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Abstract
This paper is devoted to the analysis of the oscillatory behavior of Euler type linear
and half-linear differential equations. We focus on the so-called conditional
oscillation, where there exists a borderline between oscillatory and non-oscillatory
equations. The most complicated problem involved in the theory of conditionally
oscillatory equations is to decide whether the equations from the given class are
oscillatory or non-oscillatory in the threshold case. In this paper, we answer this
question via a combination of the Riccati and Prüfer technique. Note that the
obtained non-oscillation of the studied equations is important in solving boundary
value problems on non-compact intervals and that the obtained results are new even
in the linear case.
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1 Introduction
In this paper, we study oscillatory properties of the half-linear differential equation

(
r(t)Φ

(
x′))′ + s(t)Φ(x) = 0, Φ(x) = |x|p–1 sgn x, p > 1, (1.1)

where r and s are continuous functions and r is positive. In fact, we focus on Eq. (1.1)
in the so-called Euler form. Euler type differential equations play an important role in
solving non-linear BVP associated to equations with p-Laplacian (see, e.g., [6, 8, 9] and the
references therein). Our research is also motivated by paper [3], in which an eigenvalue
problem associated to the half-linear equation

(
r(t)Φ

(
x′))′ +

(
s1(t) + λs2(t)

)
Φ(x) = 0

is studied, and by [24, 48], in which the oscillation of a neutral half-linear differential equa-
tion is examined.
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In fact, we consider the perturbed Euler type half-linear differential equation

((
r1(t) +

r2(t)
log2 t

)1–p

Φ
(
x′)

)′
+

(
s1(t) +

s2(t)
log2 t

)
Φ(x)

tp = 0, t ∈ [e,∞), (1.2)

where ri, si : [e,∞) →R, i ∈ {1, 2}, are continuous functions such that

r1(t) +
r2(t)
log2 t

> 0, t ∈ [e,∞). (1.3)

Henceforth, all equations will be considered for t ∈ [e,∞). We assume that, for some α ∈
[0, 1), the inequalities

lim sup
t→∞

1
tα

∫ t+tα

t

∣
∣ri(τ )

∣
∣dτ < ∞, lim sup

t→∞
1
tα

∫ t+tα

t

∣
∣si(τ )

∣
∣dτ < ∞, i ∈ {1, 2}, (1.4)

hold. Thus, for i ∈ {1, 2}, we can put

Ai := sup
t≥e

1
tα

∫ t+tα

t

∣∣ri(τ )
∣∣dτ < ∞, Bi := sup

t≥e

1
tα

∫ t+tα

t

∣∣si(τ )
∣∣dτ < ∞. (1.5)

In addition, let there exist numbers R1, S1 > 0 and a continuous function f : [e,∞) → R

satisfying limt→∞ f (t) = 0 and

∣
∣∣
∣R1 –

1
tα

∫ t+tα

t
r1(τ ) dτ

∣
∣∣
∣ ≤ f (t)

log2 t
,

∣
∣∣
∣S1 –

1
tα

∫ t+tα

t
s1(τ ) dτ

∣
∣∣
∣ ≤ f (t)

log2 t
(1.6)

for all t ∈ [e,∞).
The main result of this paper reads as follows.

Theorem 1.1 Let Rp–1
1 S1 = q–p (see (1.6)) and R2, S2 ∈R.

(a) If

1
tα

∫ t+tα

t
r2(τ ) dτ ≥ R2,

1
tα

∫ t+tα

t
s2(τ ) dτ ≥ S2 (1.7)

for all large t and

q
S2

S1
+ p

R2

R1
>

q2

2
, (1.8)

then Eq. (1.2) is oscillatory.
(b) If

1
tα

∫ t+tα

t
r2(τ ) dτ ≤ R2,

1
tα

∫ t+tα

t
s2(τ ) dτ ≤ S2 (1.9)

for all large t and

q
S2

S1
+ p

R2

R1
<

q2

2
, (1.10)

then Eq. (1.2) is non-oscillatory.
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2 Conditionally oscillatory half-linear equations: an overview
The designation half-linear illustrates the fact that the solution space of Eq. (1.1) is ho-
mogeneous but it is not additive. This name was introduced in [2]. Of course, the lack of
additivity is one of the main reasons of the fact that some tools widely used in the theory
of linear equations are not available for half-linear equations. We can mention, e.g., the
Wronskian identity (see [20]) or the Fredholm alternative (see [19]). On the bright side,
many results from the theory of linear equations have been extended which gave birth to
new advanced methods and approaches. At this place, we refer to the books [1, 16] that
contain extensive theoretical background for half-linear equations.

The half-linear equations are situated between linear and non-linear equations on one
side and between ordinary differential equations and partial differential equations on the
other side. The first point of view is given by the fact that, putting p = 2, we obtain linear
equations. At this place, we should point out that results proved in this paper are not
generalizations from linear equations to half-linear ones, but the presented research is new
in the linear case as well. Of course, we prove all statements for general p > 1 and one can
obtain the linear versions of our results simply by considering p = 2. Further, results about
Eq. (1.1) are often first steps to extensive research in the field of non-linear equations, in
particular with functions that preserve their sign in the place of function Φ (see, e.g., [18,
54, 58]). The second point of view comes directly from the relation of half-linear equations
and (elliptic) partial differential equations with p-Laplacian. Since the function Φ is a one
dimensional p-Laplacian, half-linear equations are scalar PDE’s with p-Laplacian and one
can use results obtained for scalar equations to deduce criteria for more general PDE’s,
especially concerning the so-called weak oscillation (see, e.g., [15, 28, 49]).

We recall that any non-trivial solution of a half-linear equation is said to be non-
oscillatory if the solution is eventually positive or negative. Otherwise, the solution is
called oscillatory. Since the Sturm separation theorem is extendable verbatim for half-
linear equations, (non-)oscillation of one solution implies (non-)oscillation of all (non-
zero) solutions of the given equation. Hence, half-linear equations can be categorized as
oscillatory equations (if all solutions are oscillatory) and non-oscillatory equations (if all
non-trivial solutions are non-oscillatory). For the half-linear version of the Sturm separa-
tion theorem, we refer again to [1, 16].

In the case a half-linear equation is non-oscillatory, the so-called principal and non-
principal solutions can be introduced, similarly to the linear case. The asymptotic prop-
erties of these solutions play an important role in describing the asymptotics of any other
solution of the equation; further, they can be an important tool in solving boundary value
problems on non-compact intervals (see, e.g., [7–9]), because they can play the role of
lower (upper) solutions for some modified problems. In particular, to obtain effective cri-
teria for the solvability of the given BVP, various testing half-linear equations (those prin-
cipal solutions are known) are used (see, e.g., the classic Euler equation or the Riemann–
Weber equation in [7] or the generalized Euler equation in [8]).

Conditionally oscillatory equations are ideal testing equations. Once we have a gen-
eral conditionally oscillatory equation, we are able to obtain many oscillation or non-
oscillation results by simply applying comparison theorems.

For completeness, we recall the definition of conditional oscillation.
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Definition 1 The equation

(
r(t)Φ

(
x′))′ + γ s(t)Φ(x) = 0, γ ∈R, (2.1)

is said to be conditionally oscillatory if there exists the so-called critical oscillation con-
stant Γ > 0 with the property that Eq. (2.1) is oscillatory for γ > Γ and non-oscillatory for
γ < Γ .

The critical oscillation constant (obviously) depends on the functions r, s. We empha-
size that the critical case γ = Γ is not contained in the above definition. For some simple
equations (with constant or periodic coefficients), it has been proved that non-oscillation
is “more probable” in the critical case. Nevertheless, it appears to be challenging to decide
the critical case for more general equations.

Now, we mention the most important milestones in the theory of conditionally oscilla-
tory Euler type linear and half-linear differential equations. As far as we were able to find,
the very first result of this kind comes from [43], where the linear equation

x′′ +
γ

t2 x = 0 (2.2)

has been proved to be conditionally oscillatory with critical oscillation constant Γ = 1/4.
Since the equation can be explicitly solved and its general solution is c1

√
x + c2

√
x log x,

c1, c2 ∈ R, in the critical case, we can directly see that Eq. (2.2) is non-oscillatory for γ =
1/4.

Next step has been made in [25, 52] one century later. There it was proved that condi-
tional oscillation is preserved if we replace constant coefficients by periodic ones. Consid-
ering the equation

(
r(t)x′)′ + γ

s(t)
t2 x = 0, (2.3)

where r, s are positive α-periodic continuous functions, the critical oscillation constant is

Γ =
α2

4

(∫ α

0

dτ

r(τ )

)–1(∫ α

0
s(τ ) dτ

)–1

.

This result is important also because of its continuation. We highlight at least [44–47],
where several generalizations of this result are proved, and [53], where one can find the
proof of the fact that Eq. (2.3) is non-oscillatory in the critical case.

Now, let us move to the half-linear equations. The basic result corresponding to Eq. (2.2)
comes from [21, 22]; the equation and the critical oscillation constant are

(
Φ

(
x′))′ +

γ

tp Φ(x) = 0 and Γ =
(

p – 1
p

)p

.

Research in the field of half-linear equations continues. We mention, e.g., papers [13,
23, 42, 61]. As our motivation and for the purpose of comparison and the reader’s con-
venience, we formulate explicitly the main results of papers [32, 39]. We emphasize that
these papers have one important thing in common—the critical case is solved there.



Došlá et al. Journal of Inequalities and Applications        (2019) 2019:189 Page 5 of 30

For the clarity of the formulation below, we introduce the number q as the conjugate
number with p, i.e., p + q = pq, and we mention the definition of the mean value for con-
tinuous functions.

Definition 2 Let a continuous function f : [T ,∞) → R be such that the limit

f := lim
t→∞

1
t

∫ a+t

a
f (s) ds

is finite and exists uniformly with respect to a ∈ [T ,∞). The number f is called the mean
value of f .

Clearly, the mean value of any α-periodic function f : R →R is

f =
1
α

∫ a+α

a
f (s) ds,

where a is arbitrary. If we consider the sum of any periodic continuous functions fi for
i ∈ {1, . . . , n}, we immediately see that

n∑

i=1

fi =
n∑

i=1

fi.

In the first of the mentioned papers, i.e., in [32], the authors studied the equation

(
r1–p(t)Φ

(
x′))′ +

s(t)
tp Φ(x) = 0, (2.4)

where r, s : [e,∞) → R are continuous functions and r is positive. The main result of [32]
is as follows.

Theorem 2.1 If r is α-periodic with mean value r = 1 and s is α̂-periodic with mean value
s = q–p, then Eq. (2.4) is non-oscillatory.

In fact, Theorem 2.1 is a continuation of certain previous results. Thus, for the reader’s
convenience, we mention the combination of Theorem 2.1 with [28, Theorem 9] which
gives the next result (see directly [32, Theorem 4.4]).

Theorem 2.2 Let r be α-periodic, positive, and continuous, let s be α̂-periodic and contin-
uous for arbitrary α, α̂ > 0. Let us denote

Γ := q–pr1–p = q–p
(

1
α

∫ α

0
r(τ ) dτ

)1–p

.

(a) If s > Γ , then Eq. (2.4) is oscillatory.
(b) If s ≤ Γ , then Eq. (2.4) is non-oscillatory.

We add that Theorem 2.1 has been extended for the finite sums of periodic continuous
functions as coefficients in [33]. Hence, the corresponding generalization of Theorem 2.2
is valid as well (it suffices to use again [28, Theorem 9]).
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Now, we focus on paper [39], where the equation

(

tβ

( m∑

i=1

Ri(t)

)–1

x′(t)

)′
+ tβ–2

n∑

j=1

Sj(t)x(t) = 0, β ∈R� {1}, (2.5)

is analyzed for arbitrary continuous periodic functions Ri, i ∈ {1, . . . , m}, Sj, j ∈ {1, . . . , n},
satisfying

inf
t≥1

m∑

i=1

Ri(t) > 0.

The following theorem is proved in [39]. Note that this theorem coincides with Theo-
rem 2.1 for β = 0 and p = 2.

Theorem 2.3 Consider Eq. (2.5). If

m∑

i=1

Ri

n∑

j=1

Sj =
(β – 1)2

4
,

then Eq. (2.5) is non-oscillatory.

The main goal of this paper is to describe the non-oscillation of Eq. (2.4) for more general
coefficients r, s than the periodic ones (or sums of periodic functions) in the critical case.
This problem is covered by Theorem 1.1.

At the end of this section, we only briefly mention that the conditional oscillation of
Euler type linear and half-linear equations is studied in the discrete case and in the case
of dynamic equations on time scales as well. The results about difference equations are
published, e.g., in [11, 36, 41, 63] and we refer to [40, 50, 51, 62] for results concerning
dynamic equations on time scales. We will describe the research directed towards the
discrete case and dynamic equations on time scales at the end of this paper within the
collected open problems.

3 Riccati and Prüfer technique
In this section, we prepare needed tools which are the Riccati and Prüfer techniques and
their combination. At first, we describe the half-linear Riccati transformation. We consider
Eq. (2.4). We emphasize that the positivity of r implies that the power of coefficient r in
the first term is not a restriction and it is considered from technical reasons in research
papers. For a non-trivial solution x of Eq. (2.4), we apply the transformation

w(t) = r1–p(t)Φ
(

x′(t)
x(t)

)

to get the so-called Riccati equation

w′(t) +
s(t)
tp + (p – 1)r(t)

∣∣w(t)
∣∣q = 0 (3.1)

associated to Eq. (2.4). Indeed, a solution w of Eq. (3.1) exists whenever x(t) 	= 0. There-
fore, the existence of the solution w of Eq. (3.1) for t ∈ [b,∞) for some b ≥ e guarantees the
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non-oscillation of solution x and the non-oscillation of one solution ensures (via the well-
known half-linear Sturm separation theorem) that Eq. (2.4) is non-oscillatory. The Riccati
equation (3.1) is not sufficient for our purposes. Therefore, we apply another transforma-
tion

v(t) = tp–1w(t), (3.2)

to obtain the so-called adapted (or weighted) Riccati equation

v′(t) =
p – 1

t

(
v(t) –

s(t)
p – 1

– r(t)
∣∣v(t)

∣∣q
)

. (3.3)

For the description of the Prüfer technique, we should recall the notion of half-linear
trigonometric functions. More precisely, we will need the half-linear sine and cosine func-
tions denoted by sinp and cosp, respectively. By the usual definition, sinp is the odd periodic
extension of the solution of the initial problem

(
Φ

(
x′))′ + (p – 1)Φ(x) = 0, x(0) = 0, x′(0) = 1 (3.4)

and the half-linear cosine function cosp is defined as the derivative of sinp. The period of
sinp and cosp is

2πp =
4
p

B
(

1
p

,
1
q

)
=

4Γ ( 1
p )Γ ( 1

q )

pΓ ( 1
p + 1

q )
=

4π

p sin π
p

,

where

B(x, y) =
∫ 1

0
τ x–1(1 – τ )y–1 dτ , x, y > 0, Γ (x) =

∫ ∞

0
τ x–1e–τ dτ , x > 0,

are the standard Euler beta and gamma functions, respectively.
Regarding properties of sinp and cosp, we mention only those which are used in this

paper. For other properties and more details, we refer to [16] and the references cited
therein. We recall the half-linear Pythagorean identity

| sinp y|p + | cosp y|p = 1, y ∈R, (3.5)

which also implies

| cosp y|p ≤ 1,
∣∣Φ(cosp y) sinp y

∣∣ ≤ 1, | sinp y|p ≤ 1, y ∈R. (3.6)

Further, the continuous differentiability and periodicity of functions sinp, Φ(sinp), Φ(cosp)
provide the existence of positive numbers L1, L2, L3 such that

∣∣| sinp y|p – | sinp z|p∣∣ =
∣∣Φ(sinp y) sinp y – Φ(sinp z) sinp z

∣∣ ≤ L1|y – z|, y, z ∈R, (3.7)
∣
∣| cosp y|p – | cosp z|p∣∣ =

∣
∣
∣
∣Φ(cosp y)

∣
∣

p
p–1 –

∣
∣Φ(cosp z)

∣
∣

p
p–1

∣
∣ ≤ L2|y – z|, y, z ∈R, (3.8)
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and

∣
∣Φ(cosp y) sinp y – Φ(cosp z) sinp z

∣
∣ ≤ L3|y – z|, y, z ∈R. (3.9)

Finally, we can proceed to the Prüfer technique and to the derivation of the equation for
the Prüfer angle of Eq. (2.4). To do this, we use the modified half-linear Prüfer transfor-
mation

x(t) = ρ(t) sinp ϕ(t), x′(t) =
r(t)ρ(t)

t
cosp ϕ(t).

Applying this transformation to (3.2), we obtain

v(t) = Φ

(
cosp ϕ(t)
sinp ϕ(t)

)
. (3.10)

Now, we take into the account the fact that sinp solves the equation in (3.4) to get

v′(t) = (1 – p)
(

1 +
∣
∣∣∣
cosp ϕ(t)
sinp ϕ(t)

∣
∣∣∣

p)
ϕ′(t). (3.11)

Next, we use (3.3) and (3.11) and, due to (3.10), we obtain

(1 – p)
(

1 +
∣
∣∣
∣
cosp ϕ(t)
sinp ϕ(t)

∣
∣∣
∣

p)
ϕ′(t)

=
p – 1

t

(
Φ

(
cosp ϕ(t)
sinp ϕ(t)

)
–

s(t)
p – 1

– r(t)
∣∣
∣∣
cosp ϕ(t)
sinp ϕ(t)

∣∣
∣∣

p)
. (3.12)

Applying the Pythagorean identity (3.5), we convert (3.12) to the final form of the equation
for the Prüfer angle

ϕ′(t) =
1
t

(
r(t)

∣∣cosp ϕ(t)
∣∣p – Φ

(
cosp ϕ(t)

)
sinp ϕ(t) + s(t)

| sinp ϕ(t)|p
p – 1

)
, (3.13)

which will be substantial in our method. The main idea is the equivalence of the bound-
edness of ϕ and the non-oscillation of Eq. (2.4) (see directly [17, Corollary 4.1] or, e.g., [12,
45, 53]). Regarding a solution ϕ of Eq. (3.13) (consider the right-hand side of Eq. (3.13) for
values ϕ(t) satisfying sinp ϕ(t) = 0), it is seen that the set of all values ϕ(t) is unbounded if
and only if limt→∞ ϕ(t) = ∞.

4 Oscillation and non-oscillation results
Let us consider real numbers a1 > 0, b1 > 0, a2, b2. We use the equation

((
a1 +

a2

log2 t

)1–p

Φ
(
x′)

)′
+

(
b1 +

b2

log2 t

)
Φ(x)

tp = 0 (4.1)
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to study Eq. (1.2). The equation for the Prüfer angle associated to Eq. (4.1) has the form
(see Eq. (3.13))

ϕ′(t) =
1
t

((
a1 +

a2

log2 t

)∣∣cosp ϕ(t)
∣∣p – Φ

(
cosp ϕ(t)

)
sinp ϕ(t)

+
(

b1 +
b2

log2 t

) | sinp ϕ(t)|p
p – 1

)
(4.2)

and the equation for the Prüfer angle associated to Eq. (1.2) takes the form

ϕ′(t) =
1
t

((
r1(t) +

r2(t)
log2 t

)∣∣cosp ϕ(t)
∣∣p – Φ

(
cosp ϕ(t)

)
sinp ϕ(t)

+
(

s1(t) +
s2(t)
log2 t

) | sinp ϕ(t)|p
p – 1

)
. (4.3)

Clearly, Eq. (4.2) is a special case of Eq. (4.3).
To prove Lemma 4.1 below, we need the well-known Sturm half-linear comparison the-

orem (which follows) and one known result in a special form (see Theorem 4.2 below).

Theorem 4.1 Let c1, c2, d1, d2 be continuous functions such that c1(t) ≥ c2(t) > 0 and
d2(t) ≥ d1(t) for all large t. Let us consider the equations

(
c1(t)Φ

(
x′))′ + d1(t)Φ(x) = 0, (4.4)

(
c2(t)Φ

(
x′))′ + d2(t)Φ(x) = 0. (4.5)

(a) If Eq. (4.5) is non-oscillatory, then Eq. (4.4) is non-oscillatory as well.
(b) If Eq. (4.4) is oscillatory, then Eq. (4.5) is oscillatory as well.

Proof See, e.g., [16, Theorem 1.2.4]. �

Theorem 4.2 Let ap–1
1 b1 = q–p.

(a) If

q
b2

b1
+ p

a2

a1
>

q2

2
,

then Eq. (4.1) is oscillatory.
(b) If

q
b2

b1
+ p

a2

a1
<

q2

2
,

then Eq. (4.1) is non-oscillatory.

Proof The theorem follows from results in each one of papers [10, 12, 17, 37]. �

We will also need the following auxiliary result.
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Lemma 4.1 Let ϕ be a solution of Eq. (4.3) on some interval [T ,∞), where T ≥ e, and let
the function ϕα : [T ,∞) →R be defined by

ϕα(t) :=
1
tα

∫ t+tα

t
ϕ(τ ) dτ , t ∈ [T ,∞). (4.6)

Then ϕα is a solution of the equation

ϕ′
α(t) =

1
t

((
R1 +

1
log2 t

(
1
tα

∫ t+tα

t
r2(τ ) dτ

))∣
∣cosp ϕα(t)

∣
∣p

– Φ
(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
1

log2 t

(
1
tα

∫ t+tα

t
s2(τ ) dτ

)) | sinp ϕα(t)|p
p – 1

+
g(t)

log2 t

)
(4.7)

on (T ,∞) for a continuous function g : (T ,∞) →R satisfying limt→∞ g(t) = 0.

Proof We express ϕ′
α(t) for an arbitrarily given t > T . If α = 0, then

ϕ′
α(t) =

(∫ t+1

t
ϕ(τ ) dτ

)′
= ϕ(t + 1) – ϕ(t) =

∫ t+1

t
ϕ′(τ ) dτ =

1
tα

∫ t+tα

t
ϕ′(τ ) dτ . (4.8)

If α ∈ (0, 1), then

ϕ′
α(t) =

(
1
tα

∫ t+tα

t
ϕ(τ ) dτ

)′

= –
α

tα+1

∫ t+tα

t
ϕ(τ ) dτ +

1
tα

(
ϕ
(
t + tα

)(
1 +

α

t1–α

)
– ϕ(t)

)

= –
α

tα+1

∫ t+tα

t
ϕ(τ ) dτ +

α

t
ϕ
(
t + tα

)
+

1
tα

∫ t+tα

t
ϕ′(τ ) dτ . (4.9)

Now, we prove that

∣
∣∣
∣ϕ

(
t + tα

)
–

1
tα

∫ t+tα

t
ϕ(τ ) dτ

∣
∣∣
∣ <

h(t)
log2 t

(4.10)

for all t ≥ T and for some continuous function h : [T ,∞) → R such that limt→∞ h(t) = 0.
To obtain (4.10), we show that the inequality

∣∣ϕ(t + s) – ϕα(t)
∣∣ ≤ A

t1–α
(4.11)

holds for all t ≥ T , s ∈ [0, tα] and for some A > 0. Of course, (4.11) gives (4.10) for s = tα .
For any t ≥ T , there exists σ (t) ∈ [t, t + tα] such that ϕα(t) = ϕ(σ (t)) (consider (4.6)). Hence,
for any t ≥ T , we obtain (see Eq. (4.3) together with (1.5) and (3.6))

∣
∣ϕ(t + s) – ϕα(t)

∣
∣

=
∣∣ϕ(t + s) – ϕ

(
σ (t)

)∣∣ =
∣∣∣
∣

∫ t+s

σ (t)
ϕ′(τ ) dτ

∣∣∣
∣ ≤

∫ t+tα

t

∣∣ϕ′(τ )
∣∣dτ
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=
∫ t+tα

t

∣∣
∣∣

1
τ

((
r1(τ ) +

r2(τ )
log2 τ

)∣
∣cosp ϕ(τ )

∣
∣p – Φ

(
cosp ϕ(τ )

)
sinp ϕ(τ )

+
(

s1(τ ) +
s1(τ )
log2 τ

) | sinp ϕ(τ )|p
p – 1

)∣∣
∣∣dτ

≤ 1
t1–α

(
1
tα

∫ t+tα

t

(∣∣r1(τ )
∣∣ +

|r2(τ )|
log2 e

)∣∣cosp ϕ(τ )
∣∣p dτ

+
1
tα

∫ t+tα

t

∣∣Φ
(
cosp ϕ(τ )

)
sinp ϕ(τ )

∣∣dτ

+
1
tα

∫ t+tα

t

(∣∣s1(τ )
∣∣ +

|s2(τ )|
log2 e

) | sinp ϕ(τ )|p
p – 1

dτ

)

≤ 1
t1–α

(
1
tα

∫ t+tα

t

(∣∣r1(τ )
∣∣ +

∣∣r2(τ )
∣∣ + 1 +

(∣∣s1(τ )
∣∣ +

∣∣s2(τ )
∣∣) 1

p – 1

)
dτ

)

≤ 1
t1–α

(
A1 + A2 + 1 +

B1 + B2

p – 1

)
,

i.e., (4.11) is valid for

A := A1 + A2 + 1 +
B1 + B2

p – 1
. (4.12)

Considering (4.8), (4.9), and (4.10), we find that the inequality

∣
∣∣∣ϕ

′
α(t) –

1
tα

∫ t+tα

t
ϕ′(τ ) dτ

∣
∣∣∣ <

h(t)
t log2 t

(4.13)

holds for all t ≥ T and for a continuous function h : [T ,∞) →R such that limt→∞ h(t) = 0.
Thus, we consider (see again Eq. (4.3))

1
tα

∫ t+tα

t
ϕ′(τ ) dτ

=
1
tα

∫ t+tα

t

1
τ

((
r1(τ ) +

r2(τ )
log2 τ

)∣∣cosp ϕ(τ )
∣∣p

– Φ
(
cosp ϕ(τ )

)
sinp ϕ(τ ) +

(
s1(τ ) +

s2(τ )
log2 τ

) | sinp ϕ(τ )|p
p – 1

)
dτ . (4.14)

Since (see (1.5) and (3.6))

∣∣∣
∣

∫ t+tα

t

1
τ

((
r1(τ ) +

r2(τ )
log2 τ

)∣∣cosp ϕ(τ )
∣∣p

– Φ
(
cosp ϕ(τ )

)
sinp ϕ(τ ) +

(
s1(τ ) +

s2(τ )
log2 τ

) | sinp ϕ(τ )|p
p – 1

)
dτ

–
∫ t+tα

t

1
t

((
r1(τ ) +

r2(τ )
log2 τ

)∣
∣cosp ϕ(τ )

∣
∣p

– Φ
(
cosp ϕ(τ )

)
sinp ϕ(τ ) +

(
s1(τ ) +

s2(τ )
log2 τ

) | sinp ϕ(τ )|p
p – 1

)
dτ

∣∣
∣∣

≤
∫ t+tα

t

(
1
t

–
1
τ

)((∣
∣r1(τ )

∣
∣ +

|r2(τ )|
log2 e

)
+ 1 +

(∣
∣s1(τ )

∣
∣ +

|s2(τ )|
log2 e

)
1

p – 1

)
dτ
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≤ tα

(
1
t

–
1

t + tα

)(
A1 + A2 + 1 +

B1 + B2

p – 1

)
≤ A

t2(1–α) , (4.15)

where A is from (4.12), to prove the statement of the theorem, it suffices to obtain the
inequalities

∣
∣∣
∣

1
tα

∫ t+tα

t
r1(τ )

∣∣cosp ϕ(τ )
∣∣p dτ – R1

∣∣cosp ϕα(t)
∣∣p

∣
∣∣
∣ ≤ F1(t)

log2 t
, (4.16)

∣
∣∣
∣

1
tα

∫ t+tα

t

r2(τ )
log2 τ

∣∣cosp ϕ(τ )
∣∣p dτ –

| cosp ϕα(t)|p
log2 t

(
1
tα

∫ t+tα

t
r2(τ ) dτ

)∣
∣∣
∣ ≤ F2(t)

log2 t
, (4.17)

∣∣
∣∣

1
tα

∫ t+tα

t
Φ

(
cosp ϕ(τ )

)
sinp ϕ(τ ) dτ – Φ

(
cosp ϕα(t)

)
sinp ϕα(t)

∣∣
∣∣ ≤ F3(t)

log2 t
, (4.18)

∣∣
∣∣

1
tα

∫ t+tα

t
s1(τ )

| sinp ϕ(τ )|p
p – 1

dτ – S1
| sinp ϕα(t)|p

p – 1

∣∣
∣∣ ≤ F4(t)

log2 t
, (4.19)

and

∣
∣∣∣

1
tα

∫ t+tα

t

s2(τ )
log2 τ

| sinp ϕ(τ )|p
p – 1

dτ –
| sinp ϕα(t)|p
(p – 1) log2 t

(
1
tα

∫ t+tα

t
s2(τ ) dτ

)∣
∣∣∣ ≤ F5(t)

log2 t
(4.20)

for all t ≥ T and certain continuous functions F1, F2, F3, F4, F5 : [T ,∞) → R satisfying
limt→∞ Fi(t) = 0 for each i ∈ {1, 2, 3, 4, 5}. Indeed (consider (4.13), (4.14), and (4.15)), in-
equalities (4.16)–(4.20) give (4.7).

We have (see (1.5), (1.6), (3.6), (3.8), and (4.11))

∣∣∣
∣

1
tα

∫ t+tα

t
r1(τ )

∣∣cosp ϕ(τ )
∣∣p dτ – R1

∣∣cosp ϕα(t)
∣∣p

∣∣∣
∣

≤
∣∣
∣∣

1
tα

∫ t+tα

t
r1(τ )

∣
∣cosp ϕ(τ )

∣
∣p dτ –

1
tα

∫ t+tα

t
r1(τ ) dτ

∣
∣cosp ϕα(t)

∣
∣p

∣∣
∣∣

+
∣
∣∣
∣

1
tα

∫ t+tα

t
r1(τ ) dτ

∣∣cosp ϕα(t)
∣∣p – R1

∣∣cosp ϕα(t)
∣∣p

∣
∣∣
∣

≤ 1
tα

∫ t+tα

t

∣
∣r1(τ )

∣
∣ · ∣∣∣∣cosp ϕ(τ )

∣
∣p –

∣
∣cosp ϕα(t)

∣
∣p∣∣dτ

+
∣∣∣
∣

1
tα

∫ t+tα

t
r1(τ ) dτ – R1

∣∣∣
∣

≤ 1
tα

∫ t+tα

t

∣
∣r1(τ )

∣
∣L2

∣
∣ϕ(τ ) – ϕα(t)

∣
∣dτ +

f (t)
log2 t

≤ L2A
t1–α

(
1
tα

∫ t+tα

t

∣∣r1(τ )
∣∣dτ

)
+

f (t)
log2 t

≤ L2AA1

t1–α
+

f (t)
log2 t

(4.21)

for all t ≥ T and for a continuous function f : [T ,∞) →R such that limt→∞ f (t) = 0. Thus,
(4.16) is true.

To prove (4.17), we use the limit

lim
t→∞ log3 t

(
1

log2 t
–

1
log2(t + tα)

)
= 0. (4.22)
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For all large t, we obtain (see (1.5), (3.6), (3.8), (4.11), and (4.22))

∣
∣∣
∣

1
tα

∫ t+tα

t

r2(τ )
log2 τ

∣∣cosp ϕ(τ )
∣∣p dτ –

| cosp ϕα(t)|p
log2 t

(
1
tα

∫ t+tα

t
r2(τ ) dτ

)∣
∣∣
∣

=
∣
∣∣
∣

1
tα

∫ t+tα

t

r2(τ )
log2 t

dτ
∣∣cosp ϕα(t)

∣∣p –
1
tα

∫ t+tα

t

r2(τ )
log2 τ

∣∣cosp ϕ(τ )
∣∣p dτ

∣
∣∣
∣

≤
∣∣∣
∣

1
tα

∫ t+tα

t

r2(τ )
log2 t

dτ
∣∣cosp ϕα(t)

∣∣p –
1
tα

∫ t+tα

t

r2(τ )
log2 τ

dτ
∣∣cosp ϕα(t)

∣∣p
∣∣∣
∣

+
∣∣
∣∣

1
tα

∫ t+tα

t

r2(τ )
log2 τ

dτ
∣
∣cosp ϕα(t)

∣
∣p –

1
tα

∫ t+tα

t

r2(τ )
log2 τ

∣
∣cosp ϕ(τ )

∣
∣p dτ

∣∣
∣∣

≤ 1
tα

∫ t+tα

t

(
1

log2 t
–

1
log2(t + tα)

)∣
∣r2(τ )

∣
∣dτ

+
1

tα log2 e

∫ t+tα

t

∣∣r2(τ )
∣∣ · ∣∣∣∣cosp ϕα(t)

∣∣p –
∣∣cosp ϕ(τ )

∣∣p∣∣dτ

≤ 1
log3 t

(
1
tα

∫ t+tα

t

∣∣r2(τ )
∣∣dτ

)
+

1
tα

∫ t+tα

t

∣∣r2(τ )
∣∣L2

∣∣ϕα(t) – ϕ(τ )
∣∣dτ

≤ A2

log3 t
+

L2A
t1–α

(
1
tα

∫ t+tα

t

∣∣r2(τ )
∣∣dτ

)
≤ A2

log3 t
+

L2AA2

t1–α
,

i.e., (4.17) is valid.
Furthermore, (see (3.9) and (4.11))

∣∣
∣∣Φ

(
cosp ϕα(t)

)
sinp ϕα(t) –

1
tα

∫ t+tα

t
Φ

(
cosp ϕ(τ )

)
sinp ϕ(τ ) dτ

∣∣
∣∣

≤ 1
tα

∫ t+tα

t

∣∣Φ
(
cosp ϕα(t)

)
sinp ϕα(t) – Φ

(
cosp ϕ(τ )

)
sinp ϕ(τ )

∣∣dτ

≤ 1
tα

∫ t+tα

t
L3

∣∣ϕα(t) – ϕ(τ )
∣∣dτ ≤ 1

tα

∫ t+tα

t

L3A
t1–α

dτ =
L3A
t1–α

,

i.e., (4.18) holds.
To obtain (4.19), we proceed analogously as in (4.21), where we have (see (1.5), (1.6),

(3.6), (3.7), and (4.11))

∣
∣∣∣

1
tα

∫ t+tα

t
s1(τ )

| sinp ϕ(τ )|p
p – 1

dτ – S1
| sinp ϕα(t)|p

p – 1

∣
∣∣∣

≤
∣
∣∣
∣

1
tα

∫ t+tα

t
s1(τ )

| sinp ϕ(τ )|p
p – 1

dτ –
1
tα

∫ t+tα

t
s1(τ ) dτ

| sinp ϕα(t)|p
p – 1

∣
∣∣
∣

+
∣∣
∣∣

1
tα

∫ t+tα

t
s1(τ ) dτ

| sinp ϕα(t)|p
p – 1

– S1
| sinp ϕα(t)|p

p – 1

∣∣
∣∣

≤ 1
p – 1

(
1
tα

∫ t+tα

t

∣∣s1(τ )
∣∣ · ∣∣∣∣sinp ϕ(τ )

∣∣p –
∣∣sinp ϕα(t)

∣∣p∣∣dτ

+
∣∣
∣∣

1
tα

∫ t+tα

t
s1(τ ) dτ – S1

∣∣
∣∣

)
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≤ 1
p – 1

(
1
tα

∫ t+tα

t

∣
∣s1(τ )

∣
∣L1

∣
∣ϕ(τ ) – ϕα(t)

∣
∣dτ +

f (t)
log2 t

)

≤ 1
p – 1

(
L1A
t1–α

(
1
tα

∫ t+tα

t

∣∣s1(τ )
∣∣dτ

)
+

f (t)
log2 t

)

≤ 1
p – 1

(
L1AB1

t1–α
+

f (t)
log2 t

)
,

where the function f : [T ,∞) →R is continuous with limt→∞ f (t) = 0.
To finish the proof, we prove (4.20) which follows from (see (1.5), (3.6), (3.7), (4.11), and

(4.22))

∣
∣∣
∣

1
tα

∫ t+tα

t

s2(τ )
log2 τ

| sinp ϕ(τ )|p
p – 1

dτ –
| sinp ϕα(t)|p
(p – 1) log2 t

(
1
tα

∫ t+tα

t
s2(τ ) dτ

)∣
∣∣
∣

=
∣∣∣
∣

1
tα

∫ t+tα

t

s2(τ )
log2 t

dτ
| sinp ϕα(t)|p

p – 1
–

1
tα

∫ t+tα

t

s2(τ )
log2 τ

| sinp ϕ(τ )|p
p – 1

dτ

∣∣∣
∣

≤
∣∣
∣∣

1
tα

∫ t+tα

t

s2(τ )
log2 t

dτ
| sinp ϕα(t)|p

p – 1
–

1
tα

∫ t+tα

t

s2(τ )
log2 τ

dτ
| sinp ϕα(t)|p

p – 1

∣∣
∣∣

+
∣∣
∣∣

1
tα

∫ t+tα

t

s2(τ )
log2 τ

| sinp ϕα(t)|p
p – 1

dτ –
1
tα

∫ t+tα

t

s2(τ )
log2 τ

| sinp ϕ(τ )|p
p – 1

dτ

∣∣
∣∣

≤ 1
p – 1

(
1
tα

∫ t+tα

t

(
1

log2 t
–

1
log2(t + tα)

)∣∣s2(τ )
∣∣dτ

+
1

tα log2 e

∫ t+tα

t

∣∣s2(τ )
∣∣ · ∣∣∣∣sinp ϕα(t)

∣∣p –
∣∣sinp ϕ(τ )

∣∣p∣∣dτ

)

≤ 1
p – 1

(
1

log3 t

(
1
tα

∫ t+tα

t

∣∣s2(τ )
∣∣dτ

)
+

1
tα

∫ t+tα

t

∣∣s2(τ )
∣∣L1

∣∣ϕα(t) – ϕ(τ )
∣∣dτ

)

≤ 1
p – 1

(
B2

log3 t
+

L1A
t1–α

(
1
tα

∫ t+tα

t

∣
∣s2(τ )

∣
∣dτ

))

≤ B2

p – 1

(
1

log3 t
+

L1A
t1–α

)
,

where t ≥ T is sufficiently large. �

Now, we can prove Theorem 1.1 as presented in the Introduction.

Proof of Theorem 1.1 It is a well-known fact (see, e.g., [12, 17, 45, 53]) that Eq. (1.2) is
oscillatory if and only if the Prüfer angle (given by Eq. (4.3)) is unbounded from above.
Further, from the proof of Lemma 4.1 (see (4.11)), we find that Eq. (1.2) is oscillatory if
and only if lim supt→∞ ϕα(t) = ∞ for an arbitrary solution ϕ of Eq. (4.3) on some interval
[T ,∞). In particular, Eq. (4.1) is non-oscillatory if and only if any solution of Eq. (4.2) is
bounded from above.

In the first part of this proof, we prove that limt→∞ ϕα(t) = ∞ if (1.7) and (1.8) are valid.
Let δ > 0 be so small that (see (1.8))

q
S2 – δ

S1
+ p

R2 – δ

R1
>

q2

2
. (4.23)
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For all large t, we have (see (1.7), (3.5), and (4.7))

ϕ′
α(t) =

1
t

((
R1 +

1
log2 t

(
1
tα

∫ t+tα

t
r2(τ ) dτ

))∣
∣cosp ϕα(t)

∣
∣p

– Φ
(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
1

log2 t

(
1
tα

∫ t+tα

t
s2(τ ) dτ

)) | sinp ϕα(t)|p
p – 1

+
g(t)

log2 t

)

≥ 1
t

((
R1 +

R2 – |g(t)|
log2 t

)∣∣cosp ϕα(t)
∣∣p – Φ

(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
S2 – (p – 1)|g(t)|

log2 t

) | sinp ϕα(t)|p
p – 1

)

≥ 1
t

((
R1 +

R2 – δ

log2 t

)∣∣cosp ϕα(t)
∣∣p – Φ

(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
S2 – δ

log2 t

) | sinp ϕα(t)|p
p – 1

)
. (4.24)

The equation

ψ ′(t) =
1
t

((
R1 +

R2 – δ

log2 t

)∣∣cosp ψ(t)
∣∣p – Φ

(
cosp ψ(t)

)
sinp ψ(t)

+
(

S1 +
S2 – δ

log2 t

) | sinp ψ(t)|p
p – 1

)
(4.25)

has the form of Eq. (4.2). From (4.23) and Theorem 4.2, (a), we know that Eq. (4.25) has
solutions that are unbounded (from above). Comparing (4.24) with Eq. (4.25), we obtain
(see (4.11))

lim
t→∞ϕα(t) = lim

t→∞ϕ(t) = ∞,

i.e., Eq. (1.2) is oscillatory.
In the second part of the proof, we show that lim supt→∞ ϕα(t) < ∞ if (1.9) and (1.10)

are valid. Let δ > 0 be such that (see (1.10))

q
S2 + δ

S1
+ p

R2 + δ

R1
<

q2

2
. (4.26)

Analogously as in (4.24), for all large t, we have (see (1.9), (3.5), and (4.7))

ϕ′
α(t) ≤ 1

t

((
R1 +

R2 + |g(t)|
log2 t

)∣
∣cosp ϕα(t)

∣
∣p – Φ

(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
S2 + (p – 1)|g(t)|

log2 t

) | sinp ϕα(t)|p
p – 1

)

≤ 1
t

((
R1 +

R2 + δ

log2 t

)∣
∣cosp ϕα(t)

∣
∣p – Φ

(
cosp ϕα(t)

)
sinp ϕα(t)

+
(

S1 +
S2 + δ

log2 t

) | sinp ϕα(t)|p
p – 1

)
. (4.27)
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Now, we consider the equation

ψ ′(t) =
1
t

((
R1 +

R2 + δ

log2 t

)∣∣cosp ψ(t)
∣∣p – Φ

(
cosp ψ(t)

)
sinp ψ(t)

+
(

S1 +
S2 + δ

log2 t

) | sinp ψ(t)|p
p – 1

)
(4.28)

which has the form of Eq. (4.2). Theorem 4.2, (b) (see (4.26)) guarantees that all solutions
of Eq. (4.28) are bounded (from above). Considering (4.27) and Eq. (4.28), we have (see
(4.11))

lim sup
t→∞

ϕα(t) = lim sup
t→∞

ϕ(t) < ∞

which gives the non-oscillation of Eq. (1.2). �

To show that Theorem 1.1 improves Theorem 2.1 mentioned in the Introduction as the
basic motivation, we explicitly formulate the following result in full. In fact, Theorem 4.3
below is a trivial consequence of Theorem 1.1.

Theorem 4.3 Consider the equation

(
r(t)Φ

(
x′))′ +

s(t)
tp Φ(x) = 0, (4.29)

where r > 0, s are continuous functions such that there exist α ∈ [0, 1), R, S > 0, and a con-
tinuous function f : [e,∞) →R satisfying limt→∞ f (t) = 0 for which

lim sup
t→∞

1
tα

∫ t+tα

t

∣∣s(τ )
∣∣dτ < ∞ (4.30)

and
∣
∣∣∣R –

1
tα

∫ t+tα

t
r

1
1–p (τ ) dτ

∣
∣∣∣ ≤ f (t)

log2 t
, t ∈ [e,∞), (4.31)

∣
∣∣
∣S –

1
tα

∫ t+tα

t
s(τ ) dτ

∣
∣∣
∣ ≤ f (t)

log2 t
, t ∈ [e,∞). (4.32)

If Rp–1S = q–p, then Eq. (4.29) is non-oscillatory.

Proof The theorem is a corollary of Theorem 1.1. It suffices to use Theorem 1.1, (b) for
Eq. (1.2) with r2 ≡ 0, s2 ≡ 0. �

Remark 1 We repeat that Theorem 4.3 generalizes Theorem 2.1. Theorem 4.3 generalizes
Theorem 2.3 for β = 0 as well. It is easy to verify this fact using [39, Lemma 3.5] for the
choice α = 1/2. Indeed, [39, Lemma 3.5] implies (4.31) and (4.32) for r, s which are sums of
continuous periodic functions. Note that (4.30) is trivially satisfied for any sum of contin-
uous periodic functions in the position of s. We add that, applying the presented process,
a generalization of Theorem 2.3 concerning a general β is actually not possible to obtain
because no result corresponding to Theorem 4.2 for β 	= 0 is known. We also refer to the
open problem (IV) in the next section.
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5 Corollaries, examples, and open problems
To illustrate the novelty of our results, we mention the following series of corollaries and
examples that are not covered by any known non-oscillation (or oscillation) criteria. At
first, we provide examples to illustrate the novelty of Theorem 1.1.

Example 1 For arbitrarily given real numbers a1 > 0, a2, b1 > 0, b2, let us consider the
equation

((
a1 +

a2

log2 t

)1–p

Φ
(
x′)

)′
+

(
b1 + sin t2 +

b2

log2 t

)
Φ(x)

tp = 0, (5.1)

which is a special case of Eq. (1.2). The conditions in (1.3), (1.4), and (1.6) are satisfied for
R1 = a1, S1 = b1, and any α ∈ (0, 1), because

sup
t≥1

1
tα

∫ t+tα

t

∣
∣sin τ 2∣∣dτ ≤ 1;

the integral
∫ ∞ sin τ 2 dτ is convergent which guarantees

sup
t≥e

∫ t+tα

t
sin τ 2 dτ < ∞.

Applying Theorems 1.1 and 4.1, we find that Eq. (5.1) is oscillatory for ap–1
1 b1 > q–p and

non-oscillatory for ap–1
1 b1 < q–p and, in the limiting case ap–1

1 b1 = q–p, we obtain a new
result, which says that Eq. (5.1) is oscillatory for

q
b2

b1
+ p

a2

a1
>

q2

2
, i.e., 2qp+1b2 + 2pa2a–p

1 > q2a1–p
1 ,

and non-oscillatory for

q
b2

b1
+ p

a2

a1
<

q2

2
.

Indeed, Eq. (5.1) has the form of Eq. (1.2) for r1(t) = a1, r2(t) = a2, s1(t) = b1 + sin t2, and
s2(t) = b2, where

1
tα

∫ t+tα

t
r2(τ ) dτ = a2,

1
tα

∫ t+tα

t
s2(τ ) dτ = b2

for all t ∈ [e,∞) and α ∈ (0, 1).

Example 2 Let a1 > 0, b1 > 0, a2, a3, b2, b3, b4 ∈ R, and a, b, c, d 	= 0. The half-linear equa-
tion

((
log2 t

a1 log2 t + a2 + a3 arctan(sin(at))

)2∣
∣x′∣∣x′

)′

+
(

b1 + b2 sin(b
√

t) + b3 sin(ct) +
b4 + sin(dt)

log2 t

) |x|x
t3 = 0 (5.2)
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takes the form of Eq. (1.2) for p = 3 and

r1(t) = a1, r2(t) = a2 + a3 arctan
(
sin(at)

)
,

s1(t) = b1 + b2 sin(b
√

t) + b3 sin(ct), s2(t) = b4 + sin(dt).

For any α ∈ (1/2, 1), based on the inequalities

lim sup
t→∞

1
tα

∫ t+tα

t

∣∣sin(b
√

τ )
∣∣dτ ≤ 1

and

∣∣
∣∣

1
tα

∫ t+tα

t
sin(b

√
τ ) dτ

∣∣
∣∣ ≤ 1

tα

∣∣
∣∣

[
2 sin(b

√
τ ) – 2b

√
τ cos(b

√
τ )

b2

]t+tα

t

∣∣
∣∣

≤ 1
b2tα

(
4 + 2b

(√
t + tα +

√
t
))

<
1

log3 t

for all large t, it is easy to verify conditions (1.3), (1.4), and (1.6) for large t. Hence, we can
apply Theorem 1.1. In conclusion, Theorems 1.1 and 4.1 give the oscillation of Eq. (5.2)
if 33a2

1b1 > 23 and the non-oscillation if 33a2
1b1 < 23. In addition, in the threshold case

33a2
1b1 = 23, which is studied in this paper, we have oscillation if

4
b4

b1
+ 8

a2

a1
> 3,

and non-oscillation if the opposite sharp inequality holds.

Example 3 For arbitrary a > 1, b > 1, and c ∈ R, let us consider the equations

(p – 1)
∣∣x′∣∣p–2x′′ +

1
(t + 1)p

(
q–p + sina t + sinb t +

c
log2 t

)
|x|p–2x = 0,

(p – 1)
∣∣x′∣∣p–2x′′ +

1
(t + 1)p

(
q–p + sina t + cosb t +

c
log2 t

)
|x|p–2x = 0,

(p – 1)
∣∣x′∣∣p–2x′′ +

1
(t + 1)p

(
q–p + cosa t + cosb t +

c
log2 t

)
|x|p–2x = 0.

Each one of these equations takes the form of Eq. (1.2). Applying Theorem 1.1, one can
show that the equations are oscillatory for 2c > q1–p and non-oscillatory for 2c < q1–p; this
does not follow from known criteria.

Now, we focus on Theorem 4.3. In particular, Theorem 4.3 gives a new result in the linear
case (for p = 2) as well. Since linear equations form a very important class of equations,
we mention the corresponding new corollary explicitly.

Corollary 5.1 Consider the linear equation

(
r(t)x′(t)

)′ +
s(t)
t2 x(t) = 0, (5.3)
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where r > 0, s are continuous functions and (4.30) is valid for some α ∈ [0, 1). If there
exist R, S > 0 satisfying 4RS ≤ 1 and a continuous function f : [e,∞) → R satisfying
limt→∞ f (t) = 0 for which

1
tα

∫ t+tα

t

1
r(τ )

dτ ≤ R +
f (t)

log2 t
, t ∈ [e,∞),

and

1
tα

∫ t+tα

t
s(τ ) dτ ≤ S +

f (t)
log2 t

, t ∈ [e,∞),

then Eq. (5.3) is non-oscillatory.

Proof The statement of the corollary follows from Theorem 4.1 and Theorem 4.3 for
p = 2. �

Further, Corollary 5.1 is not covered by known results even in the case of constant co-
efficients in the main term. This case is embodied into the next corollary.

Corollary 5.2 Consider the linear equation

x′′(t) +
s(t)
t2 x(t) = 0, (5.4)

where s is a continuous function and (4.30) is valid for some α ∈ [0, 1). If there exists a
continuous function f : [e,∞) →R satisfying limt→∞ f (t) = 0 such that

1
tα

∫ t+tα

t
s(τ ) dτ ≤ 1

4
+

f (t)
log2 t

, t ∈ [e,∞), (5.5)

then Eq. (5.4) is non-oscillatory.

Proof See Corollary 5.1 for r ≡ 1 and R = 1. �

To illustrate Corollary 5.2, we can consider simple types of equations whose non-
oscillation does not follow from any previously known results. See the example below.

Example 4 For the function

s(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
4 + t–2n

n , t ∈ [2n, 2n + n], n ∈N;
1
4 + 1 – t–2n–n

n , t ∈ (2n + n, 2n + 2n], n ∈N;
1
4 , t /∈ [2n, 2n + 2n], n ∈N,

(5.6)

we consider Eq. (5.4). For any α ∈ (0, 1), we have

lim
t→∞

1
tα

∫ t+tα

t

∣
∣s(τ )

∣
∣dτ = lim sup

n→∞
1

2αn

∫ 2n+2αn

2n
s(τ ) dτ =

1
4

,
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which gives (4.30). In addition, we obtain

1
tα

∫ t+tα

t
s(τ ) dτ ≤ 1

4
+

n + 1
tα

(5.7)

if α ∈ (0, 1) and t ∈ [2n, 2n+1], n ∈ N. Thus, if we put

f (t) := log2 t
1 + log2 t

tα
, t ∈ [e,∞),

then limt→∞ f (t) = 0 and (see (5.7))

1
tα

∫ t+tα

t
s(τ ) dτ ≤ 1

4
+

f (t)
log2 t

, t ∈ [e,∞),

for any α ∈ (0, 1). Further, we have (5.5). Altogether, Corollary 5.2 states that Eq. (5.4) is
non-oscillatory for s defined by (5.6). We repeat that the non-oscillation of Eq. (5.4) does
not follow from any previously known results (or their combinations).

Although the aim of this paper is to prove Theorem 4.3, we obtain a more general result,
which implies new criteria also for perturbed equations. Such a new corollary is as follows.

Corollary 5.3 Consider the half-linear equation

((
1 +

r(t)
log2 t

)1–p

Φ
(
x′)

)′
+

(
q–p +

s(t)
log2 t

)
Φ(x)

tp = 0, (5.8)

where r, s are continuous functions and

1 +
r(t)

log2 t
> 0, t ∈ [e,∞).

Assume that there exists α ∈ [0, 1) with

lim sup
t→∞

1
tα

∫ t+tα

t

∣
∣r(τ )

∣
∣dτ < ∞, lim sup

t→∞
1
tα

∫ t+tα

t

∣
∣s(τ )

∣
∣dτ < ∞.

(a) If

1
tα

∫ t+tα

t
r(τ ) dτ ≥ R,

1
tα

∫ t+tα

t
s(τ ) dτ ≥ S

for all large t and some R, S ∈R and

qp+1S + pR >
q2

2
,

then Eq. (5.8) is oscillatory.
(b) If

1
tα

∫ t+tα

t
r(τ ) dτ ≤ R,

1
tα

∫ t+tα

t
s(τ ) dτ ≤ S
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for all large t and some R, S ∈R and

qp+1S + pR <
q2

2
,

then Eq. (5.8) is non-oscillatory.

Proof It suffices to use Theorem 1.1 for R1 = 1, S1 = q–p, R2 = R, S2 = S, r1(t) = 1, s1(t) = q–p,
r2(t) = r(t), and s2(t) = s(t). �

Corollary 5.3 is not covered by known results even for the Riemann–Weber type of (lin-
ear and half-linear) equations. Hence, we mention the next corollaries and examples.

Corollary 5.4 Consider the equation

(
Φ

(
x′))′ +

(
q–p +

s(t)
log2 t

)
Φ(x)

tp = 0, (5.9)

where s is a continuous function such that (4.30) holds for some α ∈ [0, 1).
(I) If

lim inf
t→∞

1
tα

∫ t+tα

t
s(τ ) dτ >

q1–p

2
, (5.10)

then Eq. (5.9) is oscillatory.
(II) If

lim sup
t→∞

1
tα

∫ t+tα

t
s(τ ) dτ <

q1–p

2
, (5.11)

then Eq. (5.9) is non-oscillatory.

Proof The corollary follows from Theorem 1.1 for coefficients r1(t) = 1, r2(t) = 0, s1(t) =
q–p, s2(t) = s(t). �

Example 5 Let a, b ∈ R be arbitrary. Similarly as in Example 4 (see (5.6)), we define the
function s : [8,∞) →R by the formula

s(t) :=

⎧
⎨

⎩
a + b sin π (t–8n)

4n , t ∈ [8n, 8n + 4n], n ∈N;

a, t ∈ (8n + 4n, 8n+1), n ∈N.

Let us consider Eq. (5.9) for this function s and t ≥ 8. Clearly,

lim sup
t→∞

1
tα

∫ t+tα

t

∣
∣s(τ )

∣
∣dτ ≤ |a| + |b| < ∞
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for any α ∈ [0, 1), i.e., (4.30) is fulfilled. Now, we consider α > 2/3. For example, we choose
α = 3/4. Then we obtain

lim inf
t→∞

1
4√t3

∫ t+ 4√t3

t
s(τ ) dτ ≥ lim

n→∞
1

4√83n

(∫ 8n+4n

8n
–|b|dτ +

∫ 8n+ 4√83n

8n
a dτ

)

= lim
n→∞ a – |b| 4n

4√83n
= lim

n→∞ a – |b|
(

4
4 4√2

)n

= a

and

lim sup
t→∞

1
4√t3

∫ t+ 4√t3

t
s(τ ) dτ ≤ lim

n→∞
1

4√83n

(∫ 8n+4n

8n
|b|dτ +

∫ 8n+ 4√83n

8n
a dτ

)

= lim
n→∞ a + |b| 4n

4√83n
= a.

Thus,

lim
t→∞

1
4√t3

∫ t+ 4√t3

t
s(τ ) dτ = a. (5.12)

Applying Corollary 5.4 (see (5.10) and (5.11)) and considering (5.12), we obtain the oscil-
lation of the considered equation for 2a > q1–p and its non-oscillation for 2a < q1–p.

Corollary 5.5 Consider the linear equation

x′′ +
(

1
4

+
s(t)

log2 t

)
x
t2 = 0, (5.13)

where s is a continuous function satisfying (4.30) for some α ∈ [0, 1).
(a) If the inequality

1
tα

∫ t+tα

t
s(τ ) dτ >

1
4

+ ε (5.14)

holds for all large t and some ε > 0, then Eq. (5.13) is oscillatory.
(b) If the inequality

1
tα

∫ t+tα

t
s(τ ) dτ <

1
4

– ε (5.15)

holds for all large t and some ε > 0, then Eq. (5.13) is non-oscillatory.

Proof It suffices to consider Corollary 5.4 for p = 2. �

Example 6 Let a ∈ R and α ∈ (1/3, 1) be arbitrary and let b : [e,∞) → R be an arbitrary
continuous function such that

lim sup
t→∞

1
tα

∫ t+tα

t

3√τ
∣
∣b(τ )

∣
∣dτ < ∞. (5.16)
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We apply Corollary 5.5 to the equation

x′′ +
(

1
4

+
a + arctan(t3 – 2t2 + 1) + b(t) 3√t cos t + t5

t5+6
log(t + 1) log t

)
x
t2 = 0, (5.17)

i.e., for Eq. (5.13) with

s(t) =
(

a + arctan
(
t3 – 2t2 + 1

)
+ b(t) 3√t cos t +

t5

t5 + 6

)
log t

log(t + 1)
. (5.18)

Since

lim
t→∞ arctan

(
t3 – 2t2 + 1

)
=

π

2
, lim

t→∞
t5

t5 + 6
= lim

t→∞
log t

log(t + 1)
= 1, (5.19)

and

–
2 3√t + tα

tα
≤ 1

tα

∫ t+tα

t

3√τ cos τ dτ ≤ 2 3√t + tα

tα

for all large t, we have

lim
t→∞

1
tα

∫ t+tα

t
s(τ ) dτ = a +

π

2
+ 1. (5.20)

To use Corollary 5.5, it remains to verify (4.30). Of course, (5.16), (5.18), and (5.19) guaran-
tee that (4.30) is fulfilled. Considering (5.20) together with (5.14) and (5.15), Corollary 5.5
says that Eq. (5.17) is oscillatory if 4a + 2π + 3 > 0, and non-oscillatory if 4a + 2π + 3 < 0,
i.e., if a < –2.320796326794896619 . . .

In Example 6, one can see that it is possible to use the presented results asymptotically
(also for other types of equations). It is formulated explicitly below in two new corollaries.
Note that, for simplicity, we demonstrate such types of results only in a very special case.
To prove Corollary 5.6 below, we need the following lemma.

Lemma 5.1 Let a function F : [e,∞) → R be such that it can be expressed as a finite sum of
continuous periodic functions. Then there exists a constant E(F) > 0 such that the inequality

∣∣
∣∣

1√
t

∫ t+
√

t

t
F(τ ) dτ – F

∣∣
∣∣ ≤ E(F)√

t

holds for all t ∈ [e,∞).

Proof See [39, Lemma 3.5]. �

Corollary 5.6 For an arbitrary p > 1, consider continuous functions f1, f2, f3 : [e,∞) → R

such that

lim
t→∞

f1(t)
log2 t

= lim
t→∞

f2(t)
log2 t

= lim
t→∞

f3(t)
tp = 1
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and the half-linear differential equation

((
1 + r1(t) +

r2(t)
f1(t)

)1–p

Φ
(
x′)

)′
+

(
q–p + s1(t) +

s2(t)
f2(t)

)
Φ(x)
f3(t)

= 0, (5.21)

where r1, s1 are finite sums of continuous periodic functions, r2, s2 are continuous functions
such that

1 + r1(t) +
r2(t)
f1(t)

> 0, t ∈ [e,∞),

the mean values r1, s1 are zero, and the inequalities

lim sup
t→∞

1√
t

∫ t+
√

t

t

∣
∣r2(τ )

∣
∣dτ < ∞, lim sup

t→∞
1√

t

∫ t+
√

t

t

∣
∣s2(τ )

∣
∣dτ < ∞

hold. Let R, S ∈R.
(a) If

1√
t

∫ t+
√

t

t
r2(τ ) dτ ≥ R,

1√
t

∫ t+
√

t

t
s2(τ ) dτ ≥ S

for all large t and 2qp+1S + 2pR > q2, then Eq. (5.21) is oscillatory.
(b) If

1√
t

∫ t+
√

t

t
r2(τ ) dτ ≤ R,

1√
t

∫ t+
√

t

t
s2(τ ) dτ ≤ S

for all large t and 2qp+1S + 2pR < q2, then Eq. (5.21) is non-oscillatory.

Proof The corollary is a consequence of Theorem 1.1, where it suffices to apply Lemma 5.1
and to put α = 1/2, R1 = 1, and S1 = q–p. �

Corollary 5.6 gives a new result for p = 2 as well. This new result is formulated for con-
stant coefficients in place of r2, s2.

Corollary 5.7 Let R, S ∈ R and let f1, f2, f3 : [e,∞) → R be arbitrary continuous functions
satisfying

lim
t→∞

f1(t)
log2 t

= lim
t→∞

f2(t)
log2 t

= lim
t→∞

f3(t)
t2 = 1.

Consider the linear differential equation

(
f1(t)

f1(t) + f1(t)r(t) + R
x′

)′
+

(
1
4

+ s(t) +
S

f2(t)

)
x

f3(t)
= 0, (5.22)

where r > 0, s are finite sums of continuous periodic functions with the property that
r = s = 0.

(a) If 4S + R > 1, then Eq. (5.22) is oscillatory.
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(b) If 4S + R < 1, then Eq. (5.22) is non-oscillatory.

Proof See Corollary 5.6 for p = 2, r1(t) = r(t), r2(t) = R, s1(t) = s(t), s2(t) = S. �

Example 7 For a, b ∈R, we can illustrate Corollary 5.7, e.g., by the equations

(
log2 t

a + (1 + sin t) log2 t
x′

)′
+

(
1
4

(
1 + sin t +

b
log2(t + sin t)

))
x

t2 + 2
= 0,

(
log2 t

a + log2 t
x′

)′
+

(
1
4

(
1 + cos t +

b
log2 t

))
x

t(t + sin t)
= 0,

(
log2(t + 1)

a + log2(t + 1)
x′

)′
+

(
1
4

(
1 + sin t cos t +

b
log t log(t + 3√t + 1)

))
t2x

t4 + 1
= 0,

((
1 +

a
log2(t +

√
t sin t)

)–1

x′
)′

+
(

1 + sin t +
b

log2 t

)
x

4(t + 1)2 = 0,

((
1 +

a
log2 t

)–1

x′
)′

+
(

1
4

+ sin t + sin(
√

2t) +
b

4 log2 t

)
x

t(t + 1)
= 0,

((
1 + sin(

√
2t) +

a
log2(t + 1)

)–1

x′
)′

+
(

1 + sin(
√

3t) +
b

log2(t – 1)

)
x

4 4√t8 + 1
= 0.

One can easily verify that each one of the above equations is oscillatory for a + b > 1 and
non-oscillatory for a + b < 1. To the best of our knowledge, the oscillatory behaviors of the
above equations are not covered by any previously known criteria.

We end this paper by the following series of open problems which are connected to
the research presented in this paper. Some of them are indicated in the Introduction; we
describe them in detail here.

(I) Non-oscillation, principal solution, and boundary value problems. As claimed in the
Introduction, non-oscillatory half-linear equations have important applications in bound-
ary value problems on non-compact intervals. It is an open problem to study asymptotic
properties of principal solutions of Euler type equations (1.2) and (4.1) under the non-
oscillation condition mentioned in Theorem 4.2, (b). Along with this, it is of interest to
apply these results to obtain effective criteria for the non-oscillation of principal solutions
of some auxiliary half-linear equations that are used to find upper (lower) bounds for so-
lutions of some boundary value problems on non-compact intervals by using a similar
approach as in [7, 8].

(II) Discretization. Since the qualitative theory of difference equations follows the con-
tinuous theory frequently, the second open problem is devoted to the equations of the
form

�
(
rkΦ(�xk)

)
+

sk

kp Φ(xk+1) = 0,

where �xk = xk+1 – xk is the forward difference of the sequence {xk}. As we have already
mentioned in the Introduction, some results concerning (non-perturbed) difference equa-
tions are already available (see, e.g., [36] or [34] and the references cited therein). The nat-
ural continuation is to extend known results to perturbed equations. Unfortunately, there
is a problem with the method. Let us describe this problem thoroughly.
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In this paper, we started with the Riccati technique. We recall that the core of this
method is the equivalence of the non-oscillation of a studied equation and the existence of
a solution of an associated Riccati type differential equation (or inequality) on an interval
[T ,∞) (see, e.g., [26–28, 30]). The standard Riccati technique and its variations (where
the adapted Riccati equation (3.3) applied in this paper belongs) are used usually in the
theory of non-perturbed equations. The technique itself is robust, clear, and straightfor-
ward but its “resolution” is not as precise as is needed for an analysis of the critical case
and perturbed equations.

Hence, we combine the adapted Riccati equation with the Prüfer technique and involve
the averaging method. Then we use the equivalence of the non-oscillation of the given
equation and the boundedness of the Prüfer angle (for variations of such approach, see,
e.g., [17, 33, 39, 45]).

Getting back to difference equations, the first approach (the Riccati technique) is avail-
able and frequently applied. The second method which involves the Prüfer transformation
is available only in a “weak” version, which is a consequence of problems with the chain
rule in the difference calculus (see [4]). Therefore, the acquisition of results concerning
the conditional oscillation for difference equations with perturbations (or solve the criti-
cal case) remains a challenging open problem.

(III) Time scales. The third direction is towards dynamic equations on time scales, i.e.,
to equations of the form

(
r(t)Φ

(
x�

))� +
s(t)
tp Φ

(
xσ

)
= 0,

where x� and xσ denote the delta derivative and the forward jump operator applied to
the function x, respectively. For more details, we refer, e.g., to [5]. Roughly speaking, the
time scale calculus is a unification of the continuous and discrete calculus but a time scale
itself is an arbitrary non-empty closed subset of real numbers. It means that much more
cases are covered than only R and Z. It has lead to the importance of dynamic equations
in natural sciences, economy, and informatics and also to high interest of researchers. As
well as in the discrete case (which is a special case of time scales), some results are already
known (see, e.g., [38] with references therein). Of course, the problem with the fully func-
tional Prüfer transformation is present as well. Therefore, the description from point (II)
is valid also for dynamic equations on time scales. Moreover (see [50]), we note that the
critical oscillation constant may be dependent on the graininess (a function that measures
the distance between two consecutive points of the given time scale; it is identically zero
for R and one for Z).

(IV) Modified equations. Since conditionally oscillatory equations are very useful, a nat-
ural direction of research is to find another types of equations that are conditionally os-
cillatory. As we have already mentioned in the Introduction, such equations are ideal for
testing oscillatory properties of other equations via many comparison theorems. How-
ever, the form of the coefficients of known conditionally oscillatory equations may not be
suitable for testing of certain equations. More precisely, let us consider Eq. (2.4), where
the presence of t–p in the potential term may be an obstacle. It is proved in [14] that the
equation

(
tβ–1r(t)Φ

(
x′))′ +

s(t)
tp–β+1 Φ(x) = 0, β 	= p, (5.23)



Došlá et al. Journal of Inequalities and Applications        (2019) 2019:189 Page 27 of 30

is conditionally oscillatory. The idea is to find other forms of differential equations and
their perturbations that preserve the behavior of conditional oscillation. In this direction,
we recall Theorem 2.3.

We remark that Eq. (5.23) with β = p is not conditionally oscillatory, which can be simply
verified on the case of constant coefficients r, s. In this case (see [35]), the form of the
corresponding conditionally oscillatory equation is

(
tp–1r(t)Φ

(
x′))′ +

s(t)
t logp t

Φ(x) = 0

and the conditionally oscillatory perturbed equation is

(
tp–1

(
r1(t) +

r2(t)
log2 t

)1–p

Φ
(
x′)

)′
+

1
t logp t

(
s1(t) +

s2(t)
log2 t

)
Φ(x) = 0.

Continuation in this research direction has a potential to enlarge the set of conditionally
oscillatory equations.

(V) Non-linear equations. Besides the applications within linear and half-linear equa-
tions (and “real world” applications in natural sciences or economics), half-linear equa-
tions can be considered a starting point to research in the field of non-linear equations.
A natural way involves equations with the combination of two p-Laplacians such as

(
r(t)Φa

(
x�

))� + s(t)Φb
(
xσ

)
= 0,

where Φa and Φb stand for p-Laplacian with p = a and p = b, respectively. Then one can
proceed to equations of the form

(
r(t)Φ

(
x�

))� + s(t)g
(
xσ

)
= 0,

where g satisfies the sign condition xg(x) > 0 whenever x 	= 0. See, e.g., [55–57, 59].
(VI) Partial differential equations. Since half-linear equations are in fact PDE’s with one

dimensional p-Laplacian, another natural way of research is towards elliptic partial differ-
ential equations in the form

div
(
A(x)‖∇u‖p–2∇u

)
+ C(x)Φ(u) = 0, (5.24)

where A is an elliptic n × n matrix function with differentiable components, C is a Hölder
continuous function, and x ∈ R

n. See, e.g., [15, 18, 49] or [28], where an example of a
result for Eq. (5.24) is presented using a theorem about conditionally oscillatory half-linear
equations.

(VII) General coefficients. Whenever a result containing some restrictions on coefficients
is proved, the main question is whether the limitations on coefficients can be removed
or weakened at least. We conclude that the results of this paper cannot be significantly
extended in this direction. We can illustrate this on Eq. (4.29), which is proved to be non-
oscillatory in the critical case (see Theorem 4.3). If we allow functions r, s to be almost
periodic, we can construct two sets of these functions, say r1, s1 and r2, s2, such that one
of the obtained equations (e.g., with r1, s1) is oscillatory and the second one (with r2, s2)
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is non-oscillatory in the critical case. Constructions that can be used for obtaining these
coefficients are described in [60] (and used, e.g., in [29, 31] in the discrete case).
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