing 

Problem (MSP) which goal is to define the better sequence of the items (Baybars, 1986; Boysen, 

2006; Scholl e Becker, 2006) in order to maximize the productivity of the assembly line. 

MSP regards the optimization of the sequencing of mixed-models according to a specific OF, 

assuming as already defined the balancing problem and the layout of the conveyors. As 

assumptions, jobs are considered to be equally divided among the different employees in the 

stations, the line is considered to move at a fixed speed and the operator is free to start a new 

job when it has finished the previous one if there are, otherwise he waits for the next job.  

MSP solution techniques have been deeply analysed in the literature since the beginning of the 

study of the mixed-model balancing. According to Caridi and Sianesi (1999) it is possible to 

define four different eras: 

- The “Optimization Era”, adopted between the 1970 and the 1980, that was not able to 

achieve significant success in the result of such problems. 

- The “Heuristic Era”, widely adopted during the 1980 – 1990, where several solutions 

were proposed. 

- The “Artificial Intelligence (AI) Era”, where different approaches can be found, like the 

export systems, neural networks, genetic algorithms and autonomous agents. 

- The “Interactive Scheduler Era”, developed linked to the development of the Just In 

Time (JIT) theory. 

 

In order to understand how the sequencing problem has been studied, in Table 4 is reported the 

number of the related papers during the last years, classified into the four previously listed 

different approaches.  
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Table 4 - Sequencing literature classified by year (adapted from Faccio, 2008) 

Year Era Authors 

1965 

O
p

ti
m

iz
at

io
n

 

   Thomopoulos et al. (1967), Wester and Kilbridge (1964) 

1970    Mutsimori and Takada (1972) 

1975    Baker et al. (1978), Dar-El and Cother (1975), Dar-El et al. 
(1978), Vrat and Virani (1976) 

1980 

H
e

u
ri

st
ic

 

  Monden et al. (1983), Okamura and Yamashina (1979) 

1985 

A
rt

if
ic

ia
l I

n
te

lli
ge

n
ce

 

 Chakravarty et al. (1985), Miltenburg et al. (1989), Shtub 
et al. (1986), Yano and Bolat (1989) 

1990  

In
te

ra
ct

iv
e

 s
ch

e
d

u
le

r 

Bard et al. (1992), Bolat et al. (1994), Bolat et al. (1994), 
Decker et al. (1993), Ding and Cheng (1993), Domschke et 
al. (1993), Inman and Bulfin (1991), Kubiak and Sethi 
(1991), Ng and Mark (1994), Schneeweiß and Söhner 
(1991), Steiner and Yeomans (1994), Ziegler et al. (1990) 

1995   

Pinedo et al. (1995), Keun Kim, Hyun and Kim Y. (1995), 
Xiaobo and Ohno (1996), Xiaobo, Zhou and Asres (1996), 
Hyun et al. (1996), Korkmazel and Meral (1997), Caridi and 
Sianesi (1999), Zhu and Ding F.Y (1998), Xiaobo and Ohno 
(1998), Park and Kim Y.D. (1998), McMullen (1998), 
McMullen and Frazier (1998), Kurashige et al. (1999), 
Celano et al. (1999), Scholl (1999) 

2000 - 
today 

  

Celano et al. (2001), Drexl and Kimms (2001), Ventura and 
Radhakrishnan (2002), Ho and Ji (2003), Mansouri et al. 
(2004), Ding, Zhu and Sun (2004), Celano et al. (2004),  
Xiaobo et al. (2005), Bautista and Cano (2005), Tavakkoli-
Moghaddam and Rahimi-Vahed (2006), Rahimi-Vahed et 
al. (2007), Kim S. et al. (2007), Fliedner and Boysen (2007), 
Boysen et al. (2007), Akgündüz  and Tunali (2010), Zhu and 
Zhang (2011), Moradi and Zandleg (2011), Moradi and 
Zandleh (2013), Dörmer et al. (2015), Cortez and Costa 
(2015), Nazar and Pillari (2015), Nazar and Pillai (2018) 

 

Independently from the techniques adopted, objective function of sequencing problems can be 

classified as:  

- Minimization of processing time. 

- Minimization of processing cost. 

- Minimization of the stocks (e.g. using JIT techniques). 

 

Within the first category (Schneeweiß and Söhner, 1991), some examples include the 

minimization of the number of additional resources or the minimization of the workers’ free 

time (i.e. the time occurring when an operator is waiting for the next item after he finished to 

process the previous one). 

In the second category, a first objective that can be defined is the total labour cost, defining a 

regular cost for the operators working inside their station and an extra cost for the operators 

that work outside their station. Costs can differ depending on the type of jobs (Ziegler, 1990), 

the station (Thomopoulos, 1967) or the time needed to move outside the stations (Vrat and 

Virani, 1976). 
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In the third category, the availability of the material at the station is taken into consideration, in 

order to quantify and reduce the relative stock per station. 

According to the summary showed in Table 4, research on this topic has been increased with the 

development of new technologies, like the AI techniques, that enabled the possibility to solve 

complex problems. Nerveless, only few papers deal with the fashion industry (Sivasankaran and 

Shahabudeen, 2014), whilst most of them are referred to traditional industries like automotive, 

especially when techniques, like JIT, are applied (Inman, 1991). 
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4.1.2 Proposed scheduling model for the fashion industry 

According to the evidences from the literature review on optimization models for the fashion 

industry and the on-field interviews at the production managers for the analysed companies, 

the boundaries of the model have been defined in terms of the development of a multi-objective 

integer linear optimization model with a weighted sum OF. 

The linearity of the model, with a low complexity in its implementation, is due to the dimension 

that most of the companies working along the fashion SC have. 

The optimization model has been developed in order to fit the different companies’ peculiarities 

including an OF defined as a combination of weighted parameters chosen by the single company 

and reflecting its CSFs. In fact, the weighted sum OF reflects the commercial agreement between 

these companies and the brands: different weights for different sub-objectives. Moreover, a 

solution implementable with an open source solver and a commercial spreadsheet has been 

chosen according to their low IT investment capability. 

The model is explained through the following sections: Indices and Parameters (see paragraph 

4.1.2.1 Indices and Parameters), Decision Variables (see paragraph 4.1.2.2 Decision variables), 

Constraints (see paragraph 4.1.2.3 Constraints) and Objectives (see paragraph 4.1.2.4 

Objectives). 

First section includes the model inputs, which are the items to be scheduled that are listed in 

the production orders coming from fashion companies, typically characterized by short visibility 

and small lots with a high fragmentation. In the same section, the master data (e.g. suppliers 

and resources’ lists) are included. Some variables (e.g. set up and LTs) are then listed but not 

used in the pilots, in order to simplify the first step of model implementation. 

The proposed model generates a production plan that indicates the quantities for each ordered 

item that should be produced per period, distinguishing between regular-time and overtime 

hours, start and end dates for that production, and involved resources. These data are described 

in the Decision Variables section. 

The Constraints has been grouped into the following category: demand fulfilment, available 

capacity, activated resources, positive and integer scheduled quantity. 

The Objectives that characterized the OF are described within the last section. 

 

 

4.1.2.1 Indices and Parameters 

The Indices (In) and Parameters (Pn) considered in the model represent the inputs for running 

the model and how they are filled reflects the peculiarities of the single SC actor. 

 

(I1) II = {1, 2, …, IIN}: the indices for the job order row. IIN is the number of the job order 

rows to be scheduled. The job order rows refer to a job order, that represent the single order 

that an upstream SC actor sends to a downstream SC actor. According to this, each job order is 

related to a single customer (i.e. the upstream SC actor) and usually reports, on the header, 
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several information that are shared by the included items, known as Stock Keeping Units (SKUs) 

in the fashion industry and characterized by a specific combination of model, material, colour 

and size. Consequently, the single job order row refers to a single SKU that belongs to a specific 

job order and represents the elementary unit to be assigned through the optimization model. 

 

(I2) TT = {1, 2, …, TTN}: the indices for the scheduled periods. TTN is the number of the 

scheduled periods to be managed. 

 

(I3) PP = {1, 2, …, PPN}: the indices for the production phases. PPN is the number of the 

production phases to be managed. 

 

(I4) RR = {1, 2, …, RRN}: the indices for the resources (i.e. the resources - machineries, 

personnel, …- which can process the production order). RRN is the number of the resources to 

be managed. 

 

(I5) JJ = {1, 2, …, JJN}: the indices for the SKUs. JJN is the number of SKUs to be managed. 

 

(I6) KK = {1, 2, …, KKN}: the indices for the kits. KKN is the number of kits to be managed. The 

concept of kit refers to the fact that some job order rows can be related one to each other, 

requiring to be coherently assigned. An example of kit in the fashion is a suit, a set of garments 

usually consisting of, at least, two different SKUs: a jacket and a pair of trousers. 

 

(P1) RQi,p,t: the requested quantity of the job order row i Є II for the production phase p Є PP 

in t Є TT. 

 

(P2) RDDi: the requested delivery date of the job order row i Є II. RDDi Є TT. 

 

(P3) CCDDi: the expected delivery date for the critical component of the job order row i Є II. 

If it is before the starting scheduling date it is considered equals to the first day in the plan, 

because that means that critical component is already available for being used on the production 

line. 

 

(P4) SKUji = the SKUj with j Є JJ to whom the job order row i Є II refers. In fact, different job 

orders can include the same SKU, for example in case it has been required on different deliveries 

or made by different suppliers. 
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(P5) JORPi: the job order row priority of the job order row i Є II. This parameter refers to the 

fact that, even if all the job order rows should be realized on-time, delays of some of them have 

a worst impact on company’s performances. In the same way, some customers could have a 

higher priority than others, that is managed considering a higher job order row priority for all 

the job order rows held by it. 

 

(P6) KITki: the KITk with k Є KK to whom the job order row i Є II belongs. This parameter can 

be null or valued, and the same KITk can include different job order rows that have to be 

scheduled together. 

 

(P7) LKITk: the number of job order rows that belongs to the KITk with k Є KK. LKITk Є II. 

 

(P8) UCkji: the using coefficient of the SKUji with j Є JJ for the job order row i Є II that belongs 

to the kit KITk with k Є KK. If filled, it indicates that UCkji units of the SKUji need to realize one 

complete kit KITki. For example, considering the three job order rows i1, i2, i3 Є II, the kit KITk can 

be composed by 2 units of i1, 1 of i2 and 1 of i3, that means that UCkji is equal to 2 for i1 and to 1 

for both i2 and i3. 

 

(P9) MCji: the mix coefficient of the SKUji with j Є JJ for the job order row i Є II. If filled, it 

indicates that MCji units of the SKUji identify its weight in the balancing mix. For example, 

considering the SKUs SKU1, SKU2 and SKU3 Є SKUji, the balanced mix defined can include 2 units 

of SKU1, 1 of SKU2 and 1 of SKU3, that means that MCji is equal to 2 for i1 and to 1 for both i2 and 

i3. According to this, the scheduling has to allocate quantities to be produced quite closer to 

multiples of MCji for each SKUji with j Є JJ. 

 

(P10) PIBi,p Є {0,1} is a Boolean parameter to indicate if the production phase p Є PP is included 

(i.e. PIBi,p=1) or not (i.e. PIBi,p=0) in the operational cycle of the job order row i Є II. 

 

(P11) RSBs,r,t Є {0,1} is a Boolean parameter to indicate if the resource r Є RR is available (i.e. 

RSBs,r,t=1) or not (i.e. RSBs,r,t=0) for the supplier s Є SS in t Є TT. 

 

(P12) PIRBi,r,p Є {0,1} is a Boolean parameter to indicate if the production phase p Є PP for the 

job order row i Є II can be processed (i.e. PIRBi,r,p=1) or not (i.e. PIRBi,r,p=0) by the resource r Є 

RR. 

 

(P13) PRIi,r,p: the value indicates if the resource r Є RR is preferred (≤) or not (≥) if compared to 

other resources for the production phase p Є PP of the job order row i Є II in t Є TT. 
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(P14) DSCp,r,t: the daily standard-time capacity (i.e. available capacity during the regular 

worktime) for the production phase p Є PP conducted by the resource r Є RR in t Є TT. 

 

(P15) DOCp,r,t: the daily overtime capacity  (i.e. available capacity during the overtime) for the 

production phase p Є PP conducted by the resource r Є RR in t Є TT. 

 

(P16) DPSQp,r,i,t: the daily preassigned standard-time quantity (i.e. quantity assigned in the 

regular worktime during previous schedules) for processing the production phase p Є PP of the 

job order row i Є II using the resource r Є RR in t Є TT. 

 

(P17) DPOQp,r,i,t: the daily preassigned overtime quantity (i.e. quantity assigned in the 

overtime during previous schedules) for the production phase p Є PP of the job order row i Є II 

using the resource r Є RR in t Є TT. 

 

(P18) SUCp,r,i: the standard-time unitary cost (i.e. single-item cost assigned in the regular 

worktime) for processing the production phase p Є PP of the job order row i Є II using the 

resource r Є RR. 

 

(P19) OUCp,r,i: the overtime unitary cost (i.e. single-item cost assigned in the overtime) for the 

production phase p Є PP of the job order row i Є II using the resource r Є RR. The reason why 

the unitary cost has been distinguished between the one related to the standard-time and the 

overtime production is mainly related to the fact that the overtime cost is quite often higher 

than the standard-time one. 

 

(P20) OTp,r,i: the operational time for the production phase p Є PP of the job order row i Є II 

using the resource r Є RR. 

 

(P21) SUTp,r,i,k: the setup time for the production phase p Є PP of the job order row i Є II, 

worked after k Є II, using the resource r Є RR. 

 

(P22) LTp,r,i: the LT for the production phase p Є PP of the job order row i Є II using the resource 

r Є RR. 

 

(P23) dw: the delay-related weight considering the whole production plan. 

 

(P24) aw: the advance-related weight considering the whole production plan. 
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(P25) cw: the cost-related weight considering the whole production plan. 

 

(P26) ptw: the processing time-related weight considering the whole production plan. 

 

(P27) rpbw: the resources balancing-related weight considering the whole resources pool 

considering the whole production plan. 

 

(P28) rbw: the resources balancing-related weight considering the single resource r Є RR 

considering the whole production plan. 

 

(P29) mbw: the mix balancing-related weight. 

 

 

 

4.1.2.2 Decision variables 

The Decision Variables (DVn) considered in the model represent the variables that have to be 

calculated to get the optimal solution. 

 

(DV1) DSSQp,r,i,t: the daily scheduled standard quantity (i.e. quantity scheduled in the regular 

worktime) for processing the production phase p Є PP of the job order row i Є II using the 

resource r Є RR in t Є TT. 

 

(DV2) DSOQp,r,i,t: the daily scheduled overtime quantity (i.e. quantity scheduled in the overtime) 

for the production phase p Є PP of the job order row i Є II using the resource r Є RR in t Є TT. 

 

(DV3) DDSSQp,r,i,t: the delivery date for scheduled standard quantity (i.e. delivery date for 

quantity scheduled in the regular worktime) for processing the production phase p Є PP of the 

job order row i Є II using the resource r Є RR in t Є TT. 

 

(DV4) DDSOQp,r,i,t: the delivery date for scheduled overtime quantity (i.e. delivery date for 

quantity scheduled in the overtime) for the production phase p Є PP of the job order row i Є II 

using the resource r Є RR in t Є TT. 

 

(DV5) SSPDp,r,i: the scheduled start processing date for the production phase p Є PP of the job 

order row i Є II using the resource r Є RR. SSPDp,r,i Є TT. 
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(DV6) SEPDp,r,i: the scheduled end processing date for the production phase p Є PP of the job 

order row i Є II using the resource r Є RR. SEPDp,r,i Є TT. 

 

(DV7) SSPDi: the scheduled start processing date of the job order row i Є II. This variable is 

calculated as follows: 

SSPDi  =  min {SSPD1,r,i} 

 

(DV8) SEPDi: the scheduled end processing date of the job order row i Є II. This variable is 

calculated as follows: 

SEPDi  =  max {SEPDPPN,r,i} 

 

(DV9) DSCp,r,i,t: the daily standard-time cost per resource r Є RR per production process p Є PP of 

the job order row i Є II. This variable is calculated as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSSQp,r,i,t ∗  SUCp,r,i 

 

(DV10) DOCp,r,i,t: the daily overtime cost per resource r Є RR per production process p Є PP of the 

job order row i Є II. This variable is calculated as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSOQp,r,i,t ∗  OUCp,r,i 

 

(DV11) DDp,i,t: the daily delays per production process p Є PP of the job order row i Є II in t Є TT. 

According to the definition of the job order row priority JORPi, its value is directly proportional 

with the delay value, because the impact of delays related to a job order row with a higher 

priority will be worse than another one with lower priority. This variable is calculated as follows: 

∀ t Є TT, ∀ p Є PP, ∀ i Є II, 

(max {0; DDp,i,t−1 + ∑(DSSQ𝑝,𝑟,𝑖,𝑡 + DSOQ𝑝,𝑟,𝑖,𝑡) 

𝑅𝑅

𝑟=1

− RQi,p,t}) ∗  JORPi 

 

(DV12) DAp,i,t: the daily advances of the job order row i Є II. This variable is calculated as follows: 

∀ t Є TT, ∀ p Є PP, ∀ i Є II, 

(min {0; DAp,i,t−1 +  ∑(DSSQ𝑝,𝑟,𝑖,𝑡 + DSOQ𝑝,𝑟,𝑖,𝑡) 

𝑅𝑅

𝑟=1

− RQi,p,t}) 
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(DV13) PTi: the processing time of the job order row i Є II. This variable is calculated as follows: 

∀ i Є II, 

SEPDi − SSPDi 

 

(DV14) SSATr,t: the saturation for the resource r Є RR in the period t Є TT considering standard-

time production. This variable is calculated as follows: 

∀ t Є TT, ∀ r Є RR, 

∑ DSSQ𝑝,𝑟,𝑖,𝑡
𝐼𝐼
𝑖=1

DSC𝑝,𝑟,𝑡
 

 

(DV15) OSATr,t: the saturation for the resource r Є RR in the period t Є TT considering overtime 

production. This variable is calculated as follows: 

∀ t Є TT, ∀ r Є RR, 

∑ DSOQ𝑝,𝑟,𝑖,𝑡
𝐼𝐼
𝑖=1

DOC𝑝,𝑟,𝑡
 

 

(DV16) RPB: the overall saturation balancing is the standard deviation between the average 

saturation for the single resource r Є RR and the overall average saturation in the period TT. This 

variable is calculated as follows: 

√
∑ (𝜇𝑠𝑎𝑡_𝑟_𝑇𝑇 − 𝜇𝑠𝑎𝑡_𝑅𝑅_𝑇𝑇)2𝑅𝑅

𝑟=1

𝑅𝑅
 

Having: 

𝜇𝑠𝑎𝑡_𝑟_𝑇𝑇 =  
∑ (SSATr,t + OSATr,t)𝑇𝑇

𝑡=1

𝑇𝑇
 

And 

𝜇𝑠𝑎𝑡_𝑅𝑅_𝑇𝑇 =  
∑ (𝜇𝑠𝑎𝑡_𝑟_𝑇𝑇)𝑅𝑅

𝑟=1

𝑅𝑅
 

 

(DV17) RBr: the saturation balancing is the standard deviation between the average saturation 

for the resource r Є RR considering both the standard-time and the overtime scheduled 

production in the period t Є TT and the overall average saturation for the resource r Є RR. This 

variable is calculated as follows: 

∀ r Є RR, 

√
∑ ((SSATr,t + OSATr,t) − 𝜇𝑠𝑎𝑡_𝑟_𝑇𝑇)2𝑇𝑇

𝑡=1

𝑇𝑇
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(DV18) MB: the mix balancing is the standard deviation between the quantity assigned per job 

order row i normalized according the mix coefficient MCji and its average value considering the 

single resource r Є RR in the period t Є TT. This variable is calculated as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, 

√
∑ (𝛽𝑖𝑡𝑟 − 𝜇𝐼𝑡𝑟)2𝐼𝐼

i=1

𝐼𝐼
= 0 

 

Having: 

𝛽𝑖𝑡𝑟 =
𝐷𝑆𝑆𝑄𝑝,𝑟,𝑖,𝑡 + 𝐷𝑆𝑂𝑄𝑝,𝑟,𝑖,𝑡

𝑀𝐶𝑗𝑖
 

And: 

𝜇𝐼𝑡𝑟 =  
∑ 𝛽𝑖𝑡𝑟i Є 𝐼𝐼

𝐼𝐼
 

 

 

 

4.1.2.3 Constraints 

The Constraints (Cn) considered in the model represent the conditions that the optimization 

model’s solution has to satisfy. 

 

(C1) Demand fulfilment: the total scheduled quantity per job order row i Є II along the whole 

scheduling period has to be equal to the related required quantity included in the production 

plan as input. This constraint is expressed as follows: 

∀ p Є PP, ∀ i Є II, 

∑ ∑(DSSQ𝑝,𝑟,𝑖,𝑡 + DSOQ𝑝,𝑟,𝑖,𝑡) 

𝑇𝑇

𝑡=1

𝑅𝑅

𝑟=1

=  ∑ RQ𝑖,𝑝,𝑡

𝑇𝑇

𝑡=1

 

 

(C2) Available standard-time capacity: the scheduled quantity during the standard-time per 

resource r Є RR in the period t Є TT has to be lower or, at least, equal to the available standard-

time capacity per resource r Є RR in the period t Є TT. This constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, 

∑(DSSQ𝑝,𝑟,𝑖,𝑡 + OT𝑝,𝑟,𝑖) 

𝐼𝐼

𝑖=1

≤  DSC𝑝,𝑟,𝑡 + ∑(DPSQ𝑝,𝑟,𝑖,𝑡 + OT𝑝,𝑟,𝑖) 

𝐼𝐼

𝑖=1
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(C3) Available overtime capacity: the scheduled quantity during the overtime per resource r Є 

RR in the period t Є TT has to be lower or, at least, equal to the available overtime capacity per 

resource r Є RR in the period t Є TT. This constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, 

∑(DSOQ𝑝,𝑟,𝑖,𝑡 + OT𝑝,𝑟,𝑖) 

𝐼𝐼

𝑖=1

≤  DOC𝑝,𝑟,𝑡 + ∑(DPOQ𝑝,𝑟,𝑖,𝑡 + OT𝑝,𝑟,𝑖) 

𝐼𝐼

𝑖=1

 

 

(C4) Activated resources: the job order rows have to be produced only by the resources enabled 

to do it, considering both the standard-time and overtime scheduled capacity. This constraint is 

expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSSQp,r,i,t ∗  PIRBi,r,p =  DSSQp,r,i,t 

DSOQp,r,i,t ∗  PIRBi,r,p =  DSOQp,r,i,t 

 

(C5) Positive scheduled standard-time quantity: the scheduled quantity during the standard-

time related to the job order row i Є II per resource r Є RR in the period t Є TT has to be positive. 

This constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSSQp,r,i,t ≥ 0 

 

(C6) Positive scheduled overtime quantity: the scheduled quantity during the overtime related 

to the job order row i Є II per resource r Є RR in the period t Є TT has to be positive. This 

constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSOQp,r,i,t ≥ 0 

 

(C7) Integer scheduled standard-time quantity: the scheduled quantity during the standard-time 

related to the job order row i Є II per resource r Є RR in the period t Є TT has to be integer. This 

constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSSQp,r,i,t = 𝑖𝑛𝑡 
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(C8) Integer scheduled overtime quantity: the scheduled quantity during the overtime related 

to the job order row i Є II per resource r Є RR in the period t Є TT has to be integer. This constraint 

is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

DSOQp,r,i,t = 𝑖𝑛𝑡 

 

(C9) Available critical component for the scheduled delivery date: the delivery date for 

scheduled quantity related to the job order row i Є II per resource r Є RR in the period t Є TT has 

to be later or, at least, equal to the expected delivery date of the critical component. This 

constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ r Є RR, ∀ i Є II, 

(min {DDSSQ𝑝,𝑟,𝑖,𝑡; DDSOQ𝑝,𝑟,𝑖,𝑡 − CCDD𝑖}) ∗  (DSSQ𝑝,𝑟,𝑖,𝑡 + DSOQ𝑝,𝑟,𝑖,𝑡) ≥  0 

 

(C10) Assignment of complete kits: the quantity of job order row i Є II belonged to the kit KITji 

with j Є JJ have to be scheduled considering the schedulable quantity of the other job order rows 

belonged to the same kit, according to the fact that complete kit has to be delivered in the same 

date t Є TT. This constraint is expressed as follows: 

∀ t Є TT, ∀ p Є PP, ∀ k Є KK, 

 

√
∑ (∝𝑖𝑡− 𝜇∝_𝐾𝐼𝑇𝑘_𝑡)2

i Є KIT𝑗𝑖

𝐿𝐾𝐼𝑇𝑘
= 0 

Having: 

∝𝑖𝑡=
∑ 𝐷𝑆𝑆𝑄𝑝,𝑟,𝑖,𝑡 + 𝐷𝑆𝑂𝑄𝑝,𝑟,𝑖,𝑡

𝑅𝑅
𝑟=1

𝑈𝐶𝑘𝑗𝑖
 

And: 

𝜇∝_𝐾𝐼𝑇𝑘_𝑡 =  
∑ ∝𝑖𝑡i Є KIT𝑗𝑖

𝐿𝐾𝐼𝑇𝑘
 

 

This constraint has been linearized substituting the formula above with a series of constraints 

equal to zero between each job order row i Є II belonging to the KITji. 

 

∑ 𝐷𝑆𝑆𝑄𝑝,𝑟,𝛽,𝑡 + 𝐷𝑆𝑂𝑄𝑝,𝑟,𝛽,𝑡
𝑅𝑅
𝑟=1

𝑈𝐶𝑘𝑗𝛽
=

∑ 𝐷𝑆𝑆𝑄𝑝,𝑟,𝜋,𝑡 + 𝐷𝑆𝑂𝑄𝑝,𝑟,𝜋,𝑡
𝑅𝑅
𝑟=1

𝑈𝐶𝑘𝑗𝜋
 

 

∀ β, π Є II belonging to the KITji.  
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4.1.2.4 Objectives 

The Objectives (OBJn) considered in the model can be summed up as follows: 

 

(OBJ1) Minimize the costs, referring to both the ones related to the standard-time and overtime 

scheduling: 

min {𝐶} =  min {∑ ∑ ∑ ∑(DSC𝑝,𝑟,𝑖,𝑡 + DOC𝑝,𝑟,i,t) 

𝑇𝑇

𝑡=1

𝑅𝑅

𝑟=1

𝑃𝑃

𝑝=1

𝐼𝐼

𝑖=1

}  

 

(OBJ2) Minimize the delays: 

min {𝐷} =  min {∑ ∑ ∑(DD𝑝,𝑖,𝑡) 

𝑇𝑇

𝑡=1

𝑃𝑃

𝑝=1

𝐼𝐼

𝑖=1

} 

 

(OBJ3) Minimize the advances: 

min {𝐴} =  min {∑ ∑ ∑(DA𝑝,𝑖,𝑡) 

𝑇𝑇

𝑡=1

𝑃𝑃

𝑝=1

𝐼𝐼

𝑖=1

} 

 

(OBJ4) Minimize the processing time: 

min {𝑃𝑇} =  min {∑(PT𝑖)

𝐼𝐼

𝑖=1

} 

 

(OBJ5) Maximize the saturation balancing per resource pool: 

min {𝑅𝑃𝐵} 

 

(OBJ6) Maximize the saturation balancing per resource: 

min {𝑅𝐵} =  min {∑(RB𝑖)

𝐼𝐼

𝑖=1

} 

 

(OBJ7) Maximize the mix balancing: 

min {𝑀𝐵} =  min {∑(MB𝑖)

𝐼𝐼

𝑖=1

} 
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As previously anticipated, the OF is a mix of the previous functions that, according to Guo et al. 

(2008), can be correlated using the weights defined in the Indices and Parameters section (i.e. 

cw, dw, aw, ptw, rpbw, rbw, mbw). According to this, the overall OF can be obtained giving 

different weights for each one of the elementary objectives (i.e. OBJn): if the given weight is 

equals to 0, it means that the related OBJn is not considered during the model implementation. 

 

OF = 

min {cw ∗ C +  dw ∗  D +  aw ∗  A +  ptw ∗  PT +  rpbw ∗  RPB +  rbw ∗  RB +  mbw ∗  MB} 
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4.1.3 Implementation of the proposed scheduling model in the fashion 

industry 

The proposed scheduling model described in the previous paragraph has been on-field 

implemented in real companies using an open-source solver optimization tool, OpenSolver 

(www.opensolver.org, version 2.8.6), integrated on Microsoft Excel®. 

Even if in the literature more complex solvers (i.e. CPLEX® for AMPL or MATLAB®) have been 

used (Ait-Alla et al., 2014; May et al., 2015), OpenSolver has been chosen considering the 

restricted financial resources of the addressed companies working within the fashion SC, most 

of them SMEs with a low informatization level and investment capabilities in IT solution. 

According to this, the natively integration between OpenSolver and the most commonly used 

commercial spreadsheet Microsoft Excel® represents the key value to enable these companies 

to easily-insert the input data required for configuring the proposed scheduling model and to 

easily-understand the output of model’s runs, because both the inputs and the outputs are 

managed and shown on an Microsoft Excel® file. 

Moreover, the parameters, constraints, decision variables and objective functions previously 

described (see paragraph 4.1.2 Proposed scheduling model for the fashion industry) can be 

modeled in OpenSolver both using its own model editor (see Figure 8) and Visual Basic for 

Application (VBA) code, an implementation of Microsoft's event-driven programming language 

Visual Basic. 

In the proposed model implementation, all the data have been configured using VBA code in 

order to automatically define themselves according to the exported data from the supplier’s 

Enterprise Resources Planning (ERP). In fact, changes on the model inputs, for example in terms 

of number of resources or job order rows, require manual inserting using the OpenSolver model 

editor while, using VBA code, the model constraints and decision variables are automatically 

updated. 

 

http://www.opensolver/
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Figure 8 - OpenSolver model editor 

 

As anticipated, the data in Figure 8 have not been manually inputted but generated running the 

developed VBA code and then only visualized on the OpenSolver’s model editor. 

In addition, once the model has been built on OpenSolver, it allows to easily-check if all data 

have been correctly configured through clicking on the button “Show/Hide Model”, that displays 

directly on the Microsoft Excel® spreadsheet the resulting configuration. As shown in Figure 9 

and Figure 10, the left-hand side and right-hand side of each constraint included in the model 

are boxed with the same colour and joined, and the constraint sense indicated (e.g. “<”, “≤”, 

“=”, “≥”, “>”). For example, in Figure 9 is graphically shown the constraint for the demand 

fulfilment, with the cells related to the required quantity and the assigned quantity per SKU 

brown-circled and marked with an “=”, highlighting that assigned quantities have to be equal to 

the required ones. In the same way, Figure 10 shows the constraint related to the fact that the 

daily assigned capacity per resource has not to overcome the available one. 

 

  

Figure 9 – Graphical explaination of constraints on OpenSolver (1) 
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Figure 10 - Graphical explaination of constraints on OpenSolver (2) 

 

Moreover, the cell involved for the definition of the model’s objective is highlighted and tagged 

with “min” or “max” if the goal is to minimize or maximise the cell respectively (see Figure 11), 

while the decision variables are shade, with integer variables tagged with “I” and binary variables 

with “b” (see Figure 12). 

 

 

Figure 11 – Graphical explaination of objective functions on OpenSolver 

 

 

Figure 12 - Graphical explaination of decision variables on OpenSolver 

 

Finally, OpenSolver has been chosen also because its versatility in terms of the wide range of 

“solvers” that can be select according to their suitability with different types of optimization 

problems. For example, for the implementation of the proposed linear and integer scheduling 

model in the analysed scenario, the local version of the linear solver CBC has been used, running 

on a personal computer with 8GB RAM and a CPU Intel Core I7 third generation and an SSD hard 

disk. 
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4.2 Simulation model for the fashion industry 

Optimization models cannot be used by themselves to improve production planning 

performances. This evidence, also confirmed by the on-field implementations, is due to the fact 

that companies work in a really complex and quite dynamic scenario, especially in the fashion 

industry where customers require due dates each other even closer than the past pushing brand 

owners to frequently have to manage stochastic events such as unexpected orders and delays 

in raw materials’ and components’ deliveries. In other words, it is needed to move from static 

optimized plans to simulated ones, that include the effects of stochasticity. 

After the optimization one, in order to answer to the RQ2, a simulation model has to be 

developed as second step of research. In the same way of the optimization model, the structure 

and logics of the simulation model had to be defined in order to apply the model itself on 

different SC actors. The simulation model has to allow the scenario analysis, in order to compare 

different outputs that come running the model considering different inputs (such as a decreased 

resource capacity) and/or under different deterministic and/or stochastic conditions (such as an 

increased occurrence of rush orders). The comparison has to be done through a gap analysis 

referred to a specific set of KPIs that has to be defined, studying how these KPIs’ values change 

moving from a scenario to another one. 

According to this, the followed approach has been the same of the one used for answering RQ1. 

First of all, a literature review on simulation model has been done as first step (see paragraph 

4.2.1 Literature on simulation model in the fashion industry), in order to analyse the different 

approaches taken into account both in general and specifically for the fashion industry. Starting 

from the evidences coming from the literature review, the first draft of the proposed simulation 

model has been developed and then iteratively readapted until the definition of its final version 

according to the feedback from its implementations (see paragraph 4.2.2 Proposed simulation 

model for the fashion industry). Using the action research methodology, the proposed 

simulation model has been validated through on-field implementations on companies working 

in the 3 analysed market segments (i.e. metal accessories, leather goods, footwear) comparing 

simulation model’s outputs with the optimized plan in input, both run under deterministic 

conditions (see paragraph 4.2.3 Implementation of the proposed simulation model in the 

fashion industry). 
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4.2.1 Literature on simulation model in the fashion industry 

Considering the approaches to simulation modeling in Operational Research (OR), DES and SD 

are both widely used within business contexts especially for supporting the decision-making 

process, even if they are quite different one to each other, according to several contributions in 

literature (Brailsford and Hilton, 2001; Sweetser, 1999). 

DES models systems as networks of queue and activities, characterized by state changes that 

occurs at discrete points of time in the system. Each modeled object has some parameters that 

characterize itself and determine its behaviour in the system, such as the probability 

distributions to define the activity duration. 

Using accurate historical and actual operating data as input, DES model can replicate the 

performance of an existing system and provide decision maker insights about how the modeled 

system might perform changing the input parameters or the configuration of the system itself. 

Moreover, the simulated model can be represented using computer animation, that provides an 

even more tangible support in the decision-making process giving an excellent overview of how 

a process operates, in the actual or prospect scenario, where backlogs and queues form, and 

how system’s performances change implementing the proposed improvements to the system. 

In other words, this means that DES allows companies to conduct scenario analysis to compare 

how system’s performances change moving from a scenario, characterized by a specific set of 

inputs, parameters and process configuration, to another one. 

Considering the implementation on a real-context, DES is more appropriate to analyse well-

defined systems or linear processes, such as a production line. In fact, this kind of systems can 

be modeled considering state changes at specific instants: resources fail, operators take breaks, 

shifts change, and so on. According to this, DES can provide statistically valid estimates of 

performance measures associated with these systems, such as number of entities waiting in a 

specific queue. 

On the other hand, SD models a system as a collection of elements that continually interact over 

time to form a unified whole, a series of stocks and flows where state continuously changes. 

According to this, SD is a methodology to understand how systems change over time, being more 

suitable to model continuous processes instead of discrete ones. In SD three main objects are 

considered: (i) stocks, that are basic stores of objects, (ii) flows, that define the movement of 

items between different stocks in the system and out/into the system itself, and lastly (iii) delays, 

that are the delay between the system measuring something and then acting upon that 

measurement. 

Moreover, in SD one of the key concepts is the “structure”, that refers to the components and 

relationships among the components of a system and represents what determines performance. 

In fact, having a clear understanding of the linkages between people, processes and resources, 

the structure of a system can be optimized to improve performance These links should be 

explicitly modeled by feedback loops that represent how a change in one variable affects other 

variables in the system, so how the whole system consequently performs over time. On the 

other hand, these linkages may be not so easy to be empirically quantify, and their evaluation 

can be based not only on real data but on estimates coming from experts. 

In contrast, modeling according to a DES approach requires a great effort on data analysis and 

distribution fitting based on accurate historical data or estimates of future performance to 

ensure the model is statistically valid. 
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Summing up it is possible to say that DES tends to look at the smaller detail of a system 

(microscopic), whereas SD tends to take a more overall perspective (macroscopic). Moreover, a 

key difference between DES and SD is the intrinsic nature of the two approaches: on the one 

hand, DES is stochastic in nature and therefore will give different results on different runs; on 

the other hand, SD model is deterministic in nature, producing the same results run after run 

and consequently needing to be run once. 

Another approach included in the literature as one of the three major paradigms in simulation 

modeling is the ABS, a relatively new simulation method especially in the field of OR, where the 

already described DES and SD methods have been widely applied. 

ABS models systems as being made up of autonomous (self-directed) agents which follow a 

series of predefined rules to achieve their objectives whilst interacting with each other and their 

environment. One of the strengths of this approach is its versatility, because modeled agents 

could be completely different things. 

On the other hand, the reason why this recent approach is rarely implemented in the OR field 

can be related to the fact that, while DES is built around networks of queues, in an ABS system 

there is no concept of queues (Siebers et al., 2010). Moreover, the agents in an ABS model have 

their own behaviour, while in a DES model their behaviour depends on the system, and this is 

the reason why their attitude can be classified as “active” for the ABS and “passive” for the DES. 

A comparison between the three described simulation approaches have been done by Behdani 

in 2012 and summarized it the following table (see Table 5). 

 

Table 5 - Summary of main characteristics of three simulation paradigms (Behdani, 2012) 

System Dynamics (SD) Discrete Event Simulation (DES) Agent-based Simulation (ABS) 

System-oriented; focus is on 
modeling the system 
observables. 

Process-oriented; focus is on 
modeling the system in detail. 

Individual-oriented; focus is on 
modeling the entities and 
interactions between them. 

Homogenized entities; all 
entities are assumed have 
similar features; working with 
average value. 

Heterogeneous entities. Heterogeneous entities. 

No representation of micro-
level entities. 

Micro-level entities are passive 
“objects” (with no intelligence 
or decision-making capability) 
that move through a system in a 
pre-specified process. 

Micro-level entities are active 
entities (“agent”) that can make 
sense the environment, interact 
with others and make 
autonomous decisions. 

Driver for dynamic behaviour of 
system is “feedback loops”. 

Driver for dynamic behaviour of 
system is “event occurrence”. 

Driver for dynamic behaviour of 
system is “agent’s decision and 
interaction”. 

Mathematical formalization of 
system is in “Stock and Flow”. 

Mathematical formalization of 
system is with “Event, Activity 
and Process”. 

Mathematical formalization of 
system is by “Agent and 
Environment”. 

Handling of time is continuous 
(and discrete). 

Handling of time is discrete. Handling of time is discrete. 

Experimentation by changing 
the system structure. 

Experimentation by changing 
the process structure. 

Experimentation by changing the 
agent rules (internal/interaction 
rules) and system structure. 

System structure is fixed. Process is fixed. System structure is not fixed. 
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According to several works, such as the ones of Tako and Robinson (2012) and Terzi and Cavalieri 

(2004), simulation modeling approaches are widely used as decision support tools in Logistics 

and Supply Chain Management (LSCM), enabling to reproduce and test different alternatives 

between possible scenarios, in order to define in advance the performances related to each one 

of the analysed strategies. Considering DES an SD as modeling approaches, the second one is 

mostly used to model problems at a strategical level, while DES at an operational/tactical one 

(Jahangirian et al., 2010; Tako and Robinson, 2012; Terzi and Cavalieri, 2004). In fact, starting 

from the classification they did for ordering LSCM issues into strategic and operational/tactical 

(see Figure 13), DES is mostly used in literature to solve problems related to the “System 

performance” and “Production planning and scheduling” issues, while the SD the ones for 

“Information sharing” and “Bullwhip effect”. Moreover, even if they have different goals, DES-

related contributions are widely found in their literature review. 

 

 

Figure 13 - Classification of LSCM issues (adapted from Tako and Robinson, 2012) 

 

According to this, DES better fits with the aim of the present work, above all for providing “what-

if” analysis that quantitatively evaluates benefits and issues related to different operational 

scenarios, allowing this comparison without interrupting the real system. The direct 

consequence is a strong time compression that permits to make on-time decisions (Chang and 

Makatsoris, 2001), representing a CSF especially for companies operating in high-competitive 

and time-stressed industries, such as the fashion one. 

Due to its relevance, a deeper analysis on DES modeling in SC and its application in real scenarios 

has been conducted. 

One of the main results is that, looking at the application areas, the main one where simulation 

modeling implementations have been found is on the scheduling topic, followed by production 

planning and inventory control, process engineering and inventory management (Jahangirian et 

al., 2010). Moreover, another evidence is that DES seems to be convenient for detailed process 
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analyses, resource utilisation, queuing, and relatively shorter-term analyses, that can all be 

summarized as operational/tactical performances assessment. 

On the other hand, moving to the industries application, the healthcare has been identified as 

the one where the wider range of works can be found, especially focused on the need of tools 

to improve efficiency (Taylor and Robinson, 2006). 

Looking at the fashion industry, very few works have been found in the literature. 

In Mazziotti and Horne (1997), a review on the Commercial Off-The-Shelf (COTS) scheduling 

packages has been done, with an analysis of the critical system characteristics that are often 

ignored in commercial packages. Then, a simulation-based scheduler for the textile and clothing 

industry is proposed. 

Al-Zubidi and Tyler (2004) develop stochastic simulation models for the clothing SC to be applied 

for the retail inventory control. In particular, the developed models are designed to investigate 

the effects of improved retailing and supply procedures on a pre-defined KPIs dashboard using 

two supply strategies: fixed quantity and fixed interval re-ordering. In other words, simulation 

has been used to conduct scenario analyses, in order to evaluate which one of the two strategies 

has a better impact on the company’s performances, such as the replenishment time and the 

potential lost sales. 

Lo et al. (2008) present an integration of a Management Information System (MIS) development 

procedure with an e-fashion Supply Chain Management (SCM) multi-agent system by adopting 

the techniques of the Semantic Web and multiple agents. The proposed system integrates 

different information technologies in order to catch more information from customers. Its 

implementation also considers some practical issues in the fashion retailing SCM. 

A case study on a fast-fashion retailer’s distribution centre has been studied by Cagliano et al. 

(2011), using SD to solve issues related to the warehouse management. As the previous one, 

also in this case study simulation has been used to conduct scenario analyses, but to understand 

how different sourcing policies and resource usage influence the operational performances 

related to warehouse processes. 

Considering the same topic of the previous work, Mehrjoo (2014) presents the results of a 

simulation model using the SD technique for the fast-fashion apparel industry, in order to 

evaluate the impact of product variety on the SC. The average cost, revenue and profit of each 

stage along the SC have been used as the performance metrics. The results show a trade-off 

between cost and revenue when the level of variety increases. 

According to the evidence that the MSP (see paragraph 4.1.1 Literature review on scheduling 

model for the fashion industry) represents one of the main challenges companies working using 

assembly line, such as the ones in the footwear SC, the work of Jayaprakash et al. (2015) has 

been taken into account. More in detail, the objective of the study is to maximize percentage of 

utilization and minimize makespan to improve productivity in an assembly line, considering four 

different methods of line sequencing and modeling them through the DES software PRO-Model. 

Again, the simulation has been used to conduct scenario analyses, in order to evaluate the best 

sequence, in terms of related performances, moving from one to the other method of line 

sequencing. In this work, the KPIs dashboard used to compare different scenarios includes the 

makespan time, the percentage of utilisation and the number of setups. Moreover, the 

simulation model’s implementation allows also to obtain feasible and acceptable solution. 
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Some of the evidences highlighted in the literature review in terms of DES implementation have 

been collected starting from the survey dispatched by Taylor and Robinson (2006), that shows 

how building sufficiently credible simulations is crucial to push the decision makers toward 

considering the simulation itself as useful solution methodology from an industrial point of view. 

Moreover, the data collection and analysis has been defined as a priority, reflecting to the 

evidence that often the 30-70% of the simulation project time should be spent on collecting 

model input data. 

Finally, looking at possible opportunities in the near future, the integration of simulation with 

real-time systems is a quite innovative way to build simulation models that use the latest state 

of real system as the starting point, populating then the model through a warm-up period when 

real data are constantly updated using the available advanced technologies, such as IoT sensors, 

track and trace systems, and RFId. According to this, integrating the simulation modeling with 

third part real-data acquiring sources allows to update in real-time the inputs and, consequently, 

the outputs, creating a fashion SC digital twin model for the operational planning. 
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4.2.2 Proposed simulation model for the fashion industry 

After a literature review on simulation models for the fashion industry and on-field interviews 

at the production managers for the analysed companies, the boundaries of the model have been 

identified, defining the inputs and outputs to be included. 

According to the premises done for developing the proposed optimization model, also the 

simulation model has been developed in order to fit companies’ peculiarities and to represent 

the real system in an easy-to-understand way, using computer animation to help decision-

makers to have a clear overview of how a process operates. 

The model is explained through the following sections: Parameters (see paragraph 4.2.2.1 

Parameters), KPIs (see paragraph 4.2.2.2 KPIs dashboard) and Stochastic events (see paragraph 

4.2.2.3 Stochastic events). 

First section includes the model inputs, which are the items scheduled through runs of 

optimization model, having as parameters the assigned quantity per assigned delivery date and 

the resource that processes the specific item. Moreover, master data such as cost and 

processing time per resource scheduled considering finite capacity and LTs related to the ones 

scheduled with infinite capacity are included. 

As outputs of the model’s run, a set of KPIs has been defined and modeled with a twofold aim: 

on the one hand, the validation of the proposed simulation model checking the alignment 

between KPIs’ values related to the optimized plan in input and the ones to the simulated plan 

run under deterministic condition in output; on the other hand, the KPIs dashboard supports 

final users in the scenario analysis, enabling them to easily-compare different simulated plans 

generate through runs of models with changes in the input parameters or moving from a 

deterministic scenario to another one where stochastic events are included. The set of KPIs and 

how to calculate them have been described in the second paragraph of the chapter. 

Once the simulation model has been defined and validate under deterministic condition, 

stochasticity has to be included in order to understand how the different simulated plans are 

influenced by the occurrence of stochastic events. According to this, in the last paragraph of the 

chapter the stochastic events included in the proposed simulation model have been described. 
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4.2.2.1 Parameters 

The parameters included in the configuration of the simulation model represent the inputs for 

running the model itself and the way they are filled reflects the peculiarities of the single SC 

actor. 

In particular, the information needed to set the simulation model can be summed up as follows. 

The assumption is using simulation to conduct a scenario analysis on optimized plans, so the first 

input for the simulation model is represented by the assigned quantity per assigned delivery 

date related to a specific job order row. 

The assigned quantity per job order row has been scheduled for being processed by a specific 

resource, so the information related to the processing cost and time per assigned resource 

represents another parameter for running the simulation model. 

Considering the involved resources, these can be divided between ones scheduled with finite or 

infinite available capacity. In particular, in the model it has been considered a single resource 

type with finite capacity, while the others have infinite available capacity. In order to simulate a 

resource with an infinite capacity, using the LT as processing time, a generic parallel resource 

has been used.  

The selected single finite-capacity resource type changes moving from a fashion industry’s 

market segment to another one, but the approach followed to manage these two resource types 

(i.e. the one with finite and the others with infinity available capacity) is the same one. 

More in detail, all the resources with infinite capacity have been modeled as black boxes that 

can be positioned before (i.e. “Pre-processing” block) or after (i.e. “Post-processing” block) the 

single finite-capacity resource type. While for “Pre-processing” and “Post-processing” blocks the 

information needed as input for the simulation model is the LT associated to these blocks, 

usually expressed in days/item, for the SKU belonged to a specific job order row, considering the 

finite-capacity resource type the related input is the processing time per article, expressed in 

minutes/item. The main differences in their modeling is the fact that no queues have been 

considered for “Pre-processing” and “Post-processing” blocks, according to the fact that the 

finite-capacity resource type are the ones that, without an optimal production scheduling, 

represent the bottleneck of the entire production process. 

The processing cost is another input parameter, associated to both these resource types, usually 

included to make a difference between processing items during the standard-time or the 

overtime. 

The described parameters for running the simulation model are the ones necessary for enabling 

the final user to compare different optimized production plans (see paragraph 4.2.2.2 KPIs 

dashboard) under deterministic condition. On the other hand, when stochasticity is included, 

other parameters have to be defined as inputs for the simulation model, according to the chosen 

stochastic events (see paragraph 4.2.2.3 Stochastic events).  
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4.2.2.2 KPIs dashboard 

As outputs of the simulation model’s run, a set of KPIs has been defined and modeled with a 

twofold aim: on the one hand, the validation of the proposed simulation model; on the other 

hand, the KPIs dashboard supports final users in the scenario analysis. 

Considering the first goal, the validation of the proposed simulation model has been conducted 

checking the alignment between the KPIs’ values related to the optimized plan in input and the 

ones for the simulated plan run under deterministic condition in output. This comparison has 

been done for evaluating if, including the same inputs in the optimization model, the simulation 

model generates the same outputs in terms of assigned quantity per assigned day on a specific 

resource, considering each job order row included in the analysed production plan and, 

consequently, the same KPIs’ values. 

In addition, considering the second purpose of developing a set of KPIs implemented on the 

simulation model, the different optimized production plans can be compared through the KPIs’ 

values themselves, calculated for each simulated production plan. In particular, the KPIs 

dashboard supports final users in the scenario analysis, enabling them to easily-compare 

different simulated plans generate through runs of models with changes in the input parameters 

(see paragraph 4.2.2.1 Parameters) or moving from a deterministic scenario to another one 

where stochastic events are included (see paragraph 4.2.2.3 Stochastic events). 

For example, considering deterministic scenarios it is possible to estimate the gap between the 

KPIs values related to simulated production plans that differ in terms of changes in input 

parameters, such as the enabled resources to process each SKU or the total number of resources 

and the related available capacity. On the other hand, considering the same modeled 

deterministic scenario, changes can be done in terms of different optimization criteria including, 

for example, only the minimization of the delays instead of both delays and advances. 

According to the evidences from the literature review and the on-field experience of interviewed 

production managers, the main KPIs included as output of the simulation model implementation 

to evaluate performances of production plans can be grouped as shown in Table 6. 

 

Table 6 - KPIs groups 

 Granularity Formula 

KPIs group 
Whole 
process 

Single 
resource 

Sum Avg Min Max % 

Delays X X X X X X X 

Advances X X X X X X X 

On-time X X X    X 

Absolute time gap X X X X X X X 

Costs X X X X X X X 

Productivity X X X X X X X 

Makespan X  X     

Saturation X X  X X X  
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In Table 6, the identified KPIs groups have been listed and their detail level of implementation 

(see “Granularity” column) and the way they can be calculated (see “Formula” column) have 

been explicated filling the table with “X”. 

Looking at the “Granularity” column, it distinguishes between “Whole process” and “Single 

resource”, considering as reference system, on the one hand, the whole process that starts from 

the “source” block and ends at the “sink” block and, on the other hand, the one that ends when 

item exits from the “processing” block, that represents the resource having finite-capacity. 

For example, looking to both the “Delays” and “Advances” in production, they can include (i.e. 

“Whole process”) or not (i.e. “Single resource”) the “Post-processing” block, in order to take or 

not into account if post-processing activities, modeled as a LT, impact on the amount of delays 

and advances. 

Summing up the main evidences from Table 6 in terms of “Granularity”, it shows how all the 

identified KPIs groups can be defined considering the whole process, while at the single resource 

level only the makespan cannot be explained. In fact, by definition the makespan is the time 

difference between the start and finish of the all jobs or tasks included in the system and not of 

only one of them. 

The way the KPIs group on row can be calculated are listed in the “Formula” column, that 

includes the total (“Sum”), the average (“Avg”), the minimum (“Min”), the maximum (“Max”) 

and the percentage (“%”). 

Again, looking to both the “Delays” and “Advances” in production, they can be calculated 

considering the total quantity per day scheduled after and before the requested delivery date 

respectively (i.e. column “Sum”), but can be highlighted also the minimum (i.e. column “Min”) 

and the maximum (i.e. column “Max”) values in order to make the company aware about the 

worst and the best value they reach within a specific scenario. To evaluate how many items have 

been processed later or sooner than the expected date, the “Delays” and “Advances” KPIs can 

be expressed as percentage of the total number of items (i.e. column “%”). The percentage can 

be also used to evaluate how many items overcome the average value (i.e. column “Avg”) of 

days in delays and advances respectively. 

In the same way, the KPIs groups “Absolute time gap”, “Costs” and “Productivity” can be 

calculated considering all of the formula, defining an overall value for the not-on time items, 

total costs and number of items respectively (i.e. column “Sum”), the minimum (i.e. column 

“Min”) and the maximum (i.e. column “Max”) values for all of them, and the average considering 

their daily values (i.e. “Avg”). 

Summing up the main evidences from Table 6 in terms of “Formula”, it shows how for almost all 

the identified KPIs groups can be calculated a global value (i.e. “Sum”) that cannot be 

representative of the KPI itself for the managers but help them to easily compare different 

scenarios. The only exception is the “Saturation”, calculated only as average value (i.e. “Avg”), 

in order to understand the residual capacity available for guaranteeing flexibility and reactivity 

in case of extra-orders made by the customers, but also in terms of the minimum (“Min”) and 

the maximum (“Max”) values, to highlight the criticalities associated to the sub- and over-

saturation. 
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On the other hand, “On-time” and “Makespan” cannot be calculated in terms of average, 

minimum and maximum values by definition. 

In fact, “On-time” refers to the number of on-time items, that can be considered as overall value 

(i.e. “Sum”) or compared to the total number of items to get a percentage (i.e. “%”), while the 

“Makespan” KPIs group does not have neither the “%” column, according to the fact that it is an 

overall parameter of the whole production process. 

 

The previously described intersections between the KPIs groups on rows and the objectives 

expressed in the “Granularity” and “Formula” columns (see Table 6), have been explained in 

Table 7, identifying a specific KPI for each intersection. 

 

Table 7 - KPIs dashboard 

KPIs 
Group 

KPIs Type KPIs Description Granularity Formula 

D
e

la
ys

 

Del_W_Sum 
Number of items or days in delay at the exit 
of the "sink" block 

Whole 
process 

Sum 

Del_W_Avg 
Average number of items per day or days in 
delay at the exit of the "sink" block 

Whole 
process 

Avg 

Del_W_Min 
Minimum number of items per day or days in 
delay at the exit of the "sink" block 

Whole 
process 

Min 

Del_W_Max 
Maximum number of items per day or days in 
delay at the exit of the "sink" block 

Whole 
process 

Max 

Del_W_Prc 
Ratio between number of items or days in 
delay at the exit of the "sink" block and the 
number of items to be delivered 

Whole 
process 

% 

Del_S_Sum 
Number of items or days in delay at the exit 
of the "processing" block 

Single 
resource 

Sum 

Del_S_Avg 
Average number of items per days or days in 
delay at the exit of the "processing" block 

Single 
resource 

Avg 

Del_S_Min 
Minimum number of items per day or days in 
delay at the exit of the "processing" block 

Single 
resource 

Min 

Del_S_Max 
Maximum number of items per day or days in 
delay at the exit of the "processing" block 

Single 
resource 

Max 

Del_S_Prc 
Ratio between number of items or days in 
delay at the exit of the "processing" block and 
the number of items to be processed 

Single 
resource 

% 

A
d

va
n

ce
s 

Adv_W_Sum 
Number of items or days in advance at the 
exit of the "sink" block 

Whole 
process 

Sum 
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Adv_W_Avg 
Average number of items per day or days in 
advance at the exit of the "sink" block 

Whole 
process 

Avg 

Adv_W_Min 
Minimum number of items per day or days in 
advance at the exit of the "sink" block 

Whole 
process 

Min 

Adv_W_Max 
Maximum number of items per day or days in 
advance at the exit of the "sink" block 

Whole 
process 

Max 

Adv_W_Prc 
Ratio between number of items or days in 
advance at the exit of the "sink" block and the 
number of items to be delivered 

Whole 
process 

% 

Adv_S_Sum 
Number of items or days in advance at the 
exit of the "processing" block 

Single 
resource 

Sum 

Adv_S_Avg 
Average number of items per day or days in 
advance at the exit of the "processing" block 

Single 
resource 

Avg 

Adv_S_Min 
Minimum number of items per day or days in 
advance at the exit of the "processing" block 

Single 
resource 

Min 

Adv_S_Max 
Maximum number of items per day or days in 
advance at the exit of the "processing" block 

Single 
resource 

Max 

Adv_S_Prc 
Ratio between number of items or days in 
advance at the exit of the "processing" block 
and the number of items to be processed 

Single 
resource 

% 

O
n

-t
im

e
 

Otm_W_Sum 
Number of on-time items at the exit of the 
"sink" block 

Whole 
process 

Sum 

Otm_W_Prc 
Ratio between number of on-time items at 
the exit of the "sink" block and the number of 
items to be delivered 

Whole 
process 

% 

Otm_S_Sum 
Number of on-time items at the exit of the 
"processing" block 

Single 
resource 

Sum 

Otm_S_Prc 
Ratio between number of on-time items at 
the exit of the "processing" block and the 
number of items to be processed 

Single 
resource 

% 

A
b

so
lu

te
 t

im
e

 g
ap

 

Atg_W_Sum 
Number of not on-time items or days (delays 
+ advances) at the exit of the "sink" block 

Whole 
process 

Sum 

Atg_W_Avg 
Average number of not on-time items per day 
or days (delays + advances) at the exit of the 
"sink" block 

Whole 
process 

Avg 

Atg_W_Min 
Minimum number of not on-time items per 
day or days (delays + advances) at the exit of 
the "sink" block 

Whole 
process Min 

Atg_W_Max 
Maximum number of not on-time items per 
day or days (delays + advances) at the exit of 
the "sink" block 

Whole 
process Max 

Atg_W_Prc 
Ratio between number of not on-time items 
at the exit of the "sink" block and the number 
of items to be delivered 

Whole 
process 

% 

Atg_S_Sum 
Number of not on-time items (delays + 
advances) at the exit of the "processing" 
block 

Single 
resource 

Sum 

Atg_S_Avg 
Average number of not on-time items per day 
or days (delays + advances) at the exit of the 
"processing" block 

Single 
resource 

Avg 

Atg_S_Min 
Minimum number of not on-time items per 
day or days (delays + advances) at the exit of 
the "processing" block 

Single 
resource 

Min 
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Atg_S_Max 
Maximum number of not on-time items per 
day or days (delays + advances) at the exit of 
the "processing" block 

Single 
resource 

Max 

Atg_S_Prc 
Ratio between number of not on-time items 
at the exit of the "processing" block and the 
number of items to be processed 

Single 
resource 

% 
C

o
st

s 

Cst_W_Sum 
Total production cost at the exit of the "sink" 
block 

Whole 
process 

Sum 

Cst_W_Avg 
Average production cost per day at the exit of 
the "sink" block 

Whole 
process 

Avg 

Cst_W_Min 
Minimum production cost per day at the exit 
of the "sink" block 

Whole 
process 

Min 

Cst_W_Max 
Maximum production cost per day at the exit 
of the "sink" block 

Whole 
process 

Max 

Cst_W_Prc 
Ratio between production cost per day and 
total production cost at the exit of the "sink" 
block 

Whole 
process 

% 

Cst_S_Sum 
Total production cost at the exit of the 
"processing" block 

Single 
resource 

Sum 

Cst_S_Avg 
Average production cost per day at the exit of 
the "processing" block 

Single 
resource 

Avg 

Cst_S_Min 
Minimum production cost per day at the exit 
of the "processing" block 

Single 
resource 

Min 

Cst_S_Max 
Maximum production cost per day at the exit 
of the "processing" block 

Single 
resource 

Max 

Cst_S_Prc 
Ratio between production cost per day and 
total production cost at the exit of the 
"processing" block 

Single 
resource 

% 

P
ro

d
u

ct
iv

it
y 

Prd_W_Sum 
Number of items exiting from the system at 
the "sink" block 

Whole 
process 

Sum 

Prd_W_Avg 
Average number of items per day exiting 
from the system at the "sink" block 

Whole 
process 

Avg 

Prd_W_Min 
Minimum number of items per day exiting 
from the system at the "sink" block 

Whole 
process 

Min 

Prd_W_Max 
Maximum number of items per day exiting 
from the system at the "sink" block 

Whole 
process 

Max 

Prd_W_Prc 
Ratio between number of items exiting from 
the system at the "sink" block and the 
number of items to be delivered 

Whole 
process 

% 

Prd_S_Sum 
Number of items exiting from the system at 
the "processing" block 

Single 
resource 

Sum 

Prd_S_Avg 
Average number of items per day exiting 
from the system at the "processing" block 

Single 
resource 

Avg 

Prd_S_Min 
Minimum number of items per day exiting 
from the system at the "processing" block 

Single 
resource 

Min 

Prd_S_Max 
Maximum number of items per day exiting 
from the system at the "processing" block 

Single 
resource 

Max 

Prd_S_Prc 
Ratio between number of items exiting from 
the system at the "processing" block and the 
number of items to be processed 

Single 
resource 

% 

M
ak

e
sp

an
 

Mks_W_Sum 
Time between first item entering and last 
item exiting from the system 

Whole 
process 

Sum 



65 
 

Sa
tu

ra
ti

o
n

 

Sat_W_Avg 
Average ratio per day between assigned 
quantity and available capacity for all the 
involved resources 

Whole 
process 

Avg 

Sat_W_Min 
Minimum ratio per day between assigned 
quantity and available capacity for all the 
involved resource 

Whole 
process 

Min 

Sat_W_Max 
Maximum ratio per day between assigned 
quantity and available capacity for all the 
involved resource 

Whole 
process 

Max 

Sat_S_Avg 
Average ratio per day between assigned 
quantity and available capacity for the single 
involved resource 

Single 
resource 

Avg 

Sat_S_Min 
Minimum ratio per day between assigned 
quantity and available capacity for the single 
involved resource 

Single 
resource 

Min 

Sat_S_Max 
Maximum ratio per day between assigned 
quantity and available capacity for the single 
involved resource 

Single 
resource 

Max 

 

The KPIs list in Table 7 represents the starting point for conducting scenario analyses in the 

pilots’ implementation, due to the fact that a selection of those KPIs has been made by the 

analysed companies to compare different scenarios and their strategical impacts (see paragraph 

5 Results).  
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4.2.2.3 Stochastic events 

Once the simulation model has been defined and validate under deterministic condition through 

the definition of a set of KPIs, stochasticity has to be included in order to understand how the 

different simulated plans are influenced by the occurrence of stochastic events. 

The reason why stochasticity should be included in the simulation model is related to the fact 

that, especially in a very dynamic context such as the one where fashion companies work, 

unexpected events often occur and their impact on production performances should be 

preventively estimated, because managing their effect when they occur doesn’t allow to readapt 

the production scheduling guaranteeing, at the same time, the performance level the brand 

owners require. 

According to this, the implementation of the proposed simulation model including stochasticity 

can be used to conduct a scenario analysis that compares not only the KPIs’ values changing 

model inputs (e.g. changes in number of available resources per SKU) under deterministic 

condition, but also considering different occurrence of stochastic events, allowing the 

comparison among the related impacts and the identification of the critical value for the 

stochastic events (i.e. the value over which a small increase of occurrence of each combination 

of them produces a huge decrease of KPIs value). 

The stochastic events included in the simulation model have been chosen according to the 

evidences come from the interview conducted to production managers working within 

companies operating in the fashion industry. In particular, the most relevant stochastic events 

within the analysed industry can be summed up in (i) rush orders and (ii) delays in critical 

components’ delivery date. 

Rush orders are additional orders that brand owners require and that have to be priority 

processed if compared with the standard orders, that are the ones previously sent and already 

scheduled. Rush orders can be generated by several type of events, like unexpected changes in 

the quantity of already-confirmed orders, new items to be processed or orders deriving from 

the sampling process. 

On the other hand, unexpected events to be managed can be related to delays that can occur 

on the expected delivery date of critical components. In fact, even if the optimization model 

should include their expected delivery date per SKU in order to schedule its processing starting 

from that date, the realization of the SKU in that date is not guaranteed because quite often 

some of the components needed to complete the item are still not sent by suppliers or stocked. 

While KPIs dashboard does not have to be changed when stochasticity is included, other 

parameters have to be defined as inputs for the simulation model in addition to the ones 

previously listed (see paragraph 4.2.2.1 Parameters), as described in the paragraph 4.2.3 

Implementation of the proposed simulation model in the fashion industry.  
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4.2.3 Implementation of the proposed simulation model in the fashion 

industry 

The proposed simulation model described in the previous paragraph has been on-field 

implemented in real companies using AnyLogic® as simulator. 

AnyLogic® has been chosen firstly because it is the one that better fits the need to manage each 

one of the three different simulation modeling approaches (previously described in paragraph 

4.2.1 Literature on simulation model in the fashion industry) and any combination of them 

within a single model. 

Secondly, the integration between models developed on AnyLogic® and other tools or IT-

infrastructure represents the key value to enable the analysed companies to easily-insert the 

input data required for configuring the proposed simulation model and to easily-understand the 

output of model’s runs, because both the inputs and the outputs can be managed and shown 

starting from data on the company’s management system’s database or on an Microsoft Excel® 

file. 

In fact, an AnyLogic® model can be exported as a Java application, that can be run separately, or 

integrated with other software. As an option, an exported AnyLogic® model can be built into 

other pieces of software and work as an additional module to ERP, Material Requirements 

Planning (MRP) and Transportation Management System (TMS). Another typical use is 

integration of an AnyLogic® model with TXT, Microsoft Excel®, or Microsoft Access® files and 

databases (MS SQL, MySQL, Oracle, etc.). In the proposed model implementation, all the data 

have been configured using a Microsoft Excel® file as input and output. 

Moreover, AnyLogic® models include their own databases based on HSQLDB, that can be used 

to trace parameters of the simulation model such as the birth and death dates for each 

generated agent. 

In addition, AnyLogic® allows users to import CAD drawings as DXF files, and then visualize 

models on top of them. This feature, mostly used in Discrete Event (process-based) models in 

manufacturing, can be used for animating processes inside objects like factories or warehouses. 

AnyLogic® software also supports interactive 2D and 3D animation and includes a collection of 

ready-to-use 3D objects for animation related to different industries, including buildings and 

warehouse. This point represents another one of the main reasons to choose AnyLogic® as 

simulation tool, because this way to show the output of model’s runs makes more 

understandable the output itself. 

Considering the implementation of the proposed simulation model included in this work, the 

DES is the one that has been chosen because it better fits a context, such as the fashion 

industry’s one, mostly characterised by job shops and production lines with several activities 

that follow one the other through queues and state changes, such as resources available or used, 

materials in stock or not and so on. 

In fact, typical output expected from a DES model includes utilization of resources, time spent 

in the system by an agent, waiting times, queue lengths, system throughput and bottlenecks, 

that represent key values for analysis performances related to PP&C issues. 

Discrete event modeling requires to think about the system to be modeled as a sequence of 

operations that agents perform. These operations can include delays, service by various 
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resources, splits and many others. As long as agents compete for limited resources and can be 

delayed, queues will be part of nearly all discrete event models. According to this, the 2D and 

3D animation for the model’s output allows the final user to have a tangible perception about 

where queues and, consequently, bottlenecks are generated. 

The model is graphically defined as a process flowchart where blocks represent operations. The 

flowchart usually starts with “source” blocks that generate agents and inject them into the 

process and ends with “sink” blocks that remove them. 

Considering the implementation of the simulation model within this work under deterministic 

condition, the intermediate modeled blocks are alternate queues and processing that identify 

respectively pre-processing, processing and post-processing operations, where the first and last 

ones have infinite capacity while the processing block works at finite capacity (see Figure 14). 

The graphical representation of the “Processing” block has to be customized according to the 

peculiarities of the analysed company. For example, in the pilots for the metal accessories and 

the leather goods market segments (see paragraphs 5.2.3 Simulation model in a metal 

accessories company and 5.3.3 Simulation model in a leather goods company), it has been 

detailed as a group of parallel services, while as a conveyor with an estimated number of stations 

in the footwear case (see paragraph 5.4.3 Simulation model in a footwear company). 

 

 

Figure 14 - Simulation model with no stochasticity 

 

Including rush orders as stochastic events has been modeled adding a second “Source” block 

that generate them according a statistical distribution defined starting from historical data (see 

“sourceRushOrders” in Figure 15). The order by in the pre-processing queue is defined by the 

SKU type: in fact, the SKU having “true” has value for the related Boolean parameter 

“skuRushOrder” has to be priority processed, overtaking the other SKUs already waiting in the 

queue (see 4.2.2.3 Stochastic events). 

 

 

Figure 15 - Simulation model with rush orders 
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In order to add delays on expected delivery date of critical components as other type of 

stochastic events, changes on the simulation model have to be done. Firstly, the critical 

component (also called “material”) has to be generated through a new “Source” block 

considering the delivery date defined as model’s input, and delays have to be included 

introducing a statistical distribution of delays on the critical components’ delivery date imported 

(see 4.2.2.3 Stochastic events). 

In order to synchronize the two streams of agents (materials and SKUs), the “Match” block has 

been included to match items according to a given criteria. The way this block works is the 

following: the agents that have not yet been matched are stored in two queues (one for each 

stream); once the new agent arrives at either of the input ports, it is checked if matching criteria 

against all agents in the queue for the other stream are satisfied. If the match is found, both 

agents exit the “Match” block at the same time. The queues can be fully customized, for 

example, in terms of timeout, priorities or pre-emption. To reunite the two flows into only one 

of them (i.e. to define the single agent that exits from the block instead of the two entering in 

it), the block “Combine” has been added in the simulation model after the block “Match”. The 

new agent may be a completely new one (i.e. a new object whose properties may depend on 

the original agents) or it may be one of the original agents, again, possibly modified in terms of 

related parameters. 

In the analysed case, on the block “Combine” will enter both materials and SKUs that pass the 

required criteria in the “Match” block and will exit only SKUs. Once the two agents are ready to 

enter in the “Combine” block, the operation takes zero time and they immediately exit. 

The described model has been shown in Figure 16. 

 

 

Figure 16 - Simulation model with rush orders and delays in expected critical components’ 
delivery date 

 

Independently from the modeled blocks, the architecture defined for its implementation at the 

single-company level has been summed up in Figure 17. 
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Figure 17 - Simulation model implementation 

 

More in detail, the starting point for the simulation model implementation is the export of the 

production plan from the company’s ERP, eventually optimized with external software like an 

Advance and Planning Scheduling (APS), to a Microsoft Excel® file or directly on the AnyLogic® 

database. The exported data includes all the parameters needed for setting the simulation 

model, such as the assigned quantities per resource and delivery dates per single job order row. 

In particular, the following figures show an example of the data format for the Microsoft Excel® 

file used for running the simulation model that has been automatically create and filled using 

VBA commands at the end of the optimization model’s run using OpenSolver on Microsoft Excel® 

(see paragraph 4.1.3 Implementation of the proposed scheduling model in the fashion industry). 

 

 

Figure 18 - Input data for simulation model (1) 
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Figure 19 - Input data for simulation model (2) 

 

 

Figure 20 - Input data for simulation model (3) 
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Figure 21 - Input data for simulation model (4) 

 

 

Figure 22 - Input data for simulation model (5) 
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Figure 23 - Input data for simulation model (6) 

 

The set of information used as inputs for the simulation model basically refers to the scheduled 

SKU code included in a specific job order (see “skuCode” in Figure 18), that represents the 

elementary unit managed by the simulator. 

More in detail, for each one of the “skuCode” has been associated the resource that has been 

assigned by the optimization model to process it, using a Boolean per resource that will be equal 

to “true” if the resource is the one assigned to the “skuCode”, otherwise “false”. In the example 

in Figure 18, 5 resources have been modeled and, consequently, five Booleans have been 

exported on the Microsoft Excel® file (see “agentToService1”, “agentToService2”, 

“agentToService3”, “agentToService4”, “agentToService5” in Figure 18). In other words, the 

number of columns used to identify the resource that processes the “skuCode” on row will 

change from a model’s configuration to another one according to the enabled number of 

resources. 

In Figure 19 is shown the quantity per “skuCode” that has to be produced and the date when it 

has to be assigned to the resource, named “assignedQty” and “assignedDate” respectively, but 

also the date when it will be delivered to the final customer, calculated by the optimization 

model adding the post-processing LT to the “assignedDate” (see “customerAssignedDate” in 

Figure 19). In addition, also the quantity and date required by the customer, that represent the 

input for running the optimization model, have been imported into the simulation model (see 

“requestedQty”, “requestedDate” and “customerRequestedDate” in Figure 19), in order to 

evaluate eventual gaps between the customer’s requirements and the simulated results. 

The assigned resource (see “assignedService” in Figure 20) and the LT to be considered for the 

post-processing activities (see “postprocessingLeadtime” in Figure 20) are listed. Looking at the 

unitary processing time per resource, as described above the modeled resources in the sampled 
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Microsoft Excel® file are 5, such as the fields “processingTimeService1”, 

“processingTimeService2”, “processingTimeService3”, “processingTimeService4”, 

“processingTimeService5” in Figure 20. 

In the same way, the unitary costs per resource have been shown, named “costService1”, 

“costService2”, “costService3”, “costService4”, “costService5” in Figure 21, such as the one 

related to the post-processing activities (see “postprocessingCost” in Figure 21). 

In Figure 22 is listed a set of parameters of the “skuCode” that have not to be used for running 

the optimization and the simulation models, but for clustering the final results within the KPIs’ 

dashboard, allowing the filtering and drilling-down functionalities. In detail, that fields are 

named “Customer”, “Brand”, “Season”, “Event”, “ArticleLine”, “Article”, “Category” and 

“Subcategory”. For example, considering the KPIs value related to the delays on the customer 

requested delivery date resulting from the implementation of the simulation model, it can be 

splitted into the delays referred to different customers to evaluate which are the best-served 

ones. 

The available capacity in seconds per each resource is also included (see “AvailableTimeService” 

in Figure 22), in order to evaluate the resource saturation in the KPIs dashboard at the end of 

the simulation run. 

The previously listed fields are all the one used for running the simulation model considering a 

deterministic scenario. Due to the stochastic events to be included, other fields are filled on the 

Microsoft Excel® file. 

In particular, managing rush orders in the simulation model requires to include in the input also 

the field “skuRushOrder” as a Boolean (see Figure 18), exported from the optimization model as 

equals to “false” because all the SKUs resulting from that implementation refer to a 

deterministic scenario where no rush orders are included. 

In the configuration of the simulation model, considering for example the rush orders related to 

the fact that customers require an extra-quantity for the already-confirmed orders, the field 

“skuCode” has then been used to generate SKUs having the same parameters of the scheduled 

ones, such as times and costs per resource, excepting for the “skuRushOrder” and “assignedQty” 

ones: on the one hand, the value of the “skuRushOrder” field is set as “true”, in order to separate 

the impacts on the KPIs related to scheduled SKUs and rush orders; on the other hand, the 

number of items generated as extra-orders reflects a statistical distribution calculated starting 

from the analysis of historical data. 

The information related to the delays on the expected delivery date of critical components has 

been included adding in the model input the fields “criticalComponentCode”, 

“assignedCriticalComponentQty” and “expectedCriticalComponentDeliveryDate”, that indicate 

that a number equals to “assignedCriticalComponentQty” units of a critical component named 

“criticalComponentCode” has to be generated at the 

“expectedCriticalComponentDeliveryDate” from the “sourceMaterial” block (see Figure 16). 

The link between the SKU and its critical component is explained through the field 

“CriticalComponentCode” in Figure 22, and this relation is the one verified in the block “Match” 

of the simulation model: a specific “skuCode” exits from the “Match” block only when the 

related “CriticalComponentCode” enters in the same block. 
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Stochasticity has been introduced in the model associating a statistical distribution of delay 

calculated starting from the analysis of historical data and expressed in the “Delay” block (see 

Figure 16), that forced the critical components to enter in the system having a delay despite the 

“expectedCriticalComponentDeliveryDate”. 

 

As previously described, while the optimized production plan represents the optimal solution 

under deterministic condition and according to a pre-defined set of objective functions as input, 

the simulated production plans have been run including stochastic events and their effects on 

the performances related to the scheduled production are evaluated and reported on Microsoft 

Excel® files or directly on the company’s ERP database, using a set of KPIs selected by the 

companies starting from the previously defined KPIs dashboard (see Table 7). 

After each simulation run, in fact, the outputs and related KPIs will be saved on the AnyLogic® 

database and can be exported, again, on a Microsoft Excel® file in order to compare the 

deterministic with the stochastic scenario, highlighting how performances vary introducing 

stochasticity. 

To validate the statistical significance of the impact of each stochastic event on the KPIs, the 

one-way analysis of variance (ANOVA) has been conducted after each one of the simulation 

tool’s implementation within the analysed companies. More in detail, the two factors separately 

included in each test have been the rush orders and delays on the expected critical components’ 

delivery date. Three levels for each factor have been defined according to the collected data and 

their relevance for the companies. For each factor, the simulation model has been run including 

10 replications and the resulting KPIs have been used as response variables. 

According to this, the conduction of the ANOVA test aims to determine if each one of the 

selected factors impacts (i.e. rush orders or delays on the expected critical components’ delivery 

date) on one of the response variables (i.e. advances or delays in production), as shown in Figure 

24. 

 

 

Figure 24 - Factors and responses included in the ANOVA 
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For example, considering the “Anova_1” test in Figure 24 (i.e. rush orders vs advances), non-

significance of the test statistic would imply that the occurrence of rush orders has no effect on 

advances in production. On the other hand, significance would imply that advances afflict 

different rush orders’ groups differently. 

In order to determine the statistical significance of a factor’s group on a response variable, the 

one-way ANOVA compares the means of the independent groups. The null hypothesis (i.e. H0) 

for the test is that all the means are equal. On the other hand, a significant result means that at 

least a mean differs from the others, that represents the alternative hypothesis (i.e. H1). 

Rejecting or not H0, that means that results are or not statistically significant respectively, 

depends on the p-value compared to the significance level: when the p-value is less than the 

significance level, H0 is rejected. 

During the simulation model implementation, the one-way ANOVA has been conducted using 

Minitab® 17. 

In Figure 25 is shown an example of the inputs used to conduct the “Anova_1” and “Anova_2” 

tests in Figure 24 (i.e. rush orders as factor), while Figure 26 shows the ones for the “Anova_3” 

and “Anova_4” tests in Figure 24 (i.e. delays on the expected critical components’ delivery date 

as factor). 

 

 

Figure 25 - Input for ANOVA test (factor: rush orders) 
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Figure 26 - Input for ANOVA test (factor: delays on expected critical components' delivery date) 

 

As shown in Figure 25, the levels used for the rush orders factor have been 30, 50 and 70 and 10 

replications of simulation model’s runs have been conducted for each of them to evaluate the 

values for the “delays” and “advances” KPIs. 

10 replications have been conducted also using only delays on expected critical components' 

delivery date as stochastic event, considering 2, 5 and 8 as the three levels of this factor in the 

“Anova_3” and “Anova_4” tests shown in Figure 24. 

In Figure 27, Figure 28, Figure 29 and Figure 30 are respectively shown the results of the 

“Anova_1”, “Anova_2”, “Anova_3” and “Anova_4” tests (see Figure 24), all confirming the 

rejection of the null hypothesis due to the fact that the p-value is less than a significance level 

of 0.05. 
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Figure 27 - One-way ANOVA delays vs rush orders 
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Figure 28 - One-way ANOVA advances vs rush orders 
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Figure 29 - One-way ANOVA delays vs delays on expected critical components' delivery date 
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Figure 30 - One-way ANOVA advances vs delays on expected critical components' delivery date 

 

The Tukey's range test has been jointly used with the ANOVA test as post-hoc analysis to find 

means that are significantly different from each other, comparing all the possible pairs of means. 

Such as the ANOVA, the Tukey’s method has been implemented using Minitab ® 17 and the main 

results are shown in the following figures. In particular, the results considering rush orders as 

factor and the response variables (i.e. delays and advances) are shown in Figure 31 and Figure 

32 respectively, while for delays in the expected critical components’ delivery date in Figure 33 

and Figure 34. All of them show that means significantly differ one to each other. 

 

 

Figure 31 - Tukey’s method delays vs rush orders 
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Figure 32 - Tukey’s method advances vs rush orders 

 

 

Figure 33 - Tukey’s method delays vs delays on expected critical components' delivery date 

 

 

Figure 34 - Tukey’s method advances vs delays on expected critical components' delivery date 

 

The statistical analyses conducted on the inputs and outputs coming from the simulation model 

implementation increase the consistency of the results achievable through scenario analyses 

focused on evaluating the impacts of the occurrence of stochastic events on the main PP&C KPIs. 

According to this, once the statistical analyses have been concluded, the scenario analyses can 

be conducted considering a sub-set of the KPIs dashboard defined in Table 7 and evaluating how 

changes in strategical objectives (i.e. OFs) and/or input configuration and/or stochasticity type 

and occurrence impact on them. 

The scenario analyses conducted on the KPIs groups selected by the analysed company result in 

a set of graphs that give to the business a tangible measure of how KPIs vary according to one 

or more changes in the input parameters. 

The tool used to create reports for the selected KPIs dashboard has been Microsoft Power BI®, 

a business analytics service by Microsoft to provide interactive visualizations and business 
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intelligence capabilities through an easy-to use interface that enable final users to create by 

themselves their own reports and dashboards. 

In order to populate the database used by Microsoft Power BI® as starting point for the reporting 

activities, several database views have been created on the AnyLogic® database, including 

information resulting from both the optimization and the simulation models. For example, all 

the information related to the attributes that are included in the job order rows imported from 

the company’s ERP as inputs of the optimization model, such as related customer, article line 

and season, have to be imported on Microsoft Power BI® in order to conduct statistics on, for 

example, who is the best-served customer per season. Moving to the data coming from the 

simulation model, they represent the real assigned dates and quantities per job order row 

specifying the resource that processes them enabling, for example, statistics about average daily 

or monthly resources’ saturation. 

Starting from the analysed data and considering a scenario where no stochastic events are 

included, the KPIs related to the time dimension can be represented as shown in Figure 35. 

 

 

Figure 35 - KPIs dashboard: Time (deterministic  scenario) 

 

Looking at the graph in Figure 35, even if the selected KPIs for the time dimension include on-

time, advances and delays, only the first two sections have been displayed. This evidence is 

aligned to the fact that the OF in the optimization model includes both delays and advances, but 

the weight of the first one in the OF far exceeds the one of the advances, resulting on an Earliest 

Due Date (EDD) strategy that sequences the job order rows starting from their due date. 

Moving from a deterministic to a scenario where stochasticity is included, both considering the 

occurrence of rush orders (i.e. 50) and delays on critical components’ delivery date (i.e. 3), the 

KPIs values related to the time dimension, represented using the same graph, highlight how 

stochastic events negatively impact the company’s compliance to the delivery date. In fact, the 
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on-time and the advances decrease while, on the other hand, delays exponentially grow (see 

Figure 36). 

 

 

Figure 36 - KPIs dashboard: Time (stochastic scenario) 

 

Through the Microsoft Power BI® reporting tool, the final user has been also enabled to execute 

filtering, drill-down and drill-up operations in order to navigate data and gain relevant 

evidences. 

The way to execute these operations are strictly dependent to the information collected in the 

Microsoft Power BI® database and, consequently, to the AnyLogic® database views that, for 

example, include the classification of advances and delays in terms of the time window they 

cover, enabling the final user to create statistics that segment data that have delays or advances 

included in pre-established ranges (e.g. from 1 to 5 days, from 6 to 10 days and higher than 10 

days). 

In the analysed example, drilling-down the delays section on the graph in Figure 35 it is possible 

to investigate the percentage of advances lower and higher than a week, such as in in Figure 36 

where it is detailed the same time segmentation but referred to the delays. 

According to the fact that the OF has been defined to represent an EDD strategy and no 

stochastic events are included in the scenario represented by the Figure 35, in Figure 37 the 

percentage of advances lower than a week far exceeds the one higher. 

On the other hand, Figure 38 shows the results of the same scenario after the stochasticity has 

been included, splitting the delays between the ones lower and higher one week. 
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Figure 37 - KPIs dashboard: Time detail (deterministic  scenario) 

 

 

Figure 38 - KPIs dashboard: Time detail (stochastic scenario) 

 

Analysing the stochastic scenario represented in Figure 38, another drill-down operation can be 

executed investigating, for example, which are the articles that have a certain percentage of 

delays, as shown in Figure 39, enabling the final user to give back to the customer a more 

detailed information about the relevance of the expected delay. 
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Figure 39 - KPIs dashboard: Article per soft delays (stochastic scenario) 

 

Coming back to Figure 36, the KPIs dashboard that shows the percentage of delayed, advanced 

and on-time items can be drilled-down also considering the customers, in order to enable the 

final user to identify the best-served customer, as shown in Figure 40. 

 

 

Figure 40 - KPIs dashboard: Time per customers (stochastic scenario) 

 

Moreover, starting from the graph in Figure 40 it is possible to filter data in order to analyse only 

one of the two displayed customers (see Figure 41), defining a report for each one of them that 

can be directly sent to the customer itself as proof of the service level guaranteed. 
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Figure 41 - KPIs dashboard: Time per customer (stochastic scenario) 

 

A second level of drill-down can be done, for example, on the graph in Figure 41 in order to 

investigate, considering the items expected to be delivered later than the requested date, the 

percentage of “soft” and “hard” delays, referred to the ones lower and higher than one week 

respectively (see Figure 42). 

 

 

Figure 42 - KPIs dashboard: Time detail per customer (stochastic scenario) 

 

After the exploration of the percentage of delayed, advanced and on-time job orders, their 

segmentation for customer (i.e. first frill-down level) and the analysis of the “hard” delays 

filtering for one of the customers (i.e. second frill-down level), a third level of drill-down can be 

done, for example, to investigate which are the more delayed (i.e. delays higher than one week) 

articles for the customer filtered in Figure 42, as shown in Figure 43. 
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Figure 43 - KPIs dashboard: Time detail per customer per article (stochastic scenario) 

 

The KPIs dashboard related to the time dimension is not the only one that can be created to 

support managers in the decision-making processes. In fact, another graph that can be realized 

is the one in Figure 44, that shows the behaviour of the saturation of the two analysed resources 

(i.e. “Service 1” and “Service 2”) over time, in order to identify, for example, which are its 

minimum, average and maximum values, when each of them occur, and if the resources are 

well-balanced or not. Moreover, moving the cursor along the graph it will show the value of the 

saturation per resource on the Y axis for the specific date on the X axis, enabling the final user 

to deeply investigate a specific behaviour or the outliers that occur on the graph. 

 

 

Figure 44 - KPIs dashboard: Saturation 
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The outputs of the simulation model that can be analysed through a reporting tool are not 

limited to a single scenario that managers decide to investigate in detail, such as the previously 

explained KPIs dashboards. In fact, another analysis that can be managed is the sensitivity 

analysis, an experiment to explore how sensitive are the simulation results to changes of the 

model parameters. In particular, according to the results of the ANOVA tests, the investigated 

parameters could be the occurrences of rush orders and delays on the critical components 

delivery date, while the monitored outputs the delays and advances. 

This kind of experiment has then been conducted on the AnyLogic® tool running the model 10 

times for each one of the variations of the rush orders’ occurrence, that moves from 30 to 70 

with 20 as step (i.e. values equal to 30, 50 and 70). Due to the fact that the resulted delays have 

been expressed as a dataset and exported as database view to the Microsoft Power BI® 

database, a series of curves represent the results of the sensitivity analysis, shown on the chart 

in Figure 45 for allowing a comparison that reflects how the simulation output depends on the 

rush orders’ occurrence. 

 

 

Figure 45 - Sensitivity analysis: rush orders 

 

Starting from the analysis shown in Figure 45, that involves all the 10 replications per occurrence 

of rush orders, another analysis can be conducted comparing only the daily average output per 

occurrence. Looking at the chart in Figure 46, it shows how the higher is the occurrence of rush 

orders, the greater is the output value. Consequently, the date when all the requested SKUs 

have been processed (i.e. the date when the graph becomes stable) become higher moving from 

the graph having occurrence equals to 30 (i.e. 12 September 2018), to 50 (i.e. 20 September 

2018), to 70 (i.e. 28 September 2018), as shown in Figure 46. 
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Figure 46 - Sensitivity analysis: rush orders (average) 
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4.3 Simulation-optimization framework for the fashion 

industry 

The implementation of both the optimization and simulation models previously described (see 

paragraphs 4.1.3 Implementation of the proposed scheduling model in the fashion industry and 

4.2.3 Implementation of the proposed simulation model in the fashion industry) refers to a 

single-company that, in a real context, work within a SC network composed by several actors 

that exchange each other information and material flows. 

Once both the optimization and the simulation have been developed, in order to answer to the 

RQ3, they have to be jointly used considering that outputs of the optimization model represent 

the inputs for running the simulation model. The reason why optimization and simulation are 

jointly used within this framework is twofold: on the one hand, using optimization algorithms 

allows companies to find an optimal allocation for their production considering the parameters, 

constraints and objectives they have defined during the model setting, according to their own 

CSFs; on the other hand, with simulation stochastic events, such as rush orders or delays in the 

components delivery, are taken into account, moving the production allocation analysis from a 

deterministic scenario to a not-deterministic one. 

Moreover, this two-step implementation has to be repeated in an iterative way, varying the 

simulation-optimization model input based on the outputs per iteration (i.e. including new 

constraints, such as available capacity), in order to evaluate if changes result into improvement 

in the overall SC KPIs values. 

According to this an iterative simulation-optimization framework for improving the global SC 

PP&C performances has been developed, in order to include the effects that the feedbacks 

coming from the implementation of simulation-optimization models at the single-companies 

level may have on the overall SC performances. 

Starting from the evidences coming from the literature review, the first draft of the proposed 

iterative simulation-optimization framework has been developed and then readapted until the 

definition of its final version according to the feedback from its implementations (see paragraph 

4.3.1 Proposed iterative simulation-optimization model). Using the action research 

methodology, the proposed tool has been validated through on-field implementations on 

companies working in the 3 analysed market segments (i.e. metal accessories, leather goods, 

footwear) in terms of usability and effectiveness (see paragraph 4.3.2 Implementation of the 

proposed iterative simulation-optimization model in the fashion industry). 
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4.3.1 Proposed iterative simulation-optimization model 

Once the optimization and the simulation models have been separately developed and tested 

(see paragraphs 4.1 Scheduling model for the fashion industry and 4.2 Simulation model for the 

fashion industry respectively), they have to be jointly implemented into a simulation 

optimization decision-support tool to be iteratively run on companies working along the fashion 

SC. 

According to this, in the first paragraph of this chapter the general scenario considered for 

developing the proposed iterative simulation-optimization framework has been described (see 

paragraph 4.3.1.1 Simulation-optimization model description). More in detail, the analysed 

context includes an interdependent environment composed by a group of focal companies that 

work with both exclusive and not-exclusive suppliers. 

Secondly, the steps of implementation for applying the proposed model to a real context have 

been listed in the paragraph 4.3.1.2 Simulation-optimization model architecture. In particular, 

the framework includes the proposed discrete-event simulator, linked together with the multi-

objective, integer linear-optimization scheduler previously described through an import-export 

routine, and has been developed in a parametrical way, in order to fit the peculiarities of the 

different actors operating along the fashion SC. 

The tool aims to enable the comparison among scheduling algorithms in order to optimize the 

overall performances in terms of customers’ due dates compliance and costs and processing 

times reduction. 

 

 

4.3.1.1 Simulation-optimization model description 

The proposed optimization and simulation models described in the previous paragraphs (see 

paragraphs 4.1 Scheduling model for the fashion industry and 4.2 Simulation model for the 

fashion industry respectively) have been developed and implemented considering the single-

company level instead of the whole context where these companies work. 

In fact, starting from the boundaries described above, the simulation-optimization framework 

proposed in this work aims to define the optimal production plan not at the single-company 

level, but considering the performances of the whole SC according to a pre-defined set of KPIs 

and the influence of stochastic events. 

More in detail, the framework includes the implementation of the proposed discrete-event 

simulator linked together with the previously described multi-objective, integer linear-

optimization scheduler through an import-export routine. As already declared, both the 

optimization and simulation models have been developed in order to be suitable by the different 

actors that belong to the fashion SC, such as brand owners and suppliers, parametrically defining 

those models in order to configure themselves fitting each one of the SC actors’ peculiarities. 

The analysed scenario for the description of the proposed framework includes a SC network 

composed by more than one brand owners and several suppliers, both exclusive and not, that 

work together. In order to simplify the graphical representation, the context chosen to explain 

the proposed framework is the one described in Figure 17, where “Supplier_1” and “Supplier_3” 
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are exclusive suppliers for brand owners “Brand_1” and “Brand_2” respectively, while 

“Supplier_2” works for both of them. 

 

 

Figure 47 - General SC network included in the proposed framework 

 

The general SC network showed in Figure 47 can be used to understand why it is needed to 

move from an implementation of the simulation-optimization model at the single-company level 

to a wider application along the different involved SC actors. 

In fact, in real contexts every brand owner independently defines a production plan and 

communicates it to its suppliers. The production capacity of every supplier, included into the 

brand owners’ scheduling algorithm, is usually declared by the supplier itself and expressed as 

a total number of equivalent units that can be produced per week or per day.  

According to the main evidences highlighted from the on-field interview, this available capacity 

is often over-estimated because each supplier, that usually works for different companies, has 

to guarantee the saturation of its production lines considering the high variability of the fashion 

companies’ demand. This results in a misalignment between the real available production 

capacity and the one communicated by each supplier to each brand owners. Moreover, 

suppliers are not interested in declaring the real production capacity but aim to collect the 

largest number of orders to maximize their production lines’ saturation. Looking at the Figure 

47, considering the supplier “Supplier_2” that works for both the brand owners “Brand_1” and 

“Brand_2”, it is a common practice that it declares a higher available capacity to both of them. 

Moving to the suppliers’ perspective, each of them collects the received production plans and, 

according to its objectives and its real production capacity, defines a personal production plan. 

In order to verify if the expected delivery dates will be reached, brand owners periodically 

(usually weekly) ask suppliers to confirm them or give back the updated delivery dates 

considering the orders which production has already started and the re-scheduling of the others. 

The actual production plan of the suppliers can differ from the optimized production plan, 

developed according to the brand owners’ CSFs, mainly due to two different reasons. 

Brand_1

Brand_2

Supplier_1

Supplier_2

Supplier_3

Brand_n

Supplier_n
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Firstly, as anticipated above, the OFs included for optimizing the production plan from the brand 

owner’s perspective and from the supplier’s one can be different, because the CSFs for the two 

SC actors cannot be equal (e.g. the brand owner may include only the minimization of delays 

while the supplier of both delays and advances). 

On the other hand, even if OFs of brand owners and suppliers were perfectly aligned, differences 

between the related production scheduling could be related to the influences of the occurrence 

of stochastic events (e.g. failures, rush orders). In fact, if rush orders have to be managed by the 

supplier or failures occur to its machines, a negative impact on the overall performances, for 

example in terms of delays on expected delivery dates, will probably follows. 

Coming back to the brand owners’ perspective, they know if their production plans will be 

respected or not only at the end of the period (i.e. the week), without having the possibility to 

change their production plan or re-scheduling a part of it before. 

Starting from the boundaries described above, the simulation-optimization framework 

proposed in this work has the objective to overcome these limits, giving to all the SC actors a 

decision-making tool that enables them to preventively highlights the criticalities and the way 

to manage them, through the iterative procedure described in the next paragraph (see 

paragraph 4.3.1.2 Simulation-optimization model architecture). 

According to this, the scenario moves from the identification of the optimal solutions for each 

one of the SC actors to provide the sub-optimal brand owners’ and suppliers’ production plans 

that guarantee the best overall SC performances, and the proposed simulation-optimization 

framework is shown in Figure 48. 

 

 

Figure 48 - Iterative simulation-optimization framework 
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In the proposed framework showed in Figure 48, the brand owners “Brand_1” and “Brand_2” 

are represented, each one of them receiving a demand plan that collects quantities per SKUs to 

be produced by due dates defined in order to be on-time on the market (“MKT_1” and “MKT_2” 

in Figure 48). Using that plan as input for its optimization and adequately setting the other 

parameters needed, the optimization model, before, and the simulation one, after, will be run, 

showing at the end several scenarios according to the changes each brand owner has made to 

the inputs of both the models, such as changing the optimization model inputs in terms of 

different number of available resources or changing the simulation model inputs in terms of 

different type of stochastic events, such as rush orders instead of delays on expected arrival date 

for critical components, or their statistical distribution.  

Once the scenarios are displayed, each one of the brand owners may select the preferable one 

according to the related KPIs’ values, resulting on a specific set of quantities per SKUs assigned 

to one or more suppliers by an assigned delivery date. In the framework, the selected optimized 

plans (“Scenario_1 & KPIs_1” and “Scenario_6 & KPIs_6” in Figure 48) include the assigned 

quantities and delivery date for the SKUs to be produced by the common supplier “Supplier_1”, 

that will receive them from both the brand owners and use them as input for running the 

optimization and then the simulation model to optimize its own production performances. In 

the same way of brand owners, “Supplier_1” will compare the different possible scenarios 

coming from the models implementation and give back to the brand owners the optimized 

production plans he is able to guarantee (“Feedback round n-1” in Figure 48), with the related 

KPIs that may include delays or advances on the resulting production scheduling if compared to 

the brand owners’ ones. If brand owners agree with these, no more iteration is needed and the 

best solution for the whole SC is gathered.  

Otherwise, each one of the brand owners has to run again the optimization and the simulation 

models including as input not only the demand plan but also the evidences coming from the 

received feedback. For example, if the KPIs’ values related to the optimized production plan 

came from the “Supplier_1” shows that he is over-saturated and this results on high delays on 

the overall required due dates, each one of the brand owners may decide to allocate some 

quantities to be processed to other suppliers that belong to their supply base that, for example, 

can be not taken into account in the previous iteration because more expensive or less 

compliant than “Supplier_1”. 

Going deeper from the boundaries described above, the simulation-optimization model applied 

at the single-company level includes the application of the proposed optimization model (see 

paragraph 4.1 Scheduling model for the fashion industry) followed by a “what-if” simulation 

analysis conducted through the implementation of the proposed simulation model (see 

paragraph 4.2 Simulation model for the fashion industry). This two-steps implementation 

conducted for both brand owners and suppliers underlines also how the optimized results and 

the related KPIs can differ moving from the brand owner to the supplier perspective, especially 

considering a scenario where multiple brand-supplier relationships exist and the uncertainty due 

to both internal (e.g. machine failures, reworks, employees unavailability) and external 

stochastic events (e.g. rush orders) that often characterises a dynamic context such as the one 

of fashion SC. 
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4.3.1.2 Simulation-optimization model architecture 

Starting from the framework previously described, the architecture of the model applied at the 

single-company level is showed in Figure 49. 

 

 

Figure 49 - Simulation-optimization model general architecture at the single-company level 

 

More in detail, the first step is the export of the production plan from the company’s ERP on a 

Microsoft Excel® file. The data includes required quantities and delivery dates per single SKU but 

also all the other parameters needed for setting the model. In fact, this Microsoft Excel® file, 

elaborated using VBA code, is used as input for running the proposed optimization model using 

OpenSolver as optimization tool (see paragraph 4.1 Scheduling model for the fashion industry). 

The results, in terms of assigned quantities per resource and delivery dates, represent the 

optimal solution under deterministic conditions and according to the selected parameters, 

constraints and weighted OF set as input. 

In order to compare different optimized plans and move from a deterministic scenario to 

another one that includes stochastic events, the optimized production plan has to be 

reformatted on another Microsoft Excel® file in order to resume all the information needed for 
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running the simulation model and then imported into the simulator’s database, such as the ones 

related to the occurrence of stochastic events. This procedure, that readapts the information 

resulting from running the optimization model, has been automatize developing a specific VBA 

code. 

In fact, according to the proposed simulation model (see paragraph 4.2 Simulation model for 

the fashion industry), stochastic events have to be included at this point, for example inserting 

a percentage of unexpected orders to be generated with priority on the planned ones, 

representing the production of rush orders that fashion companies usually have to manage. 

The introduction of stochastic events may impact on the output coming from the simulator, that 

can differ in terms of performances from the one came from the optimization model used as 

input for simulation. Running the simulation model, in fact, data referred to the simulated 

quantities and delivery dates per SKU are exported on an Microsoft Excel® file, used to compare 

the deterministic with the stochastic scenario, highlighting how performances vary introducing 

stochasticity through a pre-defined set of KPIs (see paragraph 4.2.2.2 KPIs dashboard). In 

particular, the KPIs dashboard allows to conduct a scenario analysis based on structured data 

focused, on the one hand, on how optimized production plans vary changing model inputs, such 

as available resource capacity and enabled suppliers per SKU or weights in the OF, and, on the 

other hand, on how the simulated scenarios are differently stressed by stochastic events, 

changing the percentage of that kind of events. 

According to this, the architecture shown in Figure 49 has to be implemented for each 

combination of parameters, constraints, OFs and stochastic events to be compared, and the 

detailed architecture of the model is represented in Figure 50, including three scenarios that can 

be compared for supporting SC actors in the decision-making process. 

 

 

Figure 50 - Simulation-optimization model detailed architecture at the single-company level 
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According to the simulation-optimization framework previously proposed (see paragraph 

4.3.1.1 Simulation-optimization model description), the procedure in Figure 50 can be applied 

both to brand owners and suppliers operating in the fashion SC. In particular, it includes the 

iterative implementation of the procedure above, considering a SC network composed by more 

than one brand owners and several suppliers, both exclusive and not, that work together. 

In this way, the iterative procedure for the application of the proposed framework (see Figure 

48) is shown in Figure 51. 

 

 

Figure 51 - Iterative simulation-optimization procedure 
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4.3.2 Implementation of the proposed iterative simulation-

optimization model in the fashion industry 

 

Starting from the procedure for the iterative implementation of the simulation-optimization 

model (see Figure 51), different scenario analysis can be conducted. 

First of all, according to the evidences coming from the description of the implementation 

procedure for the simulation model (see paragraph 4.2.3 Implementation of the proposed 

simulation model in the fashion industry), a scenario analysis can be conducted at the single-

company level. On the one hand, an analysis can be done comparing deterministic scenarios, 

considering the impacts on KPIs resulted from the implementation of optimization model with 

different inputs, such as OFs’ weights or suppliers’ production capacity. On the other hand, 

another type of KPIs’ values comparison can be done making no changes on the optimization 

model inputs but only in the simulation model ones, for example varying the occurrence of 

stochastic events or including more than one stochasticity. Moreover, a combination of the 

described changes (i.e. both on optimization and simulation model inputs) can be done. 

Moving from a single-company level to a SC network, the scenario analysis can be conducted 

comparing the gap between the demand planning and the brand owner’s simulated production 

plan (see “ProcessingDate_gap_A” in Figure 52) and the gap between the demand planning and 

the supplier’s simulated production plan (see “ProcessingDate_gap_B” in Figure 52), both in 

terms of delays and advances related to the required quantities and delivery date per SKU and 

the average saturation per available resource. 

Looking at the KPIs in Figure 52, both of them refer to the KPIs “Otm_W_Sum” and 

“Atg_W_Sum” listed in Table 7, representing the number of on-time and not ot-time items 

respectively, that have to be calculated, on the one hand, at the brand owner’s level and, on the 

other hand, from the supplier’s perspective. 

 

 

Figure 52 - Scenario analysis at the SC network level 
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The comparison between “ProcessingDate_gap_A” and “ProcessingDate_gap_B” considering 

different scenarios at the single-company level makes easier to identify the combination of 

brand owner’s one and supplier’s simulated plans that have the best impact on the overall SC 

network performances. 

Finally, the general framework can be applied into different SC network configuration (for 

example 1:1, 1:N, M:1, M:N brand-supplier relationships) but also into different market 

segments, such as metal accessories, leather goods and footwear, readapting the parameters of 

single models to the peculiarities of each company. This is allowed by the development of both 

the optimization and simulation model in a parametrical way, for example enabling to include 

or not some parameters in the OF, giving a weight equals or not to zero, and expressing same 

parameters in a different way (e.g. resource capacity in terms of quantity per day or minutes per 

day moving from a brand owner to a supplier perspective). 
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5 Results 
 

 

According the Action Research methodology, the framework has been developed in order to 

collect the requirements and validate the usability of a general production planning simulation-

optimization model in the leather industry. In particular, the on-field implementations have 

been conducted on companies working in the 3 analysed market segments comparing model’s 

outputs with the production planner’s evaluations. 

First of all, a brief overview of the pilots’ implementation has been detailed (see 5.1 Pilots 

overview). 
After that, the results of the metal accessories (see paragraph 5.2 Metal accessories), leather 

goods (see paragraph 5.3 Leather goods) and footwear (see paragraph 5.4 Footwear) pilots’ 

implementation have been reported. 
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5.1 Pilots overview 

According to Hu et al. (2013), model validation has to be conducted starting with a pilot 

implementation, where the model is tested with a small-scale problem, assuming a single 

resource at finite capacity and a production plan for a limited sample of products that covers 

one month and a half, which represents the orders visibility that these companies usually have 

from the fashion brands. All the processes included into the production cycle of the item, before 

and after the only job scheduled at finite capacity, has been modelled using the LT as the 

processing time. 

The simulation-optimization model has been applied to real companies working along the 

fashion SC, where costs, delay, and advances have been considered in order to define the OF for 

the optimization model and, on the other hand, the type if stochasticity to be included have 

been chosen according to the challenges each SC actor in the analysed market segment has to 

face with. 

The empirical implementation of the framework has been done using data coming from fashion 

companies belonged to the same SC network, considering rush orders and delays on critical 

components’ delivery date as stochastic events for the scenario analysis and the KPIs 

assessment. 

According to the previous paragraph (see paragraph 4.3.2 Implementation of the proposed 

iterative simulation-optimization model in the fashion industry), the procedure followed for 

implementing the proposed models along the fashion SC, especially in SMEs with a low 

informatization level and investment capabilities in IT solution, includes, on the one hand, using 

a commercial spreadsheet and OpenSolver as an open source CBC optimization solver and, on 

the other hand, AnyLogic® for the DES modeling. 

In the following paragraphs it is detailed the conduction of three pilots: the first one on a metal 

accessories supplier, the second one on a leather goods producer and the last one on a footwear 

company. 

Even if the main purpose for all the pilots is to validate the results and the usability of the models’ 

implementation, each one of them has specific goals according to the peculiarities of the 

analysed companies and, consequently, requires the conduction of different type of scenario 

analysis. In fact, even if the starting point is represented by the previously explained KPIs 

dashboard (see the paragraph 4.2.2.2 KPIs dashboard), each company can select the set of KPIs 

groups to be analysed (see Table 6) and choose the subset of KPIs from the ones listed in Table 

7: this selection will be graphically shown at the beginning of each pilot, filling the framework in 

Figure 53 with the KPIs to be evaluated and the input parameters selected for the conduction of 

the scenario analyses. 
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Figure 53 - Pilots' implementation framework 

 

The pilot on a metal accessories supplier (see paragraph 5.2 Metal accessories) shows, as first 

result, how the optimization model can be applied and how the relative results change moving 

from one scenario to another one, characterized each one by a different combination of 

elementary objectives in the OF. Secondly, the simulation has been used to both validate the 

optimization model results and to evaluate how stochasticity impacts on the PP&C 

performances considering the different deterministic scenarios coming from the optimization 

model’s implementation. 

Moving from the metal accessories to the leather goods market segment (see paragraph 5.3 

Leather goods), the validation of the models’ implementation has been done for both brand 

owners and suppliers, highlighting the differences in the configuration of the same parametrical 

model. Moreover, two different gap analyses have been done through simulation, to compare 

deterministic and stochastic scenarios including only rush orders and both them and delays in 

the delivery of critical components. 

Finally, the footwear industry has been analysed (see paragraph 5.4 Footwear) and the model 

implementation has been done starting from a balanced production plan and validated 

according to the managers’ experience. The sequencing problem has been analysed through 

simulation, and several scenario analyses have been conducted in order to evaluate the best 

sequencing empirical rule in terms of daily productivity, resources saturation and makespan. 
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5.2 Metal accessories 

The first pilot has been conducted on a metal accessories’ supplier, using a data set acquired 

from the real experience of an Italian fashion company. 

The following paragraphs describe the implementation of both the proposed optimization and 

simulation model, in order to on-field validate their results and usability and to conduct scenario 

analysis. 

The implementation of the proposed optimization model (see paragraph 5.2.2 Optimization 

model in a metal accessories company) has been used to generate different optimized plans 

changing the combination of elementary objectives in the OF. They are then compared using the 

proposed simulation model (see paragraph 5.2.3 Simulation model in a metal accessories 

company) in both deterministic and stochastic conditions, in order to evaluate the impacts on 

the PP&C performances. 

In particular, the production phase chosen as having finite capacity is the machine shop, where 

Computer Numerical Control (CNC) machines are used to produce semi-finished items, starting 

from raw materials or molded items. All the steps after this phase have been considered working 

at infinite capacity and have been modelled with a generic processor having a LT as processing 

time, in the same way as sub-suppliers’ external jobs. The model has been implemented 

considering a production plan of 40 days to be processed by a production plant operating 24 

hours per day, 7 days per week. 

In order to summing up, the framework in Figure 53 has been filled, highlighting the 

configuration of the input and output parameters that have been used for the conduction of the 

scenario analyses in the metal accessories pilot, as exemplified in Figure 54. 

 

 

Figure 54 – Metal accessories pilots' implementation framework 
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5.2.1 Metal accessories sector introduction 

The first pilot refers to a metal accessories supplier working in the fashion SC. 

Even if metal accessories producers belong to the mechanical industry, they represent an 

important part of the fashion SC and their processes and CSFs are similar to the ones working 

for the fashion industry. 

In order to understand the peculiarities of these companies, a remark of fashion product 

features and their technological cycle is reported. In particular, metal accessories are usually 

composed by two or more elements, assembled together in the final step of the production 

process. Each component can follow a different workflow due to several factors, mainly linked 

to functional, aesthetic and economical aspects. After the production of the semi-finished items, 

through moulding or shaving removal, the production cycle continues with some mechanical 

operations (e.g. vibration, vibratory finishing, drilling, cutting). Then, these items have to be 

covered by one or more precious metals, such as gold, palladium and ruthenium, through an 

electroplating process. Last, the items have to be assembled, pass the quality control, be 

packaged and delivered to the focal company or façonists in order to be applied on the final 

product. 

A graphical representation of this process is shown in Figure 55. 

 

 

Figure 55 - Metal accessories production process 

 

More in detail, the 6 steps showed in Figure 55 can be described as follows: 

 

1. Stamping 

Considering CAD or manually designed sketches, the draft of metal part can be realized using 

stamping machines or directly starting from the metal (see next production phase). 

Stamping (also known as pressing) is the process of placing flat sheet metal in either blank or 

coil form into a stamping press where a tool and die surface forms the metal into a net shape. 

Stamping includes a variety of sheet-metal forming manufacturing processes, such as punching 

using a machine press or stamping press, blanking, embossing, bending, flanging, and coining. 
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This could be a single stage operation where every stroke of the press produces the desired form 

on the sheet metal part or could occur through a series of stages. 

Depending on part complexity, the number of stations in the die can be determined. 

 

2. Chip removal 

In the chip removal process the layers of metal from the parent metal (workpiece) are separated 

in the form of chips to obtain the required dimension and shape. The workpiece is typically cut 

from a larger piece of stock, which is available in a variety of standard shapes, such as flat sheets, 

solid bars, hollow tubes, and shaped beams. Machining can also be performed on an existing 

part, such as a casting or forging, and can be used to create a variety of features including holes, 

slots, pockets, flat surfaces, and even complex surface contours. 

In this process, a compressive force is applied to shear off the material in the small pieces known 

as chips. 

Non-conventional machining processes may use chemical or thermal means of removing 

material. Conventional machining processes are often placed in three categories - single point 

cutting, multi-point cutting, and abrasive machining. Each process in these categories is uniquely 

defined by the type of cutting tool used and the general motion of that tool and the workpiece. 

Single point cutting refers to use a cutting tool with a single sharp edge that is used to remove 

material from the workpiece. The most common single point cutting process is turning, in which 

the workpiece rotates and the cutting tool feeds into the workpiece, cutting away material. 

Turning is performed on turning machine and produces cylindrical parts that may have external 

or internal features. Turning operations such as turning, boring, facing, grooving, cut-off 

(parting), and thread cutting allow for a wide variety of features to be machined, including slots, 

tapers, threads, flat surfaces, and complex contours. Other single point cutting processes exist 

that do not require the workpiece to rotate, such as planing and shaping. 

Multi-point cutting refers to using a cutting tool with many sharp teeth that moves against the 

workpiece to remove material. The two most common multi-point cutting processes are milling 

and drilling. In both processes, the cutting tool is cylindrical with sharp teeth around its 

perimeter and rotates at high speeds. In milling, the workpiece is fed into the rotating tool along 

different paths and depths to create a variety of features. Performed on a milling machine, 

milling operations such as end milling, chamfer milling, and face milling are used to create slots, 

chamfers, pockets, flat surfaces, and complex contours. Milling machines can also perform 

drilling and other hole-making operations as well. 

In drilling, the rotating tool is fed vertically into the stationary workpiece to create a hole. A drill 

press is specifically designed for drilling, but milling machines and turning machines can also 

perform this process. Drilling operations such as counterboring, countersinking, reaming, and 

tapping can be used to create recessed holes, high precision holes, and threaded holes. Other 

multi-point cutting processes exist that do not require the tool to rotate, such as broaching and 

sawing. 

Abrasive machining refers to using a tool formed of tiny abrasive particles to remove material 

from a workpiece. Abrasive machining is considered a mechanical process like milling or turning 

because each particle cuts into the workpiece removing a small chip of material. While typically 

used to improve the surface finish of a part, abrasive machining can still be used to shape a 
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workpiece and form features. The most common abrasive machining process is grinding, in 

which the cutting tool is abrasive grains bonded into a wheel that rotates against the workpiece. 

Grinding may be performed on a surface grinding machine which feeds the workpiece into the 

cutting tool, or a cylindrical grinding machine which rotates the workpiece as the cutting tool 

feeds into it. Other abrasive machining processes use particles in other ways, such as attached 

to a soft material or suspended in a liquid. Such processes include honing, lapping, ultrasonic 

machining, and abrasive jet machining. 

 

3. Mechanical treatment 

Final polishing of part surfaces is carried out mechanically through the use of abrasive wheels 

and tapes with polishing pastes or through the use of round type vibratory machines. 

Vibratory finishing is a type of mass finishing manufacturing process used to deburr, radius, 

descale, burnish, clean, and brighten a large number of relatively small workpiece. In this batch-

type operation, specially shaped pellets of media and the workpiece are placed into the tub of 

a vibratory tumbler. 

The tub of the vibratory tumbler and all of its contents are then vibrated. The vibratory action 

causes the media to rub against the workpiece which yield the desired result. Depending on the 

application this can be either a dry or wet process. Vibratory finishing systems tend to produce 

a smooth finish because the media essentially laps the parts. Since the load is moving as a unit, 

very fragile parts are quite safe in the vibrator. There is no tearing action or unequal forces that 

tend to bend and distort parts. Unlike rotary tumbling this process can finish internal features, 

such as holes. It is also quicker and quieter. The process is performed in an open tub, so the 

operator can easily observe if the required finish has been obtained. Tumble finishing, also 

known as tumbling or rumbling, is a technique for smoothing and polishing a rough surface on 

relatively small parts. In the field of metalworking, a similar process called barrelling, or barrel 

finishing, works upon the same principles. 

 

4. Galvanizing 

Electroplated items are made with a layer of gold or other precious metal on the surface over 

another type of metal underneath. 

As first step of galvanizing, the surface preparation is needed. In fact, the surface of the metal 

to be plated must be very clean, so oils or dirt must be removed, and the piece must be polished. 

Surface preparation can include stripping, polishing, sandblasting, tumbling, etc. The use of 

solvents, abrasive materials, alkaline cleaners, acid etch, water, or a combination can be used. 

Typical methods to clean include acid or non-acid ultrasonic bath and a high rpm rouge wheel 

polishing. This is necessary for two reasons: 

- To improve adherence (dust and dirt interfere with the plated metals adhering to the 

jewellery piece). 

- To keep the plating tanks free of contaminants. 

After the surface is prepared, and a visual inspection is done, electrocleaning, ultrasonic 

cleaning, or steaming, usually takes place. This second, deeper, cleaning step must follow to 

ensure metal is free of oils and dirt, which helps produce superior plating results. Steam cleaning 
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blasts off any remaining oils that managed to hang on during the polishing phase.  Take special 

note of intricate jewellery that has many nooks and crannies. The piece is then rinsed thoroughly 

with water to remove any cleaning agents. 

A strike layer, or flash layer, adheres a thin layer of high-quality nickel plating to the base metal. 

In order to improve the bonding between the plating and the underlying surface, occasionally a 

buffer layer must be applied between them. With costume jewellery the base metal would 

contaminate the tanks with the gold in them, so a different metal is plated prior to the gold 

plating. 

Additionally, this step is used when the base metal, like copper, is known to atomically migrate 

outside of the gold layer to create spots of tarnish after plating. This strike step creates a barrier 

between the reactive base metal and the plated metal. This extends the life of the bright gold 

plating. 

The piece is then rinsed again thoroughly with water to remove any cleaning agents. 

If a base coat below precious metal is used, it is usually nickel. There can be many layers of 

plating done on one particular piece. For example, a gold-plated silver article is usually a silver 

substrate with layers of copper, nickel, and gold deposited on top of it. 

With time, temperature and voltage carefully controlled, the piece is submerged into the plating 

solution to attract ions of gold or the final metal that will show on the surface. Different metals 

require different voltages and temperatures. 

The items to be plated are hung from a cathode bar, which is a pole with a negative electrical 

charge going through it. The pieces of jewellery connected to the cathode bar are also negatively 

charged. When the jewellery items are submerged in the tank an electrical charge is applied and 

the negatively charged jewellery attracts the positively charged ions present in the solution. The 

positively charged metal ions are submersed in the solution bath. When the cathode bar is 

lowered into the bath the metal jewellery gets plated. After that step, rinsing and drying needs 

to be done. 

 

5. Assembling and finishing 

The galvanized items that compose one kit are assembled together according to the bill of 

material specification. In many cases, during this part of the process, that is manually done by 

expert operators, the quality control is performed. Once the lot of metal accessories is 

completed, the shipment is set up for delivering it to the brand owner. 

 

One of the main criticalities of this sector is represented by the continuous occurrence of rush 

orders, that has to be priority processed compared to the previously scheduled ones. In addition, 

changes in the priority of the already scheduled products coming from the brand owners are 

often requested, in order to follow the demand variability and readapt production plans to the 

delays along the SC. Finally, two other stochastic events may occur producing changes in the 

production plan: the request from the brand owners of small lots of sample production, that 

reduce the suppliers declared production capacity and the delay in the arrival of the molded 

parts.   
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5.2.2 Optimization model in a metal accessories company 

The structure of the production plan exported from the company ERP that represents the input 

of the optimization model is summarized in Table 8. 

 

Table 8 - Production plan exported from the ERP 

Code Description 

db_id Order ID 

db_key Item code 

db_order Order code 

db_order_line Order line position 

db_machine CNC machine type (i.e. turn or mill) 

db_qt_prod Number of items to be produced 

db_delivery_date Item due date 

 

The production order considered in the pilot includes 11 articles with different lot sizing, (i.e. 

from 35 up to 10,000 items for item code) and customer delivery dates between 15th and 23th 

of February 2017. Data related to the production plan exported from the ERP have been 

integrated with that ones that characterize the items’ working cycle, collecting data from 

historical information. These parameters are the processing time per item on each companies’ 

CNC machine, the LT per item for the subsequent production steps and the processing costs per 

item for each machine. 

Processing times can vary for different item codes (i.e. longer processing time moving from 

simpler to more complex SKU) but even for the same one if made by different resource (i.e. 

working the same article through a newer machine require a shorter processing time than an 

old one). Processing times for the scheduled items are between 10 and 135 seconds, while costs 

are equally evaluated for the CNC machines. 

Finally, processing time and cost per machine can be recorded as null, because not every 

machine can be used for producing a specific item code. 

All the described parameters represent the input for the optimization model run using the 

OpenSolver tool on Microsoft Excel®, configured starting from the parameters, constraints and 

objective function previously defined (see paragraph 4.1.2 Proposed scheduling model for the 

fashion industry) and according to the procedure described for the proposed optimization 

model (see paragraph 4.1.3 Implementation of the proposed scheduling model in the fashion 

industry). 

The objective function included in the proposed linear integer optimization model has been 

defined as OF: Min {cw * C + dw * D + aw * A}, combining costs, delays, and advances, whilst 

excluding the processing time, saturation balancing and mix balancing. 

According to this, the combinations of weights chosen for each one of the three parameters (i.e. 

values for cw, dw and aw, respectively referred to costs, delays and advances) have been 

decided by the analysed company, guaranteeing coherence with its specific CSFs. 
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In particular, in the described pilot have been analysed the two scenarios (i) and (ii) that differ 

each other in terms of combinations of weights in the OF. More in detail: 

 

(i) OF1: 

Min{cw * C + dw * D + aw * A} 

where cw = 1, dw= 1, aw = 1; 

 

(ii) OF2: 

Min{cw * C + dw * D + aw * A} 

where cw = 1, dw= 1, aw = 0. 

 

The reason these two scenarios have been chosen is related to the management request to 

develop a tool able to show which are the different impacts on the scheduling performance if 

advances are included (i.e OF1) or not (i.e OF2), enabling users to analyse the output evidences 

value of delays and advances in absolute terms or related to a specific working machines or 

subset of items. 

The amount of delays and advances are calculated as sum of all the quantity per item 

respectively not produced or produced in advance if compared to the requested delivery date, 

considering both final and intermediate process steps. This comparison has been made per 

single day during the analysed time slot. 

On the other hand, costs value has been calculated multiplying assigned quantity per item with 

the unitary working cost per machine mapped as input data on the Microsoft Excel® (i.e. 

exported from the company’s ERP) and as agents’ parameter on the simulator. According to the 

management request, in the model implementation costs are considered equal for every item 

processed by every machine. Moreover, no difference as been made according to the actually 

used work schedules (i.e. 24 hours per day, 7 days per week), that push the company to not 

considering overtime and related extra-costs. 

The format of the optimal solution is listed in Table 9. 

 

Table 9 - Scheduled optimization plan output 

Code Description 

db_key Item code 

n-t1 Items assigned on the day n to the turn 1 

n-t2 Items assigned on the day n to the turn 2 

n-t3 Items assigned on the day n to the turn 3 

n-m1 Items assigned on the day n to the mill 1 

n-m2 Items assigned on the day n to the mill 2 
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In the pilot, the optimal scheduled production plan shows that, according to both the OFs and 

the optimization model constraints (i.e. CNC machines’ capacity and demand fulfilment), some 

items will be produced in advance and some others with a delay respect to the delivery dates 

specified in the production plan. Considering the scheduling time window (i.e. from the first 

assignable day to the one last SKU is scheduled), the optimization model results cover 15 days 

in the first scenario and 24 days in the other. 

As result of the optimization model implementation, the first scenario, that takes into account 

all the three parameters (costs, delays and advances), results in an OF1 value equals 88,019, 

composed by (cw * C) = 14,482, (dw * D) = 72,056 and (aw * A) = 1,481. The second one, that 

differs from the previous scenario for not considering advances as one of the OF’s parameters, 

results in an OF2 value equals to 19,296, composed by (cw * C) = 14,482 and (dw * D) = 4,814; 

advances equals to (aw * A) = 110,805. 

As expected, the value of delays is lower for OF2 in comparison with OF1. In fact, the constraints 

in terms of CNC machines’ capacity and demand fulfilment force to not always respect the 

requested delivery date in both scenarios but, while in the first one delays and advances are 

equally weighted, in the other one just delays are taken into account, pushing the optimized 

scheduling of the items towards anticipate their production respect to the delivery date. In the 

same way, the advances related to the second scenario largely overcome the ones of the first 

one because their amount is not included into the OF. 

The results came from the optimization model implementation have been validated and none 

issues regarding the computational time have been found. Regarding the usability of the tool, it 

has been validated by the production manager of the analysed metal accessories supplier. 

 

 

5.2.3 Simulation model in a metal accessories company 

Once the optimization model has been validated, also the proposed simulation model has been 

tested comparing the output with the one of the optimization model under a deterministic 

scenario, that means running both the model with the same parameters under static conditions. 

On the other hand, the deterministic optimized scheduled plan has been compared with the one 

simulated taken into account stochastic elements for evaluating their impact on KPIs 

(deterministic vs. stochastic). The stochastic elements that have been considered are rush 

orders, created according to a uniform distribution that represents the unexpected orders 

received by the company in the last year. 

Once the optimization plan has been recorded, the assigned items have been imported into the 

AnyLogic® simulator using a SQL script as input for the simulation. In fact, the agents (i.e. the list 

of items included in the company’s production plan) are generated according to the parameters 

within the Microsoft Excel® file containing the optimization model results, as previously defined 

(see paragraph 4.2.3 Implementation of the proposed simulation model in the fashion industry). 

Moreover, the output of the optimization model in terms of end processing date, processed 

quantity and assigned machine per single item has defined the rules for developing the 

simulation model (i.e. the way the agents are generated and the path that they have to follow 

along the process flow). 
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Deeply analysing the simulated model, it is composed by two resources type (i.e. turns and mills) 

with several machines for each one (in particular, three turns and two mills, like the company’s 

layout already mapped on the optimization model on the Microsoft Excel®) working 24 hours 

per day. According to the model overview, each machine processes only the items that have 

been assigned to itself by the optimization model, considering as processing time the one that 

is reported on the Microsoft Excel® file and recording it as an agent’s parameter. According to 

the production plan parameters, the total number of agents generated are 14,482. 

As mentioned before, all the process activities that follow turning and milling ones are modelled 

as a unique processing block, called “Post-processing”, that covers a specific processing time for 

each item, extracted from the Microsoft Excel® file as agent’s parameter. In the same way, 

turning and milling processing times are the one defined in the Microsoft Excel® file. 

The simulation model described until now represents the same deterministic scenario of that 

one modelled on Microsoft Excel® and has been successfully used to validate the optimization 

model in terms of resulting KPIs, such as delays and advances days for each item. 

In the pilot, stochastic events have been included considering a deviation from the deterministic 

plan due to the presence of rush orders. These orders are generated with a uniform statistical 

distribution U(40,50) considering an arrival rate generated according to a normal distribution 

with average and variance equals to 1. The percentage of rush orders generated by the simulator 

during the run is almost the 10% of the total production quantity, according to the historical 

data collected in the analysed fashion company. The modeled rush orders have been generated 

as a set of items included into the original production plan, inheriting production cycle, 

processing and post-processing times. Moreover, rush orders have priority over the scheduled 

items, that move on the simulated production process following a FIFO queue. 

Two simulation campaigns have been conducted: the first one generates the input items from 

the “Source” block of the AnyLogic® simulator according to the optimized plan that minimize 

the OF1, while the second one follows the scheduled production referred to the OF2. The 

simulation time slot covers four months, in order to complete the scheduled orders considering 

the presence of priority rush orders. 

In order to compare the different simulation campaigns with the scheduled deterministic 

optimized production plan, the KPIs reported in Table 10 have been defined. 

 

Table 10 - Simulation model’s KPIs 

KPI Type KPI Formula 

Otm_W_Sum; 
Atg_W_Sum 

gap delivery date1 deathdate - customerRequestedDate 

Otm_W_Sum; 
Atg_W_Sum 

gap delivery date2 customerAssignedDate - customerRequestedDate 

Otm_W_Sum; 
Atg_W_Sum 

gap delivery date3 deathdate - customerAssignedDate 

Otm_S_Sum; 
Atg_S_Sum 

gap processing delivery date1 stopDate - requestedDate 

Otm_S_Sum; 
Atg_S_Sum 

gap processing delivery date2 assignedDate - requestedDate 

Otm_S_Sum; 
Atg_S_Sum 

gap processing delivery date3 stopDate - assignedDate 
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Looking at the KPIs in Table 10, “gap delivery date 1”, “gap delivery date 2” and “gap delivery 

date 3” refer to the KPI types “Otm_W_Sum” and “Atg_W_Sum” listed in Table 7 (see “KPI Type” 

column in Table 10), representing the number of on-time (i.e. “gap delivery date n” equals to 0) 

and not ot-time (i.e. “gap delivery date n” not equals to 0) items respectively, that have been 

calculated to compare requested, optimized and simulated production plans at the “Sink” block. 

On the other hand, “gap processing delivery date 1”, “gap processing delivery date 2” and “gap 

processing delivery date 3” refer to the KPI types “Otm_S_Sum” and “Atg_S_Sum” listed in Table 

7, differing from the previous ones in terms of reference system: “gap delivery date n” calculate 

values at the end of the whole process (i.e “Sink” block) while “gap processing delivery date n” 

at the exit of the finite-capacity resource (i.e “Processing” block). 

More in detail, the “gap delivery date 1” shows the gap between the simulated end processing 

date for the final product and the one requested by the customer. In other words, it shows the 

lateness, as calculated by the simulation model. The “gap delivery date 2” is the lateness but 

referred to the optimization model’s output (i.e. Microsoft Excel® file). Finally, the “gap delivery 

date 3” compares the simulator and the optimization models’ outputs, again in terms of delays 

or advances per item related to the final product production. This KPI represents the deviation 

between the optimized lateness and the one evaluated by the simulation. 

KPIs “gap processing delivery date 1”, “gap processing delivery date 2” and “gap processing 

delivery date 3” are defined as the previous ones but refers to the semi-finished products (i.e. 

outputs of turning and milling machines) instead of final ones (i.e. outputs of “Sink” block). 

As first result of the present work, the simulation model has been successfully validated 

comparing the resulting outputs to the ones calculated through the optimization model on the 

Microsoft Excel®. In particular, for each run of the simulation campaign the gap, in terms of days, 

between real and requested delivery date per each item calculated through the two models (i.e. 

the ones run on OpenSolver and AnyLogic®) has been compared, considering both final and 

intermediate steps. This comparison results in a punctual alignment between the two models’ 

outputs and it has been evaluated considering both the OFs (i.e. OF1 and OF2). 

The second result of this work is related to the comparison between the scheduling plan 

simulated considering unexpected orders to be priority processed and the optimal solution that 

considers just pre-scheduled orders as input.  

This gap analysis has been conducted considering both the OFs, and the compared KPIs are 

shown for OF1 and OF2 respectively in Table 11 and Table 12. 

KPIs related to the output of the models, in terms of number of worked items, refer both to the 

scheduled and rush orders in the analysis on the simulation model, while the others related to 

delays and advances are related just the scheduled orders. The reason why we have chosen to 

consider only these orders is that the aim is to assess the impact of rush orders on the previous 

scheduling, modeled on the Microsoft Excel®. Moreover, due to the fact that rush orders are 

priority by definition, they report null delays and advances. 

The column “KPI Type” in Table 11 and Table 12 links the analysed KPIs (i.e. “KPI” column) to the 

KPI types listed in Table 7. More in detail, the KPI types analysed in the present pilot refer to the 

productivity per resource (i.e. “Prd_S_Sum”) and the delays and advances calculated as total 

(i.e. “Del_W_Sum”, “Del_S_Sum”, “Adv_W_Sum” and “Adv_S_Sum”), average (i.e. 

“Del_W_Avg”, “Del_S_Avg”, “Adv_W_Avg” and “Adv_S_Avg”), minimum (i.e. “Del_W_Min”, 

“Del_S_Min”, “Adv_W_Min” and “Adv_S_Min”) and maximum (i.e. “Del_W_Max”, 
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“Del_S_Max”, “Adv_W_Max” and “Adv_S_Max”) values, both at the end of the process (i.e. 

“Sink” block) and at the exit of the finite-capacity resource (i.e. “Processing” block). 

 

Table 11 - Comparison between models’ KPIs (OF1) 

KPI Type KPI 
Optimized 

plan 
Stochastic 
simulation 

∆% 

Prd_S_Sum Output quantity per turn 1 (a) 10,020 12,185 21.61 

Prd_S_Sum Output quantity per turn 2 (a) 44 485 1002.27 

Prd_S_Sum Output quantity per mill 1 (a) 1,060 2,639 148.96 

Prd_S_Sum Output quantity per mill 2 (a) 3,358 5,383 60.30 

Del_S_Sum Delays per turn 1 (a) 0 387,285 - 

Del_W_Sum Delays Post-processing (a) 72,056 491,236 581.74 

Adv_S_Sum Advances per turn 1 (a) 16,237 16,237 0 

Adv_S_Sum Advances per turn 2 (a) 88 88 0 

Adv_S_Sum Advances per mill 1 (a) 2,119 2,119 0 

Adv_S_Sum Advances per mill 2 (a) 6,715 6,715 0 

Adv_W_Sum Advances Post-processing (a) 1,481 37,099 2405 

Del_S_Max Max delay per turn 1 (b) 0 367 - 

Del_S_Avg Average delay per turn 1 (b) 0 178.88 - 

Del_W_Max Max delay Post-processing (b) 21 141 571.43 

Del_W_Avg Average delay Post-processing (b) 6.46 76.74 1087.93 

Adv_S_Max Max advance per turn 1 (b) 3 3 0 

Adv_S_Avg Average advance per turn 1 (b) 1.62 2 23.46 

Adv_S_Max Max advance per turn 2 (b) 2 2 0 

Adv_S_Avg Average advance per turn 2 (b) 2 2 0 

Adv_S_Max Max advance per mill 1 (b) 2 2 0 

Adv_S_Avg Average advance per mill 1 (b) 2 2 0 

Adv_S_Max Max advance per mill 2 (b) 2 2 0 

Adv_S_Avg Average advance per mill 2 (b) 2 2 0 

Adv_W_Max Max advance Post-processing (b) 7 7 0 

Adv_W_Avg Average advance Post-processing (b) 3.16 4.59 45.25 

 
* Units of measurement: (a) number of items; (b) days. 
** Output quantity per turn 3 (a), Delays per turn 2 (a), Delays per turn 3 (a), Delays per mill 1 (a), Delays 
per mill 2 (a), Advances per turn 3 (a), Average and Max delay per turn 2 (b), Average and Max delay per 
turn 3 (b), Average and Max delay per mill 1 (b), Average and Max delay per mill 2 (b), Average and Max 
advance per turn 3 (b) value zero both for optimized plan and stochastic simulation. 
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Table 12 - Comparison between models’ KPIs (OF2) 

KPI Type KPI 
Optimized 

plan 
Stochastic 
simulation 

∆% 

Prd_S_Sum Output quantity per turn 1 (a) 10,000 11,726 17.26 

Prd_S_Sum Output quantity per turn 2 (a) 44 444 909.09 

Prd_S_Sum Output quantity per turn 3 (a) 20 433 2065 

Prd_S_Sum Output quantity per mill 1 (a) 3,067 5,129 67.23 

Prd_S_Sum Output quantity per mill 2 (a) 1,351 3,042 125.17 

Del_S_Sum Delays per turn 2 (a) 132 132 0 

Del_S_Sum Delays per turn 3 (a) 340 340 0 

Del_S_Sum Delays per mill 1 (a) 3,77 3,77 0 

Del_S_Sum Delays per mill 2 (a) 572 572 0 

Del_W_Sum Delays Post-processing (a) 4,814 699,982 14,440.55 

Adv_S_Sum Advances per turn 1 (a) 81,100 81,100 0 

Adv_S_Sum Advances per mill 1 (a) 19,330 19,330 0 

Adv_S_Sum Advances per mill 2 (a) 10,375 10,375 0 

Adv_W_Sum Advances Post-processing (a) 110,805 81,875 -26.11 

Del_S_Max Max delay per turn 2 (b) 3 3 0 

Del_S_Avg Average delay per turn 2 (b) 3 3 0 

Del_S_Max Max delay per turn 3 (b) 17 17 0 

Del_S_Avg Average delay per turn 3 (b) 17 17 0 

Del_S_Max Max delay per mill 1 (b) 9 9 0 

Del_S_Avg Average delay per mill 1 (b) 8.38 8.38 0 

Del_S_Max Max delay per mill 2 (b) 13 13 0 

Del_S_Avg Average delay per mill 2 (b) 13 13 0 

Del_W_Max Max delay Post-processing (b) 17 125 635.29 

Del_W_Avg Average delay Post-processing (b) 8.63 109 1,163.04 

Adv_S_Max Max advance per turn 1 (b) 10 10 0 

Adv_S_Avg Average advance per turn 1 (b) 8.11 8.11 0 

Adv_S_Max Max advance per mill 1 (b) 9 9 0 

Adv_S_Avg Average advance per mill 1 (b) 7.39 7.39 0 

Adv_S_Max Max advance per mill 2 (b) 9 9 0 

Adv_S_Avg Average advance per mill 2 (b) 7.94 7.94 0 

Adv_W_Max Max advance Post-processing (b) 10 13 30 

Adv_W_Avg Average advance Post-processing (b) 7.96 10.18 27.89 

 
* Units of measurement: (a) number of items; (b) days. 
** Delays per turn 1 (a), Advances per turn 2 (a), Advances per turn 3 (a), Average and Max delay per turn 
1 (b), Average and Max delay per turn 2 (b), Average and Max delay per turn 3 (b) value zero both for 
optimized plan and stochastic simulation. 

 

 

As shown in Table 11, the number of processed items grown from 14,482 to 20,692 if rush orders 

are considered (+42.88%). Delays for items worked by the turn 1, that are null for the scheduled 

plan, grown up to 387, and the same KPI related to the Post-processing increases in a more than 

proportional way in comparison to the total number of items (rush orders included). This is due 

to the fact that, in the simulation run, most of the rush orders have been processed by the first 

machine. 

At the same time, as shown in Table 12, the number of items to be processed, considering rush 

orders, increased by 43.45% (i.e. from 14,482 to 20,774). Referring to the OF2, a relevant gap in 

terms of delays on the delivery date considering rush orders can be registered for the post-
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processing phase, aligned to the fact that the production flow of all the processed items 

converges on the same working station, being more stressed by the extra-work. On the other 

hand, KPIs related to the single CNCs do not worsen their value. This is justified but the fact that 

OF2 does not consider the advance as a damage. Consequently, the optimized plan is anticipated 

in comparison to the customer requested date, and a production of unexpected items can be 

done without having to change the planned scheduling. From an industrial point of view, it is 

important to remark that OF2 could not be feasible at all as production scheduling strategy. In 

fact, fashion orders, in terms of quantity and delivery date, are usually confirmed quite close to 

last date available for processing them on-time, making advances in production risky. 

It is important to highlight that the negative effect of rush orders is amplified in most industries, 

included the fashion one, because of the fact that orders can be delivered to the client (i.e. the 

brand owner) only when the lot is completed. Analysing the OF2, it is possible to see that the 

effect that rush orders have in terms of delay quite overcomes the increasing value of products 

in input in the simulated model (see Table 12), and even worse is the scenario considering the 

OF1, when the delay value arrives up to 141 days (see Table 11). In fact, for an incremented 

quantity of items to be produced around the 45%, the maximum value of delay registered in the 

post-processing is up to 635.29% (i.e. 125 days) for OF2 and up to 571.43% for OF1. 

These results have been shared with the management of the company where the pilot has been 

conducted, in order to validate two aspects. The first one is related to the validation of the 

results according to their experience, considering both the outputs of the optimization model 

and the impacts of stochasticity on the PP&C performances. The second one is linked to the 

usability of the KPIs dashboard derived to the simulation pilot. 

Both of them have been done with positive results. 
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5.3 Leather goods 

The second pilot has been conducted in the leather goods market segment. 

In detail, the model has been applied into a real pilot considering two brand owners (B1 and B2) 

and a subset of their supply base, composed by three suppliers (S1, S2 and S3), two of them having 

an exclusive labour-relationship respectively with B1 and B2, while the third one works for both 

the brand owners. In particular, the schema is the one showed in Figure 56 as a particular case 

of the proposed framework of Figure 47 when it is described (see paragraph 4.3.1.1 Simulation-

optimization model description), having the brand owner B1 working with suppliers S1 and S2 

and the brand owner B2 with suppliers S2 and S3. 

 

 

Figure 56 - SC network in the leather goods pilot 

 

The implementation of the optimization model has been done both on brand owners and the 

common supplier, while the simulation has been run only considering the output coming from 

the implementation on supplier production plan. 

According to this, one of the main purposes of this pilot has been testing the adaptability of the 

proposed models to different companies working in the leather goods SC (i.e. brand owner and 

supplier) through changing inputs configuration. 

Looking at the proposed optimization model, its implementation for the supplier has been quite 

similar to the one on the metal accessories market segment, but further constraints have to be 

added. In particular, the availability of raw materials, first of all leather, is an important variable 

to be consider in managing production plans, and the related constraint has been configured as 

model input. 

Moreover, scenario analyses have been made for a multiple scope. On the one hand, to 

understand how output in terms of assigned quantities and delivery dates can vary moving from 

a brand owner to a supplier perspective. On the other hand, through simulation is possible to 

study the impact of stochastic events on the optimized plan, including them in the analysis. In 

detail, two gap analyses have been conducted: the first one compares the deterministic scenario 

Brand_1

Brand_2

Supplier_1

Supplier_2

Supplier_3
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from the brand owners’ and the supplier’s perspectives to the one that includes only rush 

orders; the second gap analysis takes into account different types of stochastic events. 

While the first gap analysis is quite similar to the one done for the metal accessories supplier, 

the second one better fits with the challenges of the leather goods producers. In fact, as 

previously detailed, the availability of raw materials is one of the main constraints that has to 

be taken into account in the production of leather goods. This is the reason why, moving from 

the pilot for the metal accessories supplier to the leather goods one, it is needed to include 

another stochastic event during the simulation runs, that is the analysis of the impact that delays 

in the expected critical components delivery date have on KPIs value and the combined impact 

considering rush orders too. 

 

In order to summing up, the framework in Figure 53 has been filled, highlighting the 

configuration of the input and output parameters that have been used for the conduction of the 

scenario analyses in the leather goods pilot, as exemplified in Figure 57. 

 

 

Figure 57 – Leather goods pilots' implementation framework 
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5.3.1 Leather goods sector introduction 

The second pilot refers to a leather goods producer working in the fashion SC. 

The manufacturing process for leather goods can be summarized in 4 steps (see Figure 58): 

1. Cutting 

2. Preparing components 

3. Assembling 

4. Finishing 

 

These steps are usually made partially inside the company and partially outsourced. In details, 

the cutting phase, especially for the fine leather, is centralized, in order both to optimize the 

production process than to better control the traceability of the raw material. 

Once the leather is cut, it is distributed to external suppliers for the phases of Preparing 

components, Assembling and Finishing. 

 

 

Figure 58 - Production process in the leather goods industry 

 

More in detail, the 4 steps showed in Figure 58 can be described as follows: 

 

1. Cutting 

Using metal strip knives or automatic machines, the worker cuts out pieces of various shapes 

that will take the form of lining fabrics and leather parts of final product. This operation requires 

a high level of skill in order to reduce as more as possible waste. Considering leather, it may also 

have various defects on the surface such as barbed wire scratches which needs to be avoided, 

so that they are not used for the leather parts. 
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2. Preparing components 

During the preparing components step, semi-finished products are realized, starting from the 

cut materials at the first step. Here, for example, dyeing and drying processes are included, but 

also component pieces are sewn together by highly skilled machinists so as to produce the 

completed components, such as back and front parts, bottoms, gussets or lining fabrics. 

 

3. Assembling 

The assembly phase includes both the stitching and the properly assembly steps. 

Once the pieces are sewn together, all them are assembled together, in order to realize the final 

product. 

This is the more complex step of the production process, and its complexity can be higher or 

lower according to the specificity of the final product, such as the material (in terms, for 

example, of its softness, that is directly proportional to how it is easy to be worked) or the 

number of hierarchical levels of the bill of materials (the more are the numbers of inside and 

outside pockets or zip fasteners, the more are the time and skills needed). 

 

4. Finishing 

The final purpose of this step is realizing the products that can be sold to the consumer. 

According to this, all the quality checking on the final products are made, and the compliant 

ones are inserted in the required packaging to be delivered. 

 

Criticalities in this production process are represented by the assembling phase, where the 

process can start only when all the raw material are arrived and once they have successfully 

passed the quality control. Delays in the arrival of critical components, that can be both the 

leather, or the metal accessories, or even a button if it is needed in order to finalize the product, 

can cause significant variation in the production plan, moving the beginning of the assembly 

phase to one day to another.  

Moreover, replenishment orders are another significant stochastically event that usually occurs 

in this field, that has to be taken into account in the re-scheduling of the production plan. 
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5.3.2 Optimization model in a leather goods company 

The optimization model has been re-adapted starting from the one described for the 

implementation on the metal accessories supplier, moving from the supplier perspective to the 

brand owner’s one. More in detail, instead of focusing on the optimal assignment of each SKU 

to one of the CNC machines, for the brand owners the goal is to find the optimal allocation for 

each SKU in terms of choosing the supplier that will produce it. 

According to this, the main difference between the present pilot and the one showed before is 

the resource type, with machines in one case and suppliers in the present one. 

Another difference is the way the production capacity has been included in the model. On the 

one hand, brand owners consider as the available production capacity the number of SKUs each 

supplier declares he is able to guarantee per period, instead of minutes per item as previously 

(see paragraph 5.2.2 Optimization model in a metal accessories company). 

On the other hand, considering the two brand owners included in the present pilot, the available 

capacity is communicated in terms of number of “equivalent bags” per week and not referred 

to the specific SKU. This value has to be defined in order to avoid that suppliers declare a general 

and, consequently, not reliable number of SKUs that he can produce per day, having no 

correlation to the complexity related to the production of the item itself. In fact, considering a 

supplier that declare he is able to averagely produce 100 bags, this value has to be different if 

bags to be produced are all easy-to-produce or not: in the first case, the supplier under-

estimated his available capacity per day while, in the opposite case, he over-estimated that 

value. 

According to this, in the present pilot the concept of “equivalent bag” depends to the definition 

of the three product categories: in fact, an “easy” bag is equals to 0.5 “equivalent bag”, a 

“medium” bag to 1, and the “difficult” one to 1.3 “equivalent bag”. 

In particular, the demand plan as input for running the optimization model at the brand owners’ 

level has been the one showed in Table 13. 

 

Table 13 - Demand plan for brand owners in the leather goods pilot 

Item code Item complexity Required Qty _ B1 Required Qty _ B2 

Alpha_1 Medium 521 0 

Alpha_2 Medium 44 0 

Alpha_3 Medium 0 20 

Beta_1 Medium 44 0 

Beta_2 Medium 435 0 

Gamma_1 Easy 1233 0 

Gamma_2 Easy 280 0 

Gamma_3 Easy 868 630 

Gamma_4 Easy 0 170 

Delta_1 Difficult 96 23 

Delta_3 Difficult 0 27 
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Looking at the Table 13, the item code listed on the first column refers to the SKU to be produced 

by only one or both the brand owners B1 and B2, with the first part of the code referred to the 

model and the number to the colour to be produced. 

On the other hand, the second column in Table 13 (i.e. “item complexity”) refers to the product 

categories previously described. 

Finally, the columns “Required Qty _ B1” and “Required Qty _ B2” refers to the quantity per SKU 

to be produced by each one of the involved brand owners respectively, equals to 3521 for B1 

and 870 for B2 considering their entire demand plan with customer delivery dates between 17th 

of May and 7th of June 2017. 

Using these data as input, the proposed optimization model has been configured starting from 

the parameters, constraints and objective function previously defined (see paragraph 4.1.2 

Proposed scheduling model for the fashion industry) and according to the procedure described 

for the proposed optimization model (see paragraph 4.1.3 Implementation of the proposed 

scheduling model in the fashion industry). 

More in detail, the OF considered for the pilot is the following:  

OF: Min{cw *C + dw * D + aw * A + ptw * PT + rpbw * RPB + rbw * RB + mbw * MB},  

where cw = 1, dw= 1, aw = 1, ptw = 0, rpbw = 0, rbw = 0 and mbw = 0. 

The weight used in the OF have been chosen according to the management of the company 

where the pilot has been carried out. In details, advantages and delays have been considered 

with an equal score. Advances, delays and costs have been considered with an equal 

importance, whilst processing time, saturation balancing and mix balancing have son been taken 

into account.  

For both the brand owners’ and the supplier’s implementations, another difference between 

the metal accessories’ market segment and this one is that, for the leather goods, one of the 

main challenge is to preventively manage the critical components availability, mainly referable 

to the leather, in order to allocate the production only when they are stocked in the company 

raw materials and components warehouse. According to this, the constraint related to the 

availability of critical components (see paragraph 4.1.2.3 Constraints) has been included in the 

present pilot. 

The results of running the proposed optimization model at the brand owners’ level are showed 

in Table 14. 
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Table 14 - Assigned quantity per SKU for brand owners in the leather goods pilot 

 S1 S2 S3 

Item code 
Assigned 
Qty _ B1 

Assigned 
Qty _ B2 

Assigned 
Qty _ B1 

Assigned 
Qty _ B2 

Assigned 
Qty _ B1 

Assigned 
Qty _ B2 

Alpha_1 0 0 521 0 0 0 

Alpha_2 44 0 0 0 0 0 

Alpha_3 0 0 0 20 0 0 

Beta_1 0 0 44 0 0 0 

Beta_2 435 0 0 0 0 0 

Gamma_1 1233 0 0 0 0 0 

Gamma_2 280 0 0 0 0 0 

Gamma_3 0 0 868 400 0 230 

Gamma_4 0 0 0 0 0 170 

Delta_1 58 0 38 23 0 0 

Delta_3 0 0 0 0 0 27 

% Demand 
Plan 

58% 0% 42% 51% 0% 49% 

 

According to the enabled suppliers, S1 and S3 has to produce only for brand owners B1 and B2 

respectively, while S2 for both of them. Moreover, aligned to the setting of the optimization 

model, the quantities included in the demand plan for each one of the brand owners has been 

almost equally splitted on the enabled suppliers. In particular, considering B1, a 58% of 

production has been allocated to S1 and the other 42% to S2; on the other hand, the 51% of the 

production for B2 has been realized by S2 and the other 49% to S3. 

Once the optimization model outputs come out from each one of the two analysed brand 

owners B1 and B2, the job orders assigned to the not-exclusive supplier S2 have been collected 

and represent the input for running the optimization model re-adapted for the suppliers. 

The overall production plan to be considered as input for modeling S2 is composed by 1,914 

items, assigned to both the brand owners B1 and B2 over a period of one month (see Table 14). 

Moving from the brand owner to the supplier perspective, the optimization model is quite 

similar to the one described for the implementation on the metal accessories supplier, but the 

resources differ again: instead of the CNC machines that characterized the metal accessories 

suppliers, in the present pilot the model has been applied considering the assembling phase as 

the critical one, with 3 workstations on which one operator per shift works 8 hours per day, for 

a total capacity of 24 hours per day per workstation (i.e. 3 shift per day). According to this, the 

production phase scheduled with a finite capacity is the assembly one. 

As previously anticipated, the items have been divided into three different groups, due to their 

complexity for being processed. The “easy bags” require a production time of 45 minutes, while 

the “medium bags” 90 minutes and the “difficult bags” 120 minutes. 

The OF can be personalized varying the weights cw, dw, aw, ptw moving from one to another 

SC actor, in order to fit their different peculiarities. Usually suppliers are more interested in 

maximizing the workstation saturation, in comparison with the minimization of the delay, whilst 

the brands are more interested in reducing the delay. In this pilot the aim is to assess if some 

misalignments can be shown even in case of equal-weighted OFs. According to this, the OF for 

supplier S2 has been set as the same one of B1 and B2. 
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The expected misalignment results from the configuration of the optimized production plans of 

B1 and B2 considering the fact that S1 declares the same capacity and production cost to each 

one of the brand owners. Consequently, the overall available capacity of the common supplier 

(i.e. considering both the brand owners) doubles the real one. 

This possibility usually occurs in the fashion industry with not-exclusive suppliers, that do not 

share the actual capacity with their clients (e.g. the brand owners).  

To conclude, the results of the proposed optimization model implementation and its usability 

for both brand owners and suppliers working in the leather goods market segment have been 

validated by the production manager of the analysed company. 
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5.3.3 Simulation model in a leather goods company 

The results of running of the optimization model on S2 are the object of the application of the 

simulation model to the supplier itself, according to the parameters previously described (see 

paragraph 4.2.2 Proposed simulation model for the fashion industry). 

Several runs of the proposed simulation model have been done in order to conduct different 

scenario analysis, even if the parameters to model the deterministic scenario as starting point 

have been the same one for all the runs. 

In particular, the simulation model that replicates the supplier S2 is composed by 3 workstations 

on which one operator per shift works 8 hours per day, for a total capacity of 24 hours per day 

per workstation (i.e. 3 shift per day). In line with the pilot on the metal accessories supplier (see 

paragraph 5.2.3 Simulation model in a metal accessories company), while the described 

workstations have been modelled considering a processing time per item, all the downstream 

activities that follow it have been grouped in a unique Post-processing block that works at an 

infinite capacity, expressed by a post-processing LT. 

A first gap analysis has been conducted in order to compare the following three scenarios 

modeled through the simulation. 

The first scenario replicates the same deterministic one modeled within the optimization tool in 

order to evaluate the effect of the over-estimation of the available capacity that usually refers 

to not-exclusive suppliers that promise to each one of their customers (i.e. brand owners) an 

available capacity higher than the real one. In fact, this is a quite common evidence that affects 

the fashion SC, where not-exclusive suppliers, that represent most of the supply base of each 

brand owner, aim to collect the higher number of orders to maximise the saturation of their 

production lines. 

Rush orders are then considered in the second and third scenarios with a different occurrence, 

in order to evaluate how relevant is the impact of stochastic events compared to the one of 

suppliers’ over-saturation. In particular, the value of rush orders compared to the regular 

production orders has been chosen as equal to the +10% in the second scenario and doubled in 

the third one (i.e. 20%). 

According to the KPIs dashboard defined considering the implementation of the proposed 

framework (see paragraph 4.3.2 Implementation of the proposed iterative simulation-

optimization model in the fashion industry), these analyses compare the delivery date requested 

by the market planning with, on the one hand, the end processing date (i.e. the date when the 

item exits from the workstation) given back from the optimization model applied at the brand 

owner’s level (i.e. “ProcessingDate_gap_A” in Figure 52) and, on the other hand, with the 

simulation model applied at the supplier’s level (i.e. “ProcessingDate_gap_B” in Figure 52). 

Considering the schema in Figure 52, the delivery date requested by the market planning is 

called “demandPlan_Date”, the delivery date at the brand owner’s level is the “requestedDate” 

and, finally, the one at the supplier’s level is the “stopDate”. According to this: 

- ProcessingDate_gap_A= demandPlan_Date - requestedDate; 

- ProcessingDate_gap_B= demandPlan_Date - stopDate. 
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This comparison firstly aims to highlight if there are differences between the optimized plan 

generated respectively at the brand owners’ and the supplier’s level, both in case of including 

or not the occurrence of rush orders. 

Moreover, through simulation it is possible to evaluate how these values change moving from a 

scenario to another one, giving a concrete support for the decision-making process. 

The result of the comparison between the ends of processing dates is shown in Table 15. 

 

Table 15 - Summary of the gap analysis results in the leather goods pilot 

  gap_A gap_B Δ% 

KPI Type KPI 
End 

Processing 
Date 

End 
Processing 

Date_1 

End 
Processing 

Date_2 

End 
Processing 

Date_3 
Δ%_1 Δ%_2 Δ%_3 

Otm_W_Sum 
Null 
absolute 
deviation (a) 

198 
(10.34% X) 

96 
(5.02% X) 

93 
(4.86% X) 

93 
(4.86% X) 

-52 -53 -53 

Atg_W_Sum 
Absolute 
deviation (b) 

7,510 14,212 15,168 15,599 +89 +102 +108 

Del_W_Max 
Maximum 
delays (c) 

14 
(1.99% X) 

22 
(0.16% X) 

27 
(0.21% X) 

32 
(0.21% X) 

+57 +93 +129 

Adv_W_Max 
Maximum 
advances (d) 

6 
(1.20% X) 

3 
(4.86% X) 

3 
(4.86% X) 

3 
(4.86% X) 

-50 -50 -50 

Del_W_Avg 
Average 
delays (c) 

3.35 
(36.99% Y) 

7.13 
(44.83% Y) 

7.63 
(45.61% Y) 

7.85 
(46.55% Y) 

+113 +128 +134 

Adv_W_Avg 
Average 
advances (d) 

0.57 
(28.37% Y) 

0.3 
(14.89% Y) 

0.3 
(14.89% Y) 

0.3 
(14.89% Y) 

-48 -48 -48 

 
* Units of measurement: (a) number of items assigned on-time; (b) days per delayed and advanced items; (c) days per 
delayed items; (d) days per advanced items; (e) 
** “_1”: no rush orders; “_2”: rush orders = 10%; “_3”: rush orders = 20%. 
*** “X”: number of total items; “Y”: number of items above average. 

 

The column “KPI Type” in Table 15 links the analysed KPIs (i.e. “KPI” column) to the KPI types 

listed in Table 7. In particular, the KPI types analysed in the leather goods pilot refer all to the 

time dimension and have been calculated at the end of the process (i.e. “Sink” block). First of 

all, the on-time items (i.e. “Otm_W_Sum”) and the not on-time days (i.e. “Atg_W_Sum”) to 

obtain an overview of the service level to the customers. On the other hand, the days per 

delayed and advanced items have been calculated as average (i.e. “Del_W_Avg” and 

“Adv_W_Avg”) and maximum (i.e. “Del_W_Max” and “Adv_W_Max”) values. 

More in detail, the column “∆%” represents the comparison between gap_A and gap_B, 

resulting in the evidence that the absolute value of deviation for the gap_B (i.e. demandPlan vs 

stopDate) almost doubles the one for the gap_A (i.e. demandPlan vs requestedDate). This result 

is aligned to the fact that the available capacity accorded by the not-exclusive supplier S2 to each 

one of the brands B1 and B2 is almost equal to the real one available considering S2. For example, 

considering a real capacity of 100 items per day for the supplier S2, the one accorded to B1 and 

B2 has been around 100 items per day for each one of them. In particular, the first scenario 

results in an absolute value of deviation between the real end processing date and the one 

requested from the market analysis (i.e. “ProcessingDate_gap_A”) equals to 7,510 items, while 

the gap between the date scheduled by the brand owners and the one requested from the final 

market (i.e. “ProcessingDate_gap_B”) to 14,212 (+89%). 
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Looking more in details towards delays and advances resulted from the comparison between 

end processing date calculated at the brand owners and the supplier levels respectively and the 

requested one, the evidence is that the delays increase more than proportionally compared to 

the decreasing of advances moving from the gap_A to the gap_B analysis. In particular, while 

the average days of delays per item recorded at the brand owner level is equal to 3.35 days, the 

one resulted at the supplier level is more than doubled (i.e. +113%). On the other hand, the 

average days of advances per item less than half decrease, moving from 0.57 to 0.3 days. 

These are the main evidences from the comparison that do not include rush orders (i.e. scenario 

1), being focused on the impacts of over-estimation of supplier’s production capacity running 

the optimization model at the brand owners’ level. In line with the expectation, the effect of the 

over-estimation is just more than proportional. 

Considering the second and the third scenarios (i.e. with rush orders, equal to 10% and 20% of 

the production plan orders respectively), one of the main evidences resulted from the 

comparison between the first and these scenarios is the fact that rush orders impacts only on 

the delays, while advances are unchanged (i.e. the average advance is 0.3 days, with a maximum 

of 3 days for the 4.86% of the regular job orders). 

More in detail, moving from the scenario with no rush orders to the one that includes them in a 

percentage of 10% on the regular production orders (i.e. scenario 2), the average days of delay 

per item increase of 7% (i.e. +128% if compared with the value calculated at the brand owners’ 

level), with a maximum of 27 days. 

Considering rush orders amount as the 20% of the regular ones (i.e. scenario 3), the average 

delay value increases of 10% and the maximum delay value per item moves from 22 to 32 days 

(+45%) if compared to the first scenario (i.e. no rush orders). The same values calculated 

compared this third scenario with the results of the optimization model run at the brand owners’ 

level show a percentage of increasing equals to +134% and +129% for the average and the 

maximum days of delays respectively. 

Moreover, the amount of items with a delay equals to or higher than 22 days (i.e. maximum 

delay value without rush orders) increases from the 0.16% up to the 3,66% of the items moving 

from the first to the second scenario (i.e. rush orders equal to the 10% of regular orders) and up 

to 4.91% moving to the third scenario (i.e. rush orders equal to the 20% of regular orders). 

Looking again at the third scenario, the items with a delay at least equals to the maximum value 

for the second scenario (i.e. 27 days) are 34, that represent the 1.78% of the scheduled items. 

Finally, considering the absolute value of deviation between the real end processing date and 

the one requested from the market analysis when rush orders are included, their impact on this 

KPI is equal to +102% and +108% if it is considered the second and the third scenario 

respectively, instead of the +89% resulted from the comparison that takes into account only the 

over-estimation of suppliers’ capacity (i.e. scenario 1 with no rush orders). On the other hand, if 

the number of items with no deviation between the real delivery date and the one requested 

by the market has been evaluated, all the three scenarios do not differ each other, showing a 

gap with the market around -52% for all of them. 

A second gap analysis has been conducted in order to include delays in critical components’ 

delivery date as stochastic event, generated with a normal statistical distribution. In fact, leather 

goods companies have usually to face with that kind of delays, that have to be considered in 
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terms of their influences on the performances related to the production plan, especially looking 

at the delays on the due dates. 

Moreover, this kind of stochastic event can occur by itself or combined to other types, such as 

the rush orders previously included in the first gap analysis. 

According to this, another run of simulation has been set and a gap analysis has been conducted 

for comparing the 8 scenarios described in Table 16. 

 

Table 16 - Scenario analysis in the leather goods industry 

 Optimization algorithm Stochastic events included 

 MOF* EDD** None RO*** DCC**** 

Scenario      

0 X  X   

1 X   X  

2 X    X 

3 X   X X 

4  X X   

5  X  X  

6  X   X 

7  X  X X 

 
* Multi-Objectives Function; ** Earliest Due Date; *** Rush Orders; **** Delays in Critical 
Components 

 

The scenario “0” refers to the application of the optimization model as input for the simulation 

model under deterministic condition (i.e. no rush orders, no delays in the critical components 

delivery dates). 

The first scenario has the same optimized production plan of the scenario “0” as input, but 

includes only rush orders as stochastic events, while the second scenario includes only delays in 

the critical components’ delivery dates and the third one both of them. 

The last four scenarios (i.e. from “4” to “7”) reflect the previous ones using the EDD optimization 

algorithm and, respectively, no stochastic events, only rush orders, only delays in critical 

components’ delivery and both of them. The EDD is a priority rule that sequences the jobs in a 

queue according to their (operation or job) due dates: according to this, jobs with the earliest 

due date first have to be processed first. 

The KPIs used for comparing the analysed scenarios are the following: (i) max advances in 

production; (i) average advances in production; (iii) max delays in production; (iv) average delays 

in production; (v) sum of average advances and delays in production; (vi) absolute sum of 

average advances and delays in production. 

Table 17, Table 18 and Table 19 sum up the KPIs dashboard for a significant subset of the 

analysed scenarios and associate, through the column “KPI Type”, the analysed KPIs (i.e. “KPI” 

column) to the KPI types listed in Table 7. 

The first set of results have been evaluated using a production plan taken from the historical 

data of the suppliers, where the three assembly workstations were saturated respectively for 

the 100%, 100% and 97%. The production plan is the same one considered for the first gap 
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analysis and include 1,914 items and the scenario previously described represents the starting 

point for modeling the analysed one. 

As stochastic values, rush orders have been assumed at the 10% of the items of the production 

plan, and an average value of 6, once order per week. Critical components delays have been 

assumed with a value of more than two days for the 50% of the total items, with an average of 

1.5 days. These values have been assumed using and analysing the historical data of several 

suppliers working in this industry with the support of production managers and planner of 

leather accessories suppliers. In details, rush orders are due to samples and rework of previous 

orders, while delays of the critical component leather are mainly due to non-compliance at the 

quality control before entering the supplier.  

 

Table 17 - KPIs dashboard for scenarios 1 and 5 

KPI type KPI MOF/RO EDD/RO 

Adv_W_Max Max advance (a) 0 -26 

Adv_W_Avg Average advance (a) 0 -1.87 

Del_W_Max Max delay (b) 28 8 

Del_W_Avg Average delay (b) 3.45 1.76 

Atg_W_Sum Sum of average advances and delay (c) 3.45 -0.11 

Atg_W_Sum Absolute sum of average advances and delay (c) 3.45 3.63 

 
*Units of measurement: (a) days per advanced items; (b) days per delayed items; (c) days per items. 

 

 

Table 18 - KPIs dashboard for scenarios 2 and 6 

KPI type KPI MOF/DCC EDD/DCC 

Adv_W_Max Max advance (a) 0 -26 

Adv_W_Avg Average advance (a) 0 -1.29 

Del_W_Max Max delay (b) 8 12 

Del_W_Avg Average delay (b) 2.89 2.67 

Atg_W_Sum Sum of average advances and delay (c) 2.89 2.51 

Atg_W_Sum Absolute sum of average advances and delay (c) 2.89 5.09 

 
*Units of measurement: (a) days per advanced items; (b) days per delayed items; (c) days per items. 

 

 

Table 19 - KPIs dashboard for scenarios 3 and 7 

KPI type KPI MOF/RO/DCC EDD/RO/DCC 

Adv_W_Max Max advance (a) 0 -25 

Adv_W_Avg Average advance (a) 0 -4.47 

Del_W_Max Max delay (b) 30 13 

Del_W_Avg Average delay (b) 8.51 4.41 

Atg_W_Sum Sum of average advances and delay (c) 8.51 0.06 

Atg_W_Sum Absolute sum of average advances and delay (c) 8.51 8.88 

 
*Units of measurement: (a) days per advanced items; (b) days per delayed items; (c) days per items. 
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Analysing the results, it is possible to observe that, considering data used in this scenario, rush 

orders and critical components delays have different effects on the selected KPIs. Even if the 

EDD rule, as confirmed by the theory, minimize the orders delays in every scenario, this effect is 

more relevant with the introduction of the rush orders than with the delay of the critical 

component. Whilst in scenarios “1” and “5” the absolute sums of average advances and delay 

are almost equivalent, in scenario “1” the maximum number of days of delay is three times 

higher than in scenario “5” and the average delay is more than twice. On the other hand, 

analysing scenarios “2” and “6”, is it possible to observe that the average delays are almost 

equivalent, while the absolute sum of average advances and delays in scenario “2” are the 56% 

of the scenario “6”. 

The comparison between scenarios “3” and “7” shows the effects of both rush orders and critical 

components’ delay. With the data used in the simulation campaign, the results show that the 

maximum delay with the multi objective function is higher 2.5 times than with the EDD rules 

and the average delays are the 300% higher. On the other hand, the absolute average sum of 

the advances and delays of the scenario “3” are almost equivalent to the one in the scenario 

“7”. 

From an industrial point of view, these results demonstrate that, considering the data used in 

the simulation scenario, the KPIs obtained with the MOF production scheduling applied in a real 

context are lower than the traditional EDD rule. This effect is mainly due to the presence of rush 

orders, while EDD would be less performing in a real environment with the presence of 

stochastic events only due to the delay of the critical component. 

In order to generalize these results, the analysed scenario have been changed decreasing and 

increasing the percentage of rush orders (both the frequency and the number of items per 

order), collecting the results with both MOF than EDD scheduling rules. 

 

 

Table 20 and Table 21 show the results of these simulation runs, listing per each scenario the 

occurrence of rush orders (i.e. column “% RO”), their frequency per week (i.e. column “RO 

FR”), their average value (i.e. column “RO AVG”), the maximum delay in terms of days (i.e. 

column “MAX DELAY”) and the average value (i.e. column “ABS AVG DELAY”). 

 

Table 20 - KPIs dashboard with MOF, RO and DCC 

MOF %RO RO FR (A) RO AVG (B) MAX DELAY ABS AVG DELAY 

#0 10% 1 6 30 8.51 

#1 5% 1 3 29 8.63 

#2 20% 2 6 30 8.41 

#3 10% 2 3 30 8.07 

#4 30% 3 6 31 8.20 

#5 15% 3 3 30 8.23 

 
* UNITS OF MEASUREMENT: (A) RUSH ORDERS PER WEEK; (B) NUMBER OF ITEMS PER RUSH ORDER. 
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Table 21 - KPIs dashboard with EDD, RO and DCC 

EDD %RO RO FR (A) RO AVG (B) MAX DELAY ABS AVG DELAY 

#0 10% 1 6 13 8.88 

#1 5% 1 3 12 8.72 

#2 20% 2 6 12 8.80 

#3 10% 2 3 13 8.60 

#4 30% 3 6 13 8.80 

#5 15% 3 3 12 8.66 

 
* UNITS OF MEASUREMENT: (A) RUSH ORDERS PER WEEK; (B) NUMBER OF ITEMS PER RUSH ORDER. 

 

The number of items per rush order have been decreased in scenarios “1”, “3” and “5”, while 

the rush order frequency has been increased in scenarios “2” and “4”. 

In the same way of the previous pilot, the results have been shared with the management of the 

company where the pilot has been conducted, in order to validate them, both in relation to the 

stochastic results and to the usability of the KPIs dashboard used during the implementation of 

the proposed simulation model. Also in this case, both of them have been done with positive 

results. 
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5.4 Footwear 

The third pilot has been conducted on a footwear company. 

This sector, in comparison with the previous ones, has significant differences because of the 

more complexity of the product and of the SC. 

Moreover, considering the production process described in Figure 61, the related phases are 

commonly outsourced, especially cutting and stitching but, sometimes, also the final assembly. 

In fact, subcontracting in footwear is a common practice, due to the high specialization required 

for the production of each component of shoes. This is one of the reasons why the footwear SC 

is really fragmented, with a lot of SMEs working along it, each one of them highly specialized on 

one of the steps described above. 

These evidences can be translated in a high complexity to be managed in terms of information 

and production flows exchanged between different companies. 

In this way, as highlighted in the work of Bord and Dulio (2007), investments on ICT solutions in 

terms of software integration between different SC partners but also higher performance of the 

ones used at the single-company level represent a key to gain competitive advantages within 

the industry, with the main purpose of being able to monitor real-time each production process 

step in order to guarantee the flexibility needed to quickly respond to the unpredictable changes 

in demand. 

In addition to technological improvement, in fact, changes oriented to collaboration between 

SC actors have to be included, in order to reach a trade-off between guaranteeing flexibility and 

quickness without a negative effect on final products’ quality. 

Due to the fact that most of the companies along the footwear SC, and in the fashion SC in 

general, are SMEs, using an open-source software, as the optimization one integrated into the 

proposed framework, positively impacts their effectiveness and efficiency in working on the 

market, as demonstrated by Chituc et al. (2008) in their work. 

Footwear manufacturing encompasses major processes such as cutting, stitching and assembly. 

The pilot regards the assembly line process. Because of the fixed cycle time, the availability of 

raw materials, first of all leather, is an important variable in managing production plans. It 

represents one of the main constraints that has to take into account in the production of leather 

goods. 

According to this, as in the leather goods pilot, it is needed to take into account another 

stochastic events during the simulation runs, that is the analysis of the impact that delays in the 

expected critical components delivery date have on KPIs value and the combined impact 

considering rush orders too. 

Moreover, if compare with other pilots, modeling companies working in the footwear SC 

requires to include balancing and sequencing problems in the optimization and simulation 

models respectively. 

This way, the MSP approach, taking into account that some items need major labour time in 

comparison with other ones, determines the right alternation of different type of products on 

the line, in order to guarantee the minimization of free time in every station of the assembly 

line. Then, the distributed simulation is used as empirical technique to validate the result. 
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In order to summing up, the framework in Figure 53 has been filled, highlighting the 

configuration of the input and output parameters that have been used for the conduction of the 

scenario analyses in the footwear pilot, as exemplified in Figure 59. 

 

 

Figure 59 – Footwear pilots' implementation framework 

  



134 
 

5.4.1 Footwear sector introduction 

One of the main criticalities in this market segment is represented to the high number of 

components needed to realize a pair of shoes. 

 

 

Figure 60 - Shoe_anatomy 

 

Considering examples in Figure 60, the main components can be summarized as follows8: 

 

- Breast: The forward facing part of the heel, under the arch of the sole. 

- Counter: A stiff piece of material at the heel of a shoe positioned between the lining and 

upper that helps maintain the shape of the shoe. The counter helps strengthen the rear 

of the sole. 

- Feather: The part of the shoe where the upper’s edge meets the sole. 

                                                           

8 Anatomy of Shoe, www.shoeguide.org 
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- Heel: The heel is the part of the sole that raises the rear of the shoe in relation to the 

front. The heal seat is the top of the heal that touches the upper, this is typically shaped 

to match the form of the upper. The part of the heel that comes in contact with the 

ground is known as the top piece. 

- Linings: Most shoes include a lining on the inside of the shoe, around the vamp and 

quarter. These linings improve comfort and can help increase the lifespan of the shoe. 

- Puff: a reinforcing inside the upper which gives the toe its shape and support. Similar in 

function to a toe cap. 

- Quarter: The rear and sides of the upper that covers the heel that are behind the vamp. 

The heel section of the quarter is often strengthened with a stiffener, which helps 

support the rear of the foot. Some shoe designs use a continuous piece of leather for 

the vamp and quarter. 

- Seat: Where the heel of the fit sits in the shoe. It normally matches the shape of the heal 

for comfort and support. 

- Shank: A piece of metal inserted between the sole and the insole lying against the arch 

of the foot. 

- Sole: The entire part of the shoe that sits below the wearers foot. As opposed to the 

upper. The upper and sole make up the whole of the shoe. 

o It is usually constructed of several layers: 

 

▪ Insole: The insole is the part of the sole that sits directly beneath the wearers foot. 

Its purpose is to provide a comfortable layer above the joining of the upper to the 

sole. 

▪ Mid-sole: A mid-sole can be found on some shoes and is a layer between the in-sole 

and the out-sole. 

▪ Outsole: The outsole is the layer of sole that is exposed to the ground. Due to the 

amount of wear and stress this part of the shoe receives it is usually made of a very 

durable material. It is also important that it provides enough friction with the floor 

to prevent the wearer from slipping. 

- Throat: The front of the vamp next to the toe cap. For shoes were the vamp and quarter 

panels are one piece the throat is at the eye-stay. 

- Toe cap: Shoes may have a toe cap in the front upper of the shoe. Toe caps can take 

various forms, but the distinct types are: complete replacements for the front upper of 

the shoe; stitched over toecaps that add an extra layer to the upper; solid toe caps for 

protection, such as steel toe caps. Stitch over toe caps may be decorative in nature. Toe 

caps help add strength to the upper front of the shoe, an area that receives a lot of stress 

and wear from use. 

- Top Piece: The part of the heel that comes in contact with the ground. Made of a durable 

material that helps maintain friction with the ground. 

- Topline: The top edge of the upper 

- Upper: The entire part of the shoe that covers the foot. 

- Vamp: The section of upper that covers the front of the foot as far as the back as the 

join ot the quarter. 

- Waist: The arch and in-step of the foot. 

- Welt: A strip of material that joins the upper to the sole. 
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In line with the high number of components, also the required raw materials are numerous, such 

as: 

- Adhesives and bonding 

- Shoe and leather colouring 

- Footwear additions 

- Randing and welting 

- Soling materials 

- Soles and heals 

- Cork 

- Leather board 

- Screws, rivets and stems 

- Cords and threads 

- Shanks 

- Finishing ink and waxes 

- Traditional bristles 

 

In the footwear SC, the complex supply base that provide raw materials and/or shoe 

components to producers and/or sub-contracted companies includes: 

- Last makers 

- Tawery/Tannery (leather) 

- Synthetic material suppliers 

- Components suppliers (e.g. soles, heels, insoles) 

 

Looking at the production process, the labour-intensive production steps followed to realise 

shoes can be summed up as suggested by Carpanzano and Ballarino (2008). 

 

 

Figure 61 - Production process in the footwear industry 
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More in detail, the 4 steps showed in Figure 61 can be described as follows:  

 

1. Cutting 

The top part of the shoe (i.e. the upper) is made. The cutting operative is given skins of leather, 

mostly cow leather but not restricted to this type of leather. Using metal strip knives, the worker 

cuts out pieces of various shapes that will take the form of uppers. This operation requires a 

high level of skill as the expensive leather has to be wasted at the minimum level possible. 

Leather may also have various defects on the surface such as barbed wire scratches which needs 

to be avoided, so that they are not used for the uppers. 

 

2. Stitching 

Component pieces are sewn together by highly skilled machinists to produce completed uppers. 

The work is divided in stages. In early stages, the pieces are sewn together on the flat machine. 

In the later stages, when the upper is no longer flat and has become three-dimensional, the 

machine called post machine is used. The sewing surface of the machine is elevated on a post 

to enable the operative to sew the three dimensional upper. Various edge treatments are also 

done onto the leather for giving an attractive look to the finished upper. At this stage only, the 

eyelets are also inserted in order to accommodate the laces in the finished shoes. 

 

3. Assembling 

Last, upper, heel and sole are the 4 main components for the assembling phase. 

The completed uppers are molded into a shape of foot with the help of a last. Last is a plastic 

shape that simulates the foot shape. It is later removed from the finished shoe to be used further 

in making other shoes. Firstly, an insole to the bottom of the last is attached. It is only a 

temporary attachment. Sometimes, mostly when welted shoes are manufactured, the insole has 

a rib attached to its under edge. The upper is stretched and molded over the last and attached 

to the insole rib. After the procedure completes, a lasted shoe is obtained. Now, the welt- a strip 

of leather or plastic- is sewn onto the shoe through the rib. 

The upper and the surplus material is trimmed off the seam. The sole is then attached to the 

welt and stitched together. The heel is then attached, completing the assembly of the shoe. 

That was the process for heeled shoes. When a flat shoe is in the making, there are considerably 

fewer operations. The insoles in this case is flat and when the uppers are lasted, they are glued 

down to the surface of the inner side of the insole. 

The part of the upper, that is glued down, is then roughed with a brush to take off the smooth 

finish of the leather. This is done because rough surface absorbs glue to give a stronger bond. 

The soles are usually cut, finished and prepared as a separate component so that when they are 

glued to the lasted upper, the result is a complete and finished shoe. Soles can also be pre-

molded as a separate component out of various synthetic materials and again glued to the lasted 

upper to complete the shoe. 
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4. Finishing 

The finishing of a shoe depends on the material used for making it. If made of leather, the sole 

edge and heel are trimmed and buffed to give a smooth finish. To give them an attractive finish 

and to ensure that the edge is waterproof, they are stained, polished and waxed. The bottom of 

the sole is often lightly buffed, stained and polished and different types of patterns are marked 

on the surface to give it a craft finished look. 

If included in the bill of materials, accessories are attached. 

 

Criticalities related to the production of shoes are mostly related to the assembly phase. 

Different from the production of bags, that is organized according to a job shop schema, the 

assembly phase of the shoes is organized using conveyors, where in each station one or more 

operators do a single or more operation. Balancing the production plan in order to guarantee 

the same saturation level of each station and optimizing the sequencing of the orders in order 

to avoid jam represent the two important challenges in optimizing the production. Changing in 

order priority or such order, this way, can represent critical aspect in the optimization of the 

production. 

In addition to the balancing and sequencing topics, another criticality of the production of 

leather shoes is, in the same way as bags, the availability of raw material. 
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5.4.2 Optimization model in a footwear company 

Suppliers working in the footwear market segment have to develop their production plan 

according to their strategical objectives, guaranteeing the compliance to the requested delivery 

date, that is the main KPIs that brand owners use for evaluating their supply base performances. 

The main objectives these companies take into account are related to maximize their 

performances, like more or less every supplier working in the fashion SC, but also the production 

mix balancing and sequencing, that represent a peculiarity of this market segment that has to 

be managed. 

Starting from the literature review previously described, the proposed framework, as reported 

in 4.1.2 Proposed scheduling model for the fashion industry, has been used in order to resolve 

MALB problem of type F (i.e. MALBP-F), using the parameters (P27) – (P29) in the linear model 

optimization and including the objective function to minimize the horizontal balancing. 

The objective function included in the proposed linear integer optimization model has been 

defined, according to 4.1.2.4 Objectives, as Min{cw *C + dw * D + aw * A + ptw * PT + rpbw * 

RPB + rbw * RB + mbw * MB} where: cw =0, dw =1, aw =1, ptw =0, rpbw =0, rbw =0 and mbw 

=1. 

This way, only the delays, the advances and the mix balancing have been taken into account. 

The elementary objectives included in the OF (i.e. the ones having positive weight) have been 

chosen because better fit the CSFs of companies working in the footwear industry, and the 

results of the optimization model implementation have been validated comparing themselves 

to both the historical data and the production manager's experience. 

The pilot has been carried out in a footwear company producing leather shoes for a big Italian 

Luxury brand, and the working phase analysed has been the conveyor. 

In the optimization model, the cycle time and the number of stations have not been considered 

as variables because their values have been already defined at the tactical level. 

The reason why the mix balancing has been defined as a weighted part of the objective function 

and not as a constraint is that it cannot be assumed that the demand is an exact multiple of the 

optimal balancing. 

Using the MALB problem approach, shoes have been classified into three types: “easy”, 

“medium” and “difficult”. 

In this company the number of products assembled is 8, with a total number of tasks equals to 

42, composed by 91 elementary jobs. Every station can do one or more tasks. 

Taking the data from the balancing schema decided by the company at a tactical level, in Table 

22 the association between tasks and station is reported.  

The names of the tasks have not been reported because the company has not permitted to 

publish them, together with the names of both the stations and the items codes. 
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Table 22 - Association between tasks and station in the footwear pilot 

Tasks Stations 

Task 1, Task 2, Task 3 1 

Task 4, Task 5, Task 6, Task 7 2 

Task 8, Task 9 3 

Task 10, Task 11, Task 12 4 

Task 13 5 

Task 14, Task 15 6 

Task 16, Task 17 7 

Task 18, Task 19, Task 20, Task 21, Task 22 8 

Task 23, Task 24 9 

Task 25, Task 26, Task 27 10 

Task 28 11 

Task 29 12 

Task 30, Task 31, Task 32 13 

Task 33, Task 34, Task 35, Task 36, Task 37 14 

Task 38 15 

Task 39 16 

Task 40 17 

Task 41, Task 42 18 

 

Starting from the production cycle of the 8 different products, every code of the single item has 

been associated to one of the three categories (“easy”, “medium” and “difficult”), as shown in 

Table 23. 

 

Table 23 - Association between item code and difficulty in the footwear pilot 

Item Code Difficulty* 

xxxxx1 Easy 

xxxxx2 Difficult 

xxxxx3 Medium 

xxxxx4 Easy 

xxxxx5 Medium 

xxxxx6 Difficult 

xxxxx7 Medium 

xxxxx8 Difficult 

 

Once defined the association in Table 23, the binary diagram of the tasks done for every type of 

product in every station has been defined and reported in Table 24. 

 

Table 24 - Binary diagram of the tasks in the footwear pilot 

TASKS STATION EASY* MEDIUM* DIFFICULT* 

TASK 1 1 X X X 

TASK 2 1 X X X 

TASK 3 1 X X X 

TASK 4 2 X   

TASK 5 2 X   

TASK 6 2   X 



141 
 

TASK 7 2   X 

TASK 8 3  X X 

TASK 9 3 X   

TASK 10 4 X X X 

TASK 11 4 X   

TASK 12 4 X   

TASK 13 5  X X 

TASK 14 6 X X X 

TASK 15 6 X X X 

TASK 16 7   X 

TASK 17 7   X 

TASK 18 8  X  

TASK 19 8  X X 

TASK 20 8 X X X 

TASK 21 8   X 

TASK 22 8  X X 

TASK 23 9  X X 

TASK 24 9 X X X 

TASK 25 10   X 

TASK 26 10  X X 

TASK 27 10 X X X 

TASK 28 11 X X X 

TASK 29 12 X X X 

TASK 30 13 X X X 

TASK 31 13 X X X 

TASK 32 13   X 

TASK 33 14  X X 

TASK 34 14    

TASK 35 14  X X 

TASK 36 14   X 

TASK 37 14 X X X 

TASK 38 15    

TASK 39 16  X X 

TASK 40 17   X 

TASK 41 18  X  

TASK 42 18    

 
* X: TASK PERFORMED 

 

Whilst in the leather pilot the processing time of the product mix has been assumed by the 

experience of the company's production manager, in this case a production time data collection 

has been done together with the company, in order to find the processing time of every task 

and, consequently, the cycle time of each product. 

The technique utilized to collect the data has been the one named Bedaux9 (Weatherburn, 

2014). Every processing time has been recorded 10 times and then the standard time has been 

evaluated. 

                                                           

9 The Bedaux method, developed by Charles Bedaux, is a labor technique developed at the beginning of 
the 1900. Data collection is a part of the methodology.  
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In the end, the standard time has been defined as the registered time plus an extra-time 

considering: 

- Increases for physiologic factors 

- Increases for wearying 

- Increases for unexpected events 

Looking at the Table 25, an example of the used Bedaux table has been showed. In particular, in 

the header have to be inserted the information related to the conveyor line and the specific 

station where the timings are recorded, while the grid below lists the tasks performed and, for 

each one of them, the parameters to be included, starting from the task timing “T”, the worker’s 

speed “S” and the unit of measure “UM” (e.g. number of pairs for the footwear industry) for 

each timing session. 

Once these values have been recorded, the average value per task (i.e. “Average Time”) has 

been calculated and, then, normalized (i.e. “Normalized Time”) according to the equivalent unit 

of measure chosen. For example, if the timings per task have been recorded considering a single 

shoe while the equivalent unit of measure is represented by a pair of shoes, the “Average Time” 

has to be doubled to obtain the “Normalized Time”. 

Finally, in order to calculate the “Standard Time”, the “Normalized Time” has been increased by 

fixed values to include “Physiologic factors”, “Wearying” and “Unexpected events”. 

 

Table 25 - Example of Bedaux table 
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As a result, the processing time per station and the cycle time for each SKU type (i.e. “easy”, 

“medium” and “difficult”) have been listed in Table 26. 

 

Table 26 - Processing time and Cycle time in the footwear pilot 

 

 

Once the cycle time of every category of the products has been defined, the optimize plan has 

been evaluated according to the following input data: 

- Item code 

- SKU type 

- Requested quantity 

- Requested date 

 

  

Station 
Processing time (s) 

Easy Medium Difficult 

1 38.29 46.32 34.50 

2 31.04  94.50 

3 26.70 35.20 47.06 

4 14.00 34.22 50.37 

5  53.22 79.30 

6    

7   91.26 

8  24.59 30.04 

9 56.91 40.45 61.09 

10 10.72 46.14 63.33 

11 38.29 31.02 44.02 

12 56.08 37.62 50.53 

13 32.70 33.70 89.98 

14  31.03 72.94 

15    

16    

17  13.01 56.51 

18  27.68  

Cycle time 304.73 413.51 808.92 
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Consider a production launch of 4,890 shoes, the optimized balanced plan is reported in Table 

27. 

 

Table 27 - Demand plan for the footwear pilot 
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xxxxx1 1 2,580 07/16/2018 250 200 192 666 340 394 115 423 

xxxxx2 3 118 07/16/2018 1 0 42 4 2 0 45 24 

xxxxx3 2 228 07/17/2018 66 17 17 0 77 0 0 51 

xxxxx4 1 896 07/16/2018 29 44 24 0 34 306 379 80 

xxxxx5 2 160 07/17/2018 15 44 16 0 25 0 0 60 

xxxxx6 3 182 07/17/2018 84 11 84 0 0 0 3 0 

xxxxx7 2 98 07/17/2018 48 11 12 15 12 0 0 0 

xxxxx8 3 628 07/15/2018 42 244 116 0 204 21 1 0 

Total  4,890  535 571 503 685 694 721 543 638 

 

The assembly line balancing has been declared by the company's management and, according 

to this, not included in the optimization model. In fact, the requested quantities for the items 

xxxxx1-8 included in the production plan received from the brand owner have been previously 

balanced according to the number of the stations and the binary diagram of the tasks. 

Moreover, the constraint of the raw material availability has been previously taken into account. 

In fact, all the raw materials were available before the first day of production. This way, the 

constraint has not been included into the OF. 

As a result, the balanced production plan reported in Table 27 has been optimized through the 

proposed model including only the daily mix of products in terms of “easy”, “medium” and 

“difficult” items and taking into account the delivery date of each order. 

On the other hand, the resolution of the sequencing problem has been demanded to the 

simulation model implementation (see 4.1.1 Literature review on scheduling model for the 

fashion industry), in order to evaluate the feasibility of the production plan changing the 

sequencing rules.  
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5.4.3 Simulation model in a footwear company 

As for the previous pilot, the results of running of the optimization model are the object of the 

application of the simulation model to the supplier itself, according to the parameters previously 

described (see paragraph 4.2.2 Proposed simulation model for the fashion industry). 

In the footwear pilot, the main purpose of simulation is to support companies for both the ALB 

problem and the MSP (see paragraph 4.1.1 Literature review on scheduling model for the 

fashion industry). 

In fact, balancing and sequencing are the two most important short-term planning issues in 

mixed-model assembly line balancing systems. The balancing objective is to determine an 

allocation of assembly tasks for a mix of products among the assembly stations with limited work 

space in order to balance the station workloads. On the other hand, the scheduling objective is 

to determine the detailed sequencing and timing of all assembly tasks for each individual 

product, in order to maximize the line’s productivity, which may be defined in terms of daily 

productivity and resource saturation. 

According to the evidences come from the literature review, these problems can be solved 

through simulation, that has been used in order to solve MALB problem of type F (see MALBP-F 

in the paragraph 4.1.1 Literature review on scheduling model for the fashion industry), 

establishing whether or not a feasible line balancing exists for a given combination of number 

of stations and cycle time. In fact, the footwear company included in the present pilot had 

already configured its assembly line both in terms of layout (i.e. type, sequence and number of 

stations) and tasks that can be done on each station, according to the machineries they have. 

Moreover, simulation can be used by itself in order to conduct scenario analyses, comparing the 

actual balancing allocation with other ones, with different number of stations or tasks 

association to different stations. Last, simulation can be used in order to determine the optimal 

number of workers to be allocated in every station, according to the balancing and to the 

production plan. 

As previously described (see paragraph 5.4.2 Optimization model in a footwear company), in the 

proposed framework the cycle time has not been considered as a variable to be optimized but 

as a parameter of the model, associating a fixed value of processing time per item per single task 

included on its production cycle (see Table 24). 

The feasibility of different sequencing configurations has then been analysed through 

simulation, comparing performances related to different sequencing empirical rules in order to 

identify which ones allow to complete the optimized production plan, maximizing the 

productivity of the assembly line. 

In order to run the proposed simulation model, it has been set in a really different way if 

compared to the pilots on metal accessories and leather goods companies. In fact, the model 

moves from a job shop to an assembly line configuration, requiring a different set of input data 

such as the length of the assembly line and the constant speed it moves at. The company’s 

assembly line moves 87 boxes, each of them with a maximum capacity of 4 pairs of shoes to be 

assembled, and 18 stations and relative machineries are located in the perimeter. 

Moving solidly to the assembly line, the items have to pass in front of all the 18 stations but, 

according to the items’ classification between “easy”, “medium” and “difficult” shoes (see 

paragraph 5.4.2 Optimization model in a footwear company), each of them can be or not 
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processed on a single station and the workers will do only the tasks of the station that are 

included in the item’s production cycle (see Table 24). If no tasks have to be done for processing 

an item on a specific station, the related worker has to skip the item and look for the next one 

in the assembly line that has to be processed in that station. According to this, in the modeled 

system workers can move from the station they have been associated to the assembly line, in 

order to take the first item that needs to be processed on the station and put again the item 

itself on the box where it was once it has been processed. 

For example, considering the SKUs “ ”, “ ” and “ ” in Figure 62, the first one has to be 

processed by all the three stations (i.e. S1, S2 and S3), while “ ” by the first two (i.e. S1 and S2) 

and “ ” by S1 and S3. Looking at the point “d” and “e” in Figure 62, the described scenario is 

the following: if the worker W3 ends to process the SKU “ ”  before “ ” exits from the station 

S2 (see point “d” in Figure 62), the worker W3 can process the SKU “ ” that has not to be worked 

by the station S2. 

 

 

Figure 62 - Example of SKUs allocation per station 

 

In Figure 63, the simulation model developed for the analysed footwear company is shown. 

More in detail, the assembly line analysed in this pilot has been modeled as a conveyor (see grey 

line in Figure 63). 

Around it, red-squared boxes have been modeled, according to the number and location of the 

stations, each one of them surrounded by the relative machineries as blue-squared boxes. 

The area where shoes to be assembled are stocked is the green-squared one, really close to the 

first station of the assembly line. 
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Figure 63 - Simulation model in the footwear pilot 
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Figure 64 - 3D view of the simulation model in the footwear pilot 
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Figure 65 - Detail of the modeled working stations in the assembly line of the footwear sector 

 

The inputs for running the proposed simulation model are summarized in the following tables 

(see Table 28 and Table 29). A single day of production has been simulated, and the used data 

are the one of the last days of the optimization plan (see Table 27). 

 

Table 28 - Simulation model inputs in the footwear pilot: daily scheduled plan 

Item 
Code 

Difficulty Requested Qty Batch Assigned Date Sequence 

xxxxx1 1 423 4 07/17/2018 1 

xxxxx2 3 24 2 07/17/2018 2 

xxxxx3 2 51 3 07/17/2018 3 

xxxxx4 1 80 3 07/17/2018 4 

xxxxx5 1 60 4 07/17/2018 5 
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Table 29 - Simulation model inputs in the footwear pilot: processing time per station 

 

 

 

Looking at the simulation model and the inputs needed (see Figure 63 and Table 28 and Table 

29 respectively), in the purple-squared box the agents “shoes” are generated, according to the 

quantity per SKU detailed in the column “batch” in Table 29. Each batch of pairs of shoes, once 

generates, is associated to another agent, the “box”, that solidly moves with the assembly line, 

transferring the shoes from the first to the next station, and the next again until the final one. 

According to this and to the facts previously described, the association shoes-box is fixed, and 

workers take and put back shoes from and on the same box respectively. 

 

 

Figure 66 - Source blocks in the simulation model for generating agents “shoes” and “box” 

Item Code Difficulty Batch Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Station 9

xxxxx1 1 4 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00 56,91

xxxxx2 3 2 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15 61,27

xxxxx3 2 3 46,32 0,00 35,20 34,22 53,22 0,00 0,00 24,59 49,45

xxxxx4 1 3 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00 56,91

xxxxx5 1 4 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00 56,91

xxxxx6 3 2 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15 61,27

xxxxx7 2 3 46,32 0,00 35,20 34,22 53,22 0,00 0,00 24,59 49,45

xxxxx8 3 2 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15 61,27

Item Code Difficulty Batch Station 10 Station 11 Station 12 Station 13 Station 14 Station 15 Station 16 Station 17 Station 18

xxxxx1 1 4 1,00 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00

xxxxx2 3 2 3,00 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15

xxxxx3 2 3 2,00 46,32 0,00 35,20 34,22 53,22 0,00 0,00 24,59

xxxxx4 1 3 1,00 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00

xxxxx5 1 4 1,00 38,29 31,04 26,70 14,00 0,00 0,00 0,00 0,00

xxxxx6 3 2 3,00 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15

xxxxx7 2 3 2,00 46,32 0,00 35,20 34,22 53,22 0,00 0,00 24,59

xxxxx8 3 2 3,00 34,60 94,78 47,20 50,52 79,53 0,00 91,53 39,15
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Figure 67 - Detail of a station in the simulation model where the item is processed 

 

The first runs of the simulation model have been done in order to validate the processing time 

measured and assigned to each SKU type (i.e. “easy”, “medium” and “difficult”) considering a 

single worker per station. In particular, runs of simulation have been done using as input only 

the “easy” shoes, only the “medium” shoes and only the “difficult” ones respectively. According 

to the expected results, 700 pairs of “easy” shoes, 360 pairs of “medium” shoes and 280 pairs 

of “difficult” shoes can be processed per day. 

Due to the fact that the scheduled production usually refers to few SKUs per day, the feasibility 

has been checked through second runs of the simulation model considering different 

sequencing empirical rules, represented by the different combination of “easy”, “medium” and 

“difficult” shoes according to the products mix defined by the daily scheduled production plan. 

 

 

Figure 68 - Assembly line sequencing empirical rules tested through simulation 
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Because of the fact that the simulation model starts with an empty conveyor, a warm-up period 

of 2 hours has been taken into account in order to achieve the steady-state situation. 

In order to check the feasibility of the simulation model, the KPI that has been evaluated is the 

average daily assembly line productivity, especially the average percentage of the assembled 

products and the daily scheduled production detailed in Table 28. Moreover, the saturation of 

all the active stations (i.e. “Station 6” and “Station 16” are the excluded ones) for the SKUs to be 

produced has been taken into account, in order to compare the feasible solutions. 

 

Table 30 - KPIs dashboard per sequencing empirical rules: overall values 

KPI Type KPI Sequence_1 Sequence_2 Sequence_3 

Prd_W_Avg Average daily productivity  100% 100% 100% 

Sat_W_Avg Average daily saturation  29,48% 30,08% 29,62% 

Mks_W_Sum Makespan [hh:mm:ss] 11:43:54 11:29:44 11:40:32 

 

The column “KPI Type” in Table 30 links the analysed KPIs (i.e. “KPI” column) to the KPI types 

listed in Table 7. In particular, the KPI types analysed in the footwear pilot refer all to the 

efficiency dimension and have been calculated at the end of the process (i.e. “Sink” block). First 

of all, the average value per day has been calculated for both the productivity (i.e. “Prd_W_Avg”) 

and the saturation (i.e. “Sat_W_Avg”) to obtain an overview of the flexibility and reactivity that 

the system can guarantee to perform extra-orders requested by the customers. In addition, the 

time between first item entering and last item exiting from the model (i.e. “Mks_W_Sum”) has 

been calculated in order to identify the sequence that enables to process the whole production 

plan in the shortest time. 

More in detail, looking at the Table 30, all the sequencing rules confirm the feasibility of the 

daily scheduling plan (i.e. “Average daily productivity” equals to 100%), enabling the company 

to process all the scheduled SKUs. Considering the other KPIs, the average daily saturation has 

been calculated including only the active stations and refers to the makespan (i.e. the difference 

between the last exit date from a processing block and the first enter date on a processing 

block). For these two KPIs, the values differ considering the implementation of one or another 

sequencing rule, highlighting how the “Sequence_2” results in a higher average daily saturation 

and a shorter makespan. 

 

Table 31 - KPIs dashboard per sequencing empirical rules: overall values (including reworking) 

KPI Type KPI Sequence_1 Sequence_2 Sequence_3 

Prd_W_Avg Average daily productivity  99,34% 98,40% 99,24% 

Sat_W_Avg Average daily saturation  29,15% 29,55% 29,21% 

Mks_W_Sum Makespan [hh:mm:ss] 11:43:54 11:29:44 11:40:32 
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Moving from Table 30 to Table 31, the implementation of none of the sequencing rules listed in 

Figure 68 allows the company to process all the daily scheduled SKUs, and this is related to the 

fact that a percentage of reworking (i.e. 2%) has been introduced according to the management 

requirements. 

On the other hand, the implementation of the simulation model including this type of 

stochasticity shows how the “Sequence_3” is the worst sequencing rule in terms of KPIs. In fact, 

its implementation results neither in the higher values for average daily productivity and the 

average daily saturation or the shorter makespan. On the other hand, the best sequencing rule 

between the “Sequence_1” and “Sequence_2” depends of the company’s CSF: implementing 

“Sequence_2” results in the higher average saturation and shorter makespan, while 

“Sequence_1” guarantee the higher average daily productivity. 

Table 32 shows the detailed saturation per station, highlighting what is the bottleneck station 

for the analysed assembly line and production plan. The related KPI type, considering the one 

listed in Table 7, is “Sat_S_Avg”, that measures the average saturation per resource. 

 

Table 32 - KPIs dashboard per best sequencing empirical rules: average saturation per station 

 
Sequence_1 
(Sat_S_Avg) 

Sequence_2 
(Sat_S_Avg) 

Sequence_3 
(Sat_S_Avg) 

Station_1 57,88% 58,9% 57,97% 

Station_2 46,18% 46,9% 46,25% 

Station_3 42,02% 42,7% 42,09% 

Station_4 25,40% 25,7% 25,46% 

Station_5 10,95% 10,9% 11,00% 

Station_6 0,00% 0,0% 0,00% 

Station_7 5,20% 5,1% 5,23% 

Station_8 5,19% 5,1% 5,22% 

Station_9 84,24% 85,7% 84,37% 

Station_10 1,73% 1,7% 1,73% 

Station_11 57,88% 58,9% 57,97% 

Station_12 46,18% 46,9% 46,25% 

Station_13 42,02% 42,7% 42,09% 

Station_14 25,40% 25,7% 25,46% 

Station_15 10,95% 10,9% 11,00% 

Station_16 0,00% 0,0% 0,00% 

Station_17 5,20% 5,1% 5,23% 

Station_18 5,19% 5,1% 5,22% 

 

Once the feasibility has been checked and the KPIs for the balanced assembly line have been 

evaluated, the optimization of the number of workers per station has been the object of another 

scenario analysis conducted through simulation, assessing how the KPIs changes varying the 

number of workers associated to one or more stations. 

According to this, starting from the results in Table 32, one more worker has been associated to 

the station with the higher saturation independently from the implemented sequencing rule (i.e. 

“Station 9”). 

Moreover, the sequencing rule chosen to conduct this scenario analysis has been the one that 

results in better performances in (i.e. “Sequence_2”). 
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The compared scenarios have been listed in Table 33. 

 

Table 33 - Scenarios for simulation model in the footwear case study 

 Description 

Scenario_1 No reworking; 1 resource for each station (see “Sequence_2” in Table 30) 

Scenario_2 Reworking; 1 resource for each station (see “Sequence_2” in Table 31) 

Scenario_3 No reworking; 2 resources per “Station 9” 

Scenario_4 Reworking; 2 resources per “Station 9” 

 

For each one of the scenarios described in Table 33, the KPIs values used to the comparison have 

been listed in Table 34. 

 

Table 34 - KPIs dashboard per sequencing empirical rules: overall values 

KPI Type KPI Scenario_1 Scenario_2 Scenario_3 Scenario_4 

Prd_W_Avg Average daily productivity  100% 98,40% 100% 99,67% 

Sat_W_Avg Average daily saturation  30,08% 29,55% 30,20% 29,91% 

Mks_W_Sum Makespan [hh:mm:ss] 11:29:44 11:29:44 10:24:56 10:24:56 

 

Looking at the results in Table 34, comparing the scenarios with no stochasticity (i.e. 

“Scenario_1” and “Scenario_3”), their implementation results in a shorter makespan (-9.4%) and 

a slightly higher average saturation (+0.4%) considering 2 workers on the “Station 9”. Comparing 

the other two scenarios that include reworking (i.e. “Scenario_2” and “Scenario_4”), moving 

from 1 to 2 workers on the “Station_9” the makespan has been reduced in the same way of the 

previous comparison (-9.4%) while the average saturation increases (+1.2%) in the “Scenario_4”. 

In addition, also the average daily productivity increases (+1.3%). 
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Table 35 shows the detailed saturation per station (i.e. KPI type equals to “Sat_S_Avg”, as listed 

in Table 7) for each one of the three scenarios described in Table 34. 

 

Table 35 - Scenario analysis for the best sequencing rule: average saturation per station 

 
Sequence_2 
Scenario_1 

Sequence_2 
Scenario_2 

Sequence_2 
Scenario_3 

Sequence_2 
Scenario_4 

Station_1 59,81% 58,9% 66,01% 65,29% 

Station_2 47,72% 46,9% 52,67% 52,09% 

Station_3 43,40% 42,7% 47,90% 47,40% 

Station_4 26,19% 25,7% 28,91% 28,65% 

Station_5 11,17% 10,9% 12,33% 12,33% 

Station_6 0,00% 0,0% 0,00% 0,00% 

Station_7 5,31% 5,1% 5,86% 5,86% 

Station_8 5,30% 5,1% 5,85% 5,85% 

Station_9 87,07% 85,7% 48,05% 47,52% 

Station_10 1,78% 1,7% 1,97% 1,95% 

Station_11 59,81% 58,9% 66,01% 65,29% 

Station_12 47,72% 46,9% 52,67% 52,09% 

Station_13 43,40% 42,7% 47,90% 47,40% 

Station_14 26,19% 25,7% 28,91% 28,65% 

Station_15 11,17% 10,9% 12,33% 12,33% 

Station_16 0,00% 0,0% 0,00% 0,00% 

Station_17 5,31% 5,1% 5,86% 5,86% 

Station_18 5,30% 5,1% 5,85% 5,85% 
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6. Conclusions 

 

Challenges in the fashion industry mainly deals with compressing time to market guaranteeing, 

at the same time, outstanding quality levels of products, even more in a context where product 

lifecycle has become shorter than the past. Moreover, the complexity related to the fashion SC 

structure, composed by a high number of supply levels where usually operate SMEs, and the 

stochastic events that characterized this industry increases the required efforts to be on-time in 

a such dynamic context. 

According to this, the relevance of optimizing production planning and scheduling performances 

is increasing in the last years, pushing companies to pay even more attention on find a way to 

be more compliant with the service levels required by the market involving all the SC actors 

working on the fashion SC. 

Despite this, no optimization tools are widely applied in the industry, even if PP&C for the 

fashion SC is a debated topic both from an academical and an industrial point of view. 

This evidence is mainly related to the fact that most of the companies working along the fashion 

SC are SMEs, characterized by a low informatization level and, for this, looking for an easy-to-

use and affordable tool that supports them in choosing the optimal production plan according 

their own CSFs that can be, and usually are, different from the ones of the SC actor that gives 

them the demand plan as input. 

Moreover, one of the main weakness that optimization tools have is their static nature, that 

makes the optimized plan rarely usable due to the high-dynamic context where the analysed 

companies work. In addition, due to the quick-responses they have to give, these companies 

need to rapidly compare different scenarios that vary each other in terms of parameters in 

inputs, occurrence and type of included stochasticity or a combination of them. 

According to this, the first and the second RQs aim to develop an optimization and a simulation 

tool respectively. 

First of all, the optimization tool has been developed to define the optimal output in terms of 

production allocation according to the company’s CSFs. It has been modeled using an integer 

linear-optimization scheduler, based on a commercial spreadsheet and an open-source solver 

(OpenSolver), in order to be successfully used by these companies, which are mostly SMEs with 

low investment capability in IT solutions. According to the purpose to develop a model suitable 

by all the companies working along the fashion SC, it has been developed in a parametric way. 
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For example, it has been defined a weighted multi-OF, in order to fit the peculiarities of the 

different actors operating along the fashion SC just enabling them to change the weights of the 

elements included in the OF in order to reflect the specific company’s CSFs. 

After the optimization one, the simulation model has been developed as second step of the 

research, in order to move from a deterministic to a stochastic context and to allow scenario 

analyses to support production managers in the decision-making process. 

In the same way of the optimization model, the structure and logics of the simulation model had 

been defined in order to apply the model itself on different SC actors. The scenario analyses 

enabled through simulation allow to compare different outputs that come running the model, 

considering different inputs (e.g. decreased resource capacity) and/or under different 

deterministic and/or stochastic conditions (e.g. increased percentage of rush orders). The 

comparison has been done through a gap analysis referred to a set of KPIs that has been defined, 

studying how these KPIs’ values change moving from a scenario to another one. 

Once both the optimization and the simulation models had been developed, they have been 

jointly used to define an iterative simulation-optimization framework for improving the global 

SC PP&C performances, in order to include the effects that the feedbacks coming from the 

implementation of simulation-optimization models at the single-companies level may have on 

the overall SC performances. 

The iterative procedure in the proposed framework includes these steps: (i) the implementation 

of the optimization model on the production plan using OpenSolver; (ii) its import in the 

simulation model developed on AnyLogic®; (iii) the conduction of more than one run of the 

simulation model, that may include or not stochastic events (i.e. rush orders and/or delays in 

the expected critical components delivery date); (iv) the comparison between the KPIs collected 

as model output for each one of the analysed scenarios; (v) the application of a second iteration 

of the whole model changing the input according to the selected output at the end of the first 

iteration. 

Consequently, the main challenge that this work aims to reach is to define an iterative 

framework enabling a set of decision-making tools to be given to all the SC actors in order to 

preventively highlight the criticalities related to the feasibility of optimized production plans and 

the way to manage them comparing the different results, related to each one of the input 

configuration, that can be more or less influenced to the occurrence of stochastic events. 

The model has been applied to real companies working along the fashion SC, where different 

CSFs have been considered in order to define the OF, whilst rush orders and delays on the critical 

components’ delivery date have been introduced to simulate stochastic events. The on-field 

implementations on the metal accessories, leather goods and footwear market segments have 

been used to test the usability of the tool and to validate the models by the production managers 

evaluation and comparing the resulting outputs to the historical data. 

First of all, the optimization model has been validated by the production managers both from a 

brand owner’s and a supplier’s perspective, including different OFs in the analysis. 

After that, simulation model has been successfully validated comparing the resulting outputs 

(i.e. end processing dates and processed quantities, considering both final and intermediate 

steps) to the ones calculated through the optimization model on the Microsoft Excel®. 
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Moreover, the impact on the KPIs’ values related to the occurrence of stochastic events, such as 

unexpected orders to be processed and delays in the critical components’ delivery date, has 

been analysed using the simulation model, allowing to measure the gap between scheduling 

outputs considering the optimization of the OF under deterministic and not-deterministic 

condition, but also analysing the different impacts on KPIs changing the type and the occurrence 

of stochastic events. 

In addition, simulation has been also used to assess the feasibility of optimized production plans. 

For example, looking at the footwear industry, solve the balancing and sequencing problems 

represents one of the main challenges for the belonged companies, and through simulation has 

been possible to compare the outputs related to the implementation of different sequencing 

rules in terms of changes in the resulting KPIs’ values, such as the daily productivity and the 

average resource saturation. 

As further results of this work, the analysed sample can be enlarged, in order to consolidate the 

obtained results, to confirm the parametrical way the models have been developed and to 

eventually add new elements to the OFs and/or parameters to be included. 

Moreover, the three RQs defined and then answered considering the fashion industry can be 

readapted to the peculiarities of other sectors, starting from the ones where PP&C represents a 

relevant challenge. 

To conclude, the results of the present work have been concretized in the creation of a start-up, 

called Balance, whose goal is to industrialize and commercialize the solution conceived, starting 

from its implementation in the analysed industry and continuing with the others, according to 

the further developments previously described. 
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